1 //===-- MveEmitter.cpp - Generate arm_mve.h for use with clang ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This set of linked tablegen backends is responsible for emitting the bits 10 // and pieces that implement <arm_mve.h>, which is defined by the ACLE standard 11 // and provides a set of types and functions for (more or less) direct access 12 // to the MVE instruction set, including the scalar shifts as well as the 13 // vector instructions. 14 // 15 // MVE's standard intrinsic functions are unusual in that they have a system of 16 // polymorphism. For example, the function vaddq() can behave like vaddq_u16(), 17 // vaddq_f32(), vaddq_s8(), etc., depending on the types of the vector 18 // arguments you give it. 19 // 20 // This constrains the implementation strategies. The usual approach to making 21 // the user-facing functions polymorphic would be to either use 22 // __attribute__((overloadable)) to make a set of vaddq() functions that are 23 // all inline wrappers on the underlying clang builtins, or to define a single 24 // vaddq() macro which expands to an instance of _Generic. 25 // 26 // The inline-wrappers approach would work fine for most intrinsics, except for 27 // the ones that take an argument required to be a compile-time constant, 28 // because if you wrap an inline function around a call to a builtin, the 29 // constant nature of the argument is not passed through. 30 // 31 // The _Generic approach can be made to work with enough effort, but it takes a 32 // lot of machinery, because of the design feature of _Generic that even the 33 // untaken branches are required to pass all front-end validity checks such as 34 // type-correctness. You can work around that by nesting further _Generics all 35 // over the place to coerce things to the right type in untaken branches, but 36 // what you get out is complicated, hard to guarantee its correctness, and 37 // worst of all, gives _completely unreadable_ error messages if the user gets 38 // the types wrong for an intrinsic call. 39 // 40 // Therefore, my strategy is to introduce a new __attribute__ that allows a 41 // function to be mapped to a clang builtin even though it doesn't have the 42 // same name, and then declare all the user-facing MVE function names with that 43 // attribute, mapping each one directly to the clang builtin. And the 44 // polymorphic ones have __attribute__((overloadable)) as well. So once the 45 // compiler has resolved the overload, it knows the internal builtin ID of the 46 // selected function, and can check the immediate arguments against that; and 47 // if the user gets the types wrong in a call to a polymorphic intrinsic, they 48 // get a completely clear error message showing all the declarations of that 49 // function in the header file and explaining why each one doesn't fit their 50 // call. 51 // 52 // The downside of this is that if every clang builtin has to correspond 53 // exactly to a user-facing ACLE intrinsic, then you can't save work in the 54 // frontend by doing it in the header file: CGBuiltin.cpp has to do the entire 55 // job of converting an ACLE intrinsic call into LLVM IR. So the Tablegen 56 // description for an MVE intrinsic has to contain a full description of the 57 // sequence of IRBuilder calls that clang will need to make. 58 // 59 //===----------------------------------------------------------------------===// 60 61 #include "llvm/ADT/APInt.h" 62 #include "llvm/ADT/StringRef.h" 63 #include "llvm/ADT/StringSwitch.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/raw_ostream.h" 66 #include "llvm/TableGen/Error.h" 67 #include "llvm/TableGen/Record.h" 68 #include "llvm/TableGen/StringToOffsetTable.h" 69 #include <cassert> 70 #include <cstddef> 71 #include <cstdint> 72 #include <list> 73 #include <map> 74 #include <memory> 75 #include <set> 76 #include <string> 77 #include <vector> 78 79 using namespace llvm; 80 81 namespace { 82 83 class EmitterBase; 84 class Result; 85 86 // ----------------------------------------------------------------------------- 87 // A system of classes to represent all the types we'll need to deal with in 88 // the prototypes of intrinsics. 89 // 90 // Query methods include finding out the C name of a type; the "LLVM name" in 91 // the sense of a C++ code snippet that can be used in the codegen function; 92 // the suffix that represents the type in the ACLE intrinsic naming scheme 93 // (e.g. 's32' represents int32_t in intrinsics such as vaddq_s32); whether the 94 // type is floating-point related (hence should be under #ifdef in the MVE 95 // header so that it isn't included in integer-only MVE mode); and the type's 96 // size in bits. Not all subtypes support all these queries. 97 98 class Type { 99 public: 100 enum class TypeKind { 101 // Void appears as a return type (for store intrinsics, which are pure 102 // side-effect). It's also used as the parameter type in the Tablegen 103 // when an intrinsic doesn't need to come in various suffixed forms like 104 // vfooq_s8,vfooq_u16,vfooq_f32. 105 Void, 106 107 // Scalar is used for ordinary int and float types of all sizes. 108 Scalar, 109 110 // Vector is used for anything that occupies exactly one MVE vector 111 // register, i.e. {uint,int,float}NxM_t. 112 Vector, 113 114 // MultiVector is used for the {uint,int,float}NxMxK_t types used by the 115 // interleaving load/store intrinsics v{ld,st}{2,4}q. 116 MultiVector, 117 118 // Predicate is used by all the predicated intrinsics. Its C 119 // representation is mve_pred16_t (which is just an alias for uint16_t). 120 // But we give more detail here, by indicating that a given predicate 121 // instruction is logically regarded as a vector of i1 containing the 122 // same number of lanes as the input vector type. So our Predicate type 123 // comes with a lane count, which we use to decide which kind of <n x i1> 124 // we'll invoke the pred_i2v IR intrinsic to translate it into. 125 Predicate, 126 127 // Pointer is used for pointer types (obviously), and comes with a flag 128 // indicating whether it's a pointer to a const or mutable instance of 129 // the pointee type. 130 Pointer, 131 }; 132 133 private: 134 const TypeKind TKind; 135 136 protected: 137 Type(TypeKind K) : TKind(K) {} 138 139 public: 140 TypeKind typeKind() const { return TKind; } 141 virtual ~Type() = default; 142 virtual bool requiresFloat() const = 0; 143 virtual bool requiresMVE() const = 0; 144 virtual unsigned sizeInBits() const = 0; 145 virtual std::string cName() const = 0; 146 virtual std::string llvmName() const { 147 PrintFatalError("no LLVM type name available for type " + cName()); 148 } 149 virtual std::string acleSuffix(std::string) const { 150 PrintFatalError("no ACLE suffix available for this type"); 151 } 152 }; 153 154 enum class ScalarTypeKind { SignedInt, UnsignedInt, Float }; 155 inline std::string toLetter(ScalarTypeKind kind) { 156 switch (kind) { 157 case ScalarTypeKind::SignedInt: 158 return "s"; 159 case ScalarTypeKind::UnsignedInt: 160 return "u"; 161 case ScalarTypeKind::Float: 162 return "f"; 163 } 164 llvm_unreachable("Unhandled ScalarTypeKind enum"); 165 } 166 inline std::string toCPrefix(ScalarTypeKind kind) { 167 switch (kind) { 168 case ScalarTypeKind::SignedInt: 169 return "int"; 170 case ScalarTypeKind::UnsignedInt: 171 return "uint"; 172 case ScalarTypeKind::Float: 173 return "float"; 174 } 175 llvm_unreachable("Unhandled ScalarTypeKind enum"); 176 } 177 178 class VoidType : public Type { 179 public: 180 VoidType() : Type(TypeKind::Void) {} 181 unsigned sizeInBits() const override { return 0; } 182 bool requiresFloat() const override { return false; } 183 bool requiresMVE() const override { return false; } 184 std::string cName() const override { return "void"; } 185 186 static bool classof(const Type *T) { return T->typeKind() == TypeKind::Void; } 187 std::string acleSuffix(std::string) const override { return ""; } 188 }; 189 190 class PointerType : public Type { 191 const Type *Pointee; 192 bool Const; 193 194 public: 195 PointerType(const Type *Pointee, bool Const) 196 : Type(TypeKind::Pointer), Pointee(Pointee), Const(Const) {} 197 unsigned sizeInBits() const override { return 32; } 198 bool requiresFloat() const override { return Pointee->requiresFloat(); } 199 bool requiresMVE() const override { return Pointee->requiresMVE(); } 200 std::string cName() const override { 201 std::string Name = Pointee->cName(); 202 203 // The syntax for a pointer in C is different when the pointee is 204 // itself a pointer. The MVE intrinsics don't contain any double 205 // pointers, so we don't need to worry about that wrinkle. 206 assert(!isa<PointerType>(Pointee) && "Pointer to pointer not supported"); 207 208 if (Const) 209 Name = "const " + Name; 210 return Name + " *"; 211 } 212 std::string llvmName() const override { 213 return "llvm::PointerType::getUnqual(" + Pointee->llvmName() + ")"; 214 } 215 const Type *getPointeeType() const { return Pointee; } 216 217 static bool classof(const Type *T) { 218 return T->typeKind() == TypeKind::Pointer; 219 } 220 }; 221 222 // Base class for all the types that have a name of the form 223 // [prefix][numbers]_t, like int32_t, uint16x8_t, float32x4x2_t. 224 // 225 // For this sub-hierarchy we invent a cNameBase() method which returns the 226 // whole name except for the trailing "_t", so that Vector and MultiVector can 227 // append an extra "x2" or whatever to their element type's cNameBase(). Then 228 // the main cName() query method puts "_t" on the end for the final type name. 229 230 class CRegularNamedType : public Type { 231 using Type::Type; 232 virtual std::string cNameBase() const = 0; 233 234 public: 235 std::string cName() const override { return cNameBase() + "_t"; } 236 }; 237 238 class ScalarType : public CRegularNamedType { 239 ScalarTypeKind Kind; 240 unsigned Bits; 241 std::string NameOverride; 242 243 public: 244 ScalarType(const Record *Record) : CRegularNamedType(TypeKind::Scalar) { 245 Kind = StringSwitch<ScalarTypeKind>(Record->getValueAsString("kind")) 246 .Case("s", ScalarTypeKind::SignedInt) 247 .Case("u", ScalarTypeKind::UnsignedInt) 248 .Case("f", ScalarTypeKind::Float); 249 Bits = Record->getValueAsInt("size"); 250 NameOverride = std::string(Record->getValueAsString("nameOverride")); 251 } 252 unsigned sizeInBits() const override { return Bits; } 253 ScalarTypeKind kind() const { return Kind; } 254 std::string suffix() const { return toLetter(Kind) + utostr(Bits); } 255 std::string cNameBase() const override { 256 return toCPrefix(Kind) + utostr(Bits); 257 } 258 std::string cName() const override { 259 if (NameOverride.empty()) 260 return CRegularNamedType::cName(); 261 return NameOverride; 262 } 263 std::string llvmName() const override { 264 if (Kind == ScalarTypeKind::Float) { 265 if (Bits == 16) 266 return "HalfTy"; 267 if (Bits == 32) 268 return "FloatTy"; 269 if (Bits == 64) 270 