1 // SimpleSValBuilder.cpp - A basic SValBuilder -----------------------*- C++ -*- 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines SimpleSValBuilder, a basic implementation of SValBuilder. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntPtr.h" 14 #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h" 15 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" 16 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 17 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h" 18 #include "clang/StaticAnalyzer/Core/PathSensitive/SValVisitor.h" 19 #include <optional> 20 21 using namespace clang; 22 using namespace ento; 23 24 namespace { 25 class SimpleSValBuilder : public SValBuilder { 26 27 // Query the constraint manager whether the SVal has only one possible 28 // (integer) value. If that is the case, the value is returned. Otherwise, 29 // returns NULL. 30 // This is an implementation detail. Checkers should use `getKnownValue()` 31 // instead. 32 static const llvm::APSInt *getConstValue(ProgramStateRef state, SVal V); 33 34 // Helper function that returns the value stored in a nonloc::ConcreteInt or 35 // loc::ConcreteInt. 36 static const llvm::APSInt *getConcreteValue(SVal V); 37 38 // With one `simplifySValOnce` call, a compound symbols might collapse to 39 // simpler symbol tree that is still possible to further simplify. Thus, we 40 // do the simplification on a new symbol tree until we reach the simplest 41 // form, i.e. the fixpoint. 42 // Consider the following symbol `(b * b) * b * b` which has this tree: 43 // * 44 // / \ 45 // * b 46 // / \ 47 // / b 48 // (b * b) 49 // Now, if the `b * b == 1` new constraint is added then during the first 50 // iteration we have the following transformations: 51 // * * 52 // / \ / \ 53 // * b --> b b 54 // / \ 55 // / b 56 // 1 57 // We need another iteration to reach the final result `1`. 58 SVal simplifyUntilFixpoint(ProgramStateRef State, SVal Val); 59 60 // Recursively descends into symbolic expressions and replaces symbols 61 // with their known values (in the sense of the getConstValue() method). 62 // We traverse the symbol tree and query the constraint values for the 63 // sub-trees and if a value is a constant we do the constant folding. 64 SVal simplifySValOnce(ProgramStateRef State, SVal V); 65 66 public: 67 SimpleSValBuilder(llvm::BumpPtrAllocator &alloc, ASTContext &context, 68 ProgramStateManager &stateMgr) 69 : SValBuilder(alloc, context, stateMgr) {} 70 ~SimpleSValBuilder() override {} 71 72 SVal evalBinOpNN(ProgramStateRef state, BinaryOperator::Opcode op, 73 NonLoc lhs, NonLoc rhs, QualType resultTy) override; 74 SVal evalBinOpLL(ProgramStateRef state, BinaryOperator::Opcode op, 75 Loc lhs, Loc rhs, QualType resultTy) override; 76 SVal evalBinOpLN(ProgramStateRef state, BinaryOperator::Opcode op, 77 Loc lhs, NonLoc rhs, QualType resultTy) override; 78 79 /// Evaluates a given SVal by recursively evaluating and 80 /// simplifying the children SVals. If the SVal has only one possible 81 /// (integer) value, that value is returned. Otherwise, returns NULL. 82 const llvm::APSInt *getKnownValue(ProgramStateRef state, SVal V) override; 83 84 /// Evaluates a given SVal by recursively evaluating and simplifying the 85 /// children SVals, then returns its minimal possible (integer) value. If the 86 /// constraint manager cannot provide a meaningful answer, this returns NULL. 87 const llvm::APSInt *getMinValue(ProgramStateRef state, SVal V) override; 88 89 /// Evaluates a given SVal by recursively evaluating and simplifying the 90 /// children SVals, then returns its maximal possible (integer) value. If the 91 /// constraint manager cannot provide a meaningful answer, this returns NULL. 92 const llvm::APSInt *getMaxValue(ProgramStateRef state, SVal V) override; 93 94 SVal simplifySVal(ProgramStateRef State, SVal V) override; 95 96 SVal MakeSymIntVal(const SymExpr *LHS, BinaryOperator::Opcode op, 97 const llvm::APSInt &RHS, QualType resultTy); 98 }; 99 } // end anonymous namespace 100 101 SValBuilder *ento::createSimpleSValBuilder(llvm::BumpPtrAllocator &alloc, 102 ASTContext &context, 103 ProgramStateManager &stateMgr) { 104 return new SimpleSValBuilder(alloc, context, stateMgr); 105 } 106 107 // Checks if the negation the value and flipping sign preserve 108 // the semantics on the operation in the resultType 109 static bool isNegationValuePreserving(const llvm::APSInt &Value, 110 APSIntType ResultType) { 111 const unsigned ValueBits = Value.getSignificantBits(); 112 if (ValueBits == ResultType.getBitWidth()) { 113 // The value is the lowest negative value that is representable 114 // in signed integer with bitWith of result type. The 115 // negation is representable if resultType is unsigned. 116 return ResultType.isUnsigned(); 117 } 118 119 // If resultType bitWith is higher that number of bits required 120 // to represent RHS, the sign flip produce same value. 121 return ValueBits < ResultType.getBitWidth(); 122 } 123 124 //===----------------------------------------------------------------------===// 125 // Transfer function for binary operators. 126 //===----------------------------------------------------------------------===// 127 128 SVal SimpleSValBuilder::MakeSymIntVal(const SymExpr *LHS, 129 BinaryOperator::Opcode op, 130 const llvm::APSInt &RHS, 131 QualType resultTy) { 132 bool isIdempotent = false; 133 134 // Check for a few special cases with known reductions first. 135 switch (op) { 136 default: 137 // We can't reduce this case; just treat it normally. 138 break; 139 case BO_Mul: 140 // a*0 and a*1 141 if (RHS == 0) 142 return makeIntVal(0, resultTy); 143 else if (RHS == 1) 144 isIdempotent = true; 145 break; 146 case BO_Div: 147 // a/0 and a/1 148 if (RHS == 0) 149 // This is also handled elsewhere. 150 return UndefinedVal(); 151 else if (RHS == 1) 152 isIdempotent = true; 153 break; 154 case BO_Rem: 155 // a%0 and a%1 156 if (RHS == 0) 157 // This is also handled elsewhere. 158 return UndefinedVal(); 159 else if (RHS == 1) 160 return makeIntVal(0, resultTy); 161 break; 162 case BO_Add: 163 case BO_Sub: 164 case BO_Shl: 165 case BO_Shr: 166 case BO_Xor: 167 // a+0, a-0, a<<0, a>>0, a^0 168 if (RHS == 0) 169 isIdempotent = true; 170 break; 171 case BO_And: 172 // a&0 and a&(~0) 173 if (RHS == 0) 174 return makeIntVal(0, resultTy); 175 else if (RHS.isAllOnes()) 176 isIdempotent = true; 177 break; 178 case BO_Or: 179 // a|0 and a|(~0) 180 if (RHS == 0) 181 isIdempotent = true; 182 else if (RHS.isAllOnes()) { 183 return nonloc::ConcreteInt(BasicVals.Convert(resultTy, RHS)); 184 } 185 break; 186 } 187 188 // Idempotent ops (like a*1) can still change the type of an expression. 