xref: /llvm-project/clang/utils/TableGen/MveEmitter.cpp (revision ccc066e8d5a742f79b41a0f90ef309d5b9e92c2a)
1 //===-- MveEmitter.cpp - Generate arm_mve.h for use with clang ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This set of linked tablegen backends is responsible for emitting the bits
10 // and pieces that implement <arm_mve.h>, which is defined by the ACLE standard
11 // and provides a set of types and functions for (more or less) direct access
12 // to the MVE instruction set, including the scalar shifts as well as the
13 // vector instructions.
14 //
15 // MVE's standard intrinsic functions are unusual in that they have a system of
16 // polymorphism. For example, the function vaddq() can behave like vaddq_u16(),
17 // vaddq_f32(), vaddq_s8(), etc., depending on the types of the vector
18 // arguments you give it.
19 //
20 // This constrains the implementation strategies. The usual approach to making
21 // the user-facing functions polymorphic would be to either use
22 // __attribute__((overloadable)) to make a set of vaddq() functions that are
23 // all inline wrappers on the underlying clang builtins, or to define a single
24 // vaddq() macro which expands to an instance of _Generic.
25 //
26 // The inline-wrappers approach would work fine for most intrinsics, except for
27 // the ones that take an argument required to be a compile-time constant,
28 // because if you wrap an inline function around a call to a builtin, the
29 // constant nature of the argument is not passed through.
30 //
31 // The _Generic approach can be made to work with enough effort, but it takes a
32 // lot of machinery, because of the design feature of _Generic that even the
33 // untaken branches are required to pass all front-end validity checks such as
34 // type-correctness. You can work around that by nesting further _Generics all
35 // over the place to coerce things to the right type in untaken branches, but
36 // what you get out is complicated, hard to guarantee its correctness, and
37 // worst of all, gives _completely unreadable_ error messages if the user gets
38 // the types wrong for an intrinsic call.
39 //
40 // Therefore, my strategy is to introduce a new __attribute__ that allows a
41 // function to be mapped to a clang builtin even though it doesn't have the
42 // same name, and then declare all the user-facing MVE function names with that
43 // attribute, mapping each one directly to the clang builtin. And the
44 // polymorphic ones have __attribute__((overloadable)) as well. So once the
45 // compiler has resolved the overload, it knows the internal builtin ID of the
46 // selected function, and can check the immediate arguments against that; and
47 // if the user gets the types wrong in a call to a polymorphic intrinsic, they
48 // get a completely clear error message showing all the declarations of that
49 // function in the header file and explaining why each one doesn't fit their
50 // call.
51 //
52 // The downside of this is that if every clang builtin has to correspond
53 // exactly to a user-facing ACLE intrinsic, then you can't save work in the
54 // frontend by doing it in the header file: CGBuiltin.cpp has to do the entire
55 // job of converting an ACLE intrinsic call into LLVM IR. So the Tablegen
56 // description for an MVE intrinsic has to contain a full description of the
57 // sequence of IRBuilder calls that clang will need to make.
58 //
59 //===----------------------------------------------------------------------===//
60 
61 #include "llvm/ADT/APInt.h"
62 #include "llvm/ADT/StringRef.h"
63 #include "llvm/ADT/StringSwitch.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/raw_ostream.h"
66 #include "llvm/TableGen/Error.h"
67 #include "llvm/TableGen/Record.h"
68 #include "llvm/TableGen/StringToOffsetTable.h"
69 #include <cassert>
70 #include <cstddef>
71 #include <cstdint>
72 #include <list>
73 #include <map>
74 #include <memory>
75 #include <set>
76 #include <string>
77 #include <vector>
78 
79 using namespace llvm;
80 
81 namespace {
82 
83 class EmitterBase;
84 class Result;
85 
86 // -----------------------------------------------------------------------------
87 // A system of classes to represent all the types we'll need to deal with in
88 // the prototypes of intrinsics.
89 //
90 // Query methods include finding out the C name of a type; the "LLVM name" in
91 // the sense of a C++ code snippet that can be used in the codegen function;
92 // the suffix that represents the type in the ACLE intrinsic naming scheme
93 // (e.g. 's32' represents int32_t in intrinsics such as vaddq_s32); whether the
94 // type is floating-point related (hence should be under #ifdef in the MVE
95 // header so that it isn't included in integer-only MVE mode); and the type's
96 // size in bits. Not all subtypes support all these queries.
97 
98 class Type {
99 public:
100   enum class TypeKind {
101     // Void appears as a return type (for store intrinsics, which are pure
102     // side-effect). It's also used as the parameter type in the Tablegen
103     // when an intrinsic doesn't need to come in various suffixed forms like
104     // vfooq_s8,vfooq_u16,vfooq_f32.
105     Void,
106 
107     // Scalar is used for ordinary int and float types of all sizes.
108     Scalar,
109 
110     // Vector is used for anything that occupies exactly one MVE vector
111     // register, i.e. {uint,int,float}NxM_t.
112     Vector,
113 
114     // MultiVector is used for the {uint,int,float}NxMxK_t types used by the
115     // interleaving load/store intrinsics v{ld,st}{2,4}q.
116     MultiVector,
117 
118     // Predicate is used by all the predicated intrinsics. Its C
119     // representation is mve_pred16_t (which is just an alias for uint16_t).
120     // But we give more detail here, by indicating that a given predicate
121     // instruction is logically regarded as a vector of i1 containing the
122     // same number of lanes as the input vector type. So our Predicate type
123     // comes with a lane count, which we use to decide which kind of <n x i1>
124     // we'll invoke the pred_i2v IR intrinsic to translate it into.
125     Predicate,
126 
127     // Pointer is used for pointer types (obviously), and comes with a flag
128     // indicating whether it's a pointer to a const or mutable instance of
129     // the pointee type.
130     Pointer,
131   };
132 
133 private:
134   const TypeKind TKind;
135 
136 protected:
137   Type(TypeKind K) : TKind(K) {}
138 
139 public:
140   TypeKind typeKind() const { return TKind; }
141   virtual ~Type() = default;
142   virtual bool requiresFloat() const = 0;
143   virtual bool requiresMVE() const = 0;
144   virtual unsigned sizeInBits() const = 0;
145   virtual std::string cName() const = 0;
146   virtual std::string llvmName() const {
147     PrintFatalError("no LLVM type name available for type " + cName());
148   }
149   virtual std::string acleSuffix(std::string) const {
150     PrintFatalError("no ACLE suffix available for this type");
151   }
152 };
153 
154 enum class ScalarTypeKind { SignedInt, UnsignedInt, Float };
155 inline std::string toLetter(ScalarTypeKind kind) {
156   switch (kind) {
157   case ScalarTypeKind::SignedInt:
158     return "s";
159   case ScalarTypeKind::UnsignedInt:
160     return "u";
161   case ScalarTypeKind::Float:
162     return "f";
163   }
164   llvm_unreachable("Unhandled ScalarTypeKind enum");
165 }
166 inline std::string toCPrefix(ScalarTypeKind kind) {
167   switch (kind) {
168   case ScalarTypeKind::SignedInt:
169     return "int";
170   case ScalarTypeKind::UnsignedInt:
171     return "uint";
172   case ScalarTypeKind::Float:
173     return "float";
174   }
175   llvm_unreachable("Unhandled ScalarTypeKind enum");
176 }
177 
178 class VoidType : public Type {
179 public:
180   VoidType() : Type(TypeKind::Void) {}
181   unsigned sizeInBits() const override { return 0; }
182   bool requiresFloat() const override { return false; }
183   bool requiresMVE() const override { return false; }
184   std::string cName() const override { return "void"; }
185 
186   static bool classof(const Type *T) { return T->typeKind() == TypeKind::Void; }
187   std::string acleSuffix(std::string) const override { return ""; }
188 };
189 
190 class PointerType : public Type {
191   const Type *Pointee;
192   bool Const;
193 
194 public:
195   PointerType(const Type *Pointee, bool Const)
196       : Type(TypeKind::Pointer), Pointee(Pointee), Const(Const) {}
197   unsigned sizeInBits() const override { return 32; }
198   bool requiresFloat() const override { return Pointee->requiresFloat(); }
199   bool requiresMVE() const override { return Pointee->requiresMVE(); }
200   std::string cName() const override {
201     std::string Name = Pointee->cName();
202 
203     // The syntax for a pointer in C is different when the pointee is
204     // itself a pointer. The MVE intrinsics don't contain any double
205     // pointers, so we don't need to worry about that wrinkle.
206     assert(!isa<PointerType>(Pointee) && "Pointer to pointer not supported");
207 
208     if (Const)
209       Name = "const " + Name;
210     return Name + " *";
211   }
212   std::string llvmName() const override {
213     return "llvm::PointerType::getUnqual(" + Pointee->llvmName() + ")";
214   }
215   const Type *getPointeeType() const { return Pointee; }
216 
217   static bool classof(const Type *T) {
218     return T->typeKind() == TypeKind::Pointer;
219   }
220 };
221 
222 // Base class for all the types that have a name of the form
223 // [prefix][numbers]_t, like int32_t, uint16x8_t, float32x4x2_t.
224 //
225 // For this sub-hierarchy we invent a cNameBase() method which returns the
226 // whole name except for the trailing "_t", so that Vector and MultiVector can
227 // append an extra "x2" or whatever to their element type's cNameBase(). Then
228 // the main cName() query method puts "_t" on the end for the final type name.
229 
230 class CRegularNamedType : public Type {
231   using Type::Type;
232   virtual std::string cNameBase() const = 0;
233 
234 public:
235   std::string cName() const override { return cNameBase() + "_t"; }
236 };
237 
238 class ScalarType : public CRegularNamedType {
239   ScalarTypeKind Kind;
240   unsigned Bits;
241   std::string NameOverride;
242 
243 public:
244   ScalarType(const Record *Record) : CRegularNamedType(TypeKind::Scalar) {
245     Kind = StringSwitch<ScalarTypeKind>(Record->getValueAsString("kind"))
246                .Case("s", ScalarTypeKind::SignedInt)
247                .Case("u", ScalarTypeKind::UnsignedInt)
248                .Case("f", ScalarTypeKind::Float);
249     Bits = Record->getValueAsInt("size");
250     NameOverride = std::string(Record->getValueAsString("nameOverride"));
251   }
252   unsigned sizeInBits() const override { return Bits; }
253   ScalarTypeKind kind() const { return Kind; }
254   std::string suffix() const { return toLetter(Kind) + utostr(Bits); }
255   std::string cNameBase() const override {
256     return toCPrefix(Kind) + utostr(Bits);
257   }
258   std::string cName() const override {
259     if (NameOverride.empty())
260       return CRegularNamedType::cName();
261     return NameOverride;
262   }
263   std::string llvmName() const override {
264     if (Kind == ScalarTypeKind::Float) {
265       if (Bits == 16)
266         return "HalfTy";
267       if (Bits == 32)
268         return "FloatTy";
269       if (Bits == 64)
270         return "DoubleTy";
271       PrintFatalError("bad size for floating type");
272     }
273     return "Int" + utostr(Bits) + "Ty";
274   }
275   std::string acleSuffix(std::string overrideLetter) const override {
276     return "_" + (overrideLetter.size() ? overrideLetter : toLetter(Kind))
277                + utostr(Bits);
278   }
279   bool isInteger() const { return Kind != ScalarTypeKind::Float; }
280   bool requiresFloat() const override { return !isInteger(); }
281   bool requiresMVE() const override { return false; }
282   bool hasNonstandardName() const { return !NameOverride.empty(); }
283 
284   static bool classof(const Type *T) {
285     return T->typeKind() == TypeKind::Scalar;
286   }
287 };
288 
289 class VectorType : public CRegularNamedType {
290   const ScalarType *Element;
291   unsigned Lanes;
292 
293 public:
294   VectorType(const ScalarType *Element, unsigned Lanes)
295       : CRegularNamedType(TypeKind::Vector), Element(Element), Lanes(Lanes) {}
296   unsigned sizeInBits() const override { return Lanes * Element->sizeInBits(); }
297   unsigned lanes() const { return Lanes; }
298   bool requiresFloat() const override { return Element->requiresFloat(); }
299   bool requiresMVE() const override { return true; }
300   std::string cNameBase() const override {
301     return Element->cNameBase() + "x" + utostr(Lanes);
302   }
303   std::string llvmName() const override {
304     return "llvm::FixedVectorType::get(" + Element->llvmName() + ", " +
305            utostr(Lanes) + ")";
306   }
307 
308   static bool classof(const Type *T) {
309     return T->typeKind() == TypeKind::Vector;
310   }
311 };
312 
313 class MultiVectorType : public CRegularNamedType {
314   const VectorType *Element;
315   unsigned Registers;
316 
317 public:
318   MultiVectorType(unsigned Registers, const VectorType *Element)
319       : CRegularNamedType(TypeKind::MultiVector), Element(Element),
320         Registers(Registers) {}
321   unsigned sizeInBits() const override {
322     return Registers * Element->sizeInBits();
323   }
324   unsigned registers() const { return Registers; }
325   bool requiresFloat() const override { return Element->requiresFloat(); }
326   bool requiresMVE() const override { return true; }
327   std::string cNameBase() const override {
328     return Element->cNameBase() + "x" + utostr(Registers);
329   }
330 
331   // MultiVectorType doesn't override llvmName, because we don't expect to do
332   // automatic code generation for the MVE intrinsics that use it: the {vld2,
333   // vld4, vst2, vst4} family are the only ones that use these types, so it was
334   // easier to hand-write the codegen for dealing with these structs than to
335   // build in lots of extra automatic machinery that would only be used once.