return "DoubleTy"; 271 PrintFatalError("bad size for floating type"); 272 } 273 return "Int" + utostr(Bits) + "Ty"; 274 } 275 std::string acleSuffix(std::string overrideLetter) const override { 276 return "_" + (overrideLetter.size() ? overrideLetter : toLetter(Kind)) 277 + utostr(Bits); 278 } 279 bool isInteger() const { return Kind != ScalarTypeKind::Float; } 280 bool requiresFloat() const override { return !isInteger(); } 281 bool requiresMVE() const override { return false; } 282 bool hasNonstandardName() const { return !NameOverride.empty(); } 283 284 static bool classof(const Type *T) { 285 return T->typeKind() == TypeKind::Scalar; 286 } 287 }; 288 289 class VectorType : public CRegularNamedType { 290 const ScalarType *Element; 291 unsigned Lanes; 292 293 public: 294 VectorType(const ScalarType *Element, unsigned Lanes) 295 : CRegularNamedType(TypeKind::Vector), Element(Element), Lanes(Lanes) {} 296 unsigned sizeInBits() const override { return Lanes * Element->sizeInBits(); } 297 unsigned lanes() const { return Lanes; } 298 bool requiresFloat() const override { return Element->requiresFloat(); } 299 bool requiresMVE() const override { return true; } 300 std::string cNameBase() const override { 301 return Element->cNameBase() + "x" + utostr(Lanes); 302 } 303 std::string llvmName() const override { 304 return "llvm::FixedVectorType::get(" + Element->llvmName() + ", " + 305 utostr(Lanes) + ")"; 306 } 307 308 static bool classof(const Type *T) { 309 return T->typeKind() == TypeKind::Vector; 310 } 311 }; 312 313 class MultiVectorType : public CRegularNamedType { 314 const VectorType *Element; 315 unsigned Registers; 316 317 public: 318 MultiVectorType(unsigned Registers, const VectorType *Element) 319 : CRegularNamedType(TypeKind::MultiVector), Element(Element), 320 Registers(Registers) {} 321 unsigned sizeInBits() const override { 322 return Registers * Element->sizeInBits(); 323 } 324 unsigned registers() const { return Registers; } 325 bool requiresFloat() const override { return Element->requiresFloat(); } 326 bool requiresMVE() const override { return true; } 327 std::string cNameBase() const override { 328 return Element->cNameBase() + "x" + utostr(Registers); 329 } 330 331 // MultiVectorType doesn't override llvmName, because we don't expect to do 332 // automatic code generation for the MVE intrinsics that use it: the {vld2, 333 // vld4, vst2, vst4} family are the only ones that use these types, so it was 334 // easier to hand-write the codegen for dealing with these structs than to 335 // build in lots of extra automatic machinery that would only be used once. 336 337 static bool classof(const Type *T) { 338 return T->typeKind() == TypeKind::MultiVector; 339 } 340 }; 341 342 class PredicateType : public CRegularNamedType { 343 unsigned Lanes; 344 345 public: 346 PredicateType(unsigned Lanes) 347 : CRegularNamedType(TypeKind::Predicate), Lanes(Lanes) {} 348 unsigned sizeInBits() const override { return 16; } 349 std::string cNameBase() const override { return "mve_pred16"; } 350 bool requiresFloat() const override { return false; }; 351 bool requiresMVE() const override { return true; } 352 std::string llvmName() const override { 353 return "llvm::FixedVectorType::get(Builder.getInt1Ty(), " + utostr(Lanes) + 354 ")"; 355 } 356 357 static bool classof(const Type *T) { 358 return T->typeKind() == TypeKind::Predicate; 359 } 360 }; 361 362 // ----------------------------------------------------------------------------- 363 // Class to facilitate merging together the code generation for many intrinsics 364 // by means of varying a few constant or type parameters. 365 // 366 // Most obviously, the intrinsics in a single parametrised family will have 367 // code generation sequences that only differ in a type or two, e.g. vaddq_s8 368 // and vaddq_u16 will look the same apart from putting a different vector type 369 // in the call to CGM.getIntrinsic(). But also, completely different intrinsics 370 // will often code-generate in the same way, with only a different choice of 371 // _which_ IR intrinsic they lower to (e.g. vaddq_m_s8 and vmulq_m_s8), but 372 // marshalling the arguments and return values of the IR intrinsic in exactly 373 // the same way. And others might differ only in some other kind of constant, 374 // such as a lane index. 375 // 376 // So, when we generate the IR-building code for all these intrinsics, we keep 377 // track of every value that could possibly be pulled out of the code and 378 // stored ahead of time in a local variable. Then we group together intrinsics 379 // by textual equivalence of the code that would result if _all_ those 380 // parameters were stored in local variables. That gives us maximal sets that 381 // can be implemented by a single piece of IR-building code by changing 382 // parameter values ahead of time. 383 // 384 // After we've done that, we do a second pass in which we only allocate _some_ 385 // of the parameters into local variables, by tracking which ones have the same 386 // values as each other (so that a single variable can be reused) and which 387 // ones are the same across the whole set (so that no variable is needed at 388 // all). 389 // 390 // Hence the class below. Its allocParam method is invoked during code 391 // generation by every method of a Result subclass (see below) that wants to 392 // give it the opportunity to pull something out into a switchable parameter. 393 // It returns a variable name for the parameter, or (if it's being used in the 394 // second pass once we've decided that some parameters don't need to be stored 395 // in variables after all) it might just return the input expression unchanged. 396 397 struct CodeGenParamAllocator { 398 // Accumulated during code generation 399 std::vector<std::string> *ParamTypes = nullptr; 400 std::vector<std::string> *ParamValues = nullptr; 401 402 // Provided ahead of time in pass 2, to indicate which parameters are being 403 // assigned to what. This vector contains an entry for each call to 404 // allocParam expected during code gen (which we counted up in pass 1), and 405 // indicates the number of the parameter variable that should be returned, or 406 // -1 if this call shouldn't allocate a parameter variable at all. 407 // 408 // We rely on the recursive code generation working identically in passes 1 409 // and 2, so that the same list of calls to allocParam happen in the same 410 // order. That guarantees that the parameter numbers recorded in pass 1 will 411 // match the entries in this vector that store what EmitterBase::EmitBuiltinCG 412 // decided to do about each one in pass 2. 413 std::vector<int> *ParamNumberMap = nullptr; 414 415 // Internally track how many things we've allocated 416 unsigned nparams = 0; 417 418 std::string allocParam(StringRef Type, StringRef Value) { 419 unsigned ParamNumber; 420 421 if (!ParamNumberMap) { 422 // In pass 1, unconditionally assign a new parameter variable to every 423 // value we're asked to process. 424 ParamNumber = nparams++; 425 } else { 426 // In pass 2, consult the map provided by the caller to find out which 427 // variable we should be keeping things in. 428 int MapValue = (*ParamNumberMap)[nparams++]; 429 if (MapValue < 0) 430 return std::string(Value); 431 ParamNumber = MapValue; 432 } 433 434 // If we've allocated a new parameter variable for the first time, store 435 // its type and value to be retrieved after codegen. 436 if (ParamTypes && ParamTypes->size() == ParamNumber) 437 ParamTypes->push_back(std::string(Type)); 438 if (ParamValues && ParamValues->size() == ParamNumber) 439 ParamValues->push_back(std::string(Value)); 440 441 // Unimaginative naming scheme for parameter variables. 442 return "Param" + utostr(ParamNumber); 443 } 444 }; 445 446 // ----------------------------------------------------------------------------- 447 // System of classes that represent all the intermediate values used during 448 // code-generation for an intrinsic. 449 // 450 // The base class 'Result' can represent a value of the LLVM type 'Value', or 451 // sometimes 'Address' (for loads/stores, including an alignment requirement). 452 // 453 // In the case where the Tablegen provides a value in the codegen dag as a 454 // plain integer literal, the Result object we construct here will be one that 455 // returns true from hasIntegerConstantValue(). This allows the generated C++ 456 // code to use the constant directly in contexts which can take a literal 457 // integer, such as Builder.CreateExtractValue(thing, 1), without going to the 458 // effort of calling llvm::ConstantInt::get() and then pulling the constant 459 // back out of the resulting llvm:Value later. 460 461 class Result { 462 public: 463 // Convenient shorthand for the pointer type we'll be using everywhere. 464 using Ptr = std::shared_ptr<Result>; 465 466 private: 467 Ptr Predecessor; 468 std::string VarName; 469 bool VarNameUsed = false; 470 unsigned Visited = 0; 471 472 public: 473 virtual ~Result() = default; 474 using Scope = std::map<std::string, Ptr, std::less<>>; 475 virtual void genCode(raw_ostream &OS, CodeGenParamAllocator &) const = 0; 476 virtual bool hasIntegerConstantValue() const { return false; } 477 virtual uint32_t integerConstantValue() const { return 0; } 478 virtual bool hasIntegerValue() const { return false; } 479 virtual std::string getIntegerValue(const std::string &) { 480 llvm_unreachable("non-working Result::getIntegerValue called"); 481 } 482 virtual std::string typeName() const { return "Value *"; } 483 484 // Mostly, when a code-generation operation has a dependency on prior 485 // operations, it's because it uses the output values of those operations as 486 // inputs. But there's one exception, which is the use of 'seq' in Tablegen 487 // to indicate that operations have to be performed in sequence regardless of 488 // whether they use each others' output values. 489 // 490 // So, the actual generation of code is done by depth-first search, using the 491 // prerequisites() method to get a list of all the other Results that have to 492 // be computed before this one. That method divides into the 'predecessor', 493 // set by setPredecessor() while processing a 'seq' dag node, and the list 494 // returned by 'morePrerequisites', which each subclass implements to return 495 // a list of the Results it uses as input to whatever its own computation is 496 // doing. 497 498 virtual void morePrerequisites(std::vector<Ptr> &output) const {} 499 std::vector<Ptr> prerequisites() const { 500 std::vector<Ptr> ToRet; 501 if (Predecessor) 502 ToRet.push_back(Predecessor); 503 morePrerequisites(ToRet); 504 return ToRet; 505 } 506 507 void setPredecessor(Ptr p) { 508 // If the user has nested one 'seq' node inside another, and this 509 // method is called on the return value of the inner 'seq' (i.e. 510 // the final item inside it), then we can't link _this_ node to p, 511 // because it already has a predecessor. Instead, walk the chain 512 // until we find the first item in the inner seq, and link that to 513 // p, so that nesting seqs has the obvious effect of linking 514 // everything together into one long sequential chain. 