xref: /llvm-project/clang/lib/StaticAnalyzer/Core/SimpleSValBuilder.cpp (revision dd331082e706d833ec3cc897176cd2d3a622ce76)
1 // SimpleSValBuilder.cpp - A basic SValBuilder -----------------------*- C++ -*-
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines SimpleSValBuilder, a basic implementation of SValBuilder.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntPtr.h"
14 #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
15 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
16 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
17 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
18 #include "clang/StaticAnalyzer/Core/PathSensitive/SValVisitor.h"
19 #include <optional>
20 
21 using namespace clang;
22 using namespace ento;
23 
24 namespace {
25 class SimpleSValBuilder : public SValBuilder {
26 
27   // Query the constraint manager whether the SVal has only one possible
28   // (integer) value. If that is the case, the value is returned. Otherwise,
29   // returns NULL.
30   // This is an implementation detail. Checkers should use `getKnownValue()`
31   // instead.
32   static const llvm::APSInt *getConstValue(ProgramStateRef state, SVal V);
33 
34   // Helper function that returns the value stored in a nonloc::ConcreteInt or
35   // loc::ConcreteInt.
36   static const llvm::APSInt *getConcreteValue(SVal V);
37 
38   // With one `simplifySValOnce` call, a compound symbols might collapse to
39   // simpler symbol tree that is still possible to further simplify. Thus, we
40   // do the simplification on a new symbol tree until we reach the simplest
41   // form, i.e. the fixpoint.
42   // Consider the following symbol `(b * b) * b * b` which has this tree:
43   //       *
44   //      / \
45   //     *   b
46   //    /  \
47   //   /    b
48   // (b * b)
49   // Now, if the `b * b == 1` new constraint is added then during the first
50   // iteration we have the following transformations:
51   //       *                  *
52   //      / \                / \
53   //     *   b     -->      b   b
54   //    /  \
55   //   /    b
56   //  1
57   // We need another iteration to reach the final result `1`.
58   SVal simplifyUntilFixpoint(ProgramStateRef State, SVal Val);
59 
60   // Recursively descends into symbolic expressions and replaces symbols
61   // with their known values (in the sense of the getConstValue() method).
62   // We traverse the symbol tree and query the constraint values for the
63   // sub-trees and if a value is a constant we do the constant folding.
64   SVal simplifySValOnce(ProgramStateRef State, SVal V);
65 
66 public:
67   SimpleSValBuilder(llvm::BumpPtrAllocator &alloc, ASTContext &context,
68                     ProgramStateManager &stateMgr)
69       : SValBuilder(alloc, context, stateMgr) {}
70   ~SimpleSValBuilder() override {}
71 
72   SVal evalBinOpNN(ProgramStateRef state, BinaryOperator::Opcode op,
73                    NonLoc lhs, NonLoc rhs, QualType resultTy) override;
74   SVal evalBinOpLL(ProgramStateRef state, BinaryOperator::Opcode op,
75                    Loc lhs, Loc rhs, QualType resultTy) override;
76   SVal evalBinOpLN(ProgramStateRef state, BinaryOperator::Opcode op,
77                    Loc lhs, NonLoc rhs, QualType resultTy) override;
78 
79   /// Evaluates a given SVal by recursively evaluating and
80   /// simplifying the children SVals. If the SVal has only one possible
81   /// (integer) value, that value is returned. Otherwise, returns NULL.
82   const llvm::APSInt *getKnownValue(ProgramStateRef state, SVal V) override;
83 
84   /// Evaluates a given SVal by recursively evaluating and simplifying the
85   /// children SVals, then returns its minimal possible (integer) value. If the
86   /// constraint manager cannot provide a meaningful answer, this returns NULL.
87   const llvm::APSInt *getMinValue(ProgramStateRef state, SVal V) override;
88 
89   /// Evaluates a given SVal by recursively evaluating and simplifying the
90   /// children SVals, then returns its maximal possible (integer) value. If the
91   /// constraint manager cannot provide a meaningful answer, this returns NULL.
92   const llvm::APSInt *getMaxValue(ProgramStateRef state, SVal V) override;
93 
94   SVal simplifySVal(ProgramStateRef State, SVal V) override;
95 
96   SVal MakeSymIntVal(const SymExpr *LHS, BinaryOperator::Opcode op,
97                      const llvm::APSInt &RHS, QualType resultTy);
98 };
99 } // end anonymous namespace
100 
101 SValBuilder *ento::createSimpleSValBuilder(llvm::BumpPtrAllocator &alloc,
102                                            ASTContext &context,
103                                            ProgramStateManager &stateMgr) {
104   return new SimpleSValBuilder(alloc, context, stateMgr);
105 }
106 
107 // Checks if the negation the value and flipping sign preserve
108 // the semantics on the operation in the resultType
109 static bool isNegationValuePreserving(const llvm::APSInt &Value,
110                                       APSIntType ResultType) {
111   const unsigned ValueBits = Value.getSignificantBits();
112   if (ValueBits == ResultType.getBitWidth()) {
113     // The value is the lowest negative value that is representable
114     // in signed integer with bitWith of result type. The
115     // negation is representable if resultType is unsigned.
116     return ResultType.isUnsigned();
117   }
118 
119   // If resultType bitWith is higher that number of bits required
120   // to represent RHS, the sign flip produce same value.
121   return ValueBits < ResultType.getBitWidth();
122 }
123 
124 //===----------------------------------------------------------------------===//
125 // Transfer function for binary operators.
126 //===----------------------------------------------------------------------===//
127 
128 SVal SimpleSValBuilder::MakeSymIntVal(const SymExpr *LHS,
129                                     BinaryOperator::Opcode op,
130                                     const llvm::APSInt &RHS,
131                                     QualType resultTy) {
132   bool isIdempotent = false;
133 
134   // Check for a few special cases with known reductions first.
135   switch (op) {
136   default:
137     // We can't reduce this case; just treat it normally.
138     break;
139   case BO_Mul:
140     // a*0 and a*1
141     if (RHS == 0)
142       return makeIntVal(0, resultTy);
143     else if (RHS == 1)
144       isIdempotent = true;
145     break;
146   case BO_Div:
147     // a/0 and a/1
148     if (RHS == 0)
149       // This is also handled elsewhere.
150       return UndefinedVal();
151     else if (RHS == 1)
152       isIdempotent = true;
153     break;
154   case BO_Rem:
155     // a%0 and a%1
156     if (RHS == 0)
157       // This is also handled elsewhere.
158       return UndefinedVal();
159     else if (RHS == 1)
160       return makeIntVal(0, resultTy);
161     break;
162   case BO_Add:
163   case BO_Sub:
164   case BO_Shl:
165   case BO_Shr:
166   case BO_Xor:
167     // a+0, a-0, a<<0, a>>0, a^0
168     if (RHS == 0)
169       isIdempotent = true;
170     break;
171   case BO_And:
172     // a&0 and a&(~0)
173     if (RHS == 0)
174       return makeIntVal(0, resultTy);
175     else if (RHS.isAllOnes())
176       isIdempotent = true;
177     break;
178   case BO_Or:
179     // a|0 and a|(~0)
180     if (RHS == 0)
181       isIdempotent = true;
182     else if (RHS.isAllOnes()) {
183       return nonloc::ConcreteInt(BasicVals.Convert(resultTy, RHS));
184     }
185     break;
186   }
187 
188   // Idempotent ops (like a*1) can still change the type of an expression.
189   // Wrap the LHS up in a NonLoc again and let evalCast do the
190   // dirty work.
191   if (isIdempotent)
192     return evalCast(nonloc::SymbolVal(LHS), resultTy, QualType{});
193 
194   // If we reach this point, the expression cannot be simplified.
195   // Make a SymbolVal for the entire expression, after converting the RHS.
196   std::optional<APSIntPtr> ConvertedRHS = BasicVals.getValue(RHS);
197   if (BinaryOperator::isComparisonOp(op)) {
198     // We're looking for a type big enough to compare the symbolic value
199     // with the given constant.
