1 // SimpleSValBuilder.cpp - A basic SValBuilder -----------------------*- C++ -*- 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines SimpleSValBuilder, a basic implementation of SValBuilder. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h" 14 #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h" 15 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" 16 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 17 #include "clang/StaticAnalyzer/Core/PathSensitive/SValVisitor.h" 18 19 using namespace clang; 20 using namespace ento; 21 22 namespace { 23 class SimpleSValBuilder : public SValBuilder { 24 25 // With one `simplifySValOnce` call, a compound symbols might collapse to 26 // simpler symbol tree that is still possible to further simplify. Thus, we 27 // do the simplification on a new symbol tree until we reach the simplest 28 // form, i.e. the fixpoint. 29 // Consider the following symbol `(b * b) * b * b` which has this tree: 30 // * 31 // / \ 32 // * b 33 // / \ 34 // / b 35 // (b * b) 36 // Now, if the `b * b == 1` new constraint is added then during the first 37 // iteration we have the following transformations: 38 // * * 39 // / \ / \ 40 // * b --> b b 41 // / \ 42 // / b 43 // 1 44 // We need another iteration to reach the final result `1`. 45 SVal simplifyUntilFixpoint(ProgramStateRef State, SVal Val); 46 47 // Recursively descends into symbolic expressions and replaces symbols 48 // with their known values (in the sense of the getKnownValue() method). 49 // We traverse the symbol tree and query the constraint values for the 50 // sub-trees and if a value is a constant we do the constant folding. 51 SVal simplifySValOnce(ProgramStateRef State, SVal V); 52 53 public: 54 SimpleSValBuilder(llvm::BumpPtrAllocator &alloc, ASTContext &context, 55 ProgramStateManager &stateMgr) 56 : SValBuilder(alloc, context, stateMgr) {} 57 ~SimpleSValBuilder() override {} 58 59 SVal evalMinus(NonLoc val) override; 60 SVal evalComplement(NonLoc val) override; 61 SVal evalBinOpNN(ProgramStateRef state, BinaryOperator::Opcode op, 62 NonLoc lhs, NonLoc rhs, QualType resultTy) override; 63 SVal evalBinOpLL(ProgramStateRef state, BinaryOperator::Opcode op, 64 Loc lhs, Loc rhs, QualType resultTy) override; 65 SVal evalBinOpLN(ProgramStateRef state, BinaryOperator::Opcode op, 66 Loc lhs, NonLoc rhs, QualType resultTy) override; 67 68 /// getKnownValue - evaluates a given SVal. If the SVal has only one possible 69 /// (integer) value, that value is returned. Otherwise, returns NULL. 70 const llvm::APSInt *getKnownValue(ProgramStateRef state, SVal V) override; 71 72 SVal simplifySVal(ProgramStateRef State, SVal V) override; 73 74 SVal MakeSymIntVal(const SymExpr *LHS, BinaryOperator::Opcode op, 75 const llvm::APSInt &RHS, QualType resultTy); 76 }; 77 } // end anonymous namespace 78 79 SValBuilder *ento::createSimpleSValBuilder(llvm::BumpPtrAllocator &alloc, 80 ASTContext &context, 81 ProgramStateManager &stateMgr) { 82 return new SimpleSValBuilder(alloc, context, stateMgr); 83 } 84 85 //===----------------------------------------------------------------------===// 86 // Transfer function for unary operators. 87 //===----------------------------------------------------------------------===// 88 89 SVal SimpleSValBuilder::evalMinus(NonLoc val) { 90 switch (val.getSubKind()) { 91 case nonloc::ConcreteIntKind: 92 return val.castAs<nonloc::ConcreteInt>().evalMinus(*this); 93 case nonloc::SymbolValKind: 94 return makeNonLoc(val.castAs<nonloc::SymbolVal>().getSymbol(), UO_Minus, 95 val.getType(Context)); 96 default: 97 return UnknownVal(); 98 } 99 } 100 101 SVal SimpleSValBuilder::evalComplement(NonLoc X) { 102 switch (X.getSubKind()) { 103 case nonloc::ConcreteIntKind: 104 return X.castAs<nonloc::ConcreteInt>().evalComplement(*this); 105 case nonloc::SymbolValKind: 106 return makeNonLoc(X.castAs<nonloc::SymbolVal>().getSymbol(), UO_Not, 107 X.getType(Context)); 108 default: 109 return UnknownVal(); 110 } 111 } 112 113 // Checks if the negation the value and flipping sign preserve 114 // the semantics on the operation in the resultType 115 static bool isNegationValuePreserving(const llvm::APSInt &Value, 116 APSIntType ResultType) { 117 const unsigned ValueBits = Value.getSignificantBits(); 118 if (ValueBits == ResultType.getBitWidth()) { 119 // The value is the lowest negative value that is representable 120 // in signed integer with bitWith of result type. The 121 // negation is representable if resultType is unsigned. 122 return ResultType.isUnsigned(); 123 } 124 125 // If resultType bitWith is higher that number of bits required 126 // to represent RHS, the sign flip produce same value. 127 return ValueBits < ResultType.getBitWidth(); 128 } 129 130 //===----------------------------------------------------------------------===// 131 // Transfer function for binary operators. 132 //===----------------------------------------------------------------------===// 133 134 SVal SimpleSValBuilder::MakeSymIntVal(const SymExpr *LHS, 135 BinaryOperator::Opcode op, 136 const llvm::APSInt &RHS, 137 QualType resultTy) { 138 bool isIdempotent = false; 139 140 // Check for a few special cases with known reductions first. 141 switch (op) { 142 default: 143 // We can't reduce this case; just treat it normally. 144 break; 145 case BO_Mul: 146 // a*0 and a*1 147 if (RHS == 0) 148 return makeIntVal(0, resultTy); 149 else if (RHS == 1) 150 isIdempotent = true; 151 break; 152 case BO_Div: 153 // a/0 and a/1 154 if (RHS == 0) 155 // This is also handled elsewhere. 156 return UndefinedVal(); 157 else if (RHS == 1) 158 isIdempotent = true; 159 break; 160 case BO_Rem: 161 // a%0 and a%1 162 if (RHS == 0) 163 // This is also handled elsewhere. 164 return UndefinedVal(); 165 else if (RHS == 1) 166 return makeIntVal(0, resultTy); 167 break; 168 case BO_Add: 169 case BO_Sub: 170 case BO_Shl: 171 case BO_Shr: 172 case BO_Xor: 173 // a+0, a-0, a<<0, a>>0, a^0 174 if (RHS == 0) 175 isIdempotent = true; 176 break; 177 case BO_And: 178 // a&0 and a&(~0) 179 if (RHS == 0) 180 return makeIntVal(0, resultTy); 181 else if (RHS.isAllOnes()) 182 isIdempotent = true; 183 break; 184 case BO_Or: 185 // a|0 and a|(~0) 186 if (RHS == 0) 187 isIdempotent = true; 188 else if (RHS.isAllOnes()) { 189 const llvm::APSInt &Result = BasicVals.Convert(resultTy, RHS); 190 return nonloc::ConcreteInt(Result); 191 } 192 break; 193 } 194 195 // Idempotent ops (like a*1) can still change the type of an expression. 