515 Result *r = this; 516 while (r->Predecessor) 517 r = r->Predecessor.get(); 518 r->Predecessor = p; 519 } 520 521 // Each Result will be assigned a variable name in the output code, but not 522 // all those variable names will actually be used (e.g. the return value of 523 // Builder.CreateStore has void type, so nobody will want to refer to it). To 524 // prevent annoying compiler warnings, we track whether each Result's 525 // variable name was ever actually mentioned in subsequent statements, so 526 // that it can be left out of the final generated code. 527 std::string varname() { 528 VarNameUsed = true; 529 return VarName; 530 } 531 void setVarname(const StringRef s) { VarName = std::string(s); } 532 bool varnameUsed() const { return VarNameUsed; } 533 534 // Emit code to generate this result as a Value *. 535 virtual std::string asValue() { 536 return varname(); 537 } 538 539 // Code generation happens in multiple passes. This method tracks whether a 540 // Result has yet been visited in a given pass, without the need for a 541 // tedious loop in between passes that goes through and resets a 'visited' 542 // flag back to false: you just set Pass=1 the first time round, and Pass=2 543 // the second time. 544 bool needsVisiting(unsigned Pass) { 545 bool ToRet = Visited < Pass; 546 Visited = Pass; 547 return ToRet; 548 } 549 }; 550 551 // Result subclass that retrieves one of the arguments to the clang builtin 552 // function. In cases where the argument has pointer type, we call 553 // EmitPointerWithAlignment and store the result in a variable of type Address, 554 // so that load and store IR nodes can know the right alignment. Otherwise, we 555 // call EmitScalarExpr. 556 // 557 // There are aggregate parameters in the MVE intrinsics API, but we don't deal 558 // with them in this Tablegen back end: they only arise in the vld2q/vld4q and 559 // vst2q/vst4q family, which is few enough that we just write the code by hand 560 // for those in CGBuiltin.cpp. 561 class BuiltinArgResult : public Result { 562 public: 563 unsigned ArgNum; 564 bool AddressType; 565 bool Immediate; 566 BuiltinArgResult(unsigned ArgNum, bool AddressType, bool Immediate) 567 : ArgNum(ArgNum), AddressType(AddressType), Immediate(Immediate) {} 568 void genCode(raw_ostream &OS, CodeGenParamAllocator &) const override { 569 OS << (AddressType ? "EmitPointerWithAlignment" : "EmitScalarExpr") 570 << "(E->getArg(" << ArgNum << "))"; 571 } 572 std::string typeName() const override { 573 return AddressType ? "Address" : Result::typeName(); 574 } 575 // Emit code to generate this result as a Value *. 576 std::string asValue() override { 577 if (AddressType) 578 return "(" + varname() + ".emitRawPointer(*this))"; 579 return Result::asValue(); 580 } 581 bool hasIntegerValue() const override { return Immediate; } 582 std::string getIntegerValue(const std::string &IntType) override { 583 return "GetIntegerConstantValue<" + IntType + ">(E->getArg(" + 584 utostr(ArgNum) + "), getContext())"; 585 } 586 }; 587 588 // Result subclass for an integer literal appearing in Tablegen. This may need 589 // to be turned into an llvm::Result by means of llvm::ConstantInt::get(), or 590 // it may be used directly as an integer, depending on which IRBuilder method 591 // it's being passed to. 592 class IntLiteralResult : public Result { 593 public: 594 const ScalarType *IntegerType; 595 uint32_t IntegerValue; 596 IntLiteralResult(const ScalarType *IntegerType, uint32_t IntegerValue) 597 : IntegerType(IntegerType), IntegerValue(IntegerValue) {} 598 void genCode(raw_ostream &OS, 599 CodeGenParamAllocator &ParamAlloc) const override { 600 OS << "llvm::ConstantInt::get(" 601 << ParamAlloc.allocParam("llvm::Type *", IntegerType->llvmName()) 602 << ", "; 603 OS << ParamAlloc.allocParam(IntegerType->cName(), utostr(IntegerValue)) 604 << ")"; 605 } 606 bool hasIntegerConstantValue() const override { return true; } 607 uint32_t integerConstantValue() const override { return IntegerValue; } 608 }; 609 610 // Result subclass representing a cast between different integer types. We use 611 // our own ScalarType abstraction as the representation of the target type, 612 // which gives both size and signedness. 613 class IntCastResult : public Result { 614 public: 615 const ScalarType *IntegerType; 616 Ptr V; 617 IntCastResult(const ScalarType *IntegerType, Ptr V) 618 : IntegerType(IntegerType), V(V) {} 619 void genCode(raw_ostream &OS, 620 CodeGenParamAllocator &ParamAlloc) const override { 621 OS << "Builder.CreateIntCast(" << V->varname() << ", " 622 << ParamAlloc.allocParam("llvm::Type *", IntegerType->llvmName()) << ", " 623 << ParamAlloc.allocParam("bool", 624 IntegerType->kind() == ScalarTypeKind::SignedInt 625 ? "true" 626 : "false") 627 << ")"; 628 } 629 void morePrerequisites(std::vector<Ptr> &output) const override { 630 output.push_back(V); 631 } 632 }; 633 634 // Result subclass representing a cast between different pointer types. 635 class PointerCastResult : public Result { 636 public: 637 const PointerType *PtrType; 638 Ptr V; 639 PointerCastResult(const PointerType *PtrType, Ptr V) 640 : PtrType(PtrType), V(V) {} 641 void genCode(raw_ostream &OS, 642 CodeGenParamAllocator &ParamAlloc) const override { 643 OS << "Builder.CreatePointerCast(" << V->asValue() << ", " 644 << ParamAlloc.allocParam("llvm::Type *", PtrType->llvmName()) << ")"; 645 } 646 void morePrerequisites(std::vector<Ptr> &output) const override { 647 output.push_back(V); 648 } 649 }; 650 651 // Result subclass representing a call to an IRBuilder method. Each IRBuilder 652 // method we want to use will have a Tablegen record giving the method name and 653 // describing any important details of how to call it, such as whether a 654 // particular argument should be an integer constant instead of an llvm::Value. 655 class IRBuilderResult : public Result { 656 public: 657 StringRef CallPrefix; 658 std::vector<Ptr> Args; 659 std::set<unsigned> AddressArgs; 660 std::map<unsigned, std::string> IntegerArgs; 661 IRBuilderResult(StringRef CallPrefix, const std::vector<Ptr> &Args, 662 const std::set<unsigned> &AddressArgs, 663 const std::map<unsigned, std::string> &IntegerArgs) 664 : CallPrefix(CallPrefix), Args(Args), AddressArgs(AddressArgs), 665 IntegerArgs(IntegerArgs) {} 666 void genCode(raw_ostream &OS, 667 CodeGenParamAllocator &ParamAlloc) const override { 668 OS << CallPrefix; 669 const char *Sep = ""; 670 for (unsigned i = 0, e = Args.size(); i < e; ++i) { 671 Ptr Arg = Args[i]; 672 auto it = IntegerArgs.find(i); 673 674 OS << Sep; 675 Sep = ", "; 676 677 if (it != IntegerArgs.end()) { 678 if (Arg->hasIntegerConstantValue()) 679 OS << "static_cast<" << it->second << ">(" 680 << ParamAlloc.allocParam(it->second, 681 utostr(Arg->integerConstantValue())) 682 << ")"; 683 else if (Arg->hasIntegerValue()) 684 OS << ParamAlloc.allocParam(it->second, 685 Arg->getIntegerValue(it->second)); 686 } else { 687 OS << Arg->varname(); 688 } 689 } 690 OS << ")"; 691 } 692 void morePrerequisites(std::vector<Ptr> &output) const override { 693 for (unsigned i = 0, e = Args.size(); i < e; ++i) { 694 Ptr Arg = Args[i]; 695 if (IntegerArgs.find(i) != IntegerArgs.end()) 696 continue; 697 output.push_back(Arg); 698 } 699 } 700 }; 701 702 // Result subclass representing making an Address out of a Value. 703 class AddressResult : public Result { 704 public: 705 Ptr Arg; 706 const Type *Ty; 707 unsigned Align; 708 AddressResult(Ptr Arg, const Type *Ty, unsigned Align) 709 : Arg(Arg), Ty(Ty), Align(Align) {} 710 void genCode(raw_ostream &OS, 711 CodeGenParamAllocator &ParamAlloc) const override { 712 OS << "Address(" << Arg->varname() << ", " << Ty->llvmName() 713 << ", CharUnits::fromQuantity(" << Align << "))"; 714 } 715 std::string typeName() const override { 716 return "Address"; 717 } 718 void morePrerequisites(std::vector<Ptr> &output) const override { 719 output.push_back(Arg); 720 } 721 }; 722 723 // Result subclass representing a call to an IR intrinsic, which we first have 724 // to look up using an Intrinsic::ID constant and an array of types. 725 class IRIntrinsicResult : public Result { 726 public: 727 std::string IntrinsicID; 728 std::vector<const Type *> ParamTypes; 729 std::vector<Ptr> Args; 730 IRIntrinsicResult(StringRef IntrinsicID, 731 const std::vector<const Type *> &ParamTypes, 732 const std::vector<Ptr> &Args) 733 : IntrinsicID(std::string(IntrinsicID)), ParamTypes(ParamTypes), 734 Args(Args) {} 735 void genCode(raw_ostream &OS, 736 CodeGenParamAllocator &ParamAlloc) const override { 737 std::string IntNo = ParamAlloc.allocParam( 738 "Intrinsic::ID", "Intrinsic::" + IntrinsicID); 739 OS << "Builder.CreateCall(CGM.getIntrinsic(" << IntNo; 740 if (!ParamTypes.empty()) { 741 OS << ", {"; 742 const char *Sep = ""; 743 for (auto T : ParamTypes) { 744 OS << Sep << ParamAlloc.allocParam("llvm::Type *", T->llvmName()); 745 Sep = ", "; 746 } 747 OS << "}"; 748 } 749 OS << "), {"; 750 const char *Sep = ""; 751 for (auto Arg : Args) { 752 OS << Sep << Arg->asValue(); 753 Sep = ", "; 754 } 755 OS << "})"; 756 } 757 void morePrerequisites(std::vector<Ptr> &output) const override { 758 output.insert(output.end(), Args.begin(), Args.end()); 759 } 760 }; 761 762 // Result subclass that specifies a type, for use in IRBuilder operations such 763 // as CreateBitCast that take a type argument. 764 class TypeResult : public Result { 765 public: 766 const Type *T; 767 TypeResult(const Type *T) : T(T) {} 768 void genCode(raw_ostream &OS, CodeGenParamAllocator &) const override { 769 OS << T->llvmName(); 770 } 771 std::string typeName() const override { 772 return "llvm::Type *"; 773 } 774 }; 775 776 // ----------------------------------------------------------------------------- 777 // Class that describes a single ACLE intrinsic. 778 // 779 // A Tablegen record will typically describe more than one ACLE intrinsic, by 780 // means of setting the 'list<Type> Params' field to a list of multiple 781 // parameter types, so as to define vaddq_{s8,u8,...,f16,f32} all in one go. 782 // We'll end up with one instance of ACLEIntrinsic for *each* parameter type, 783 // rather than a single one for all of them. Hence, the constructor takes both 784 // a Tablegen record and the current value of the parameter type. 785 786 class ACLEIntrinsic { 787 // Structure documenting that one of the intrinsic's arguments is required to 788 // be a compile-time constant integer, and what constraints there are on its 789 // value. Used when generating Sema checking code. 790 struct ImmediateArg { 791 enum class BoundsType { ExplicitRange, UInt }; 792 BoundsType boundsType; 793 int64_t i1, i2; 794 StringRef ExtraCheckType, ExtraCheckArgs; 795 const Type *ArgType; 796 }; 797 798 // For polymorphic intrinsics, FullName is the explicit name that uniquely 799 // identifies this variant of the intrinsic, and ShortName is the name it 800 // shares with at least one other intrinsic. 