xref: /llvm-project/clang/lib/StaticAnalyzer/Core/BugReporterVisitors.cpp (revision d0d5101f9959013e42f6f07d79d0fe638aaa0aa3)
1 //===- BugReporterVisitors.cpp - Helpers for reporting bugs ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines a set of BugReporter "visitors" which can be used to
10 //  enhance the diagnostics reported for a bug.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporterVisitors.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Decl.h"
17 #include "clang/AST/DeclBase.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/Expr.h"
20 #include "clang/AST/ExprCXX.h"
21 #include "clang/AST/ExprObjC.h"
22 #include "clang/AST/Stmt.h"
23 #include "clang/AST/Type.h"
24 #include "clang/ASTMatchers/ASTMatchFinder.h"
25 #include "clang/Analysis/Analyses/Dominators.h"
26 #include "clang/Analysis/AnalysisDeclContext.h"
27 #include "clang/Analysis/CFG.h"
28 #include "clang/Analysis/CFGStmtMap.h"
29 #include "clang/Analysis/PathDiagnostic.h"
30 #include "clang/Analysis/ProgramPoint.h"
31 #include "clang/Basic/IdentifierTable.h"
32 #include "clang/Basic/LLVM.h"
33 #include "clang/Basic/SourceLocation.h"
34 #include "clang/Basic/SourceManager.h"
35 #include "clang/Lex/Lexer.h"
36 #include "clang/StaticAnalyzer/Core/AnalyzerOptions.h"
37 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
38 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
39 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
40 #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h"
41 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
42 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
43 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
44 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
45 #include "clang/StaticAnalyzer/Core/PathSensitive/SMTConv.h"
46 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
47 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
48 #include "llvm/ADT/ArrayRef.h"
49 #include "llvm/ADT/STLExtras.h"
50 #include "llvm/ADT/SmallPtrSet.h"
51 #include "llvm/ADT/SmallString.h"
52 #include "llvm/ADT/SmallVector.h"
53 #include "llvm/ADT/StringExtras.h"
54 #include "llvm/ADT/StringRef.h"
55 #include "llvm/Support/Casting.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include <cassert>
59 #include <deque>
60 #include <memory>
61 #include <optional>
62 #include <stack>
63 #include <string>
64 #include <utility>
65 
66 using namespace clang;
67 using namespace ento;
68 using namespace bugreporter;
69 
70 //===----------------------------------------------------------------------===//
71 // Utility functions.
72 //===----------------------------------------------------------------------===//
73 
74 static const Expr *peelOffPointerArithmetic(const BinaryOperator *B) {
75   if (B->isAdditiveOp() && B->getType()->isPointerType()) {
76     if (B->getLHS()->getType()->isPointerType()) {
77       return B->getLHS();
78     } else if (B->getRHS()->getType()->isPointerType()) {
79       return B->getRHS();
80     }
81   }
82   return nullptr;
83 }
84 
85 /// \return A subexpression of @c Ex which represents the
86 /// expression-of-interest.
87 static const Expr *peelOffOuterExpr(const Expr *Ex, const ExplodedNode *N);
88 
89 /// Given that expression S represents a pointer that would be dereferenced,
90 /// try to find a sub-expression from which the pointer came from.
91 /// This is used for tracking down origins of a null or undefined value:
92 /// "this is null because that is null because that is null" etc.
93 /// We wipe away field and element offsets because they merely add offsets.
94 /// We also wipe away all casts except lvalue-to-rvalue casts, because the
95 /// latter represent an actual pointer dereference; however, we remove
96 /// the final lvalue-to-rvalue cast before returning from this function
97 /// because it demonstrates more clearly from where the pointer rvalue was
98 /// loaded. Examples:
99 ///   x->y.z      ==>  x (lvalue)
100 ///   foo()->y.z  ==>  foo() (rvalue)
101 const Expr *bugreporter::getDerefExpr(const Stmt *S) {
102   const auto *E = dyn_cast<Expr>(S);
103   if (!E)
104     return nullptr;
105 
106   while (true) {
107     if (const auto *CE = dyn_cast<CastExpr>(E)) {
108       if (CE->getCastKind() == CK_LValueToRValue) {
109         // This cast represents the load we're looking for.
110         break;
111       }
112       E = CE->getSubExpr();
113     } else if (const auto *B = dyn_cast<BinaryOperator>(E)) {
114       // Pointer arithmetic: '*(x + 2)' -> 'x') etc.
115       if (const Expr *Inner = peelOffPointerArithmetic(B)) {
116         E = Inner;
117       } else if (B->isAssignmentOp()) {
118         // Follow LHS of assignments: '*p = 404' -> 'p'.
119         E = B->getLHS();
120       } else {
121         // Probably more arithmetic can be pattern-matched here,
122         // but for now give up.
123         break;
124       }
125     } else if (const auto *U = dyn_cast<UnaryOperator>(E)) {
126       if (U->getOpcode() == UO_Deref || U->getOpcode() == UO_AddrOf ||
127           (U->isIncrementDecrementOp() && U->getType()->isPointerType())) {
128         // Operators '*' and '&' don't actually mean anything.
129         // We look at casts instead.
130         E = U->getSubExpr();
131       } else {
132         // Probably more arithmetic can be pattern-matched here,
133         // but for now give up.
134         break;
135       }
136     }
137     // Pattern match for a few useful cases: a[0], p->f, *p etc.
138     else if (const auto *ME = dyn_cast<MemberExpr>(E)) {
139       // This handles the case when the dereferencing of a member reference
140       // happens. This is needed, because the AST for dereferencing a
141       // member reference looks like the following:
142       // |-MemberExpr
143       //  `-DeclRefExpr
144       // Without this special case the notes would refer to the whole object
145       // (struct, class or union variable) instead of just the relevant member.
146 
147       if (ME->getMemberDecl()->getType()->isReferenceType())
148         break;
149       E = ME->getBase();
150     } else if (const auto *IvarRef = dyn_cast<ObjCIvarRefExpr>(E)) {
151       E = IvarRef->getBase();
152     } else if (const auto *AE = dyn_cast<ArraySubscriptExpr>(E)) {
153       E = AE->getBase();
154     } else if (const auto *PE = dyn_cast<ParenExpr>(E)) {
155       E = PE->getSubExpr();
156     } else if (const auto *FE = dyn_cast<FullExpr>(E)) {
157       E = FE->getSubExpr();
158     } else {
159       // Other arbitrary stuff.
160       break;
161     }
162   }
163 
164   // Special case: remove the final lvalue-to-rvalue cast, but do not recurse
165   // deeper into the sub-expression. This way we return the lvalue from which
166   // our pointer rvalue was loaded.
167   if (const auto *CE = dyn_cast<ImplicitCastExpr>(E))
168     if (CE->getCastKind() == CK_LValueToRValue)
169       E = CE->getSubExpr();
170 
171   return E;
172 }
173 
174 static const VarDecl *getVarDeclForExpression(const Expr *E) {
175   if (const auto *DR = dyn_cast<DeclRefExpr>(E))
176     return dyn_cast<VarDecl>(DR->getDecl());
177   return nullptr;
178 }
179 
180 static const MemRegion *
181 getLocationRegionIfReference(const Expr *E, const ExplodedNode *N,
182                              bool LookingForReference = true) {
183   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
184     // This handles null references from FieldRegions, for example:
185     //   struct Wrapper { int &ref; };
186     //   Wrapper w = { *(int *)0 };
187     //   w.ref = 1;
188     const Expr *Base = ME->getBase();
189     const VarDecl *VD = getVarDeclForExpression(Base);
190     if (!VD)
191       return nullptr;
192 
193     const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
194     if (!FD)
195       return nullptr;
196 
197     if (FD->getType()->isReferenceType()) {
198       SVal StructSVal = N->getState()->getLValue(VD, N->getLocationContext());
199       return N->getState()->getLValue(FD, StructSVal).getAsRegion();
200     }
201     return nullptr;
202   }
203 
204   const VarDecl *VD = getVarDeclForExpression(E);
205   if (!VD)
206     return nullptr;
207   if (LookingForReference && !VD->getType()->isReferenceType())
208     return nullptr;
209   return N->getState()->getLValue(VD, N->getLocationContext()).getAsRegion();
210 }
211 
212 /// Comparing internal representations of symbolic values (via
213 /// SVal::operator==()) is a valid way to check if the value was updated,
214 /// unless it's a LazyCompoundVal that may have a different internal
215 /// representation every time it is loaded from the state. In this function we
216 /// do an approximate comparison for lazy compound values, checking that they
217 /// are the immediate snapshots of the tracked region's bindings within the
218 /// node's respective states but not really checking that these snapshots
219 /// actually contain the same set of bindings.
220 static bool hasVisibleUpdate(const ExplodedNode *LeftNode, SVal LeftVal,
221                              const ExplodedNode *RightNode, SVal RightVal) {
222   if (LeftVal == RightVal)
223     return true;
224 
225   const auto LLCV = LeftVal.getAs<nonloc::LazyCompoundVal>();
226   if (!LLCV)
227     return false;
228 
229   const auto RLCV = RightVal.getAs<nonloc::LazyCompoundVal>();
230   if (!RLCV)
231     return false;
232 
233   return LLCV->getRegion() == RLCV->getRegion() &&
234     LLCV->getStore() == LeftNode->getState()->getStore() &&
235     RLCV->getStore() == RightNode->getState()->getStore();
236 }
237 
238 static std::optional<SVal> getSValForVar(const Expr *CondVarExpr,
239                                          const ExplodedNode *N) {
240   ProgramStateRef State = N->getState();
241   const LocationContext *LCtx = N->getLocationContext();
242 
243   assert(CondVarExpr);
244   CondVarExpr = CondVarExpr->IgnoreImpCasts();
245 
246   // The declaration of the value may rely on a pointer so take its l-value.
247   // FIXME: As seen in VisitCommonDeclRefExpr, sometimes DeclRefExpr may
248   // evaluate to a FieldRegion when it refers to a declaration of a lambda
249   // capture variable. We most likely need to duplicate that logic here.
250   if (const auto *DRE = dyn_cast<DeclRefExpr>(CondVarExpr))
251     if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
252       return State->getSVal(State->getLValue(VD, LCtx));
253 
254   if (const auto *ME = dyn_cast<MemberExpr>(CondVarExpr))
255     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
256       if (auto FieldL = State->getSVal(ME, LCtx).getAs<Loc>())
257         return State->getRawSVal(*FieldL, FD->getType());
258 
259   return std::nullopt;
260 }
261 
262 static std::optional<const llvm::APSInt *>
263 getConcreteIntegerValue(const Expr *CondVarExpr, const ExplodedNode *N) {
264 
265   if (std::optional<SVal> V = getSValForVar(CondVarExpr, N))
266     if (auto CI = V->getAs<nonloc::ConcreteInt>())
267       return CI->getValue().get();
268   return std::nullopt;
269 }
270 
271 static bool isVarAnInterestingCondition(const Expr *CondVarExpr,
272                                         const ExplodedNode *N,
273                                         const PathSensitiveBugReport *B) {
274   // Even if this condition is marked as interesting, it isn't *that*
275   // interesting if it didn't happen in a nested stackframe, the user could just
276   // follow the arrows.
277   if (!B->getErrorNode()->getStackFrame()->isParentOf(N->getStackFrame()))
278     return false;
279 
280   if (std::optional<SVal> V = getSValForVar(CondVarExpr, N))
281     if (std::optional<bugreporter::TrackingKind> K =
282             B->getInterestingnessKind(*V))
283       return *K == bugreporter::TrackingKind::Condition;
284 
285   return false;
286 }
287 
288 static bool isInterestingExpr(const Expr *E, const ExplodedNode *N,
289                               const PathSensitiveBugReport *B) {
290   if (std::optional<SVal> V = getSValForVar(E, N))
291     return B->getInterestingnessKind(*V).has_value();
292   return false;
293 }
294 
295 /// \return name of the macro inside the location \p Loc.
296 static StringRef getMacroName(SourceLocation Loc,
297     BugReporterContext &BRC) {
298   return Lexer::getImmediateMacroName(
299       Loc,
300       BRC.getSourceManager(),
301       BRC.getASTContext().getLangOpts());
302 }
303 
304 /// \return Whether given spelling location corresponds to an expansion
305 /// of a function-like macro.
306 static bool isFunctionMacroExpansion(SourceLocation Loc,
307                                 const SourceManager &SM) {
308   if (!Loc.isMacroID())
309     return false;
310   while (SM.isMacroArgExpansion(Loc))
311     Loc = SM.getImmediateExpansionRange(Loc).getBegin();
312   std::pair<FileID, unsigned> TLInfo = SM.getDecomposedLoc(Loc);
313   SrcMgr::SLocEntry SE = SM.getSLocEntry(TLInfo.first);
314   const SrcMgr::ExpansionInfo &EInfo = SE.getExpansion();
315   return EInfo.isFunctionMacroExpansion();
316 }
317 
318 /// \return Whether \c RegionOfInterest was modified at \p N,
319 /// where \p ValueAfter is \c RegionOfInterest's value at the end of the
320 /// stack frame.
321 static bool wasRegionOfInterestModifiedAt(const SubRegion *RegionOfInterest,
322                                           const ExplodedNode *N,
323                                           SVal ValueAfter) {
324   ProgramStateRef State = N->getState();
325   ProgramStateManager &Mgr = N->getState()->getStateManager();
326 
327   if (!N->getLocationAs<PostStore>() && !N->getLocationAs<PostInitializer>() &&
328       !N->getLocationAs<PostStmt>())
329     return false;
330 
331   // Writing into region of interest.
332   if (auto PS = N->getLocationAs<PostStmt>())
333     if (auto *BO = PS->getStmtAs<BinaryOperator>())
334       if (BO->isAssignmentOp() && RegionOfInterest->isSubRegionOf(
335                                       N->getSVal(BO->getLHS()).getAsRegion()))
336         return true;
337 
338   // SVal after the state is possibly different.
339   SVal ValueAtN = N->getState()->getSVal(RegionOfInterest);
340   if (!Mgr.getSValBuilder()
341            .areEqual(State, ValueAtN, ValueAfter)
342            .isConstrainedTrue() &&
343       (!ValueAtN.isUndef() || !ValueAfter.isUndef()))
344     return true;
345 
346   return false;
347 }
348 
349 //===----------------------------------------------------------------------===//
350 // Implementation of BugReporterVisitor.
351 //===----------------------------------------------------------------------===//
352 
353 PathDiagnosticPieceRef BugReporterVisitor::getEndPath(BugReporterContext &,
354                                                       const ExplodedNode *,
355                                                       PathSensitiveBugReport &) {
356   return nullptr;
357 }
358 
359 void BugReporterVisitor::finalizeVisitor(BugReporterContext &,
360                                          const ExplodedNode *,
361                                          PathSensitiveBugReport &) {}
362 
363 PathDiagnosticPieceRef
364 BugReporterVisitor::getDefaultEndPath(const BugReporterContext &BRC,
365                                       const ExplodedNode *EndPathNode,
366                                       const PathSensitiveBugReport &BR) {
367   PathDiagnosticLocation L = BR.getLocation();
368   const auto &Ranges = BR.getRanges();
369 
370   // Only add the statement itself as a range if we didn't specify any
371   // special ranges for this report.
372   auto P = std::make_shared<PathDiagnosticEventPiece>(
373       L, BR.getDescription(), Ranges.begin() == Ranges.end());
374   for (SourceRange Range : Ranges)
375     P->addRange(Range);
376 
377   return P;
378 }
379 
380 //===----------------------------------------------------------------------===//
381 // Implementation of NoStateChangeFuncVisitor.
382 //===----------------------------------------------------------------------===//
383 
384 bool NoStateChangeFuncVisitor::isModifiedInFrame(const ExplodedNode *N) {
385   const LocationContext *Ctx = N->getLocationContext();
386   const StackFrameContext *SCtx = Ctx->getStackFrame();
387   if (!FramesModifyingCalculated.count(SCtx))
388     findModifyingFrames(N);
389   return FramesModifying.count(SCtx);
390 }
391 
392 void NoStateChangeFuncVisitor::markFrameAsModifying(
393     const StackFrameContext *SCtx) {
394   while (!SCtx->inTopFrame()) {
395     auto p = FramesModifying.insert(SCtx);
396     if (!p.second)
397       break; // Frame and all its parents already inserted.
398 
399     SCtx = SCtx->getParent()->getStackFrame();
400   }
401 }
402 
403 static const ExplodedNode *getMatchingCallExitEnd(const ExplodedNode *N) {
404   assert(N->getLocationAs<CallEnter>());
405   // The stackframe of the callee is only found in the nodes succeeding
406   // the CallEnter node. CallEnter's stack frame refers to the caller.
407   const StackFrameContext *OrigSCtx = N->getFirstSucc()->getStackFrame();
408 
409   // Similarly, the nodes preceding CallExitEnd refer to the callee's stack
410   // frame.
411   auto IsMatchingCallExitEnd = [OrigSCtx](const ExplodedNode *N) {
412     return N->getLocationAs<CallExitEnd>() &&
413            OrigSCtx == N->getFirstPred()->getStackFrame();
414   };
415   while (N && !IsMatchingCallExitEnd(N)) {
416     assert(N->succ_size() <= 1 &&
417            "This function is to be used on the trimmed ExplodedGraph!");
418     N = N->getFirstSucc();
419   }
420   return N;
421 }
422 
423 void NoStateChangeFuncVisitor::findModifyingFrames(
424     const ExplodedNode *const CallExitBeginN) {
425 
426   assert(CallExitBeginN->getLocationAs<CallExitBegin>());
427 
428   const StackFrameContext *const OriginalSCtx =
429       CallExitBeginN->getLocationContext()->getStackFrame();
430 
431   const ExplodedNode *CurrCallExitBeginN = CallExitBeginN;
432   const StackFrameContext *CurrentSCtx = OriginalSCtx;
433 
434   for (const ExplodedNode *CurrN = CallExitBeginN; CurrN;
435        CurrN = CurrN->getFirstPred()) {
436     // Found a new inlined call.