196 // Wrap the LHS up in a NonLoc again and let evalCast do the 197 // dirty work. 198 if (isIdempotent) 199 return evalCast(nonloc::SymbolVal(LHS), resultTy, QualType{}); 200 201 // If we reach this point, the expression cannot be simplified. 202 // Make a SymbolVal for the entire expression, after converting the RHS. 203 const llvm::APSInt *ConvertedRHS = &RHS; 204 if (BinaryOperator::isComparisonOp(op)) { 205 // We're looking for a type big enough to compare the symbolic value 206 // with the given constant. 207 // FIXME: This is an approximation of Sema::UsualArithmeticConversions. 208 ASTContext &Ctx = getContext(); 209 QualType SymbolType = LHS->getType(); 210 uint64_t ValWidth = RHS.getBitWidth(); 211 uint64_t TypeWidth = Ctx.getTypeSize(SymbolType); 212 213 if (ValWidth < TypeWidth) { 214 // If the value is too small, extend it. 215 ConvertedRHS = &BasicVals.Convert(SymbolType, RHS); 216 } else if (ValWidth == TypeWidth) { 217 // If the value is signed but the symbol is unsigned, do the comparison 218 // in unsigned space. [C99 6.3.1.8] 219 // (For the opposite case, the value is already unsigned.) 220 if (RHS.isSigned() && !SymbolType->isSignedIntegerOrEnumerationType()) 221 ConvertedRHS = &BasicVals.Convert(SymbolType, RHS); 222 } 223 } else if (BinaryOperator::isAdditiveOp(op) && RHS.isNegative()) { 224 // Change a+(-N) into a-N, and a-(-N) into a+N 225 // Adjust addition/subtraction of negative value, to 226 // subtraction/addition of the negated value. 227 APSIntType resultIntTy = BasicVals.getAPSIntType(resultTy); 228 if (isNegationValuePreserving(RHS, resultIntTy)) { 229 ConvertedRHS = &BasicVals.getValue(-resultIntTy.convert(RHS)); 230 op = (op == BO_Add) ? BO_Sub : BO_Add; 231 } else { 232 ConvertedRHS = &BasicVals.Convert(resultTy, RHS); 233 } 234 } else 235 ConvertedRHS = &BasicVals.Convert(resultTy, RHS); 236 237 return makeNonLoc(LHS, op, *ConvertedRHS, resultTy); 238 } 239 240 // See if Sym is known to be a relation Rel with Bound. 241 static bool isInRelation(BinaryOperator::Opcode Rel, SymbolRef Sym, 242 llvm::APSInt Bound, ProgramStateRef State) { 243 SValBuilder &SVB = State->getStateManager().getSValBuilder(); 244 SVal Result = 245 SVB.evalBinOpNN(State, Rel, nonloc::SymbolVal(Sym), 246 nonloc::ConcreteInt(Bound), SVB.getConditionType()); 247 if (auto DV = Result.getAs<DefinedSVal>()) { 248 return !State->assume(*DV, false); 249 } 250 return false; 251 } 252 253 // See if Sym is known to be within [min/4, max/4], where min and max 254 // are the bounds of the symbol's integral type. With such symbols, 255 // some manipulations can be performed without the risk of overflow. 256 // assume() doesn't cause infinite recursion because we should be dealing 257 // with simpler symbols on every recursive call. 258 static bool isWithinConstantOverflowBounds(SymbolRef Sym, 259 ProgramStateRef State) { 260 SValBuilder &SVB = State->getStateManager().getSValBuilder(); 261 BasicValueFactory &BV = SVB.getBasicValueFactory(); 262 263 QualType T = Sym->getType(); 264 assert(T->isSignedIntegerOrEnumerationType() && 265 "This only works with signed integers!"); 266 APSIntType AT = BV.getAPSIntType(T); 267 268 llvm::APSInt Max = AT.getMaxValue() / AT.getValue(4), Min = -Max; 269 return isInRelation(BO_LE, Sym, Max, State) && 270 isInRelation(BO_GE, Sym, Min, State); 271 } 272 273 // Same for the concrete integers: see if I is within [min/4, max/4]. 274 static bool isWithinConstantOverflowBounds(llvm::APSInt I) { 275 APSIntType AT(I); 276 assert(!AT.isUnsigned() && 277 "This only works with signed integers!"); 278 279 llvm::APSInt Max = AT.getMaxValue() / AT.getValue(4), Min = -Max; 280 return (I <= Max) && (I >= -Max); 281 } 282 283 static std::pair<SymbolRef, llvm::APSInt> 284 decomposeSymbol(SymbolRef Sym, BasicValueFactory &BV) { 285 if (const auto *SymInt = dyn_cast<SymIntExpr>(Sym)) 286 if (BinaryOperator::isAdditiveOp(SymInt->getOpcode())) 287 return std::make_pair(SymInt->getLHS(), 288 (SymInt->getOpcode() == BO_Add) ? 289 (SymInt->getRHS()) : 290 (-SymInt->getRHS())); 291 292 // Fail to decompose: "reduce" the problem to the "$x + 0" case. 293 return std::make_pair(Sym, BV.getValue(0, Sym->getType())); 294 } 295 296 // Simplify "(LSym + LInt) Op (RSym + RInt)" assuming all values are of the 297 // same signed integral type and no overflows occur (which should be checked 298 // by the caller). 299 static NonLoc doRearrangeUnchecked(ProgramStateRef State, 300 BinaryOperator::Opcode Op, 301 SymbolRef LSym, llvm::APSInt LInt, 302 SymbolRef RSym, llvm::APSInt RInt) { 303 SValBuilder &SVB = State->getStateManager().getSValBuilder(); 304 BasicValueFactory &BV = SVB.getBasicValueFactory(); 305 SymbolManager &SymMgr = SVB.getSymbolManager(); 306 307 QualType SymTy = LSym->getType(); 308 assert(SymTy == RSym->getType() && 309 "Symbols are not of the same type!"); 310 assert(APSIntType(LInt) == BV.getAPSIntType(SymTy) && 311 "Integers are not of the same type as symbols!"); 312 assert(APSIntType(RInt) == BV.getAPSIntType(SymTy) && 313 "Integers are not of the same type as symbols!"); 314 315 QualType ResultTy; 316 if (BinaryOperator::isComparisonOp(Op)) 317 ResultTy = SVB.getConditionType(); 318 else if (BinaryOperator::isAdditiveOp(Op)) 319 ResultTy = SymTy; 320 else 321 llvm_unreachable("Operation not suitable for unchecked rearrangement!"); 322 323 // FIXME: Can we use assume() without getting into an infinite recursion? 324 if (LSym == RSym) 325 return SVB.evalBinOpNN(State, Op, nonloc::ConcreteInt(LInt), 326 nonloc::ConcreteInt(RInt), ResultTy) 327 .castAs<NonLoc>(); 328 329 SymbolRef ResultSym = nullptr; 330 BinaryOperator::Opcode ResultOp; 331 llvm::APSInt ResultInt; 332 if (BinaryOperator::isComparisonOp(Op)) { 333 // Prefer comparing to a non-negative number. 334 // FIXME: Maybe it'd be better to have consistency in 335 // "$x - $y" vs. "$y - $x" because those are solver's keys. 336 if (LInt > RInt) { 337 ResultSym = SymMgr.getSymSymExpr(RSym, BO_Sub, LSym, SymTy); 338 ResultOp = BinaryOperator::reverseComparisonOp(Op); 339 ResultInt = LInt - RInt; // Opposite order! 