1 //===- BugReporter.cpp - Generate PathDiagnostics for bugs ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines BugReporter, a utility class for generating 10 // PathDiagnostics. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h" 15 #include "clang/AST/ASTTypeTraits.h" 16 #include "clang/AST/Attr.h" 17 #include "clang/AST/Decl.h" 18 #include "clang/AST/DeclBase.h" 19 #include "clang/AST/DeclObjC.h" 20 #include "clang/AST/Expr.h" 21 #include "clang/AST/ExprCXX.h" 22 #include "clang/AST/ParentMap.h" 23 #include "clang/AST/ParentMapContext.h" 24 #include "clang/AST/Stmt.h" 25 #include "clang/AST/StmtCXX.h" 26 #include "clang/AST/StmtObjC.h" 27 #include "clang/Analysis/AnalysisDeclContext.h" 28 #include "clang/Analysis/CFG.h" 29 #include "clang/Analysis/CFGStmtMap.h" 30 #include "clang/Analysis/PathDiagnostic.h" 31 #include "clang/Analysis/ProgramPoint.h" 32 #include "clang/Basic/LLVM.h" 33 #include "clang/Basic/SourceLocation.h" 34 #include "clang/Basic/SourceManager.h" 35 #include "clang/StaticAnalyzer/Core/AnalyzerOptions.h" 36 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporterVisitors.h" 37 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 38 #include "clang/StaticAnalyzer/Core/BugReporter/Z3CrosscheckVisitor.h" 39 #include "clang/StaticAnalyzer/Core/Checker.h" 40 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 41 #include "clang/StaticAnalyzer/Core/CheckerRegistryData.h" 42 #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h" 43 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" 44 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h" 45 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 46 #include "clang/StaticAnalyzer/Core/PathSensitive/SMTConv.h" 47 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h" 48 #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h" 49 #include "llvm/ADT/ArrayRef.h" 50 #include "llvm/ADT/DenseMap.h" 51 #include "llvm/ADT/DenseSet.h" 52 #include "llvm/ADT/FoldingSet.h" 53 #include "llvm/ADT/STLExtras.h" 54 #include "llvm/ADT/SmallPtrSet.h" 55 #include "llvm/ADT/SmallString.h" 56 #include "llvm/ADT/SmallVector.h" 57 #include "llvm/ADT/Statistic.h" 58 #include "llvm/ADT/StringExtras.h" 59 #include "llvm/ADT/StringRef.h" 60 #include "llvm/ADT/iterator_range.h" 61 #include "llvm/Support/Casting.h" 62 #include "llvm/Support/Compiler.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/MemoryBuffer.h" 65 #include "llvm/Support/raw_ostream.h" 66 #include <algorithm> 67 #include <cassert> 68 #include <cstddef> 69 #include <iterator> 70 #include <memory> 71 #include <optional> 72 #include <queue> 73 #include <string> 74 #include <tuple> 75 #include <utility> 76 #include <vector> 77 78 using namespace clang; 79 using namespace ento; 80 using namespace llvm; 81 82 #define DEBUG_TYPE "BugReporter" 83 84 STATISTIC(MaxBugClassSize, 85 "The maximum number of bug reports in the same equivalence class"); 86 STATISTIC(MaxValidBugClassSize, 87 "The maximum number of bug reports in the same equivalence class " 88 "where at least one report is valid (not suppressed)"); 89 90 STATISTIC(NumTimesReportPassesZ3, "Number of reports passed Z3"); 91 STATISTIC(NumTimesReportRefuted, "Number of reports refuted by Z3"); 92 STATISTIC(NumTimesReportEQClassWasExhausted, 93 "Number of times all reports of an equivalence class was refuted"); 94 95 BugReporterVisitor::~BugReporterVisitor() = default; 96 97 void BugReporterContext::anchor() {} 98 99 //===----------------------------------------------------------------------===// 100 // PathDiagnosticBuilder and its associated routines and helper objects. 