801 std::string ShortName, FullName; 802 803 // Name of the architecture extension, used in the Clang builtin name 804 StringRef BuiltinExtension; 805 806 // A very small number of intrinsics _only_ have a polymorphic 807 // variant (vuninitializedq taking an unevaluated argument). 808 bool PolymorphicOnly; 809 810 // Another rarely-used flag indicating that the builtin doesn't 811 // evaluate its argument(s) at all. 812 bool NonEvaluating; 813 814 // True if the intrinsic needs only the C header part (no codegen, semantic 815 // checks, etc). Used for redeclaring MVE intrinsics in the arm_cde.h header. 816 bool HeaderOnly; 817 818 const Type *ReturnType; 819 std::vector<const Type *> ArgTypes; 820 std::map<unsigned, ImmediateArg> ImmediateArgs; 821 Result::Ptr Code; 822 823 std::map<std::string, std::string> CustomCodeGenArgs; 824 825 // Recursive function that does the internals of code generation. 826 void genCodeDfs(Result::Ptr V, std::list<Result::Ptr> &Used, 827 unsigned Pass) const { 828 if (!V->needsVisiting(Pass)) 829 return; 830 831 for (Result::Ptr W : V->prerequisites()) 832 genCodeDfs(W, Used, Pass); 833 834 Used.push_back(V); 835 } 836 837 public: 838 const std::string &shortName() const { return ShortName; } 839 const std::string &fullName() const { return FullName; } 840 StringRef builtinExtension() const { return BuiltinExtension; } 841 const Type *returnType() const { return ReturnType; } 842 const std::vector<const Type *> &argTypes() const { return ArgTypes; } 843 bool requiresFloat() const { 844 if (ReturnType->requiresFloat()) 845 return true; 846 for (const Type *T : ArgTypes) 847 if (T->requiresFloat()) 848 return true; 849 return false; 850 } 851 bool requiresMVE() const { 852 return ReturnType->requiresMVE() || 853 any_of(ArgTypes, [](const Type *T) { return T->requiresMVE(); }); 854 } 855 bool polymorphic() const { return ShortName != FullName; } 856 bool polymorphicOnly() const { return PolymorphicOnly; } 857 bool nonEvaluating() const { return NonEvaluating; } 858 bool headerOnly() const { return HeaderOnly; } 859 860 // External entry point for code generation, called from EmitterBase. 861 void genCode(raw_ostream &OS, CodeGenParamAllocator &ParamAlloc, 862 unsigned Pass) const { 863 assert(!headerOnly() && "Called genCode for header-only intrinsic"); 864 if (!hasCode()) { 865 for (auto kv : CustomCodeGenArgs) 866 OS << " " << kv.first << " = " << kv.second << ";\n"; 867 OS << " break; // custom code gen\n"; 868 return; 869 } 870 std::list<Result::Ptr> Used; 871 genCodeDfs(Code, Used, Pass); 872 873 unsigned varindex = 0; 874 for (Result::Ptr V : Used) 875 if (V->varnameUsed()) 876 V->setVarname("Val" + utostr(varindex++)); 877 878 for (Result::Ptr V : Used) { 879 OS << " "; 880 if (V == Used.back()) { 881 assert(!V->varnameUsed()); 882 OS << "return "; // FIXME: what if the top-level thing is void? 883 } else if (V->varnameUsed()) { 884 std::string Type = V->typeName(); 885 OS << V->typeName(); 886 if (!StringRef(Type).ends_with("*")) 887 OS << " "; 888 OS << V->varname() << " = "; 889 } 890 V->genCode(OS, ParamAlloc); 891 OS << ";\n"; 892 } 893 } 894 bool hasCode() const { return Code != nullptr; } 895 896 static std::string signedHexLiteral(const APInt &iOrig) { 897 APInt i = iOrig.trunc(64); 898 SmallString<40> s; 899 i.toString(s, 16, true, true); 900 return std::string(s); 901 } 902 903 std::string genSema() const { 904 assert(!headerOnly() && "Called genSema for header-only intrinsic"); 905 std::vector<std::string> SemaChecks; 906 907 for (const auto &kv : ImmediateArgs) { 908 const ImmediateArg &IA = kv.second; 909 910 APInt lo(128, 0), hi(128, 0); 911 switch (IA.boundsType) { 912 case ImmediateArg::BoundsType::ExplicitRange: 913 lo = IA.i1; 914 hi = IA.i2; 915 break; 916 case ImmediateArg::BoundsType::UInt: 917 lo = 0; 918 hi = APInt::getMaxValue(IA.i1).zext(128); 919 break; 920 } 921 922 std::string Index = utostr(kv.first); 923 924 // Emit a range check if the legal range of values for the 925 // immediate is smaller than the _possible_ range of values for 926 // its type. 927 unsigned ArgTypeBits = IA.ArgType->sizeInBits(); 928 APInt ArgTypeRange = APInt::getMaxValue(ArgTypeBits).zext(128); 929 APInt ActualRange = (hi - lo).trunc(64).sext(128); 930 if (ActualRange.ult(ArgTypeRange)) 931 SemaChecks.push_back("SemaRef.BuiltinConstantArgRange(TheCall, " + 932 Index + ", " + signedHexLiteral(lo) + ", " + 933 signedHexLiteral(hi) + ")"); 934 935 if (!IA.ExtraCheckType.empty()) { 936 std::string Suffix; 937 if (!IA.ExtraCheckArgs.empty()) { 938 std::string tmp; 939 StringRef Arg = IA.ExtraCheckArgs; 940 if (Arg == "!lanesize") { 941 tmp = utostr(IA.ArgType->sizeInBits()); 942 Arg = tmp; 943 } 944 Suffix = (Twine(", ") + Arg).str(); 945 } 946 SemaChecks.push_back((Twine("SemaRef.BuiltinConstantArg") + 947 IA.ExtraCheckType + "(TheCall, " + Index + 948 Suffix + ")") 949 .str()); 950 } 951 952 assert(!SemaChecks.empty()); 953 } 954 if (SemaChecks.empty()) 955 return ""; 956 return join(std::begin(SemaChecks), std::end(SemaChecks), 957 " ||\n ") + 958 ";\n"; 959 } 960 961 ACLEIntrinsic(EmitterBase &ME, const Record *R, const Type *Param); 962 }; 963 964 // ----------------------------------------------------------------------------- 965 // The top-level class that holds all the state from analyzing the entire 966 // Tablegen input. 967 968 class EmitterBase { 969 protected: 970 // EmitterBase holds a collection of all the types we've instantiated. 971 VoidType Void; 972 std::map<std::string, std::unique_ptr<ScalarType>> ScalarTypes; 973 std::map<std::tuple<ScalarTypeKind, unsigned, unsigned>, 974 std::unique_ptr<VectorType>> 975 VectorTypes; 976 std::map<std::pair<std::string, unsigned>, std::unique_ptr<MultiVectorType>> 977 MultiVectorTypes; 978 std::map<unsigned, std::unique_ptr<PredicateType>> PredicateTypes; 979 std::map<std::string, std::unique_ptr<PointerType>> PointerTypes; 980 981 // And all the ACLEIntrinsic instances we've created. 982 std::map<std::string, std::unique_ptr<ACLEIntrinsic>> ACLEIntrinsics; 983 984 public: 985 // Methods to create a Type object, or return the right existing one from the 986 // maps stored in this object. 987 const VoidType *getVoidType() { return &Void; } 988 const ScalarType *getScalarType(StringRef Name) { 989 return ScalarTypes[std::string(Name)].get(); 990 } 991 const ScalarType *getScalarType(const Record *R) { 992 return getScalarType(R->getName()); 993 } 994 const VectorType *getVectorType(const ScalarType *ST, unsigned Lanes) { 995 std::tuple<ScalarTypeKind, unsigned, unsigned> key(ST->kind(), 996 ST->sizeInBits(), Lanes); 997 auto [It, Inserted] = VectorTypes.try_emplace(key); 998 if (Inserted) 999 It->second = std::make_unique<VectorType>(ST, Lanes); 1000 return It->second.get(); 1001 } 1002 const VectorType *getVectorType(const ScalarType *ST) { 1003 return getVectorType(ST, 128 / ST->sizeInBits()); 1004 } 1005 const MultiVectorType *getMultiVectorType(unsigned Registers, 1006 const VectorType *VT) { 1007 std::pair<std::string, unsigned> key(VT->cNameBase(), Registers); 1008 auto [It, Inserted] = MultiVectorTypes.try_emplace(key); 1009 if (Inserted) 1010 It->second = std::make_unique<MultiVectorType>(Registers, VT); 1011 return It->second.get(); 1012 } 1013 const PredicateType *getPredicateType(unsigned Lanes) { 1014 unsigned key = Lanes; 1015 auto [It, Inserted] = PredicateTypes.try_emplace(key); 1016 if (Inserted) 1017 It->second = std::make_unique<PredicateType>(Lanes); 1018 return It->second.get(); 1019 } 1020 const PointerType *getPointerType(const Type *T, bool Const) { 1021 PointerType PT(T, Const); 1022 std::string key = PT.cName(); 1023 auto [It, Inserted] = PointerTypes.try_emplace(key); 1024 if (Inserted) 1025 It->second = std::make_unique<PointerType>(PT); 1026 return It->second.get(); 1027 } 1028 1029 // Methods to construct a type from various pieces of Tablegen. These are 1030 // always called in the context of setting up a particular ACLEIntrinsic, so 1031 // there's always an ambient parameter type (because we're iterating through 1032 // the Params list in the Tablegen record for the intrinsic), which is used 1033 // to expand Tablegen classes like 'Vector' which mean something different in 1034 // each member of a parametric family. 1035 const Type *getType(const Record *R, const Type *Param); 1036 const Type *getType(const DagInit *D, const Type *Param); 1037 const Type *getType(const Init *I, const Type *Param); 1038 1039 // Functions that translate the Tablegen representation of an intrinsic's 1040 // code generation into a collection of Value objects (which will then be 1041 // reprocessed to read out the actual C++ code included by CGBuiltin.cpp). 1042 Result::Ptr getCodeForDag(const DagInit *D, const Result::Scope &Scope, 1043 const Type *Param); 1044 Result::Ptr getCodeForDagArg(const DagInit *D, unsigned ArgNum, 1045 const Result::Scope &Scope, const Type *Param); 1046 Result::Ptr getCodeForArg(unsigned ArgNum, const Type *ArgType, bool Promote, 1047 bool Immediate); 1048 1049 void GroupSemaChecks(std::map<std::string, std::set<std::string>> &Checks); 1050 1051 // Constructor and top-level functions. 1052 1053 EmitterBase(const RecordKeeper &Records); 1054 virtual ~EmitterBase() = default; 1055 1056 virtual void EmitHeader(raw_ostream &OS) = 0; 1057 virtual void EmitBuiltinDef(raw_ostream &OS) = 0; 1058 virtual void EmitBuiltinSema(raw_ostream &OS) = 0; 1059 void EmitBuiltinCG(raw_ostream &OS); 1060 void EmitBuiltinAliases(raw_ostream &OS); 1061 }; 1062 1063 const Type *EmitterBase::getType(const Init *I, const Type *Param) { 1064 if (const auto *Dag = dyn_cast<DagInit>(I)) 1065 return getType(Dag, Param); 1066 if (const auto *Def = dyn_cast<DefInit>(I)) 1067 return getType(Def->getDef(), Param); 1068 1069 PrintFatalError("Could not convert this value into a type"); 1070 } 1071 1072 const Type *EmitterBase::getType(const Record *R, const Type *Param) { 1073 // Pass to a subfield of any wrapper records. We don't expect more than one 1074 // of these: immediate operands are used as plain numbers rather than as 1075 // llvm::Value, so it's meaningless to promote their type anyway. 1076 if (R->isSubClassOf("Immediate")) 1077 R = R->getValueAsDef("type"); 1078 else if (R->isSubClassOf("unpromoted")) 1079 R = R->getValueAsDef("underlying_type"); 1080 1081 if (R->getName() == "Void") 1082 return getVoidType(); 1083 if (R->isSubClassOf("PrimitiveType")) 1084 return getScalarType(R); 1085 if (R->isSubClassOf("ComplexType")) 1086 return getType(R->getValueAsDag("spec"), Param); 1087 1088 PrintFatalError(R->getLoc(), "Could not convert this record into a type"); 1089 } 1090 1091 const Type *EmitterBase::getType(const DagInit *D, const Type *Param) { 1092 // The meat of the getType system: types in the Tablegen are represented by a 1093 // dag whose operators select sub-cases of this function. 