1 //===- FuzzedDataProvider.h - Utility header for fuzz targets ---*- C++ -* ===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // A single header library providing an utility class to break up an array of 9 // bytes. Whenever run on the same input, provides the same output, as long as 10 // its methods are called in the same order, with the same arguments. 11 //===----------------------------------------------------------------------===// 12 13 #ifndef LLVM_FUZZER_FUZZED_DATA_PROVIDER_H_ 14 #define LLVM_FUZZER_FUZZED_DATA_PROVIDER_H_ 15 16 #include <algorithm> 17 #include <array> 18 #include <climits> 19 #include <cstddef> 20 #include <cstdint> 21 #include <cstdlib> 22 #include <cstring> 23 #include <initializer_list> 24 #include <limits> 25 #include <string> 26 #include <type_traits> 27 #include <utility> 28 #include <vector> 29 30 // In addition to the comments below, the API is also briefly documented at 31 // https://github.com/google/fuzzing/blob/master/docs/split-inputs.md#fuzzed-data-provider 32 class FuzzedDataProvider { 33 public: 34 // |data| is an array of length |size| that the FuzzedDataProvider wraps to 35 // provide more granular access. |data| must outlive the FuzzedDataProvider. 36 FuzzedDataProvider(const uint8_t *data, size_t size) 37 : data_ptr_(data), remaining_bytes_(size) {} 38 ~FuzzedDataProvider() = default; 39 40 // See the implementation below (after the class definition) for more verbose 41 // comments for each of the methods. 42 43 // Methods returning std::vector of bytes. These are the most popular choice 44 // when splitting fuzzing input into pieces, as every piece is put into a 45 // separate buffer (i.e. ASan would catch any under-/overflow) and the memory 46 // will be released automatically. 47 template <typename T> std::vector<T> ConsumeBytes(size_t num_bytes); 48 template <typename T> 49 std::vector<T> ConsumeBytesWithTerminator(size_t num_bytes, T terminator = 0); 50 template <typename T> std::vector<T> ConsumeRemainingBytes(); 51 52 // Methods returning strings. Use only when you need a std::string or a null 53 // terminated C-string. Otherwise, prefer the methods returning std::vector. 54 std::string ConsumeBytesAsString(size_t num_bytes); 55 std::string ConsumeRandomLengthString(size_t max_length); 56 std::string ConsumeRandomLengthString(); 57 std::string ConsumeRemainingBytesAsString(); 58 59 // Methods returning integer values. 60 template <typename T> T ConsumeIntegral(); 61 template <typename T> T ConsumeIntegralInRange(T min, T max); 62 63 // Methods returning floating point values. 64 template <typename T> T ConsumeFloatingPoint(); 65 template <typename T> T ConsumeFloatingPointInRange(T min, T max); 66 67 // 0 <= return value <= 1. 68 template <typename T> T ConsumeProbability(); 69 70 bool ConsumeBool(); 71 72 // Returns a value chosen from the given enum. 73 template <typename T> T ConsumeEnum(); 74 75 // Returns a value from the given array. 76 template <typename T, size_t size> T PickValueInArray(const T (&array)[size]); 77 template <typename T, size_t size> 78 T PickValueInArray(const std::array<T, size> &array); 79 template <typename T> T PickValueInArray(std::initializer_list<const T> list); 80 81 // Writes data to the given destination and returns number of bytes written. 82 size_t ConsumeData(void *destination, size_t num_bytes); 83 84 // Reports the remaining bytes available for fuzzed input. 85 size_t remaining_bytes() { return remaining_bytes_; } 86 87 private: 88 FuzzedDataProvider(const FuzzedDataProvider &) = delete; 89 FuzzedDataProvider &operator=(const FuzzedDataProvider &) = delete; 90 91 void CopyAndAdvance(void *destination, size_t num_bytes); 92 93 void Advance(size_t num_bytes); 94 95 template <typename T> 96 std::vector<T> ConsumeBytes(size_t size, size_t num_bytes); 97 98 template <typename TS, typename TU> TS ConvertUnsignedToSigned(TU value); 99 100 const uint8_t *data_ptr_; 101 size_t remaining_bytes_; 102 }; 103 104 // Returns a std::vector containing |num_bytes| of input data. If fewer than 105 // |num_bytes| of data remain, returns a shorter std::vector containing all 106 // of