189 // Wrap the LHS up in a NonLoc again and let evalCast do the 190 // dirty work. 191 if (isIdempotent) 192 return evalCast(nonloc::SymbolVal(LHS), resultTy, QualType{}); 193 194 // If we reach this point, the expression cannot be simplified. 195 // Make a SymbolVal for the entire expression, after converting the RHS. 196 std::optional<APSIntPtr> ConvertedRHS = BasicVals.getValue(RHS); 197 if (BinaryOperator::isComparisonOp(op)) { 198 // We're looking for a type big enough to compare the symbolic value 199 // with the given constant. 200 // FIXME: This is an approximation of Sema::UsualArithmeticConversions. 201 ASTContext &Ctx = getContext(); 202 QualType SymbolType = LHS->getType(); 203 uint64_t ValWidth = RHS.getBitWidth(); 204 uint64_t TypeWidth = Ctx.getTypeSize(SymbolType); 205 206 if (ValWidth < TypeWidth) { 207 // If the value is too small, extend it. 208 ConvertedRHS = BasicVals.Convert(SymbolType, RHS); 209 } else if (ValWidth == TypeWidth) { 210 // If the value is signed but the symbol is unsigned, do the comparison 211 // in unsigned space. [C99 6.3.1.8] 212 // (For the opposite case, the value is already unsigned.) 213 if (RHS.isSigned() && !SymbolType->isSignedIntegerOrEnumerationType()) 214 ConvertedRHS = BasicVals.Convert(SymbolType, RHS); 215 } 216 } else if (BinaryOperator::isAdditiveOp(op) && RHS.isNegative()) { 217 // Change a+(-N) into a-N, and a-(-N) into a+N 218 // Adjust addition/subtraction of negative value, to 219 // subtraction/addition of the negated value. 220 APSIntType resultIntTy = BasicVals.getAPSIntType(resultTy); 221 if (isNegationValuePreserving(RHS, resultIntTy)) { 222 ConvertedRHS = BasicVals.getValue(-resultIntTy.convert(RHS)); 223 op = (op == BO_Add) ? BO_Sub : BO_Add; 224 } else { 225 ConvertedRHS = BasicVals.Convert(resultTy, RHS); 226 } 227 } else 228 ConvertedRHS = BasicVals.Convert(resultTy, RHS); 229 230 return makeNonLoc(LHS, op, *ConvertedRHS, resultTy); 231 } 232 233 // See if Sym is known to be a relation Rel with Bound. 234 static bool isInRelation(BinaryOperator::Opcode Rel, SymbolRef Sym, 235 llvm::APSInt Bound, ProgramStateRef State) { 236 SValBuilder &SVB = State->getStateManager().getSValBuilder(); 237 BasicValueFactory &BV = SVB.getBasicValueFactory(); 238 SVal Result = SVB.evalBinOpNN(State, Rel, nonloc::SymbolVal(Sym), 239 nonloc::ConcreteInt(BV.getValue(Bound)), 240 SVB.getConditionType()); 241 if (auto DV = Result.getAs<DefinedSVal>()) { 242 return !State->assume(*DV, false); 243 } 244 return false; 245 } 246 247 // See if Sym is known to be within [min/4, max/4], where min and max 248 // are the bounds of the symbol's integral type. With such symbols, 249 // some manipulations can be performed without the risk of overflow. 250 // assume() doesn't cause infinite recursion because we should be dealing 251 // with simpler symbols on every recursive call. 252 static bool isWithinConstantOverflowBounds(SymbolRef Sym, 253 ProgramStateRef State) { 254 SValBuilder &SVB = State->getStateManager().getSValBuilder(); 255 BasicValueFactory &BV = SVB.getBasicValueFactory(); 256 257 QualType T = Sym->getType(); 258 assert(T->isSignedIntegerOrEnumerationType() && 259 "This only works with signed integers!"); 260 APSIntType AT = BV.getAPSIntType(T); 261 262 llvm::APSInt Max = AT.getMaxValue() / AT.getValue(4), Min = -Max; 263 return isInRelation(BO_LE, Sym, Max, State) && 264 isInRelation(BO_GE, Sym, Min, State); 265 } 266 267 // Same for the concrete integers: see if I is within [min/4, max/4]. 268 static bool isWithinConstantOverflowBounds(llvm::APSInt I) { 269 APSIntType AT(I); 270 assert(!AT.isUnsigned() && 271 "This only works with signed integers!"); 272 273 llvm::APSInt Max = AT.getMaxValue() / AT.getValue(4), Min = -Max; 274 return (I <= Max) && (I >= -Max); 275 } 276 277 static std::pair<SymbolRef, APSIntPtr> decomposeSymbol(SymbolRef Sym, 278 BasicValueFactory &BV) { 279 if (const auto *SymInt = dyn_cast<SymIntExpr>(Sym)) 280 if (BinaryOperator::isAdditiveOp(SymInt->getOpcode())) 281 return std::make_pair(SymInt->getLHS(), 282 (SymInt->getOpcode() == BO_Add) 283 ? BV.getValue(SymInt->getRHS()) 284 : BV.getValue(-SymInt->getRHS())); 285 286 // Fail to decompose: "reduce" the problem to the "$x + 0" case. 287 return std::make_pair(Sym, BV.getValue(0, Sym->getType())); 288 } 289 290 // Simplify "(LSym + LInt) Op (RSym + RInt)" assuming all values are of the 291 // same signed integral type and no overflows occur (which should be checked 292 // by the caller). 293 static NonLoc doRearrangeUnchecked(ProgramStateRef State, 294 BinaryOperator::Opcode Op, 295 SymbolRef LSym, llvm::APSInt LInt, 296 SymbolRef RSym, llvm::APSInt RInt) { 297 SValBuilder &SVB = State->getStateManager().getSValBuilder(); 298 BasicValueFactory &BV = SVB.getBasicValueFactory(); 299 SymbolManager &SymMgr = SVB.getSymbolManager(); 300 301 QualType SymTy = LSym->getType(); 302 assert(SymTy == RSym->getType() && 303 "Symbols are not of the same type!"); 304 assert(APSIntType(LInt) == BV.getAPSIntType(SymTy) && 305 "Integers are not of the same type as symbols!"); 306 assert(APSIntType(RInt) == BV.getAPSIntType(SymTy) && 307 "Integers are not of the same type as symbols!"); 308 309 QualType ResultTy; 310 if (BinaryOperator::isComparisonOp(Op)) 311 ResultTy = SVB.getConditionType(); 312 else if (BinaryOperator::isAdditiveOp(Op)) 313 ResultTy = SymTy; 314 else 315 llvm_unreachable("Operation not suitable for unchecked rearrangement!"); 316 317 if (LSym == RSym) 318 return SVB 319 .evalBinOpNN(State, Op, nonloc::ConcreteInt(BV.getValue(LInt)), 320 nonloc::ConcreteInt(BV.getValue(RInt)), ResultTy) 321 .castAs<NonLoc>(); 322 323 SymbolRef ResultSym = nullptr; 324 BinaryOperator::Opcode ResultOp; 325 llvm::APSInt ResultInt; 326 if (BinaryOperator::isComparisonOp(Op)) { 327 // Prefer comparing to a non-negative number. 328 // FIXME: Maybe it'd be better to have consistency in 329 // "$x - $y" vs. "$y - $x" because those are solver's keys. 330 if (LInt > RInt) { 331 ResultSym = SymMgr.acquire<SymSymExpr>(RSym, BO_Sub, LSym, SymTy); 332 ResultOp = BinaryOperator::reverseComparisonOp(Op); 333 ResultInt = LInt - RInt; // Opposite order! 334 } else { 335 ResultSym = SymMgr.acquire<SymSymExpr>(LSym, BO_Sub, RSym, SymTy); 336 ResultOp = Op; 337 ResultInt = RInt - LInt; // Opposite order! 338 } 339 } else { 340 ResultSym = SymMgr.acquire<SymSymExpr>(LSym, Op, RSym, SymTy); 341 ResultInt = (Op == BO_Add) ? (LInt + RInt) : (LInt - RInt); 342 ResultOp = BO_Add; 343 // Bring back the cosmetic difference. 