437     if (CurrN->getLocationAs<CallExitBegin>()) {
438       CurrCallExitBeginN = CurrN;
439       CurrentSCtx = CurrN->getStackFrame();
440       FramesModifyingCalculated.insert(CurrentSCtx);
441       // We won't see a change in between two identical exploded nodes: skip.
442       continue;
443     }
444 
445     if (auto CE = CurrN->getLocationAs<CallEnter>()) {
446       if (const ExplodedNode *CallExitEndN = getMatchingCallExitEnd(CurrN))
447         if (wasModifiedInFunction(CurrN, CallExitEndN))
448           markFrameAsModifying(CurrentSCtx);
449 
450       // We exited this inlined call, lets actualize the stack frame.
451       CurrentSCtx = CurrN->getStackFrame();
452 
453       // Stop calculating at the current function, but always regard it as
454       // modifying, so we can avoid notes like this:
455       //   void f(Foo &F) {
456       //     F.field = 0; // note: 0 assigned to 'F.field'
457       //                  // note: returning without writing to 'F.field'
458       //   }
459       if (CE->getCalleeContext() == OriginalSCtx) {
460         markFrameAsModifying(CurrentSCtx);
461         break;
462       }
463     }
464 
465     if (wasModifiedBeforeCallExit(CurrN, CurrCallExitBeginN))
466       markFrameAsModifying(CurrentSCtx);
467   }
468 }
469 
470 PathDiagnosticPieceRef NoStateChangeFuncVisitor::VisitNode(
471     const ExplodedNode *N, BugReporterContext &BR, PathSensitiveBugReport &R) {
472 
473   const LocationContext *Ctx = N->getLocationContext();
474   const StackFrameContext *SCtx = Ctx->getStackFrame();
475   ProgramStateRef State = N->getState();
476   auto CallExitLoc = N->getLocationAs<CallExitBegin>();
477 
478   // No diagnostic if region was modified inside the frame.
479   if (!CallExitLoc || isModifiedInFrame(N))
480     return nullptr;
481 
482   CallEventRef<> Call =
483       BR.getStateManager().getCallEventManager().getCaller(SCtx, State);
484 
485   // Optimistically suppress uninitialized value bugs that result
486   // from system headers having a chance to initialize the value
487   // but failing to do so. It's too unlikely a system header's fault.
488   // It's much more likely a situation in which the function has a failure
489   // mode that the user decided not to check. If we want to hunt such
490   // omitted checks, we should provide an explicit function-specific note
491   // describing the precondition under which the function isn't supposed to
492   // initialize its out-parameter, and additionally check that such
493   // precondition can actually be fulfilled on the current path.
494   if (Call->isInSystemHeader()) {
495     // We make an exception for system header functions that have no branches.
496     // Such functions unconditionally fail to initialize the variable.
497     // If they call other functions that have more paths within them,
498     // this suppression would still apply when we visit these inner functions.
499     // One common example of a standard function that doesn't ever initialize
500     // its out parameter is operator placement new; it's up to the follow-up
501     // constructor (if any) to initialize the memory.
502     if (!N->getStackFrame()->getCFG()->isLinear()) {
503       static int i = 0;
504       R.markInvalid(&i, nullptr);
505     }
506     return nullptr;
507   }
508 
509   if (const auto *MC = dyn_cast<ObjCMethodCall>(Call)) {
510     // If we failed to construct a piece for self, we still want to check
511     // whether the entity of interest is in a parameter.
512     if (PathDiagnosticPieceRef Piece = maybeEmitNoteForObjCSelf(R, *MC, N))
513       return Piece;
514   }
515 
516   if (const auto *CCall = dyn_cast<CXXConstructorCall>(Call)) {
517     // Do not generate diagnostics for not modified parameters in
518     // constructors.
519     return maybeEmitNoteForCXXThis(R, *CCall, N);
520   }
521 
522   return maybeEmitNoteForParameters(R, *Call, N);
523 }
524 
525 /// \return Whether the method declaration \p Parent
526 /// syntactically has a binary operation writing into the ivar \p Ivar.
527 static bool potentiallyWritesIntoIvar(const Decl *Parent,
528                                       const ObjCIvarDecl *Ivar) {
529   using namespace ast_matchers;
530   const char *IvarBind = "Ivar";
531   if (!Parent || !Parent->hasBody())
532     return false;
533   StatementMatcher WriteIntoIvarM = binaryOperator(
534       hasOperatorName("="),
535       hasLHS(ignoringParenImpCasts(
536           objcIvarRefExpr(hasDeclaration(equalsNode(Ivar))).bind(IvarBind))));
537   StatementMatcher ParentM = stmt(hasDescendant(WriteIntoIvarM));
538   auto Matches = match(ParentM, *Parent->getBody(), Parent->getASTContext());
539   for (BoundNodes &Match : Matches) {
540     auto IvarRef = Match.getNodeAs<ObjCIvarRefExpr>(IvarBind);
541     if (IvarRef->isFreeIvar())
542       return true;
543 
544     const Expr *Base = IvarRef->getBase();
545     if (const auto *ICE = dyn_cast<ImplicitCastExpr>(Base))
546       Base = ICE->getSubExpr();
547 
548     if (const auto *DRE = dyn_cast<DeclRefExpr>(Base))
549       if (const auto *ID = dyn_cast<ImplicitParamDecl>(DRE->getDecl()))
550         if (ID->getParameterKind() == ImplicitParamKind::ObjCSelf)
551           return true;
552 
553     return false;
554   }
555   return false;
556 }
557 
558 /// Attempts to find the region of interest in a given CXX decl,
559 /// by either following the base classes or fields.
560 /// Dereferences fields up to a given recursion limit.
561 /// Note that \p Vec is passed by value, leading to quadratic copying cost,
562 /// but it's OK in practice since its length is limited to DEREFERENCE_LIMIT.
563 /// \return A chain fields leading to the region of interest or std::nullopt.
564 const std::optional<NoStoreFuncVisitor::RegionVector>
565 NoStoreFuncVisitor::findRegionOfInterestInRecord(
566     const RecordDecl *RD, ProgramStateRef State, const MemRegion *R,
567     const NoStoreFuncVisitor::RegionVector &Vec /* = {} */,
568     int depth /* = 0 */) {
569 
570   if (depth == DEREFERENCE_LIMIT) // Limit the recursion depth.
571     return std::nullopt;
572 
573   if (const auto *RDX = dyn_cast<CXXRecordDecl>(RD))
574     if (!RDX->hasDefinition())
575       return std::nullopt;
576 
577   // Recursively examine the base classes.
578   // Note that following base classes does not increase the recursion depth.
579   if (const auto *RDX = dyn_cast<CXXRecordDecl>(RD))
580     for (const auto &II : RDX->bases())
581       if (const RecordDecl *RRD = II.getType()->getAsRecordDecl())
582         if (std::optional<RegionVector> Out =
583                 findRegionOfInterestInRecord(RRD, State, R, Vec, depth))
584           return Out;
585 
586   for (const FieldDecl *I : RD->fields()) {
587     QualType FT = I->getType();
588     const FieldRegion *FR = MmrMgr.getFieldRegion(I, cast<SubRegion>(R));
589     const SVal V = State->getSVal(FR);
590     const MemRegion *VR = V.getAsRegion();
591 
592     RegionVector VecF = Vec;
593     VecF.push_back(FR);
594 
595     if (RegionOfInterest == VR)
596       return VecF;
597 
598     if (const RecordDecl *RRD = FT->getAsRecordDecl())
599       if (auto Out =
600               findRegionOfInterestInRecord(RRD, State, FR, VecF, depth + 1))
601         return Out;
602 
603     QualType PT = FT->getPointeeType();
604     if (PT.isNull() || PT->isVoidType() || !VR)
605       continue;
606 
607     if (const RecordDecl *RRD = PT->getAsRecordDecl())
608       if (std::optional<RegionVector> Out =
609               findRegionOfInterestInRecord(RRD, State, VR, VecF, depth + 1))
610         return Out;
611   }
612 
613   return std::nullopt;
614 }
615 
616 PathDiagnosticPieceRef
617 NoStoreFuncVisitor::maybeEmitNoteForObjCSelf(PathSensitiveBugReport &R,
618                                              const ObjCMethodCall &Call,
619                                              const ExplodedNode *N) {
620   if (const auto *IvarR = dyn_cast<ObjCIvarRegion>(RegionOfInterest)) {
621     const MemRegion *SelfRegion = Call.getReceiverSVal().getAsRegion();
622     if (RegionOfInterest->isSubRegionOf(SelfRegion) &&
623         potentiallyWritesIntoIvar(Call.getRuntimeDefinition().getDecl(),
624                                   IvarR->getDecl()))
625       return maybeEmitNote(R, Call, N, {}, SelfRegion, "self",
626                            /*FirstIsReferenceType=*/false, 1);
627   }
628   return nullptr;
629 }
630 
631 PathDiagnosticPieceRef
632 NoStoreFuncVisitor::maybeEmitNoteForCXXThis(PathSensitiveBugReport &R,
633                                             const CXXConstructorCall &Call,
634                                             const ExplodedNode *N) {
635   const MemRegion *ThisR = Call.getCXXThisVal().getAsRegion();
636   if (RegionOfInterest->isSubRegionOf(ThisR) && !Call.getDecl()->isImplicit())
637     return maybeEmitNote(R, Call, N, {}, ThisR, "this",
638                          /*FirstIsReferenceType=*/false, 1);
639 
640   // Do not generate diagnostics for not modified parameters in
641   // constructors.
642   return nullptr;
643 }
644 
645 /// \return whether \p Ty points to a const type, or is a const reference.
646 static bool isPointerToConst(QualType Ty) {
647   return !Ty->getPointeeType().isNull() &&
648          Ty->getPointeeType().getCanonicalType().isConstQualified();
649 }
650 
651 PathDiagnosticPieceRef NoStoreFuncVisitor::maybeEmitNoteForParameters(
652     PathSensitiveBugReport &R, const CallEvent &Call, const ExplodedNode *N) {
653   ArrayRef<ParmVarDecl *> Parameters = Call.parameters();
654   for (unsigned I = 0; I < Call.getNumArgs() && I < Parameters.size(); ++I) {
655     const ParmVarDecl *PVD = Parameters[I];
656     SVal V = Call.getArgSVal(I);
657     bool ParamIsReferenceType = PVD->getType()->isReferenceType();
658     std::string ParamName = PVD->getNameAsString();
659 
660     unsigned IndirectionLevel = 1;
661     QualType T = PVD->getType();
662     while (const MemRegion *MR = V.getAsRegion()) {
663       if (RegionOfInterest->isSubRegionOf(MR) && !isPointerToConst(T))
664         return maybeEmitNote(R, Call, N, {}, MR, ParamName,
665                              ParamIsReferenceType, IndirectionLevel);
666 
667       QualType PT = T->getPointeeType();
668       if (PT.isNull() || PT->isVoidType())
669         break;
670 
671       ProgramStateRef State = N->getState();
672 
673       if (const RecordDecl *RD = PT->getAsRecordDecl())
674         if (std::optional<RegionVector> P =
675                 findRegionOfInterestInRecord(RD, State, MR))
676           return maybeEmitNote(R, Call, N, *P, RegionOfInterest, ParamName,
677                                ParamIsReferenceType, IndirectionLevel);
678 
679       V = State->getSVal(MR, PT);
680       T = PT;
681       IndirectionLevel++;
682     }
683   }
684 
685   return nullptr;
686 }
687 
688 bool NoStoreFuncVisitor::wasModifiedBeforeCallExit(
689     const ExplodedNode *CurrN, const ExplodedNode *CallExitBeginN) {
690   return ::wasRegionOfInterestModifiedAt(
691       RegionOfInterest, CurrN,
692       CallExitBeginN->getState()->getSVal(RegionOfInterest));
693 }
694 
695 static llvm::StringLiteral WillBeUsedForACondition =
696     ", which participates in a condition later";
697 
698 PathDiagnosticPieceRef NoStoreFuncVisitor::maybeEmitNote(
699     PathSensitiveBugReport &R, const CallEvent &Call, const ExplodedNode *N,
700     const RegionVector &FieldChain, const MemRegion *MatchedRegion,
701     StringRef FirstElement, bool FirstIsReferenceType,
702     unsigned IndirectionLevel) {
703 
704   PathDiagnosticLocation L =
705       PathDiagnosticLocation::create(N->getLocation(), SM);
706 
707   // For now this shouldn't trigger, but once it does (as we add more
708   // functions to the body farm), we'll need to decide if these reports
709   // are worth suppressing as well.
710   if (!L.hasValidLocation())
711     return nullptr;
712 
713   SmallString<256> sbuf;
714   llvm::raw_svector_ostream os(sbuf);
715   os << "Returning without writing to '";
716 
717   // Do not generate the note if failed to pretty-print.
718   if (!prettyPrintRegionName(FieldChain, MatchedRegion, FirstElement,
719                              FirstIsReferenceType, IndirectionLevel, os))
720     return nullptr;
721 
722   os << "'";
723   if (TKind == bugreporter::TrackingKind::Condition)
724     os << WillBeUsedForACondition;
725   return std::make_shared<PathDiagnosticEventPiece>(L, os.str());
726 }
727 
728 bool NoStoreFuncVisitor::prettyPrintRegionName(const RegionVector &FieldChain,
729                                                const MemRegion *MatchedRegion,
730                                                StringRef FirstElement,
731                                                bool FirstIsReferenceType,
732                                                unsigned IndirectionLevel,
733                                                llvm::raw_svector_ostream &os) {
734 
735   if (FirstIsReferenceType)
736     IndirectionLevel--;
737 
738   RegionVector RegionSequence;
739 
740   // Add the regions in the reverse order, then reverse the resulting array.
741   assert(RegionOfInterest->isSubRegionOf(MatchedRegion));
742   const MemRegion *R = RegionOfInterest;
743   while (R != MatchedRegion) {
744     RegionSequence.push_back(R);
745     R = cast<SubRegion>(R)->getSuperRegion();
746   }
747   std::reverse(RegionSequence.begin(), RegionSequence.end());
748   RegionSequence.append(FieldChain.begin(), FieldChain.end());
749 
750   StringRef Sep;
751   for (const MemRegion *R : RegionSequence) {
752 
753     // Just keep going up to the base region.
754     // Element regions may appear due to casts.
755     if (isa<CXXBaseObjectRegion, CXXTempObjectRegion>(R))
756       continue;
757 
758     if (Sep.empty())
759       Sep = prettyPrintFirstElement(FirstElement,
760                                     /*MoreItemsExpected=*/true,
761                                     IndirectionLevel, os);
762 
763     os << Sep;
764 
765     // Can only reasonably pretty-print DeclRegions.
766     if (!isa<DeclRegion>(R))
767       return false;
768 
769     const auto *DR = cast<DeclRegion>(R);
770     Sep = DR->getValueType()->isAnyPointerType() ? "->" : ".";
771     DR->getDecl()->getDeclName().print(os, PP);
772   }
773 
774   if (Sep.empty())
775     prettyPrintFirstElement(FirstElement,
776                             /*MoreItemsExpected=*/false, IndirectionLevel, os);
777   return true;
778 }
779 
780 StringRef NoStoreFuncVisitor::prettyPrintFirstElement(
781     StringRef FirstElement, bool MoreItemsExpected, int IndirectionLevel,
782     llvm::raw_svector_ostream &os) {
783   StringRef Out = ".";
784 
785   if (IndirectionLevel > 0 && MoreItemsExpected) {
786     IndirectionLevel--;
787     Out = "->";
788   }
789 
790   if (IndirectionLevel > 0 && MoreItemsExpected)
791     os << "(";
792 
793   for (int i = 0; i < IndirectionLevel; i++)
794     os << "*";
795   os << FirstElement;
796 
797   if (IndirectionLevel > 0 && MoreItemsExpected)
798     os << ")";
799 
800   return Out;
801 }
802 
803 //===----------------------------------------------------------------------===//
804 // Implementation of MacroNullReturnSuppressionVisitor.
805 //===----------------------------------------------------------------------===//
806 
807 namespace {
808 
809 /// Suppress null-pointer-dereference bugs where dereferenced null was returned
810 /// the macro.
811 class MacroNullReturnSuppressionVisitor final : public BugReporterVisitor {
812   const SubRegion *RegionOfInterest;
813   const SVal ValueAtDereference;
814 
815   // Do not invalidate the reports where the value was modified
816   // after it got assigned to from the macro.
817   bool WasModified = false;
818 
819 public:
820   MacroNullReturnSuppressionVisitor(const SubRegion *R, const SVal V)
821       : RegionOfInterest(R), ValueAtDereference(V) {}
822 
823   PathDiagnosticPieceRef VisitNode(const ExplodedNode *N,
824                                    BugReporterContext &BRC,
825                                    PathSensitiveBugReport &BR) override {
826     if (WasModified)
827       return nullptr;
828 
829     auto BugPoint = BR.getErrorNode()->getLocation().getAs<StmtPoint>();
830     if (!BugPoint)
831       return nullptr;
832 
833     const SourceManager &SMgr = BRC.getSourceManager();
834     if (auto Loc = matchAssignment(N)) {
835       if (isFunctionMacroExpansion(*Loc, SMgr)) {
836         std::string MacroName = std::string(getMacroName(*Loc, BRC));
837         SourceLocation BugLoc = BugPoint->getStmt()->getBeginLoc();
838         if (!BugLoc.isMacroID() || getMacroName(BugLoc, BRC) != MacroName)
839           BR.markInvalid(getTag(), MacroName.c_str());
840       }
841     }
842 
843     if (wasRegionOfInterestModifiedAt(RegionOfInterest, N, ValueAtDereference))
844       WasModified = true;
845 
846     return nullptr;
847   }
848 
849   static void addMacroVisitorIfNecessary(
850         const ExplodedNode *N, const MemRegion *R,
851         bool EnableNullFPSuppression, PathSensitiveBugReport &BR,
852         const SVal V) {
853     AnalyzerOptions &Options = N->getState()->getAnalysisManager().options;
854     if (EnableNullFPSuppression && Options.ShouldSuppressNullReturnPaths &&
855         isa<Loc>(V))
856       BR.addVisitor<MacroNullReturnSuppressionVisitor>(R->getAs<SubRegion>(),
857                                                        V);
858   }
859 
860   void* getTag() const {
861     static int Tag = 0;
862     return static_cast<void *>(&Tag);
863   }
864 
865   void Profile(llvm::FoldingSetNodeID &ID) const override {
866     ID.AddPointer(getTag());
867   }
868 
869 private:
870   /// \return Source location of right hand side of an assignment
871   /// into \c RegionOfInterest, empty optional if none found.