336 
337   static bool classof(const Type *T) {
338     return T->typeKind() == TypeKind::MultiVector;
339   }
340 };
341 
342 class PredicateType : public CRegularNamedType {
343   unsigned Lanes;
344 
345 public:
346   PredicateType(unsigned Lanes)
347       : CRegularNamedType(TypeKind::Predicate), Lanes(Lanes) {}
348   unsigned sizeInBits() const override { return 16; }
349   std::string cNameBase() const override { return "mve_pred16"; }
350   bool requiresFloat() const override { return false; };
351   bool requiresMVE() const override { return true; }
352   std::string llvmName() const override {
353     return "llvm::FixedVectorType::get(Builder.getInt1Ty(), " + utostr(Lanes) +
354            ")";
355   }
356 
357   static bool classof(const Type *T) {
358     return T->typeKind() == TypeKind::Predicate;
359   }
360 };
361 
362 // -----------------------------------------------------------------------------
363 // Class to facilitate merging together the code generation for many intrinsics
364 // by means of varying a few constant or type parameters.
365 //
366 // Most obviously, the intrinsics in a single parametrised family will have
367 // code generation sequences that only differ in a type or two, e.g. vaddq_s8
368 // and vaddq_u16 will look the same apart from putting a different vector type
369 // in the call to CGM.getIntrinsic(). But also, completely different intrinsics
370 // will often code-generate in the same way, with only a different choice of
371 // _which_ IR intrinsic they lower to (e.g. vaddq_m_s8 and vmulq_m_s8), but
372 // marshalling the arguments and return values of the IR intrinsic in exactly
373 // the same way. And others might differ only in some other kind of constant,
374 // such as a lane index.
375 //
376 // So, when we generate the IR-building code for all these intrinsics, we keep
377 // track of every value that could possibly be pulled out of the code and
378 // stored ahead of time in a local variable. Then we group together intrinsics
379 // by textual equivalence of the code that would result if _all_ those
380 // parameters were stored in local variables. That gives us maximal sets that
381 // can be implemented by a single piece of IR-building code by changing
382 // parameter values ahead of time.
383 //
384 // After we've done that, we do a second pass in which we only allocate _some_
385 // of the parameters into local variables, by tracking which ones have the same
386 // values as each other (so that a single variable can be reused) and which
387 // ones are the same across the whole set (so that no variable is needed at
388 // all).
389 //
390 // Hence the class below. Its allocParam method is invoked during code
391 // generation by every method of a Result subclass (see below) that wants to
392 // give it the opportunity to pull something out into a switchable parameter.
393 // It returns a variable name for the parameter, or (if it's being used in the
394 // second pass once we've decided that some parameters don't need to be stored
395 // in variables after all) it might just return the input expression unchanged.
396 
397 struct CodeGenParamAllocator {
398   // Accumulated during code generation
399   std::vector<std::string> *ParamTypes = nullptr;
400   std::vector<std::string> *ParamValues = nullptr;
401 
402   // Provided ahead of time in pass 2, to indicate which parameters are being
403   // assigned to what. This vector contains an entry for each call to
404   // allocParam expected during code gen (which we counted up in pass 1), and
405   // indicates the number of the parameter variable that should be returned, or
406   // -1 if this call shouldn't allocate a parameter variable at all.
407   //
408   // We rely on the recursive code generation working identically in passes 1
409   // and 2, so that the same list of calls to allocParam happen in the same
410   // order. That guarantees that the parameter numbers recorded in pass 1 will
411   // match the entries in this vector that store what EmitterBase::EmitBuiltinCG
412   // decided to do about each one in pass 2.
413   std::vector<int> *ParamNumberMap = nullptr;
414 
415   // Internally track how many things we've allocated
416   unsigned nparams = 0;
417 
418   std::string allocParam(StringRef Type, StringRef Value) {
419     unsigned ParamNumber;
420 
421     if (!ParamNumberMap) {
422       // In pass 1, unconditionally assign a new parameter variable to every
423       // value we're asked to process.
424       ParamNumber = nparams++;
425     } else {
426       // In pass 2, consult the map provided by the caller to find out which
427       // variable we should be keeping things in.
428       int MapValue = (*ParamNumberMap)[nparams++];
429       if (MapValue < 0)
430         return std::string(Value);
431       ParamNumber = MapValue;
432     }
433 
434     // If we've allocated a new parameter variable for the first time, store
435     // its type and value to be retrieved after codegen.
436     if (ParamTypes && ParamTypes->size() == ParamNumber)
437       ParamTypes->push_back(std::string(Type));
438     if (ParamValues && ParamValues->size() == ParamNumber)
439       ParamValues->push_back(std::string(Value));
440 
441     // Unimaginative naming scheme for parameter variables.
442     return "Param" + utostr(ParamNumber);
443   }
444 };
445 
446 // -----------------------------------------------------------------------------
447 // System of classes that represent all the intermediate values used during
448 // code-generation for an intrinsic.
449 //
450 // The base class 'Result' can represent a value of the LLVM type 'Value', or
451 // sometimes 'Address' (for loads/stores, including an alignment requirement).
452 //
453 // In the case where the Tablegen provides a value in the codegen dag as a
454 // plain integer literal, the Result object we construct here will be one that
455 // returns true from hasIntegerConstantValue(). This allows the generated C++
456 // code to use the constant directly in contexts which can take a literal
457 // integer, such as Builder.CreateExtractValue(thing, 1), without going to the
458 // effort of calling llvm::ConstantInt::get() and then pulling the constant
459 // back out of the resulting llvm:Value later.
460 
461 class Result {
462 public:
463   // Convenient shorthand for the pointer type we'll be using everywhere.
464   using Ptr = std::shared_ptr<Result>;
465 
466 private:
467   Ptr Predecessor;
468   std::string VarName;
469   bool VarNameUsed = false;
470   unsigned Visited = 0;
471 
472 public:
473   virtual ~Result() = default;
474   using Scope = std::map<std::string, Ptr, std::less<>>;
475   virtual void genCode(raw_ostream &OS, CodeGenParamAllocator &) const = 0;
476   virtual bool hasIntegerConstantValue() const { return false; }
477   virtual uint32_t integerConstantValue() const { return 0; }
478   virtual bool hasIntegerValue() const { return false; }
479   virtual std::string getIntegerValue(const std::string &) {
480     llvm_unreachable("non-working Result::getIntegerValue called");
481   }
482   virtual std::string typeName() const { return "Value *"; }
483 
484   // Mostly, when a code-generation operation has a dependency on prior
485   // operations, it's because it uses the output values of those operations as
486   // inputs. But there's one exception, which is the use of 'seq' in Tablegen
487   // to indicate that operations have to be performed in sequence regardless of
488   // whether they use each others' output values.
489   //
490   // So, the actual generation of code is done by depth-first search, using the
491   // prerequisites() method to get a list of all the other Results that have to
492   // be computed before this one. That method divides into the 'predecessor',
493   // set by setPredecessor() while processing a 'seq' dag node, and the list
494   // returned by 'morePrerequisites', which each subclass implements to return
495   // a list of the Results it uses as input to whatever its own computation is
496   // doing.
497 
498   virtual void morePrerequisites(std::vector<Ptr> &output) const {}
499   std::vector<Ptr> prerequisites() const {
500     std::vector<Ptr> ToRet;
501     if (Predecessor)
502       ToRet.push_back(Predecessor);
503     morePrerequisites(ToRet);
504     return ToRet;
505   }
506 
507   void setPredecessor(Ptr p) {
508     // If the user has nested one 'seq' node inside another, and this
509     // method is called on the return value of the inner 'seq' (i.e.
510     // the final item inside it), then we can't link _this_ node to p,
511     // because it already has a predecessor. Instead, walk the chain
512     // until we find the first item in the inner seq, and link that to
513     // p, so that nesting seqs has the obvious effect of linking
514     // everything together into one long sequential chain.
515     Result *r = this;
516     while (r->Predecessor)
517       r = r->Predecessor.get();
518     r->Predecessor = p;
519   }
520 
521   // Each Result will be assigned a variable name in the output code, but not
522   // all those variable names will actually be used (e.g. the return value of
523   // Builder.CreateStore has void type, so nobody will want to refer to it). To
524   // prevent annoying compiler warnings, we track whether each Result's
525   // variable name was ever actually mentioned in subsequent statements, so
526   // that it can be left out of the final generated code.
527   std::string varname() {
528     VarNameUsed = true;
529     return VarName;
530   }
531   void setVarname(const StringRef s) { VarName = std::string(s); }
532   bool varnameUsed() const { return VarNameUsed; }
533 
534   // Emit code to generate this result as a Value *.
535   virtual std::string asValue() {
536     return varname();
537   }
538 
539   // Code generation happens in multiple passes. This method tracks whether a
540   // Result has yet been visited in a given pass, without the need for a
541   // tedious loop in between passes that goes through and resets a 'visited'
542   // flag back to false: you just set Pass=1 the first time round, and Pass=2
543   // the second time.
544   bool needsVisiting(unsigned Pass) {
545     bool ToRet = Visited < Pass;
546     Visited = Pass;
547     return ToRet;
548   }
549 };
550 
551 // Result subclass that retrieves one of the arguments to the clang builtin
552 // function. In cases where the argument has pointer type, we call
553 // EmitPointerWithAlignment and store the result in a variable of type Address,
554 // so that load and store IR nodes can know the right alignment. Otherwise, we
555 // call EmitScalarExpr.
556 //
557 // There are aggregate parameters in the MVE intrinsics API, but we don't deal
558 // with them in this Tablegen back end: they only arise in the vld2q/vld4q and
559 // vst2q/vst4q family, which is few enough that we just write the code by hand
560 // for those in CGBuiltin.cpp.
561 class BuiltinArgResult : public Result {
562 public:
563   unsigned ArgNum;
564   bool AddressType;
565   bool Immediate;
566   BuiltinArgResult(unsigned ArgNum, bool AddressType, bool Immediate)
567       : ArgNum(ArgNum), AddressType(AddressType), Immediate(Immediate) {}
568   void genCode(raw_ostream &OS, CodeGenParamAllocator &) const override {
569     OS << (AddressType ? "EmitPointerWithAlignment" : "EmitScalarExpr")
570        << "(E->getArg(" << ArgNum << "))";
571   }
572   std::string typeName() const override {
573     return AddressType ? "Address" : Result::typeName();
574   }
575   // Emit code to generate this result as a Value *.
576   std::string asValue() override {
577     if (AddressType)
578       return "(" + varname() + ".emitRawPointer(*this))";
579     return Result::asValue();
580   }
581   bool hasIntegerValue() const override { return Immediate; }
582   std::string getIntegerValue(const std::string &IntType) override {
583     return "GetIntegerConstantValue<" + IntType + ">(E->getArg(" +
584            utostr(ArgNum) + "), getContext())";
585   }
586 };
587 
588 // Result subclass for an integer literal appearing in Tablegen. This may need
589 // to be turned into an llvm::Result by means of llvm::ConstantInt::get(), or
590 // it may be used directly as an integer, depending on which IRBuilder method
591 // it's being passed to.