344 if (ResultInt < 0) { 345 ResultInt = -ResultInt; 346 ResultOp = BO_Sub; 347 } else if (ResultInt == 0) { 348 // Shortcut: Simplify "$x + 0" to "$x". 349 return nonloc::SymbolVal(ResultSym); 350 } 351 } 352 APSIntPtr PersistentResultInt = BV.getValue(ResultInt); 353 return nonloc::SymbolVal(SymMgr.acquire<SymIntExpr>( 354 ResultSym, ResultOp, PersistentResultInt, ResultTy)); 355 } 356 357 // Rearrange if symbol type matches the result type and if the operator is a 358 // comparison operator, both symbol and constant must be within constant 359 // overflow bounds. 360 static bool shouldRearrange(ProgramStateRef State, BinaryOperator::Opcode Op, 361 SymbolRef Sym, llvm::APSInt Int, QualType Ty) { 362 return Sym->getType() == Ty && 363 (!BinaryOperator::isComparisonOp(Op) || 364 (isWithinConstantOverflowBounds(Sym, State) && 365 isWithinConstantOverflowBounds(Int))); 366 } 367 368 static std::optional<NonLoc> tryRearrange(ProgramStateRef State, 369 BinaryOperator::Opcode Op, NonLoc Lhs, 370 NonLoc Rhs, QualType ResultTy) { 371 ProgramStateManager &StateMgr = State->getStateManager(); 372 SValBuilder &SVB = StateMgr.getSValBuilder(); 373 374 // We expect everything to be of the same type - this type. 375 QualType SingleTy; 376 377 // FIXME: After putting complexity threshold to the symbols we can always 378 // rearrange additive operations but rearrange comparisons only if 379 // option is set. 380 if (!SVB.getAnalyzerOptions().ShouldAggressivelySimplifyBinaryOperation) 381 return std::nullopt; 382 383 SymbolRef LSym = Lhs.getAsSymbol(); 384 if (!LSym) 385 return std::nullopt; 386 387 if (BinaryOperator::isComparisonOp(Op)) { 388 SingleTy = LSym->getType(); 389 if (ResultTy != SVB.getConditionType()) 390 return std::nullopt; 391 // Initialize SingleTy later with a symbol's type. 392 } else if (BinaryOperator::isAdditiveOp(Op)) { 393 SingleTy = ResultTy; 394 if (LSym->getType() != SingleTy) 395 return std::nullopt; 396 } else { 397 // Don't rearrange other operations. 398 return std::nullopt; 399 } 400 401 assert(!SingleTy.isNull() && "We should have figured out the type by now!"); 402 403 // Rearrange signed symbolic expressions only 404 if (!SingleTy->isSignedIntegerOrEnumerationType()) 405 return std::nullopt; 406 407 SymbolRef RSym = Rhs.getAsSymbol(); 408 if (!RSym || RSym->getType() != SingleTy) 409 return std::nullopt; 410 411 BasicValueFactory &BV = State->getBasicVals(); 412 llvm::APSInt LInt, RInt; 413 std::tie(LSym, LInt) = decomposeSymbol(LSym, BV); 414 std::tie(RSym, RInt) = decomposeSymbol(RSym, BV); 415 if (!shouldRearrange(State, Op, LSym, LInt, SingleTy) || 416 !shouldRearrange(State, Op, RSym, RInt, SingleTy)) 417 return std::nullopt; 418 419 // We know that no overflows can occur anymore. 420 return doRearrangeUnchecked(State, Op, LSym, LInt, RSym, RInt); 421 } 422 423 SVal SimpleSValBuilder::evalBinOpNN(ProgramStateRef state, 424 BinaryOperator::Opcode op, 425 NonLoc lhs, NonLoc rhs, 426 QualType resultTy) { 427 NonLoc InputLHS = lhs; 428 NonLoc InputRHS = rhs; 429 430 // Constraints may have changed since the creation of a bound SVal. Check if 431 // the values can be simplified based on those new constraints. 432 SVal simplifiedLhs = simplifySVal(state, lhs); 433 SVal simplifiedRhs = simplifySVal(state, rhs); 434 if (auto simplifiedLhsAsNonLoc = simplifiedLhs.getAs<NonLoc>()) 435 lhs = *simplifiedLhsAsNonLoc; 436 if (auto simplifiedRhsAsNonLoc = simplifiedRhs.getAs<NonLoc>()) 437 rhs = *simplifiedRhsAsNonLoc; 438 439 // Handle trivial case where left-side and right-side are the same. 440 if (lhs == rhs) 441 switch (op) { 442 default: 443 break; 444 case BO_EQ: 445 case BO_LE: 446 case BO_GE: 447 return makeTruthVal(true, resultTy); 448 case BO_LT: 449 case BO_GT: 450 case BO_NE: 451 return makeTruthVal(false, resultTy); 452 case BO_Xor: 453 case BO_Sub: 454 if (resultTy->isIntegralOrEnumerationType()) 455 return makeIntVal(0, resultTy); 456 return evalCast(makeIntVal(0, /*isUnsigned=*/false), resultTy, 457 QualType{}); 458 case BO_Or: 459 case BO_And: 460 return evalCast(lhs, resultTy, QualType{}); 461 } 462 463 while (true) { 464 switch (lhs.getKind()) { 465 default: 466 return makeSymExprValNN(op, lhs, rhs, resultTy); 467 case nonloc::PointerToMemberKind: { 468 assert(rhs.getKind() == nonloc::PointerToMemberKind && 469 "Both SVals should have pointer-to-member-type"); 470 auto LPTM = lhs.castAs<nonloc::PointerToMember>(), 471 RPTM = rhs.castAs<nonloc::PointerToMember>(); 472 auto LPTMD = LPTM.getPTMData(), RPTMD = RPTM.getPTMData(); 473 switch (op) { 474 case BO_EQ: 475 return makeTruthVal(LPTMD == RPTMD, resultTy); 476 case BO_NE: 477 return makeTruthVal(LPTMD != RPTMD, resultTy); 478 default: 479 return UnknownVal(); 480 } 481 } 482 case nonloc::LocAsIntegerKind: { 483 Loc lhsL = lhs.castAs<nonloc::LocAsInteger>().getLoc(); 484 switch (rhs.getKind()) { 485 case nonloc::LocAsIntegerKind: 486 // FIXME: at the moment the implementation 487 // of modeling "pointers as integers" is not complete. 488 if (!BinaryOperator::isComparisonOp(op)) 489 return UnknownVal(); 490 return evalBinOpLL(state, op, lhsL, 491 rhs.castAs<nonloc::LocAsInteger>().getLoc(), 492 resultTy); 493 case nonloc::ConcreteIntKind: { 494 // FIXME: at the moment the implementation 495 // of modeling "pointers as integers" is not complete. 496 if (!BinaryOperator::isComparisonOp(op)) 497 return UnknownVal(); 498 // Transform the integer into a location and compare. 499 // FIXME: This only makes sense for comparisons. If we want to, say, 500 // add 1 to a LocAsInteger, we'd better unpack the Loc and add to it, 501 // then pack it back into a LocAsInteger. 502 llvm::APSInt i = rhs.castAs<nonloc::ConcreteInt>().getValue(); 503 // If the region has a symbolic base, pay attention to the type; it 504 // might be coming from a non-default address space. For non-symbolic 505 // regions it doesn't matter that much because such comparisons would 506 // most likely evaluate to concrete false anyway. FIXME: We might 507 // still need to handle the non-comparison case. 508 if (SymbolRef lSym = lhs.getAsLocSymbol(true)) 509 BasicVals.getAPSIntType(lSym->getType()).apply(i); 510 else 511 BasicVals.getAPSIntType(Context.VoidPtrTy).apply(i); 512 return evalBinOpLL(state, op, lhsL, makeLoc(i), resultTy); 513 } 514 default: 515 switch (op) { 516 case BO_EQ: 517 return makeTruthVal(false, resultTy); 518 case BO_NE: 519 return makeTruthVal(true, resultTy); 520 default: 521 // This case also handles pointer arithmetic. 