340 } else { 341 ResultSym = SymMgr.getSymSymExpr(LSym, BO_Sub, RSym, SymTy); 342 ResultOp = Op; 343 ResultInt = RInt - LInt; // Opposite order! 344 } 345 } else { 346 ResultSym = SymMgr.getSymSymExpr(LSym, Op, RSym, SymTy); 347 ResultInt = (Op == BO_Add) ? (LInt + RInt) : (LInt - RInt); 348 ResultOp = BO_Add; 349 // Bring back the cosmetic difference. 350 if (ResultInt < 0) { 351 ResultInt = -ResultInt; 352 ResultOp = BO_Sub; 353 } else if (ResultInt == 0) { 354 // Shortcut: Simplify "$x + 0" to "$x". 355 return nonloc::SymbolVal(ResultSym); 356 } 357 } 358 const llvm::APSInt &PersistentResultInt = BV.getValue(ResultInt); 359 return nonloc::SymbolVal( 360 SymMgr.getSymIntExpr(ResultSym, ResultOp, PersistentResultInt, ResultTy)); 361 } 362 363 // Rearrange if symbol type matches the result type and if the operator is a 364 // comparison operator, both symbol and constant must be within constant 365 // overflow bounds. 366 static bool shouldRearrange(ProgramStateRef State, BinaryOperator::Opcode Op, 367 SymbolRef Sym, llvm::APSInt Int, QualType Ty) { 368 return Sym->getType() == Ty && 369 (!BinaryOperator::isComparisonOp(Op) || 370 (isWithinConstantOverflowBounds(Sym, State) && 371 isWithinConstantOverflowBounds(Int))); 372 } 373 374 static Optional<NonLoc> tryRearrange(ProgramStateRef State, 375 BinaryOperator::Opcode Op, NonLoc Lhs, 376 NonLoc Rhs, QualType ResultTy) { 377 ProgramStateManager &StateMgr = State->getStateManager(); 378 SValBuilder &SVB = StateMgr.getSValBuilder(); 379 380 // We expect everything to be of the same type - this type. 381 QualType SingleTy; 382 383 // FIXME: After putting complexity threshold to the symbols we can always 384 // rearrange additive operations but rearrange comparisons only if 385 // option is set. 386 if (!SVB.getAnalyzerOptions().ShouldAggressivelySimplifyBinaryOperation) 387 return None; 388 389 SymbolRef LSym = Lhs.getAsSymbol(); 390 if (!LSym) 391 return None; 392 393 if (BinaryOperator::isComparisonOp(Op)) { 394 SingleTy = LSym->getType(); 395 if (ResultTy != SVB.getConditionType()) 396 return None; 397 // Initialize SingleTy later with a symbol's type. 398 } else if (BinaryOperator::isAdditiveOp(Op)) { 399 SingleTy = ResultTy; 400 if (LSym->getType() != SingleTy) 401 return None; 402 } else { 403 // Don't rearrange other operations. 404 return None; 405 } 406 407 assert(!SingleTy.isNull() && "We should have figured out the type by now!"); 408 409 // Rearrange signed symbolic expressions only 410 if (!SingleTy->isSignedIntegerOrEnumerationType()) 411 return None; 412 413 SymbolRef RSym = Rhs.getAsSymbol(); 414 if (!RSym || RSym->getType() != SingleTy) 415 return None; 416 417 BasicValueFactory &BV = State->getBasicVals(); 418 llvm::APSInt LInt, RInt; 419 std::tie(LSym, LInt) = decomposeSymbol(LSym, BV); 420 std::tie(RSym, RInt) = decomposeSymbol(RSym, BV); 421 if (!shouldRearrange(State, Op, LSym, LInt, SingleTy) || 422 !shouldRearrange(State, Op, RSym, RInt, SingleTy)) 423 return None; 424 425 // We know that no overflows can occur anymore. 426 return doRearrangeUnchecked(State, Op, LSym, LInt, RSym, RInt); 427 } 428 429 SVal SimpleSValBuilder::evalBinOpNN(ProgramStateRef state, 430 BinaryOperator::Opcode op, 431 NonLoc lhs, NonLoc rhs, 432 QualType resultTy) { 433 NonLoc InputLHS = lhs; 434 NonLoc InputRHS = rhs; 435 436 // Constraints may have changed since the creation of a bound SVal. Check if 437 // the values can be simplified based on those new constraints. 438 SVal simplifiedLhs = simplifySVal(state, lhs); 439 SVal simplifiedRhs = simplifySVal(state, rhs); 440 if (auto simplifiedLhsAsNonLoc = simplifiedLhs.getAs<NonLoc>()) 441 lhs = *simplifiedLhsAsNonLoc; 442 if (auto simplifiedRhsAsNonLoc = simplifiedRhs.getAs<NonLoc>()) 443 rhs = *simplifiedRhsAsNonLoc; 444 445 // Handle trivial case where left-side and right-side are the same. 446 if (lhs == rhs) 447 switch (op) { 448 default: 449 break; 450 case BO_EQ: 451 case BO_LE: 452 case BO_GE: 453 return makeTruthVal(true, resultTy); 454 case BO_LT: 455 case BO_GT: 456 case BO_NE: 457 return makeTruthVal(false, resultTy); 458 case BO_Xor: 459 case BO_Sub: 460 if (resultTy->isIntegralOrEnumerationType()) 461 return makeIntVal(0, resultTy); 462 return evalCast(makeIntVal(0, /*isUnsigned=*/false), resultTy, 463 QualType{}); 464 case BO_Or: 465 case BO_And: 466 return evalCast(lhs, resultTy, QualType{}); 467 } 468 469 while (true) { 470 switch (lhs.getSubKind()) { 471 default: 472 return makeSymExprValNN(op, lhs, rhs, resultTy); 473 case nonloc::PointerToMemberKind: { 474 assert(rhs.getSubKind() == nonloc::PointerToMemberKind && 475 "Both SVals should have pointer-to-member-type"); 476 auto LPTM = lhs.castAs<nonloc::PointerToMember>(), 477 RPTM = rhs.castAs<nonloc::PointerToMember>(); 478 auto LPTMD = LPTM.getPTMData(), RPTMD = RPTM.getPTMData(); 479 switch (op) { 480 case BO_EQ: 481 return makeTruthVal(LPTMD == RPTMD, resultTy); 482 case BO_NE: 483 return makeTruthVal(LPTMD != RPTMD, resultTy); 484 default: 485 return UnknownVal(); 486 } 487 } 488 case nonloc::LocAsIntegerKind: { 489 Loc lhsL = lhs.castAs<nonloc::LocAsInteger>().getLoc(); 490 switch (rhs.getSubKind()) { 491 case nonloc::LocAsIntegerKind: 492 // FIXME: at the moment the implementation 493 // of modeling "pointers as integers" is not complete. 494 if (!BinaryOperator::isComparisonOp(op)) 495 return UnknownVal(); 496 return evalBinOpLL(state, op, lhsL, 497 rhs.castAs<nonloc::LocAsInteger>().getLoc(), 498 resultTy); 499 case nonloc::ConcreteIntKind: { 500 // FIXME: at the moment the implementation 501 // of modeling "pointers as integers" is not complete. 502 if (!BinaryOperator::isComparisonOp(op)) 503 return UnknownVal(); 504 // Transform the integer into a location and compare. 505 // FIXME: This only makes sense for comparisons. If we want to, say, 506 // add 1 to a LocAsInteger, we'd better unpack the Loc and add to it, 507 // then pack it back into a LocAsInteger. 