200     // FIXME: This is an approximation of Sema::UsualArithmeticConversions.
201     ASTContext &Ctx = getContext();
202     QualType SymbolType = LHS->getType();
203     uint64_t ValWidth = RHS.getBitWidth();
204     uint64_t TypeWidth = Ctx.getTypeSize(SymbolType);
205 
206     if (ValWidth < TypeWidth) {
207       // If the value is too small, extend it.
208       ConvertedRHS = BasicVals.Convert(SymbolType, RHS);
209     } else if (ValWidth == TypeWidth) {
210       // If the value is signed but the symbol is unsigned, do the comparison
211       // in unsigned space. [C99 6.3.1.8]
212       // (For the opposite case, the value is already unsigned.)
213       if (RHS.isSigned() && !SymbolType->isSignedIntegerOrEnumerationType())
214         ConvertedRHS = BasicVals.Convert(SymbolType, RHS);
215     }
216   } else if (BinaryOperator::isAdditiveOp(op) && RHS.isNegative()) {
217     // Change a+(-N) into a-N, and a-(-N) into a+N
218     // Adjust addition/subtraction of negative value, to
219     // subtraction/addition of the negated value.
220     APSIntType resultIntTy = BasicVals.getAPSIntType(resultTy);
221     if (isNegationValuePreserving(RHS, resultIntTy)) {
222       ConvertedRHS = BasicVals.getValue(-resultIntTy.convert(RHS));
223       op = (op == BO_Add) ? BO_Sub : BO_Add;
224     } else {
225       ConvertedRHS = BasicVals.Convert(resultTy, RHS);
226     }
227   } else
228     ConvertedRHS = BasicVals.Convert(resultTy, RHS);
229 
230   return makeNonLoc(LHS, op, *ConvertedRHS, resultTy);
231 }
232 
233 // See if Sym is known to be a relation Rel with Bound.
234 static bool isInRelation(BinaryOperator::Opcode Rel, SymbolRef Sym,
235                          llvm::APSInt Bound, ProgramStateRef State) {
236   SValBuilder &SVB = State->getStateManager().getSValBuilder();
237   BasicValueFactory &BV = SVB.getBasicValueFactory();
238   SVal Result = SVB.evalBinOpNN(State, Rel, nonloc::SymbolVal(Sym),
239                                 nonloc::ConcreteInt(BV.getValue(Bound)),
240                                 SVB.getConditionType());
241   if (auto DV = Result.getAs<DefinedSVal>()) {
242     return !State->assume(*DV, false);
243   }
244   return false;
245 }
246 
247 // See if Sym is known to be within [min/4, max/4], where min and max
248 // are the bounds of the symbol's integral type. With such symbols,
249 // some manipulations can be performed without the risk of overflow.
250 // assume() doesn't cause infinite recursion because we should be dealing
251 // with simpler symbols on every recursive call.
252 static bool isWithinConstantOverflowBounds(SymbolRef Sym,
253                                            ProgramStateRef State) {
254   SValBuilder &SVB = State->getStateManager().getSValBuilder();
255   BasicValueFactory &BV = SVB.getBasicValueFactory();
256 
257   QualType T = Sym->getType();
258   assert(T->isSignedIntegerOrEnumerationType() &&
259          "This only works with signed integers!");
260   APSIntType AT = BV.getAPSIntType(T);
261 
262   llvm::APSInt Max = AT.getMaxValue() / AT.getValue(4), Min = -Max;
263   return isInRelation(BO_LE, Sym, Max, State) &&
264          isInRelation(BO_GE, Sym, Min, State);
265 }
266 
267 // Same for the concrete integers: see if I is within [min/4, max/4].
268 static bool isWithinConstantOverflowBounds(llvm::APSInt I) {
269   APSIntType AT(I);
270   assert(!AT.isUnsigned() &&
271          "This only works with signed integers!");
272 
273   llvm::APSInt Max = AT.getMaxValue() / AT.getValue(4), Min = -Max;
274   return (I <= Max) && (I >= -Max);
275 }
276 
277 static std::pair<SymbolRef, APSIntPtr> decomposeSymbol(SymbolRef Sym,
278                                                        BasicValueFactory &BV) {
279   if (const auto *SymInt = dyn_cast<SymIntExpr>(Sym))
280     if (BinaryOperator::isAdditiveOp(SymInt->getOpcode()))
281       return std::make_pair(SymInt->getLHS(),
282                             (SymInt->getOpcode() == BO_Add)
283                                 ? BV.getValue(SymInt->getRHS())
284                                 : BV.getValue(-SymInt->getRHS()));
285 
286   // Fail to decompose: "reduce" the problem to the "$x + 0" case.
287   return std::make_pair(Sym, BV.getValue(0, Sym->getType()));
288 }
289 
290 // Simplify "(LSym + LInt) Op (RSym + RInt)" assuming all values are of the
291 // same signed integral type and no overflows occur (which should be checked
292 // by the caller).
293 static NonLoc doRearrangeUnchecked(ProgramStateRef State,
294                                    BinaryOperator::Opcode Op,
295                                    SymbolRef LSym, llvm::APSInt LInt,
296                                    SymbolRef RSym, llvm::APSInt RInt) {
297   SValBuilder &SVB = State->getStateManager().getSValBuilder();
298   BasicValueFactory &BV = SVB.getBasicValueFactory();
299   SymbolManager &SymMgr = SVB.getSymbolManager();
300 
301   QualType SymTy = LSym->getType();
302   assert(SymTy == RSym->getType() &&
303          "Symbols are not of the same type!");
304   assert(APSIntType(LInt) == BV.getAPSIntType(SymTy) &&
305          "Integers are not of the same type as symbols!");
306   assert(APSIntType(RInt) == BV.getAPSIntType(SymTy) &&
307          "Integers are not of the same type as symbols!");
308 
309   QualType ResultTy;
310   if (BinaryOperator::isComparisonOp(Op))
311     ResultTy = SVB.getConditionType();
312   else if (BinaryOperator::isAdditiveOp(Op))
313     ResultTy = SymTy;
314   else
315     llvm_unreachable("Operation not suitable for unchecked rearrangement!");
316 
317   if (LSym == RSym)
318     return SVB
319         .evalBinOpNN(State, Op, nonloc::ConcreteInt(BV.getValue(LInt)),
320                      nonloc::ConcreteInt(BV.getValue(RInt)), ResultTy)
321         .castAs<NonLoc>();
322 
323   SymbolRef ResultSym = nullptr;
324   BinaryOperator::Opcode ResultOp;
325   llvm::APSInt ResultInt;
326   if (BinaryOperator::isComparisonOp(Op)) {
327     // Prefer comparing to a non-negative number.
328     // FIXME: Maybe it'd be better to have consistency in
329     // "$x - $y" vs. "$y - $x" because those are solver's keys.
330     if (LInt > RInt) {
331       ResultSym = SymMgr.acquire<SymSymExpr>(RSym, BO_Sub, LSym, SymTy);
332       ResultOp = BinaryOperator::reverseComparisonOp(Op);
333       ResultInt = LInt - RInt; // Opposite order!
334     } else {
335       ResultSym = SymMgr.acquire<SymSymExpr>(LSym, BO_Sub, RSym, SymTy);
336       ResultOp = Op;
337       ResultInt = RInt - LInt; // Opposite order!
338     }
339   } else {
340     ResultSym = SymMgr.acquire<SymSymExpr>(LSym, Op, RSym, SymTy);
341     ResultInt = (Op == BO_Add) ? (LInt + RInt) : (LInt - RInt);
342     ResultOp = BO_Add;
343     // Bring back the cosmetic difference.
344     if (ResultInt < 0) {
345       ResultInt = -ResultInt;
346       ResultOp = BO_Sub;
347     } else if (ResultInt == 0) {
348       // Shortcut: Simplify "$x + 0" to "$x".