1094 1095 const Record *Op = cast<DefInit>(D->getOperator())->getDef(); 1096 if (!Op->isSubClassOf("ComplexTypeOp")) 1097 PrintFatalError( 1098 "Expected ComplexTypeOp as dag operator in type expression"); 1099 1100 if (Op->getName() == "CTO_Parameter") { 1101 if (isa<VoidType>(Param)) 1102 PrintFatalError("Parametric type in unparametrised context"); 1103 return Param; 1104 } 1105 1106 if (Op->getName() == "CTO_Vec") { 1107 const Type *Element = getType(D->getArg(0), Param); 1108 if (D->getNumArgs() == 1) { 1109 return getVectorType(cast<ScalarType>(Element)); 1110 } else { 1111 const Type *ExistingVector = getType(D->getArg(1), Param); 1112 return getVectorType(cast<ScalarType>(Element), 1113 cast<VectorType>(ExistingVector)->lanes()); 1114 } 1115 } 1116 1117 if (Op->getName() == "CTO_Pred") { 1118 const Type *Element = getType(D->getArg(0), Param); 1119 return getPredicateType(128 / Element->sizeInBits()); 1120 } 1121 1122 if (Op->isSubClassOf("CTO_Tuple")) { 1123 unsigned Registers = Op->getValueAsInt("n"); 1124 const Type *Element = getType(D->getArg(0), Param); 1125 return getMultiVectorType(Registers, cast<VectorType>(Element)); 1126 } 1127 1128 if (Op->isSubClassOf("CTO_Pointer")) { 1129 const Type *Pointee = getType(D->getArg(0), Param); 1130 return getPointerType(Pointee, Op->getValueAsBit("const")); 1131 } 1132 1133 if (Op->getName() == "CTO_CopyKind") { 1134 const ScalarType *STSize = cast<ScalarType>(getType(D->getArg(0), Param)); 1135 const ScalarType *STKind = cast<ScalarType>(getType(D->getArg(1), Param)); 1136 for (const auto &kv : ScalarTypes) { 1137 const ScalarType *RT = kv.second.get(); 1138 if (RT->kind() == STKind->kind() && RT->sizeInBits() == STSize->sizeInBits()) 1139 return RT; 1140 } 1141 PrintFatalError("Cannot find a type to satisfy CopyKind"); 1142 } 1143 1144 if (Op->isSubClassOf("CTO_ScaleSize")) { 1145 const ScalarType *STKind = cast<ScalarType>(getType(D->getArg(0), Param)); 1146 int Num = Op->getValueAsInt("num"), Denom = Op->getValueAsInt("denom"); 1147 unsigned DesiredSize = STKind->sizeInBits() * Num / Denom; 1148 for (const auto &kv : ScalarTypes) { 1149 const ScalarType *RT = kv.second.get(); 1150 if (RT->kind() == STKind->kind() && RT->sizeInBits() == DesiredSize) 1151 return RT; 1152 } 1153 PrintFatalError("Cannot find a type to satisfy ScaleSize"); 1154 } 1155 1156 PrintFatalError("Bad operator in type dag expression"); 1157 } 1158 1159 Result::Ptr EmitterBase::getCodeForDag(const DagInit *D, 1160 const Result::Scope &Scope, 1161 const Type *Param) { 1162 const Record *Op = cast<DefInit>(D->getOperator())->getDef(); 1163 1164 if (Op->getName() == "seq") { 1165 Result::Scope SubScope = Scope; 1166 Result::Ptr PrevV = nullptr; 1167 for (unsigned i = 0, e = D->getNumArgs(); i < e; ++i) { 1168 // We don't use getCodeForDagArg here, because the argument name 1169 // has different semantics in a seq 1170 Result::Ptr V = 1171 getCodeForDag(cast<DagInit>(D->getArg(i)), SubScope, Param); 1172 StringRef ArgName = D->getArgNameStr(i); 1173 if (!ArgName.empty()) 1174 SubScope[std::string(ArgName)] = V; 1175 if (PrevV) 1176 V->setPredecessor(PrevV); 1177 PrevV = V; 1178 } 1179 return PrevV; 1180 } else if (Op->isSubClassOf("Type")) { 1181 if (D->getNumArgs() != 1) 1182 PrintFatalError("Type casts should have exactly one argument"); 1183 const Type *CastType = getType(Op, Param); 1184 Result::Ptr Arg = getCodeForDagArg(D, 0, Scope, Param); 1185 if (const auto *ST = dyn_cast<ScalarType>(CastType)) { 1186 if (!ST->requiresFloat()) { 1187 if (Arg->hasIntegerConstantValue()) 1188 return std::make_shared<IntLiteralResult>( 1189 ST, Arg->integerConstantValue()); 1190 else 1191 return std::make_shared<IntCastResult>(ST, Arg); 1192 } 1193 } else if (const auto *PT = dyn_cast<PointerType>(CastType)) { 1194 return std::make_shared<PointerCastResult>(PT, Arg); 1195 } 1196 PrintFatalError("Unsupported type cast"); 1197 } else if (Op->getName() == "address") { 1198 if (D->getNumArgs() != 2) 1199 PrintFatalError("'address' should have two arguments"); 1200 Result::Ptr Arg = getCodeForDagArg(D, 0, Scope, Param); 1201 1202 const Type *Ty = nullptr; 1203 if (const auto *DI = dyn_cast<DagInit>(D->getArg(0))) 1204 if (auto *PTy = dyn_cast<PointerType>(getType(DI->getOperator(), Param))) 1205 Ty = PTy->getPointeeType(); 1206 if (!Ty) 1207 PrintFatalError("'address' pointer argument should be a pointer"); 1208 1209 unsigned Alignment; 1210 if (const auto *II = dyn_cast<IntInit>(D->getArg(1))) { 1211 Alignment = II->getValue(); 1212 } else { 1213 PrintFatalError("'address' alignment argument should be an integer"); 1214 } 1215 return std::make_shared<AddressResult>(Arg, Ty, Alignment); 1216 } else if (Op->getName() == "unsignedflag") { 1217 if (D->getNumArgs() != 1) 1218 PrintFatalError("unsignedflag should have exactly one argument"); 1219 const Record *TypeRec = cast<DefInit>(D->getArg(0))->getDef(); 1220 if (!TypeRec->isSubClassOf("Type")) 1221 PrintFatalError("unsignedflag's argument should be a type"); 1222 if (const auto *ST = dyn_cast<ScalarType>(getType(TypeRec, Param))) { 1223 return std::make_shared<IntLiteralResult>( 1224 getScalarType("u32"), ST->kind() == ScalarTypeKind::UnsignedInt); 1225 } else { 1226 PrintFatalError("unsignedflag's argument should be a scalar type"); 1227 } 1228 } else if (Op->getName() == "bitsize") { 1229 if (D->getNumArgs() != 1) 1230 PrintFatalError("bitsize should have exactly one argument"); 1231 const Record *TypeRec = cast<DefInit>(D->getArg(0))->getDef(); 1232 if (!TypeRec->isSubClassOf("Type")) 1233 PrintFatalError("bitsize's argument should be a type"); 1234 if (const auto *ST = dyn_cast<ScalarType>(getType(TypeRec, Param))) { 1235 return std::make_shared<IntLiteralResult>(getScalarType("u32"), 1236 ST->sizeInBits()); 1237 } else { 1238 PrintFatalError("bitsize's argument should be a scalar type"); 1239 } 1240 } else { 1241 std::vector<Result::Ptr> Args; 1242 for (unsigned i = 0, e = D->getNumArgs(); i < e; ++i) 1243 Args.push_back(getCodeForDagArg(D, i, Scope, Param)); 1244 if (Op->isSubClassOf("IRBuilderBase")) { 1245 std::set<unsigned> AddressArgs; 1246 std::map<unsigned, std::string> IntegerArgs; 1247 for (const Record *sp : Op->getValueAsListOfDefs("special_params")) { 1248 unsigned Index = sp->getValueAsInt("index"); 1249 if (sp->isSubClassOf("IRBuilderAddrParam")) { 1250 AddressArgs.insert(Index); 1251 } else if (sp->isSubClassOf("IRBuilderIntParam")) { 1252 IntegerArgs[Index] = std::string(sp->getValueAsString("type")); 1253 } 1254 } 1255 return std::make_shared<IRBuilderResult>(Op->getValueAsString("prefix"), 1256 Args, AddressArgs, IntegerArgs); 1257 } else if (Op->isSubClassOf("IRIntBase")) { 1258 std::vector<const Type *> ParamTypes; 1259 for (const Record *RParam : Op->getValueAsListOfDefs("params")) 1260 ParamTypes.push_back(getType(RParam, Param)); 1261 std::string IntName = std::string(Op->getValueAsString("intname")); 1262 if (Op->getValueAsBit("appendKind")) 1263 IntName += "_" + toLetter(cast<ScalarType>(Param)->kind()); 1264 return std::make_shared<IRIntrinsicResult>(IntName, ParamTypes, Args); 1265 } else { 1266 PrintFatalError("Unsupported dag node " + Op->getName()); 1267 } 1268 } 1269 } 1270 1271 Result::Ptr EmitterBase::getCodeForDagArg(const DagInit *D, unsigned ArgNum, 1272 const Result::Scope &Scope, 1273 const Type *Param) { 1274 const Init *Arg = D->getArg(ArgNum); 1275 StringRef Name = D->getArgNameStr(ArgNum); 1276 1277 if (!Name.empty()) { 1278 if (!isa<UnsetInit>(Arg)) 1279 PrintFatalError( 1280 "dag operator argument should not have both a value and a name"); 1281 auto it = Scope.find(Name); 1282 if (it == Scope.end()) 1283 PrintFatalError("unrecognized variable name '" + Name + "'"); 1284 return it->second; 1285 } 1286 1287 // Sometimes the Arg is a bit. Prior to multiclass template argument 1288 // checking, integers would sneak through the bit declaration, 1289 // but now they really are bits. 1290 if (const auto *BI = dyn_cast<BitInit>(Arg)) 1291 return std::make_shared<IntLiteralResult>(getScalarType("u32"), 1292 BI->getValue()); 1293 1294 if (const auto *II = dyn_cast<IntInit>(Arg)) 1295 return std::make_shared<IntLiteralResult>(getScalarType("u32"), 1296 II->getValue()); 1297 1298 if (const auto *DI = dyn_cast<DagInit>(Arg)) 1299 return getCodeForDag(DI, Scope, Param); 1300 1301 if (const auto *DI = dyn_cast<DefInit>(Arg)) { 1302 const Record *Rec = DI->getDef(); 1303 if (Rec->isSubClassOf("Type")) { 1304 const Type *T = getType(Rec, Param); 1305 return std::make_shared<TypeResult>(T); 1306 } 1307 } 1308 1309 PrintError("bad DAG argument type for code generation"); 1310 PrintNote("DAG: " + D->getAsString()); 1311 if (const auto *Typed = dyn_cast<TypedInit>(Arg)) 1312 PrintNote("argument type: " + Typed->getType()->getAsString()); 1313 PrintFatalNote("argument number " + Twine(ArgNum) + ": " + Arg->getAsString()); 1314 } 1315 1316 Result::Ptr EmitterBase::getCodeForArg(unsigned ArgNum, const Type *ArgType, 1317 bool Promote, bool Immediate) { 1318 Result::Ptr V = std::make_shared<BuiltinArgResult>( 1319 ArgNum, isa<PointerType>(ArgType), Immediate); 1320 1321 if (Promote) { 1322 if (const auto *ST = dyn_cast<ScalarType>(ArgType)) { 1323 if (ST->isInteger() && ST->sizeInBits() < 32) 1324 V = std::make_shared<IntCastResult>(getScalarType("u32"), V); 1325 } else if (const auto *PT = dyn_cast<PredicateType>(ArgType)) { 1326 V = std::make_shared<IntCastResult>(getScalarType("u32"), V); 1327 V = std::make_shared<IRIntrinsicResult>("arm_mve_pred_i2v", 1328 std::vector<const Type *>{PT}, 1329 std::vector<Result::Ptr>{V}); 1330 } 1331 } 1332 1333 return V; 1334 } 1335 1336 ACLEIntrinsic::ACLEIntrinsic(EmitterBase &ME, const Record *R, 1337 const Type *Param) 1338 : ReturnType(ME.getType(R->getValueAsDef("ret"), Param)) { 1339 // Derive the intrinsic's full name, by taking the name of the 1340 // Tablegen record (or override) and appending the suffix from its 1341 // parameter type. (If the intrinsic is unparametrised, its 1342 // parameter type will be given as Void, which returns the empty 1343 // string for acleSuffix.) 1344 StringRef BaseName = 1345 (R->isSubClassOf("NameOverride") ? R->getValueAsString("basename") 1346 : R->getName()); 1347 StringRef overrideLetter = R->getValueAsString("overrideKindLetter"); 1348 FullName = 1349 (Twine(BaseName) + Param->acleSuffix(std::string(overrideLetter))).str(); 1350 1351 // Derive the intrinsic's polymorphic name, by removing components from the 1352 // full name as specified by its 'pnt' member ('polymorphic name type'), 1353 // which indicates how many type suffixes to remove, and any other piece of 1354 // the name that should be removed. 