508 llvm::APSInt i = rhs.castAs<nonloc::ConcreteInt>().getValue(); 509 // If the region has a symbolic base, pay attention to the type; it 510 // might be coming from a non-default address space. For non-symbolic 511 // regions it doesn't matter that much because such comparisons would 512 // most likely evaluate to concrete false anyway. FIXME: We might 513 // still need to handle the non-comparison case. 514 if (SymbolRef lSym = lhs.getAsLocSymbol(true)) 515 BasicVals.getAPSIntType(lSym->getType()).apply(i); 516 else 517 BasicVals.getAPSIntType(Context.VoidPtrTy).apply(i); 518 return evalBinOpLL(state, op, lhsL, makeLoc(i), resultTy); 519 } 520 default: 521 switch (op) { 522 case BO_EQ: 523 return makeTruthVal(false, resultTy); 524 case BO_NE: 525 return makeTruthVal(true, resultTy); 526 default: 527 // This case also handles pointer arithmetic. 528 return makeSymExprValNN(op, InputLHS, InputRHS, resultTy); 529 } 530 } 531 } 532 case nonloc::ConcreteIntKind: { 533 llvm::APSInt LHSValue = lhs.castAs<nonloc::ConcreteInt>().getValue(); 534 535 // If we're dealing with two known constants, just perform the operation. 536 if (const llvm::APSInt *KnownRHSValue = getKnownValue(state, rhs)) { 537 llvm::APSInt RHSValue = *KnownRHSValue; 538 if (BinaryOperator::isComparisonOp(op)) { 539 // We're looking for a type big enough to compare the two values. 540 // FIXME: This is not correct. char + short will result in a promotion 541 // to int. Unfortunately we have lost types by this point. 542 APSIntType CompareType = std::max(APSIntType(LHSValue), 543 APSIntType(RHSValue)); 544 CompareType.apply(LHSValue); 545 CompareType.apply(RHSValue); 546 } else if (!BinaryOperator::isShiftOp(op)) { 547 APSIntType IntType = BasicVals.getAPSIntType(resultTy); 548 IntType.apply(LHSValue); 549 IntType.apply(RHSValue); 550 } 551 552 const llvm::APSInt *Result = 553 BasicVals.evalAPSInt(op, LHSValue, RHSValue); 554 if (!Result) 555 return UndefinedVal(); 556 557 return nonloc::ConcreteInt(*Result); 558 } 559 560 // Swap the left and right sides and flip the operator if doing so 561 // allows us to better reason about the expression (this is a form 562 // of expression canonicalization). 563 // While we're at it, catch some special cases for non-commutative ops. 564 switch (op) { 565 case BO_LT: 566 case BO_GT: 567 case BO_LE: 568 case BO_GE: 569 op = BinaryOperator::reverseComparisonOp(op); 570 LLVM_FALLTHROUGH; 571 case BO_EQ: 572 case BO_NE: 573 case BO_Add: 574 case BO_Mul: 575 case BO_And: 576 case BO_Xor: 577 case BO_Or: 578 std::swap(lhs, rhs); 579 continue; 580 case BO_Shr: 581 // (~0)>>a 582 if (LHSValue.isAllOnes() && LHSValue.isSigned()) 583 return evalCast(lhs, resultTy, QualType{}); 584 LLVM_FALLTHROUGH; 585 case BO_Shl: 586 // 0<<a and 0>>a 587 if (LHSValue == 0) 588 return evalCast(lhs, resultTy, QualType{}); 589 return makeSymExprValNN(op, InputLHS, InputRHS, resultTy); 590 case BO_Div: 591 // 0 / x == 0 592 case BO_Rem: 593 // 0 % x == 0 594 if (LHSValue == 0) 595 return makeZeroVal(resultTy); 596 LLVM_FALLTHROUGH; 597 default: 598 return makeSymExprValNN(op, InputLHS, InputRHS, resultTy); 599 } 600 } 601 case nonloc::SymbolValKind: { 602 // We only handle LHS as simple symbols or SymIntExprs. 603 SymbolRef Sym = lhs.castAs<nonloc::SymbolVal>().getSymbol(); 604 605 // LHS is a symbolic expression. 606 if (const SymIntExpr *symIntExpr = dyn_cast<SymIntExpr>(Sym)) { 607 608 // Is this a logical not? (!x is represented as x == 0.) 609 if (op == BO_EQ && rhs.isZeroConstant()) { 610 // We know how to negate certain expressions. Simplify them here. 611 612 BinaryOperator::Opcode opc = symIntExpr->getOpcode(); 613 switch (opc) { 614 default: 615 // We don't know how to negate this operation. 616 // Just handle it as if it were a normal comparison to 0. 617 break; 618 case BO_LAnd: 619 case BO_LOr: 620 llvm_unreachable("Logical operators handled by branching logic."); 621 case BO_Assign: 622 case BO_MulAssign: 623 case BO_DivAssign: 624 case BO_RemAssign: 625 case BO_AddAssign: 626 case BO_SubAssign: 627 case BO_ShlAssign: 628 case BO_ShrAssign: 629 case BO_AndAssign: 630 case BO_XorAssign: 631 case BO_OrAssign: 632 case BO_Comma: 633 llvm_unreachable("'=' and ',' operators handled by ExprEngine."); 634 case BO_PtrMemD: 635 case BO_PtrMemI: 636 llvm_unreachable("Pointer arithmetic not handled here."); 637 case BO_LT: 638 case BO_GT: 639 case BO_LE: 640 case BO_GE: 641 case BO_EQ: 642 case BO_NE: 643 assert(resultTy->isBooleanType() || 644 resultTy == getConditionType()); 645 assert(symIntExpr->getType()->isBooleanType() || 646 getContext().hasSameUnqualifiedType(symIntExpr->getType(), 647 getConditionType())); 648 // Negate the comparison and make a value. 649 opc = BinaryOperator::negateComparisonOp(opc); 650 return makeNonLoc(symIntExpr->getLHS(), opc, 651 symIntExpr->getRHS(), resultTy); 652 } 653 } 654 655 // For now, only handle expressions whose RHS is a constant. 656 if (const llvm::APSInt *RHSValue = getKnownValue(state, rhs)) { 657 // If both the LHS and the current expression are additive, 658 // fold their constants and try again. 659 if (BinaryOperator::isAdditiveOp(op)) { 660 BinaryOperator::Opcode lop = symIntExpr->getOpcode(); 661 if (BinaryOperator::isAdditiveOp(lop)) { 662 // Convert the two constants to a common type, then combine them. 663 664 // resultTy may not be the best type to convert to, but it's 665 // probably the best choice in expressions with mixed type 666 // (such as x+1U+2LL). The rules for implicit conversions should 667 // choose a reasonable type to preserve the expression, and will 668 // at least match how the value is going to be used. 669 APSIntType IntType = BasicVals.getAPSIntType(resultTy); 670 const llvm::APSInt &first = IntType.convert(symIntExpr->getRHS()); 671 const llvm::APSInt &second = IntType.convert(*RHSValue); 672 673 // If the op and lop agrees, then we just need to 674 // sum the constants. Otherwise, we change to operation 675 // type if substraction would produce negative value 676 // (and cause overflow for unsigned integers), 677 // as consequence x+1U-10 produces x-9U, instead 678 // of x+4294967287U, that would be produced without this 679 // additional check. 680 const llvm::APSInt *newRHS; 681 if (lop == op) { 682 newRHS = BasicVals.evalAPSInt(BO_Add, first, second); 683 } else if (first >= second) { 684 newRHS = BasicVals.evalAPSInt(BO_Sub, first, second); 685 op = lop; 686 } else { 687 newRHS = BasicVals.evalAPSInt(BO_Sub, second, first); 688 } 689 690 assert(newRHS && "Invalid operation despite common type!"); 691 rhs = nonloc::ConcreteInt(*newRHS); 692 lhs = nonloc::SymbolVal(symIntExpr->getLHS()); 693 continue; 694 } 695 } 696 697 // Otherwise, make a SymIntExpr out of the expression. 