xref: /llvm-project/clang/test/Sema/generic-selection-type-extension.c (revision edd7c13dc3991c63e8b2347bcdc60014d366e16f)
1 // RUN: %clang_cc1 -std=c2x -fsyntax-only -verify -Wno-unused %s
2 // RUN: %clang_cc1 -fsyntax-only -verify -Wno-unused -x c++ -std=c++17 %s
3 
4 // Test that the semantic behavior of the extension allowing the user to pass a
5 // type as the first argument to _Generic.
6 
7 // Test that we match on basic types.
8 static_assert(_Generic(int, int : 1, default : 0) == 1);
9 static_assert(_Generic(_BitInt(12), int : 1, _BitInt(10) : 2, _BitInt(12) : 3) == 3);
10 
11 // Test that we correctly fall back to the default association appropriately.
12 static_assert(_Generic(int, long : 1, default : 0) == 0);
13 
14 // Ensure we correctly match constant arrays by their extent.
15 static_assert(_Generic(int[12], int[0] : 0, int * : 0, int[12] : 1, default : 0) == 1);
16 
17 // Ensure we correctly match function types by their signature.
18 static_assert(_Generic(int(int), void(void) : 0, int(void) : 0, void(int) : 0, int(int) : 1, default : 0) == 1);
19 
20 // Test that we still diagnose when no associations match and that the
21 // diagnostic includes qualifiers.
22 static_assert(_Generic(const int, long : 1)); // expected-error {{controlling expression type 'const int' not compatible with any generic association type}}
23 
24 // Test that qualifiers work as expected and do not issue a diagnostic when
25 // using the type form.
26 static_assert(_Generic(const int, int : 0, const int : 1) == 1);
27 static_assert(_Generic(int volatile _Atomic const, int : 0, const int : 0, volatile int : 0, _Atomic int : 0, _Atomic const volatile int : 1) == 1);
28 
29 // Test that inferred qualifiers also work as expected.
30 const int ci = 0;
31 static_assert(_Generic(__typeof__(ci), int : 0, const int : 1) == 1);
32 // And that the expression form still complains about qualified associations
33 // and matches the correct association.
34 static_assert(_Generic(ci, int : 1, const int : 0) == 1); // expected-warning {{due to lvalue conversion of the controlling expression, association of type 'const int' will never be selected because it is qualified}}
35 
36 // The type operand form of _Generic allows incomplete and non-object types,
37 // but the expression operand form still rejects them.
38 static_assert(_Generic(struct incomplete, struct incomplete : 1, default : 0) == 1);
39 static_assert(_Generic(struct another_incomplete, struct incomplete : 1, default : 0) == 0);
40 static_assert(_Generic(1, struct also_incomplete : 1, default : 0) == 0); // expected-error {{type 'struct also_incomplete' in generic association incomplete}}
41 
42 void foo(int);
43 static_assert(_Generic(__typeof__(foo), void(int) : 1, default : 0) == 1);
44 static_assert(_Generic(foo, void(int) : 1, default : 0) == 0); // expected-error {{type 'void (int)' in generic association not an object type}}
45 
46 // Ensure we still get a diagnostic for duplicated associations for the type
47 // form, even when using qualified type, and that the diagnostic includes
48 // qualifiers.
49 static_assert(_Generic(const int,
50                          const int : 1, // expected-note {{compatible type 'const int' specified here}}
51                          int : 2,
52                          const int : 3  // expected-error {{type 'const int' in generic association compatible with previously specified type 'const int'}}
53                       ) == 1);
54 
55 // Verify that we are matching using the canonical type of the type operand...
56 typedef int Int;
57 typedef const Int CInt;
58 typedef CInt OtherCInt;
59 static_assert(_Generic(volatile CInt, const volatile int : 1, default : 0) == 1);
60 static_assert(_Generic(const int, CInt : 1, default : 0) == 1);
61 
62 // ...and that duplicate associations are doing so as well.
63 static_assert(_Generic(const int,
64                          CInt : 1,     // expected-note {{compatible type 'CInt' (aka 'const int') specified here}}
65                          const volatile int : 2,
66                          OtherCInt : 3 // expected-error {{type 'OtherCInt' (aka 'const int') in generic association compatible with previously specified type 'CInt' (aka 'const int')}}
67                       ) == 1);
68 
69 // Also test that duplicate array or function types are caught.
70 static_assert(_Generic(const int,
71                          int[12] : 0,  // expected-note {{compatible type 'int[12]' specified here}}
72                          int[12] : 0,  // expected-error {{type 'int[12]' in generic association compatible with previously specified type 'int[12]'}}
73                          int(int) : 0, // expected-note {{compatible type 'int (int)' specified here}}
74                          int(int) : 0, // expected-error {{type 'int (int)' in generic association compatible with previously specified type 'int (int)'}}
75                          default : 1
76                       ) == 1);
77 
78 
79 // Tests that only make sense for C++:
80 #ifdef __cplusplus
81 // Ensure that _Generic works within a template argument list.
82 template <typename Ty, int N = _Generic(Ty, int : 0, default : 1)>
bar()83 constexpr Ty bar() { return N; }
84 
85 static_assert(bar<int>() == 0);
86 static_assert(bar<float>() == 1);
87 
88 // Or that it can be used as a non-type template argument.
89 static_assert(bar<int, _Generic(int, int : 1, default : 0)>() == 1);
90 
91 // Ensure that a dependent type works as expected.
92 template <typename Ty>
93 struct Dependent {
94   // If we checked the type early, this would fail to compile without any
95   // instantiation. Instead, it only fails with the bad instantiation.
96   static_assert(_Generic(Ty, int : 1)); // expected-error {{controlling expression type 'double' not compatible with any generic association type}} \
97                                            expected-note@#BadInstantiation {{in instantiation of template class 'Dependent<double>' requested here}}
98 };
99 
100 template struct Dependent<int>; // Good instantiation
101 template struct Dependent<double>; // #BadInstantiation
102 
103 // Another template instantiation test, this time for a variable template with
104 // a type-dependent initializer.
105 template <typename Ty>
106 constexpr auto Val = _Generic(Ty, Ty : Ty{});
107 
108 static_assert(Val<int> == 0);
109 static_assert(__is_same(decltype(Val<Dependent<int>>), const Dependent<int>));
110 
111 // Ensure that pack types also work as expected.
112 template <unsigned Arg, unsigned... Args> struct Or {
113   enum { result = Arg | Or<Args...>::result };
114 };
115 
116 template <unsigned Arg> struct Or<Arg> {
117   enum { result = Arg };
118 };
119 
120 template <class... Args> struct TypeMask {
121   enum {
122    result = Or<_Generic(Args, int: 1, long: 2, short: 4, float: 8)...>::result
123   };
124 };
125 
126 static_assert(TypeMask<int, long, short>::result == 7, "fail");
127 static_assert(TypeMask<float, short>::result == 12, "fail");
128 static_assert(TypeMask<int, float, float>::result == 9, "fail");
129 
130 template <typename... T>
131 void f() {
132   // Because _Generic only accepts a single type argument, it does not make
133   // sense for it to accept a pack, so a pack is rejected while parsing.
134   _Generic(T..., int : 1); // expected-error {{expected ','}}
135 }
136 #endif // __cplusplus
137