101 //===----------------------------------------------------------------------===// 102 103 namespace { 104 105 /// A (CallPiece, node assiciated with its CallEnter) pair. 106 using CallWithEntry = 107 std::pair<PathDiagnosticCallPiece *, const ExplodedNode *>; 108 using CallWithEntryStack = SmallVector<CallWithEntry, 6>; 109 110 /// Map from each node to the diagnostic pieces visitors emit for them. 111 using VisitorsDiagnosticsTy = 112 llvm::DenseMap<const ExplodedNode *, std::vector<PathDiagnosticPieceRef>>; 113 114 /// A map from PathDiagnosticPiece to the LocationContext of the inlined 115 /// function call it represents. 116 using LocationContextMap = 117 llvm::DenseMap<const PathPieces *, const LocationContext *>; 118 119 /// A helper class that contains everything needed to construct a 120 /// PathDiagnostic object. It does no much more then providing convenient 121 /// getters and some well placed asserts for extra security. 122 class PathDiagnosticConstruct { 123 /// The consumer we're constructing the bug report for. 124 const PathDiagnosticConsumer *Consumer; 125 /// Our current position in the bug path, which is owned by 126 /// PathDiagnosticBuilder. 127 const ExplodedNode *CurrentNode; 128 /// A mapping from parts of the bug path (for example, a function call, which 129 /// would span backwards from a CallExit to a CallEnter with the nodes in 130 /// between them) with the location contexts it is associated with. 131 LocationContextMap LCM; 132 const SourceManager &SM; 133 134 public: 135 /// We keep stack of calls to functions as we're ascending the bug path. 136 /// TODO: PathDiagnostic has a stack doing the same thing, shouldn't we use 137 /// that instead? 138 CallWithEntryStack CallStack; 139 /// The bug report we're constructing. For ease of use, this field is kept 140 /// public, though some "shortcut" getters are provided for commonly used 141 /// methods of PathDiagnostic. 142 std::unique_ptr<PathDiagnostic> PD; 143 144 public: 145 PathDiagnosticConstruct(const PathDiagnosticConsumer *PDC, 146 const ExplodedNode *ErrorNode, 147 const PathSensitiveBugReport *R, 148 const Decl *AnalysisEntryPoint); 149 150 /// \returns the location context associated with the current position in the 151 /// bug path. 152 const LocationContext *getCurrLocationContext() const { 153 assert(CurrentNode && "Already reached the root!"); 154 return CurrentNode->getLocationContext(); 155 } 156 157 /// Same as getCurrLocationContext (they should always return the same 158 /// location context), but works after reaching the root of the bug path as 159 /// well. 160 const LocationContext *getLocationContextForActivePath() const { 161 return LCM.find(&PD->getActivePath())->getSecond(); 162 } 163 164 const ExplodedNode *getCurrentNode() const { return CurrentNode; } 165 166 /// Steps the current node to its predecessor. 167 /// \returns whether we reached the root of the bug path. 168 bool ascendToPrevNode() { 169 CurrentNode = CurrentNode->getFirstPred(); 170 return static_cast<bool>(CurrentNode); 171 } 172 173 const ParentMap &getParentMap() const { 174 return getCurrLocationContext()->getParentMap(); 175 } 176 177 const SourceManager &getSourceManager() const { return SM; } 178 179 const Stmt *getParent(const Stmt *S) const { 180 return getParentMap().getParent(S); 181 } 182 183 void updateLocCtxMap(const PathPieces *Path, const LocationContext *LC) { 184 assert(Path && LC); 185 LCM[Path] = LC; 186 } 187 188 const LocationContext *getLocationContextFor(const PathPieces *Path) const { 189 assert(LCM.count(Path) && 190 "Failed to find the context associated with these pieces!"); 191 return LCM.find(Path)->getSecond(); 192 } 193 194 bool isInLocCtxMap(const PathPieces *Path) const { return LCM.count(Path); } 195 196 PathPieces &getActivePath() { return PD->getActivePath(); } 197 PathPieces &getMutablePieces() { return PD->getMutablePieces(); } 198 199 bool shouldAddPathEdges() const { return Consumer->shouldAddPathEdges(); } 200 bool shouldAddControlNotes() const { 201 return Consumer->shouldAddControlNotes(); 202 } 203 bool shouldGenerateDiagnostics() const { 204 return Consumer->shouldGenerateDiagnostics(); 205 } 206 bool supportsLogicalOpControlFlow() const { 207 return Consumer->supportsLogicalOpControlFlow(); 208 } 209 }; 210 211 /// Contains every contextual information needed for constructing a 212 /// PathDiagnostic object for a given bug report. This class and its fields are 213 /// immutable, and passes a BugReportConstruct object around during the 214 /// construction. 215 class PathDiagnosticBuilder : public BugReporterContext { 216 /// A linear path from the error node to the root. 217 std::unique_ptr<const ExplodedGraph> BugPath; 218 /// The bug report we're describing. Visitors create their diagnostics with 219 /// them being the last entities being able to modify it (for example, 220 /// changing interestingness here would cause inconsistencies as to how this 221 /// file and visitors construct diagnostics), hence its const. 222 const PathSensitiveBugReport *R; 223 /// The leaf of the bug path. This isn't the same as the bug reports error 224 /// node, which refers to the *original* graph, not the bug path. 225 const ExplodedNode *const ErrorNode; 226 /// The diagnostic pieces visitors emitted, which is expected to be collected 227 /// by the time this builder is constructed. 228 std::unique_ptr<const VisitorsDiagnosticsTy> VisitorsDiagnostics; 229 230 public: 231 /// Find a non-invalidated report for a given equivalence class, and returns 232 /// a PathDiagnosticBuilder able to construct bug reports for different 233 /// consumers. Returns std::nullopt if no valid report is found. 234 static std::optional<PathDiagnosticBuilder> 235 findValidReport(ArrayRef<PathSensitiveBugReport *> &bugReports, 236 PathSensitiveBugReporter &Reporter); 237 238 PathDiagnosticBuilder( 239 BugReporterContext BRC, std::unique_ptr<ExplodedGraph> BugPath, 240 PathSensitiveBugReport *r, const ExplodedNode *ErrorNode, 241 std::unique_ptr<VisitorsDiagnosticsTy> VisitorsDiagnostics); 242 243 /// This function is responsible for generating diagnostic pieces that are 244 /// *not* provided by bug report visitors. 245 /// These diagnostics may differ depending on the consumer's settings, 246 /// and are therefore constructed separately for each consumer. 247 /// 248 /// There are two path diagnostics generation modes: with adding edges (used 249 /// for plists) and without (used for HTML and text). When edges are added, 250 /// the path is modified to insert artificially generated edges. 251 /// Otherwise, more detailed diagnostics is emitted for block edges, 252 /// explaining the transitions in words. 