698 return MakeSymIntVal(symIntExpr, op, *RHSValue, resultTy); 699 } 700 } 701 702 // Is the RHS a constant? 703 if (const llvm::APSInt *RHSValue = getKnownValue(state, rhs)) 704 return MakeSymIntVal(Sym, op, *RHSValue, resultTy); 705 706 if (Optional<NonLoc> V = tryRearrange(state, op, lhs, rhs, resultTy)) 707 return *V; 708 709 // Give up -- this is not a symbolic expression we can handle. 710 return makeSymExprValNN(op, InputLHS, InputRHS, resultTy); 711 } 712 } 713 } 714 } 715 716 static SVal evalBinOpFieldRegionFieldRegion(const FieldRegion *LeftFR, 717 const FieldRegion *RightFR, 718 BinaryOperator::Opcode op, 719 QualType resultTy, 720 SimpleSValBuilder &SVB) { 721 // Only comparisons are meaningful here! 722 if (!BinaryOperator::isComparisonOp(op)) 723 return UnknownVal(); 724 725 // Next, see if the two FRs have the same super-region. 726 // FIXME: This doesn't handle casts yet, and simply stripping the casts 727 // doesn't help. 728 if (LeftFR->getSuperRegion() != RightFR->getSuperRegion()) 729 return UnknownVal(); 730 731 const FieldDecl *LeftFD = LeftFR->getDecl(); 732 const FieldDecl *RightFD = RightFR->getDecl(); 733 const RecordDecl *RD = LeftFD->getParent(); 734 735 // Make sure the two FRs are from the same kind of record. Just in case! 736 // FIXME: This is probably where inheritance would be a problem. 737 if (RD != RightFD->getParent()) 738 return UnknownVal(); 739 740 // We know for sure that the two fields are not the same, since that 741 // would have given us the same SVal. 742 if (op == BO_EQ) 743 return SVB.makeTruthVal(false, resultTy); 744 if (op == BO_NE) 745 return SVB.makeTruthVal(true, resultTy); 746 747 // Iterate through the fields and see which one comes first. 748 // [C99 6.7.2.1.13] "Within a structure object, the non-bit-field 749 // members and the units in which bit-fields reside have addresses that 750 // increase in the order in which they are declared." 751 bool leftFirst = (op == BO_LT || op == BO_LE); 752 for (const auto *I : RD->fields()) { 753 if (I == LeftFD) 754 return SVB.makeTruthVal(leftFirst, resultTy); 755 if (I == RightFD) 756 return SVB.makeTruthVal(!leftFirst, resultTy); 757 } 758 759 llvm_unreachable("Fields not found in parent record's definition"); 760 } 761 762 // This is used in debug builds only for now because some downstream users 763 // may hit this assert in their subsequent merges. 764 // There are still places in the analyzer where equal bitwidth Locs 765 // are compared, and need to be found and corrected. Recent previous fixes have 766 // addressed the known problems of making NULLs with specific bitwidths 767 // for Loc comparisons along with deprecation of APIs for the same purpose. 768 // 769 static void assertEqualBitWidths(ProgramStateRef State, Loc RhsLoc, 770 Loc LhsLoc) { 771 // Implements a "best effort" check for RhsLoc and LhsLoc bit widths 772 ASTContext &Ctx = State->getStateManager().getContext(); 773 uint64_t RhsBitwidth = 774 RhsLoc.getType(Ctx).isNull() ? 0 : Ctx.getTypeSize(RhsLoc.getType(Ctx)); 775 uint64_t LhsBitwidth = 776 LhsLoc.getType(Ctx).isNull() ? 0 : Ctx.getTypeSize(LhsLoc.getType(Ctx)); 777 if (RhsBitwidth && LhsBitwidth && 778 (LhsLoc.getSubKind() == RhsLoc.getSubKind())) { 779 assert(RhsBitwidth == LhsBitwidth && 780 "RhsLoc and LhsLoc bitwidth must be same!"); 781 } 782 } 783 784 // FIXME: all this logic will change if/when we have MemRegion::getLocation(). 785 SVal SimpleSValBuilder::evalBinOpLL(ProgramStateRef state, 786 BinaryOperator::Opcode op, 787 Loc lhs, Loc rhs, 788 QualType resultTy) { 789 790 // Assert that bitwidth of lhs and rhs are the same. 791 // This can happen if two different address spaces are used, 792 // and the bitwidths of the address spaces are different. 793 // See LIT case clang/test/Analysis/cstring-checker-addressspace.c 794 // FIXME: See comment above in the function assertEqualBitWidths 795 assertEqualBitWidths(state, rhs, lhs); 796 797 // Only comparisons and subtractions are valid operations on two pointers. 798 // See [C99 6.5.5 through 6.5.14] or [C++0x 5.6 through 5.15]. 799 // However, if a pointer is casted to an integer, evalBinOpNN may end up 800 // calling this function with another operation (PR7527). We don't attempt to 801 // model this for now, but it could be useful, particularly when the 802 // "location" is actually an integer value that's been passed through a void*. 803 if (!(BinaryOperator::isComparisonOp(op) || op == BO_Sub)) 804 return UnknownVal(); 805 806 // Special cases for when both sides are identical. 807 if (lhs == rhs) { 808 switch (op) { 809 default: 810 llvm_unreachable("Unimplemented operation for two identical values"); 811 case BO_Sub: 812 return makeZeroVal(resultTy); 813 case BO_EQ: 814 case BO_LE: 815 case BO_GE: 816 return makeTruthVal(true, resultTy); 817 case BO_NE: 818 case BO_LT: 819 case BO_GT: 820 return makeTruthVal(false, resultTy); 821 } 822 } 823 824 switch (lhs.getSubKind()) { 825 default: 826 llvm_unreachable("Ordering not implemented for this Loc."); 827 828 case loc::GotoLabelKind: 829 // The only thing we know about labels is that they're non-null. 830 if (rhs.isZeroConstant()) { 831 switch (op) { 832 default: 833 break; 834 case BO_Sub: 835 return evalCast(lhs, resultTy, QualType{}); 836 case BO_EQ: 837 case BO_LE: 838 case BO_LT: 839 return makeTruthVal(false, resultTy); 840 case BO_NE: 841 case BO_GT: 842 case BO_GE: 843 return makeTruthVal(true, resultTy); 844 } 845 } 846 // There may be two labels for the same location, and a function region may 847 // have the same address as a label at the start of the function (depending 848 // on the ABI). 849 // FIXME: we can probably do a comparison against other MemRegions, though. 850 // FIXME: is there a way to tell if two labels refer to the same location? 851 return UnknownVal(); 852 853 case loc::ConcreteIntKind: { 854 auto L = lhs.castAs<loc::ConcreteInt>(); 855 856 // If one of the operands is a symbol and the other is a constant, 857 // build an expression for use by the constraint manager. 858 if (SymbolRef rSym = rhs.getAsLocSymbol()) { 859 // We can only build expressions with symbols on the left, 860 // so we need a reversible operator. 