872   std::optional<SourceLocation> matchAssignment(const ExplodedNode *N) {
873     const Stmt *S = N->getStmtForDiagnostics();
874     ProgramStateRef State = N->getState();
875     auto *LCtx = N->getLocationContext();
876     if (!S)
877       return std::nullopt;
878 
879     if (const auto *DS = dyn_cast<DeclStmt>(S)) {
880       if (const auto *VD = dyn_cast<VarDecl>(DS->getSingleDecl()))
881         if (const Expr *RHS = VD->getInit())
882           if (RegionOfInterest->isSubRegionOf(
883                   State->getLValue(VD, LCtx).getAsRegion()))
884             return RHS->getBeginLoc();
885     } else if (const auto *BO = dyn_cast<BinaryOperator>(S)) {
886       const MemRegion *R = N->getSVal(BO->getLHS()).getAsRegion();
887       const Expr *RHS = BO->getRHS();
888       if (BO->isAssignmentOp() && RegionOfInterest->isSubRegionOf(R)) {
889         return RHS->getBeginLoc();
890       }
891     }
892     return std::nullopt;
893   }
894 };
895 
896 } // end of anonymous namespace
897 
898 namespace {
899 
900 /// Emits an extra note at the return statement of an interesting stack frame.
901 ///
902 /// The returned value is marked as an interesting value, and if it's null,
903 /// adds a visitor to track where it became null.
904 ///
905 /// This visitor is intended to be used when another visitor discovers that an
906 /// interesting value comes from an inlined function call.
907 class ReturnVisitor : public TrackingBugReporterVisitor {
908   const StackFrameContext *CalleeSFC;
909   enum {
910     Initial,
911     MaybeUnsuppress,
912     Satisfied
913   } Mode = Initial;
914 
915   bool EnableNullFPSuppression;
916   bool ShouldInvalidate = true;
917   AnalyzerOptions& Options;
918   bugreporter::TrackingKind TKind;
919 
920 public:
921   ReturnVisitor(TrackerRef ParentTracker, const StackFrameContext *Frame,
922                 bool Suppressed, AnalyzerOptions &Options,
923                 bugreporter::TrackingKind TKind)
924       : TrackingBugReporterVisitor(ParentTracker), CalleeSFC(Frame),
925         EnableNullFPSuppression(Suppressed), Options(Options), TKind(TKind) {}
926 
927   static void *getTag() {
928     static int Tag = 0;
929     return static_cast<void *>(&Tag);
930   }
931 
932   void Profile(llvm::FoldingSetNodeID &ID) const override {
933     ID.AddPointer(ReturnVisitor::getTag());
934     ID.AddPointer(CalleeSFC);
935     ID.AddBoolean(EnableNullFPSuppression);
936   }
937 
938   PathDiagnosticPieceRef visitNodeInitial(const ExplodedNode *N,
939                                           BugReporterContext &BRC,
940                                           PathSensitiveBugReport &BR) {
941     // Only print a message at the interesting return statement.
942     if (N->getLocationContext() != CalleeSFC)
943       return nullptr;
944 
945     std::optional<StmtPoint> SP = N->getLocationAs<StmtPoint>();
946     if (!SP)
947       return nullptr;
948 
949     const auto *Ret = dyn_cast<ReturnStmt>(SP->getStmt());
950     if (!Ret)
951       return nullptr;
952 
953     // Okay, we're at the right return statement, but do we have the return
954     // value available?
955     ProgramStateRef State = N->getState();
956     SVal V = State->getSVal(Ret, CalleeSFC);
957     if (V.isUnknownOrUndef())
958       return nullptr;
959 
960     // Don't print any more notes after this one.
961     Mode = Satisfied;
962 
963     const Expr *RetE = Ret->getRetValue();
964     assert(RetE && "Tracking a return value for a void function");
965 
966     // Handle cases where a reference is returned and then immediately used.
967     std::optional<Loc> LValue;
968     if (RetE->isGLValue()) {
969       if ((LValue = V.getAs<Loc>())) {
970         SVal RValue = State->getRawSVal(*LValue, RetE->getType());
971         if (isa<DefinedSVal>(RValue))
972           V = RValue;
973       }
974     }
975 
976     // Ignore aggregate rvalues.
977     if (isa<nonloc::LazyCompoundVal, nonloc::CompoundVal>(V))
978       return nullptr;
979 
980     RetE = RetE->IgnoreParenCasts();
981 
982     // Let's track the return value.
983     getParentTracker().track(RetE, N, {TKind, EnableNullFPSuppression});
984 
985     // Build an appropriate message based on the return value.
986     SmallString<64> Msg;
987     llvm::raw_svector_ostream Out(Msg);
988 
989     bool WouldEventBeMeaningless = false;
990 
991     if (State->isNull(V).isConstrainedTrue()) {
992       if (isa<Loc>(V)) {
993 
994         // If we have counter-suppression enabled, make sure we keep visiting
995         // future nodes. We want to emit a path note as well, in case
996         // the report is resurrected as valid later on.
997         if (EnableNullFPSuppression &&
998             Options.ShouldAvoidSuppressingNullArgumentPaths)
999           Mode = MaybeUnsuppress;
1000 
1001         if (RetE->getType()->isObjCObjectPointerType()) {
1002           Out << "Returning nil";
1003         } else {
1004           Out << "Returning null pointer";
1005         }
1006       } else {
1007         Out << "Returning zero";
1008       }
1009 
1010     } else {
1011       if (auto CI = V.getAs<nonloc::ConcreteInt>()) {
1012         Out << "Returning the value " << CI->getValue();
1013       } else {
1014         // There is nothing interesting about returning a value, when it is
1015         // plain value without any constraints, and the function is guaranteed
1016         // to return that every time. We could use CFG::isLinear() here, but
1017         // constexpr branches are obvious to the compiler, not necesserily to
1018         // the programmer.
1019         if (N->getCFG().size() == 3)
1020           WouldEventBeMeaningless = true;
1021 
1022         Out << (isa<Loc>(V) ? "Returning pointer" : "Returning value");
1023       }
1024     }
1025 
1026     if (LValue) {
1027       if (const MemRegion *MR = LValue->getAsRegion()) {
1028         if (MR->canPrintPretty()) {
1029           Out << " (reference to ";
1030           MR->printPretty(Out);
1031           Out << ")";
1032         }
1033       }
1034     } else {
1035       // FIXME: We should have a more generalized location printing mechanism.
1036       if (const auto *DR = dyn_cast<DeclRefExpr>(RetE))
1037         if (const auto *DD = dyn_cast<DeclaratorDecl>(DR->getDecl()))
1038           Out << " (loaded from '" << *DD << "')";
1039     }
1040 
1041     PathDiagnosticLocation L(Ret, BRC.getSourceManager(), CalleeSFC);
1042     if (!L.isValid() || !L.asLocation().isValid())
1043       return nullptr;
1044 
1045     if (TKind == bugreporter::TrackingKind::Condition)
1046       Out << WillBeUsedForACondition;
1047 
1048     auto EventPiece = std::make_shared<PathDiagnosticEventPiece>(L, Out.str());
1049 
1050     // If we determined that the note is meaningless, make it prunable, and
1051     // don't mark the stackframe interesting.
1052     if (WouldEventBeMeaningless)
1053       EventPiece->setPrunable(true);
1054     else
1055       BR.markInteresting(CalleeSFC);
1056 
1057     return EventPiece;
1058   }
1059 
1060   PathDiagnosticPieceRef visitNodeMaybeUnsuppress(const ExplodedNode *N,
1061                                                   BugReporterContext &BRC,
1062                                                   PathSensitiveBugReport &BR) {
1063     assert(Options.ShouldAvoidSuppressingNullArgumentPaths);
1064 
1065     // Are we at the entry node for this call?
1066     std::optional<CallEnter> CE = N->getLocationAs<CallEnter>();
1067     if (!CE)
1068       return nullptr;
1069 
1070     if (CE->getCalleeContext() != CalleeSFC)
1071       return nullptr;
1072 
1073     Mode = Satisfied;
1074 
1075     // Don't automatically suppress a report if one of the arguments is
1076     // known to be a null pointer. Instead, start tracking /that/ null
1077     // value back to its origin.
1078     ProgramStateManager &StateMgr = BRC.getStateManager();
1079     CallEventManager &CallMgr = StateMgr.getCallEventManager();
1080 
1081     ProgramStateRef State = N->getState();
1082     CallEventRef<> Call = CallMgr.getCaller(CalleeSFC, State);
1083     for (unsigned I = 0, E = Call->getNumArgs(); I != E; ++I) {
1084       std::optional<Loc> ArgV = Call->getArgSVal(I).getAs<Loc>();
1085       if (!ArgV)
1086         continue;
1087 
1088       const Expr *ArgE = Call->getArgExpr(I);
1089       if (!ArgE)
1090         continue;
1091 
1092       // Is it possible for this argument to be non-null?
1093       if (!State->isNull(*ArgV).isConstrainedTrue())
1094         continue;
1095 
1096       if (getParentTracker()
1097               .track(ArgE, N, {TKind, EnableNullFPSuppression})
1098               .FoundSomethingToTrack)
1099         ShouldInvalidate = false;
1100 
1101       // If we /can't/ track the null pointer, we should err on the side of
1102       // false negatives, and continue towards marking this report invalid.
1103       // (We will still look at the other arguments, though.)
1104     }
1105 
1106     return nullptr;
1107   }
1108 
1109   PathDiagnosticPieceRef VisitNode(const ExplodedNode *N,
1110                                    BugReporterContext &BRC,
1111                                    PathSensitiveBugReport &BR) override {
1112     switch (Mode) {
1113     case Initial:
1114       return visitNodeInitial(N, BRC, BR);
1115     case MaybeUnsuppress:
1116       return visitNodeMaybeUnsuppress(N, BRC, BR);
1117     case Satisfied:
1118       return nullptr;
1119     }
1120 
1121     llvm_unreachable("Invalid visit mode!");
1122   }
1123 
1124   void finalizeVisitor(BugReporterContext &, const ExplodedNode *,
1125                        PathSensitiveBugReport &BR) override {
1126     if (EnableNullFPSuppression && ShouldInvalidate)
1127       BR.markInvalid(ReturnVisitor::getTag(), CalleeSFC);
1128   }
1129 };
1130 
1131 //===----------------------------------------------------------------------===//
1132 //                               StoreSiteFinder
1133 //===----------------------------------------------------------------------===//
1134 
1135 /// Finds last store into the given region,
1136 /// which is different from a given symbolic value.
1137 class StoreSiteFinder final : public TrackingBugReporterVisitor {
1138   const MemRegion *R;
1139   SVal V;
1140   bool Satisfied = false;
1141 
1142   TrackingOptions Options;
1143   const StackFrameContext *OriginSFC;
1144 
1145 public:
1146   /// \param V We're searching for the store where \c R received this value.
1147   /// \param R The region we're tracking.
1148   /// \param Options Tracking behavior options.
1149   /// \param OriginSFC Only adds notes when the last store happened in a
1150   ///        different stackframe to this one. Disregarded if the tracking kind
1151   ///        is thorough.
1152   ///        This is useful, because for non-tracked regions, notes about
1153   ///        changes to its value in a nested stackframe could be pruned, and
1154   ///        this visitor can prevent that without polluting the bugpath too
1155   ///        much.
1156   StoreSiteFinder(bugreporter::TrackerRef ParentTracker, SVal V,
1157                   const MemRegion *R, TrackingOptions Options,
1158                   const StackFrameContext *OriginSFC = nullptr)
1159       : TrackingBugReporterVisitor(ParentTracker), R(R), V(V), Options(Options),
1160         OriginSFC(OriginSFC) {
1161     assert(R);
1162   }
1163 
1164   void Profile(llvm::FoldingSetNodeID &ID) const override;
1165 
1166   PathDiagnosticPieceRef VisitNode(const ExplodedNode *N,
1167                                    BugReporterContext &BRC,
1168                                    PathSensitiveBugReport &BR) override;
1169 };
1170 } // namespace
1171 
1172 void StoreSiteFinder::Profile(llvm::FoldingSetNodeID &ID) const {
1173   static int tag = 0;
1174   ID.AddPointer(&tag);
1175   ID.AddPointer(R);
1176   ID.Add(V);
1177   ID.AddInteger(static_cast<int>(Options.Kind));
1178   ID.AddBoolean(Options.EnableNullFPSuppression);
1179 }
1180 
1181 /// Returns true if \p N represents the DeclStmt declaring and initializing
1182 /// \p VR.
1183 static bool isInitializationOfVar(const ExplodedNode *N, const VarRegion *VR) {
1184   std::optional<PostStmt> P = N->getLocationAs<PostStmt>();
1185   if (!P)
1186     return false;
1187 
1188   const DeclStmt *DS = P->getStmtAs<DeclStmt>();
1189   if (!DS)
1190     return false;
1191 
1192   if (DS->getSingleDecl() != VR->getDecl())
1193     return false;
1194 
1195   const MemSpaceRegion *VarSpace = VR->getMemorySpace();
1196   const auto *FrameSpace = dyn_cast<StackSpaceRegion>(VarSpace);
1197   if (!FrameSpace) {
1198     // If we ever directly evaluate global DeclStmts, this assertion will be
1199     // invalid, but this still seems preferable to silently accepting an
1200     // initialization that may be for a path-sensitive variable.
1201     assert(VR->getDecl()->isStaticLocal() && "non-static stackless VarRegion");
1202     return true;
1203   }
1204 
1205   assert(VR->getDecl()->hasLocalStorage());
1206   const LocationContext *LCtx = N->getLocationContext();
1207   return FrameSpace->getStackFrame() == LCtx->getStackFrame();
1208 }
1209 
1210 static bool isObjCPointer(const MemRegion *R) {
1211   if (R->isBoundable())
1212     if (const auto *TR = dyn_cast<TypedValueRegion>(R))
1213       return TR->getValueType()->isObjCObjectPointerType();
1214 
1215   return false;
1216 }
1217 
1218 static bool isObjCPointer(const ValueDecl *D) {
1219   return D->getType()->isObjCObjectPointerType();
1220 }
1221 
1222 /// Show diagnostics for initializing or declaring a region \p R with a bad value.
1223 static void showBRDiagnostics(llvm::raw_svector_ostream &OS, StoreInfo SI) {
1224   const bool HasPrefix = SI.Dest->canPrintPretty();
1225 
1226   if (HasPrefix) {
1227     SI.Dest->printPretty(OS);
1228     OS << " ";
1229   }
1230 
1231   const char *Action = nullptr;
1232 
1233   switch (SI.StoreKind) {
1234   case StoreInfo::Initialization:
1235     Action = HasPrefix ? "initialized to " : "Initializing to ";
1236     break;
1237   case StoreInfo::BlockCapture:
1238     Action = HasPrefix ? "captured by block as " : "Captured by block as ";
1239     break;
1240   default:
1241     llvm_unreachable("Unexpected store kind");
1242   }
1243 
1244   if (isa<loc::ConcreteInt>(SI.Value)) {
1245     OS << Action << (isObjCPointer(SI.Dest) ? "nil" : "a null pointer value");
1246 
1247   } else if (auto CVal = SI.Value.getAs<nonloc::ConcreteInt>()) {
1248     OS << Action << CVal->getValue();
1249 
1250   } else if (SI.Origin && SI.Origin->canPrintPretty()) {
1251     OS << Action << "the value of ";
1252     SI.Origin->printPretty(OS);
1253 
1254   } else if (SI.StoreKind == StoreInfo::Initialization) {
1255     // We don't need to check here, all these conditions were
1256     // checked by StoreSiteFinder, when it figured out that it is
1257     // initialization.
1258     const auto *DS =
1259         cast<DeclStmt>(SI.StoreSite->getLocationAs<PostStmt>()->getStmt());
1260 
1261     if (SI.Value.isUndef()) {
1262       if (isa<VarRegion>(SI.Dest)) {
1263         const auto *VD = cast<VarDecl>(DS->getSingleDecl());
1264 
1265         if (VD->getInit()) {
1266           OS << (HasPrefix ? "initialized" : "Initializing")
1267              << " to a garbage value";
1268         } else {
1269           OS << (HasPrefix ? "declared" : "Declaring")
1270              << " without an initial value";
1271         }
1272       }
1273     } else {
1274       OS << (HasPrefix ? "initialized" : "Initialized") << " here";
1275     }
1276   }
1277 }
1278 
1279 /// Display diagnostics for passing bad region as a parameter.
1280 static void showBRParamDiagnostics(llvm::raw_svector_ostream &OS,
1281                                    StoreInfo SI) {
1282   const auto *VR = cast<VarRegion>(SI.Dest);
1283   const auto *D = VR->getDecl();
1284 
1285   OS << "Passing ";
1286 
1287   if (isa<loc::ConcreteInt>(SI.Value)) {
1288     OS << (isObjCPointer(D) ? "nil object reference" : "null pointer value");
1289 
1290   } else if (SI.Value.isUndef()) {
1291     OS << "uninitialized value";
1292 
1293   } else if (auto CI = SI.Value.getAs<nonloc::ConcreteInt>()) {
1294     OS << "the value " << CI->getValue();
1295 
1296   } else if (SI.Origin && SI.Origin->canPrintPretty()) {
1297     SI.Origin->printPretty(OS);
1298 
1299   } else {
1300     OS << "value";
1301   }
1302 
1303   if (const auto *Param = dyn_cast<ParmVarDecl>(VR->getDecl())) {
1304     // Printed parameter indexes are 1-based, not 0-based.