349       return nonloc::SymbolVal(ResultSym);
350     }
351   }
352   APSIntPtr PersistentResultInt = BV.getValue(ResultInt);
353   return nonloc::SymbolVal(SymMgr.acquire<SymIntExpr>(
354       ResultSym, ResultOp, PersistentResultInt, ResultTy));
355 }
356 
357 // Rearrange if symbol type matches the result type and if the operator is a
358 // comparison operator, both symbol and constant must be within constant
359 // overflow bounds.
360 static bool shouldRearrange(ProgramStateRef State, BinaryOperator::Opcode Op,
361                             SymbolRef Sym, llvm::APSInt Int, QualType Ty) {
362   return Sym->getType() == Ty &&
363     (!BinaryOperator::isComparisonOp(Op) ||
364      (isWithinConstantOverflowBounds(Sym, State) &&
365       isWithinConstantOverflowBounds(Int)));
366 }
367 
368 static std::optional<NonLoc> tryRearrange(ProgramStateRef State,
369                                           BinaryOperator::Opcode Op, NonLoc Lhs,
370                                           NonLoc Rhs, QualType ResultTy) {
371   ProgramStateManager &StateMgr = State->getStateManager();
372   SValBuilder &SVB = StateMgr.getSValBuilder();
373 
374   // We expect everything to be of the same type - this type.
375   QualType SingleTy;
376 
377   // FIXME: After putting complexity threshold to the symbols we can always
378   //        rearrange additive operations but rearrange comparisons only if
379   //        option is set.
380   if (!SVB.getAnalyzerOptions().ShouldAggressivelySimplifyBinaryOperation)
381     return std::nullopt;
382 
383   SymbolRef LSym = Lhs.getAsSymbol();
384   if (!LSym)
385     return std::nullopt;
386 
387   if (BinaryOperator::isComparisonOp(Op)) {
388     SingleTy = LSym->getType();
389     if (ResultTy != SVB.getConditionType())
390       return std::nullopt;
391     // Initialize SingleTy later with a symbol's type.
392   } else if (BinaryOperator::isAdditiveOp(Op)) {
393     SingleTy = ResultTy;
394     if (LSym->getType() != SingleTy)
395       return std::nullopt;
396   } else {
397     // Don't rearrange other operations.
398     return std::nullopt;
399   }
400 
401   assert(!SingleTy.isNull() && "We should have figured out the type by now!");
402 
403   // Rearrange signed symbolic expressions only
404   if (!SingleTy->isSignedIntegerOrEnumerationType())
405     return std::nullopt;
406 
407   SymbolRef RSym = Rhs.getAsSymbol();
408   if (!RSym || RSym->getType() != SingleTy)
409     return std::nullopt;
410 
411   BasicValueFactory &BV = State->getBasicVals();
412   llvm::APSInt LInt, RInt;
413   std::tie(LSym, LInt) = decomposeSymbol(LSym, BV);
414   std::tie(RSym, RInt) = decomposeSymbol(RSym, BV);
415   if (!shouldRearrange(State, Op, LSym, LInt, SingleTy) ||
416       !shouldRearrange(State, Op, RSym, RInt, SingleTy))
417     return std::nullopt;
418 
419   // We know that no overflows can occur anymore.
420   return doRearrangeUnchecked(State, Op, LSym, LInt, RSym, RInt);
421 }
422 
423 SVal SimpleSValBuilder::evalBinOpNN(ProgramStateRef state,
424                                   BinaryOperator::Opcode op,
425                                   NonLoc lhs, NonLoc rhs,
426                                   QualType resultTy)  {
427   NonLoc InputLHS = lhs;
428   NonLoc InputRHS = rhs;
429 
430   // Constraints may have changed since the creation of a bound SVal. Check if
431   // the values can be simplified based on those new constraints.
432   SVal simplifiedLhs = simplifySVal(state, lhs);
433   SVal simplifiedRhs = simplifySVal(state, rhs);
434   if (auto simplifiedLhsAsNonLoc = simplifiedLhs.getAs<NonLoc>())
435     lhs = *simplifiedLhsAsNonLoc;
436   if (auto simplifiedRhsAsNonLoc = simplifiedRhs.getAs<NonLoc>())
437     rhs = *simplifiedRhsAsNonLoc;
438 
439   // Handle trivial case where left-side and right-side are the same.
440   if (lhs == rhs)
441     switch (op) {
442       default:
443         break;
444       case BO_EQ:
445       case BO_LE:
446       case BO_GE:
447         return makeTruthVal(true, resultTy);
448       case BO_LT:
449       case BO_GT:
450       case BO_NE:
451         return makeTruthVal(false, resultTy);
452       case BO_Xor:
453       case BO_Sub:
454         if (resultTy->isIntegralOrEnumerationType())
455           return makeIntVal(0, resultTy);
456         return evalCast(makeIntVal(0, /*isUnsigned=*/false), resultTy,
457                         QualType{});
458       case BO_Or:
459       case BO_And:
460         return evalCast(lhs, resultTy, QualType{});
461     }
462 
463   while (true) {
464     switch (lhs.getKind()) {
465     default:
466       return makeSymExprValNN(op, lhs, rhs, resultTy);
467     case nonloc::PointerToMemberKind: {
468       assert(rhs.getKind() == nonloc::PointerToMemberKind &&
469              "Both SVals should have pointer-to-member-type");
470       auto LPTM = lhs.castAs<nonloc::PointerToMember>(),
471            RPTM = rhs.castAs<nonloc::PointerToMember>();
472       auto LPTMD = LPTM.getPTMData(), RPTMD = RPTM.getPTMData();
473       switch (op) {
474         case BO_EQ:
475           return makeTruthVal(LPTMD == RPTMD, resultTy);
476         case BO_NE:
477           return makeTruthVal(LPTMD != RPTMD, resultTy);
478         default:
479           return UnknownVal();
480       }
481     }
482     case nonloc::LocAsIntegerKind: {
483       Loc lhsL = lhs.castAs<nonloc::LocAsInteger>().getLoc();
484       switch (rhs.getKind()) {
485       case nonloc::LocAsIntegerKind:
486         // FIXME: at the moment the implementation
487         // of modeling "pointers as integers" is not complete.
488         if (!BinaryOperator::isComparisonOp(op))
489           return UnknownVal();
490         return evalBinOpLL(state, op, lhsL,
491                            rhs.castAs<nonloc::LocAsInteger>().getLoc(),
492                            resultTy);
493       case nonloc::ConcreteIntKind: {
494         // FIXME: at the moment the implementation
495         // of modeling "pointers as integers" is not complete.
496         if (!BinaryOperator::isComparisonOp(op))
497           return UnknownVal();
498         // Transform the integer into a location and compare.
499         // FIXME: This only makes sense for comparisons. If we want to, say,
500         // add 1 to a LocAsInteger, we'd better unpack the Loc and add to it,
501         // then pack it back into a LocAsInteger.
502         llvm::APSInt i = rhs.castAs<nonloc::ConcreteInt>().getValue();
503         // If the region has a symbolic base, pay attention to the type; it
504         // might be coming from a non-default address space. For non-symbolic
505         // regions it doesn't matter that much because such comparisons would
506         // most likely evaluate to concrete false anyway. FIXME: We might
507         // still need to handle the non-comparison case.
508         if (SymbolRef lSym = lhs.getAsLocSymbol(true))
509           BasicVals.getAPSIntType(lSym->getType()).apply(i);
510         else
511           BasicVals.getAPSIntType(Context.VoidPtrTy).apply(i);
512         return evalBinOpLL(state, op, lhsL, makeLoc(i), resultTy);
513       }
514         default:
515           switch (op) {
516             case BO_EQ:
517               return makeTruthVal(false, resultTy);
518             case BO_NE:
519               return makeTruthVal(true, resultTy);
520             default:
521               // This case also handles pointer arithmetic.