522 return makeSymExprValNN(op, InputLHS, InputRHS, resultTy); 523 } 524 } 525 } 526 case nonloc::ConcreteIntKind: { 527 llvm::APSInt LHSValue = lhs.castAs<nonloc::ConcreteInt>().getValue(); 528 529 // If we're dealing with two known constants, just perform the operation. 530 if (const llvm::APSInt *KnownRHSValue = getConstValue(state, rhs)) { 531 llvm::APSInt RHSValue = *KnownRHSValue; 532 if (BinaryOperator::isComparisonOp(op)) { 533 // We're looking for a type big enough to compare the two values. 534 // FIXME: This is not correct. char + short will result in a promotion 535 // to int. Unfortunately we have lost types by this point. 536 APSIntType CompareType = std::max(APSIntType(LHSValue), 537 APSIntType(RHSValue)); 538 CompareType.apply(LHSValue); 539 CompareType.apply(RHSValue); 540 } else if (!BinaryOperator::isShiftOp(op)) { 541 APSIntType IntType = BasicVals.getAPSIntType(resultTy); 542 IntType.apply(LHSValue); 543 IntType.apply(RHSValue); 544 } 545 546 std::optional<APSIntPtr> Result = 547 BasicVals.evalAPSInt(op, LHSValue, RHSValue); 548 if (!Result) { 549 if (op == BO_Shl || op == BO_Shr) { 550 // FIXME: At this point the constant folding claims that the result 551 // of a bitwise shift is undefined. However, constant folding 552 // relies on the inaccurate type information that is stored in the 553 // bit size of APSInt objects, and if we reached this point, then 554 // the checker core.BitwiseShift already determined that the shift 555 // is valid (in a PreStmt callback, by querying the real type from 556 // the AST node). 557 // To avoid embarrassing false positives, let's just say that we 558 // don't know anything about the result of the shift. 559 return UnknownVal(); 560 } 561 return UndefinedVal(); 562 } 563 564 return nonloc::ConcreteInt(*Result); 565 } 566 567 // Swap the left and right sides and flip the operator if doing so 568 // allows us to better reason about the expression (this is a form 569 // of expression canonicalization). 570 // While we're at it, catch some special cases for non-commutative ops. 571 switch (op) { 572 case BO_LT: 573 case BO_GT: 574 case BO_LE: 575 case BO_GE: 576 op = BinaryOperator::reverseComparisonOp(op); 577 [[fallthrough]]; 578 case BO_EQ: 579 case BO_NE: 580 case BO_Add: 581 case BO_Mul: 582 case BO_And: 583 case BO_Xor: 584 case BO_Or: 585 std::swap(lhs, rhs); 586 continue; 587 case BO_Shr: 588 // (~0)>>a 589 if (LHSValue.isAllOnes() && LHSValue.isSigned()) 590 return evalCast(lhs, resultTy, QualType{}); 591 [[fallthrough]]; 592 case BO_Shl: 593 // 0<<a and 0>>a 594 if (LHSValue == 0) 595 return evalCast(lhs, resultTy, QualType{}); 596 return makeSymExprValNN(op, InputLHS, InputRHS, resultTy); 597 case BO_Div: 598 // 0 / x == 0 599 case BO_Rem: 600 // 0 % x == 0 601 if (LHSValue == 0) 602 return makeZeroVal(resultTy); 603 [[fallthrough]]; 604 default: 605 return makeSymExprValNN(op, InputLHS, InputRHS, resultTy); 606 } 607 } 608 case nonloc::SymbolValKind: { 609 // We only handle LHS as simple symbols or SymIntExprs. 610 SymbolRef Sym = lhs.castAs<nonloc::SymbolVal>().getSymbol(); 611 612 // LHS is a symbolic expression. 613 if (const SymIntExpr *symIntExpr = dyn_cast<SymIntExpr>(Sym)) { 614 615 // Is this a logical not? (!x is represented as x == 0.) 616 if (op == BO_EQ && rhs.isZeroConstant()) { 617 // We know how to negate certain expressions. Simplify them here. 618 619 BinaryOperator::Opcode opc = symIntExpr->getOpcode(); 620 switch (opc) { 621 default: 622 // We don't know how to negate this operation. 623 // Just handle it as if it were a normal comparison to 0. 624 break; 625 case BO_LAnd: 626 case BO_LOr: 627 llvm_unreachable("Logical operators handled by branching logic."); 628 case BO_Assign: 629 case BO_MulAssign: 630 case BO_DivAssign: 631 case BO_RemAssign: 632 case BO_AddAssign: 633 case BO_SubAssign: 634 case BO_ShlAssign: 635 case BO_ShrAssign: 636 case BO_AndAssign: 637 case BO_XorAssign: 638 case BO_OrAssign: 639 case BO_Comma: 640 llvm_unreachable("'=' and ',' operators handled by ExprEngine."); 641 case BO_PtrMemD: 642 case BO_PtrMemI: 643 llvm_unreachable("Pointer arithmetic not handled here."); 644 case BO_LT: 645 case BO_GT: 646 case BO_LE: 647 case BO_GE: 648 case BO_EQ: 649 case BO_NE: 650 assert(resultTy->isBooleanType() || 651 resultTy == getConditionType()); 652 assert(symIntExpr->getType()->isBooleanType() || 653 getContext().hasSameUnqualifiedType(symIntExpr->getType(), 654 getConditionType())); 655 // Negate the comparison and make a value. 656 opc = BinaryOperator::negateComparisonOp(opc); 657 return makeNonLoc(symIntExpr->getLHS(), opc, 658 symIntExpr->getRHS(), resultTy); 659 } 660 } 661 662 // For now, only handle expressions whose RHS is a constant. 663 if (const llvm::APSInt *RHSValue = getConstValue(state, rhs)) { 664 // If both the LHS and the current expression are additive, 665 // fold their constants and try again. 666 if (BinaryOperator::isAdditiveOp(op)) { 667 BinaryOperator::Opcode lop = symIntExpr->getOpcode(); 668 if (BinaryOperator::isAdditiveOp(lop)) { 669 // Convert the two constants to a common type, then combine them. 670 671 // resultTy may not be the best type to convert to, but it's 672 // probably the best choice in expressions with mixed type 673 // (such as x+1U+2LL). The rules for implicit conversions should 674 // choose a reasonable type to preserve the expression, and will 675 // at least match how the value is going to be used. 676 APSIntType IntType = BasicVals.getAPSIntType(resultTy); 677 const llvm::APSInt &first = IntType.convert(symIntExpr->getRHS()); 678 const llvm::APSInt &second = IntType.convert(*RHSValue); 679 680 // If the op and lop agrees, then we just need to 681 // sum the constants. Otherwise, we change to operation 682 // type if substraction would produce negative value 683 // (and cause overflow for unsigned integers), 684 // as consequence x+1U-10 produces x-9U, instead 685 // of x+4294967287U, that would be produced without this 686 // additional check. 687 std::optional<APSIntPtr> newRHS; 688 if (lop == op) { 689 newRHS = BasicVals.evalAPSInt(BO_Add, first, second); 690 } else if (first >= second) { 691 newRHS = BasicVals.evalAPSInt(BO_Sub, first, second); 692 op = lop; 693 } else { 694 newRHS = BasicVals.evalAPSInt(BO_Sub, second, first); 695 } 696 697 assert(newRHS && "Invalid operation despite common type!"); 698 rhs = nonloc::ConcreteInt(*newRHS); 699 lhs = nonloc::SymbolVal(symIntExpr->getLHS()); 700 continue; 701 } 702 } 703 704 // Otherwise, make a SymIntExpr out of the expression. 