592 class IntLiteralResult : public Result {
593 public:
594   const ScalarType *IntegerType;
595   uint32_t IntegerValue;
596   IntLiteralResult(const ScalarType *IntegerType, uint32_t IntegerValue)
597       : IntegerType(IntegerType), IntegerValue(IntegerValue) {}
598   void genCode(raw_ostream &OS,
599                CodeGenParamAllocator &ParamAlloc) const override {
600     OS << "llvm::ConstantInt::get("
601        << ParamAlloc.allocParam("llvm::Type *", IntegerType->llvmName())
602        << ", ";
603     OS << ParamAlloc.allocParam(IntegerType->cName(), utostr(IntegerValue))
604        << ")";
605   }
606   bool hasIntegerConstantValue() const override { return true; }
607   uint32_t integerConstantValue() const override { return IntegerValue; }
608 };
609 
610 // Result subclass representing a cast between different integer types. We use
611 // our own ScalarType abstraction as the representation of the target type,
612 // which gives both size and signedness.
613 class IntCastResult : public Result {
614 public:
615   const ScalarType *IntegerType;
616   Ptr V;
617   IntCastResult(const ScalarType *IntegerType, Ptr V)
618       : IntegerType(IntegerType), V(V) {}
619   void genCode(raw_ostream &OS,
620                CodeGenParamAllocator &ParamAlloc) const override {
621     OS << "Builder.CreateIntCast(" << V->varname() << ", "
622        << ParamAlloc.allocParam("llvm::Type *", IntegerType->llvmName()) << ", "
623        << ParamAlloc.allocParam("bool",
624                                 IntegerType->kind() == ScalarTypeKind::SignedInt
625                                     ? "true"
626                                     : "false")
627        << ")";
628   }
629   void morePrerequisites(std::vector<Ptr> &output) const override {
630     output.push_back(V);
631   }
632 };
633 
634 // Result subclass representing a cast between different pointer types.
635 class PointerCastResult : public Result {
636 public:
637   const PointerType *PtrType;
638   Ptr V;
639   PointerCastResult(const PointerType *PtrType, Ptr V)
640       : PtrType(PtrType), V(V) {}
641   void genCode(raw_ostream &OS,
642                CodeGenParamAllocator &ParamAlloc) const override {
643     OS << "Builder.CreatePointerCast(" << V->asValue() << ", "
644        << ParamAlloc.allocParam("llvm::Type *", PtrType->llvmName()) << ")";
645   }
646   void morePrerequisites(std::vector<Ptr> &output) const override {
647     output.push_back(V);
648   }
649 };
650 
651 // Result subclass representing a call to an IRBuilder method. Each IRBuilder
652 // method we want to use will have a Tablegen record giving the method name and
653 // describing any important details of how to call it, such as whether a
654 // particular argument should be an integer constant instead of an llvm::Value.
655 class IRBuilderResult : public Result {
656 public:
657   StringRef CallPrefix;
658   std::vector<Ptr> Args;
659   std::set<unsigned> AddressArgs;
660   std::map<unsigned, std::string> IntegerArgs;
661   IRBuilderResult(StringRef CallPrefix, const std::vector<Ptr> &Args,
662                   const std::set<unsigned> &AddressArgs,
663                   const std::map<unsigned, std::string> &IntegerArgs)
664       : CallPrefix(CallPrefix), Args(Args), AddressArgs(AddressArgs),
665         IntegerArgs(IntegerArgs) {}
666   void genCode(raw_ostream &OS,
667                CodeGenParamAllocator &ParamAlloc) const override {
668     OS << CallPrefix;
669     const char *Sep = "";
670     for (unsigned i = 0, e = Args.size(); i < e; ++i) {
671       Ptr Arg = Args[i];
672       auto it = IntegerArgs.find(i);
673 
674       OS << Sep;
675       Sep = ", ";
676 
677       if (it != IntegerArgs.end()) {
678         if (Arg->hasIntegerConstantValue())
679           OS << "static_cast<" << it->second << ">("
680              << ParamAlloc.allocParam(it->second,
681                                       utostr(Arg->integerConstantValue()))
682              << ")";
683         else if (Arg->hasIntegerValue())
684           OS << ParamAlloc.allocParam(it->second,
685                                       Arg->getIntegerValue(it->second));
686       } else {
687         OS << Arg->varname();
688       }
689     }
690     OS << ")";
691   }
692   void morePrerequisites(std::vector<Ptr> &output) const override {
693     for (unsigned i = 0, e = Args.size(); i < e; ++i) {
694       Ptr Arg = Args[i];
695       if (IntegerArgs.find(i) != IntegerArgs.end())
696         continue;
697       output.push_back(Arg);
698     }
699   }
700 };
701 
702 // Result subclass representing making an Address out of a Value.
703 class AddressResult : public Result {
704 public:
705   Ptr Arg;
706   const Type *Ty;
707   unsigned Align;
708   AddressResult(Ptr Arg, const Type *Ty, unsigned Align)
709       : Arg(Arg), Ty(Ty), Align(Align) {}
710   void genCode(raw_ostream &OS,
711                CodeGenParamAllocator &ParamAlloc) const override {
712     OS << "Address(" << Arg->varname() << ", " << Ty->llvmName()
713        << ", CharUnits::fromQuantity(" << Align << "))";
714   }
715   std::string typeName() const override {
716     return "Address";
717   }
718   void morePrerequisites(std::vector<Ptr> &output) const override {
719     output.push_back(Arg);
720   }
721 };
722 
723 // Result subclass representing a call to an IR intrinsic, which we first have
724 // to look up using an Intrinsic::ID constant and an array of types.
725 class IRIntrinsicResult : public Result {
726 public:
727   std::string IntrinsicID;
728   std::vector<const Type *> ParamTypes;
729   std::vector<Ptr> Args;
730   IRIntrinsicResult(StringRef IntrinsicID,
731                     const std::vector<const Type *> &ParamTypes,
732                     const std::vector<Ptr> &Args)
733       : IntrinsicID(std::string(IntrinsicID)), ParamTypes(ParamTypes),
734         Args(Args) {}
735   void genCode(raw_ostream &OS,
736                CodeGenParamAllocator &ParamAlloc) const override {
737     std::string IntNo = ParamAlloc.allocParam(
738         "Intrinsic::ID", "Intrinsic::" + IntrinsicID);
739     OS << "Builder.CreateCall(CGM.getIntrinsic(" << IntNo;
740     if (!ParamTypes.empty()) {
741       OS << ", {";
742       const char *Sep = "";
743       for (auto T : ParamTypes) {
744         OS << Sep << ParamAlloc.allocParam("llvm::Type *", T->llvmName());
745         Sep = ", ";
746       }
747       OS << "}";
748     }
749     OS << "), {";
750     const char *Sep = "";
751     for (auto Arg : Args) {
752       OS << Sep << Arg->asValue();
753       Sep = ", ";
754     }
755     OS << "})";
756   }
757   void morePrerequisites(std::vector<Ptr> &output) const override {
758     output.insert(output.end(), Args.begin(), Args.end());
759   }
760 };
761 
762 // Result subclass that specifies a type, for use in IRBuilder operations such
763 // as CreateBitCast that take a type argument.
764 class TypeResult : public Result {
765 public:
766   const Type *T;
767   TypeResult(const Type *T) : T(T) {}
768   void genCode(raw_ostream &OS, CodeGenParamAllocator &) const override {
769     OS << T->llvmName();
770   }
771   std::string typeName() const override {
772     return "llvm::Type *";
773   }
774 };
775 
776 // -----------------------------------------------------------------------------
777 // Class that describes a single ACLE intrinsic.
778 //
779 // A Tablegen record will typically describe more than one ACLE intrinsic, by
780 // means of setting the 'list<Type> Params' field to a list of multiple
781 // parameter types, so as to define vaddq_{s8,u8,...,f16,f32} all in one go.
782 // We'll end up with one instance of ACLEIntrinsic for *each* parameter type,
783 // rather than a single one for all of them. Hence, the constructor takes both
784 // a Tablegen record and the current value of the parameter type.
785 
786 class ACLEIntrinsic {
787   // Structure documenting that one of the intrinsic's arguments is required to
788   // be a compile-time constant integer, and what constraints there are on its
789   // value. Used when generating Sema checking code.
790   struct ImmediateArg {
791     enum class BoundsType { ExplicitRange, UInt };
792     BoundsType boundsType;
793     int64_t i1, i2;
794     StringRef ExtraCheckType, ExtraCheckArgs;
795     const Type *ArgType;
796   };
797 
798   // For polymorphic intrinsics, FullName is the explicit name that uniquely
799   // identifies this variant of the intrinsic, and ShortName is the name it
800   // shares with at least one other intrinsic.
801   std::string ShortName, FullName;
802 
803   // Name of the architecture extension, used in the Clang builtin name
804   StringRef BuiltinExtension;
805 
806   // A very small number of intrinsics _only_ have a polymorphic
807   // variant (vuninitializedq taking an unevaluated argument).
808   bool PolymorphicOnly;
809 
810   // Another rarely-used flag indicating that the builtin doesn't
811   // evaluate its argument(s) at all.
812   bool NonEvaluating;
813 
814   // True if the intrinsic needs only the C header part (no codegen, semantic
815   // checks, etc). Used for redeclaring MVE intrinsics in the arm_cde.h header.
816   bool HeaderOnly;
817 
818   const Type *ReturnType;
819   std::vector<const Type *> ArgTypes;
820   std::map<unsigned, ImmediateArg> ImmediateArgs;
821   Result::Ptr Code;
822 
823   std::map<std::string, std::string> CustomCodeGenArgs;
824 
825   // Recursive function that does the internals of code generation.
826   void genCodeDfs(Result::Ptr V, std::list<Result::Ptr> &Used,
827                   unsigned Pass) const {
828     if (!V->needsVisiting(Pass))
829       return;
830 
831     for (Result::Ptr W : V->prerequisites())
832       genCodeDfs(W, Used, Pass);
833 
834     Used.push_back(V);
835   }
836 
837 public:
838   const std::string &shortName() const { return ShortName; }
839   const std::string &fullName() const { return FullName; }
840   StringRef builtinExtension() const { return BuiltinExtension; }
841   const Type *returnType() const { return ReturnType; }
842   const std::vector<const Type *> &argTypes() const { return ArgTypes; }
843   bool requiresFloat() const {
844     if (ReturnType->requiresFloat())
845       return true;
846     for (const Type *T : ArgTypes)
847       if (T->requiresFloat())
848         return true;
849     return false;
850   }
851   bool requiresMVE() const {
852     return ReturnType->requiresMVE() ||
853            any_of(ArgTypes, [](const Type *T) { return T->requiresMVE(); });
854   }
855   bool polymorphic() const { return ShortName != FullName; }
856   bool polymorphicOnly() const { return PolymorphicOnly; }
857   bool nonEvaluating() const { return NonEvaluating; }
858   bool headerOnly() const { return HeaderOnly; }
859 
860   // External entry point for code generation, called from EmitterBase.