522               return makeSymExprValNN(op, InputLHS, InputRHS, resultTy);
523           }
524         }
525     }
526     case nonloc::ConcreteIntKind: {
527       llvm::APSInt LHSValue = lhs.castAs<nonloc::ConcreteInt>().getValue();
528 
529       // If we're dealing with two known constants, just perform the operation.
530       if (const llvm::APSInt *KnownRHSValue = getConstValue(state, rhs)) {
531         llvm::APSInt RHSValue = *KnownRHSValue;
532         if (BinaryOperator::isComparisonOp(op)) {
533           // We're looking for a type big enough to compare the two values.
534           // FIXME: This is not correct. char + short will result in a promotion
535           // to int. Unfortunately we have lost types by this point.
536           APSIntType CompareType = std::max(APSIntType(LHSValue),
537                                             APSIntType(RHSValue));
538           CompareType.apply(LHSValue);
539           CompareType.apply(RHSValue);
540         } else if (!BinaryOperator::isShiftOp(op)) {
541           APSIntType IntType = BasicVals.getAPSIntType(resultTy);
542           IntType.apply(LHSValue);
543           IntType.apply(RHSValue);
544         }
545 
546         std::optional<APSIntPtr> Result =
547             BasicVals.evalAPSInt(op, LHSValue, RHSValue);
548         if (!Result) {
549           if (op == BO_Shl || op == BO_Shr) {
550             // FIXME: At this point the constant folding claims that the result
551             // of a bitwise shift is undefined. However, constant folding
552             // relies on the inaccurate type information that is stored in the
553             // bit size of APSInt objects, and if we reached this point, then
554             // the checker core.BitwiseShift already determined that the shift
555             // is valid (in a PreStmt callback, by querying the real type from
556             // the AST node).
557             // To avoid embarrassing false positives, let's just say that we
558             // don't know anything about the result of the shift.
559             return UnknownVal();
560           }
561           return UndefinedVal();
562         }
563 
564         return nonloc::ConcreteInt(*Result);
565       }
566 
567       // Swap the left and right sides and flip the operator if doing so
568       // allows us to better reason about the expression (this is a form
569       // of expression canonicalization).
570       // While we're at it, catch some special cases for non-commutative ops.
571       switch (op) {
572       case BO_LT:
573       case BO_GT:
574       case BO_LE:
575       case BO_GE:
576         op = BinaryOperator::reverseComparisonOp(op);
577         [[fallthrough]];
578       case BO_EQ:
579       case BO_NE:
580       case BO_Add:
581       case BO_Mul:
582       case BO_And:
583       case BO_Xor:
584       case BO_Or:
585         std::swap(lhs, rhs);
586         continue;
587       case BO_Shr:
588         // (~0)>>a
589         if (LHSValue.isAllOnes() && LHSValue.isSigned())
590           return evalCast(lhs, resultTy, QualType{});
591         [[fallthrough]];
592       case BO_Shl:
593         // 0<<a and 0>>a
594         if (LHSValue == 0)
595           return evalCast(lhs, resultTy, QualType{});
596         return makeSymExprValNN(op, InputLHS, InputRHS, resultTy);
597       case BO_Div:
598         // 0 / x == 0
599       case BO_Rem:
600         // 0 % x == 0
601         if (LHSValue == 0)
602           return makeZeroVal(resultTy);
603         [[fallthrough]];
604       default:
605         return makeSymExprValNN(op, InputLHS, InputRHS, resultTy);
606       }
607     }
608     case nonloc::SymbolValKind: {
609       // We only handle LHS as simple symbols or SymIntExprs.
610       SymbolRef Sym = lhs.castAs<nonloc::SymbolVal>().getSymbol();
611 
612       // LHS is a symbolic expression.
613       if (const SymIntExpr *symIntExpr = dyn_cast<SymIntExpr>(Sym)) {
614 
615         // Is this a logical not? (!x is represented as x == 0.)
616         if (op == BO_EQ && rhs.isZeroConstant()) {
617           // We know how to negate certain expressions. Simplify them here.
618 
619           BinaryOperator::Opcode opc = symIntExpr->getOpcode();
620           switch (opc) {
621           default:
622             // We don't know how to negate this operation.
623             // Just handle it as if it were a normal comparison to 0.
624             break;
625           case BO_LAnd:
626           case BO_LOr:
627             llvm_unreachable("Logical operators handled by branching logic.");
628           case BO_Assign:
629           case BO_MulAssign:
630           case BO_DivAssign:
631           case BO_RemAssign:
632           case BO_AddAssign:
633           case BO_SubAssign:
634           case BO_ShlAssign:
635           case BO_ShrAssign:
636           case BO_AndAssign:
637           case BO_XorAssign:
638           case BO_OrAssign:
639           case BO_Comma:
640             llvm_unreachable("'=' and ',' operators handled by ExprEngine.");
641           case BO_PtrMemD:
642           case BO_PtrMemI:
643             llvm_unreachable("Pointer arithmetic not handled here.");
644           case BO_LT:
645           case BO_GT:
646           case BO_LE:
647           case BO_GE:
648           case BO_EQ:
649           case BO_NE:
650             assert(resultTy->isBooleanType() ||
651                    resultTy == getConditionType());
652             assert(symIntExpr->getType()->isBooleanType() ||
653                    getContext().hasSameUnqualifiedType(symIntExpr->getType(),
654                                                        getConditionType()));
655             // Negate the comparison and make a value.
656             opc = BinaryOperator::negateComparisonOp(opc);
657             return makeNonLoc(symIntExpr->getLHS(), opc,
658                 symIntExpr->getRHS(), resultTy);
659           }
660         }
661 
662         // For now, only handle expressions whose RHS is a constant.
663         if (const llvm::APSInt *RHSValue = getConstValue(state, rhs)) {
664           // If both the LHS and the current expression are additive,
665           // fold their constants and try again.
666           if (BinaryOperator::isAdditiveOp(op)) {
667             BinaryOperator::Opcode lop = symIntExpr->getOpcode();
668             if (BinaryOperator::isAdditiveOp(lop)) {
669               // Convert the two constants to a common type, then combine them.
670 
671               // resultTy may not be the best type to convert to, but it's
672               // probably the best choice in expressions with mixed type
673               // (such as x+1U+2LL). The rules for implicit conversions should
674               // choose a reasonable type to preserve the expression, and will
675               // at least match how the value is going to be used.
676               APSIntType IntType = BasicVals.getAPSIntType(resultTy);
677               const llvm::APSInt &first = IntType.convert(symIntExpr->getRHS());
678               const llvm::APSInt &second = IntType.convert(*RHSValue);
679 
680               // If the op and lop agrees, then we just need to
681               // sum the constants. Otherwise, we change to operation
682               // type if substraction would produce negative value
683               // (and cause overflow for unsigned integers),
684               // as consequence x+1U-10 produces x-9U, instead
685               // of x+4294967287U, that would be produced without this
686               // additional check.
687               std::optional<APSIntPtr> newRHS;
688               if (lop == op) {
689                 newRHS = BasicVals.evalAPSInt(BO_Add, first, second);
690               } else if (first >= second) {
691                 newRHS = BasicVals.evalAPSInt(BO_Sub, first, second);
692                 op = lop;
693               } else {
694                 newRHS = BasicVals.evalAPSInt(BO_Sub, second, first);
695               }
696 
697               assert(newRHS && "Invalid operation despite common type!");
698               rhs = nonloc::ConcreteInt(*newRHS);
699               lhs = nonloc::SymbolVal(symIntExpr->getLHS());
700               continue;
701             }
702           }
703 
704           // Otherwise, make a SymIntExpr out of the expression.
705           return MakeSymIntVal(symIntExpr, op, *RHSValue, resultTy);
706         }
707       }
708 
709       // Is the RHS a constant?