1305     unsigned Idx = Param->getFunctionScopeIndex() + 1;
1306     OS << " via " << Idx << llvm::getOrdinalSuffix(Idx) << " parameter";
1307     if (VR->canPrintPretty()) {
1308       OS << " ";
1309       VR->printPretty(OS);
1310     }
1311   } else if (const auto *ImplParam = dyn_cast<ImplicitParamDecl>(D)) {
1312     if (ImplParam->getParameterKind() == ImplicitParamKind::ObjCSelf) {
1313       OS << " via implicit parameter 'self'";
1314     }
1315   }
1316 }
1317 
1318 /// Show default diagnostics for storing bad region.
1319 static void showBRDefaultDiagnostics(llvm::raw_svector_ostream &OS,
1320                                      StoreInfo SI) {
1321   const bool HasSuffix = SI.Dest->canPrintPretty();
1322 
1323   if (isa<loc::ConcreteInt>(SI.Value)) {
1324     OS << (isObjCPointer(SI.Dest) ? "nil object reference stored"
1325                                   : (HasSuffix ? "Null pointer value stored"
1326                                                : "Storing null pointer value"));
1327 
1328   } else if (SI.Value.isUndef()) {
1329     OS << (HasSuffix ? "Uninitialized value stored"
1330                      : "Storing uninitialized value");
1331 
1332   } else if (auto CV = SI.Value.getAs<nonloc::ConcreteInt>()) {
1333     if (HasSuffix)
1334       OS << "The value " << CV->getValue() << " is assigned";
1335     else
1336       OS << "Assigning " << CV->getValue();
1337 
1338   } else if (SI.Origin && SI.Origin->canPrintPretty()) {
1339     if (HasSuffix) {
1340       OS << "The value of ";
1341       SI.Origin->printPretty(OS);
1342       OS << " is assigned";
1343     } else {
1344       OS << "Assigning the value of ";
1345       SI.Origin->printPretty(OS);
1346     }
1347 
1348   } else {
1349     OS << (HasSuffix ? "Value assigned" : "Assigning value");
1350   }
1351 
1352   if (HasSuffix) {
1353     OS << " to ";
1354     SI.Dest->printPretty(OS);
1355   }
1356 }
1357 
1358 static bool isTrivialCopyOrMoveCtor(const CXXConstructExpr *CE) {
1359   if (!CE)
1360     return false;
1361 
1362   const auto *CtorDecl = CE->getConstructor();
1363 
1364   return CtorDecl->isCopyOrMoveConstructor() && CtorDecl->isTrivial();
1365 }
1366 
1367 static const Expr *tryExtractInitializerFromList(const InitListExpr *ILE,
1368                                                  const MemRegion *R) {
1369 
1370   const auto *TVR = dyn_cast_or_null<TypedValueRegion>(R);
1371 
1372   if (!TVR)
1373     return nullptr;
1374 
1375   const auto ITy = ILE->getType().getCanonicalType();
1376 
1377   // Push each sub-region onto the stack.
1378   std::stack<const TypedValueRegion *> TVRStack;
1379   while (isa<FieldRegion>(TVR) || isa<ElementRegion>(TVR)) {
1380     // We found a region that matches the type of the init list,
1381     // so we assume this is the outer-most region. This can happen
1382     // if the initializer list is inside a class. If our assumption
1383     // is wrong, we return a nullptr in the end.
1384     if (ITy == TVR->getValueType().getCanonicalType())
1385       break;
1386 
1387     TVRStack.push(TVR);
1388     TVR = cast<TypedValueRegion>(TVR->getSuperRegion());
1389   }
1390 
1391   // If the type of the outer most region doesn't match the type
1392   // of the ILE, we can't match the ILE and the region.
1393   if (ITy != TVR->getValueType().getCanonicalType())
1394     return nullptr;
1395 
1396   const Expr *Init = ILE;
1397   while (!TVRStack.empty()) {
1398     TVR = TVRStack.top();
1399     TVRStack.pop();
1400 
1401     // We hit something that's not an init list before
1402     // running out of regions, so we most likely failed.
1403     if (!isa<InitListExpr>(Init))
1404       return nullptr;
1405 
1406     ILE = cast<InitListExpr>(Init);
1407     auto NumInits = ILE->getNumInits();
1408 
1409     if (const auto *FR = dyn_cast<FieldRegion>(TVR)) {
1410       const auto *FD = FR->getDecl();
1411 
1412       if (FD->getFieldIndex() >= NumInits)
1413         return nullptr;
1414 
1415       Init = ILE->getInit(FD->getFieldIndex());
1416     } else if (const auto *ER = dyn_cast<ElementRegion>(TVR)) {
1417       const auto Ind = ER->getIndex();
1418 
1419       // If index is symbolic, we can't figure out which expression
1420       // belongs to the region.
1421       if (!Ind.isConstant())
1422         return nullptr;
1423 
1424       const auto IndVal = Ind.getAsInteger()->getLimitedValue();
1425       if (IndVal >= NumInits)
1426         return nullptr;
1427 
1428       Init = ILE->getInit(IndVal);
1429     }
1430   }
1431 
1432   return Init;
1433 }
1434 
1435 PathDiagnosticPieceRef StoreSiteFinder::VisitNode(const ExplodedNode *Succ,
1436                                                   BugReporterContext &BRC,
1437                                                   PathSensitiveBugReport &BR) {
1438   if (Satisfied)
1439     return nullptr;
1440 
1441   const ExplodedNode *StoreSite = nullptr;
1442   const ExplodedNode *Pred = Succ->getFirstPred();
1443   const Expr *InitE = nullptr;
1444   bool IsParam = false;
1445 
1446   // First see if we reached the declaration of the region.
1447   if (const auto *VR = dyn_cast<VarRegion>(R)) {
1448     if (isInitializationOfVar(Pred, VR)) {
1449       StoreSite = Pred;
1450       InitE = VR->getDecl()->getInit();
1451     }
1452   }
1453 
1454   // If this is a post initializer expression, initializing the region, we
1455   // should track the initializer expression.
1456   if (std::optional<PostInitializer> PIP =
1457           Pred->getLocationAs<PostInitializer>()) {
1458     const MemRegion *FieldReg = (const MemRegion *)PIP->getLocationValue();
1459     if (FieldReg == R) {
1460       StoreSite = Pred;
1461       InitE = PIP->getInitializer()->getInit();
1462     }
1463   }
1464 
1465   // Otherwise, see if this is the store site:
1466   // (1) Succ has this binding and Pred does not, i.e. this is
1467   //     where the binding first occurred.
1468   // (2) Succ has this binding and is a PostStore node for this region, i.e.
1469   //     the same binding was re-assigned here.
1470   if (!StoreSite) {
1471     if (Succ->getState()->getSVal(R) != V)
1472       return nullptr;
1473 
1474     if (hasVisibleUpdate(Pred, Pred->getState()->getSVal(R), Succ, V)) {
1475       std::optional<PostStore> PS = Succ->getLocationAs<PostStore>();
1476       if (!PS || PS->getLocationValue() != R)
1477         return nullptr;
1478     }
1479 
1480     StoreSite = Succ;
1481 
1482     if (std::optional<PostStmt> P = Succ->getLocationAs<PostStmt>()) {
1483       // If this is an assignment expression, we can track the value
1484       // being assigned.
1485       if (const BinaryOperator *BO = P->getStmtAs<BinaryOperator>()) {
1486         if (BO->isAssignmentOp())
1487           InitE = BO->getRHS();
1488       }
1489       // If we have a declaration like 'S s{1,2}' that needs special
1490       // handling, we handle it here.
1491       else if (const auto *DS = P->getStmtAs<DeclStmt>()) {
1492         const auto *Decl = DS->getSingleDecl();
1493         if (isa<VarDecl>(Decl)) {
1494           const auto *VD = cast<VarDecl>(Decl);
1495 
1496           // FIXME: Here we only track the inner most region, so we lose
1497           // information, but it's still better than a crash or no information
1498           // at all.
1499           //
1500           // E.g.: The region we have is 's.s2.s3.s4.y' and we only track 'y',
1501           // and throw away the rest.
1502           if (const auto *ILE = dyn_cast<InitListExpr>(VD->getInit()))
1503             InitE = tryExtractInitializerFromList(ILE, R);
1504         }
1505       } else if (const auto *CE = P->getStmtAs<CXXConstructExpr>()) {
1506 
1507         const auto State = Succ->getState();
1508 
1509         if (isTrivialCopyOrMoveCtor(CE) && isa<SubRegion>(R)) {
1510           // Migrate the field regions from the current object to
1511           // the parent object. If we track 'a.y.e' and encounter
1512           // 'S a = b' then we need to track 'b.y.e'.
1513 
1514           // Push the regions to a stack, from last to first, so
1515           // considering the example above the stack will look like
1516           // (bottom) 'e' -> 'y' (top).
1517 
1518           std::stack<const SubRegion *> SRStack;
1519           const SubRegion *SR = cast<SubRegion>(R);
1520           while (isa<FieldRegion>(SR) || isa<ElementRegion>(SR)) {
1521             SRStack.push(SR);
1522             SR = cast<SubRegion>(SR->getSuperRegion());
1523           }
1524 
1525           // Get the region for the object we copied/moved from.
1526           const auto *OriginEx = CE->getArg(0);
1527           const auto OriginVal =
1528               State->getSVal(OriginEx, Succ->getLocationContext());
1529 
1530           // Pop the stored field regions and apply them to the origin
1531           // object in the same order we had them on the copy.
1532           // OriginField will evolve like 'b' -> 'b.y' -> 'b.y.e'.
1533           SVal OriginField = OriginVal;
1534           while (!SRStack.empty()) {
1535             const auto *TopR = SRStack.top();
1536             SRStack.pop();
1537 
1538             if (const auto *FR = dyn_cast<FieldRegion>(TopR)) {
1539               OriginField = State->getLValue(FR->getDecl(), OriginField);
1540             } else if (const auto *ER = dyn_cast<ElementRegion>(TopR)) {
1541               OriginField = State->getLValue(ER->getElementType(),
1542                                              ER->getIndex(), OriginField);
1543             } else {
1544               // FIXME: handle other region type
1545             }
1546           }
1547 
1548           // Track 'b.y.e'.
1549           getParentTracker().track(V, OriginField.getAsRegion(), Options);
1550           InitE = OriginEx;
1551         }
1552       }
1553       // This branch can occur in cases like `Ctor() : field{ x, y } {}'.
1554       else if (const auto *ILE = P->getStmtAs<InitListExpr>()) {
1555         // FIXME: Here we only track the top level region, so we lose
1556         // information, but it's still better than a crash or no information
1557         // at all.
1558         //
1559         // E.g.: The region we have is 's.s2.s3.s4.y' and we only track 'y', and
1560         // throw away the rest.
1561         InitE = tryExtractInitializerFromList(ILE, R);
1562       }
1563     }
1564 
1565     // If this is a call entry, the variable should be a parameter.
1566     // FIXME: Handle CXXThisRegion as well. (This is not a priority because
1567     // 'this' should never be NULL, but this visitor isn't just for NULL and
1568     // UndefinedVal.)
1569     if (std::optional<CallEnter> CE = Succ->getLocationAs<CallEnter>()) {
1570       if (const auto *VR = dyn_cast<VarRegion>(R)) {
1571 
1572         if (const auto *Param = dyn_cast<ParmVarDecl>(VR->getDecl())) {
1573           ProgramStateManager &StateMgr = BRC.getStateManager();
1574           CallEventManager &CallMgr = StateMgr.getCallEventManager();
1575 
1576           CallEventRef<> Call = CallMgr.getCaller(CE->getCalleeContext(),
1577                                                   Succ->getState());
1578           InitE = Call->getArgExpr(Param->getFunctionScopeIndex());
1579         } else {
1580           // Handle Objective-C 'self'.
1581           assert(isa<ImplicitParamDecl>(VR->getDecl()));
1582           InitE = cast<ObjCMessageExpr>(CE->getCalleeContext()->getCallSite())
1583                       ->getInstanceReceiver()->IgnoreParenCasts();
1584         }
1585         IsParam = true;
1586       }
1587     }
1588 
1589     // If this is a CXXTempObjectRegion, the Expr responsible for its creation
1590     // is wrapped inside of it.
1591     if (const auto *TmpR = dyn_cast<CXXTempObjectRegion>(R))
1592       InitE = TmpR->getExpr();
1593   }
1594 
1595   if (!StoreSite)
1596     return nullptr;
1597 
1598   Satisfied = true;
1599 
1600   // If we have an expression that provided the value, try to track where it
1601   // came from.
1602   if (InitE) {
1603     if (!IsParam)
1604       InitE = InitE->IgnoreParenCasts();
1605 
1606     getParentTracker().track(InitE, StoreSite, Options);
1607   }
1608 
1609   // Let's try to find the region where the value came from.
1610   const MemRegion *OldRegion = nullptr;
1611 
1612   // If we have init expression, it might be simply a reference
1613   // to a variable, so we can use it.
1614   if (InitE) {
1615     // That region might still be not exactly what we are looking for.
1616     // In situations like `int &ref = val;`, we can't say that
1617     // `ref` is initialized with `val`, rather refers to `val`.
1618     //
1619     // In order, to mitigate situations like this, we check if the last
1620     // stored value in that region is the value that we track.
1621     //
1622     // TODO: support other situations better.
1623     if (const MemRegion *Candidate =
1624             getLocationRegionIfReference(InitE, Succ, false)) {
1625       const StoreManager &SM = BRC.getStateManager().getStoreManager();
1626 
1627       // Here we traverse the graph up to find the last node where the
1628       // candidate region is still in the store.
1629       for (const ExplodedNode *N = StoreSite; N; N = N->getFirstPred()) {
1630         if (SM.includedInBindings(N->getState()->getStore(), Candidate)) {
1631           // And if it was bound to the target value, we can use it.
1632           if (N->getState()->getSVal(Candidate) == V) {
1633             OldRegion = Candidate;
1634           }
1635           break;
1636         }
1637       }
1638     }
1639   }
1640 
1641   // Otherwise, if the current region does indeed contain the value
1642   // we are looking for, we can look for a region where this value
1643   // was before.
1644   //
1645   // It can be useful for situations like:
1646   //     new = identity(old)
1647   // where the analyzer knows that 'identity' returns the value of its
1648   // first argument.
1649   //
1650   // NOTE: If the region R is not a simple var region, it can contain
1651   //       V in one of its subregions.
1652   if (!OldRegion && StoreSite->getState()->getSVal(R) == V) {
1653     // Let's go up the graph to find the node where the region is
1654     // bound to V.
1655     const ExplodedNode *NodeWithoutBinding = StoreSite->getFirstPred();
1656     for (;
1657          NodeWithoutBinding && NodeWithoutBinding->getState()->getSVal(R) == V;
1658          NodeWithoutBinding = NodeWithoutBinding->getFirstPred()) {
1659     }
1660 
1661     if (NodeWithoutBinding) {
1662       // Let's try to find a unique binding for the value in that node.
1663       // We want to use this to find unique bindings because of the following
1664       // situations:
1665       //     b = a;
1666       //     c = identity(b);
1667       //
1668       // Telling the user that the value of 'a' is assigned to 'c', while
1669       // correct, can be confusing.
1670       StoreManager::FindUniqueBinding FB(V.getAsLocSymbol());
1671       BRC.getStateManager().iterBindings(NodeWithoutBinding->getState(), FB);
1672       if (FB)
1673         OldRegion = FB.getRegion();
1674     }
1675   }
1676 
1677   if (Options.Kind == TrackingKind::Condition && OriginSFC &&
1678       !OriginSFC->isParentOf(StoreSite->getStackFrame()))
1679     return nullptr;
1680 
1681   // Okay, we've found the binding. Emit an appropriate message.
1682   SmallString<256> sbuf;
1683   llvm::raw_svector_ostream os(sbuf);
1684 
1685   StoreInfo SI = {StoreInfo::Assignment, // default kind
1686                   StoreSite,
1687                   InitE,
1688                   V,
1689                   R,
1690                   OldRegion};
1691 
1692   if (std::optional<PostStmt> PS = StoreSite->getLocationAs<PostStmt>()) {
1693     const Stmt *S = PS->getStmt();
1694     const auto *DS = dyn_cast<DeclStmt>(S);
1695     const auto *VR = dyn_cast<VarRegion>(R);
1696 
1697     if (DS) {
1698       SI.StoreKind = StoreInfo::Initialization;
1699     } else if (isa<BlockExpr>(S)) {
1700       SI.StoreKind = StoreInfo::BlockCapture;
1701       if (VR) {
1702         // See if we can get the BlockVarRegion.
1703         ProgramStateRef State = StoreSite->getState();
1704         SVal V = StoreSite->getSVal(S);
1705         if (const auto *BDR =
1706                 dyn_cast_or_null<BlockDataRegion>(V.getAsRegion())) {
1707           if (const VarRegion *OriginalR = BDR->getOriginalRegion(VR)) {
1708             getParentTracker().track(State->getSVal(OriginalR), OriginalR,
1709                                      Options, OriginSFC);
1710           }
1711         }
1712       }
1713     }
1714   } else if (SI.StoreSite->getLocation().getAs<CallEnter>() &&
1715              isa<VarRegion>(SI.Dest)) {
1716     SI.StoreKind = StoreInfo::CallArgument;
1717   }
1718 
1719   return getParentTracker().handle(SI, BRC, Options);
1720 }
1721 
1722 //===----------------------------------------------------------------------===//
1723 // Implementation of TrackConstraintBRVisitor.
1724 //===----------------------------------------------------------------------===//
1725 
1726 void TrackConstraintBRVisitor::Profile(llvm::FoldingSetNodeID &ID) const {
1727   static int tag = 0;
1728   ID.AddPointer(&tag);
1729   ID.AddString(Message);
1730   ID.AddBoolean(Assumption);
1731   ID.Add(Constraint);
1732 }
1733 
1734 /// Return the tag associated with this visitor.  This tag will be used
1735 /// to make all PathDiagnosticPieces created by this visitor.