253 std::unique_ptr<PathDiagnostic> 254 generate(const PathDiagnosticConsumer *PDC) const; 255 256 private: 257 void updateStackPiecesWithMessage(PathDiagnosticPieceRef P, 258 const CallWithEntryStack &CallStack) const; 259 void generatePathDiagnosticsForNode(PathDiagnosticConstruct &C, 260 PathDiagnosticLocation &PrevLoc) const; 261 262 void generateMinimalDiagForBlockEdge(PathDiagnosticConstruct &C, 263 BlockEdge BE) const; 264 265 PathDiagnosticPieceRef 266 generateDiagForGotoOP(const PathDiagnosticConstruct &C, const Stmt *S, 267 PathDiagnosticLocation &Start) const; 268 269 PathDiagnosticPieceRef 270 generateDiagForSwitchOP(const PathDiagnosticConstruct &C, const CFGBlock *Dst, 271 PathDiagnosticLocation &Start) const; 272 273 PathDiagnosticPieceRef 274 generateDiagForBinaryOP(const PathDiagnosticConstruct &C, const Stmt *T, 275 const CFGBlock *Src, const CFGBlock *DstC) const; 276 277 PathDiagnosticLocation 278 ExecutionContinues(const PathDiagnosticConstruct &C) const; 279 280 PathDiagnosticLocation 281 ExecutionContinues(llvm::raw_string_ostream &os, 282 const PathDiagnosticConstruct &C) const; 283 284 const PathSensitiveBugReport *getBugReport() const { return R; } 285 }; 286 287 } // namespace 288 289 //===----------------------------------------------------------------------===// 290 // Base implementation of stack hint generators. 291 //===----------------------------------------------------------------------===// 292 293 StackHintGenerator::~StackHintGenerator() = default; 294 295 std::string StackHintGeneratorForSymbol::getMessage(const ExplodedNode *N){ 296 if (!N) 297 return getMessageForSymbolNotFound(); 298 299 ProgramPoint P = N->getLocation(); 300 CallExitEnd CExit = P.castAs<CallExitEnd>(); 301 302 // FIXME: Use CallEvent to abstract this over all calls. 303 const Stmt *CallSite = CExit.getCalleeContext()->getCallSite(); 304 const auto *CE = dyn_cast_or_null<CallExpr>(CallSite); 305 if (!CE) 306 return {}; 307 308 // Check if one of the parameters are set to the interesting symbol. 309 for (auto [Idx, ArgExpr] : llvm::enumerate(CE->arguments())) { 310 SVal SV = N->getSVal(ArgExpr); 311 312 // Check if the variable corresponding to the symbol is passed by value. 313 SymbolRef AS = SV.getAsLocSymbol(); 314 if (AS == Sym) { 315 return getMessageForArg(ArgExpr, Idx); 316 } 317 318 // Check if the parameter is a pointer to the symbol. 319 if (std::optional<loc::MemRegionVal> Reg = SV.getAs<loc::MemRegionVal>()) { 320 // Do not attempt to dereference void*. 321 if (ArgExpr->getType()->isVoidPointerType()) 322 continue; 323 SVal PSV = N->getState()->getSVal(Reg->getRegion()); 324 SymbolRef AS = PSV.getAsLocSymbol(); 325 if (AS == Sym) { 326 return getMessageForArg(ArgExpr, Idx); 327 } 328 } 329 } 330 331 // Check if we are returning the interesting symbol. 332 SVal SV = N->getSVal(CE); 333 SymbolRef RetSym = SV.getAsLocSymbol(); 334 if (RetSym == Sym) { 335 return getMessageForReturn(CE); 336 } 337 338 return getMessageForSymbolNotFound(); 339 } 340 341 std::string StackHintGeneratorForSymbol::getMessageForArg(const Expr *ArgE, 342 unsigned ArgIndex) { 343 // Printed parameters start at 1, not 0. 344 ++ArgIndex; 345 346 return (llvm::Twine(Msg) + " via " + std::to_string(ArgIndex) + 347 llvm::getOrdinalSuffix(ArgIndex) + " parameter").str(); 348 } 349 350 //===----------------------------------------------------------------------===// 351 // Diagnostic cleanup. 352 //===----------------------------------------------------------------------===// 353 354 static PathDiagnosticEventPiece * 355 eventsDescribeSameCondition(PathDiagnosticEventPiece *X, 356 PathDiagnosticEventPiece *Y) { 357 // Prefer diagnostics that come from ConditionBRVisitor over 358 // those that came from TrackConstraintBRVisitor, 359 // unless the one from ConditionBRVisitor is 360 // its generic fallback diagnostic. 