710       if (const llvm::APSInt *RHSValue = getConstValue(state, rhs))
711         return MakeSymIntVal(Sym, op, *RHSValue, resultTy);
712 
713       if (std::optional<NonLoc> V = tryRearrange(state, op, lhs, rhs, resultTy))
714         return *V;
715 
716       // Give up -- this is not a symbolic expression we can handle.
717       return makeSymExprValNN(op, InputLHS, InputRHS, resultTy);
718     }
719     }
720   }
721 }
722 
723 static SVal evalBinOpFieldRegionFieldRegion(const FieldRegion *LeftFR,
724                                             const FieldRegion *RightFR,
725                                             BinaryOperator::Opcode op,
726                                             QualType resultTy,
727                                             SimpleSValBuilder &SVB) {
728   // Only comparisons are meaningful here!
729   if (!BinaryOperator::isComparisonOp(op))
730     return UnknownVal();
731 
732   // Next, see if the two FRs have the same super-region.
733   // FIXME: This doesn't handle casts yet, and simply stripping the casts
734   // doesn't help.
735   if (LeftFR->getSuperRegion() != RightFR->getSuperRegion())
736     return UnknownVal();
737 
738   const FieldDecl *LeftFD = LeftFR->getDecl();
739   const FieldDecl *RightFD = RightFR->getDecl();
740   const RecordDecl *RD = LeftFD->getParent();
741 
742   // Make sure the two FRs are from the same kind of record. Just in case!
743   // FIXME: This is probably where inheritance would be a problem.
744   if (RD != RightFD->getParent())
745     return UnknownVal();
746 
747   // We know for sure that the two fields are not the same, since that
748   // would have given us the same SVal.
749   if (op == BO_EQ)
750     return SVB.makeTruthVal(false, resultTy);
751   if (op == BO_NE)
752     return SVB.makeTruthVal(true, resultTy);
753 
754   // Iterate through the fields and see which one comes first.
755   // [C99 6.7.2.1.13] "Within a structure object, the non-bit-field
756   // members and the units in which bit-fields reside have addresses that
757   // increase in the order in which they are declared."
758   bool leftFirst = (op == BO_LT || op == BO_LE);
759   for (const auto *I : RD->fields()) {
760     if (I == LeftFD)
761       return SVB.makeTruthVal(leftFirst, resultTy);
762     if (I == RightFD)
763       return SVB.makeTruthVal(!leftFirst, resultTy);
764   }
765 
766   llvm_unreachable("Fields not found in parent record's definition");
767 }
768 
769 // This is used in debug builds only for now because some downstream users
770 // may hit this assert in their subsequent merges.
771 // There are still places in the analyzer where equal bitwidth Locs
772 // are compared, and need to be found and corrected. Recent previous fixes have
773 // addressed the known problems of making NULLs with specific bitwidths
774 // for Loc comparisons along with deprecation of APIs for the same purpose.
775 //
776 static void assertEqualBitWidths(ProgramStateRef State, Loc RhsLoc,
777                                  Loc LhsLoc) {
778   // Implements a "best effort" check for RhsLoc and LhsLoc bit widths
779   ASTContext &Ctx = State->getStateManager().getContext();
780   uint64_t RhsBitwidth =
781       RhsLoc.getType(Ctx).isNull() ? 0 : Ctx.getTypeSize(RhsLoc.getType(Ctx));
782   uint64_t LhsBitwidth =
783       LhsLoc.getType(Ctx).isNull() ? 0 : Ctx.getTypeSize(LhsLoc.getType(Ctx));
784   if (RhsBitwidth && LhsBitwidth && (LhsLoc.getKind() == RhsLoc.getKind())) {
785     assert(RhsBitwidth == LhsBitwidth &&
786            "RhsLoc and LhsLoc bitwidth must be same!");
787   }
788 }
789 
790 // FIXME: all this logic will change if/when we have MemRegion::getLocation().
791 SVal SimpleSValBuilder::evalBinOpLL(ProgramStateRef state,
792                                   BinaryOperator::Opcode op,
793                                   Loc lhs, Loc rhs,
794                                   QualType resultTy) {
795 
796   // Assert that bitwidth of lhs and rhs are the same.
797   // This can happen if two different address spaces are used,
798   // and the bitwidths of the address spaces are different.
799   // See LIT case clang/test/Analysis/cstring-checker-addressspace.c
800   // FIXME: See comment above in the function assertEqualBitWidths
801   assertEqualBitWidths(state, rhs, lhs);
802 
803   // Only comparisons and subtractions are valid operations on two pointers.
804   // See [C99 6.5.5 through 6.5.14] or [C++0x 5.6 through 5.15].
805   // However, if a pointer is casted to an integer, evalBinOpNN may end up
806   // calling this function with another operation (PR7527). We don't attempt to
807   // model this for now, but it could be useful, particularly when the
808   // "location" is actually an integer value that's been passed through a void*.
809   if (!(BinaryOperator::isComparisonOp(op) || op == BO_Sub))
810     return UnknownVal();
811 
812   // Special cases for when both sides are identical.
813   if (lhs == rhs) {
814     switch (op) {
815     default:
816       llvm_unreachable("Unimplemented operation for two identical values");
817     case BO_Sub:
818       return makeZeroVal(resultTy);
819     case BO_EQ:
820     case BO_LE:
821     case BO_GE:
822       return makeTruthVal(true, resultTy);
823     case BO_NE:
824     case BO_LT:
825     case BO_GT:
826       return makeTruthVal(false, resultTy);
827     }
828   }
829 
830   switch (lhs.getKind()) {
831   default:
832     llvm_unreachable("Ordering not implemented for this Loc.");
833 
834   case loc::GotoLabelKind:
835     // The only thing we know about labels is that they're non-null.
836     if (rhs.isZeroConstant()) {
837       switch (op) {
838       default:
839         break;
840       case BO_Sub:
841         return evalCast(lhs, resultTy, QualType{});
842       case BO_EQ:
843       case BO_LE:
844       case BO_LT:
845         return makeTruthVal(false, resultTy);
846       case BO_NE:
847       case BO_GT:
848       case BO_GE:
849         return makeTruthVal(true, resultTy);
850       }
851     }
852     // There may be two labels for the same location, and a function region may
853     // have the same address as a label at the start of the function (depending
854     // on the ABI).
855     // FIXME: we can probably do a comparison against other MemRegions, though.
856     // FIXME: is there a way to tell if two labels refer to the same location?
857     return UnknownVal();
858 
859   case loc::ConcreteIntKind: {
860     auto L = lhs.castAs<loc::ConcreteInt>();
861 
862     // If one of the operands is a symbol and the other is a constant,
863     // build an expression for use by the constraint manager.
864     if (SymbolRef rSym = rhs.getAsLocSymbol()) {
865       if (op == BO_Cmp)
866         return UnknownVal();
867 
868       if (!BinaryOperator::isComparisonOp(op))
869         return makeNonLoc(L.getValue(), op, rSym, resultTy);
870 
871       op = BinaryOperator::reverseComparisonOp(op);
872       return makeNonLoc(rSym, op, L.getValue(), resultTy);
873     }
874 
875     // If both operands are constants, just perform the operation.
876     if (std::optional<loc::ConcreteInt> rInt = rhs.getAs<loc::ConcreteInt>()) {
877       assert(BinaryOperator::isComparisonOp(op) || op == BO_Sub);
878 
879       if (std::optional<APSIntPtr> ResultInt =
880               BasicVals.evalAPSInt(op, L.getValue(), rInt->getValue()))
881         return evalCast(nonloc::ConcreteInt(*ResultInt), resultTy, QualType{});
882       return UnknownVal();
883     }
884 
885     // Special case comparisons against NULL.
886     // This must come after the test if the RHS is a symbol, which is used to
887     // build constraints. The address of any non-symbolic region is guaranteed
888     // to be non-NULL, as is any label.