the data that's left. Can be used with any byte sized type, such as 107 // char, unsigned char, uint8_t, etc. 108 template <typename T> 109 std::vector<T> FuzzedDataProvider::ConsumeBytes(size_t num_bytes) { 110 num_bytes = std::min(num_bytes, remaining_bytes_); 111 return ConsumeBytes<T>(num_bytes, num_bytes); 112 } 113 114 // Similar to |ConsumeBytes|, but also appends the terminator value at the end 115 // of the resulting vector. Useful, when a mutable null-terminated C-string is 116 // needed, for example. But that is a rare case. Better avoid it, if possible, 117 // and prefer using |ConsumeBytes| or |ConsumeBytesAsString| methods. 118 template <typename T> 119 std::vector<T> FuzzedDataProvider::ConsumeBytesWithTerminator(size_t num_bytes, 120 T terminator) { 121 num_bytes = std::min(num_bytes, remaining_bytes_); 122 std::vector<T> result = ConsumeBytes<T>(num_bytes + 1, num_bytes); 123 result.back() = terminator; 124 return result; 125 } 126 127 // Returns a std::vector containing all remaining bytes of the input data. 128 template <typename T> 129 std::vector<T> FuzzedDataProvider::ConsumeRemainingBytes() { 130 return ConsumeBytes<T>(remaining_bytes_); 131 } 132 133 // Returns a std::string containing |num_bytes| of input data. Using this and 134 // |.c_str()| on the resulting string is the best way to get an immutable 135 // null-terminated C string. If fewer than |num_bytes| of data remain, returns 136 // a shorter std::string containing all of the data that's left. 137 inline std::string FuzzedDataProvider::ConsumeBytesAsString(size_t num_bytes) { 138 static_assert(sizeof(std::string::value_type) == sizeof(uint8_t), 139 "ConsumeBytesAsString cannot convert the data to a string."); 140 141 num_bytes = std::min(num_bytes, remaining_bytes_); 142 std::string result( 143 reinterpret_cast<const std::string::value_type *>(data_ptr_), num_bytes); 144 Advance(num_bytes); 145 return result; 146 } 147 148 // Returns a std::string of length from 0 to |max_length|. When it runs out of 149 // input data, returns what remains of the input. Designed to be more stable 150 // with respect to a fuzzer inserting characters than just picking a random 151 // length and then consuming that many bytes with |ConsumeBytes|. 152 inline std::string 153 FuzzedDataProvider::ConsumeRandomLengthString(size_t max_length) { 154 // Reads bytes from the start of |data_ptr_|. Maps "\\" to "\", and maps "\" 155 // followed by anything else to the end of the string. As a result of this 156 // logic, a fuzzer can insert characters into the string, and the string 157 // will be lengthened to include those new characters, resulting in a more 158 // stable fuzzer than picking the length of a string independently from 159 // picking its contents. 160 std::string result; 161 162 // Reserve the anticipated capacity to prevent several reallocations. 163 result.reserve(std::min(max_length, remaining_bytes_)); 164 for (size_t i = 0; i < max_length && remaining_bytes_ != 0; ++i) { 165 char next = ConvertUnsignedToSigned<char>(data_ptr_[0]); 166 Advance(1); 167 if (next == '\\' && remaining_bytes_ != 0) { 168 next = ConvertUnsignedToSigned<char>(data_ptr_[0]); 169 Advance(1); 170 if (next != '\\') 171 break; 172 } 173 result += next; 174 } 175 176 result.shrink_to_fit(); 177 return result; 178 } 179 180 // Returns a std::string of length from 0 to |remaining_bytes_|. 181 inline std::string FuzzedDataProvider::ConsumeRandomLengthString() { 182 return ConsumeRandomLengthString(remaining_bytes_); 183 } 184 185 // Returns a std::string containing all remaining bytes of the input data. 186 // Prefer using |ConsumeRemainingBytes| unless you actually need a std::string 187 // object. 188 inline std::string FuzzedDataProvider::ConsumeRemainingBytesAsString() { 189 return ConsumeBytesAsString(remaining_bytes_); 190 } 191 192 // Returns a number in the range [Type's min, Type's max]. The value might 193 // not be uniformly distributed in the given range. If there's no input data 194 // left, always returns |min|. 