361 const void *tagPreferred = ConditionBRVisitor::getTag(); 362 const void *tagLesser = TrackConstraintBRVisitor::getTag(); 363 364 if (X->getLocation() != Y->getLocation()) 365 return nullptr; 366 367 if (X->getTag() == tagPreferred && Y->getTag() == tagLesser) 368 return ConditionBRVisitor::isPieceMessageGeneric(X) ? Y : X; 369 370 if (Y->getTag() == tagPreferred && X->getTag() == tagLesser) 371 return ConditionBRVisitor::isPieceMessageGeneric(Y) ? X : Y; 372 373 return nullptr; 374 } 375 376 /// An optimization pass over PathPieces that removes redundant diagnostics 377 /// generated by both ConditionBRVisitor and TrackConstraintBRVisitor. Both 378 /// BugReporterVisitors use different methods to generate diagnostics, with 379 /// one capable of emitting diagnostics in some cases but not in others. This 380 /// can lead to redundant diagnostic pieces at the same point in a path. 381 static void removeRedundantMsgs(PathPieces &path) { 382 unsigned N = path.size(); 383 if (N < 2) 384 return; 385 // NOTE: this loop intentionally is not using an iterator. Instead, we 386 // are streaming the path and modifying it in place. This is done by 387 // grabbing the front, processing it, and if we decide to keep it append 388 // it to the end of the path. The entire path is processed in this way. 389 for (unsigned i = 0; i < N; ++i) { 390 auto piece = std::move(path.front()); 391 path.pop_front(); 392 393 switch (piece->getKind()) { 394 case PathDiagnosticPiece::Call: 395 removeRedundantMsgs(cast<PathDiagnosticCallPiece>(*piece).path); 396 break; 397 case PathDiagnosticPiece::Macro: 398 removeRedundantMsgs(cast<PathDiagnosticMacroPiece>(*piece).subPieces); 399 break; 400 case PathDiagnosticPiece::Event: { 401 if (i == N-1) 402 break; 403 404 if (auto *nextEvent = 405 dyn_cast<PathDiagnosticEventPiece>(path.front().get())) { 406 auto *event = cast<PathDiagnosticEventPiece>(piece.get()); 407 // Check to see if we should keep one of the two pieces. If we 408 // come up with a preference, record which piece to keep, and consume 409 // another piece from the path. 410 if (auto *pieceToKeep = 411 eventsDescribeSameCondition(event, nextEvent)) { 412 piece = std::move(pieceToKeep == event ? piece : path.front()); 413 path.pop_front(); 414 ++i; 415 } 416 } 417 break; 418 } 419 case PathDiagnosticPiece::ControlFlow: 420 case PathDiagnosticPiece::Note: 421 case PathDiagnosticPiece::PopUp: 422 break; 423 } 424 path.push_back(std::move(piece)); 425 } 426 } 427 428 /// Recursively scan through a path and prune out calls and macros pieces 429 /// that aren't needed. Return true if afterwards the path contains 430 /// "interesting stuff" which means it shouldn't be pruned from the parent path. 431 static bool removeUnneededCalls(const PathDiagnosticConstruct &C, 432 PathPieces &pieces, 433 const PathSensitiveBugReport *R, 434 bool IsInteresting = false) { 435 bool containsSomethingInteresting = IsInteresting; 436 const unsigned N = pieces.size(); 437 438 for (unsigned i = 0 ; i < N ; ++i) { 439 // Remove the front piece from the path. If it is still something we 440 // want to keep once we are done, we will push it back on the end. 441 auto piece = std::move(pieces.front()); 442 pieces.pop_front(); 443 444 switch (piece->getKind()) { 445 case PathDiagnosticPiece::Call: { 446 auto &call = cast<PathDiagnosticCallPiece>(*piece); 447 // Check if the location context is interesting. 