889     assert((isa<loc::MemRegionVal, loc::GotoLabel>(rhs)));
890     if (lhs.isZeroConstant()) {
891       switch (op) {
892       default:
893         break;
894       case BO_EQ:
895       case BO_GT:
896       case BO_GE:
897         return makeTruthVal(false, resultTy);
898       case BO_NE:
899       case BO_LT:
900       case BO_LE:
901         return makeTruthVal(true, resultTy);
902       }
903     }
904 
905     // Comparing an arbitrary integer to a region or label address is
906     // completely unknowable.
907     return UnknownVal();
908   }
909   case loc::MemRegionValKind: {
910     if (std::optional<loc::ConcreteInt> rInt = rhs.getAs<loc::ConcreteInt>()) {
911       // If one of the operands is a symbol and the other is a constant,
912       // build an expression for use by the constraint manager.
913       if (SymbolRef lSym = lhs.getAsLocSymbol(true)) {
914         if (BinaryOperator::isComparisonOp(op))
915           return MakeSymIntVal(lSym, op, rInt->getValue(), resultTy);
916         return UnknownVal();
917       }
918       // Special case comparisons to NULL.
919       // This must come after the test if the LHS is a symbol, which is used to
920       // build constraints. The address of any non-symbolic region is guaranteed
921       // to be non-NULL.
922       if (rInt->isZeroConstant()) {
923         if (op == BO_Sub)
924           return evalCast(lhs, resultTy, QualType{});
925 
926         if (BinaryOperator::isComparisonOp(op)) {
927           QualType boolType = getContext().BoolTy;
928           NonLoc l = evalCast(lhs, boolType, QualType{}).castAs<NonLoc>();
929           NonLoc r = makeTruthVal(false, boolType).castAs<NonLoc>();
930           return evalBinOpNN(state, op, l, r, resultTy);
931         }
932       }
933 
934       // Comparing a region to an arbitrary integer is completely unknowable.
935       return UnknownVal();
936     }
937 
938     // Get both values as regions, if possible.
939     const MemRegion *LeftMR = lhs.getAsRegion();
940     assert(LeftMR && "MemRegionValKind SVal doesn't have a region!");
941 
942     const MemRegion *RightMR = rhs.getAsRegion();
943     if (!RightMR)
944       // The RHS is probably a label, which in theory could address a region.
945       // FIXME: we can probably make a more useful statement about non-code
946       // regions, though.
947       return UnknownVal();
948 
949     const MemRegion *LeftBase = LeftMR->getBaseRegion();
950     const MemRegion *RightBase = RightMR->getBaseRegion();
951     const MemSpaceRegion *LeftMS = LeftBase->getMemorySpace();
952     const MemSpaceRegion *RightMS = RightBase->getMemorySpace();
953     const MemSpaceRegion *UnknownMS = MemMgr.getUnknownRegion();
954 
955     // If the two regions are from different known memory spaces they cannot be
956     // equal. Also, assume that no symbolic region (whose memory space is
957     // unknown) is on the stack.
958     if (LeftMS != RightMS &&
959         ((LeftMS != UnknownMS && RightMS != UnknownMS) ||
960          (isa<StackSpaceRegion>(LeftMS) || isa<StackSpaceRegion>(RightMS)))) {
961       switch (op) {
962       default:
963         return UnknownVal();
964       case BO_EQ:
965         return makeTruthVal(false, resultTy);
966       case BO_NE:
967         return makeTruthVal(true, resultTy);
968       }
969     }
970 
971     // If both values wrap regions, see if they're from different base regions.
972     // Note, heap base symbolic regions are assumed to not alias with
973     // each other; for example, we assume that malloc returns different address
974     // on each invocation.
975     // FIXME: ObjC object pointers always reside on the heap, but currently
976     // we treat their memory space as unknown, because symbolic pointers
977     // to ObjC objects may alias. There should be a way to construct
978     // possibly-aliasing heap-based regions. For instance, MacOSXApiChecker
979     // guesses memory space for ObjC object pointers manually instead of
980     // relying on us.
981     if (LeftBase != RightBase &&
982         ((!isa<SymbolicRegion>(LeftBase) && !isa<SymbolicRegion>(RightBase)) ||
983          (isa<HeapSpaceRegion>(LeftMS) || isa<HeapSpaceRegion>(RightMS))) ){
984       switch (op) {
985       default:
986         return UnknownVal();
987       case BO_EQ:
988         return makeTruthVal(false, resultTy);
989       case BO_NE:
990         return makeTruthVal(true, resultTy);
991       }
992     }
993 
994     // Handle special cases for when both regions are element regions.
995     const ElementRegion *RightER = dyn_cast<ElementRegion>(RightMR);
996     const ElementRegion *LeftER = dyn_cast<ElementRegion>(LeftMR);
997     if (RightER && LeftER) {
998       // Next, see if the two ERs have the same super-region and matching types.
999       // FIXME: This should do something useful even if the types don't match,
1000       // though if both indexes are constant the RegionRawOffset path will
1001       // give the correct answer.
1002       if (LeftER->getSuperRegion() == RightER->getSuperRegion() &&
1003           LeftER->getElementType() == RightER->getElementType()) {
1004         // Get the left index and cast it to the correct type.
1005         // If the index is unknown or undefined, bail out here.
1006         SVal LeftIndexVal = LeftER->getIndex();
1007         std::optional<NonLoc> LeftIndex = LeftIndexVal.getAs<NonLoc>();
1008         if (!LeftIndex)
1009           return UnknownVal();
1010         LeftIndexVal = evalCast(*LeftIndex, ArrayIndexTy, QualType{});
1011         LeftIndex = LeftIndexVal.getAs<NonLoc>();
1012         if (!LeftIndex)
1013           return UnknownVal();
1014 
1015         // Do the same for the right index.
1016         SVal RightIndexVal = RightER->getIndex();
1017         std::optional<NonLoc> RightIndex = RightIndexVal.getAs<NonLoc>();
1018         if (!RightIndex)
1019           return UnknownVal();
1020         RightIndexVal = evalCast(*RightIndex, ArrayIndexTy, QualType{});
1021         RightIndex = RightIndexVal.getAs<NonLoc>();
1022         if (!RightIndex)
1023           return UnknownVal();
1024 
1025         // Actually perform the operation.
1026         // evalBinOpNN expects the two indexes to already be the right type.
1027         return evalBinOpNN(state, op, *LeftIndex, *RightIndex, resultTy);
1028       }
1029     }
1030 
1031     // Special handling of the FieldRegions, even with symbolic offsets.
1032     const FieldRegion *RightFR = dyn_cast<FieldRegion>(RightMR);
1033     const FieldRegion *LeftFR = dyn_cast<FieldRegion>(LeftMR);
1034     if (RightFR && LeftFR) {
1035       SVal R = evalBinOpFieldRegionFieldRegion(LeftFR, RightFR, op, resultTy,
1036                                                *this);
1037       if (!R.isUnknown())
1038         return R;
1039     }
1040 
1041     // Compare the regions using the raw offsets.
1042     RegionOffset LeftOffset = LeftMR->getAsOffset();
1043     RegionOffset RightOffset = RightMR->getAsOffset();
1044 
1045     if (LeftOffset.getRegion() != nullptr &&
1046         LeftOffset.getRegion() == RightOffset.getRegion() &&
1047         !LeftOffset.hasSymbolicOffset() && !RightOffset.hasSymbolicOffset()) {
1048       int64_t left = LeftOffset.getOffset();
1049       int64_t right = RightOffset.getOffset();
1050 
1051       switch (op) {
1052         default:
1053           return UnknownVal();
1054         case BO_LT:
1055           return makeTruthVal(left < right, resultTy);
1056         case BO_GT:
1057           return makeTruthVal(left > right, resultTy);
1058         case BO_LE:
1059           return makeTruthVal(left <= right, resultTy);
1060         case BO_GE:
1061           return makeTruthVal(left >= right, resultTy);
1062         case BO_EQ:
1063           return makeTruthVal(left == right, resultTy);
1064         case BO_NE:
1065           return makeTruthVal(left != right, resultTy);
1066       }
1067     }
1068 
1069     // At this point we're not going to get a good answer, but we can try
1070     // conjuring an expression instead.