861   void genCode(raw_ostream &OS, CodeGenParamAllocator &ParamAlloc,
862                unsigned Pass) const {
863     assert(!headerOnly() && "Called genCode for header-only intrinsic");
864     if (!hasCode()) {
865       for (auto kv : CustomCodeGenArgs)
866         OS << "  " << kv.first << " = " << kv.second << ";\n";
867       OS << "  break; // custom code gen\n";
868       return;
869     }
870     std::list<Result::Ptr> Used;
871     genCodeDfs(Code, Used, Pass);
872 
873     unsigned varindex = 0;
874     for (Result::Ptr V : Used)
875       if (V->varnameUsed())
876         V->setVarname("Val" + utostr(varindex++));
877 
878     for (Result::Ptr V : Used) {
879       OS << "  ";
880       if (V == Used.back()) {
881         assert(!V->varnameUsed());
882         OS << "return "; // FIXME: what if the top-level thing is void?
883       } else if (V->varnameUsed()) {
884         std::string Type = V->typeName();
885         OS << V->typeName();
886         if (!StringRef(Type).ends_with("*"))
887           OS << " ";
888         OS << V->varname() << " = ";
889       }
890       V->genCode(OS, ParamAlloc);
891       OS << ";\n";
892     }
893   }
894   bool hasCode() const { return Code != nullptr; }
895 
896   static std::string signedHexLiteral(const APInt &iOrig) {
897     APInt i = iOrig.trunc(64);
898     SmallString<40> s;
899     i.toString(s, 16, true, true);
900     return std::string(s);
901   }
902 
903   std::string genSema() const {
904     assert(!headerOnly() && "Called genSema for header-only intrinsic");
905     std::vector<std::string> SemaChecks;
906 
907     for (const auto &kv : ImmediateArgs) {
908       const ImmediateArg &IA = kv.second;
909 
910       APInt lo(128, 0), hi(128, 0);
911       switch (IA.boundsType) {
912       case ImmediateArg::BoundsType::ExplicitRange:
913         lo = IA.i1;
914         hi = IA.i2;
915         break;
916       case ImmediateArg::BoundsType::UInt:
917         lo = 0;
918         hi = APInt::getMaxValue(IA.i1).zext(128);
919         break;
920       }
921 
922       std::string Index = utostr(kv.first);
923 
924       // Emit a range check if the legal range of values for the
925       // immediate is smaller than the _possible_ range of values for
926       // its type.
927       unsigned ArgTypeBits = IA.ArgType->sizeInBits();
928       APInt ArgTypeRange = APInt::getMaxValue(ArgTypeBits).zext(128);
929       APInt ActualRange = (hi - lo).trunc(64).sext(128);
930       if (ActualRange.ult(ArgTypeRange))
931         SemaChecks.push_back("SemaRef.BuiltinConstantArgRange(TheCall, " +
932                              Index + ", " + signedHexLiteral(lo) + ", " +
933                              signedHexLiteral(hi) + ")");
934 
935       if (!IA.ExtraCheckType.empty()) {
936         std::string Suffix;
937         if (!IA.ExtraCheckArgs.empty()) {
938           std::string tmp;
939           StringRef Arg = IA.ExtraCheckArgs;
940           if (Arg == "!lanesize") {
941             tmp = utostr(IA.ArgType->sizeInBits());
942             Arg = tmp;
943           }
944           Suffix = (Twine(", ") + Arg).str();
945         }
946         SemaChecks.push_back((Twine("SemaRef.BuiltinConstantArg") +
947                               IA.ExtraCheckType + "(TheCall, " + Index +
948                               Suffix + ")")
949                                  .str());
950       }
951 
952       assert(!SemaChecks.empty());
953     }
954     if (SemaChecks.empty())
955       return "";
956     return join(std::begin(SemaChecks), std::end(SemaChecks),
957                 " ||\n         ") +
958            ";\n";
959   }
960 
961   ACLEIntrinsic(EmitterBase &ME, const Record *R, const Type *Param);
962 };
963 
964 // -----------------------------------------------------------------------------
965 // The top-level class that holds all the state from analyzing the entire
966 // Tablegen input.
967 
968 class EmitterBase {
969 protected:
970   // EmitterBase holds a collection of all the types we've instantiated.
971   VoidType Void;
972   std::map<std::string, std::unique_ptr<ScalarType>> ScalarTypes;
973   std::map<std::tuple<ScalarTypeKind, unsigned, unsigned>,
974            std::unique_ptr<VectorType>>
975       VectorTypes;
976   std::map<std::pair<std::string, unsigned>, std::unique_ptr<MultiVectorType>>
977       MultiVectorTypes;
978   std::map<unsigned, std::unique_ptr<PredicateType>> PredicateTypes;
979   std::map<std::string, std::unique_ptr<PointerType>> PointerTypes;
980 
981   // And all the ACLEIntrinsic instances we've created.
982   std::map<std::string, std::unique_ptr<ACLEIntrinsic>> ACLEIntrinsics;
983 
984 public:
985   // Methods to create a Type object, or return the right existing one from the
986   // maps stored in this object.
987   const VoidType *getVoidType() { return &Void; }
988   const ScalarType *getScalarType(StringRef Name) {
989     return ScalarTypes[std::string(Name)].get();
990   }
991   const ScalarType *getScalarType(const Record *R) {
992     return getScalarType(R->getName());
993   }
994   const VectorType *getVectorType(const ScalarType *ST, unsigned Lanes) {
995     std::tuple<ScalarTypeKind, unsigned, unsigned> key(ST->kind(),
996                                                        ST->sizeInBits(), Lanes);
997     auto [It, Inserted] = VectorTypes.try_emplace(key);
998     if (Inserted)
999       It->second = std::make_unique<VectorType>(ST, Lanes);
1000     return It->second.get();
1001   }
1002   const VectorType *getVectorType(const ScalarType *ST) {
1003     return getVectorType(ST, 128 / ST->sizeInBits());
1004   }
1005   const MultiVectorType *getMultiVectorType(unsigned Registers,
1006                                             const VectorType *VT) {
1007     std::pair<std::string, unsigned> key(VT->cNameBase(), Registers);
1008     auto [It, Inserted] = MultiVectorTypes.try_emplace(key);
1009     if (Inserted)
1010       It->second = std::make_unique<MultiVectorType>(Registers, VT);
1011     return It->second.get();
1012   }
1013   const PredicateType *getPredicateType(unsigned Lanes) {
1014     unsigned key = Lanes;
1015     auto [It, Inserted] = PredicateTypes.try_emplace(key);
1016     if (Inserted)
1017       It->second = std::make_unique<PredicateType>(Lanes);
1018     return It->second.get();
1019   }
1020   const PointerType *getPointerType(const Type *T, bool Const) {
1021     PointerType PT(T, Const);
1022     std::string key = PT.cName();
1023     auto [It, Inserted] = PointerTypes.try_emplace(key);
1024     if (Inserted)
1025       It->second = std::make_unique<PointerType>(PT);
1026     return It->second.get();
1027   }
1028 
1029   // Methods to construct a type from various pieces of Tablegen. These are
1030   // always called in the context of setting up a particular ACLEIntrinsic, so
1031   // there's always an ambient parameter type (because we're iterating through
1032   // the Params list in the Tablegen record for the intrinsic), which is used
1033   // to expand Tablegen classes like 'Vector' which mean something different in
1034   // each member of a parametric family.
1035   const Type *getType(const Record *R, const Type *Param);
1036   const Type *getType(const DagInit *D, const Type *Param);
1037   const Type *getType(const Init *I, const Type *Param);
1038 
1039   // Functions that translate the Tablegen representation of an intrinsic's
1040   // code generation into a collection of Value objects (which will then be
1041   // reprocessed to read out the actual C++ code included by CGBuiltin.cpp).
1042   Result::Ptr getCodeForDag(const DagInit *D, const Result::Scope &Scope,
1043                             const Type *Param);
1044   Result::Ptr getCodeForDagArg(const DagInit *D, unsigned ArgNum,
1045                                const Result::Scope &Scope, const Type *Param);
1046   Result::Ptr getCodeForArg(unsigned ArgNum, const Type *ArgType, bool Promote,
1047                             bool Immediate);
1048 
1049   void GroupSemaChecks(std::map<std::string, std::set<std::string>> &Checks);
1050 
1051   // Constructor and top-level functions.
1052 
1053   EmitterBase(const RecordKeeper &Records);
1054   virtual ~EmitterBase() = default;
1055 
1056   virtual void EmitHeader(raw_ostream &OS) = 0;
1057   virtual void EmitBuiltinDef(raw_ostream &OS) = 0;
1058   virtual void EmitBuiltinSema(raw_ostream &OS) = 0;
1059   void EmitBuiltinCG(raw_ostream &OS);
1060   void EmitBuiltinAliases(raw_ostream &OS);
1061 };
1062 
1063 const Type *EmitterBase::getType(const Init *I, const Type *Param) {
1064   if (const auto *Dag = dyn_cast<DagInit>(I))
1065     return getType(Dag, Param);
1066   if (const auto *Def = dyn_cast<DefInit>(I))
1067     return getType(Def->getDef(), Param);
1068 
1069   PrintFatalError("Could not convert this value into a type");
1070 }
1071 
1072 const Type *EmitterBase::getType(const Record *R, const Type *Param) {
1073   // Pass to a subfield of any wrapper records. We don't expect more than one
1074   // of these: immediate operands are used as plain numbers rather than as
1075   // llvm::Value, so it's meaningless to promote their type anyway.
1076   if (R->isSubClassOf("Immediate"))
1077     R = R->getValueAsDef("type");
1078   else if (R->isSubClassOf("unpromoted"))
1079     R = R->getValueAsDef("underlying_type");
1080 
1081   if (R->getName() == "Void")
1082     return getVoidType();
1083   if (R->isSubClassOf("PrimitiveType"))
1084     return getScalarType(R);
1085   if (R->isSubClassOf("ComplexType"))
1086     return getType(R->getValueAsDag("spec"), Param);
1087 
1088   PrintFatalError(R->getLoc(), "Could not convert this record into a type");
1089 }
1090 
1091 const Type *EmitterBase::getType(const DagInit *D, const Type *Param) {
1092   // The meat of the getType system: types in the Tablegen are represented by a
1093   // dag whose operators select sub-cases of this function.