448 if (!removeUnneededCalls( 449 C, call.path, R, 450 R->isInteresting(C.getLocationContextFor(&call.path)))) 451 continue; 452 453 containsSomethingInteresting = true; 454 break; 455 } 456 case PathDiagnosticPiece::Macro: { 457 auto ¯o = cast<PathDiagnosticMacroPiece>(*piece); 458 if (!removeUnneededCalls(C, macro.subPieces, R, IsInteresting)) 459 continue; 460 containsSomethingInteresting = true; 461 break; 462 } 463 case PathDiagnosticPiece::Event: { 464 auto &event = cast<PathDiagnosticEventPiece>(*piece); 465 466 // We never throw away an event, but we do throw it away wholesale 467 // as part of a path if we throw the entire path away. 468 containsSomethingInteresting |= !event.isPrunable(); 469 break; 470 } 471 case PathDiagnosticPiece::ControlFlow: 472 case PathDiagnosticPiece::Note: 473 case PathDiagnosticPiece::PopUp: 474 break; 475 } 476 477 pieces.push_back(std::move(piece)); 478 } 479 480 return containsSomethingInteresting; 481 } 482 483 /// Same logic as above to remove extra pieces. 484 static void removePopUpNotes(PathPieces &Path) { 485 for (unsigned int i = 0; i < Path.size(); ++i) { 486 auto Piece = std::move(Path.front()); 487 Path.pop_front(); 488 if (!isa<PathDiagnosticPopUpPiece>(*Piece)) 489 Path.push_back(std::move(Piece)); 490 } 491 } 492 493 /// Returns true if the given decl has been implicitly given a body, either by 494 /// the analyzer or by the compiler proper. 495 static bool hasImplicitBody(const Decl *D) { 496 assert(D); 497 return D->isImplicit() || !D->hasBody(); 498 } 499 500 /// Recursively scan through a path and make sure that all call pieces have 501 /// valid locations. 502 static void 503 adjustCallLocations(PathPieces &Pieces, 504 PathDiagnosticLocation *LastCallLocation = nullptr) { 505 for (const auto &I : Pieces) { 506 auto *Call = dyn_cast<PathDiagnosticCallPiece>(I.get()); 507 508 if (!Call) 509 continue; 510 511 if (LastCallLocation) { 512 bool CallerIsImplicit = hasImplicitBody(Call->getCaller()); 513 if (CallerIsImplicit || !Call->callEnter.asLocation().isValid()) 514 Call->callEnter = *LastCallLocation; 515 if (CallerIsImplicit || !Call->callReturn.asLocation().isValid()) 516 Call->callReturn = *LastCallLocation; 517 } 518 519 // Recursively clean out the subclass. Keep this call around if 520 // it contains any informative diagnostics. 521 PathDiagnosticLocation *ThisCallLocation; 522 if (Call->callEnterWithin.asLocation().isValid() && 523 !hasImplicitBody(Call->getCallee())) 524 ThisCallLocation = &Call->callEnterWithin; 525 else 526 ThisCallLocation = &Call->callEnter; 527 528 assert(ThisCallLocation && "Outermost call has an invalid location"); 529 adjustCallLocations(Call->path, ThisCallLocation); 530 } 531 } 532 533 /// Remove edges in and out of C++ default initializer expressions. These are 534 /// for fields that have in-class initializers, as opposed to being initialized 535 /// explicitly in a constructor or braced list. 536 static void removeEdgesToDefaultInitializers(PathPieces &Pieces) { 537 for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E;) { 538 if (auto *C = dyn_cast<PathDiagnosticCallPiece>(I->get())) 539 removeEdgesToDefaultInitializers(C->path); 540 541 if (auto *M = dyn_cast<PathDiagnosticMacroPiece>(I->get())) 542 removeEdgesToDefaultInitializers(M->subPieces); 543 544 if (auto *CF = dyn_cast<PathDiagnosticControlFlowPiece>(I->get())) { 545 const Stmt *Start = CF->getStartLocation().asStmt(); 546 const Stmt *End = CF->getEndLocation().asStmt(); 547 if (isa_and_nonnull<CXXDefaultInitExpr>(Start)) { 548 I = Pieces.erase(I); 549 continue; 550 } else if (isa_and_nonnull<CXXDefaultInitExpr>(End)) { 551 PathPieces::iterator Next = std::next(I); 552 if (Next != E) { 553 if (auto *NextCF = 554 dyn_cast<PathDiagnosticControlFlowPiece>(Next->get())) { 555 NextCF->setStartLocation(CF->getStartLocation()); 556 } 557 } 558 I = Pieces.erase(I); 559 continue; 560 } 561 } 562 563 I++; 564 } 565 } 566 567 /// Remove all pieces with invalid locations as these cannot be serialized. 