1""" 2Static Analyzer qualification infrastructure. 3 4This source file contains all the functionality related to benchmarking 5the analyzer on a set projects. Right now, this includes measuring 6execution time and peak memory usage. Benchmark runs analysis on every 7project multiple times to get a better picture about the distribution 8of measured values. 9 10Additionally, this file includes a comparison routine for two benchmarking 11results that plots the result together on one chart. 12""" 13 14import SATestUtils as utils 15from SATestBuild import ProjectTester, stdout, TestInfo 16from ProjectMap import ProjectInfo 17 18import pandas as pd 19from typing import List, Tuple 20 21 22INDEX_COLUMN = "index" 23 24 25def _save(data: pd.DataFrame, file_path: str): 26 data.to_csv(file_path, index_label=INDEX_COLUMN) 27 28 29def _load(file_path: str) -> pd.DataFrame: 30 return pd.read_csv(file_path, index_col=INDEX_COLUMN) 31 32 33class Benchmark: 34 """ 35 Becnhmark class encapsulates one functionality: it runs the analysis 36 multiple times for the given set of projects and stores results in the 37 specified file. 38 """ 39 40 def __init__(self, projects: List[ProjectInfo], iterations: int, output_path: str): 41 self.projects = projects 42 self.iterations = iterations 43 self.out = output_path 44 45 def run(self): 46 results = [self._benchmark_project(project) for project in self.projects] 47 48 data = pd.concat(results, ignore_index=True) 49 _save(data, self.out) 50 51 def _benchmark_project(self, project: ProjectInfo) -> pd.DataFrame: 52 if not project.enabled: 53 stdout(f" \n\n--- Skipping disabled project {project.name}\n") 54 return 55 56 stdout(f" \n\n--- Benchmarking project {project.name}\n") 57 58 test_info = TestInfo(project) 59 tester = ProjectTester(test_info, silent=True) 60 project_dir = tester.get_project_dir() 61 output_dir = tester.get_output_dir() 62 63 raw_data = [] 64 65 for i in range(self.iterations): 66 stdout(f"Iteration #{i + 1}") 67 time, mem = tester.build(project_dir, output_dir) 68 raw_data.append( 69 {"time": time, "memory": mem, "iteration": i, "project": project.name} 70 ) 71 stdout( 72 f"time: {utils.time_to_str(time)}, " 73 f"peak memory: {utils.memory_to_str(mem)}" 74 ) 75 76 return pd.DataFrame(raw_data) 77 78 79def compare(old_path: str, new_path: str, plot_file: str): 80 """ 81 Compare two benchmarking results stored as .csv files 82 and produce a plot in the specified file. 83 """ 84 old = _load(old_path) 85 new = _load(new_path) 86 87 old_projects = set(old["project"]) 88 new_projects = set(new["project"]) 89 common_projects = old_projects & new_projects 90 91 # Leave only rows for projects common to both dataframes. 92 old = old[old["project"].isin(common_projects)] 93 new = new[new["project"].isin(common_projects)] 94 95 old, new = _normalize(old, new) 96 97 # Seaborn prefers all the data to be in one dataframe. 98 old["kind"] = "old" 99 new["kind"] = "new" 100 data = pd.concat([old, new], ignore_index=True) 101 102 # TODO: compare data in old and new dataframes using statistical tests 103 # to check if they belong to the same distribution 104 _plot(data, plot_file) 105 106 107def _normalize( 108 old: pd.DataFrame, new: pd.DataFrame 109) -> Tuple[pd.DataFrame, pd.DataFrame]: 110 # This creates a dataframe with all numerical data averaged. 111 means = old.groupby("project").mean() 112 return _normalize_impl(old, means), _normalize_impl(new, means) 113 114 115def _normalize_impl(data: pd.DataFrame, means: pd.DataFrame): 116 # Right now 'means' has one row corresponding to one project, 117 # while 'data' has N rows for each project (one for each iteration). 118 # 119 # In order for us to work easier with this data, we duplicate 120 # 'means' data to match the size of the 'data' dataframe. 121 # 122 # All the columns from 'data' will maintain their names, while 123 # new columns coming from 'means' will have "_mean" suffix. 124 joined_data = data.merge(means, on="project", suffixes=("", "_mean")) 125 _normalize_key(joined_data, "time") 126 _normalize_key(joined_data, "memory") 127 return joined_data 128 129 130def _normalize_key(data: pd.DataFrame, key: str): 131 norm_key = _normalized_name(key) 132 mean_key = f"{key}_mean" 133 data[norm_key] = data[key] / data[mean_key] 134 135 136def _normalized_name(name: str) -> str: 137 return f"normalized {name}" 138 139 140def _plot(data: pd.DataFrame, plot_file: str): 141 import matplotlib 142 import seaborn as sns 143 from matplotlib import pyplot as plt 144 145 sns.set_style("whitegrid") 146 # We want to have time and memory charts one above the other. 147 figure, (ax1, ax2) = plt.subplots(2, 1, figsize=(8, 6)) 148 149 def _subplot(key: str, ax: matplotlib.axes.Axes): 150 sns.boxplot( 151 x="project", 152 y=_normalized_name(key), 153 hue="kind", 154 data=data, 155 palette=sns.color_palette("BrBG", 2), 156 ax=ax, 157 ) 158 159 _subplot("time", ax1) 160 # No need to have xlabels on both top and bottom charts. 161 ax1.set_xlabel("") 162 163 _subplot("memory", ax2) 164 # The legend on the top chart is enough. 165 ax2.get_legend().remove() 166 167 figure.savefig(plot_file) 168