705 return MakeSymIntVal(symIntExpr, op, *RHSValue, resultTy); 706 } 707 } 708 709 // Is the RHS a constant? 710 if (const llvm::APSInt *RHSValue = getConstValue(state, rhs)) 711 return MakeSymIntVal(Sym, op, *RHSValue, resultTy); 712 713 if (std::optional<NonLoc> V = tryRearrange(state, op, lhs, rhs, resultTy)) 714 return *V; 715 716 // Give up -- this is not a symbolic expression we can handle. 717 return makeSymExprValNN(op, InputLHS, InputRHS, resultTy); 718 } 719 } 720 } 721 } 722 723 static SVal evalBinOpFieldRegionFieldRegion(const FieldRegion *LeftFR, 724 const FieldRegion *RightFR, 725 BinaryOperator::Opcode op, 726 QualType resultTy, 727 SimpleSValBuilder &SVB) { 728 // Only comparisons are meaningful here! 729 if (!BinaryOperator::isComparisonOp(op)) 730 return UnknownVal(); 731 732 // Next, see if the two FRs have the same super-region. 733 // FIXME: This doesn't handle casts yet, and simply stripping the casts 734 // doesn't help. 735 if (LeftFR->getSuperRegion() != RightFR->getSuperRegion()) 736 return UnknownVal(); 737 738 const FieldDecl *LeftFD = LeftFR->getDecl(); 739 const FieldDecl *RightFD = RightFR->getDecl(); 740 const RecordDecl *RD = LeftFD->getParent(); 741 742 // Make sure the two FRs are from the same kind of record. Just in case! 743 // FIXME: This is probably where inheritance would be a problem. 744 if (RD != RightFD->getParent()) 745 return UnknownVal(); 746 747 // We know for sure that the two fields are not the same, since that 748 // would have given us the same SVal. 749 if (op == BO_EQ) 750 return SVB.makeTruthVal(false, resultTy); 751 if (op == BO_NE) 752 return SVB.makeTruthVal(true, resultTy); 753 754 // Iterate through the fields and see which one comes first. 755 // [C99 6.7.2.1.13] "Within a structure object, the non-bit-field 756 // members and the units in which bit-fields reside have addresses that 757 // increase in the order in which they are declared." 758 bool leftFirst = (op == BO_LT || op == BO_LE); 759 for (const auto *I : RD->fields()) { 760 if (I == LeftFD) 761 return SVB.makeTruthVal(leftFirst, resultTy); 762 if (I == RightFD) 763 return SVB.makeTruthVal(!leftFirst, resultTy); 764 } 765 766 llvm_unreachable("Fields not found in parent record's definition"); 767 } 768 769 // This is used in debug builds only for now because some downstream users 770 // may hit this assert in their subsequent merges. 771 // There are still places in the analyzer where equal bitwidth Locs 772 // are compared, and need to be found and corrected. Recent previous fixes have 773 // addressed the known problems of making NULLs with specific bitwidths 774 // for Loc comparisons along with deprecation of APIs for the same purpose. 775 // 776 static void assertEqualBitWidths(ProgramStateRef State, Loc RhsLoc, 777 Loc LhsLoc) { 778 // Implements a "best effort" check for RhsLoc and LhsLoc bit widths 779 ASTContext &Ctx = State->getStateManager().getContext(); 780 uint64_t RhsBitwidth = 781 RhsLoc.getType(Ctx).isNull() ? 0 : Ctx.getTypeSize(RhsLoc.getType(Ctx)); 782 uint64_t LhsBitwidth = 783 LhsLoc.getType(Ctx).isNull() ? 0 : Ctx.getTypeSize(LhsLoc.getType(Ctx)); 784 if (RhsBitwidth && LhsBitwidth && (LhsLoc.getKind() == RhsLoc.getKind())) { 785 assert(RhsBitwidth == LhsBitwidth && 786 "RhsLoc and LhsLoc bitwidth must be same!"); 787 } 788 } 789 790 // FIXME: all this logic will change if/when we have MemRegion::getLocation(). 791 SVal SimpleSValBuilder::evalBinOpLL(ProgramStateRef state, 792 BinaryOperator::Opcode op, 793 Loc lhs, Loc rhs, 794 QualType resultTy) { 795 796 // Assert that bitwidth of lhs and rhs are the same. 797 // This can happen if two different address spaces are used, 798 // and the bitwidths of the address spaces are different. 799 // See LIT case clang/test/Analysis/cstring-checker-addressspace.c 800 // FIXME: See comment above in the function assertEqualBitWidths 801 assertEqualBitWidths(state, rhs, lhs); 802 803 // Only comparisons and subtractions are valid operations on two pointers. 804 // See [C99 6.5.5 through 6.5.14] or [C++0x 5.6 through 5.15]. 805 // However, if a pointer is casted to an integer, evalBinOpNN may end up 806 // calling this function with another operation (PR7527). We don't attempt to 807 // model this for now, but it could be useful, particularly when the 808 // "location" is actually an integer value that's been passed through a void*. 809 if (!(BinaryOperator::isComparisonOp(op) || op == BO_Sub)) 810 return UnknownVal(); 811 812 // Special cases for when both sides are identical. 813 if (lhs == rhs) { 814 switch (op) { 815 default: 816 llvm_unreachable("Unimplemented operation for two identical values"); 817 case BO_Sub: 818 return makeZeroVal(resultTy); 819 case BO_EQ: 820 case BO_LE: 821 case BO_GE: 822 return makeTruthVal(true, resultTy); 823 case BO_NE: 824 case BO_LT: 825 case BO_GT: 826 return makeTruthVal(false, resultTy); 827 } 828 } 829 830 switch (lhs.getKind()) { 831 default: 832 llvm_unreachable("Ordering not implemented for this Loc."); 833 834 case loc::GotoLabelKind: 835 // The only thing we know about labels is that they're non-null. 836 if (rhs.isZeroConstant()) { 837 switch (op) { 838 default: 839 break; 840 case BO_Sub: 841 return evalCast(lhs, resultTy, QualType{}); 842 case BO_EQ: 843 case BO_LE: 844 case BO_LT: 845 return makeTruthVal(false, resultTy); 846 case BO_NE: 847 case BO_GT: 848 case BO_GE: 849 return makeTruthVal(true, resultTy); 850 } 851 } 852 // There may be two labels for the same location, and a function region may 853 // have the same address as a label at the start of the function (depending 854 // on the ABI). 855 // FIXME: we can probably do a comparison against other MemRegions, though. 856 // FIXME: is there a way to tell if two labels refer to the same location? 857 return UnknownVal(); 858 859 case loc::ConcreteIntKind: { 860 auto L = lhs.castAs<loc::ConcreteInt>(); 861 862 // If one of the operands is a symbol and the other is a constant, 863 // build an expression for use by the constraint manager. 864 if (SymbolRef rSym = rhs.getAsLocSymbol()) { 865 if (op == BO_Cmp) 866 return UnknownVal(); 867 868 if (!BinaryOperator::isComparisonOp(op)) 869 return makeNonLoc(L.getValue(), op, rSym, resultTy); 870 871 op = BinaryOperator::reverseComparisonOp(op); 872 return makeNonLoc(rSym, op, L.getValue(), resultTy); 873 } 874 875 // If both operands are constants, just perform the operation. 