568 /// We might have pieces with invalid locations as a result of inlining Body 569 /// Farm generated functions. 570 static void removePiecesWithInvalidLocations(PathPieces &Pieces) { 571 for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E;) { 572 if (auto *C = dyn_cast<PathDiagnosticCallPiece>(I->get())) 573 removePiecesWithInvalidLocations(C->path); 574 575 if (auto *M = dyn_cast<PathDiagnosticMacroPiece>(I->get())) 576 removePiecesWithInvalidLocations(M->subPieces); 577 578 if (!(*I)->getLocation().isValid() || 579 !(*I)->getLocation().asLocation().isValid()) { 580 I = Pieces.erase(I); 581 continue; 582 } 583 I++; 584 } 585 } 586 587 PathDiagnosticLocation PathDiagnosticBuilder::ExecutionContinues( 588 const PathDiagnosticConstruct &C) const { 589 if (const Stmt *S = C.getCurrentNode()->getNextStmtForDiagnostics()) 590 return PathDiagnosticLocation(S, getSourceManager(), 591 C.getCurrLocationContext()); 592 593 return PathDiagnosticLocation::createDeclEnd(C.getCurrLocationContext(), 594 getSourceManager()); 595 } 596 597 PathDiagnosticLocation PathDiagnosticBuilder::ExecutionContinues( 598 llvm::raw_string_ostream &os, const PathDiagnosticConstruct &C) const { 599 // Slow, but probably doesn't matter. 600 if (os.str().empty()) 601 os << ' '; 602 603 const PathDiagnosticLocation &Loc = ExecutionContinues(C); 604 605 if (Loc.asStmt()) 606 os << "Execution continues on line " 607 << getSourceManager().getExpansionLineNumber(Loc.asLocation()) 608 << '.'; 609 else { 610 os << "Execution jumps to the end of the "; 611 const Decl *D = C.getCurrLocationContext()->getDecl(); 612 if (isa<ObjCMethodDecl>(D)) 613 os << "method"; 614 else if (isa<FunctionDecl>(D)) 615 os << "function"; 616 else { 617 assert(isa<BlockDecl>(D)); 618 os << "anonymous block"; 619 } 620 os << '.'; 621 } 622 623 return Loc; 624 } 625 626 static const Stmt *getEnclosingParent(const Stmt *S, const ParentMap &PM) { 627 if (isa<Expr>(S) && PM.isConsumedExpr(cast<Expr>(S))) 628 return PM.getParentIgnoreParens(S); 629 630 const Stmt *Parent = PM.getParentIgnoreParens(S); 631 if (!Parent) 632 return nullptr; 633 634 switch (Parent->getStmtClass()) { 635 case Stmt::ForStmtClass: 636 case Stmt::DoStmtClass: 637 case Stmt::WhileStmtClass: 638 case Stmt::ObjCForCollectionStmtClass: 639 case Stmt::CXXForRangeStmtClass: 640 return Parent; 641 default: 642 break; 643 } 644 645 return nullptr; 646 } 647 648 static PathDiagnosticLocation 649 getEnclosingStmtLocation(const Stmt *S, const LocationContext *LC, 650 bool allowNestedContexts = false) { 651 if (!S) 652 return {}; 653 654 const SourceManager &SMgr = LC->getDecl()->getASTContext().getSourceManager(); 655 656 while (const Stmt *Parent = getEnclosingParent(S, LC->getParentMap())) { 657 switch (Parent->getStmtClass()) { 658 case Stmt::BinaryOperatorClass: { 659 const auto *B = cast<BinaryOperator>(Parent); 660 if (B->isLogicalOp()) 661 return PathDiagnosticLocation(allowNestedContexts ? B : S, SMgr, LC); 662 break; 663 } 664 case Stmt::CompoundStmtClass: 665 case Stmt::StmtExprClass: 666 return PathDiagnosticLocation(S, SMgr, LC); 667 case Stmt::ChooseExprClass: 668 // Similar to '?' if we are referring to condition, just have the edge 669 // point to the entire choose expression. 