1094 
1095   const Record *Op = cast<DefInit>(D->getOperator())->getDef();
1096   if (!Op->isSubClassOf("ComplexTypeOp"))
1097     PrintFatalError(
1098         "Expected ComplexTypeOp as dag operator in type expression");
1099 
1100   if (Op->getName() == "CTO_Parameter") {
1101     if (isa<VoidType>(Param))
1102       PrintFatalError("Parametric type in unparametrised context");
1103     return Param;
1104   }
1105 
1106   if (Op->getName() == "CTO_Vec") {
1107     const Type *Element = getType(D->getArg(0), Param);
1108     if (D->getNumArgs() == 1) {
1109       return getVectorType(cast<ScalarType>(Element));
1110     } else {
1111       const Type *ExistingVector = getType(D->getArg(1), Param);
1112       return getVectorType(cast<ScalarType>(Element),
1113                            cast<VectorType>(ExistingVector)->lanes());
1114     }
1115   }
1116 
1117   if (Op->getName() == "CTO_Pred") {
1118     const Type *Element = getType(D->getArg(0), Param);
1119     return getPredicateType(128 / Element->sizeInBits());
1120   }
1121 
1122   if (Op->isSubClassOf("CTO_Tuple")) {
1123     unsigned Registers = Op->getValueAsInt("n");
1124     const Type *Element = getType(D->getArg(0), Param);
1125     return getMultiVectorType(Registers, cast<VectorType>(Element));
1126   }
1127 
1128   if (Op->isSubClassOf("CTO_Pointer")) {
1129     const Type *Pointee = getType(D->getArg(0), Param);
1130     return getPointerType(Pointee, Op->getValueAsBit("const"));
1131   }
1132 
1133   if (Op->getName() == "CTO_CopyKind") {
1134     const ScalarType *STSize = cast<ScalarType>(getType(D->getArg(0), Param));
1135     const ScalarType *STKind = cast<ScalarType>(getType(D->getArg(1), Param));
1136     for (const auto &kv : ScalarTypes) {
1137       const ScalarType *RT = kv.second.get();
1138       if (RT->kind() == STKind->kind() && RT->sizeInBits() == STSize->sizeInBits())
1139         return RT;
1140     }
1141     PrintFatalError("Cannot find a type to satisfy CopyKind");
1142   }
1143 
1144   if (Op->isSubClassOf("CTO_ScaleSize")) {
1145     const ScalarType *STKind = cast<ScalarType>(getType(D->getArg(0), Param));
1146     int Num = Op->getValueAsInt("num"), Denom = Op->getValueAsInt("denom");
1147     unsigned DesiredSize = STKind->sizeInBits() * Num / Denom;
1148     for (const auto &kv : ScalarTypes) {
1149       const ScalarType *RT = kv.second.get();
1150       if (RT->kind() == STKind->kind() && RT->sizeInBits() == DesiredSize)
1151         return RT;
1152     }
1153     PrintFatalError("Cannot find a type to satisfy ScaleSize");
1154   }
1155 
1156   PrintFatalError("Bad operator in type dag expression");
1157 }
1158 
1159 Result::Ptr EmitterBase::getCodeForDag(const DagInit *D,
1160                                        const Result::Scope &Scope,
1161                                        const Type *Param) {
1162   const Record *Op = cast<DefInit>(D->getOperator())->getDef();
1163 
1164   if (Op->getName() == "seq") {
1165     Result::Scope SubScope = Scope;
1166     Result::Ptr PrevV = nullptr;
1167     for (unsigned i = 0, e = D->getNumArgs(); i < e; ++i) {
1168       // We don't use getCodeForDagArg here, because the argument name
1169       // has different semantics in a seq
1170       Result::Ptr V =
1171           getCodeForDag(cast<DagInit>(D->getArg(i)), SubScope, Param);
1172       StringRef ArgName = D->getArgNameStr(i);
1173       if (!ArgName.empty())
1174         SubScope[std::string(ArgName)] = V;
1175       if (PrevV)
1176         V->setPredecessor(PrevV);
1177       PrevV = V;
1178     }
1179     return PrevV;
1180   } else if (Op->isSubClassOf("Type")) {
1181     if (D->getNumArgs() != 1)
1182       PrintFatalError("Type casts should have exactly one argument");
1183     const Type *CastType = getType(Op, Param);
1184     Result::Ptr Arg = getCodeForDagArg(D, 0, Scope, Param);
1185     if (const auto *ST = dyn_cast<ScalarType>(CastType)) {
1186       if (!ST->requiresFloat()) {
1187         if (Arg->hasIntegerConstantValue())
1188           return std::make_shared<IntLiteralResult>(
1189               ST, Arg->integerConstantValue());
1190         else
1191           return std::make_shared<IntCastResult>(ST, Arg);
1192       }
1193     } else if (const auto *PT = dyn_cast<PointerType>(CastType)) {
1194       return std::make_shared<PointerCastResult>(PT, Arg);
1195     }
1196     PrintFatalError("Unsupported type cast");
1197   } else if (Op->getName() == "address") {
1198     if (D->getNumArgs() != 2)
1199       PrintFatalError("'address' should have two arguments");
1200     Result::Ptr Arg = getCodeForDagArg(D, 0, Scope, Param);
1201 
1202     const Type *Ty = nullptr;
1203     if (const auto *DI = dyn_cast<DagInit>(D->getArg(0)))
1204       if (auto *PTy = dyn_cast<PointerType>(getType(DI->getOperator(), Param)))
1205         Ty = PTy->getPointeeType();
1206     if (!Ty)
1207       PrintFatalError("'address' pointer argument should be a pointer");
1208 
1209     unsigned Alignment;
1210     if (const auto *II = dyn_cast<IntInit>(D->getArg(1))) {
1211       Alignment = II->getValue();
1212     } else {
1213       PrintFatalError("'address' alignment argument should be an integer");
1214     }
1215     return std::make_shared<AddressResult>(Arg, Ty, Alignment);
1216   } else if (Op->getName() == "unsignedflag") {
1217     if (D->getNumArgs() != 1)
1218       PrintFatalError("unsignedflag should have exactly one argument");
1219     const Record *TypeRec = cast<DefInit>(D->getArg(0))->getDef();
1220     if (!TypeRec->isSubClassOf("Type"))
1221       PrintFatalError("unsignedflag's argument should be a type");
1222     if (const auto *ST = dyn_cast<ScalarType>(getType(TypeRec, Param))) {
1223       return std::make_shared<IntLiteralResult>(
1224         getScalarType("u32"), ST->kind() == ScalarTypeKind::UnsignedInt);
1225     } else {
1226       PrintFatalError("unsignedflag's argument should be a scalar type");
1227     }
1228   } else if (Op->getName() == "bitsize") {
1229     if (D->getNumArgs() != 1)
1230       PrintFatalError("bitsize should have exactly one argument");
1231     const Record *TypeRec = cast<DefInit>(D->getArg(0))->getDef();
1232     if (!TypeRec->isSubClassOf("Type"))
1233       PrintFatalError("bitsize's argument should be a type");
1234     if (const auto *ST = dyn_cast<ScalarType>(getType(TypeRec, Param))) {
1235       return std::make_shared<IntLiteralResult>(getScalarType("u32"),
1236                                                 ST->sizeInBits());
1237     } else {
1238       PrintFatalError("bitsize's argument should be a scalar type");
1239     }
1240   } else {
1241     std::vector<Result::Ptr> Args;
1242     for (unsigned i = 0, e = D->getNumArgs(); i < e; ++i)
1243       Args.push_back(getCodeForDagArg(D, i, Scope, Param));
1244     if (Op->isSubClassOf("IRBuilderBase")) {
1245       std::set<unsigned> AddressArgs;
1246       std::map<unsigned, std::string> IntegerArgs;
1247       for (const Record *sp : Op->getValueAsListOfDefs("special_params")) {
1248         unsigned Index = sp->getValueAsInt("index");
1249         if (sp->isSubClassOf("IRBuilderAddrParam")) {
1250           AddressArgs.insert(Index);
1251         } else if (sp->isSubClassOf("IRBuilderIntParam")) {
1252           IntegerArgs[Index] = std::string(sp->getValueAsString("type"));
1253         }
1254       }
1255       return std::make_shared<IRBuilderResult>(Op->getValueAsString("prefix"),
1256                                                Args, AddressArgs, IntegerArgs);
1257     } else if (Op->isSubClassOf("IRIntBase")) {
1258       std::vector<const Type *> ParamTypes;
1259       for (const Record *RParam : Op->getValueAsListOfDefs("params"))
1260         ParamTypes.push_back(getType(RParam, Param));
1261       std::string IntName = std::string(Op->getValueAsString("intname"));
1262       if (Op->getValueAsBit("appendKind"))
1263         IntName += "_" + toLetter(cast<ScalarType>(Param)->kind());
1264       return std::make_shared<IRIntrinsicResult>(IntName, ParamTypes, Args);
1265     } else {
1266       PrintFatalError("Unsupported dag node " + Op->getName());
1267     }
1268   }
1269 }
1270 
1271 Result::Ptr EmitterBase::getCodeForDagArg(const DagInit *D, unsigned ArgNum,
1272                                           const Result::Scope &Scope,
1273                                           const Type *Param) {
1274   const Init *Arg = D->getArg(ArgNum);
1275   StringRef Name = D->getArgNameStr(ArgNum);
1276 
1277   if (!Name.empty()) {
1278     if (!isa<UnsetInit>(Arg))
1279       PrintFatalError(
1280           "dag operator argument should not have both a value and a name");
1281     auto it = Scope.find(Name);
1282     if (it == Scope.end())
1283       PrintFatalError("unrecognized variable name '" + Name + "'");
1284     return it->second;
1285   }
1286 
1287   // Sometimes the Arg is a bit. Prior to multiclass template argument
1288   // checking, integers would sneak through the bit declaration,
1289   // but now they really are bits.
1290   if (const auto *BI = dyn_cast<BitInit>(Arg))
1291     return std::make_shared<IntLiteralResult>(getScalarType("u32"),
1292                                               BI->getValue());
1293 
1294   if (const auto *II = dyn_cast<IntInit>(Arg))
1295     return std::make_shared<IntLiteralResult>(getScalarType("u32"),
1296                                               II->getValue());
1297 
1298   if (const auto *DI = dyn_cast<DagInit>(Arg))
1299     return getCodeForDag(DI, Scope, Param);
1300 
1301   if (const auto *DI = dyn_cast<DefInit>(Arg)) {
1302     const Record *Rec = DI->getDef();
1303     if (Rec->isSubClassOf("Type")) {
1304       const Type *T = getType(Rec, Param);
1305       return std::make_shared<TypeResult>(T);
1306     }
1307   }
1308 
1309   PrintError("bad DAG argument type for code generation");
1310   PrintNote("DAG: " + D->getAsString());
1311   if (const auto *Typed = dyn_cast<TypedInit>(Arg))
1312     PrintNote("argument type: " + Typed->getType()->getAsString());
1313   PrintFatalNote("argument number " + Twine(ArgNum) + ": " + Arg->getAsString());
1314 }
1315 
1316 Result::Ptr EmitterBase::getCodeForArg(unsigned ArgNum, const Type *ArgType,
1317                                        bool Promote, bool Immediate) {
1318   Result::Ptr V = std::make_shared<BuiltinArgResult>(
1319       ArgNum, isa<PointerType>(ArgType), Immediate);
1320 
1321   if (Promote) {
1322     if (const auto *ST = dyn_cast<ScalarType>(ArgType)) {
1323       if (ST->isInteger() && ST->sizeInBits() < 32)
1324         V = std::make_shared<IntCastResult>(getScalarType("u32"), V);
1325     } else if (const auto *PT = dyn_cast<PredicateType>(ArgType)) {
1326       V = std::make_shared<IntCastResult>(getScalarType("u32"), V);
1327       V = std::make_shared<IRIntrinsicResult>("arm_mve_pred_i2v",
1328                                               std::vector<const Type *>{PT},
1329                                               std::vector<Result::Ptr>{V});
1330     }
1331   }
1332 
1333   return V;
1334 }
1335 
1336 ACLEIntrinsic::ACLEIntrinsic(EmitterBase &ME, const Record *R,
1337                              const Type *Param)
1338     : ReturnType(ME.getType(R->getValueAsDef("ret"), Param)) {
1339   // Derive the intrinsic's full name, by taking the name of the
1340   // Tablegen record (or override) and appending the suffix from its
1341   // parameter type. (If the intrinsic is unparametrised, its
1342   // parameter type will be given as Void, which returns the empty
1343   // string for acleSuffix.)
1344   StringRef BaseName =
1345       (R->isSubClassOf("NameOverride") ? R->getValueAsString("basename")
1346                                        : R->getName());
1347   StringRef overrideLetter = R->getValueAsString("overrideKindLetter");
1348   FullName =
1349       (Twine(BaseName) + Param->acleSuffix(std::string(overrideLetter))).str();
1350 
1351   // Derive the intrinsic's polymorphic name, by removing components from the
1352   // full name as specified by its 'pnt' member ('polymorphic name type'),
1353   // which indicates how many type suffixes to remove, and any other piece of
1354   // the name that should be removed.
1355   const Record *PolymorphicNameType = R->getValueAsDef("pnt");
1356   SmallVector<StringRef, 8> NameParts;
1357   StringRef(FullName).split(NameParts, '_');
1358   for (unsigned i = 0, e = PolymorphicNameType->getValueAsInt(
1359                            "NumTypeSuffixesToDiscard");
1360        i < e; ++i)
1361     NameParts.pop_back();
1362   if (!PolymorphicNameType->isValueUnset("ExtraSuffixToDiscard")) {
1363     StringRef ExtraSuffix =
1364         PolymorphicNameType->getValueAsString("ExtraSuffixToDiscard");
1365     auto it = NameParts.end();
1366     while (it != NameParts.begin()) {
1367       --it;
1368       if (*it == ExtraSuffix) {
1369         NameParts.erase(it);
1370         break;
1371       }
1372     }
1373   }
1374   ShortName = join(std::begin(NameParts), std::end(NameParts), "_");
1375 
1376   BuiltinExtension = R->getValueAsString("builtinExtension");
1377 
1378   PolymorphicOnly = R->getValueAsBit("polymorphicOnly");
1379   NonEvaluating = R->getValueAsBit("nonEvaluating");
1380   HeaderOnly = R->getValueAsBit("headerOnly");
1381 
1382   // Process the intrinsic's argument list.
1383   const DagInit *ArgsDag = R->getValueAsDag("args");
1384   Result::Scope Scope;
1385   for (unsigned i = 0, e = ArgsDag->getNumArgs(); i < e; ++i) {
1386     const Init *TypeInit = ArgsDag->getArg(i);
1387 
1388     bool Promote = true;
1389     if (const auto *TypeDI = dyn_cast<DefInit>(TypeInit))
1390       if (TypeDI->getDef()->isSubClassOf("unpromoted"))
1391         Promote = false;
1392 
1393     // Work out the type of the argument, for use in the function prototype in
1394     // the header file.
1395     const Type *ArgType = ME.getType(TypeInit, Param);
1396     ArgTypes.push_back(ArgType);
1397 
1398     // If the argument is a subclass of Immediate, record the details about
1399     // what values it can take, for Sema checking.