1736 const char *TrackConstraintBRVisitor::getTag() {
1737   return "TrackConstraintBRVisitor";
1738 }
1739 
1740 bool TrackConstraintBRVisitor::isZeroCheck() const {
1741   return !Assumption && Constraint.getAs<Loc>();
1742 }
1743 
1744 bool TrackConstraintBRVisitor::isUnderconstrained(const ExplodedNode *N) const {
1745   if (isZeroCheck())
1746     return N->getState()->isNull(Constraint).isUnderconstrained();
1747   return (bool)N->getState()->assume(Constraint, !Assumption);
1748 }
1749 
1750 PathDiagnosticPieceRef TrackConstraintBRVisitor::VisitNode(
1751     const ExplodedNode *N, BugReporterContext &BRC, PathSensitiveBugReport &) {
1752   const ExplodedNode *PrevN = N->getFirstPred();
1753   if (IsSatisfied)
1754     return nullptr;
1755 
1756   // Start tracking after we see the first state in which the value is
1757   // constrained.
1758   if (!IsTrackingTurnedOn)
1759     if (!isUnderconstrained(N))
1760       IsTrackingTurnedOn = true;
1761   if (!IsTrackingTurnedOn)
1762     return nullptr;
1763 
1764   // Check if in the previous state it was feasible for this constraint
1765   // to *not* be true.
1766   if (isUnderconstrained(PrevN)) {
1767     IsSatisfied = true;
1768 
1769     // At this point, the negation of the constraint should be infeasible. If it
1770     // is feasible, make sure that the negation of the constrainti was
1771     // infeasible in the current state.  If it is feasible, we somehow missed
1772     // the transition point.
1773     assert(!isUnderconstrained(N));
1774 
1775     // Construct a new PathDiagnosticPiece.
1776     ProgramPoint P = N->getLocation();
1777 
1778     // If this node already have a specialized note, it's probably better
1779     // than our generic note.
1780     // FIXME: This only looks for note tags, not for other ways to add a note.
1781     if (isa_and_nonnull<NoteTag>(P.getTag()))
1782       return nullptr;
1783 
1784     PathDiagnosticLocation L =
1785       PathDiagnosticLocation::create(P, BRC.getSourceManager());
1786     if (!L.isValid())
1787       return nullptr;
1788 
1789     auto X = std::make_shared<PathDiagnosticEventPiece>(L, Message);
1790     X->setTag(getTag());
1791     return std::move(X);
1792   }
1793 
1794   return nullptr;
1795 }
1796 
1797 //===----------------------------------------------------------------------===//
1798 // Implementation of SuppressInlineDefensiveChecksVisitor.
1799 //===----------------------------------------------------------------------===//
1800 
1801 SuppressInlineDefensiveChecksVisitor::
1802 SuppressInlineDefensiveChecksVisitor(DefinedSVal Value, const ExplodedNode *N)
1803     : V(Value) {
1804   // Check if the visitor is disabled.
1805   AnalyzerOptions &Options = N->getState()->getAnalysisManager().options;
1806   if (!Options.ShouldSuppressInlinedDefensiveChecks)
1807     IsSatisfied = true;
1808 }
1809 
1810 void SuppressInlineDefensiveChecksVisitor::Profile(
1811     llvm::FoldingSetNodeID &ID) const {
1812   static int id = 0;
1813   ID.AddPointer(&id);
1814   ID.Add(V);
1815 }
1816 
1817 const char *SuppressInlineDefensiveChecksVisitor::getTag() {
1818   return "IDCVisitor";
1819 }
1820 
1821 PathDiagnosticPieceRef
1822 SuppressInlineDefensiveChecksVisitor::VisitNode(const ExplodedNode *Succ,
1823                                                 BugReporterContext &BRC,
1824                                                 PathSensitiveBugReport &BR) {
1825   const ExplodedNode *Pred = Succ->getFirstPred();
1826   if (IsSatisfied)
1827     return nullptr;
1828 
1829   // Start tracking after we see the first state in which the value is null.
1830   if (!IsTrackingTurnedOn)
1831     if (Succ->getState()->isNull(V).isConstrainedTrue())
1832       IsTrackingTurnedOn = true;
1833   if (!IsTrackingTurnedOn)
1834     return nullptr;
1835 
1836   // Check if in the previous state it was feasible for this value
1837   // to *not* be null.
1838   if (!Pred->getState()->isNull(V).isConstrainedTrue() &&
1839       Succ->getState()->isNull(V).isConstrainedTrue()) {
1840     IsSatisfied = true;
1841 
1842     // Check if this is inlined defensive checks.
1843     const LocationContext *CurLC = Succ->getLocationContext();
1844     const LocationContext *ReportLC = BR.getErrorNode()->getLocationContext();
1845     if (CurLC != ReportLC && !CurLC->isParentOf(ReportLC)) {
1846       BR.markInvalid("Suppress IDC", CurLC);
1847       return nullptr;
1848     }
1849 
1850     // Treat defensive checks in function-like macros as if they were an inlined
1851     // defensive check. If the bug location is not in a macro and the
1852     // terminator for the current location is in a macro then suppress the
1853     // warning.
1854     auto BugPoint = BR.getErrorNode()->getLocation().getAs<StmtPoint>();
1855 
1856     if (!BugPoint)
1857       return nullptr;
1858 
1859     ProgramPoint CurPoint = Succ->getLocation();
1860     const Stmt *CurTerminatorStmt = nullptr;
1861     if (auto BE = CurPoint.getAs<BlockEdge>()) {
1862       CurTerminatorStmt = BE->getSrc()->getTerminator().getStmt();
1863     } else if (auto SP = CurPoint.getAs<StmtPoint>()) {
1864       const Stmt *CurStmt = SP->getStmt();
1865       if (!CurStmt->getBeginLoc().isMacroID())
1866         return nullptr;
1867 
1868       CFGStmtMap *Map = CurLC->getAnalysisDeclContext()->getCFGStmtMap();
1869       CurTerminatorStmt = Map->getBlock(CurStmt)->getTerminatorStmt();
1870     } else {
1871       return nullptr;
1872     }
1873 
1874     if (!CurTerminatorStmt)
1875       return nullptr;
1876 
1877     SourceLocation TerminatorLoc = CurTerminatorStmt->getBeginLoc();
1878     if (TerminatorLoc.isMacroID()) {
1879       SourceLocation BugLoc = BugPoint->getStmt()->getBeginLoc();
1880 
1881       // Suppress reports unless we are in that same macro.
1882       if (!BugLoc.isMacroID() ||
1883           getMacroName(BugLoc, BRC) != getMacroName(TerminatorLoc, BRC)) {
1884         BR.markInvalid("Suppress Macro IDC", CurLC);
1885       }
1886       return nullptr;
1887     }
1888   }
1889   return nullptr;
1890 }
1891 
1892 //===----------------------------------------------------------------------===//
1893 // TrackControlDependencyCondBRVisitor.
1894 //===----------------------------------------------------------------------===//
1895 
1896 namespace {
1897 /// Tracks the expressions that are a control dependency of the node that was
1898 /// supplied to the constructor.
1899 /// For example:
1900 ///
1901 ///   cond = 1;
1902 ///   if (cond)
1903 ///     10 / 0;
1904 ///
1905 /// An error is emitted at line 3. This visitor realizes that the branch
1906 /// on line 2 is a control dependency of line 3, and tracks it's condition via
1907 /// trackExpressionValue().
1908 class TrackControlDependencyCondBRVisitor final
1909     : public TrackingBugReporterVisitor {
1910   const ExplodedNode *Origin;
1911   ControlDependencyCalculator ControlDeps;
1912   llvm::SmallSet<const CFGBlock *, 32> VisitedBlocks;
1913 
1914 public:
1915   TrackControlDependencyCondBRVisitor(TrackerRef ParentTracker,
1916                                       const ExplodedNode *O)
1917       : TrackingBugReporterVisitor(ParentTracker), Origin(O),
1918         ControlDeps(&O->getCFG()) {}
1919 
1920   void Profile(llvm::FoldingSetNodeID &ID) const override {
1921     static int x = 0;
1922     ID.AddPointer(&x);
1923   }
1924 
1925   PathDiagnosticPieceRef VisitNode(const ExplodedNode *N,
1926                                    BugReporterContext &BRC,
1927                                    PathSensitiveBugReport &BR) override;
1928 };
1929 } // end of anonymous namespace
1930 
1931 static std::shared_ptr<PathDiagnosticEventPiece>
1932 constructDebugPieceForTrackedCondition(const Expr *Cond,
1933                                        const ExplodedNode *N,
1934                                        BugReporterContext &BRC) {
1935 
1936   if (BRC.getAnalyzerOptions().AnalysisDiagOpt == PD_NONE ||
1937       !BRC.getAnalyzerOptions().ShouldTrackConditionsDebug)
1938     return nullptr;
1939 
1940   std::string ConditionText = std::string(Lexer::getSourceText(
1941       CharSourceRange::getTokenRange(Cond->getSourceRange()),
1942       BRC.getSourceManager(), BRC.getASTContext().getLangOpts()));
1943 
1944   return std::make_shared<PathDiagnosticEventPiece>(
1945       PathDiagnosticLocation::createBegin(
1946           Cond, BRC.getSourceManager(), N->getLocationContext()),
1947           (Twine() + "Tracking condition '" + ConditionText + "'").str());
1948 }
1949 
1950 static bool isAssertlikeBlock(const CFGBlock *B, ASTContext &Context) {
1951   if (B->succ_size() != 2)
1952     return false;
1953 
1954   const CFGBlock *Then = B->succ_begin()->getReachableBlock();
1955   const CFGBlock *Else = (B->succ_begin() + 1)->getReachableBlock();
1956 
1957   if (!Then || !Else)
1958     return false;
1959 
1960   if (Then->isInevitablySinking() != Else->isInevitablySinking())
1961     return true;
1962 
1963   // For the following condition the following CFG would be built:
1964   //
1965   //                          ------------->
1966   //                         /              \
1967   //                       [B1] -> [B2] -> [B3] -> [sink]
1968   // assert(A && B || C);            \       \
1969   //                                  -----------> [go on with the execution]
1970   //
1971   // It so happens that CFGBlock::getTerminatorCondition returns 'A' for block
1972   // B1, 'A && B' for B2, and 'A && B || C' for B3. Let's check whether we
1973   // reached the end of the condition!
1974   if (const Stmt *ElseCond = Else->getTerminatorCondition())
1975     if (const auto *BinOp = dyn_cast<BinaryOperator>(ElseCond))
1976       if (BinOp->isLogicalOp())
1977         return isAssertlikeBlock(Else, Context);
1978 
1979   return false;
1980 }
1981 
1982 PathDiagnosticPieceRef
1983 TrackControlDependencyCondBRVisitor::VisitNode(const ExplodedNode *N,
1984                                                BugReporterContext &BRC,
1985                                                PathSensitiveBugReport &BR) {
1986   // We can only reason about control dependencies within the same stack frame.
1987   if (Origin->getStackFrame() != N->getStackFrame())
1988     return nullptr;
1989 
1990   CFGBlock *NB = const_cast<CFGBlock *>(N->getCFGBlock());
1991 
1992   // Skip if we already inspected this block.
1993   if (!VisitedBlocks.insert(NB).second)
1994     return nullptr;
1995 
1996   CFGBlock *OriginB = const_cast<CFGBlock *>(Origin->getCFGBlock());
1997 
1998   // TODO: Cache CFGBlocks for each ExplodedNode.
1999   if (!OriginB || !NB)
2000     return nullptr;
2001 
2002   if (isAssertlikeBlock(NB, BRC.getASTContext()))
2003     return nullptr;
2004 
2005   if (ControlDeps.isControlDependent(OriginB, NB)) {
2006     // We don't really want to explain for range loops. Evidence suggests that
2007     // the only thing that leads to is the addition of calls to operator!=.
2008     if (llvm::isa_and_nonnull<CXXForRangeStmt>(NB->getTerminatorStmt()))
2009       return nullptr;
2010 
2011     if (const Expr *Condition = NB->getLastCondition()) {
2012 
2013       // If we can't retrieve a sensible condition, just bail out.
2014       const Expr *InnerExpr = peelOffOuterExpr(Condition, N);
2015       if (!InnerExpr)
2016         return nullptr;
2017 
2018       // If the condition was a function call, we likely won't gain much from
2019       // tracking it either. Evidence suggests that it will mostly trigger in
2020       // scenarios like this:
2021       //
2022       //   void f(int *x) {
2023       //     x = nullptr;
2024       //     if (alwaysTrue()) // We don't need a whole lot of explanation
2025       //                       // here, the function name is good enough.
2026       //       *x = 5;
2027       //   }
2028       //
2029       // Its easy to create a counterexample where this heuristic would make us
2030       // lose valuable information, but we've never really seen one in practice.
2031       if (isa<CallExpr>(InnerExpr))
2032         return nullptr;
2033 
2034       // Keeping track of the already tracked conditions on a visitor level
2035       // isn't sufficient, because a new visitor is created for each tracked
2036       // expression, hence the BugReport level set.
2037       if (BR.addTrackedCondition(N)) {
2038         getParentTracker().track(InnerExpr, N,
2039                                  {bugreporter::TrackingKind::Condition,
2040                                   /*EnableNullFPSuppression=*/false});
2041         return constructDebugPieceForTrackedCondition(Condition, N, BRC);
2042       }
2043     }
2044   }
2045 
2046   return nullptr;
2047 }
2048 
2049 //===----------------------------------------------------------------------===//
2050 // Implementation of trackExpressionValue.
2051 //===----------------------------------------------------------------------===//
2052 
2053 static const Expr *peelOffOuterExpr(const Expr *Ex, const ExplodedNode *N) {
2054 
2055   Ex = Ex->IgnoreParenCasts();
2056   if (const auto *FE = dyn_cast<FullExpr>(Ex))
2057     return peelOffOuterExpr(FE->getSubExpr(), N);
2058   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(Ex))
2059     return peelOffOuterExpr(OVE->getSourceExpr(), N);
2060   if (const auto *POE = dyn_cast<PseudoObjectExpr>(Ex)) {
2061     const auto *PropRef = dyn_cast<ObjCPropertyRefExpr>(POE->getSyntacticForm());
2062     if (PropRef && PropRef->isMessagingGetter()) {
2063       const Expr *GetterMessageSend =
2064           POE->getSemanticExpr(POE->getNumSemanticExprs() - 1);
2065       assert(isa<ObjCMessageExpr>(GetterMessageSend->IgnoreParenCasts()));
2066       return peelOffOuterExpr(GetterMessageSend, N);
2067     }
2068   }
2069 
2070   // Peel off the ternary operator.
2071   if (const auto *CO = dyn_cast<ConditionalOperator>(Ex)) {
2072     // Find a node where the branching occurred and find out which branch
2073     // we took (true/false) by looking at the ExplodedGraph.
2074     const ExplodedNode *NI = N;
2075     do {
2076       ProgramPoint ProgPoint = NI->getLocation();
2077       if (std::optional<BlockEdge> BE = ProgPoint.getAs<BlockEdge>()) {
2078         const CFGBlock *srcBlk = BE->getSrc();
2079         if (const Stmt *term = srcBlk->getTerminatorStmt()) {
2080           if (term == CO) {
2081             bool TookTrueBranch = (*(srcBlk->succ_begin()) == BE->getDst());
2082             if (TookTrueBranch)
2083               return peelOffOuterExpr(CO->getTrueExpr(), N);
2084             else
2085               return peelOffOuterExpr(CO->getFalseExpr(), N);
2086           }
2087         }
2088       }
2089       NI = NI->getFirstPred();
2090     } while (NI);
2091   }
2092 
2093   if (auto *BO = dyn_cast<BinaryOperator>(Ex))
2094     if (const Expr *SubEx = peelOffPointerArithmetic(BO))
2095       return peelOffOuterExpr(SubEx, N);
2096 
2097   if (auto *UO = dyn_cast<UnaryOperator>(Ex)) {
2098     if (UO->getOpcode() == UO_LNot)
2099       return peelOffOuterExpr(UO->getSubExpr(), N);
2100 
2101     // FIXME: There's a hack in our Store implementation that always computes
2102     // field offsets around null pointers as if they are always equal to 0.
2103     // The idea here is to report accesses to fields as null dereferences
2104     // even though the pointer value that's being dereferenced is actually
2105     // the offset of the field rather than exactly 0.
2106     // See the FIXME in StoreManager's getLValueFieldOrIvar() method.
2107     // This code interacts heavily with this hack; otherwise the value
2108     // would not be null at all for most fields, so we'd be unable to track it.
2109     if (UO->getOpcode() == UO_AddrOf && UO->getSubExpr()->isLValue())
2110       if (const Expr *DerefEx = bugreporter::getDerefExpr(UO->getSubExpr()))
2111         return peelOffOuterExpr(DerefEx, N);
2112   }
2113 
2114   return Ex;
2115 }
2116 
2117 /// Find the ExplodedNode where the lvalue (the value of 'Ex')
2118 /// was computed.
2119 static const ExplodedNode* findNodeForExpression(const ExplodedNode *N,
2120                                                  const Expr *Inner) {
2121   while (N) {
2122     if (N->getStmtForDiagnostics() == Inner)
2123       return N;
2124     N = N->getFirstPred();
2125   }
2126   return N;
2127 }
2128 
2129 //===----------------------------------------------------------------------===//
2130 //                            Tracker implementation
2131 //===----------------------------------------------------------------------===//
2132 
2133 PathDiagnosticPieceRef StoreHandler::constructNote(StoreInfo SI,
2134                                                    BugReporterContext &BRC,
2135                                                    StringRef NodeText) {
2136   // Construct a new PathDiagnosticPiece.
2137   ProgramPoint P = SI.StoreSite->getLocation();
2138   PathDiagnosticLocation L;
2139   if (P.getAs<CallEnter>() && SI.SourceOfTheValue)
2140     L = PathDiagnosticLocation(SI.SourceOfTheValue, BRC.getSourceManager(),
2141                                P.getLocationContext());
2142 
2143   if (!L.isValid() || !L.asLocation().isValid())
2144     L = PathDiagnosticLocation::create(P, BRC.getSourceManager());
2145 
2146   if (!L.isValid() || !L.asLocation().isValid())
2147     return nullptr;
2148 
2149   return std::make_shared<PathDiagnosticEventPiece>(L, NodeText);
2150 }
2151 
2152 namespace {
2153 class DefaultStoreHandler final : public StoreHandler {
2154 public:
2155   using StoreHandler::StoreHandler;
2156 
2157   PathDiagnosticPieceRef handle(StoreInfo SI, BugReporterContext &BRC,
2158                                 TrackingOptions Opts) override {
2159     // Okay, we've found the binding. Emit an appropriate message.