195 template <typename T> T FuzzedDataProvider::ConsumeIntegral() { 196 return ConsumeIntegralInRange(std::numeric_limits<T>::min(), 197 std::numeric_limits<T>::max()); 198 } 199 200 // Returns a number in the range [min, max] by consuming bytes from the 201 // input data. The value might not be uniformly distributed in the given 202 // range. If there's no input data left, always returns |min|. |min| must 203 // be less than or equal to |max|. 204 template <typename T> 205 T FuzzedDataProvider::ConsumeIntegralInRange(T min, T max) { 206 static_assert(std::is_integral<T>::value, "An integral type is required."); 207 static_assert(sizeof(T) <= sizeof(uint64_t), "Unsupported integral type."); 208 209 if (min > max) 210 abort(); 211 212 // Use the biggest type possible to hold the range and the result. 213 uint64_t range = static_cast<uint64_t>(max) - static_cast<uint64_t>(min); 214 uint64_t result = 0; 215 size_t offset = 0; 216 217 while (offset < sizeof(T) * CHAR_BIT && (range >> offset) > 0 && 218 remaining_bytes_ != 0) { 219 // Pull bytes off the end of the seed data. Experimentally, this seems to 220 // allow the fuzzer to more easily explore the input space. This makes 221 // sense, since it works by modifying inputs that caused new code to run, 222 // and this data is often used to encode length of data read by 223 // |ConsumeBytes|. Separating out read lengths makes it easier modify the 224 // contents of the data that is actually read. 225 --remaining_bytes_; 226 result = (result << CHAR_BIT) | data_ptr_[remaining_bytes_]; 227 offset += CHAR_BIT; 228 } 229 230 // Avoid division by 0, in case |range + 1| results in overflow. 231 if (range != std::numeric_limits<decltype(range)>::max()) 232 result = result % (range + 1); 233 234 return static_cast<T>(static_cast<uint64_t>(min) + result); 235 } 236 237 // Returns a floating point value in the range [Type's lowest, Type's max] by 238 // consuming bytes from the input data. If there's no input data left, always 239 // returns approximately 0. 240 template <typename T> T FuzzedDataProvider::ConsumeFloatingPoint() { 241 return ConsumeFloatingPointInRange<T>(std::numeric_limits<T>::lowest(), 242 std::numeric_limits<T>::max()); 243 } 244 245 // Returns a floating point value in the given range by consuming bytes from 246 // the input data. If there's no input data left, returns |min|. Note that 247 // |min| must be less than or equal to |max|. 248 template <typename T> 249 T FuzzedDataProvider::ConsumeFloatingPointInRange(T min, T max) { 250 if (min > max) 251 abort(); 252 253 T range = .0; 254 T result = min; 255 constexpr T zero(.0); 256 if (max > zero && min < zero && max > min + std::numeric_limits<T>::max()) { 257 // The diff |max - min| would overflow the given floating point type. Use 258 // the half of the diff as the range and consume a bool to decide whether 259 // the result is in the first of the second part of the diff. 260 range = (max / 2.0) - (min / 2.0); 261 if (ConsumeBool()) { 262 result += range; 263 } 264 } else { 265 range = max - min; 266 } 267 268 return result + range * ConsumeProbability<T>(); 269 } 270 271 // Returns a floating point number in the range [0.0, 1.0]. If there's no 272 // input data left, always returns 0. 273 template <typename T> T FuzzedDataProvider::ConsumeProbability() { 274 static_assert(std::is_floating_point<T>::value, 275 "A floating point type is required."); 276 277 // Use different integral types for different floating point types in order 278 // to provide better density of the resulting values. 279 using IntegralType = 280 typename std::conditional<(sizeof(T) <= sizeof(uint32_t)), uint32_t, 281 uint64_t>::type; 282 283 T result = static_cast<T>(ConsumeIntegral<IntegralType>()); 284 result /= static_cast<T>(std::numeric_limits<IntegralType>::max()); 285 return result; 286 } 287 288 // Reads one byte and returns a bool, or false when no data remains. 