1400     bool Immediate = false;
1401     if (const auto *TypeDI = dyn_cast<DefInit>(TypeInit)) {
1402       const Record *TypeRec = TypeDI->getDef();
1403       if (TypeRec->isSubClassOf("Immediate")) {
1404         Immediate = true;
1405 
1406         const Record *Bounds = TypeRec->getValueAsDef("bounds");
1407         ImmediateArg &IA = ImmediateArgs[i];
1408         if (Bounds->isSubClassOf("IB_ConstRange")) {
1409           IA.boundsType = ImmediateArg::BoundsType::ExplicitRange;
1410           IA.i1 = Bounds->getValueAsInt("lo");
1411           IA.i2 = Bounds->getValueAsInt("hi");
1412         } else if (Bounds->getName() == "IB_UEltValue") {
1413           IA.boundsType = ImmediateArg::BoundsType::UInt;
1414           IA.i1 = Param->sizeInBits();
1415         } else if (Bounds->getName() == "IB_LaneIndex") {
1416           IA.boundsType = ImmediateArg::BoundsType::ExplicitRange;
1417           IA.i1 = 0;
1418           IA.i2 = 128 / Param->sizeInBits() - 1;
1419         } else if (Bounds->isSubClassOf("IB_EltBit")) {
1420           IA.boundsType = ImmediateArg::BoundsType::ExplicitRange;
1421           IA.i1 = Bounds->getValueAsInt("base");
1422           const Type *T = ME.getType(Bounds->getValueAsDef("type"), Param);
1423           IA.i2 = IA.i1 + T->sizeInBits() - 1;
1424         } else {
1425           PrintFatalError("unrecognised ImmediateBounds subclass");
1426         }
1427 
1428         IA.ArgType = ArgType;
1429 
1430         if (!TypeRec->isValueUnset("extra")) {
1431           IA.ExtraCheckType = TypeRec->getValueAsString("extra");
1432           if (!TypeRec->isValueUnset("extraarg"))
1433             IA.ExtraCheckArgs = TypeRec->getValueAsString("extraarg");
1434         }
1435       }
1436     }
1437 
1438     // The argument will usually have a name in the arguments dag, which goes
1439     // into the variable-name scope that the code gen will refer to.
1440     StringRef ArgName = ArgsDag->getArgNameStr(i);
1441     if (!ArgName.empty())
1442       Scope[std::string(ArgName)] =
1443           ME.getCodeForArg(i, ArgType, Promote, Immediate);
1444   }
1445 
1446   // Finally, go through the codegen dag and translate it into a Result object
1447   // (with an arbitrary DAG of depended-on Results hanging off it).
1448   const DagInit *CodeDag = R->getValueAsDag("codegen");
1449   const Record *MainOp = cast<DefInit>(CodeDag->getOperator())->getDef();
1450   if (MainOp->isSubClassOf("CustomCodegen")) {
1451     // Or, if it's the special case of CustomCodegen, just accumulate
1452     // a list of parameters we're going to assign to variables before
1453     // breaking from the loop.
1454     CustomCodeGenArgs["CustomCodeGenType"] =
1455         (Twine("CustomCodeGen::") + MainOp->getValueAsString("type")).str();
1456     for (unsigned i = 0, e = CodeDag->getNumArgs(); i < e; ++i) {
1457       StringRef Name = CodeDag->getArgNameStr(i);
1458       if (Name.empty()) {
1459         PrintFatalError("Operands to CustomCodegen should have names");
1460       } else if (const auto *II = dyn_cast<IntInit>(CodeDag->getArg(i))) {
1461         CustomCodeGenArgs[std::string(Name)] = itostr(II->getValue());
1462       } else if (const auto *SI = dyn_cast<StringInit>(CodeDag->getArg(i))) {
1463         CustomCodeGenArgs[std::string(Name)] = std::string(SI->getValue());
1464       } else {
1465         PrintFatalError("Operands to CustomCodegen should be integers");
1466       }
1467     }
1468   } else {
1469     Code = ME.getCodeForDag(CodeDag, Scope, Param);
1470   }
1471 }
1472 
1473 EmitterBase::EmitterBase(const RecordKeeper &Records) {
1474   // Construct the whole EmitterBase.
1475 
1476   // First, look up all the instances of PrimitiveType. This gives us the list
1477   // of vector typedefs we have to put in arm_mve.h, and also allows us to
1478   // collect all the useful ScalarType instances into a big list so that we can
1479   // use it for operations such as 'find the unsigned version of this signed
1480   // integer type'.
1481   for (const Record *R : Records.getAllDerivedDefinitions("PrimitiveType"))
1482     ScalarTypes[std::string(R->getName())] = std::make_unique<ScalarType>(R);
1483 
1484   // Now go through the instances of Intrinsic, and for each one, iterate
1485   // through its list of type parameters making an ACLEIntrinsic for each one.
1486   for (const Record *R : Records.getAllDerivedDefinitions("Intrinsic")) {
1487     for (const Record *RParam : R->getValueAsListOfDefs("params")) {
1488       const Type *Param = getType(RParam, getVoidType());
1489       auto Intrinsic = std::make_unique<ACLEIntrinsic>(*this, R, Param);
1490       ACLEIntrinsics[Intrinsic->fullName()] = std::move(Intrinsic);
1491     }
1492   }
1493 }
1494 
1495 /// A wrapper on raw_string_ostream that contains its own buffer rather than
1496 /// having to point it at one elsewhere. (In other words, it works just like
1497 /// std::ostringstream; also, this makes it convenient to declare a whole array
1498 /// of them at once.)
1499 ///
1500 /// We have to set this up using multiple inheritance, to ensure that the
1501 /// string member has been constructed before raw_string_ostream's constructor
1502 /// is given a pointer to it.
1503 class string_holder {
1504 protected:
1505   std::string S;
1506 };
1507 class raw_self_contained_string_ostream : private string_holder,
1508                                           public raw_string_ostream {
1509 public:
1510   raw_self_contained_string_ostream() : raw_string_ostream(S) {}
1511 };
1512 
1513 const char LLVMLicenseHeader[] =
1514     " *\n"
1515     " *\n"
1516     " * Part of the LLVM Project, under the Apache License v2.0 with LLVM"
1517     " Exceptions.\n"
1518     " * See https://llvm.org/LICENSE.txt for license information.\n"
1519     " * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception\n"
1520     " *\n"
1521     " *===-----------------------------------------------------------------"
1522     "------===\n"
1523     " */\n"
1524     "\n";
1525 
1526 // Machinery for the grouping of intrinsics by similar codegen.
1527 //
1528 // The general setup is that 'MergeableGroup' stores the things that a set of
1529 // similarly shaped intrinsics have in common: the text of their code
1530 // generation, and the number and type of their parameter variables.
1531 // MergeableGroup is the key in a std::map whose value is a set of
1532 // OutputIntrinsic, which stores the ways in which a particular intrinsic
1533 // specializes the MergeableGroup's generic description: the function name and
1534 // the _values_ of the parameter variables.
1535 
1536 struct ComparableStringVector : std::vector<std::string> {
1537   // Infrastructure: a derived class of vector<string> which comes with an
1538   // ordering, so that it can be used as a key in maps and an element in sets.
1539   // There's no requirement on the ordering beyond being deterministic.
1540   bool operator<(const ComparableStringVector &rhs) const {
1541     if (size() != rhs.size())
1542       return size() < rhs.size();
1543     for (size_t i = 0, e = size(); i < e; ++i)
1544       if ((*this)[i] != rhs[i])
1545         return (*this)[i] < rhs[i];
1546     return false;
1547   }
1548 };
1549 
1550 struct OutputIntrinsic {
1551   const ACLEIntrinsic *Int;
1552   std::string Name;
1553   ComparableStringVector ParamValues;
1554   bool operator<(const OutputIntrinsic &rhs) const {
1555     if (Name != rhs.Name)
1556       return Name < rhs.Name;
1557     return ParamValues < rhs.ParamValues;
1558   }
1559 };
1560 struct MergeableGroup {
1561   std::string Code;
1562   ComparableStringVector ParamTypes;
1563   bool operator<(const MergeableGroup &rhs) const {
1564     if (Code != rhs.Code)
1565       return Code < rhs.Code;
1566     return ParamTypes < rhs.ParamTypes;
1567   }
1568 };
1569 
1570 void EmitterBase::EmitBuiltinCG(raw_ostream &OS) {
1571   // Pass 1: generate code for all the intrinsics as if every type or constant
1572   // that can possibly be abstracted out into a parameter variable will be.
1573   // This identifies the sets of intrinsics we'll group together into a single
1574   // piece of code generation.
1575 
1576   std::map<MergeableGroup, std::set<OutputIntrinsic>> MergeableGroupsPrelim;
1577 
1578   for (const auto &kv : ACLEIntrinsics) {
1579     const ACLEIntrinsic &Int = *kv.second;
1580     if (Int.headerOnly())
1581       continue;
1582 
1583     MergeableGroup MG;
1584     OutputIntrinsic OI;
1585 
1586     OI.Int = &Int;
1587     OI.Name = Int.fullName();
1588     CodeGenParamAllocator ParamAllocPrelim{&MG.ParamTypes, &OI.ParamValues};
1589     raw_string_ostream OS(MG.Code);
1590     Int.genCode(OS, ParamAllocPrelim, 1);
1591 
1592     MergeableGroupsPrelim[MG].insert(OI);
1593   }
1594 
1595   // Pass 2: for each of those groups, optimize the parameter variable set by
1596   // eliminating 'parameters' that are the same for all intrinsics in the
1597   // group, and merging together pairs of parameter variables that take the
1598   // same values as each other for all intrinsics in the group.
1599 
1600   std::map<MergeableGroup, std::set<OutputIntrinsic>> MergeableGroups;
1601 
1602   for (const auto &kv : MergeableGroupsPrelim) {
1603     const MergeableGroup &MG = kv.first;
1604     std::vector<int> ParamNumbers;
1605     std::map<ComparableStringVector, int> ParamNumberMap;
1606 
1607     // Loop over the parameters for this group.
1608     for (size_t i = 0, e = MG.ParamTypes.size(); i < e; ++i) {
1609       // Is this parameter the same for all intrinsics in the group?
1610       const OutputIntrinsic &OI_first = *kv.second.begin();
1611       bool Constant = all_of(kv.second, [&](const OutputIntrinsic &OI) {
1612         return OI.ParamValues[i] == OI_first.ParamValues[i];
1613       });
1614 
1615       // If so, record it as -1, meaning 'no parameter variable needed'. Then
1616       // the corresponding call to allocParam in pass 2 will not generate a
1617       // variable at all, and just use the value inline.
1618       if (Constant) {
1619         ParamNumbers.push_back(-1);
1620         continue;
1621       }
1622 
1623       // Otherwise, make a list of the values this parameter takes for each
1624       // intrinsic, and see if that value vector matches anything we already
1625       // have. We also record the parameter type, so that we don't accidentally
1626       // match up two parameter variables with different types. (Not that
1627       // there's much chance of them having textually equivalent values, but in
1628       // _principle_ it could happen.)
1629       ComparableStringVector key;
1630       key.push_back(MG.ParamTypes[i]);
1631       for (const auto &OI : kv.second)
1632         key.push_back(OI.ParamValues[i]);
1633 
1634       auto Found = ParamNumberMap.find(key);
1635       if (Found != ParamNumberMap.end()) {
1636         // Yes, an existing parameter variable can be reused for this.
1637         ParamNumbers.push_back(Found->second);
1638         continue;
1639       }
1640 
1641       // No, we need a new parameter variable.
1642       int ExistingIndex = ParamNumberMap.size();
1643       ParamNumberMap[key] = ExistingIndex;
1644       ParamNumbers.push_back(ExistingIndex);
1645     }
1646 
1647     // Now we're ready to do the pass 2 code generation, which will emit the
1648     // reduced set of parameter variables we've just worked out.