876 if (std::optional<loc::ConcreteInt> rInt = rhs.getAs<loc::ConcreteInt>()) { 877 assert(BinaryOperator::isComparisonOp(op) || op == BO_Sub); 878 879 if (std::optional<APSIntPtr> ResultInt = 880 BasicVals.evalAPSInt(op, L.getValue(), rInt->getValue())) 881 return evalCast(nonloc::ConcreteInt(*ResultInt), resultTy, QualType{}); 882 return UnknownVal(); 883 } 884 885 // Special case comparisons against NULL. 886 // This must come after the test if the RHS is a symbol, which is used to 887 // build constraints. The address of any non-symbolic region is guaranteed 888 // to be non-NULL, as is any label. 889 assert((isa<loc::MemRegionVal, loc::GotoLabel>(rhs))); 890 if (lhs.isZeroConstant()) { 891 switch (op) { 892 default: 893 break; 894 case BO_EQ: 895 case BO_GT: 896 case BO_GE: 897 return makeTruthVal(false, resultTy); 898 case BO_NE: 899 case BO_LT: 900 case BO_LE: 901 return makeTruthVal(true, resultTy); 902 } 903 } 904 905 // Comparing an arbitrary integer to a region or label address is 906 // completely unknowable. 907 return UnknownVal(); 908 } 909 case loc::MemRegionValKind: { 910 if (std::optional<loc::ConcreteInt> rInt = rhs.getAs<loc::ConcreteInt>()) { 911 // If one of the operands is a symbol and the other is a constant, 912 // build an expression for use by the constraint manager. 913 if (SymbolRef lSym = lhs.getAsLocSymbol(true)) { 914 if (BinaryOperator::isComparisonOp(op)) 915 return MakeSymIntVal(lSym, op, rInt->getValue(), resultTy); 916 return UnknownVal(); 917 } 918 // Special case comparisons to NULL. 919 // This must come after the test if the LHS is a symbol, which is used to 920 // build constraints. The address of any non-symbolic region is guaranteed 921 // to be non-NULL. 922 if (rInt->isZeroConstant()) { 923 if (op == BO_Sub) 924 return evalCast(lhs, resultTy, QualType{}); 925 926 if (BinaryOperator::isComparisonOp(op)) { 927 QualType boolType = getContext().BoolTy; 928 NonLoc l = evalCast(lhs, boolType, QualType{}).castAs<NonLoc>(); 929 NonLoc r = makeTruthVal(false, boolType).castAs<NonLoc>(); 930 return evalBinOpNN(state, op, l, r, resultTy); 931 } 932 } 933 934 // Comparing a region to an arbitrary integer is completely unknowable. 935 return UnknownVal(); 936 } 937 938 // Get both values as regions, if possible. 939 const MemRegion *LeftMR = lhs.getAsRegion(); 940 assert(LeftMR && "MemRegionValKind SVal doesn't have a region!"); 941 942 const MemRegion *RightMR = rhs.getAsRegion(); 943 if (!RightMR) 944 // The RHS is probably a label, which in theory could address a region. 945 // FIXME: we can probably make a more useful statement about non-code 946 // regions, though. 947 return UnknownVal(); 948 949 const MemRegion *LeftBase = LeftMR->getBaseRegion(); 950 const MemRegion *RightBase = RightMR->getBaseRegion(); 951 const MemSpaceRegion *LeftMS = LeftBase->getMemorySpace(); 952 const MemSpaceRegion *RightMS = RightBase->getMemorySpace(); 953 const MemSpaceRegion *UnknownMS = MemMgr.getUnknownRegion(); 954 955 // If the two regions are from different known memory spaces they cannot be 956 // equal. Also, assume that no symbolic region (whose memory space is 957 // unknown) is on the stack. 958 if (LeftMS != RightMS && 959 ((LeftMS != UnknownMS && RightMS != UnknownMS) || 960 (isa<StackSpaceRegion>(LeftMS) || isa<StackSpaceRegion>(RightMS)))) { 961 switch (op) { 962 default: 963 return UnknownVal(); 964 case BO_EQ: 965 return makeTruthVal(false, resultTy); 966 case BO_NE: 967 return makeTruthVal(true, resultTy); 968 } 969 } 970 971 // If both values wrap regions, see if they're from different base regions. 972 // Note, heap base symbolic regions are assumed to not alias with 973 // each other; for example, we assume that malloc returns different address 974 // on each invocation. 975 // FIXME: ObjC object pointers always reside on the heap, but currently 976 // we treat their memory space as unknown, because symbolic pointers 977 // to ObjC objects may alias. There should be a way to construct 978 // possibly-aliasing heap-based regions. For instance, MacOSXApiChecker 979 // guesses memory space for ObjC object pointers manually instead of 980 // relying on us. 981 if (LeftBase != RightBase && 982 ((!isa<SymbolicRegion>(LeftBase) && !isa<SymbolicRegion>(RightBase)) || 983 (isa<HeapSpaceRegion>(LeftMS) || isa<HeapSpaceRegion>(RightMS))) ){ 984 switch (op) { 985 default: 986 return UnknownVal(); 987 case BO_EQ: 988 return makeTruthVal(false, resultTy); 989 case BO_NE: 990 return makeTruthVal(true, resultTy); 991 } 992 } 993 994 // Handle special cases for when both regions are element regions. 995 const ElementRegion *RightER = dyn_cast<ElementRegion>(RightMR); 996 const ElementRegion *LeftER = dyn_cast<ElementRegion>(LeftMR); 997 if (RightER && LeftER) { 998 // Next, see if the two ERs have the same super-region and matching types. 999 // FIXME: This should do something useful even if the types don't match, 1000 // though if both indexes are constant the RegionRawOffset path will 1001 // give the correct answer. 1002 if (LeftER->getSuperRegion() == RightER->getSuperRegion() && 1003 LeftER->getElementType() == RightER->getElementType()) { 1004 // Get the left index and cast it to the correct type. 1005 // If the index is unknown or undefined, bail out here. 1006 SVal LeftIndexVal = LeftER->getIndex(); 1007 std::optional<NonLoc> LeftIndex = LeftIndexVal.getAs<NonLoc>(); 1008 if (!LeftIndex) 1009 return UnknownVal(); 1010 LeftIndexVal = evalCast(*LeftIndex, ArrayIndexTy, QualType{}); 1011 LeftIndex = LeftIndexVal.getAs<NonLoc>(); 1012 if (!LeftIndex) 1013 return UnknownVal(); 1014 1015 // Do the same for the right index. 1016 SVal RightIndexVal = RightER->getIndex(); 1017 std::optional<NonLoc> RightIndex = RightIndexVal.getAs<NonLoc>(); 1018 if (!RightIndex) 1019 return UnknownVal(); 1020 RightIndexVal = evalCast(*RightIndex, ArrayIndexTy, QualType{}); 1021 RightIndex = RightIndexVal.getAs<NonLoc>(); 1022 if (!RightIndex) 1023 return UnknownVal(); 1024 1025 // Actually perform the operation. 1026 // evalBinOpNN expects the two indexes to already be the right type. 1027 return evalBinOpNN(state, op, *LeftIndex, *RightIndex, resultTy); 1028 } 1029 } 1030 1031 // Special handling of the FieldRegions, even with symbolic offsets. 1032 const FieldRegion *RightFR = dyn_cast<FieldRegion>(RightMR); 1033 const FieldRegion *LeftFR = dyn_cast<FieldRegion>(LeftMR); 1034 if (RightFR && LeftFR) { 1035 SVal R = evalBinOpFieldRegionFieldRegion(LeftFR, RightFR, op, resultTy, 1036 *this); 1037 if (!R.isUnknown()) 1038 return R; 1039 } 1040 1041 // Compare the regions using the raw offsets. 