1071     SymbolRef LHSSym = lhs.getAsLocSymbol();
1072     SymbolRef RHSSym = rhs.getAsLocSymbol();
1073     if (LHSSym && RHSSym)
1074       return makeNonLoc(LHSSym, op, RHSSym, resultTy);
1075 
1076     // If we get here, we have no way of comparing the regions.
1077     return UnknownVal();
1078   }
1079   }
1080 }
1081 
1082 SVal SimpleSValBuilder::evalBinOpLN(ProgramStateRef state,
1083                                     BinaryOperator::Opcode op, Loc lhs,
1084                                     NonLoc rhs, QualType resultTy) {
1085   if (op >= BO_PtrMemD && op <= BO_PtrMemI) {
1086     if (auto PTMSV = rhs.getAs<nonloc::PointerToMember>()) {
1087       if (PTMSV->isNullMemberPointer())
1088         return UndefinedVal();
1089 
1090       auto getFieldLValue = [&](const auto *FD) -> SVal {
1091         SVal Result = lhs;
1092 
1093         for (const auto &I : *PTMSV)
1094           Result = StateMgr.getStoreManager().evalDerivedToBase(
1095               Result, I->getType(), I->isVirtual());
1096 
1097         return state->getLValue(FD, Result);
1098       };
1099 
1100       if (const auto *FD = PTMSV->getDeclAs<FieldDecl>()) {
1101         return getFieldLValue(FD);
1102       }
1103       if (const auto *FD = PTMSV->getDeclAs<IndirectFieldDecl>()) {
1104         return getFieldLValue(FD);
1105       }
1106     }
1107 
1108     return rhs;
1109   }
1110 
1111   assert(!BinaryOperator::isComparisonOp(op) &&
1112          "arguments to comparison ops must be of the same type");
1113 
1114   // Special case: rhs is a zero constant.
1115   if (rhs.isZeroConstant())
1116     return lhs;
1117 
1118   // Perserve the null pointer so that it can be found by the DerefChecker.
1119   if (lhs.isZeroConstant())
1120     return lhs;
1121 
1122   // We are dealing with pointer arithmetic.
1123 
1124   // Handle pointer arithmetic on constant values.
1125   if (std::optional<nonloc::ConcreteInt> rhsInt =
1126           rhs.getAs<nonloc::ConcreteInt>()) {
1127     if (std::optional<loc::ConcreteInt> lhsInt =
1128             lhs.getAs<loc::ConcreteInt>()) {
1129       const llvm::APSInt &leftI = lhsInt->getValue();
1130       assert(leftI.isUnsigned());
1131       llvm::APSInt rightI(rhsInt->getValue(), /* isUnsigned */ true);
1132 
1133       // Convert the bitwidth of rightI.  This should deal with overflow
1134       // since we are dealing with concrete values.
1135       rightI = rightI.extOrTrunc(leftI.getBitWidth());
1136 
1137       // Offset the increment by the pointer size.
1138       llvm::APSInt Multiplicand(rightI.getBitWidth(), /* isUnsigned */ true);
1139       QualType pointeeType = resultTy->getPointeeType();
1140       Multiplicand = getContext().getTypeSizeInChars(pointeeType).getQuantity();
1141       rightI *= Multiplicand;
1142 
1143       // Compute the adjusted pointer.
1144       switch (op) {
1145         case BO_Add:
1146           rightI = leftI + rightI;
1147           break;
1148         case BO_Sub:
1149           rightI = leftI - rightI;
1150           break;
1151         default:
1152           llvm_unreachable("Invalid pointer arithmetic operation");
1153       }
1154       return loc::ConcreteInt(getBasicValueFactory().getValue(rightI));
1155     }
1156   }
1157 
1158   // Handle cases where 'lhs' is a region.
1159   if (const MemRegion *region = lhs.getAsRegion()) {
1160     rhs = convertToArrayIndex(rhs).castAs<NonLoc>();
1161     SVal index = UnknownVal();
1162     const SubRegion *superR = nullptr;
1163     // We need to know the type of the pointer in order to add an integer to it.
1164     // Depending on the type, different amount of bytes is added.
1165     QualType elementType;
1166 
1167     if (const ElementRegion *elemReg = dyn_cast<ElementRegion>(region)) {
1168       assert(op == BO_Add || op == BO_Sub);
1169       index = evalBinOpNN(state, op, elemReg->getIndex(), rhs,
1170                           getArrayIndexType());
1171       superR = cast<SubRegion>(elemReg->getSuperRegion());
1172       elementType = elemReg->getElementType();
1173     }
1174     else if (isa<SubRegion>(region)) {
1175       assert(op == BO_Add || op == BO_Sub);
1176       index = (op == BO_Add) ? rhs : evalMinus(rhs);
1177       superR = cast<SubRegion>(region);
1178       // TODO: Is this actually reliable? Maybe improving our MemRegion
1179       // hierarchy to provide typed regions for all non-void pointers would be
1180       // better. For instance, we cannot extend this towards LocAsInteger
1181       // operations, where result type of the expression is integer.
1182       if (resultTy->isAnyPointerType())
1183         elementType = resultTy->getPointeeType();
1184     }
1185 
1186     // Represent arithmetic on void pointers as arithmetic on char pointers.
1187     // It is fine when a TypedValueRegion of char value type represents
1188     // a void pointer. Note that arithmetic on void pointers is a GCC extension.
1189     if (elementType->isVoidType())
1190       elementType = getContext().CharTy;
1191 
1192     if (std::optional<NonLoc> indexV = index.getAs<NonLoc>()) {
1193       return loc::MemRegionVal(MemMgr.getElementRegion(elementType, *indexV,
1194                                                        superR, getContext()));
1195     }
1196   }
1197   return UnknownVal();
1198 }
1199 
1200 const llvm::APSInt *SimpleSValBuilder::getConstValue(ProgramStateRef state,
1201                                                      SVal V) {
1202   if (const llvm::APSInt *Res = getConcreteValue(V))
1203     return Res;
1204 
1205   if (SymbolRef Sym = V.getAsSymbol())
1206     return state->getConstraintManager().getSymVal(state, Sym);
1207 
1208   return nullptr;
1209 }
1210 
1211 const llvm::APSInt *SimpleSValBuilder::getConcreteValue(SVal V) {
1212   if (std::optional<loc::ConcreteInt> X = V.getAs<loc::ConcreteInt>())
1213     return X->getValue().get();
1214 
1215   if (std::optional<nonloc::ConcreteInt> X = V.getAs<nonloc::ConcreteInt>())
1216     return X->getValue().get();
1217 
1218   return nullptr;
1219 }
1220 
1221 const llvm::APSInt *SimpleSValBuilder::getKnownValue(ProgramStateRef state,
1222                                                      SVal V) {
1223   return getConstValue(state, simplifySVal(state, V));
1224 }
1225 
1226 const llvm::APSInt *SimpleSValBuilder::getMinValue(ProgramStateRef state,
1227                                                    SVal V) {
1228   V = simplifySVal(state, V);
1229 
1230   if (const llvm::APSInt *Res = getConcreteValue(V))
1231     return Res;
1232 
1233   if (SymbolRef Sym = V.getAsSymbol())
1234     return state->getConstraintManager().getSymMinVal(state, Sym);
1235 
1236   return nullptr;
1237 }
1238 
1239 const llvm::APSInt *SimpleSValBuilder::getMaxValue(ProgramStateRef state,
1240                                                    SVal V) {
1241   V = simplifySVal(state, V);
1242 
1243   if (const llvm::APSInt *Res = getConcreteValue(V))
1244     return Res;
1245 
1246   if (SymbolRef Sym = V.getAsSymbol())
1247     return state->getConstraintManager().getSymMaxVal(state, Sym);
1248 
1249   return nullptr;
1250 }
1251 
1252 SVal SimpleSValBuilder::simplifyUntilFixpoint(ProgramStateRef State, SVal Val) {
1253   SVal SimplifiedVal = simplifySValOnce(State, Val);
1254   while (SimplifiedVal != Val) {
1255     Val = SimplifiedVal;
1256     SimplifiedVal = simplifySValOnce(State, Val);
1257   }
1258   return SimplifiedVal;
1259 }
1260 
1261 SVal SimpleSValBuilder::simplifySVal(ProgramStateRef State, SVal V) {
1262   return simplifyUntilFixpoint(State, V);
1263 }
1264 
1265 SVal SimpleSValBuilder::simplifySValOnce(ProgramStateRef State, SVal V) {
1266   // For now, this function tries to constant-fold symbols inside a
1267   // nonloc::SymbolVal, and does nothing else. More simplifications should
1268   // be possible, such as constant-folding an index in an ElementRegion.