1649 
1650     for (const auto &OI_prelim : kv.second) {
1651       const ACLEIntrinsic *Int = OI_prelim.Int;
1652 
1653       MergeableGroup MG;
1654       OutputIntrinsic OI;
1655 
1656       OI.Int = OI_prelim.Int;
1657       OI.Name = OI_prelim.Name;
1658       CodeGenParamAllocator ParamAlloc{&MG.ParamTypes, &OI.ParamValues,
1659                                        &ParamNumbers};
1660       raw_string_ostream OS(MG.Code);
1661       Int->genCode(OS, ParamAlloc, 2);
1662 
1663       MergeableGroups[MG].insert(OI);
1664     }
1665   }
1666 
1667   // Output the actual C++ code.
1668 
1669   for (const auto &kv : MergeableGroups) {
1670     const MergeableGroup &MG = kv.first;
1671 
1672     // List of case statements in the main switch on BuiltinID, and an open
1673     // brace.
1674     const char *prefix = "";
1675     for (const auto &OI : kv.second) {
1676       OS << prefix << "case ARM::BI__builtin_arm_" << OI.Int->builtinExtension()
1677          << "_" << OI.Name << ":";
1678 
1679       prefix = "\n";
1680     }
1681     OS << " {\n";
1682 
1683     if (!MG.ParamTypes.empty()) {
1684       // If we've got some parameter variables, then emit their declarations...
1685       for (size_t i = 0, e = MG.ParamTypes.size(); i < e; ++i) {
1686         StringRef Type = MG.ParamTypes[i];
1687         OS << "  " << Type;
1688         if (!Type.ends_with("*"))
1689           OS << " ";
1690         OS << " Param" << utostr(i) << ";\n";
1691       }
1692 
1693       // ... and an inner switch on BuiltinID that will fill them in with each
1694       // individual intrinsic's values.
1695       OS << "  switch (BuiltinID) {\n";
1696       for (const auto &OI : kv.second) {
1697         OS << "  case ARM::BI__builtin_arm_" << OI.Int->builtinExtension()
1698            << "_" << OI.Name << ":\n";
1699         for (size_t i = 0, e = MG.ParamTypes.size(); i < e; ++i)
1700           OS << "    Param" << utostr(i) << " = " << OI.ParamValues[i] << ";\n";
1701         OS << "    break;\n";
1702       }
1703       OS << "  }\n";
1704     }
1705 
1706     // And finally, output the code, and close the outer pair of braces. (The
1707     // code will always end with a 'return' statement, so we need not insert a
1708     // 'break' here.)
1709     OS << MG.Code << "}\n";
1710   }
1711 }
1712 
1713 void EmitterBase::EmitBuiltinAliases(raw_ostream &OS) {
1714   // Build a sorted table of:
1715   // - intrinsic id number
1716   // - full name
1717   // - polymorphic name or -1
1718   StringToOffsetTable StringTable;
1719   OS << "static const IntrinToName MapData[] = {\n";
1720   for (const auto &kv : ACLEIntrinsics) {
1721     const ACLEIntrinsic &Int = *kv.second;
1722     if (Int.headerOnly())
1723       continue;
1724     int32_t ShortNameOffset =
1725         Int.polymorphic() ? StringTable.GetOrAddStringOffset(Int.shortName())
1726                           : -1;
1727     OS << "  { ARM::BI__builtin_arm_" << Int.builtinExtension() << "_"
1728        << Int.fullName() << ", "
1729        << StringTable.GetOrAddStringOffset(Int.fullName()) << ", "
1730        << ShortNameOffset << "},\n";
1731   }
1732   OS << "};\n\n";
1733 
1734   OS << "ArrayRef<IntrinToName> Map(MapData);\n\n";
1735 
1736   OS << "static const char IntrinNames[] = {\n";
1737   StringTable.EmitString(OS);
1738   OS << "};\n\n";
1739 }
1740 
1741 void EmitterBase::GroupSemaChecks(
1742     std::map<std::string, std::set<std::string>> &Checks) {
1743   for (const auto &kv : ACLEIntrinsics) {
1744     const ACLEIntrinsic &Int = *kv.second;
1745     if (Int.headerOnly())
1746       continue;
1747     std::string Check = Int.genSema();
1748     if (!Check.empty())
1749       Checks[Check].insert(Int.fullName());
1750   }
1751 }
1752 
1753 // -----------------------------------------------------------------------------
1754 // The class used for generating arm_mve.h and related Clang bits
1755 //
1756 
1757 class MveEmitter : public EmitterBase {
1758 public:
1759   MveEmitter(const RecordKeeper &Records) : EmitterBase(Records) {}
1760   void EmitHeader(raw_ostream &OS) override;
1761   void EmitBuiltinDef(raw_ostream &OS) override;
1762   void EmitBuiltinSema(raw_ostream &OS) override;
1763 };
1764 
1765 void MveEmitter::EmitHeader(raw_ostream &OS) {
1766   // Accumulate pieces of the header file that will be enabled under various
1767   // different combinations of #ifdef. The index into parts[] is made up of
1768   // the following bit flags.
1769   constexpr unsigned Float = 1;
1770   constexpr unsigned UseUserNamespace = 2;
1771 
1772   constexpr unsigned NumParts = 4;
1773   raw_self_contained_string_ostream parts[NumParts];
1774 
1775   // Write typedefs for all the required vector types, and a few scalar
1776   // types that don't already have the name we want them to have.
1777 
1778   parts[0] << "typedef uint16_t mve_pred16_t;\n";
1779   parts[Float] << "typedef __fp16 float16_t;\n"
1780                   "typedef float float32_t;\n";
1781   for (const auto &kv : ScalarTypes) {
1782     const ScalarType *ST = kv.second.get();
1783     if (ST->hasNonstandardName())
1784       continue;
1785     raw_ostream &OS = parts[ST->requiresFloat() ? Float : 0];
1786     const VectorType *VT = getVectorType(ST);
1787 
1788     OS << "typedef __attribute__((__neon_vector_type__(" << VT->lanes()
1789        << "), __clang_arm_mve_strict_polymorphism)) " << ST->cName() << " "
1790        << VT->cName() << ";\n";
1791 
1792     // Every vector type also comes with a pair of multi-vector types for
1793     // the VLD2 and VLD4 instructions.
1794     for (unsigned n = 2; n <= 4; n += 2) {
1795       const MultiVectorType *MT = getMultiVectorType(n, VT);
1796       OS << "typedef struct { " << VT->cName() << " val[" << n << "]; } "
1797          << MT->cName() << ";\n";
1798     }
1799   }
1800   parts[0] << "\n";
1801   parts[Float] << "\n";
1802 
1803   // Write declarations for all the intrinsics.
1804 
1805   for (const auto &kv : ACLEIntrinsics) {
1806     const ACLEIntrinsic &Int = *kv.second;
1807 
1808     // We generate each intrinsic twice, under its full unambiguous
1809     // name and its shorter polymorphic name (if the latter exists).
1810     for (bool Polymorphic : {false, true}) {
1811       if (Polymorphic && !Int.polymorphic())
1812         continue;
1813       if (!Polymorphic && Int.polymorphicOnly())
1814         continue;
1815 
1816       // We also generate each intrinsic under a name like __arm_vfooq
1817       // (which is in C language implementation namespace, so it's
1818       // safe to define in any conforming user program) and a shorter
1819       // one like vfooq (which is in user namespace, so a user might
1820       // reasonably have used it for something already). If so, they
1821       // can #define __ARM_MVE_PRESERVE_USER_NAMESPACE before
1822       // including the header, which will suppress the shorter names
1823       // and leave only the implementation-namespace ones. Then they
1824       // have to write __arm_vfooq everywhere, of course.
1825 
1826       for (bool UserNamespace : {false, true}) {
1827         raw_ostream &OS = parts[(Int.requiresFloat() ? Float : 0) |
1828                                 (UserNamespace ? UseUserNamespace : 0)];
1829 
1830         // Make the name of the function in this declaration.
1831 
1832         std::string FunctionName =
1833             Polymorphic ? Int.shortName() : Int.fullName();
1834         if (!UserNamespace)
1835           FunctionName = "__arm_" + FunctionName;
1836 
1837         // Make strings for the types involved in the function's
1838         // prototype.
1839 
1840         std::string RetTypeName = Int.returnType()->cName();
1841         if (!StringRef(RetTypeName).ends_with("*"))
1842           RetTypeName += " ";
1843 
1844         std::vector<std::string> ArgTypeNames;
1845         for (const Type *ArgTypePtr : Int.argTypes())
1846           ArgTypeNames.push_back(ArgTypePtr->cName());
1847         std::string ArgTypesString =
1848             join(std::begin(ArgTypeNames), std::end(ArgTypeNames), ", ");
1849 
1850         // Emit the actual declaration. All these functions are
1851         // declared 'static inline' without a body, which is fine
1852         // provided clang recognizes them as builtins, and has the
1853         // effect that this type signature is used in place of the one
1854         // that Builtins.td didn't provide. That's how we can get
1855         // structure types that weren't defined until this header was
1856         // included to be part of the type signature of a builtin that
1857         // was known to clang already.
1858         //
1859         // The declarations use __attribute__(__clang_arm_builtin_alias),
1860         // so that each function declared will be recognized as the
1861         // appropriate MVE builtin in spite of its user-facing name.
1862         //
1863         // (That's better than making them all wrapper functions,
1864         // partly because it avoids any compiler error message citing
1865         // the wrapper function definition instead of the user's code,
1866         // and mostly because some MVE intrinsics have arguments
1867         // required to be compile-time constants, and that property
1868         // can't be propagated through a wrapper function. It can be
1869         // propagated through a macro, but macros can't be overloaded
1870         // on argument types very easily - you have to use _Generic,
1871         // which makes error messages very confusing when the user
1872         // gets it wrong.)
1873         //
1874         // Finally, the polymorphic versions of the intrinsics are
1875         // also defined with __attribute__(overloadable), so that when
1876         // the same name is defined with several type signatures, the
1877         // right thing happens. Each one of the overloaded
1878         // declarations is given a different builtin id, which
1879         // has exactly the effect we want: first clang resolves the
1880         // overload to the right function, then it knows which builtin
1881         // it's referring to, and then the Sema checking for that
1882         // builtin can check further things like the constant
1883         // arguments.
1884         //
1885         // One more subtlety is the newline just before the return
1886         // type name. That's a cosmetic tweak to make the error
1887         // messages legible if the user gets the types wrong in a call
1888         // to a polymorphic function: this way, clang will print just
1889         // the _final_ line of each declaration in the header, to show
1890         // the type signatures that would have been legal. So all the
1891         // confusing machinery with __attribute__ is left out of the
1892         // error message, and the user sees something that's more or
1893         // less self-documenting: "here's a list of actually readable
1894         // type signatures for vfooq(), and here's why each one didn't
1895         // match your call".
1896 
1897         OS << "static __inline__ __attribute__(("
1898            << (Polymorphic ? "__overloadable__, " : "")
1899            << "__clang_arm_builtin_alias(__builtin_arm_mve_" << Int.fullName()
1900            << ")))\n"
1901            << RetTypeName << FunctionName << "(" << ArgTypesString << ");\n";
1902       }
1903     }
1904   }
1905   for (auto &part : parts)
1906     part << "\n";
1907 
1908   // Now we've finished accumulating bits and pieces into the parts[] array.
1909   // Put it all together to write the final output file.