1042 RegionOffset LeftOffset = LeftMR->getAsOffset(); 1043 RegionOffset RightOffset = RightMR->getAsOffset(); 1044 1045 if (LeftOffset.getRegion() != nullptr && 1046 LeftOffset.getRegion() == RightOffset.getRegion() && 1047 !LeftOffset.hasSymbolicOffset() && !RightOffset.hasSymbolicOffset()) { 1048 int64_t left = LeftOffset.getOffset(); 1049 int64_t right = RightOffset.getOffset(); 1050 1051 switch (op) { 1052 default: 1053 return UnknownVal(); 1054 case BO_LT: 1055 return makeTruthVal(left < right, resultTy); 1056 case BO_GT: 1057 return makeTruthVal(left > right, resultTy); 1058 case BO_LE: 1059 return makeTruthVal(left <= right, resultTy); 1060 case BO_GE: 1061 return makeTruthVal(left >= right, resultTy); 1062 case BO_EQ: 1063 return makeTruthVal(left == right, resultTy); 1064 case BO_NE: 1065 return makeTruthVal(left != right, resultTy); 1066 } 1067 } 1068 1069 // At this point we're not going to get a good answer, but we can try 1070 // conjuring an expression instead. 1071 SymbolRef LHSSym = lhs.getAsLocSymbol(); 1072 SymbolRef RHSSym = rhs.getAsLocSymbol(); 1073 if (LHSSym && RHSSym) 1074 return makeNonLoc(LHSSym, op, RHSSym, resultTy); 1075 1076 // If we get here, we have no way of comparing the regions. 1077 return UnknownVal(); 1078 } 1079 } 1080 } 1081 1082 SVal SimpleSValBuilder::evalBinOpLN(ProgramStateRef state, 1083 BinaryOperator::Opcode op, Loc lhs, 1084 NonLoc rhs, QualType resultTy) { 1085 if (op >= BO_PtrMemD && op <= BO_PtrMemI) { 1086 if (auto PTMSV = rhs.getAs<nonloc::PointerToMember>()) { 1087 if (PTMSV->isNullMemberPointer()) 1088 return UndefinedVal(); 1089 1090 auto getFieldLValue = [&](const auto *FD) -> SVal { 1091 SVal Result = lhs; 1092 1093 for (const auto &I : *PTMSV) 1094 Result = StateMgr.getStoreManager().evalDerivedToBase( 1095 Result, I->getType(), I->isVirtual()); 1096 1097 return state->getLValue(FD, Result); 1098 }; 1099 1100 if (const auto *FD = PTMSV->getDeclAs<FieldDecl>()) { 1101 return getFieldLValue(FD); 1102 } 1103 if (const auto *FD = PTMSV->getDeclAs<IndirectFieldDecl>()) { 1104 return getFieldLValue(FD); 1105 } 1106 } 1107 1108 return rhs; 1109 } 1110 1111 assert(!BinaryOperator::isComparisonOp(op) && 1112 "arguments to comparison ops must be of the same type"); 1113 1114 // Special case: rhs is a zero constant. 1115 if (rhs.isZeroConstant()) 1116 return lhs; 1117 1118 // Perserve the null pointer so that it can be found by the DerefChecker. 1119 if (lhs.isZeroConstant()) 1120 return lhs; 1121 1122 // We are dealing with pointer arithmetic. 1123 1124 // Handle pointer arithmetic on constant values. 1125 if (std::optional<nonloc::ConcreteInt> rhsInt = 1126 rhs.getAs<nonloc::ConcreteInt>()) { 1127 if (std::optional<loc::ConcreteInt> lhsInt = 1128 lhs.getAs<loc::ConcreteInt>()) { 1129 const llvm::APSInt &leftI = lhsInt->getValue(); 1130 assert(leftI.isUnsigned()); 1131 llvm::APSInt rightI(rhsInt->getValue(), /* isUnsigned */ true); 1132 1133 // Convert the bitwidth of rightI. This should deal with overflow 1134 // since we are dealing with concrete values. 1135 rightI = rightI.extOrTrunc(leftI.getBitWidth()); 1136 1137 // Offset the increment by the pointer size. 1138 llvm::APSInt Multiplicand(rightI.getBitWidth(), /* isUnsigned */ true); 1139 QualType pointeeType = resultTy->getPointeeType(); 1140 Multiplicand = getContext().getTypeSizeInChars(pointeeType).getQuantity(); 1141 rightI *= Multiplicand; 1142 1143 // Compute the adjusted pointer. 1144 switch (op) { 1145 case BO_Add: 1146 rightI = leftI + rightI; 1147 break; 1148 case BO_Sub: 1149 rightI = leftI - rightI; 1150 break; 1151 default: 1152 llvm_unreachable("Invalid pointer arithmetic operation"); 1153 } 1154 return loc::ConcreteInt(getBasicValueFactory().getValue(rightI)); 1155 } 1156 } 1157 1158 // Handle cases where 'lhs' is a region. 1159 if (const MemRegion *region = lhs.getAsRegion()) { 1160 rhs = convertToArrayIndex(rhs).castAs<NonLoc>(); 1161 SVal index = UnknownVal(); 1162 const SubRegion *superR = nullptr; 1163 // We need to know the type of the pointer in order to add an integer to it. 1164 // Depending on the type, different amount of bytes is added. 1165 QualType elementType; 1166 1167 if (const ElementRegion *elemReg = dyn_cast<ElementRegion>(region)) { 1168 assert(op == BO_Add || op == BO_Sub); 1169 index = evalBinOpNN(state, op, elemReg->getIndex(), rhs, 1170 getArrayIndexType()); 1171 superR = cast<SubRegion>(elemReg->getSuperRegion()); 1172 elementType = elemReg->getElementType(); 1173 } 1174 else if (isa<SubRegion>(region)) { 1175 assert(op == BO_Add || op == BO_Sub); 1176 index = (op == BO_Add) ? rhs : evalMinus(rhs); 1177 superR = cast<SubRegion>(region); 1178 // TODO: Is this actually reliable? Maybe improving our MemRegion 1179 // hierarchy to provide typed regions for all non-void pointers would be 1180 // better. For instance, we cannot extend this towards LocAsInteger 1181 // operations, where result type of the expression is integer. 1182 if (resultTy->isAnyPointerType()) 1183 elementType = resultTy->getPointeeType(); 1184 } 1185 1186 // Represent arithmetic on void pointers as arithmetic on char pointers. 1187 // It is fine when a TypedValueRegion of char value type represents 1188 // a void pointer. Note that arithmetic on void pointers is a GCC extension. 1189 if (elementType->isVoidType()) 1190 elementType = getContext().CharTy; 1191 1192 if (std::optional<NonLoc> indexV = index.getAs<NonLoc>()) { 1193 return loc::MemRegionVal(MemMgr.getElementRegion(elementType, *indexV, 1194 superR, getContext())); 1195 } 1196 } 1197 return UnknownVal(); 1198 } 1199 1200 const llvm::APSInt *SimpleSValBuilder::getConstValue(ProgramStateRef state, 1201 SVal V) { 1202 if (const llvm::APSInt *Res = getConcreteValue(V)) 1203 return Res; 1204 1205 if (SymbolRef Sym = V.getAsSymbol()) 1206 return state->getConstraintManager().getSymVal(state, Sym); 1207 1208 return nullptr; 1209 } 1210 1211 const llvm::APSInt *SimpleSValBuilder::getConcreteValue(SVal V) { 1212 if (std::optional<loc::ConcreteInt> X = V.getAs<loc::ConcreteInt>()) 1213 return X->getValue().get(); 1214 1215 if (std::optional<nonloc::ConcreteInt> X = V.getAs<nonloc::ConcreteInt>()) 1216 return X->getValue().get(); 1217 1218 return nullptr; 1219 } 1220 1221 const llvm::APSInt *SimpleSValBuilder::getKnownValue(ProgramStateRef state, 1222 SVal V) { 1223 return getConstValue(state, simplifySVal(state, V)); 1224 } 1225 1226 const llvm::APSInt *SimpleSValBuilder::getMinValue(ProgramStateRef state, 1227 SVal V) { 1228 V = simplifySVal(state, V); 1229 1230 if (const llvm::APSInt *Res = getConcreteValue(V)) 1231 return Res; 1232 1233 