861 if (!BinaryOperator::isComparisonOp(op) || op == BO_Cmp) 862 return UnknownVal(); 863 864 op = BinaryOperator::reverseComparisonOp(op); 865 return makeNonLoc(rSym, op, L.getValue(), resultTy); 866 } 867 868 // If both operands are constants, just perform the operation. 869 if (Optional<loc::ConcreteInt> rInt = rhs.getAs<loc::ConcreteInt>()) { 870 assert(BinaryOperator::isComparisonOp(op) || op == BO_Sub); 871 872 if (const auto *ResultInt = 873 BasicVals.evalAPSInt(op, L.getValue(), rInt->getValue())) 874 return evalCast(nonloc::ConcreteInt(*ResultInt), resultTy, QualType{}); 875 return UnknownVal(); 876 } 877 878 // Special case comparisons against NULL. 879 // This must come after the test if the RHS is a symbol, which is used to 880 // build constraints. The address of any non-symbolic region is guaranteed 881 // to be non-NULL, as is any label. 882 assert(rhs.getAs<loc::MemRegionVal>() || rhs.getAs<loc::GotoLabel>()); 883 if (lhs.isZeroConstant()) { 884 switch (op) { 885 default: 886 break; 887 case BO_EQ: 888 case BO_GT: 889 case BO_GE: 890 return makeTruthVal(false, resultTy); 891 case BO_NE: 892 case BO_LT: 893 case BO_LE: 894 return makeTruthVal(true, resultTy); 895 } 896 } 897 898 // Comparing an arbitrary integer to a region or label address is 899 // completely unknowable. 900 return UnknownVal(); 901 } 902 case loc::MemRegionValKind: { 903 if (Optional<loc::ConcreteInt> rInt = rhs.getAs<loc::ConcreteInt>()) { 904 // If one of the operands is a symbol and the other is a constant, 905 // build an expression for use by the constraint manager. 906 if (SymbolRef lSym = lhs.getAsLocSymbol(true)) { 907 if (BinaryOperator::isComparisonOp(op)) 908 return MakeSymIntVal(lSym, op, rInt->getValue(), resultTy); 909 return UnknownVal(); 910 } 911 // Special case comparisons to NULL. 912 // This must come after the test if the LHS is a symbol, which is used to 913 // build constraints. The address of any non-symbolic region is guaranteed 914 // to be non-NULL. 915 if (rInt->isZeroConstant()) { 916 if (op == BO_Sub) 917 return evalCast(lhs, resultTy, QualType{}); 918 919 if (BinaryOperator::isComparisonOp(op)) { 920 QualType boolType = getContext().BoolTy; 921 NonLoc l = evalCast(lhs, boolType, QualType{}).castAs<NonLoc>(); 922 NonLoc r = makeTruthVal(false, boolType).castAs<NonLoc>(); 923 return evalBinOpNN(state, op, l, r, resultTy); 924 } 925 } 926 927 // Comparing a region to an arbitrary integer is completely unknowable. 928 return UnknownVal(); 929 } 930 931 // Get both values as regions, if possible. 932 const MemRegion *LeftMR = lhs.getAsRegion(); 933 assert(LeftMR && "MemRegionValKind SVal doesn't have a region!"); 934 935 const MemRegion *RightMR = rhs.getAsRegion(); 936 if (!RightMR) 937 // The RHS is probably a label, which in theory could address a region. 938 // FIXME: we can probably make a more useful statement about non-code 939 // regions, though. 940 return UnknownVal(); 941 942 const MemRegion *LeftBase = LeftMR->getBaseRegion(); 943 const MemRegion *RightBase = RightMR->getBaseRegion(); 944 const MemSpaceRegion *LeftMS = LeftBase->getMemorySpace(); 945 const MemSpaceRegion *RightMS = RightBase->getMemorySpace(); 946 const MemSpaceRegion *UnknownMS = MemMgr.getUnknownRegion(); 947 948 // If the two regions are from different known memory spaces they cannot be 949 // equal. Also, assume that no symbolic region (whose memory space is 950 // unknown) is on the stack. 951 if (LeftMS != RightMS && 952 ((LeftMS != UnknownMS && RightMS != UnknownMS) || 953 (isa<StackSpaceRegion>(LeftMS) || isa<StackSpaceRegion>(RightMS)))) { 954 switch (op) { 955 default: 956 return UnknownVal(); 957 case BO_EQ: 958 return makeTruthVal(false, resultTy); 959 case BO_NE: 960 return makeTruthVal(true, resultTy); 961 } 962 } 963 964 // If both values wrap regions, see if they're from different base regions. 965 // Note, heap base symbolic regions are assumed to not alias with 966 // each other; for example, we assume that malloc returns different address 967 // on each invocation. 968 // FIXME: ObjC object pointers always reside on the heap, but currently 969 // we treat their memory space as unknown, because symbolic pointers 970 // to ObjC objects may alias. There should be a way to construct 971 // possibly-aliasing heap-based regions. For instance, MacOSXApiChecker 972 // guesses memory space for ObjC object pointers manually instead of 973 // relying on us. 974 if (LeftBase != RightBase && 975 ((!isa<SymbolicRegion>(LeftBase) && !isa<SymbolicRegion>(RightBase)) || 976 (isa<HeapSpaceRegion>(LeftMS) || isa<HeapSpaceRegion>(RightMS))) ){ 977 switch (op) { 978 default: 979 return UnknownVal(); 980 case BO_EQ: 981 return makeTruthVal(false, resultTy); 982 case BO_NE: 983 return makeTruthVal(true, resultTy); 984 } 985 } 986 987 // Handle special cases for when both regions are element regions. 988 const ElementRegion *RightER = dyn_cast<ElementRegion>(RightMR); 989 const ElementRegion *LeftER = dyn_cast<ElementRegion>(LeftMR); 990 if (RightER && LeftER) { 991 // Next, see if the two ERs have the same super-region and matching types. 992 // FIXME: This should do something useful even if the types don't match, 993 // though if both indexes are constant the RegionRawOffset path will 994 // give the correct answer. 995 if (LeftER->getSuperRegion() == RightER->getSuperRegion() && 996 LeftER->getElementType() == RightER->getElementType()) { 997 // Get the left index and cast it to the correct type. 998 // If the index is unknown or undefined, bail out here. 999 SVal LeftIndexVal = LeftER->getIndex(); 1000 Optional<NonLoc> LeftIndex = LeftIndexVal.getAs<NonLoc>(); 1001 if (!LeftIndex) 1002 return UnknownVal(); 1003 LeftIndexVal = evalCast(*LeftIndex, ArrayIndexTy, QualType{}); 1004 LeftIndex = LeftIndexVal.getAs<NonLoc>(); 1005 if (!LeftIndex) 1006 return UnknownVal(); 1007 1008 // Do the same for the right index. 1009 SVal RightIndexVal = RightER->getIndex(); 1010 Optional<NonLoc> RightIndex = RightIndexVal.getAs<NonLoc>(); 1011 if (!RightIndex) 1012 return UnknownVal(); 1013 RightIndexVal = evalCast(*RightIndex, ArrayIndexTy, QualType{}); 1014 RightIndex = RightIndexVal.getAs<NonLoc>(); 1015 if (!RightIndex) 1016 return UnknownVal(); 1017 1018 // Actually perform the operation. 