1910 
1911   OS << "/*===---- arm_mve.h - ARM MVE intrinsics "
1912         "-----------------------------------===\n"
1913      << LLVMLicenseHeader
1914      << "#ifndef __ARM_MVE_H\n"
1915         "#define __ARM_MVE_H\n"
1916         "\n"
1917         "#if !__ARM_FEATURE_MVE\n"
1918         "#error \"MVE support not enabled\"\n"
1919         "#endif\n"
1920         "\n"
1921         "#include <stdint.h>\n"
1922         "\n"
1923         "#ifdef __cplusplus\n"
1924         "extern \"C\" {\n"
1925         "#endif\n"
1926         "\n";
1927 
1928   for (size_t i = 0; i < NumParts; ++i) {
1929     std::vector<std::string> conditions;
1930     if (i & Float)
1931       conditions.push_back("(__ARM_FEATURE_MVE & 2)");
1932     if (i & UseUserNamespace)
1933       conditions.push_back("(!defined __ARM_MVE_PRESERVE_USER_NAMESPACE)");
1934 
1935     std::string condition =
1936         join(std::begin(conditions), std::end(conditions), " && ");
1937     if (!condition.empty())
1938       OS << "#if " << condition << "\n\n";
1939     OS << parts[i].str();
1940     if (!condition.empty())
1941       OS << "#endif /* " << condition << " */\n\n";
1942   }
1943 
1944   OS << "#ifdef __cplusplus\n"
1945         "} /* extern \"C\" */\n"
1946         "#endif\n"
1947         "\n"
1948         "#endif /* __ARM_MVE_H */\n";
1949 }
1950 
1951 void MveEmitter::EmitBuiltinDef(raw_ostream &OS) {
1952   for (const auto &kv : ACLEIntrinsics) {
1953     const ACLEIntrinsic &Int = *kv.second;
1954     OS << "BUILTIN(__builtin_arm_mve_" << Int.fullName()
1955        << ", \"\", \"n\")\n";
1956   }
1957 
1958   DenseSet<StringRef> ShortNamesSeen;
1959 
1960   for (const auto &kv : ACLEIntrinsics) {
1961     const ACLEIntrinsic &Int = *kv.second;
1962     if (Int.polymorphic()) {
1963       StringRef Name = Int.shortName();
1964       if (ShortNamesSeen.insert(Name).second) {
1965         OS << "BUILTIN(__builtin_arm_mve_" << Name << ", \"vi.\", \"nt";
1966         if (Int.nonEvaluating())
1967           OS << "u"; // indicate that this builtin doesn't evaluate its args
1968         OS << "\")\n";
1969       }
1970     }
1971   }
1972 }
1973 
1974 void MveEmitter::EmitBuiltinSema(raw_ostream &OS) {
1975   std::map<std::string, std::set<std::string>> Checks;
1976   GroupSemaChecks(Checks);
1977 
1978   for (const auto &kv : Checks) {
1979     for (StringRef Name : kv.second)
1980       OS << "case ARM::BI__builtin_arm_mve_" << Name << ":\n";
1981     OS << "  return " << kv.first;
1982   }
1983 }
1984 
1985 // -----------------------------------------------------------------------------
1986 // Class that describes an ACLE intrinsic implemented as a macro.
1987 //
1988 // This class is used when the intrinsic is polymorphic in 2 or 3 types, but we
1989 // want to avoid a combinatorial explosion by reinterpreting the arguments to
1990 // fixed types.
1991 
1992 class FunctionMacro {
1993   std::vector<StringRef> Params;
1994   StringRef Definition;
1995 
1996 public:
1997   FunctionMacro(const Record &R);
1998 
1999   const std::vector<StringRef> &getParams() const { return Params; }
2000   StringRef getDefinition() const { return Definition; }
2001 };
2002 
2003 FunctionMacro::FunctionMacro(const Record &R) {
2004   Params = R.getValueAsListOfStrings("params");
2005   Definition = R.getValueAsString("definition");
2006 }
2007 
2008 // -----------------------------------------------------------------------------
2009 // The class used for generating arm_cde.h and related Clang bits
2010 //
2011 
2012 class CdeEmitter : public EmitterBase {
2013   std::map<StringRef, FunctionMacro> FunctionMacros;
2014 
2015 public:
2016   CdeEmitter(const RecordKeeper &Records);
2017   void EmitHeader(raw_ostream &OS) override;
2018   void EmitBuiltinDef(raw_ostream &OS) override;
2019   void EmitBuiltinSema(raw_ostream &OS) override;
2020 };
2021 
2022 CdeEmitter::CdeEmitter(const RecordKeeper &Records) : EmitterBase(Records) {
2023   for (const Record *R : Records.getAllDerivedDefinitions("FunctionMacro"))
2024     FunctionMacros.emplace(R->getName(), FunctionMacro(*R));
2025 }
2026 
2027 void CdeEmitter::EmitHeader(raw_ostream &OS) {
2028   // Accumulate pieces of the header file that will be enabled under various
2029   // different combinations of #ifdef. The index into parts[] is one of the
2030   // following:
2031   constexpr unsigned None = 0;
2032   constexpr unsigned MVE = 1;
2033   constexpr unsigned MVEFloat = 2;
2034 
2035   constexpr unsigned NumParts = 3;
2036   raw_self_contained_string_ostream parts[NumParts];
2037 
2038   // Write typedefs for all the required vector types, and a few scalar
2039   // types that don't already have the name we want them to have.
2040 
2041   parts[MVE] << "typedef uint16_t mve_pred16_t;\n";
2042   parts[MVEFloat] << "typedef __fp16 float16_t;\n"
2043                      "typedef float float32_t;\n";
2044   for (const auto &kv : ScalarTypes) {
2045     const ScalarType *ST = kv.second.get();
2046     if (ST->hasNonstandardName())
2047       continue;
2048     // We don't have float64x2_t
2049     if (ST->kind() == ScalarTypeKind::Float && ST->sizeInBits() == 64)
2050       continue;
2051     raw_ostream &OS = parts[ST->requiresFloat() ? MVEFloat : MVE];
2052     const VectorType *VT = getVectorType(ST);
2053 
2054     OS << "typedef __attribute__((__neon_vector_type__(" << VT->lanes()
2055        << "), __clang_arm_mve_strict_polymorphism)) " << ST->cName() << " "
2056        << VT->cName() << ";\n";
2057   }
2058   parts[MVE] << "\n";
2059   parts[MVEFloat] << "\n";
2060 
2061   // Write declarations for all the intrinsics.
2062 
2063   for (const auto &kv : ACLEIntrinsics) {
2064     const ACLEIntrinsic &Int = *kv.second;
2065 
2066     // We generate each intrinsic twice, under its full unambiguous
2067     // name and its shorter polymorphic name (if the latter exists).
2068     for (bool Polymorphic : {false, true}) {
2069       if (Polymorphic && !Int.polymorphic())
2070         continue;
2071       if (!Polymorphic && Int.polymorphicOnly())
2072         continue;
2073 
2074       raw_ostream &OS =
2075           parts[Int.requiresFloat() ? MVEFloat
2076                                     : Int.requiresMVE() ? MVE : None];
2077 
2078       // Make the name of the function in this declaration.
2079       std::string FunctionName =
2080           "__arm_" + (Polymorphic ? Int.shortName() : Int.fullName());
2081 
2082       // Make strings for the types involved in the function's
2083       // prototype.
2084       std::string RetTypeName = Int.returnType()->cName();
2085       if (!StringRef(RetTypeName).ends_with("*"))
2086         RetTypeName += " ";
2087 
2088       std::vector<std::string> ArgTypeNames;
2089       for (const Type *ArgTypePtr : Int.argTypes())
2090         ArgTypeNames.push_back(ArgTypePtr->cName());
2091       std::string ArgTypesString =
2092           join(std::begin(ArgTypeNames), std::end(ArgTypeNames), ", ");
2093 
2094       // Emit the actual declaration. See MveEmitter::EmitHeader for detailed
2095       // comments
2096       OS << "static __inline__ __attribute__(("
2097          << (Polymorphic ? "__overloadable__, " : "")
2098          << "__clang_arm_builtin_alias(__builtin_arm_" << Int.builtinExtension()
2099          << "_" << Int.fullName() << ")))\n"
2100          << RetTypeName << FunctionName << "(" << ArgTypesString << ");\n";
2101     }
2102   }
2103 
2104   for (const auto &kv : FunctionMacros) {
2105     StringRef Name = kv.first;
2106     const FunctionMacro &FM = kv.second;
2107 
2108     raw_ostream &OS = parts[MVE];
2109     OS << "#define "
2110        << "__arm_" << Name << "(" << join(FM.getParams(), ", ") << ") "
2111        << FM.getDefinition() << "\n";
2112   }
2113 
2114   for (auto &part : parts)
2115     part << "\n";
2116 
2117   // Now we've finished accumulating bits and pieces into the parts[] array.
2118   // Put it all together to write the final output file.
2119 
2120   OS << "/*===---- arm_cde.h - ARM CDE intrinsics "
2121         "-----------------------------------===\n"
2122      << LLVMLicenseHeader
2123      << "#ifndef __ARM_CDE_H\n"
2124         "#define __ARM_CDE_H\n"
2125         "\n"
2126         "#if !__ARM_FEATURE_CDE\n"
2127         "#error \"CDE support not enabled\"\n"
2128         "#endif\n"
2129         "\n"
2130         "#include <stdint.h>\n"
2131         "\n"
2132         "#ifdef __cplusplus\n"
2133         "extern \"C\" {\n"
2134         "#endif\n"
2135         "\n";
2136 
2137   for (size_t i = 0; i < NumParts; ++i) {
2138     std::string condition;
2139     if (i == MVEFloat)
2140       condition = "__ARM_FEATURE_MVE & 2";
2141     else if (i == MVE)
2142       condition = "__ARM_FEATURE_MVE";
2143 
2144     if (!condition.empty())
2145       OS << "#if " << condition << "\n\n";
2146     OS << parts[i].str();
2147     if (!condition.empty())
2148       OS << "#endif /* " << condition << " */\n\n";
2149   }
2150 
2151   OS << "#ifdef __cplusplus\n"
2152         "} /* extern \"C\" */\n"
2153         "#endif\n"
2154         "\n"
2155         "#endif /* __ARM_CDE_H */\n";
2156 }
2157 
2158 void CdeEmitter::EmitBuiltinDef(raw_ostream &OS) {
2159   for (const auto &kv : ACLEIntrinsics) {
2160     if (kv.second->headerOnly())
2161       continue;
2162     const ACLEIntrinsic &Int = *kv.second;
2163     OS << "BUILTIN(__builtin_arm_cde_" << Int.fullName()
2164        << ", \"\", \"ncU\")\n";
2165   }
2166 }
2167 
2168 void CdeEmitter::EmitBuiltinSema(raw_ostream &OS) {
2169   std::map<std::string, std::set<std::string>> Checks;
2170   GroupSemaChecks(Checks);
2171 
2172   for (const auto &kv : Checks) {
2173     for (StringRef Name : kv.second)
2174       OS << "case ARM::BI__builtin_arm_cde_" << Name << ":\n";
2175     OS << "  Err = " << kv.first << "  break;\n";
2176   }
2177 }
2178 
2179 } // namespace
2180 
2181 namespace clang {
2182 
2183 // MVE
2184 
2185 void EmitMveHeader(const RecordKeeper &Records, raw_ostream &OS) {
2186   MveEmitter(Records).EmitHeader(OS);
2187 }
2188 
2189 void EmitMveBuiltinDef(const RecordKeeper &Records, raw_ostream &OS) {
2190   MveEmitter(Records).EmitBuiltinDef(OS);
2191 }
2192 
2193 void EmitMveBuiltinSema(const RecordKeeper &Records, raw_ostream &OS) {
2194   MveEmitter(Records).EmitBuiltinSema(OS);
2195 }
2196 
2197 void EmitMveBuiltinCG(const RecordKeeper &Records, raw_ostream &OS) {
2198   MveEmitter(Records).EmitBuiltinCG(OS);
2199 }
2200 
2201 void EmitMveBuiltinAliases(const RecordKeeper &Records, raw_ostream &OS) {
2202   MveEmitter(Records).EmitBuiltinAliases(OS);
2203 }
2204 
2205 // CDE
2206 
2207 void EmitCdeHeader(const RecordKeeper &Records, raw_ostream &OS) {
2208   CdeEmitter(Records).EmitHeader(OS);
2209 }
2210 
2211 void EmitCdeBuiltinDef(const RecordKeeper &Records, raw_ostream &OS) {
2212   CdeEmitter(Records).EmitBuiltinDef(OS);
2213 }
2214 
2215 void EmitCdeBuiltinSema(const RecordKeeper &Records, raw_ostream &OS) {
2216   CdeEmitter(Records).EmitBuiltinSema(OS);
2217 }
2218 
2219 void EmitCdeBuiltinCG(const RecordKeeper &Records, raw_ostream &OS) {
2220   CdeEmitter(Records).EmitBuiltinCG(OS);
2221 }
2222 
2223 void EmitCdeBuiltinAliases(const RecordKeeper &Records, raw_ostream &OS) {
2224   CdeEmitter(Records).EmitBuiltinAliases(OS);
2225 }
2226 
2227 } // end namespace clang
2228