2160     SmallString<256> Buffer;
2161     llvm::raw_svector_ostream OS(Buffer);
2162 
2163     switch (SI.StoreKind) {
2164     case StoreInfo::Initialization:
2165     case StoreInfo::BlockCapture:
2166       showBRDiagnostics(OS, SI);
2167       break;
2168     case StoreInfo::CallArgument:
2169       showBRParamDiagnostics(OS, SI);
2170       break;
2171     case StoreInfo::Assignment:
2172       showBRDefaultDiagnostics(OS, SI);
2173       break;
2174     }
2175 
2176     if (Opts.Kind == bugreporter::TrackingKind::Condition)
2177       OS << WillBeUsedForACondition;
2178 
2179     return constructNote(SI, BRC, OS.str());
2180   }
2181 };
2182 
2183 class ControlDependencyHandler final : public ExpressionHandler {
2184 public:
2185   using ExpressionHandler::ExpressionHandler;
2186 
2187   Tracker::Result handle(const Expr *Inner, const ExplodedNode *InputNode,
2188                          const ExplodedNode *LVNode,
2189                          TrackingOptions Opts) override {
2190     PathSensitiveBugReport &Report = getParentTracker().getReport();
2191 
2192     // We only track expressions if we believe that they are important. Chances
2193     // are good that control dependencies to the tracking point are also
2194     // important because of this, let's explain why we believe control reached
2195     // this point.
2196     // TODO: Shouldn't we track control dependencies of every bug location,
2197     // rather than only tracked expressions?
2198     if (LVNode->getState()
2199             ->getAnalysisManager()
2200             .getAnalyzerOptions()
2201             .ShouldTrackConditions) {
2202       Report.addVisitor<TrackControlDependencyCondBRVisitor>(
2203           &getParentTracker(), InputNode);
2204       return {/*FoundSomethingToTrack=*/true};
2205     }
2206 
2207     return {};
2208   }
2209 };
2210 
2211 class NilReceiverHandler final : public ExpressionHandler {
2212 public:
2213   using ExpressionHandler::ExpressionHandler;
2214 
2215   Tracker::Result handle(const Expr *Inner, const ExplodedNode *InputNode,
2216                          const ExplodedNode *LVNode,
2217                          TrackingOptions Opts) override {
2218     // The message send could be nil due to the receiver being nil.
2219     // At this point in the path, the receiver should be live since we are at
2220     // the message send expr. If it is nil, start tracking it.
2221     if (const Expr *Receiver =
2222             NilReceiverBRVisitor::getNilReceiver(Inner, LVNode))
2223       return getParentTracker().track(Receiver, LVNode, Opts);
2224 
2225     return {};
2226   }
2227 };
2228 
2229 class ArrayIndexHandler final : public ExpressionHandler {
2230 public:
2231   using ExpressionHandler::ExpressionHandler;
2232 
2233   Tracker::Result handle(const Expr *Inner, const ExplodedNode *InputNode,
2234                          const ExplodedNode *LVNode,
2235                          TrackingOptions Opts) override {
2236     // Track the index if this is an array subscript.
2237     if (const auto *Arr = dyn_cast<ArraySubscriptExpr>(Inner))
2238       return getParentTracker().track(
2239           Arr->getIdx(), LVNode,
2240           {Opts.Kind, /*EnableNullFPSuppression*/ false});
2241 
2242     return {};
2243   }
2244 };
2245 
2246 // TODO: extract it into more handlers
2247 class InterestingLValueHandler final : public ExpressionHandler {
2248 public:
2249   using ExpressionHandler::ExpressionHandler;
2250 
2251   Tracker::Result handle(const Expr *Inner, const ExplodedNode *InputNode,
2252                          const ExplodedNode *LVNode,
2253                          TrackingOptions Opts) override {
2254     ProgramStateRef LVState = LVNode->getState();
2255     const StackFrameContext *SFC = LVNode->getStackFrame();
2256     PathSensitiveBugReport &Report = getParentTracker().getReport();
2257     Tracker::Result Result;
2258 
2259     // See if the expression we're interested refers to a variable.
2260     // If so, we can track both its contents and constraints on its value.
2261     if (ExplodedGraph::isInterestingLValueExpr(Inner)) {
2262       SVal LVal = LVNode->getSVal(Inner);
2263 
2264       const MemRegion *RR = getLocationRegionIfReference(Inner, LVNode);
2265       bool LVIsNull = LVState->isNull(LVal).isConstrainedTrue();
2266 
2267       // If this is a C++ reference to a null pointer, we are tracking the
2268       // pointer. In addition, we should find the store at which the reference
2269       // got initialized.
2270       if (RR && !LVIsNull)
2271         Result.combineWith(getParentTracker().track(LVal, RR, Opts, SFC));
2272 
2273       // In case of C++ references, we want to differentiate between a null
2274       // reference and reference to null pointer.
2275       // If the LVal is null, check if we are dealing with null reference.
2276       // For those, we want to track the location of the reference.
2277       const MemRegion *R =
2278           (RR && LVIsNull) ? RR : LVNode->getSVal(Inner).getAsRegion();
2279 
2280       if (R) {
2281 
2282         // Mark both the variable region and its contents as interesting.
2283         SVal V = LVState->getRawSVal(loc::MemRegionVal(R));
2284         Report.addVisitor<NoStoreFuncVisitor>(cast<SubRegion>(R), Opts.Kind);
2285 
2286         // When we got here, we do have something to track, and we will
2287         // interrupt.
2288         Result.FoundSomethingToTrack = true;
2289         Result.WasInterrupted = true;
2290 
2291         MacroNullReturnSuppressionVisitor::addMacroVisitorIfNecessary(
2292             LVNode, R, Opts.EnableNullFPSuppression, Report, V);
2293 
2294         Report.markInteresting(V, Opts.Kind);
2295         Report.addVisitor<UndefOrNullArgVisitor>(R);
2296 
2297         // If the contents are symbolic and null, find out when they became
2298         // null.
2299         if (V.getAsLocSymbol(/*IncludeBaseRegions=*/true))
2300           if (LVState->isNull(V).isConstrainedTrue())
2301             Report.addVisitor<TrackConstraintBRVisitor>(
2302                 V.castAs<DefinedSVal>(),
2303                 /*Assumption=*/false, "Assuming pointer value is null");
2304 
2305         // Add visitor, which will suppress inline defensive checks.
2306         if (auto DV = V.getAs<DefinedSVal>())
2307           if (!DV->isZeroConstant() && Opts.EnableNullFPSuppression)
2308             // Note that LVNode may be too late (i.e., too far from the
2309             // InputNode) because the lvalue may have been computed before the
2310             // inlined call was evaluated. InputNode may as well be too early
2311             // here, because the symbol is already dead; this, however, is fine
2312             // because we can still find the node in which it collapsed to null
2313             // previously.
2314             Report.addVisitor<SuppressInlineDefensiveChecksVisitor>(*DV,
2315                                                                     InputNode);
2316         getParentTracker().track(V, R, Opts, SFC);
2317       }
2318     }
2319 
2320     return Result;
2321   }
2322 };
2323 
2324 /// Adds a ReturnVisitor if the given statement represents a call that was
2325 /// inlined.
2326 ///
2327 /// This will search back through the ExplodedGraph, starting from the given
2328 /// node, looking for when the given statement was processed. If it turns out
2329 /// the statement is a call that was inlined, we add the visitor to the
2330 /// bug report, so it can print a note later.
2331 class InlinedFunctionCallHandler final : public ExpressionHandler {
2332   using ExpressionHandler::ExpressionHandler;
2333 
2334   Tracker::Result handle(const Expr *E, const ExplodedNode *InputNode,
2335                          const ExplodedNode *ExprNode,
2336                          TrackingOptions Opts) override {
2337     if (!CallEvent::isCallStmt(E))
2338       return {};
2339 
2340     // First, find when we processed the statement.
2341     // If we work with a 'CXXNewExpr' that is going to be purged away before
2342     // its call take place. We would catch that purge in the last condition
2343     // as a 'StmtPoint' so we have to bypass it.
2344     const bool BypassCXXNewExprEval = isa<CXXNewExpr>(E);
2345 
2346     // This is moving forward when we enter into another context.
2347     const StackFrameContext *CurrentSFC = ExprNode->getStackFrame();
2348 
2349     do {
2350       // If that is satisfied we found our statement as an inlined call.
2351       if (std::optional<CallExitEnd> CEE =
2352               ExprNode->getLocationAs<CallExitEnd>())
2353         if (CEE->getCalleeContext()->getCallSite() == E)
2354           break;
2355 
2356       // Try to move forward to the end of the call-chain.
2357       ExprNode = ExprNode->getFirstPred();
2358       if (!ExprNode)
2359         break;
2360 
2361       const StackFrameContext *PredSFC = ExprNode->getStackFrame();
2362 
2363       // If that is satisfied we found our statement.
2364       // FIXME: This code currently bypasses the call site for the
2365       //        conservatively evaluated allocator.
2366       if (!BypassCXXNewExprEval)
2367         if (std::optional<StmtPoint> SP = ExprNode->getLocationAs<StmtPoint>())
2368           // See if we do not enter into another context.
2369           if (SP->getStmt() == E && CurrentSFC == PredSFC)
2370             break;
2371 
2372       CurrentSFC = PredSFC;
2373     } while (ExprNode->getStackFrame() == CurrentSFC);
2374 
2375     // Next, step over any post-statement checks.
2376     while (ExprNode && ExprNode->getLocation().getAs<PostStmt>())
2377       ExprNode = ExprNode->getFirstPred();
2378     if (!ExprNode)
2379       return {};
2380 
2381     // Finally, see if we inlined the call.
2382     std::optional<CallExitEnd> CEE = ExprNode->getLocationAs<CallExitEnd>();
2383     if (!CEE)
2384       return {};
2385 
2386     const StackFrameContext *CalleeContext = CEE->getCalleeContext();
2387     if (CalleeContext->getCallSite() != E)
2388       return {};
2389 
2390     // Check the return value.
2391     ProgramStateRef State = ExprNode->getState();
2392     SVal RetVal = ExprNode->getSVal(E);
2393 
2394     // Handle cases where a reference is returned and then immediately used.
2395     if (cast<Expr>(E)->isGLValue())
2396       if (std::optional<Loc> LValue = RetVal.getAs<Loc>())
2397         RetVal = State->getSVal(*LValue);
2398 
2399     // See if the return value is NULL. If so, suppress the report.
2400     AnalyzerOptions &Options = State->getAnalysisManager().options;
2401 
2402     bool EnableNullFPSuppression = false;
2403     if (Opts.EnableNullFPSuppression && Options.ShouldSuppressNullReturnPaths)
2404       if (std::optional<Loc> RetLoc = RetVal.getAs<Loc>())
2405         EnableNullFPSuppression = State->isNull(*RetLoc).isConstrainedTrue();
2406 
2407     PathSensitiveBugReport &Report = getParentTracker().getReport();
2408     Report.addVisitor<ReturnVisitor>(&getParentTracker(), CalleeContext,
2409                                      EnableNullFPSuppression, Options,
2410                                      Opts.Kind);
2411     return {true};
2412   }
2413 };
2414 
2415 class DefaultExpressionHandler final : public ExpressionHandler {
2416 public:
2417   using ExpressionHandler::ExpressionHandler;
2418 
2419   Tracker::Result handle(const Expr *Inner, const ExplodedNode *InputNode,
2420                          const ExplodedNode *LVNode,
2421                          TrackingOptions Opts) override {
2422     ProgramStateRef LVState = LVNode->getState();
2423     const StackFrameContext *SFC = LVNode->getStackFrame();
2424     PathSensitiveBugReport &Report = getParentTracker().getReport();
2425     Tracker::Result Result;
2426 
2427     // If the expression is not an "lvalue expression", we can still
2428     // track the constraints on its contents.
2429     SVal V = LVState->getSValAsScalarOrLoc(Inner, LVNode->getLocationContext());
2430 
2431     // Is it a symbolic value?
2432     if (auto L = V.getAs<loc::MemRegionVal>()) {
2433       // FIXME: this is a hack for fixing a later crash when attempting to
2434       // dereference a void* pointer.
2435       // We should not try to dereference pointers at all when we don't care
2436       // what is written inside the pointer.
2437       bool CanDereference = true;
2438       if (const auto *SR = L->getRegionAs<SymbolicRegion>()) {
2439         if (SR->getPointeeStaticType()->isVoidType())
2440           CanDereference = false;
2441       } else if (L->getRegionAs<AllocaRegion>())
2442         CanDereference = false;
2443 
2444       // At this point we are dealing with the region's LValue.
2445       // However, if the rvalue is a symbolic region, we should track it as
2446       // well. Try to use the correct type when looking up the value.
2447       SVal RVal;
2448       if (ExplodedGraph::isInterestingLValueExpr(Inner))
2449         RVal = LVState->getRawSVal(*L, Inner->getType());
2450       else if (CanDereference)
2451         RVal = LVState->getSVal(L->getRegion());
2452 
2453       if (CanDereference) {
2454         Report.addVisitor<UndefOrNullArgVisitor>(L->getRegion());
2455         Result.FoundSomethingToTrack = true;
2456 
2457         if (!RVal.isUnknown())
2458           Result.combineWith(
2459               getParentTracker().track(RVal, L->getRegion(), Opts, SFC));
2460       }
2461 
2462       const MemRegion *RegionRVal = RVal.getAsRegion();
2463       if (isa_and_nonnull<SymbolicRegion>(RegionRVal)) {
2464         Report.markInteresting(RegionRVal, Opts.Kind);
2465         Report.addVisitor<TrackConstraintBRVisitor>(
2466             loc::MemRegionVal(RegionRVal),
2467             /*Assumption=*/false, "Assuming pointer value is null");
2468         Result.FoundSomethingToTrack = true;
2469       }
2470     }
2471 
2472     return Result;
2473   }
2474 };
2475 
2476 /// Attempts to add visitors to track an RValue expression back to its point of
2477 /// origin.
2478 class PRValueHandler final : public ExpressionHandler {
2479 public:
2480   using ExpressionHandler::ExpressionHandler;
2481 
2482   Tracker::Result handle(const Expr *E, const ExplodedNode *InputNode,
2483                          const ExplodedNode *ExprNode,
2484                          TrackingOptions Opts) override {
2485     if (!E->isPRValue())
2486       return {};
2487 
2488     const ExplodedNode *RVNode = findNodeForExpression(ExprNode, E);
2489     if (!RVNode)
2490       return {};
2491 
2492     Tracker::Result CombinedResult;
2493     Tracker &Parent = getParentTracker();
2494 
2495     const auto track = [&CombinedResult, &Parent, ExprNode,
2496                         Opts](const Expr *Inner) {
2497       CombinedResult.combineWith(Parent.track(Inner, ExprNode, Opts));
2498     };
2499 
2500     // FIXME: Initializer lists can appear in many different contexts
2501     // and most of them needs a special handling. For now let's handle
2502     // what we can. If the initializer list only has 1 element, we track
2503     // that.
2504     // This snippet even handles nesting, e.g.: int *x{{{{{y}}}}};
2505     if (const auto *ILE = dyn_cast<InitListExpr>(E)) {
2506       if (ILE->getNumInits() == 1) {
2507         track(ILE->getInit(0));
2508 
2509         return CombinedResult;
2510       }
2511 
2512       return {};
2513     }
2514 
2515     ProgramStateRef RVState = RVNode->getState();
2516     SVal V = RVState->getSValAsScalarOrLoc(E, RVNode->getLocationContext());
2517     const auto *BO = dyn_cast<BinaryOperator>(E);
2518 
2519     if (!BO || !BO->isMultiplicativeOp() || !V.isZeroConstant())
2520       return {};
2521 
2522     SVal RHSV = RVState->getSVal(BO->getRHS(), RVNode->getLocationContext());
2523     SVal LHSV = RVState->getSVal(BO->getLHS(), RVNode->getLocationContext());
2524 
2525     // Track both LHS and RHS of a multiplication.
2526     if (BO->getOpcode() == BO_Mul) {
2527       if (LHSV.isZeroConstant())
2528         track(BO->getLHS());
2529       if (RHSV.isZeroConstant())
2530         track(BO->getRHS());
2531     } else { // Track only the LHS of a division or a modulo.
2532       if (LHSV.isZeroConstant())
2533         track(BO->getLHS());
2534     }
2535 
2536     return CombinedResult;
2537   }
2538 };
2539 } // namespace
2540 
2541 Tracker::Tracker(PathSensitiveBugReport &Report) : Report(Report) {
2542   // Default expression handlers.
2543   addLowPriorityHandler<ControlDependencyHandler>();
2544   addLowPriorityHandler<NilReceiverHandler>();
2545   addLowPriorityHandler<ArrayIndexHandler>();
2546   addLowPriorityHandler<InterestingLValueHandler>();
2547   addLowPriorityHandler<InlinedFunctionCallHandler>();
2548   addLowPriorityHandler<DefaultExpressionHandler>();
2549   addLowPriorityHandler<PRValueHandler>();
2550   // Default store handlers.
2551   addHighPriorityHandler<DefaultStoreHandler>();
2552 }
2553 
2554 Tracker::Result Tracker::track(const Expr *E, const ExplodedNode *N,
2555                                TrackingOptions Opts) {
2556   if (!E || !N)
2557     return {};
2558 
2559   const Expr *Inner = peelOffOuterExpr(E, N);
2560   const ExplodedNode *LVNode = findNodeForExpression(N, Inner);
2561   if (!LVNode)
2562     return {};
2563 
2564   Result CombinedResult;
2565   // Iterate through the handlers in the order according to their priorities.
2566   for (ExpressionHandlerPtr &Handler : ExpressionHandlers) {
2567     CombinedResult.combineWith(Handler->handle(Inner, N, LVNode, Opts));
2568     if (CombinedResult.WasInterrupted) {
2569       // There is no need to confuse our users here.