1355 const Record *PolymorphicNameType = R->getValueAsDef("pnt"); 1356 SmallVector<StringRef, 8> NameParts; 1357 StringRef(FullName).split(NameParts, '_'); 1358 for (unsigned i = 0, e = PolymorphicNameType->getValueAsInt( 1359 "NumTypeSuffixesToDiscard"); 1360 i < e; ++i) 1361 NameParts.pop_back(); 1362 if (!PolymorphicNameType->isValueUnset("ExtraSuffixToDiscard")) { 1363 StringRef ExtraSuffix = 1364 PolymorphicNameType->getValueAsString("ExtraSuffixToDiscard"); 1365 auto it = NameParts.end(); 1366 while (it != NameParts.begin()) { 1367 --it; 1368 if (*it == ExtraSuffix) { 1369 NameParts.erase(it); 1370 break; 1371 } 1372 } 1373 } 1374 ShortName = join(std::begin(NameParts), std::end(NameParts), "_"); 1375 1376 BuiltinExtension = R->getValueAsString("builtinExtension"); 1377 1378 PolymorphicOnly = R->getValueAsBit("polymorphicOnly"); 1379 NonEvaluating = R->getValueAsBit("nonEvaluating"); 1380 HeaderOnly = R->getValueAsBit("headerOnly"); 1381 1382 // Process the intrinsic's argument list. 1383 const DagInit *ArgsDag = R->getValueAsDag("args"); 1384 Result::Scope Scope; 1385 for (unsigned i = 0, e = ArgsDag->getNumArgs(); i < e; ++i) { 1386 const Init *TypeInit = ArgsDag->getArg(i); 1387 1388 bool Promote = true; 1389 if (const auto *TypeDI = dyn_cast<DefInit>(TypeInit)) 1390 if (TypeDI->getDef()->isSubClassOf("unpromoted")) 1391 Promote = false; 1392 1393 // Work out the type of the argument, for use in the function prototype in 1394 // the header file. 1395 const Type *ArgType = ME.getType(TypeInit, Param); 1396 ArgTypes.push_back(ArgType); 1397 1398 // If the argument is a subclass of Immediate, record the details about 1399 // what values it can take, for Sema checking. 1400 bool Immediate = false; 1401 if (const auto *TypeDI = dyn_cast<DefInit>(TypeInit)) { 1402 const Record *TypeRec = TypeDI->getDef(); 1403 if (TypeRec->isSubClassOf("Immediate")) { 1404 Immediate = true; 1405 1406 const Record *Bounds = TypeRec->getValueAsDef("bounds"); 1407 ImmediateArg &IA = ImmediateArgs[i]; 1408 if (Bounds->isSubClassOf("IB_ConstRange")) { 1409 IA.boundsType = ImmediateArg::BoundsType::ExplicitRange; 1410 IA.i1 = Bounds->getValueAsInt("lo"); 1411 IA.i2 = Bounds->getValueAsInt("hi"); 1412 } else if (Bounds->getName() == "IB_UEltValue") { 1413 IA.boundsType = ImmediateArg::BoundsType::UInt; 1414 IA.i1 = Param->sizeInBits(); 1415 } else if (Bounds->getName() == "IB_LaneIndex") { 1416 IA.boundsType = ImmediateArg::BoundsType::ExplicitRange; 1417 IA.i1 = 0; 1418 IA.i2 = 128 / Param->sizeInBits() - 1; 1419 } else if (Bounds->isSubClassOf("IB_EltBit")) { 1420 IA.boundsType = ImmediateArg::BoundsType::ExplicitRange; 1421 IA.i1 = Bounds->getValueAsInt("base"); 1422 const Type *T = ME.getType(Bounds->getValueAsDef("type"), Param); 1423 IA.i2 = IA.i1 + T->sizeInBits() - 1; 1424 } else { 1425 PrintFatalError("unrecognised ImmediateBounds subclass"); 1426 } 1427 1428 IA.ArgType = ArgType; 1429 1430 if (!TypeRec->isValueUnset("extra")) { 1431 IA.ExtraCheckType = TypeRec->getValueAsString("extra"); 1432 if (!TypeRec->isValueUnset("extraarg")) 1433 IA.ExtraCheckArgs = TypeRec->getValueAsString("extraarg"); 1434 } 1435 } 1436 } 1437 1438 // The argument will usually have a name in the arguments dag, which goes 1439 // into the variable-name scope that the code gen will refer to. 1440 StringRef ArgName = ArgsDag->getArgNameStr(i); 1441 if (!ArgName.empty()) 1442 Scope[std::string(ArgName)] = 1443 ME.getCodeForArg(i, ArgType, Promote, Immediate); 1444 } 1445 1446 // Finally, go through the codegen dag and translate it into a Result object 1447 // (with an arbitrary DAG of depended-on Results hanging off it). 1448 const DagInit *CodeDag = R->getValueAsDag("codegen"); 1449 const Record *MainOp = cast<DefInit>(CodeDag->getOperator())->getDef(); 1450 if (MainOp->isSubClassOf("CustomCodegen")) { 1451 // Or, if it's the special case of CustomCodegen, just accumulate 1452 // a list of parameters we're going to assign to variables before 1453 // breaking from the loop. 1454 CustomCodeGenArgs["CustomCodeGenType"] = 1455 (Twine("CustomCodeGen::") + MainOp->getValueAsString("type")).str(); 1456 for (unsigned i = 0, e = CodeDag->getNumArgs(); i < e; ++i) { 1457 StringRef Name = CodeDag->getArgNameStr(i); 1458 if (Name.empty()) { 1459 PrintFatalError("Operands to CustomCodegen should have names"); 1460 } else if (const auto *II = dyn_cast<IntInit>(CodeDag->getArg(i))) { 1461 CustomCodeGenArgs[std::string(Name)] = itostr(II->getValue()); 1462 } else if (const auto *SI = dyn_cast<StringInit>(CodeDag->getArg(i))) { 1463 CustomCodeGenArgs[std::string(Name)] = std::string(SI->getValue()); 1464 } else { 1465 PrintFatalError("Operands to CustomCodegen should be integers"); 1466 } 1467 } 1468 } else { 1469 Code = ME.getCodeForDag(CodeDag, Scope, Param); 1470 } 1471 } 1472 1473 EmitterBase::EmitterBase(const RecordKeeper &Records) { 1474 // Construct the whole EmitterBase. 1475 1476 // First, look up all the instances of PrimitiveType. This gives us the list 1477 // of vector typedefs we have to put in arm_mve.h, and also allows us to 1478 // collect all the useful ScalarType instances into a big list so that we can 1479 // use it for operations such as 'find the unsigned version of this signed 1480 // integer type'. 1481 for (const Record *R : Records.getAllDerivedDefinitions("PrimitiveType")) 1482 ScalarTypes[std::string(R->getName())] = std::make_unique<ScalarType>(R); 1483 1484 // Now go through the instances of Intrinsic, and for each one, iterate 1485 // through its list of type parameters making an ACLEIntrinsic for each one. 1486 for (const Record *R : Records.getAllDerivedDefinitions("Intrinsic")) { 1487 for (const Record *RParam : R->getValueAsListOfDefs("params")) { 1488 const Type *Param = getType(RParam, getVoidType()); 1489 auto Intrinsic = std::make_unique<ACLEIntrinsic>(*this, R, Param); 1490 ACLEIntrinsics[Intrinsic->fullName()] = std::move(Intrinsic); 1491 } 1492 } 1493 } 1494 1495 /// A wrapper on raw_string_ostream that contains its own buffer rather than 1496 /// having to point it at one elsewhere. (In other words, it works just like 1497 /// std::ostringstream; also, this makes it convenient to declare a whole array 1498 /// of them at once.) 1499 /// 1500 /// We have to set this up using multiple inheritance, to ensure that the 1501 /// string member has been constructed before raw_string_ostream's constructor 1502 /// is given a pointer to it. 1503 class string_holder { 1504 protected: 1505 std::string S; 1506 }; 1507 class raw_self_contained_string_ostream : private string_holder, 1508 public raw_string_ostream { 1509 public: 1510 raw_self_contained_string_ostream() : raw_string_ostream(S) {} 1511 }; 1512 1513 const char LLVMLicenseHeader[] = 1514 " *\n" 1515 " *\n" 1516 " * Part of the LLVM Project, under the Apache License v2.0 with LLVM" 1517 " Exceptions.\n" 1518 " * See https://llvm.org/LICENSE.txt for license information.\n" 1519 " * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception\n" 1520 " *\n" 1521 " *===-----------------------------------------------------------------" 1522 "------===\n" 1523 " */\n" 1524 "\n"; 1525 1526 // Machinery for the grouping of intrinsics by similar codegen. 1527 // 1528 // The general setup is that 'MergeableGroup' stores the things that a set of 1529 // similarly shaped intrinsics have in common: the text of their code 1530 // generation, and the number and type of their parameter variables. 1531 // MergeableGroup is the key in a std::map whose value is a set of 1532 // OutputIntrinsic, which stores the ways in which a particular intrinsic 1533 // specializes the MergeableGroup's generic description: the function name and 1534 // the _values_ of the parameter variables. 1535 1536 struct ComparableStringVector : std::vector<std::string> { 1537 // Infrastructure: a derived class of vector<string> which comes with an 1538 // ordering, so that it can be used as a key in maps and an element in sets. 1539 // There's no requirement on the ordering beyond being deterministic. 1540 bool operator<(const ComparableStringVector &rhs) const { 1541 if (size() != rhs.size()) 1542 return size() < rhs.size(); 1543 for (size_t i = 0, e = size(); i < e; ++i) 1544 if ((*this)[i] != rhs[i]) 1545 return (*this)[i] < rhs[i]; 1546 return false; 1547 } 1548 }; 1549 1550 struct OutputIntrinsic { 1551 const ACLEIntrinsic *Int; 1552 std::string Name; 1553 ComparableStringVector ParamValues; 1554 bool operator<(const OutputIntrinsic &rhs) const { 1555 if (Name != rhs.Name) 1556 return Name < rhs.Name; 1557 return ParamValues < rhs.ParamValues; 1558 } 1559 }; 1560 struct MergeableGroup { 1561 std::string Code; 1562 ComparableStringVector ParamTypes; 1563 bool operator<(const MergeableGroup &rhs) const { 1564 if (Code != rhs.Code) 1565 return Code < rhs.Code; 1566 return ParamTypes < rhs.ParamTypes; 1567 } 1568 }; 1569 1570 void EmitterBase::EmitBuiltinCG(raw_ostream &OS) { 1571 // Pass 1: generate code for all the intrinsics as if every type or constant 1572 // that can possibly be abstracted out into a parameter variable will be. 1573 // This identifies the sets of intrinsics we'll group together into a single 1574 // piece of code generation. 1575 1576 std::map<MergeableGroup, std::set<OutputIntrinsic>> MergeableGroupsPrelim; 1577 1578 for (const auto &kv : ACLEIntrinsics) { 1579 const ACLEIntrinsic &Int = *kv.second; 1580 if (Int.headerOnly()) 1581 continue; 1582 1583 MergeableGroup MG; 1584 OutputIntrinsic OI; 1585 1586 OI.Int = ∬ 1587 OI.Name = Int.fullName(); 1588 CodeGenParamAllocator ParamAllocPrelim{&MG.ParamTypes, &OI.ParamValues}; 1589 raw_string_ostream OS(MG.Code); 1590 Int.genCode(OS, ParamAllocPrelim, 1); 1591 1592 MergeableGroupsPrelim[MG].insert(OI); 1593 } 1594 1595 // Pass 2: for each of those groups, optimize the parameter variable set by 1596 // eliminating 'parameters' that are the same for all intrinsics in the 1597 // group, and merging together pairs of parameter variables that take the 1598 // same values as each other for all intrinsics in the group. 1599 1600 std::map<MergeableGroup, std::set<OutputIntrinsic>> MergeableGroups; 1601 1602 for (const auto &kv : MergeableGroupsPrelim) { 1603 const MergeableGroup &MG = kv.first; 1604 std::vector<int> ParamNumbers; 1605 std::map<ComparableStringVector, int> ParamNumberMap; 1606 1607 // Loop over the parameters for this group. 1608 for (size_t i = 0, e = MG.ParamTypes.size(); i < e; ++i) { 1609 // Is this parameter the same for all intrinsics in the group? 1610 const OutputIntrinsic &OI_first = *kv.second.begin(); 1611 bool Constant = all_of(kv.second, [&](const OutputIntrinsic &OI) { 1612 return OI.ParamValues[i] == OI_first.ParamValues[i]; 1613 }); 1614 1615 // If so, record it as -1, meaning 'no parameter variable needed'. Then 1616 // the corresponding call to allocParam in pass 2 will not generate a 1617 // variable at all, and just use the value inline. 