if (SymbolRef Sym = V.getAsSymbol()) 1234 return state->getConstraintManager().getSymMinVal(state, Sym); 1235 1236 return nullptr; 1237 } 1238 1239 const llvm::APSInt *SimpleSValBuilder::getMaxValue(ProgramStateRef state, 1240 SVal V) { 1241 V = simplifySVal(state, V); 1242 1243 if (const llvm::APSInt *Res = getConcreteValue(V)) 1244 return Res; 1245 1246 if (SymbolRef Sym = V.getAsSymbol()) 1247 return state->getConstraintManager().getSymMaxVal(state, Sym); 1248 1249 return nullptr; 1250 } 1251 1252 SVal SimpleSValBuilder::simplifyUntilFixpoint(ProgramStateRef State, SVal Val) { 1253 SVal SimplifiedVal = simplifySValOnce(State, Val); 1254 while (SimplifiedVal != Val) { 1255 Val = SimplifiedVal; 1256 SimplifiedVal = simplifySValOnce(State, Val); 1257 } 1258 return SimplifiedVal; 1259 } 1260 1261 SVal SimpleSValBuilder::simplifySVal(ProgramStateRef State, SVal V) { 1262 return simplifyUntilFixpoint(State, V); 1263 } 1264 1265 SVal SimpleSValBuilder::simplifySValOnce(ProgramStateRef State, SVal V) { 1266 // For now, this function tries to constant-fold symbols inside a 1267 // nonloc::SymbolVal, and does nothing else. More simplifications should 1268 // be possible, such as constant-folding an index in an ElementRegion. 1269 1270 class Simplifier : public FullSValVisitor<Simplifier, SVal> { 1271 ProgramStateRef State; 1272 SValBuilder &SVB; 1273 1274 // Cache results for the lifetime of the Simplifier. Results change every 1275 // time new constraints are added to the program state, which is the whole 1276 // point of simplifying, and for that very reason it's pointless to maintain 1277 // the same cache for the duration of the whole analysis. 1278 llvm::DenseMap<SymbolRef, SVal> Cached; 1279 1280 static bool isUnchanged(SymbolRef Sym, SVal Val) { 1281 return Sym == Val.getAsSymbol(); 1282 } 1283 1284 SVal cache(SymbolRef Sym, SVal V) { 1285 Cached[Sym] = V; 1286 return V; 1287 } 1288 1289 SVal skip(SymbolRef Sym) { 1290 return cache(Sym, SVB.makeSymbolVal(Sym)); 1291 } 1292 1293 // Return the known const value for the Sym if available, or return Undef 1294 // otherwise. 1295 SVal getConst(SymbolRef Sym) { 1296 const llvm::APSInt *Const = 1297 State->getConstraintManager().getSymVal(State, Sym); 1298 if (Const) 1299 return Loc::isLocType(Sym->getType()) ? (SVal)SVB.makeIntLocVal(*Const) 1300 : (SVal)SVB.makeIntVal(*Const); 1301 return UndefinedVal(); 1302 } 1303 1304 SVal getConstOrVisit(SymbolRef Sym) { 1305 const SVal Ret = getConst(Sym); 1306 if (Ret.isUndef()) 1307 return Visit(Sym); 1308 return Ret; 1309 } 1310 1311 public: 1312 Simplifier(ProgramStateRef State) 1313 : State(State), SVB(State->getStateManager().getSValBuilder()) {} 1314 1315 SVal VisitSymbolData(const SymbolData *S) { 1316 // No cache here. 1317 if (const llvm::APSInt *I = 1318 State->getConstraintManager().getSymVal(State, S)) 1319 return Loc::isLocType(S->getType()) ? (SVal)SVB.makeIntLocVal(*I) 1320 : (SVal)SVB.makeIntVal(*I); 1321 return SVB.makeSymbolVal(S); 1322 } 1323 1324 SVal VisitSymIntExpr(const SymIntExpr *S) { 1325 auto I = Cached.find(S); 1326 if (I != Cached.end()) 1327 return I->second; 1328 1329 SVal LHS = getConstOrVisit(S->getLHS()); 1330 if (isUnchanged(S->getLHS(), LHS)) 1331 return skip(S); 1332 1333 SVal RHS; 1334 // By looking at the APSInt in the right-hand side of S, we cannot 1335 // figure out if it should be treated as a Loc or as a NonLoc. 1336 // So make our guess by recalling that we cannot multiply pointers 1337 // or compare a pointer to an integer. 1338 if (Loc::isLocType(S->getLHS()->getType()) && 1339 BinaryOperator::isComparisonOp(S->getOpcode())) { 1340 // The usual conversion of $sym to &SymRegion{$sym}, as they have 1341 // the same meaning for Loc-type symbols, but the latter form 1342 // is preferred in SVal computations for being Loc itself. 1343 if (SymbolRef Sym = LHS.getAsSymbol()) { 1344 assert(Loc::isLocType(Sym->getType())); 1345 LHS = SVB.makeLoc(Sym); 1346 } 1347 RHS = SVB.makeIntLocVal(S->getRHS()); 1348 } else { 1349 RHS = SVB.makeIntVal(S->getRHS()); 1350 } 1351 1352 return cache( 1353 S, SVB.evalBinOp(State, S->getOpcode(), LHS, RHS, S->getType())); 1354 } 1355 1356 SVal VisitIntSymExpr(const IntSymExpr *S) { 1357 auto I = Cached.find(S); 1358 if (I != Cached.end()) 1359 return I->second; 1360 1361 SVal RHS = getConstOrVisit(S->getRHS()); 1362 if (isUnchanged(S->getRHS(), RHS)) 1363 return skip(S); 1364 1365 SVal LHS = SVB.makeIntVal(S->getLHS()); 1366 return cache( 1367 S, SVB.evalBinOp(State, S->getOpcode(), LHS, RHS, S->getType())); 1368 } 1369 1370 SVal VisitSymSymExpr(const SymSymExpr *S) { 1371 auto I = Cached.find(S); 1372 if (I != Cached.end()) 1373 return I->second; 1374 1375 // For now don't try to simplify mixed Loc/NonLoc expressions 1376 // because they often appear from LocAsInteger operations 1377 // and we don't know how to combine a LocAsInteger 1378 // with a concrete value. 1379 if (Loc::isLocType(S->getLHS()->getType()) != 1380 Loc::isLocType(S->getRHS()->getType())) 1381 return skip(S); 1382 1383 SVal LHS = getConstOrVisit(S->getLHS()); 1384 SVal RHS = getConstOrVisit(S->getRHS()); 1385 1386 if (isUnchanged(S->getLHS(), LHS) && isUnchanged(S->getRHS(), RHS)) 1387 return skip(S); 1388 1389 return cache( 1390 S, SVB.evalBinOp(State, S->getOpcode(), LHS, RHS, S->getType())); 1391 } 1392 1393 SVal VisitSymbolCast(const SymbolCast *S) { 1394 auto I = Cached.find(S); 1395 if (I != Cached.end()) 1396 return I->second; 1397 const SymExpr *OpSym = S->getOperand(); 1398 SVal OpVal = getConstOrVisit(OpSym); 1399 if (isUnchanged(OpSym, OpVal)) 1400 return skip(S); 1401 1402 return cache(S, SVB.evalCast(OpVal, S->getType(), OpSym->getType())); 1403 } 1404 1405 SVal VisitUnarySymExpr(const UnarySymExpr *S) { 1406 auto I = Cached.find(S); 1407 if (I != Cached.end()) 1408 return I->second; 1409 SVal Op = getConstOrVisit(S->getOperand()); 1410 if (isUnchanged(S->getOperand(), Op)) 1411 return skip(S); 1412 1413 return cache( 1414 S, SVB.evalUnaryOp(State, S->getOpcode(), Op, S->getType())); 1415 } 1416 1417 SVal VisitSymExpr(SymbolRef S) { return nonloc::SymbolVal(S); } 1418 1419 SVal VisitMemRegion(const MemRegion *R) { return loc::MemRegionVal(R); } 1420 1421 SVal VisitSymbolVal(nonloc::SymbolVal V) { 1422 // Simplification is much more costly than computing complexity. 1423 // For high complexity, it may be not worth it. 1424 return Visit(V.getSymbol()); 1425 } 1426 1427 SVal VisitSVal(SVal V) { return V; } 1428 }; 1429 1430 SVal SimplifiedV = Simplifier(State).Visit(V); 1431 return SimplifiedV; 1432 } 1433