2570       // We got interrupted, but our users don't need to know about it.
2571       CombinedResult.WasInterrupted = false;
2572       break;
2573     }
2574   }
2575 
2576   return CombinedResult;
2577 }
2578 
2579 Tracker::Result Tracker::track(SVal V, const MemRegion *R, TrackingOptions Opts,
2580                                const StackFrameContext *Origin) {
2581   if (!V.isUnknown()) {
2582     Report.addVisitor<StoreSiteFinder>(this, V, R, Opts, Origin);
2583     return {true};
2584   }
2585   return {};
2586 }
2587 
2588 PathDiagnosticPieceRef Tracker::handle(StoreInfo SI, BugReporterContext &BRC,
2589                                        TrackingOptions Opts) {
2590   // Iterate through the handlers in the order according to their priorities.
2591   for (StoreHandlerPtr &Handler : StoreHandlers) {
2592     if (PathDiagnosticPieceRef Result = Handler->handle(SI, BRC, Opts))
2593       // If the handler produced a non-null piece, return it.
2594       // There is no need in asking other handlers.
2595       return Result;
2596   }
2597   return {};
2598 }
2599 
2600 bool bugreporter::trackExpressionValue(const ExplodedNode *InputNode,
2601                                        const Expr *E,
2602 
2603                                        PathSensitiveBugReport &Report,
2604                                        TrackingOptions Opts) {
2605   return Tracker::create(Report)
2606       ->track(E, InputNode, Opts)
2607       .FoundSomethingToTrack;
2608 }
2609 
2610 void bugreporter::trackStoredValue(SVal V, const MemRegion *R,
2611                                    PathSensitiveBugReport &Report,
2612                                    TrackingOptions Opts,
2613                                    const StackFrameContext *Origin) {
2614   Tracker::create(Report)->track(V, R, Opts, Origin);
2615 }
2616 
2617 //===----------------------------------------------------------------------===//
2618 // Implementation of NulReceiverBRVisitor.
2619 //===----------------------------------------------------------------------===//
2620 
2621 const Expr *NilReceiverBRVisitor::getNilReceiver(const Stmt *S,
2622                                                  const ExplodedNode *N) {
2623   const auto *ME = dyn_cast<ObjCMessageExpr>(S);
2624   if (!ME)
2625     return nullptr;
2626   if (const Expr *Receiver = ME->getInstanceReceiver()) {
2627     ProgramStateRef state = N->getState();
2628     SVal V = N->getSVal(Receiver);
2629     if (state->isNull(V).isConstrainedTrue())
2630       return Receiver;
2631   }
2632   return nullptr;
2633 }
2634 
2635 PathDiagnosticPieceRef
2636 NilReceiverBRVisitor::VisitNode(const ExplodedNode *N, BugReporterContext &BRC,
2637                                 PathSensitiveBugReport &BR) {
2638   std::optional<PreStmt> P = N->getLocationAs<PreStmt>();
2639   if (!P)
2640     return nullptr;
2641 
2642   const Stmt *S = P->getStmt();
2643   const Expr *Receiver = getNilReceiver(S, N);
2644   if (!Receiver)
2645     return nullptr;
2646 
2647   llvm::SmallString<256> Buf;
2648   llvm::raw_svector_ostream OS(Buf);
2649 
2650   if (const auto *ME = dyn_cast<ObjCMessageExpr>(S)) {
2651     OS << "'";
2652     ME->getSelector().print(OS);
2653     OS << "' not called";
2654   }
2655   else {
2656     OS << "No method is called";
2657   }
2658   OS << " because the receiver is nil";
2659 
2660   // The receiver was nil, and hence the method was skipped.
2661   // Register a BugReporterVisitor to issue a message telling us how
2662   // the receiver was null.
2663   bugreporter::trackExpressionValue(N, Receiver, BR,
2664                                     {bugreporter::TrackingKind::Thorough,
2665                                      /*EnableNullFPSuppression*/ false});
2666   // Issue a message saying that the method was skipped.
2667   PathDiagnosticLocation L(Receiver, BRC.getSourceManager(),
2668                                      N->getLocationContext());
2669   return std::make_shared<PathDiagnosticEventPiece>(L, OS.str());
2670 }
2671 
2672 //===----------------------------------------------------------------------===//
2673 // Visitor that tries to report interesting diagnostics from conditions.
2674 //===----------------------------------------------------------------------===//
2675 
2676 /// Return the tag associated with this visitor.  This tag will be used
2677 /// to make all PathDiagnosticPieces created by this visitor.
2678 const char *ConditionBRVisitor::getTag() { return "ConditionBRVisitor"; }
2679 
2680 PathDiagnosticPieceRef
2681 ConditionBRVisitor::VisitNode(const ExplodedNode *N, BugReporterContext &BRC,
2682                               PathSensitiveBugReport &BR) {
2683   auto piece = VisitNodeImpl(N, BRC, BR);
2684   if (piece) {
2685     piece->setTag(getTag());
2686     if (auto *ev = dyn_cast<PathDiagnosticEventPiece>(piece.get()))
2687       ev->setPrunable(true, /* override */ false);
2688   }
2689   return piece;
2690 }
2691 
2692 PathDiagnosticPieceRef
2693 ConditionBRVisitor::VisitNodeImpl(const ExplodedNode *N,
2694                                   BugReporterContext &BRC,
2695                                   PathSensitiveBugReport &BR) {
2696   ProgramPoint ProgPoint = N->getLocation();
2697   const std::pair<const ProgramPointTag *, const ProgramPointTag *> &Tags =
2698       ExprEngine::getEagerlyAssumeBifurcationTags();
2699 
2700   // If an assumption was made on a branch, it should be caught
2701   // here by looking at the state transition.
2702   if (std::optional<BlockEdge> BE = ProgPoint.getAs<BlockEdge>()) {
2703     const CFGBlock *SrcBlock = BE->getSrc();
2704     if (const Stmt *Term = SrcBlock->getTerminatorStmt()) {
2705       // If the tag of the previous node is 'Eagerly Assume...' the current
2706       // 'BlockEdge' has the same constraint information. We do not want to
2707       // report the value as it is just an assumption on the predecessor node
2708       // which will be caught in the next VisitNode() iteration as a 'PostStmt'.
2709       const ProgramPointTag *PreviousNodeTag =
2710           N->getFirstPred()->getLocation().getTag();
2711       if (PreviousNodeTag == Tags.first || PreviousNodeTag == Tags.second)
2712         return nullptr;
2713 
2714       return VisitTerminator(Term, N, SrcBlock, BE->getDst(), BR, BRC);
2715     }
2716     return nullptr;
2717   }
2718 
2719   if (std::optional<PostStmt> PS = ProgPoint.getAs<PostStmt>()) {
2720     const ProgramPointTag *CurrentNodeTag = PS->getTag();
2721     if (CurrentNodeTag != Tags.first && CurrentNodeTag != Tags.second)
2722       return nullptr;
2723 
2724     bool TookTrue = CurrentNodeTag == Tags.first;
2725     return VisitTrueTest(cast<Expr>(PS->getStmt()), BRC, BR, N, TookTrue);
2726   }
2727 
2728   return nullptr;
2729 }
2730 
2731 PathDiagnosticPieceRef ConditionBRVisitor::VisitTerminator(
2732     const Stmt *Term, const ExplodedNode *N, const CFGBlock *srcBlk,
2733     const CFGBlock *dstBlk, PathSensitiveBugReport &R,
2734     BugReporterContext &BRC) {
2735   const Expr *Cond = nullptr;
2736 
2737   // In the code below, Term is a CFG terminator and Cond is a branch condition
2738   // expression upon which the decision is made on this terminator.
2739   //
2740   // For example, in "if (x == 0)", the "if (x == 0)" statement is a terminator,
2741   // and "x == 0" is the respective condition.
2742   //
2743   // Another example: in "if (x && y)", we've got two terminators and two
2744   // conditions due to short-circuit nature of operator "&&":
2745   // 1. The "if (x && y)" statement is a terminator,
2746   //    and "y" is the respective condition.
2747   // 2. Also "x && ..." is another terminator,
2748   //    and "x" is its condition.
2749 
2750   switch (Term->getStmtClass()) {
2751   // FIXME: Stmt::SwitchStmtClass is worth handling, however it is a bit
2752   // more tricky because there are more than two branches to account for.
2753   default:
2754     return nullptr;
2755   case Stmt::IfStmtClass:
2756     Cond = cast<IfStmt>(Term)->getCond();
2757     break;
2758   case Stmt::ConditionalOperatorClass:
2759     Cond = cast<ConditionalOperator>(Term)->getCond();
2760     break;
2761   case Stmt::BinaryOperatorClass:
2762     // When we encounter a logical operator (&& or ||) as a CFG terminator,
2763     // then the condition is actually its LHS; otherwise, we'd encounter
2764     // the parent, such as if-statement, as a terminator.
2765     const auto *BO = cast<BinaryOperator>(Term);
2766     assert(BO->isLogicalOp() &&
2767            "CFG terminator is not a short-circuit operator!");
2768     Cond = BO->getLHS();
2769     break;
2770   }
2771 
2772   Cond = Cond->IgnoreParens();
2773 
2774   // However, when we encounter a logical operator as a branch condition,
2775   // then the condition is actually its RHS, because LHS would be
2776   // the condition for the logical operator terminator.
2777   while (const auto *InnerBO = dyn_cast<BinaryOperator>(Cond)) {
2778     if (!InnerBO->isLogicalOp())
2779       break;
2780     Cond = InnerBO->getRHS()->IgnoreParens();
2781   }
2782 
2783   assert(Cond);
2784   assert(srcBlk->succ_size() == 2);
2785   const bool TookTrue = *(srcBlk->succ_begin()) == dstBlk;
2786   return VisitTrueTest(Cond, BRC, R, N, TookTrue);
2787 }
2788 
2789 PathDiagnosticPieceRef
2790 ConditionBRVisitor::VisitTrueTest(const Expr *Cond, BugReporterContext &BRC,
2791                                   PathSensitiveBugReport &R,
2792                                   const ExplodedNode *N, bool TookTrue) {
2793   ProgramStateRef CurrentState = N->getState();
2794   ProgramStateRef PrevState = N->getFirstPred()->getState();
2795   const LocationContext *LCtx = N->getLocationContext();
2796 
2797   // If the constraint information is changed between the current and the
2798   // previous program state we assuming the newly seen constraint information.
2799   // If we cannot evaluate the condition (and the constraints are the same)
2800   // the analyzer has no information about the value and just assuming it.
2801   // FIXME: This logic is not entirely correct, because e.g. in code like
2802   //   void f(unsigned arg) {
2803   //     if (arg >= 0) {
2804   //       // ...
2805   //     }
2806   //   }
2807   // it will say that the "arg >= 0" check is _assuming_ something new because
2808   // the constraint that "$arg >= 0" is 1 was added to the list of known
2809   // constraints. However, the unsigned value is always >= 0 so semantically
2810   // this is not a "real" assumption.
2811   bool IsAssuming =
2812       !BRC.getStateManager().haveEqualConstraints(CurrentState, PrevState) ||
2813       CurrentState->getSVal(Cond, LCtx).isUnknownOrUndef();
2814 
2815   // These will be modified in code below, but we need to preserve the original
2816   //  values in case we want to throw the generic message.
2817   const Expr *CondTmp = Cond;
2818   bool TookTrueTmp = TookTrue;
2819 
2820   while (true) {
2821     CondTmp = CondTmp->IgnoreParenCasts();
2822     switch (CondTmp->getStmtClass()) {
2823       default:
2824         break;
2825       case Stmt::BinaryOperatorClass:
2826         if (auto P = VisitTrueTest(Cond, cast<BinaryOperator>(CondTmp),
2827                                    BRC, R, N, TookTrueTmp, IsAssuming))
2828           return P;
2829         break;
2830       case Stmt::DeclRefExprClass:
2831         if (auto P = VisitTrueTest(Cond, cast<DeclRefExpr>(CondTmp),
2832                                    BRC, R, N, TookTrueTmp, IsAssuming))
2833           return P;
2834         break;
2835       case Stmt::MemberExprClass:
2836         if (auto P = VisitTrueTest(Cond, cast<MemberExpr>(CondTmp),
2837                                    BRC, R, N, TookTrueTmp, IsAssuming))
2838           return P;
2839         break;
2840       case Stmt::UnaryOperatorClass: {
2841         const auto *UO = cast<UnaryOperator>(CondTmp);
2842         if (UO->getOpcode() == UO_LNot) {
2843           TookTrueTmp = !TookTrueTmp;
2844           CondTmp = UO->getSubExpr();
2845           continue;
2846         }
2847         break;
2848       }
2849     }
2850     break;
2851   }
2852 
2853   // Condition too complex to explain? Just say something so that the user
2854   // knew we've made some path decision at this point.
2855   // If it is too complex and we know the evaluation of the condition do not
2856   // repeat the note from 'BugReporter.cpp'
2857   if (!IsAssuming)
2858     return nullptr;
2859 
2860   PathDiagnosticLocation Loc(Cond, BRC.getSourceManager(), LCtx);
2861   if (!Loc.isValid() || !Loc.asLocation().isValid())
2862     return nullptr;
2863 
2864   return std::make_shared<PathDiagnosticEventPiece>(
2865       Loc, TookTrue ? GenericTrueMessage : GenericFalseMessage);
2866 }
2867 
2868 bool ConditionBRVisitor::patternMatch(const Expr *Ex, const Expr *ParentEx,
2869                                       raw_ostream &Out, BugReporterContext &BRC,
2870                                       PathSensitiveBugReport &report,
2871                                       const ExplodedNode *N,
2872                                       std::optional<bool> &prunable,
2873                                       bool IsSameFieldName) {
2874   const Expr *OriginalExpr = Ex;
2875   Ex = Ex->IgnoreParenCasts();
2876 
2877   if (isa<GNUNullExpr, ObjCBoolLiteralExpr, CXXBoolLiteralExpr, IntegerLiteral,
2878           FloatingLiteral>(Ex)) {
2879     // Use heuristics to determine if the expression is a macro
2880     // expanding to a literal and if so, use the macro's name.
2881     SourceLocation BeginLoc = OriginalExpr->getBeginLoc();
2882     SourceLocation EndLoc = OriginalExpr->getEndLoc();
2883     if (BeginLoc.isMacroID() && EndLoc.isMacroID()) {
2884       const SourceManager &SM = BRC.getSourceManager();
2885       const LangOptions &LO = BRC.getASTContext().getLangOpts();
2886       if (Lexer::isAtStartOfMacroExpansion(BeginLoc, SM, LO) &&
2887           Lexer::isAtEndOfMacroExpansion(EndLoc, SM, LO)) {
2888         CharSourceRange R = Lexer::getAsCharRange({BeginLoc, EndLoc}, SM, LO);
2889         Out << Lexer::getSourceText(R, SM, LO);
2890         return false;
2891       }
2892     }
2893   }
2894 
2895   if (const auto *DR = dyn_cast<DeclRefExpr>(Ex)) {
2896     const bool quotes = isa<VarDecl>(DR->getDecl());
2897     if (quotes) {
2898       Out << '\'';
2899       const LocationContext *LCtx = N->getLocationContext();
2900       const ProgramState *state = N->getState().get();
2901       if (const MemRegion *R = state->getLValue(cast<VarDecl>(DR->getDecl()),
2902                                                 LCtx).getAsRegion()) {
2903         if (report.isInteresting(R))
2904           prunable = false;
2905         else {
2906           const ProgramState *state = N->getState().get();
2907           SVal V = state->getSVal(R);
2908           if (report.isInteresting(V))
2909             prunable = false;
2910         }
2911       }
2912     }
2913     Out << DR->getDecl()->getDeclName().getAsString();
2914     if (quotes)
2915       Out << '\'';
2916     return quotes;
2917   }
2918 
2919   if (const auto *IL = dyn_cast<IntegerLiteral>(Ex)) {
2920     QualType OriginalTy = OriginalExpr->getType();
2921     if (OriginalTy->isPointerType()) {
2922       if (IL->getValue() == 0) {
2923         Out << "null";
2924         return false;
2925       }
2926     }
2927     else if (OriginalTy->isObjCObjectPointerType()) {
2928       if (IL->getValue() == 0) {
2929         Out << "nil";
2930         return false;
2931       }
2932     }
2933 
2934     Out << IL->getValue();
2935     return false;
2936   }
2937 
2938   if (const auto *ME = dyn_cast<MemberExpr>(Ex)) {
2939     if (!IsSameFieldName)
2940       Out << "field '" << ME->getMemberDecl()->getName() << '\'';
2941     else
2942       Out << '\''
2943           << Lexer::getSourceText(
2944                  CharSourceRange::getTokenRange(Ex->getSourceRange()),
2945                  BRC.getSourceManager(), BRC.getASTContext().getLangOpts(),
2946                  nullptr)
2947           << '\'';
2948   }
2949 
2950   return false;
2951 }
2952 
2953 PathDiagnosticPieceRef ConditionBRVisitor::VisitTrueTest(
2954     const Expr *Cond, const BinaryOperator *BExpr, BugReporterContext &BRC,
2955     PathSensitiveBugReport &R, const ExplodedNode *N, bool TookTrue,
2956     bool IsAssuming) {
2957   bool shouldInvert = false;
2958   std::optional<bool> shouldPrune;
2959 
2960   // Check if the field name of the MemberExprs is ambiguous. Example:
2961   // " 'a.d' is equal to 'h.d' " in 'test/Analysis/null-deref-path-notes.cpp'.