1618 if (Constant) { 1619 ParamNumbers.push_back(-1); 1620 continue; 1621 } 1622 1623 // Otherwise, make a list of the values this parameter takes for each 1624 // intrinsic, and see if that value vector matches anything we already 1625 // have. We also record the parameter type, so that we don't accidentally 1626 // match up two parameter variables with different types. (Not that 1627 // there's much chance of them having textually equivalent values, but in 1628 // _principle_ it could happen.) 1629 ComparableStringVector key; 1630 key.push_back(MG.ParamTypes[i]); 1631 for (const auto &OI : kv.second) 1632 key.push_back(OI.ParamValues[i]); 1633 1634 auto Found = ParamNumberMap.find(key); 1635 if (Found != ParamNumberMap.end()) { 1636 // Yes, an existing parameter variable can be reused for this. 1637 ParamNumbers.push_back(Found->second); 1638 continue; 1639 } 1640 1641 // No, we need a new parameter variable. 1642 int ExistingIndex = ParamNumberMap.size(); 1643 ParamNumberMap[key] = ExistingIndex; 1644 ParamNumbers.push_back(ExistingIndex); 1645 } 1646 1647 // Now we're ready to do the pass 2 code generation, which will emit the 1648 // reduced set of parameter variables we've just worked out. 1649 1650 for (const auto &OI_prelim : kv.second) { 1651 const ACLEIntrinsic *Int = OI_prelim.Int; 1652 1653 MergeableGroup MG; 1654 OutputIntrinsic OI; 1655 1656 OI.Int = OI_prelim.Int; 1657 OI.Name = OI_prelim.Name; 1658 CodeGenParamAllocator ParamAlloc{&MG.ParamTypes, &OI.ParamValues, 1659 &ParamNumbers}; 1660 raw_string_ostream OS(MG.Code); 1661 Int->genCode(OS, ParamAlloc, 2); 1662 1663 MergeableGroups[MG].insert(OI); 1664 } 1665 } 1666 1667 // Output the actual C++ code. 1668 1669 for (const auto &kv : MergeableGroups) { 1670 const MergeableGroup &MG = kv.first; 1671 1672 // List of case statements in the main switch on BuiltinID, and an open 1673 // brace. 1674 const char *prefix = ""; 1675 for (const auto &OI : kv.second) { 1676 OS << prefix << "case ARM::BI__builtin_arm_" << OI.Int->builtinExtension() 1677 << "_" << OI.Name << ":"; 1678 1679 prefix = "\n"; 1680 } 1681 OS << " {\n"; 1682 1683 if (!MG.ParamTypes.empty()) { 1684 // If we've got some parameter variables, then emit their declarations... 1685 for (size_t i = 0, e = MG.ParamTypes.size(); i < e; ++i) { 1686 StringRef Type = MG.ParamTypes[i]; 1687 OS << " " << Type; 1688 if (!Type.ends_with("*")) 1689 OS << " "; 1690 OS << " Param" << utostr(i) << ";\n"; 1691 } 1692 1693 // ... and an inner switch on BuiltinID that will fill them in with each 1694 // individual intrinsic's values. 1695 OS << " switch (BuiltinID) {\n"; 1696 for (const auto &OI : kv.second) { 1697 OS << " case ARM::BI__builtin_arm_" << OI.Int->builtinExtension() 1698 << "_" << OI.Name << ":\n"; 1699 for (size_t i = 0, e = MG.ParamTypes.size(); i < e; ++i) 1700 OS << " Param" << utostr(i) << " = " << OI.ParamValues[i] << ";\n"; 1701 OS << " break;\n"; 1702 } 1703 OS << " }\n"; 1704 } 1705 1706 // And finally, output the code, and close the outer pair of braces. (The 1707 // code will always end with a 'return' statement, so we need not insert a 1708 // 'break' here.) 1709 OS << MG.Code << "}\n"; 1710 } 1711 } 1712 1713 void EmitterBase::EmitBuiltinAliases(raw_ostream &OS) { 1714 // Build a sorted table of: 1715 // - intrinsic id number 1716 // - full name 1717 // - polymorphic name or -1 1718 StringToOffsetTable StringTable; 1719 OS << "static const IntrinToName MapData[] = {\n"; 1720 for (const auto &kv : ACLEIntrinsics) { 1721 const ACLEIntrinsic &Int = *kv.second; 1722 if (Int.headerOnly()) 1723 continue; 1724 int32_t ShortNameOffset = 1725 Int.polymorphic() ? StringTable.GetOrAddStringOffset(Int.shortName()) 1726 : -1; 1727 OS << " { ARM::BI__builtin_arm_" << Int.builtinExtension() << "_" 1728 << Int.fullName() << ", " 1729 << StringTable.GetOrAddStringOffset(Int.fullName()) << ", " 1730 << ShortNameOffset << "},\n"; 1731 } 1732 OS << "};\n\n"; 1733 1734 OS << "ArrayRef<IntrinToName> Map(MapData);\n\n"; 1735 1736 OS << "static const char IntrinNames[] = {\n"; 1737 StringTable.EmitString(OS); 1738 OS << "};\n\n"; 1739 } 1740 1741 void EmitterBase::GroupSemaChecks( 1742 std::map<std::string, std::set<std::string>> &Checks) { 1743 for (const auto &kv : ACLEIntrinsics) { 1744 const ACLEIntrinsic &Int = *kv.second; 1745 if (Int.headerOnly()) 1746 continue; 1747 std::string Check = Int.genSema(); 1748 if (!Check.empty()) 1749 Checks[Check].insert(Int.fullName()); 1750 } 1751 } 1752 1753 // ----------------------------------------------------------------------------- 1754 // The class used for generating arm_mve.h and related Clang bits 1755 // 1756 1757 class MveEmitter : public EmitterBase { 1758 public: 1759 MveEmitter(const RecordKeeper &Records) : EmitterBase(Records) {} 1760 void EmitHeader(raw_ostream &OS) override; 1761 void EmitBuiltinDef(raw_ostream &OS) override; 1762 void EmitBuiltinSema(raw_ostream &OS) override; 1763 }; 1764 1765 void MveEmitter::EmitHeader(raw_ostream &OS) { 1766 // Accumulate pieces of the header file that will be enabled under various 1767 // different combinations of #ifdef. The index into parts[] is made up of 1768 // the following bit flags. 1769 constexpr unsigned Float = 1; 1770 constexpr unsigned UseUserNamespace = 2; 1771 1772 constexpr unsigned NumParts = 4; 1773 raw_self_contained_string_ostream parts[NumParts]; 1774 1775 // Write typedefs for all the required vector types, and a few scalar 1776 // types that don't already have the name we want them to have. 1777 1778 parts[0] << "typedef uint16_t mve_pred16_t;\n"; 1779 parts[Float] << "typedef __fp16 float16_t;\n" 1780 "typedef float float32_t;\n"; 1781 for (const auto &kv : ScalarTypes) { 1782 const ScalarType *ST = kv.second.get(); 1783 if (ST->hasNonstandardName()) 1784 continue; 1785 raw_ostream &OS = parts[ST->requiresFloat() ? Float : 0]; 1786 const VectorType *VT = getVectorType(ST); 1787 1788 OS << "typedef __attribute__((__neon_vector_type__(" << VT->lanes() 1789 << "), __clang_arm_mve_strict_polymorphism)) " << ST->cName() << " " 1790 << VT->cName() << ";\n"; 1791 1792 // Every vector type also comes with a pair of multi-vector types for 1793 // the VLD2 and VLD4 instructions. 1794 for (unsigned n = 2; n <= 4; n += 2) { 1795 const MultiVectorType *MT = getMultiVectorType(n, VT); 1796 OS << "typedef struct { " << VT->cName() << " val[" << n << "]; } " 1797 << MT->cName() << ";\n"; 1798 } 1799 } 1800 parts[0] << "\n"; 1801 parts[Float] << "\n"; 1802 1803 // Write declarations for all the intrinsics. 1804 1805 for (const auto &kv : ACLEIntrinsics) { 1806 const ACLEIntrinsic &Int = *kv.second; 1807 1808 // We generate each intrinsic twice, under its full unambiguous 1809 // name and its shorter polymorphic name (if the latter exists). 1810 for (bool Polymorphic : {false, true}) { 1811 if (Polymorphic && !Int.polymorphic()) 1812 continue; 1813 if (!Polymorphic && Int.polymorphicOnly()) 1814 continue; 1815 1816 // We also generate each intrinsic under a name like __arm_vfooq 1817 // (which is in C language implementation namespace, so it's 1818 // safe to define in any conforming user program) and a shorter 1819 // one like vfooq (which is in user namespace, so a user might 1820 // reasonably have used it for something already). If so, they 1821 // can #define __ARM_MVE_PRESERVE_USER_NAMESPACE before 1822 // including the header, which will suppress the shorter names 1823 // and leave only the implementation-namespace ones. Then they 1824 // have to write __arm_vfooq everywhere, of course. 1825 1826 for (bool UserNamespace : {false, true}) { 1827 raw_ostream &OS = parts[(Int.requiresFloat() ? Float : 0) | 1828 (UserNamespace ? UseUserNamespace : 0)]; 1829 1830 // Make the name of the function in this declaration. 1831 1832 std::string FunctionName = 1833 Polymorphic ? Int.shortName() : Int.fullName(); 1834 if (!UserNamespace) 1835 FunctionName = "__arm_" + FunctionName; 1836 1837 // Make strings for the types involved in the function's 1838 // prototype. 1839 1840 std::string RetTypeName = Int.returnType()->cName(); 1841 if (!StringRef(RetTypeName).ends_with("*")) 1842 RetTypeName += " "; 1843 1844 std::vector<std::string> ArgTypeNames; 1845 for (const Type *ArgTypePtr : Int.argTypes()) 1846 ArgTypeNames.push_back(ArgTypePtr->cName()); 1847 std::string ArgTypesString = 1848 join(std::begin(ArgTypeNames), std::end(ArgTypeNames), ", "); 1849 1850 // Emit the actual declaration. All these functions are 1851 // declared 'static inline' without a body, which is fine 1852 // provided clang recognizes them as builtins, and has the 1853 // effect that this type signature is used in place of the one 1854 // that Builtins.td didn't provide. That's how we can get 1855 // structure types that weren't defined until this header was 1856 // included to be part of the type signature of a builtin that 1857 // was known to clang already. 1858 // 1859 // The declarations use __attribute__(__clang_arm_builtin_alias), 1860 // so that each function declared will be recognized as the 1861 // appropriate MVE builtin in spite of its user-facing name. 1862 // 1863 // (That's better than making them all wrapper functions, 1864 // partly because it avoids any compiler error message citing 1865 // the wrapper function definition instead of the user's code, 1866 // and mostly because some MVE intrinsics have arguments 1867 // required to be compile-time constants, and that property 1868 // can't be propagated through a wrapper function. It can be 1869 // propagated through a macro, but macros can't be overloaded 1870 // on argument types very easily - you have to use _Generic, 1871 // which makes error messages very confusing when the user 1872 // gets it wrong.) 1873 // 1874 // Finally, the polymorphic versions of the intrinsics are 1875 // also defined with __attribute__(overloadable), so that when 1876 // the same name is defined with several type signatures, the 1877 // right thing happens. Each one of the overloaded 1878 // declarations is given a different builtin id, which 1879 // has exactly the effect we want: first clang resolves the 1880 // overload to the right function, then it knows which builtin 1881 // it's referring to, and then the Sema checking for that 1882 // builtin can check further things like the constant 1883 // arguments. 1884 // 1885 // One more subtlety is the newline just before the return 1886 // type name. That's a cosmetic tweak to make the error 1887 // messages legible if the user gets the types wrong in a call 1888 // to a polymorphic function: this way, clang will print just 1889 // the _final_ line of each declaration in the header, to show 1890 // the type signatures that would have been legal. So all the 1891 // confusing machinery with __attribute__ is left out of the 1892 // error message, and the user sees something that's more or 1893 // less self-documenting: "here's a list of actually readable 1894 // type signatures for vfooq(), and here's why each one didn't 1895 // match your call". 