1019 // evalBinOpNN expects the two indexes to already be the right type. 1020 return evalBinOpNN(state, op, *LeftIndex, *RightIndex, resultTy); 1021 } 1022 } 1023 1024 // Special handling of the FieldRegions, even with symbolic offsets. 1025 const FieldRegion *RightFR = dyn_cast<FieldRegion>(RightMR); 1026 const FieldRegion *LeftFR = dyn_cast<FieldRegion>(LeftMR); 1027 if (RightFR && LeftFR) { 1028 SVal R = evalBinOpFieldRegionFieldRegion(LeftFR, RightFR, op, resultTy, 1029 *this); 1030 if (!R.isUnknown()) 1031 return R; 1032 } 1033 1034 // Compare the regions using the raw offsets. 1035 RegionOffset LeftOffset = LeftMR->getAsOffset(); 1036 RegionOffset RightOffset = RightMR->getAsOffset(); 1037 1038 if (LeftOffset.getRegion() != nullptr && 1039 LeftOffset.getRegion() == RightOffset.getRegion() && 1040 !LeftOffset.hasSymbolicOffset() && !RightOffset.hasSymbolicOffset()) { 1041 int64_t left = LeftOffset.getOffset(); 1042 int64_t right = RightOffset.getOffset(); 1043 1044 switch (op) { 1045 default: 1046 return UnknownVal(); 1047 case BO_LT: 1048 return makeTruthVal(left < right, resultTy); 1049 case BO_GT: 1050 return makeTruthVal(left > right, resultTy); 1051 case BO_LE: 1052 return makeTruthVal(left <= right, resultTy); 1053 case BO_GE: 1054 return makeTruthVal(left >= right, resultTy); 1055 case BO_EQ: 1056 return makeTruthVal(left == right, resultTy); 1057 case BO_NE: 1058 return makeTruthVal(left != right, resultTy); 1059 } 1060 } 1061 1062 // At this point we're not going to get a good answer, but we can try 1063 // conjuring an expression instead. 1064 SymbolRef LHSSym = lhs.getAsLocSymbol(); 1065 SymbolRef RHSSym = rhs.getAsLocSymbol(); 1066 if (LHSSym && RHSSym) 1067 return makeNonLoc(LHSSym, op, RHSSym, resultTy); 1068 1069 // If we get here, we have no way of comparing the regions. 1070 return UnknownVal(); 1071 } 1072 } 1073 } 1074 1075 SVal SimpleSValBuilder::evalBinOpLN(ProgramStateRef state, 1076 BinaryOperator::Opcode op, Loc lhs, 1077 NonLoc rhs, QualType resultTy) { 1078 if (op >= BO_PtrMemD && op <= BO_PtrMemI) { 1079 if (auto PTMSV = rhs.getAs<nonloc::PointerToMember>()) { 1080 if (PTMSV->isNullMemberPointer()) 1081 return UndefinedVal(); 1082 1083 auto getFieldLValue = [&](const auto *FD) -> SVal { 1084 SVal Result = lhs; 1085 1086 for (const auto &I : *PTMSV) 1087 Result = StateMgr.getStoreManager().evalDerivedToBase( 1088 Result, I->getType(), I->isVirtual()); 1089 1090 return state->getLValue(FD, Result); 1091 }; 1092 1093 if (const auto *FD = PTMSV->getDeclAs<FieldDecl>()) { 1094 return getFieldLValue(FD); 1095 } 1096 if (const auto *FD = PTMSV->getDeclAs<IndirectFieldDecl>()) { 1097 return getFieldLValue(FD); 1098 } 1099 } 1100 1101 return rhs; 1102 } 1103 1104 assert(!BinaryOperator::isComparisonOp(op) && 1105 "arguments to comparison ops must be of the same type"); 1106 1107 // Special case: rhs is a zero constant. 1108 if (rhs.isZeroConstant()) 1109 return lhs; 1110 1111 // Perserve the null pointer so that it can be found by the DerefChecker. 1112 if (lhs.isZeroConstant()) 1113 return lhs; 1114 1115 // We are dealing with pointer arithmetic. 1116 1117 // Handle pointer arithmetic on constant values. 1118 if (Optional<nonloc::ConcreteInt> rhsInt = rhs.getAs<nonloc::ConcreteInt>()) { 1119 if (Optional<loc::ConcreteInt> lhsInt = lhs.getAs<loc::ConcreteInt>()) { 1120 const llvm::APSInt &leftI = lhsInt->getValue(); 1121 assert(leftI.isUnsigned()); 1122 llvm::APSInt rightI(rhsInt->getValue(), /* isUnsigned */ true); 1123 1124 // Convert the bitwidth of rightI. This should deal with overflow 1125 // since we are dealing with concrete values. 1126 rightI = rightI.extOrTrunc(leftI.getBitWidth()); 1127 1128 // Offset the increment by the pointer size. 1129 llvm::APSInt Multiplicand(rightI.getBitWidth(), /* isUnsigned */ true); 1130 QualType pointeeType = resultTy->getPointeeType(); 1131 Multiplicand = getContext().getTypeSizeInChars(pointeeType).getQuantity(); 1132 rightI *= Multiplicand; 1133 1134 // Compute the adjusted pointer. 1135 switch (op) { 1136 case BO_Add: 1137 rightI = leftI + rightI; 1138 break; 1139 case BO_Sub: 1140 rightI = leftI - rightI; 1141 break; 1142 default: 1143 llvm_unreachable("Invalid pointer arithmetic operation"); 1144 } 1145 return loc::ConcreteInt(getBasicValueFactory().getValue(rightI)); 1146 } 1147 } 1148 1149 // Handle cases where 'lhs' is a region. 1150 if (const MemRegion *region = lhs.getAsRegion()) { 1151 rhs = convertToArrayIndex(rhs).castAs<NonLoc>(); 1152 SVal index = UnknownVal(); 1153 const SubRegion *superR = nullptr; 1154 // We need to know the type of the pointer in order to add an integer to it. 1155 // Depending on the type, different amount of bytes is added. 1156 QualType elementType; 1157 1158 if (const ElementRegion *elemReg = dyn_cast<ElementRegion>(region)) { 1159 assert(op == BO_Add || op == BO_Sub); 1160 index = evalBinOpNN(state, op, elemReg->getIndex(), rhs, 1161 getArrayIndexType()); 1162 superR = cast<SubRegion>(elemReg->getSuperRegion()); 1163 elementType = elemReg->getElementType(); 1164 } 1165 else if (isa<SubRegion>(region)) { 1166 assert(op == BO_Add || op == BO_Sub); 1167 index = (op == BO_Add) ? rhs : evalMinus(rhs); 1168 superR = cast<SubRegion>(region); 1169 // TODO: Is this actually reliable? Maybe improving our MemRegion 1170 // hierarchy to provide typed regions for all non-void pointers would be 1171 // better. For instance, we cannot extend this towards LocAsInteger 1172 // operations, where result type of the expression is integer. 1173 if (resultTy->isAnyPointerType()) 1174 elementType = resultTy->getPointeeType(); 1175 } 1176 1177 // Represent arithmetic on void pointers as arithmetic on char pointers. 1178 // It is fine when a TypedValueRegion of char value type represents 1179 // a void pointer. Note that arithmetic on void pointers is a GCC extension. 