2962   bool IsSameFieldName = false;
2963   const auto *LhsME = dyn_cast<MemberExpr>(BExpr->getLHS()->IgnoreParenCasts());
2964   const auto *RhsME = dyn_cast<MemberExpr>(BExpr->getRHS()->IgnoreParenCasts());
2965 
2966   if (LhsME && RhsME)
2967     IsSameFieldName =
2968         LhsME->getMemberDecl()->getName() == RhsME->getMemberDecl()->getName();
2969 
2970   SmallString<128> LhsString, RhsString;
2971   {
2972     llvm::raw_svector_ostream OutLHS(LhsString), OutRHS(RhsString);
2973     const bool isVarLHS = patternMatch(BExpr->getLHS(), BExpr, OutLHS, BRC, R,
2974                                        N, shouldPrune, IsSameFieldName);
2975     const bool isVarRHS = patternMatch(BExpr->getRHS(), BExpr, OutRHS, BRC, R,
2976                                        N, shouldPrune, IsSameFieldName);
2977 
2978     shouldInvert = !isVarLHS && isVarRHS;
2979   }
2980 
2981   BinaryOperator::Opcode Op = BExpr->getOpcode();
2982 
2983   if (BinaryOperator::isAssignmentOp(Op)) {
2984     // For assignment operators, all that we care about is that the LHS
2985     // evaluates to "true" or "false".
2986     return VisitConditionVariable(LhsString, BExpr->getLHS(), BRC, R, N,
2987                                   TookTrue);
2988   }
2989 
2990   // For non-assignment operations, we require that we can understand
2991   // both the LHS and RHS.
2992   if (LhsString.empty() || RhsString.empty() ||
2993       !BinaryOperator::isComparisonOp(Op) || Op == BO_Cmp)
2994     return nullptr;
2995 
2996   // Should we invert the strings if the LHS is not a variable name?
2997   SmallString<256> buf;
2998   llvm::raw_svector_ostream Out(buf);
2999   Out << (IsAssuming ? "Assuming " : "")
3000       << (shouldInvert ? RhsString : LhsString) << " is ";
3001 
3002   // Do we need to invert the opcode?
3003   if (shouldInvert)
3004     switch (Op) {
3005       default: break;
3006       case BO_LT: Op = BO_GT; break;
3007       case BO_GT: Op = BO_LT; break;
3008       case BO_LE: Op = BO_GE; break;
3009       case BO_GE: Op = BO_LE; break;
3010     }
3011 
3012   if (!TookTrue)
3013     switch (Op) {
3014       case BO_EQ: Op = BO_NE; break;
3015       case BO_NE: Op = BO_EQ; break;
3016       case BO_LT: Op = BO_GE; break;
3017       case BO_GT: Op = BO_LE; break;
3018       case BO_LE: Op = BO_GT; break;
3019       case BO_GE: Op = BO_LT; break;
3020       default:
3021         return nullptr;
3022     }
3023 
3024   switch (Op) {
3025     case BO_EQ:
3026       Out << "equal to ";
3027       break;
3028     case BO_NE:
3029       Out << "not equal to ";
3030       break;
3031     default:
3032       Out << BinaryOperator::getOpcodeStr(Op) << ' ';
3033       break;
3034   }
3035 
3036   Out << (shouldInvert ? LhsString : RhsString);
3037   const LocationContext *LCtx = N->getLocationContext();
3038   const SourceManager &SM = BRC.getSourceManager();
3039 
3040   if (isVarAnInterestingCondition(BExpr->getLHS(), N, &R) ||
3041       isVarAnInterestingCondition(BExpr->getRHS(), N, &R))
3042     Out << WillBeUsedForACondition;
3043 
3044   // Convert 'field ...' to 'Field ...' if it is a MemberExpr.
3045   std::string Message = std::string(Out.str());
3046   Message[0] = toupper(Message[0]);
3047 
3048   // If we know the value create a pop-up note to the value part of 'BExpr'.
3049   if (!IsAssuming) {
3050     PathDiagnosticLocation Loc;
3051     if (!shouldInvert) {
3052       if (LhsME && LhsME->getMemberLoc().isValid())
3053         Loc = PathDiagnosticLocation(LhsME->getMemberLoc(), SM);
3054       else
3055         Loc = PathDiagnosticLocation(BExpr->getLHS(), SM, LCtx);
3056     } else {
3057       if (RhsME && RhsME->getMemberLoc().isValid())
3058         Loc = PathDiagnosticLocation(RhsME->getMemberLoc(), SM);
3059       else
3060         Loc = PathDiagnosticLocation(BExpr->getRHS(), SM, LCtx);
3061     }
3062 
3063     return std::make_shared<PathDiagnosticPopUpPiece>(Loc, Message);
3064   }
3065 
3066   PathDiagnosticLocation Loc(Cond, SM, LCtx);
3067   auto event = std::make_shared<PathDiagnosticEventPiece>(Loc, Message);
3068   if (shouldPrune)
3069     event->setPrunable(*shouldPrune);
3070   return event;
3071 }
3072 
3073 PathDiagnosticPieceRef ConditionBRVisitor::VisitConditionVariable(
3074     StringRef LhsString, const Expr *CondVarExpr, BugReporterContext &BRC,
3075     PathSensitiveBugReport &report, const ExplodedNode *N, bool TookTrue) {
3076   // FIXME: If there's already a constraint tracker for this variable,
3077   // we shouldn't emit anything here (c.f. the double note in
3078   // test/Analysis/inlining/path-notes.c)
3079   SmallString<256> buf;
3080   llvm::raw_svector_ostream Out(buf);
3081   Out << "Assuming " << LhsString << " is ";
3082 
3083   if (!printValue(CondVarExpr, Out, N, TookTrue, /*IsAssuming=*/true))
3084     return nullptr;
3085 
3086   const LocationContext *LCtx = N->getLocationContext();
3087   PathDiagnosticLocation Loc(CondVarExpr, BRC.getSourceManager(), LCtx);
3088 
3089   if (isVarAnInterestingCondition(CondVarExpr, N, &report))
3090     Out << WillBeUsedForACondition;
3091 
3092   auto event = std::make_shared<PathDiagnosticEventPiece>(Loc, Out.str());
3093 
3094   if (isInterestingExpr(CondVarExpr, N, &report))
3095     event->setPrunable(false);
3096 
3097   return event;
3098 }
3099 
3100 PathDiagnosticPieceRef ConditionBRVisitor::VisitTrueTest(
3101     const Expr *Cond, const DeclRefExpr *DRE, BugReporterContext &BRC,
3102     PathSensitiveBugReport &report, const ExplodedNode *N, bool TookTrue,
3103     bool IsAssuming) {
3104   const auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
3105   if (!VD)
3106     return nullptr;
3107 
3108   SmallString<256> Buf;
3109   llvm::raw_svector_ostream Out(Buf);
3110 
3111   Out << (IsAssuming ? "Assuming '" : "'") << VD->getDeclName() << "' is ";
3112 
3113   if (!printValue(DRE, Out, N, TookTrue, IsAssuming))
3114     return nullptr;
3115 
3116   const LocationContext *LCtx = N->getLocationContext();
3117 
3118   if (isVarAnInterestingCondition(DRE, N, &report))
3119     Out << WillBeUsedForACondition;
3120 
3121   // If we know the value create a pop-up note to the 'DRE'.
3122   if (!IsAssuming) {
3123     PathDiagnosticLocation Loc(DRE, BRC.getSourceManager(), LCtx);
3124     return std::make_shared<PathDiagnosticPopUpPiece>(Loc, Out.str());
3125   }
3126 
3127   PathDiagnosticLocation Loc(Cond, BRC.getSourceManager(), LCtx);
3128   auto event = std::make_shared<PathDiagnosticEventPiece>(Loc, Out.str());
3129 
3130   if (isInterestingExpr(DRE, N, &report))
3131     event->setPrunable(false);
3132 
3133   return std::move(event);
3134 }
3135 
3136 PathDiagnosticPieceRef ConditionBRVisitor::VisitTrueTest(
3137     const Expr *Cond, const MemberExpr *ME, BugReporterContext &BRC,
3138     PathSensitiveBugReport &report, const ExplodedNode *N, bool TookTrue,
3139     bool IsAssuming) {
3140   SmallString<256> Buf;
3141   llvm::raw_svector_ostream Out(Buf);
3142 
3143   Out << (IsAssuming ? "Assuming field '" : "Field '")
3144       << ME->getMemberDecl()->getName() << "' is ";
3145 
3146   if (!printValue(ME, Out, N, TookTrue, IsAssuming))
3147     return nullptr;
3148 
3149   const LocationContext *LCtx = N->getLocationContext();
3150   PathDiagnosticLocation Loc;
3151 
3152   // If we know the value create a pop-up note to the member of the MemberExpr.
3153   if (!IsAssuming && ME->getMemberLoc().isValid())
3154     Loc = PathDiagnosticLocation(ME->getMemberLoc(), BRC.getSourceManager());
3155   else
3156     Loc = PathDiagnosticLocation(Cond, BRC.getSourceManager(), LCtx);
3157 
3158   if (!Loc.isValid() || !Loc.asLocation().isValid())
3159     return nullptr;
3160 
3161   if (isVarAnInterestingCondition(ME, N, &report))
3162     Out << WillBeUsedForACondition;
3163 
3164   // If we know the value create a pop-up note.
3165   if (!IsAssuming)
3166     return std::make_shared<PathDiagnosticPopUpPiece>(Loc, Out.str());
3167 
3168   auto event = std::make_shared<PathDiagnosticEventPiece>(Loc, Out.str());
3169   if (isInterestingExpr(ME, N, &report))
3170     event->setPrunable(false);
3171   return event;
3172 }
3173 
3174 bool ConditionBRVisitor::printValue(const Expr *CondVarExpr, raw_ostream &Out,
3175                                     const ExplodedNode *N, bool TookTrue,
3176                                     bool IsAssuming) {
3177   QualType Ty = CondVarExpr->getType();
3178 
3179   if (Ty->isPointerType()) {
3180     Out << (TookTrue ? "non-null" : "null");
3181     return true;
3182   }
3183 
3184   if (Ty->isObjCObjectPointerType()) {
3185     Out << (TookTrue ? "non-nil" : "nil");
3186     return true;
3187   }
3188 
3189   if (!Ty->isIntegralOrEnumerationType())
3190     return false;
3191 
3192   std::optional<const llvm::APSInt *> IntValue;
3193   if (!IsAssuming)
3194     IntValue = getConcreteIntegerValue(CondVarExpr, N);
3195 
3196   if (IsAssuming || !IntValue) {
3197     if (Ty->isBooleanType())
3198       Out << (TookTrue ? "true" : "false");
3199     else
3200       Out << (TookTrue ? "not equal to 0" : "0");
3201   } else {
3202     if (Ty->isBooleanType())
3203       Out << ((*IntValue)->getBoolValue() ? "true" : "false");
3204     else
3205       Out << **IntValue;
3206   }
3207 
3208   return true;
3209 }
3210 
3211 constexpr llvm::StringLiteral ConditionBRVisitor::GenericTrueMessage;
3212 constexpr llvm::StringLiteral ConditionBRVisitor::GenericFalseMessage;
3213 
3214 bool ConditionBRVisitor::isPieceMessageGeneric(
3215     const PathDiagnosticPiece *Piece) {
3216   return Piece->getString() == GenericTrueMessage ||
3217          Piece->getString() == GenericFalseMessage;
3218 }
3219 
3220 //===----------------------------------------------------------------------===//
3221 // Implementation of LikelyFalsePositiveSuppressionBRVisitor.
3222 //===----------------------------------------------------------------------===//
3223 
3224 void LikelyFalsePositiveSuppressionBRVisitor::finalizeVisitor(
3225     BugReporterContext &BRC, const ExplodedNode *N,
3226     PathSensitiveBugReport &BR) {
3227   // Here we suppress false positives coming from system headers. This list is
3228   // based on known issues.
3229   const AnalyzerOptions &Options = BRC.getAnalyzerOptions();
3230   const Decl *D = N->getLocationContext()->getDecl();
3231 
3232   if (AnalysisDeclContext::isInStdNamespace(D)) {
3233     // Skip reports within the 'std' namespace. Although these can sometimes be
3234     // the user's fault, we currently don't report them very well, and
3235     // Note that this will not help for any other data structure libraries, like
3236     // TR1, Boost, or llvm/ADT.
3237     if (Options.ShouldSuppressFromCXXStandardLibrary) {
3238       BR.markInvalid(getTag(), nullptr);
3239       return;
3240     } else {
3241       // If the complete 'std' suppression is not enabled, suppress reports
3242       // from the 'std' namespace that are known to produce false positives.
3243 
3244       // The analyzer issues a false use-after-free when std::list::pop_front
3245       // or std::list::pop_back are called multiple times because we cannot
3246       // reason about the internal invariants of the data structure.
3247       if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
3248         const CXXRecordDecl *CD = MD->getParent();
3249         if (CD->getName() == "list") {
3250           BR.markInvalid(getTag(), nullptr);
3251           return;
3252         }
3253       }
3254 
3255       // The analyzer issues a false positive when the constructor of
3256       // std::__independent_bits_engine from algorithms is used.
3257       if (const auto *MD = dyn_cast<CXXConstructorDecl>(D)) {
3258         const CXXRecordDecl *CD = MD->getParent();
3259         if (CD->getName() == "__independent_bits_engine") {
3260           BR.markInvalid(getTag(), nullptr);
3261           return;
3262         }
3263       }
3264 
3265       for (const LocationContext *LCtx = N->getLocationContext(); LCtx;
3266            LCtx = LCtx->getParent()) {
3267         const auto *MD = dyn_cast<CXXMethodDecl>(LCtx->getDecl());
3268         if (!MD)
3269           continue;
3270 
3271         const CXXRecordDecl *CD = MD->getParent();
3272         // The analyzer issues a false positive on
3273         //   std::basic_string<uint8_t> v; v.push_back(1);
3274         // and
3275         //   std::u16string s; s += u'a';
3276         // because we cannot reason about the internal invariants of the
3277         // data structure.
3278         if (CD->getName() == "basic_string") {
3279           BR.markInvalid(getTag(), nullptr);
3280           return;
3281         }
3282 
3283         // The analyzer issues a false positive on
3284         //    std::shared_ptr<int> p(new int(1)); p = nullptr;
3285         // because it does not reason properly about temporary destructors.
3286         if (CD->getName() == "shared_ptr") {
3287           BR.markInvalid(getTag(), nullptr);
3288           return;
3289         }
3290       }
3291     }
3292   }
3293 
3294   // Skip reports within the sys/queue.h macros as we do not have the ability to
3295   // reason about data structure shapes.
3296   const SourceManager &SM = BRC.getSourceManager();
3297   FullSourceLoc Loc = BR.getLocation().asLocation();
3298   while (Loc.isMacroID()) {
3299     Loc = Loc.getSpellingLoc();
3300     if (SM.getFilename(Loc).ends_with("sys/queue.h")) {
3301       BR.markInvalid(getTag(), nullptr);
3302       return;
3303     }
3304   }
3305 }
3306 
3307 //===----------------------------------------------------------------------===//
3308 // Implementation of UndefOrNullArgVisitor.
3309 //===----------------------------------------------------------------------===//
3310 
3311 PathDiagnosticPieceRef
3312 UndefOrNullArgVisitor::VisitNode(const ExplodedNode *N, BugReporterContext &BRC,
3313                                  PathSensitiveBugReport &BR) {
3314   ProgramStateRef State = N->getState();
3315   ProgramPoint ProgLoc = N->getLocation();
3316 
3317   // We are only interested in visiting CallEnter nodes.
3318   std::optional<CallEnter> CEnter = ProgLoc.getAs<CallEnter>();
3319   if (!CEnter)
3320     return nullptr;
3321 
3322   // Check if one of the arguments is the region the visitor is tracking.
3323   CallEventManager &CEMgr = BRC.getStateManager().getCallEventManager();
3324   CallEventRef<> Call = CEMgr.getCaller(CEnter->getCalleeContext(), State);
3325   unsigned Idx = 0;
3326   ArrayRef<ParmVarDecl *> parms = Call->parameters();
3327 
3328   for (const auto ParamDecl : parms) {
3329     const MemRegion *ArgReg = Call->getArgSVal(Idx).getAsRegion();
3330     ++Idx;
3331 
3332     // Are we tracking the argument or its subregion?
3333     if ( !ArgReg || !R->isSubRegionOf(ArgReg->StripCasts()))
3334       continue;
3335 
3336     // Check the function parameter type.
3337     assert(ParamDecl && "Formal parameter has no decl?");
3338     QualType T = ParamDecl->getType();
3339 
3340     if (!(T->isAnyPointerType() || T->isReferenceType())) {
3341       // Function can only change the value passed in by address.
3342       continue;
3343     }
3344 
3345     // If it is a const pointer value, the function does not intend to
3346     // change the value.
3347     if (T->getPointeeType().isConstQualified())
3348       continue;
3349 
3350     // Mark the call site (LocationContext) as interesting if the value of the
3351     // argument is undefined or '0'/'NULL'.
3352     SVal BoundVal = State->getSVal(R);
3353     if (BoundVal.isUndef() || BoundVal.isZeroConstant()) {
3354       BR.markInteresting(CEnter->getCalleeContext());
3355       return nullptr;
3356     }
3357   }
3358   return nullptr;
3359 }
3360 
3361 //===----------------------------------------------------------------------===//
3362 // Implementation of TagVisitor.
3363 //===----------------------------------------------------------------------===//
3364 
3365 int NoteTag::Kind = 0;
3366 
3367 void TagVisitor::Profile(llvm::FoldingSetNodeID &ID) const {
3368   static int Tag = 0;
3369   ID.AddPointer(&Tag);
3370 }
3371 
3372 PathDiagnosticPieceRef TagVisitor::VisitNode(const ExplodedNode *N,
3373                                              BugReporterContext &BRC,
3374                                              PathSensitiveBugReport &R) {
3375   ProgramPoint PP = N->getLocation();
3376   const NoteTag *T = dyn_cast_or_null<NoteTag>(PP.getTag());
3377   if (!T)
3378     return nullptr;
3379 
3380   if (std::optional<std::string> Msg = T->generateMessage(BRC, R)) {
3381     PathDiagnosticLocation Loc =
3382         PathDiagnosticLocation::create(PP, BRC.getSourceManager());
3383     auto Piece = std::make_shared<PathDiagnosticEventPiece>(Loc, *Msg);
3384     Piece->setPrunable(T->isPrunable());
3385     return Piece;
3386   }
3387 
3388   return nullptr;
3389 }
3390