1269 
1270   class Simplifier : public FullSValVisitor<Simplifier, SVal> {
1271     ProgramStateRef State;
1272     SValBuilder &SVB;
1273 
1274     // Cache results for the lifetime of the Simplifier. Results change every
1275     // time new constraints are added to the program state, which is the whole
1276     // point of simplifying, and for that very reason it's pointless to maintain
1277     // the same cache for the duration of the whole analysis.
1278     llvm::DenseMap<SymbolRef, SVal> Cached;
1279 
1280     static bool isUnchanged(SymbolRef Sym, SVal Val) {
1281       return Sym == Val.getAsSymbol();
1282     }
1283 
1284     SVal cache(SymbolRef Sym, SVal V) {
1285       Cached[Sym] = V;
1286       return V;
1287     }
1288 
1289     SVal skip(SymbolRef Sym) {
1290       return cache(Sym, SVB.makeSymbolVal(Sym));
1291     }
1292 
1293     // Return the known const value for the Sym if available, or return Undef
1294     // otherwise.
1295     SVal getConst(SymbolRef Sym) {
1296       const llvm::APSInt *Const =
1297           State->getConstraintManager().getSymVal(State, Sym);
1298       if (Const)
1299         return Loc::isLocType(Sym->getType()) ? (SVal)SVB.makeIntLocVal(*Const)
1300                                               : (SVal)SVB.makeIntVal(*Const);
1301       return UndefinedVal();
1302     }
1303 
1304     SVal getConstOrVisit(SymbolRef Sym) {
1305       const SVal Ret = getConst(Sym);
1306       if (Ret.isUndef())
1307         return Visit(Sym);
1308       return Ret;
1309     }
1310 
1311   public:
1312     Simplifier(ProgramStateRef State)
1313         : State(State), SVB(State->getStateManager().getSValBuilder()) {}
1314 
1315     SVal VisitSymbolData(const SymbolData *S) {
1316       // No cache here.
1317       if (const llvm::APSInt *I =
1318               State->getConstraintManager().getSymVal(State, S))
1319         return Loc::isLocType(S->getType()) ? (SVal)SVB.makeIntLocVal(*I)
1320                                             : (SVal)SVB.makeIntVal(*I);
1321       return SVB.makeSymbolVal(S);
1322     }
1323 
1324     SVal VisitSymIntExpr(const SymIntExpr *S) {
1325       auto I = Cached.find(S);
1326       if (I != Cached.end())
1327         return I->second;
1328 
1329       SVal LHS = getConstOrVisit(S->getLHS());
1330       if (isUnchanged(S->getLHS(), LHS))
1331         return skip(S);
1332 
1333       SVal RHS;
1334       // By looking at the APSInt in the right-hand side of S, we cannot
1335       // figure out if it should be treated as a Loc or as a NonLoc.
1336       // So make our guess by recalling that we cannot multiply pointers
1337       // or compare a pointer to an integer.
1338       if (Loc::isLocType(S->getLHS()->getType()) &&
1339           BinaryOperator::isComparisonOp(S->getOpcode())) {
1340         // The usual conversion of $sym to &SymRegion{$sym}, as they have
1341         // the same meaning for Loc-type symbols, but the latter form
1342         // is preferred in SVal computations for being Loc itself.
1343         if (SymbolRef Sym = LHS.getAsSymbol()) {
1344           assert(Loc::isLocType(Sym->getType()));
1345           LHS = SVB.makeLoc(Sym);
1346         }
1347         RHS = SVB.makeIntLocVal(S->getRHS());
1348       } else {
1349         RHS = SVB.makeIntVal(S->getRHS());
1350       }
1351 
1352       return cache(
1353           S, SVB.evalBinOp(State, S->getOpcode(), LHS, RHS, S->getType()));
1354     }
1355 
1356     SVal VisitIntSymExpr(const IntSymExpr *S) {
1357       auto I = Cached.find(S);
1358       if (I != Cached.end())
1359         return I->second;
1360 
1361       SVal RHS = getConstOrVisit(S->getRHS());
1362       if (isUnchanged(S->getRHS(), RHS))
1363         return skip(S);
1364 
1365       SVal LHS = SVB.makeIntVal(S->getLHS());
1366       return cache(
1367           S, SVB.evalBinOp(State, S->getOpcode(), LHS, RHS, S->getType()));
1368     }
1369 
1370     SVal VisitSymSymExpr(const SymSymExpr *S) {
1371       auto I = Cached.find(S);
1372       if (I != Cached.end())
1373         return I->second;
1374 
1375       // For now don't try to simplify mixed Loc/NonLoc expressions
1376       // because they often appear from LocAsInteger operations
1377       // and we don't know how to combine a LocAsInteger
1378       // with a concrete value.
1379       if (Loc::isLocType(S->getLHS()->getType()) !=
1380           Loc::isLocType(S->getRHS()->getType()))
1381         return skip(S);
1382 
1383       SVal LHS = getConstOrVisit(S->getLHS());
1384       SVal RHS = getConstOrVisit(S->getRHS());
1385 
1386       if (isUnchanged(S->getLHS(), LHS) && isUnchanged(S->getRHS(), RHS))
1387         return skip(S);
1388 
1389       return cache(
1390           S, SVB.evalBinOp(State, S->getOpcode(), LHS, RHS, S->getType()));
1391     }
1392 
1393     SVal VisitSymbolCast(const SymbolCast *S) {
1394       auto I = Cached.find(S);
1395       if (I != Cached.end())
1396         return I->second;
1397       const SymExpr *OpSym = S->getOperand();
1398       SVal OpVal = getConstOrVisit(OpSym);
1399       if (isUnchanged(OpSym, OpVal))
1400         return skip(S);
1401 
1402       return cache(S, SVB.evalCast(OpVal, S->getType(), OpSym->getType()));
1403     }
1404 
1405     SVal VisitUnarySymExpr(const UnarySymExpr *S) {
1406       auto I = Cached.find(S);
1407       if (I != Cached.end())
1408         return I->second;
1409       SVal Op = getConstOrVisit(S->getOperand());
1410       if (isUnchanged(S->getOperand(), Op))
1411         return skip(S);
1412 
1413       return cache(
1414           S, SVB.evalUnaryOp(State, S->getOpcode(), Op, S->getType()));
1415     }
1416 
1417     SVal VisitSymExpr(SymbolRef S) { return nonloc::SymbolVal(S); }
1418 
1419     SVal VisitMemRegion(const MemRegion *R) { return loc::MemRegionVal(R); }
1420 
1421     SVal VisitSymbolVal(nonloc::SymbolVal V) {
1422       // Simplification is much more costly than computing complexity.
1423       // For high complexity, it may be not worth it.
1424       return Visit(V.getSymbol());
1425     }
1426 
1427     SVal VisitSVal(SVal V) { return V; }
1428   };
1429 
1430   SVal SimplifiedV = Simplifier(State).Visit(V);
1431   return SimplifiedV;
1432 }
1433