1180 if (elementType->isVoidType()) 1181 elementType = getContext().CharTy; 1182 1183 if (Optional<NonLoc> indexV = index.getAs<NonLoc>()) { 1184 return loc::MemRegionVal(MemMgr.getElementRegion(elementType, *indexV, 1185 superR, getContext())); 1186 } 1187 } 1188 return UnknownVal(); 1189 } 1190 1191 const llvm::APSInt *SimpleSValBuilder::getKnownValue(ProgramStateRef state, 1192 SVal V) { 1193 V = simplifySVal(state, V); 1194 if (V.isUnknownOrUndef()) 1195 return nullptr; 1196 1197 if (Optional<loc::ConcreteInt> X = V.getAs<loc::ConcreteInt>()) 1198 return &X->getValue(); 1199 1200 if (Optional<nonloc::ConcreteInt> X = V.getAs<nonloc::ConcreteInt>()) 1201 return &X->getValue(); 1202 1203 if (SymbolRef Sym = V.getAsSymbol()) 1204 return state->getConstraintManager().getSymVal(state, Sym); 1205 1206 return nullptr; 1207 } 1208 1209 SVal SimpleSValBuilder::simplifyUntilFixpoint(ProgramStateRef State, SVal Val) { 1210 SVal SimplifiedVal = simplifySValOnce(State, Val); 1211 while (SimplifiedVal != Val) { 1212 Val = SimplifiedVal; 1213 SimplifiedVal = simplifySValOnce(State, Val); 1214 } 1215 return SimplifiedVal; 1216 } 1217 1218 SVal SimpleSValBuilder::simplifySVal(ProgramStateRef State, SVal V) { 1219 return simplifyUntilFixpoint(State, V); 1220 } 1221 1222 SVal SimpleSValBuilder::simplifySValOnce(ProgramStateRef State, SVal V) { 1223 // For now, this function tries to constant-fold symbols inside a 1224 // nonloc::SymbolVal, and does nothing else. More simplifications should 1225 // be possible, such as constant-folding an index in an ElementRegion. 1226 1227 class Simplifier : public FullSValVisitor<Simplifier, SVal> { 1228 ProgramStateRef State; 1229 SValBuilder &SVB; 1230 1231 // Cache results for the lifetime of the Simplifier. Results change every 1232 // time new constraints are added to the program state, which is the whole 1233 // point of simplifying, and for that very reason it's pointless to maintain 1234 // the same cache for the duration of the whole analysis. 1235 llvm::DenseMap<SymbolRef, SVal> Cached; 1236 1237 static bool isUnchanged(SymbolRef Sym, SVal Val) { 1238 return Sym == Val.getAsSymbol(); 1239 } 1240 1241 SVal cache(SymbolRef Sym, SVal V) { 1242 Cached[Sym] = V; 1243 return V; 1244 } 1245 1246 SVal skip(SymbolRef Sym) { 1247 return cache(Sym, SVB.makeSymbolVal(Sym)); 1248 } 1249 1250 // Return the known const value for the Sym if available, or return Undef 1251 // otherwise. 1252 SVal getConst(SymbolRef Sym) { 1253 const llvm::APSInt *Const = 1254 State->getConstraintManager().getSymVal(State, Sym); 1255 if (Const) 1256 return Loc::isLocType(Sym->getType()) ? (SVal)SVB.makeIntLocVal(*Const) 1257 : (SVal)SVB.makeIntVal(*Const); 1258 return UndefinedVal(); 1259 } 1260 1261 SVal getConstOrVisit(SymbolRef Sym) { 1262 const SVal Ret = getConst(Sym); 1263 if (Ret.isUndef()) 1264 return Visit(Sym); 1265 return Ret; 1266 } 1267 1268 public: 1269 Simplifier(ProgramStateRef State) 1270 : State(State), SVB(State->getStateManager().getSValBuilder()) {} 1271 1272 SVal VisitSymbolData(const SymbolData *S) { 1273 // No cache here. 1274 if (const llvm::APSInt *I = 1275 SVB.getKnownValue(State, SVB.makeSymbolVal(S))) 1276 return Loc::isLocType(S->getType()) ? (SVal)SVB.makeIntLocVal(*I) 1277 : (SVal)SVB.makeIntVal(*I); 1278 return SVB.makeSymbolVal(S); 1279 } 1280 1281 // TODO: Support SymbolCast. 1282 1283 SVal VisitSymIntExpr(const SymIntExpr *S) { 1284 auto I = Cached.find(S); 1285 if (I != Cached.end()) 1286 return I->second; 1287 1288 SVal LHS = getConstOrVisit(S->getLHS()); 1289 if (isUnchanged(S->getLHS(), LHS)) 1290 return skip(S); 1291 1292 SVal RHS; 1293 // By looking at the APSInt in the right-hand side of S, we cannot 1294 // figure out if it should be treated as a Loc or as a NonLoc. 1295 // So make our guess by recalling that we cannot multiply pointers 1296 // or compare a pointer to an integer. 1297 if (Loc::isLocType(S->getLHS()->getType()) && 1298 BinaryOperator::isComparisonOp(S->getOpcode())) { 1299 // The usual conversion of $sym to &SymRegion{$sym}, as they have 1300 // the same meaning for Loc-type symbols, but the latter form 1301 // is preferred in SVal computations for being Loc itself. 1302 if (SymbolRef Sym = LHS.getAsSymbol()) { 1303 assert(Loc::isLocType(Sym->getType())); 1304 LHS = SVB.makeLoc(Sym); 1305 } 1306 RHS = SVB.makeIntLocVal(S->getRHS()); 1307 } else { 1308 RHS = SVB.makeIntVal(S->getRHS()); 1309 } 1310 1311 return cache( 1312 S, SVB.evalBinOp(State, S->getOpcode(), LHS, RHS, S->getType())); 1313 } 1314 1315 SVal VisitIntSymExpr(const IntSymExpr *S) { 1316 auto I = Cached.find(S); 1317 if (I != Cached.end()) 1318 return I->second; 1319 1320 SVal RHS = getConstOrVisit(S->getRHS()); 1321 if (isUnchanged(S->getRHS(), RHS)) 1322 return skip(S); 1323 1324 SVal LHS = SVB.makeIntVal(S->getLHS()); 1325 return cache( 1326 S, SVB.evalBinOp(State, S->getOpcode(), LHS, RHS, S->getType())); 1327 } 1328 1329 SVal VisitSymSymExpr(const SymSymExpr *S) { 1330 auto I = Cached.find(S); 1331 if (I != Cached.end()) 1332 return I->second; 1333 1334 // For now don't try to simplify mixed Loc/NonLoc expressions 1335 // because they often appear from LocAsInteger operations 1336 // and we don't know how to combine a LocAsInteger 1337 // with a concrete value. 1338 if (Loc::isLocType(S->getLHS()->getType()) != 1339 Loc::isLocType(S->getRHS()->getType())) 1340 return skip(S); 1341 1342 SVal LHS = getConstOrVisit(S->getLHS()); 1343 SVal RHS = getConstOrVisit(S->getRHS()); 1344 1345 if (isUnchanged(S->getLHS(), LHS) && isUnchanged(S->getRHS(), RHS)) 1346 return skip(S); 1347 1348 return cache( 1349 S, SVB.evalBinOp(State, S->getOpcode(), LHS, RHS, S->getType())); 1350 } 1351 1352 // FIXME add VisitSymbolCast 1353 1354 SVal VisitUnarySymExpr(const UnarySymExpr *S) { 1355 auto I = Cached.find(S); 1356 if (I != Cached.end()) 1357 return I->second; 1358 SVal Op = getConstOrVisit(S->getOperand()); 1359 if (isUnchanged(S->getOperand(), Op)) 1360 return skip(S); 1361 1362 return cache( 1363 S, SVB.evalUnaryOp(State, S->getOpcode(), Op, S->getType())); 1364 } 1365 1366 SVal VisitSymExpr(SymbolRef S) { return nonloc::SymbolVal(S); } 1367 1368 SVal VisitMemRegion(const MemRegion *R) { return loc::MemRegionVal(R); } 1369 1370 SVal VisitNonLocSymbolVal(nonloc::SymbolVal V) { 1371 // Simplification is much more costly than computing complexity. 1372 // For high complexity, it may be not worth it. 1373 return Visit(V.getSymbol()); 1374 } 1375 1376 SVal VisitSVal(SVal V) { return V; } 1377 }; 1378 1379 // A crude way of preventing this function from calling itself from evalBinOp. 1380 static bool isReentering = false; 1381 if (isReentering) 1382 return V; 1383 1384 isReentering = true; 1385 SVal SimplifiedV = Simplifier(State).Visit(V); 1386 isReentering = false; 1387 1388 return SimplifiedV; 1389 } 1390