289 inline bool FuzzedDataProvider::ConsumeBool() { 290 return 1 & ConsumeIntegral<uint8_t>(); 291 } 292 293 // Returns an enum value. The enum must start at 0 and be contiguous. It must 294 // also contain |kMaxValue| aliased to its largest (inclusive) value. Such as: 295 // enum class Foo { SomeValue, OtherValue, kMaxValue = OtherValue }; 296 template <typename T> T FuzzedDataProvider::ConsumeEnum() { 297 static_assert(std::is_enum<T>::value, "|T| must be an enum type."); 298 return static_cast<T>( 299 ConsumeIntegralInRange<uint32_t>(0, static_cast<uint32_t>(T::kMaxValue))); 300 } 301 302 // Returns a copy of the value selected from the given fixed-size |array|. 303 template <typename T, size_t size> 304 T FuzzedDataProvider::PickValueInArray(const T (&array)[size]) { 305 static_assert(size > 0, "The array must be non empty."); 306 return array[ConsumeIntegralInRange<size_t>(0, size - 1)]; 307 } 308 309 template <typename T, size_t size> 310 T FuzzedDataProvider::PickValueInArray(const std::array<T, size> &array) { 311 static_assert(size > 0, "The array must be non empty."); 312 return array[ConsumeIntegralInRange<size_t>(0, size - 1)]; 313 } 314 315 template <typename T> 316 T FuzzedDataProvider::PickValueInArray(std::initializer_list<const T> list) { 317 // TODO(Dor1s): switch to static_assert once C++14 is allowed. 318 if (!list.size()) 319 abort(); 320 321 return *(list.begin() + ConsumeIntegralInRange<size_t>(0, list.size() - 1)); 322 } 323 324 // Writes |num_bytes| of input data to the given destination pointer. If there 325 // is not enough data left, writes all remaining bytes. Return value is the 326 // number of bytes written. 327 // In general, it's better to avoid using this function, but it may be useful 328 // in cases when it's necessary to fill a certain buffer or object with 329 // fuzzing data. 330 inline size_t FuzzedDataProvider::ConsumeData(void *destination, 331 size_t num_bytes) { 332 num_bytes = std::min(num_bytes, remaining_bytes_); 333 CopyAndAdvance(destination, num_bytes); 334 return num_bytes; 335 } 336 337 // Private methods. 338 inline void FuzzedDataProvider::CopyAndAdvance(void *destination, 339 size_t num_bytes) { 340 std::memcpy(destination, data_ptr_, num_bytes); 341 Advance(num_bytes); 342 } 343 344 inline void FuzzedDataProvider::Advance(size_t num_bytes) { 345 if (num_bytes > remaining_bytes_) 346 abort(); 347 348 data_ptr_ += num_bytes; 349 remaining_bytes_ -= num_bytes; 350 } 351 352 template <typename T> 353 std::vector<T> FuzzedDataProvider::ConsumeBytes(size_t size, size_t num_bytes) { 354 static_assert(sizeof(T) == sizeof(uint8_t), "Incompatible data type."); 355 356 // The point of using the size-based constructor below is to increase the 357 // odds of having a vector object with capacity being equal to the length. 358 // That part is always implementation specific, but at least both libc++ and 359 // libstdc++ allocate the requested number of bytes in that constructor, 360 // which seems to be a natural choice for other implementations as well. 361 // To increase the odds even more, we also call |shrink_to_fit| below. 362 std::vector<T> result(size); 363 if (size == 0) { 364 if (num_bytes != 0) 365 abort(); 366 return result; 367 } 368 369 CopyAndAdvance(result.data(), num_bytes); 370 371 // Even though |shrink_to_fit| is also implementation specific, we expect it 372 // to provide an additional assurance in case vector's constructor allocated 373 // a buffer which is larger than the actual amount of data we put inside it. 374 result.shrink_to_fit(); 375 return result; 376 } 377 378 template <typename TS, typename TU> 379 TS FuzzedDataProvider::ConvertUnsignedToSigned(TU value) { 380 static_assert(sizeof(TS) == sizeof(TU), "Incompatible data types."); 381 static_assert(!std::numeric_limits<TU>::is_signed, 382 "Source type must be unsigned."); 383 384 // TODO(Dor1s): change to `if constexpr` once C++17 becomes mainstream. 385 if (std::numeric_limits<TS>::is_modulo) 386 return static_cast<TS>(value); 387 388 // Avoid using implementation-defined unsigned to signed conversions. 389 // To learn more, see https://stackoverflow.com/questions/13150449. 390 if (value <= std::numeric_limits<TS>::max()) { 391 return static_cast<TS>(value); 392 } else { 393 constexpr auto TS_min = std::numeric_limits<TS>::min(); 394 return TS_min + static_cast<TS>(value - TS_min); 395 } 396 } 397 398 #endif // LLVM_FUZZER_FUZZED_DATA_PROVIDER_H_ 399