1896 1897 OS << "static __inline__ __attribute__((" 1898 << (Polymorphic ? "__overloadable__, " : "") 1899 << "__clang_arm_builtin_alias(__builtin_arm_mve_" << Int.fullName() 1900 << ")))\n" 1901 << RetTypeName << FunctionName << "(" << ArgTypesString << ");\n"; 1902 } 1903 } 1904 } 1905 for (auto &part : parts) 1906 part << "\n"; 1907 1908 // Now we've finished accumulating bits and pieces into the parts[] array. 1909 // Put it all together to write the final output file. 1910 1911 OS << "/*===---- arm_mve.h - ARM MVE intrinsics " 1912 "-----------------------------------===\n" 1913 << LLVMLicenseHeader 1914 << "#ifndef __ARM_MVE_H\n" 1915 "#define __ARM_MVE_H\n" 1916 "\n" 1917 "#if !__ARM_FEATURE_MVE\n" 1918 "#error \"MVE support not enabled\"\n" 1919 "#endif\n" 1920 "\n" 1921 "#include <stdint.h>\n" 1922 "\n" 1923 "#ifdef __cplusplus\n" 1924 "extern \"C\" {\n" 1925 "#endif\n" 1926 "\n"; 1927 1928 for (size_t i = 0; i < NumParts; ++i) { 1929 std::vector<std::string> conditions; 1930 if (i & Float) 1931 conditions.push_back("(__ARM_FEATURE_MVE & 2)"); 1932 if (i & UseUserNamespace) 1933 conditions.push_back("(!defined __ARM_MVE_PRESERVE_USER_NAMESPACE)"); 1934 1935 std::string condition = 1936 join(std::begin(conditions), std::end(conditions), " && "); 1937 if (!condition.empty()) 1938 OS << "#if " << condition << "\n\n"; 1939 OS << parts[i].str(); 1940 if (!condition.empty()) 1941 OS << "#endif /* " << condition << " */\n\n"; 1942 } 1943 1944 OS << "#ifdef __cplusplus\n" 1945 "} /* extern \"C\" */\n" 1946 "#endif\n" 1947 "\n" 1948 "#endif /* __ARM_MVE_H */\n"; 1949 } 1950 1951 void MveEmitter::EmitBuiltinDef(raw_ostream &OS) { 1952 for (const auto &kv : ACLEIntrinsics) { 1953 const ACLEIntrinsic &Int = *kv.second; 1954 OS << "BUILTIN(__builtin_arm_mve_" << Int.fullName() 1955 << ", \"\", \"n\")\n"; 1956 } 1957 1958 DenseSet<StringRef> ShortNamesSeen; 1959 1960 for (const auto &kv : ACLEIntrinsics) { 1961 const ACLEIntrinsic &Int = *kv.second; 1962 if (Int.polymorphic()) { 1963 StringRef Name = Int.shortName(); 1964 if (ShortNamesSeen.insert(Name).second) { 1965 OS << "BUILTIN(__builtin_arm_mve_" << Name << ", \"vi.\", \"nt"; 1966 if (Int.nonEvaluating()) 1967 OS << "u"; // indicate that this builtin doesn't evaluate its args 1968 OS << "\")\n"; 1969 } 1970 } 1971 } 1972 } 1973 1974 void MveEmitter::EmitBuiltinSema(raw_ostream &OS) { 1975 std::map<std::string, std::set<std::string>> Checks; 1976 GroupSemaChecks(Checks); 1977 1978 for (const auto &kv : Checks) { 1979 for (StringRef Name : kv.second) 1980 OS << "case ARM::BI__builtin_arm_mve_" << Name << ":\n"; 1981 OS << " return " << kv.first; 1982 } 1983 } 1984 1985 // ----------------------------------------------------------------------------- 1986 // Class that describes an ACLE intrinsic implemented as a macro. 1987 // 1988 // This class is used when the intrinsic is polymorphic in 2 or 3 types, but we 1989 // want to avoid a combinatorial explosion by reinterpreting the arguments to 1990 // fixed types. 1991 1992 class FunctionMacro { 1993 std::vector<StringRef> Params; 1994 StringRef Definition; 1995 1996 public: 1997 FunctionMacro(const Record &R); 1998 1999 const std::vector<StringRef> &getParams() const { return Params; } 2000 StringRef getDefinition() const { return Definition; } 2001 }; 2002 2003 FunctionMacro::FunctionMacro(const Record &R) { 2004 Params = R.getValueAsListOfStrings("params"); 2005 Definition = R.getValueAsString("definition"); 2006 } 2007 2008 // ----------------------------------------------------------------------------- 2009 // The class used for generating arm_cde.h and related Clang bits 2010 // 2011 2012 class CdeEmitter : public EmitterBase { 2013 std::map<StringRef, FunctionMacro> FunctionMacros; 2014 2015 public: 2016 CdeEmitter(const RecordKeeper &Records); 2017 void EmitHeader(raw_ostream &OS) override; 2018 void EmitBuiltinDef(raw_ostream &OS) override; 2019 void EmitBuiltinSema(raw_ostream &OS) override; 2020 }; 2021 2022 CdeEmitter::CdeEmitter(const RecordKeeper &Records) : EmitterBase(Records) { 2023 for (const Record *R : Records.getAllDerivedDefinitions("FunctionMacro")) 2024 FunctionMacros.emplace(R->getName(), FunctionMacro(*R)); 2025 } 2026 2027 void CdeEmitter::EmitHeader(raw_ostream &OS) { 2028 // Accumulate pieces of the header file that will be enabled under various 2029 // different combinations of #ifdef. The index into parts[] is one of the 2030 // following: 2031 constexpr unsigned None = 0; 2032 constexpr unsigned MVE = 1; 2033 constexpr unsigned MVEFloat = 2; 2034 2035 constexpr unsigned NumParts = 3; 2036 raw_self_contained_string_ostream parts[NumParts]; 2037 2038 // Write typedefs for all the required vector types, and a few scalar 2039 // types that don't already have the name we want them to have. 2040 2041 parts[MVE] << "typedef uint16_t mve_pred16_t;\n"; 2042 parts[MVEFloat] << "typedef __fp16 float16_t;\n" 2043 "typedef float float32_t;\n"; 2044 for (const auto &kv : ScalarTypes) { 2045 const ScalarType *ST = kv.second.get(); 2046 if (ST->hasNonstandardName()) 2047 continue; 2048 // We don't have float64x2_t 2049 if (ST->kind() == ScalarTypeKind::Float && ST->sizeInBits() == 64) 2050 continue; 2051 raw_ostream &OS = parts[ST->requiresFloat() ? MVEFloat : MVE]; 2052 const VectorType *VT = getVectorType(ST); 2053 2054 OS << "typedef __attribute__((__neon_vector_type__(" << VT->lanes() 2055 << "), __clang_arm_mve_strict_polymorphism)) " << ST->cName() << " " 2056 << VT->cName() << ";\n"; 2057 } 2058 parts[MVE] << "\n"; 2059 parts[MVEFloat] << "\n"; 2060 2061 // Write declarations for all the intrinsics. 2062 2063 for (const auto &kv : ACLEIntrinsics) { 2064 const ACLEIntrinsic &Int = *kv.second; 2065 2066 // We generate each intrinsic twice, under its full unambiguous 2067 // name and its shorter polymorphic name (if the latter exists). 2068 for (bool Polymorphic : {false, true}) { 2069 if (Polymorphic && !Int.polymorphic()) 2070 continue; 2071 if (!Polymorphic && Int.polymorphicOnly()) 2072 continue; 2073 2074 raw_ostream &OS = 2075 parts[Int.requiresFloat() ? MVEFloat 2076 : Int.requiresMVE() ? MVE : None]; 2077 2078 // Make the name of the function in this declaration. 2079 std::string FunctionName = 2080 "__arm_" + (Polymorphic ? Int.shortName() : Int.fullName()); 2081 2082 // Make strings for the types involved in the function's 2083 // prototype. 2084 std::string RetTypeName = Int.returnType()->cName(); 2085 if (!StringRef(RetTypeName).ends_with("*")) 2086 RetTypeName += " "; 2087 2088 std::vector<std::string> ArgTypeNames; 2089 for (const Type *ArgTypePtr : Int.argTypes()) 2090 ArgTypeNames.push_back(ArgTypePtr->cName()); 2091 std::string ArgTypesString = 2092 join(std::begin(ArgTypeNames), std::end(ArgTypeNames), ", "); 2093 2094 // Emit the actual declaration. See MveEmitter::EmitHeader for detailed 2095 // comments 2096 OS << "static __inline__ __attribute__((" 2097 << (Polymorphic ? "__overloadable__, " : "") 2098 << "__clang_arm_builtin_alias(__builtin_arm_" << Int.builtinExtension() 2099 << "_" << Int.fullName() << ")))\n" 2100 << RetTypeName << FunctionName << "(" << ArgTypesString << ");\n"; 2101 } 2102 } 2103 2104 for (const auto &kv : FunctionMacros) { 2105 StringRef Name = kv.first; 2106 const FunctionMacro &FM = kv.second; 2107 2108 raw_ostream &OS = parts[MVE]; 2109 OS << "#define " 2110 << "__arm_" << Name << "(" << join(FM.getParams(), ", ") << ") " 2111 << FM.getDefinition() << "\n"; 2112 } 2113 2114 for (auto &part : parts) 2115 part << "\n"; 2116 2117 // Now we've finished accumulating bits and pieces into the parts[] array. 2118 // Put it all together to write the final output file. 2119 2120 OS << "/*===---- arm_cde.h - ARM CDE intrinsics " 2121 "-----------------------------------===\n" 2122 << LLVMLicenseHeader 2123 << "#ifndef __ARM_CDE_H\n" 2124 "#define __ARM_CDE_H\n" 2125 "\n" 2126 "#if !__ARM_FEATURE_CDE\n" 2127 "#error \"CDE support not enabled\"\n" 2128 "#endif\n" 2129 "\n" 2130 "#include <stdint.h>\n" 2131 "\n" 2132 "#ifdef __cplusplus\n" 2133 "extern \"C\" {\n" 2134 "#endif\n" 2135 "\n"; 2136 2137 for (size_t i = 0; i < NumParts; ++i) { 2138 std::string condition; 2139 if (i == MVEFloat) 2140 condition = "__ARM_FEATURE_MVE & 2"; 2141 else if (i == MVE) 2142 condition = "__ARM_FEATURE_MVE"; 2143 2144 if (!condition.empty()) 2145 OS << "#if " << condition << "\n\n"; 2146 OS << parts[i].str(); 2147 if (!condition.empty()) 2148 OS << "#endif /* " << condition << " */\n\n"; 2149 } 2150 2151 OS << "#ifdef __cplusplus\n" 2152 "} /* extern \"C\" */\n" 2153 "#endif\n" 2154 "\n" 2155 "#endif /* __ARM_CDE_H */\n"; 2156 } 2157 2158 void CdeEmitter::EmitBuiltinDef(raw_ostream &OS) { 2159 for (const auto &kv : ACLEIntrinsics) { 2160 if (kv.second->headerOnly()) 2161 continue; 2162 const ACLEIntrinsic &Int = *kv.second; 2163 OS << "BUILTIN(__builtin_arm_cde_" << Int.fullName() 2164 << ", \"\", \"ncU\")\n"; 2165 } 2166 } 2167 2168 void CdeEmitter::EmitBuiltinSema(raw_ostream &OS) { 2169 std::map<std::string, std::set<std::string>> Checks; 2170 GroupSemaChecks(Checks); 2171 2172 for (const auto &kv : Checks) { 2173 for (StringRef Name : kv.second) 2174 OS << "case ARM::BI__builtin_arm_cde_" << Name << ":\n"; 2175 OS << " Err = " << kv.first << " break;\n"; 2176 } 2177 } 2178 2179 } // namespace 2180 2181 namespace clang { 2182 2183 // MVE 2184 2185 void EmitMveHeader(const RecordKeeper &Records, raw_ostream &OS) { 2186 MveEmitter(Records).EmitHeader(OS); 2187 } 2188 2189 void EmitMveBuiltinDef(const RecordKeeper &Records, raw_ostream &OS) { 2190 MveEmitter(Records).EmitBuiltinDef(OS); 2191 } 2192 2193 void EmitMveBuiltinSema(const RecordKeeper &Records, raw_ostream &OS) { 2194 MveEmitter(Records).EmitBuiltinSema(OS); 2195 } 2196 2197 void EmitMveBuiltinCG(const RecordKeeper &Records, raw_ostream &OS) { 2198 MveEmitter(Records).EmitBuiltinCG(OS); 2199 } 2200 2201 void EmitMveBuiltinAliases(const RecordKeeper &Records, raw_ostream &OS) { 2202 MveEmitter(Records).EmitBuiltinAliases(OS); 2203 } 2204 2205 // CDE 2206 2207 void EmitCdeHeader(const RecordKeeper &Records, raw_ostream &OS) { 2208 CdeEmitter(Records).EmitHeader(OS); 2209 } 2210 2211 void EmitCdeBuiltinDef(const RecordKeeper &Records, raw_ostream &OS) { 2212 CdeEmitter(Records).EmitBuiltinDef(OS); 2213 } 2214 2215 void EmitCdeBuiltinSema(const RecordKeeper &Records, raw_ostream &OS) { 2216 CdeEmitter(Records).EmitBuiltinSema(OS); 2217 } 2218 2219 void EmitCdeBuiltinCG(const RecordKeeper &Records, raw_ostream &OS) { 2220 CdeEmitter(Records).EmitBuiltinCG(OS); 2221 } 2222 2223 void EmitCdeBuiltinAliases(const RecordKeeper &Records, raw_ostream &OS) { 2224 CdeEmitter(Records).EmitBuiltinAliases(OS); 2225 } 2226 2227 } // end namespace clang 2228