670 if (allowNestedContexts || cast<ChooseExpr>(Parent)->getCond() == S) 671 return PathDiagnosticLocation(Parent, SMgr, LC); 672 else 673 return PathDiagnosticLocation(S, SMgr, LC); 674 case Stmt::BinaryConditionalOperatorClass: 675 case Stmt::ConditionalOperatorClass: 676 // For '?', if we are referring to condition, just have the edge point 677 // to the entire '?' expression. 678 if (allowNestedContexts || 679 cast<AbstractConditionalOperator>(Parent)->getCond() == S) 680 return PathDiagnosticLocation(Parent, SMgr, LC); 681 else 682 return PathDiagnosticLocation(S, SMgr, LC); 683 case Stmt::CXXForRangeStmtClass: 684 if (cast<CXXForRangeStmt>(Parent)->getBody() == S) 685 return PathDiagnosticLocation(S, SMgr, LC); 686 break; 687 case Stmt::DoStmtClass: 688 return PathDiagnosticLocation(S, SMgr, LC); 689 case Stmt::ForStmtClass: 690 if (cast<ForStmt>(Parent)->getBody() == S) 691 return PathDiagnosticLocation(S, SMgr, LC); 692 break; 693 case Stmt::IfStmtClass: 694 if (cast<IfStmt>(Parent)->getCond() != S) 695 return PathDiagnosticLocation(S, SMgr, LC); 696 break; 697 case Stmt::ObjCForCollectionStmtClass: 698 if (cast<ObjCForCollectionStmt>(Parent)->getBody() == S) 699 return PathDiagnosticLocation(S, SMgr, LC); 700 break; 701 case Stmt::WhileStmtClass: 702 if (cast<WhileStmt>(Parent)->getCond() != S) 703 return PathDiagnosticLocation(S, SMgr, LC); 704 break; 705 default: 706 break; 707 } 708 709 S = Parent; 710 } 711 712 assert(S && "Cannot have null Stmt for PathDiagnosticLocation"); 713 714 return PathDiagnosticLocation(S, SMgr, LC); 715 } 716 717 //===----------------------------------------------------------------------===// 718 // "Minimal" path diagnostic generation algorithm. 719 //===----------------------------------------------------------------------===// 720 721 /// If the piece contains a special message, add it to all the call pieces on 722 /// the active stack. For example, my_malloc allocated memory, so MallocChecker 723 /// will construct an event at the call to malloc(), and add a stack hint that 724 /// an allocated memory was returned. We'll use this hint to construct a message 725 /// when returning from the call to my_malloc 726 /// 727 /// void *my_malloc() { return malloc(sizeof(int)); } 728 /// void fishy() { 729 /// void *ptr = my_malloc(); // returned allocated memory 730 /// } // leak 731 void PathDiagnosticBuilder::updateStackPiecesWithMessage( 732 PathDiagnosticPieceRef P, const CallWithEntryStack &CallStack) const { 733 if (R->hasCallStackHint(P)) 734 for (const auto &I : CallStack) { 735 PathDiagnosticCallPiece *CP = I.first; 736 const ExplodedNode *N = I.second; 737 std::string stackMsg = R->getCallStackMessage(P, N); 738 739 // The last message on the path to final bug is the most important 740 // one. Since we traverse the path backwards, do not add the message 741 // if one has been previously added. 742 if (!CP->hasCallStackMessage()) 743 CP->setCallStackMessage(stackMsg); 744 } 745 } 746 747 static void CompactMacroExpandedPieces(PathPieces &path, 748 const SourceManager& SM); 749 750 PathDiagnosticPieceRef PathDiagnosticBuilder::generateDiagForSwitchOP( 751 const PathDiagnosticConstruct &C, const CFGBlock *Dst, 752 PathDiagnosticLocation &Start) const { 753 754 const SourceManager &SM = getSourceManager(); 755 // Figure out what case arm we took. 756 std::string sbuf; 757 llvm::raw_string_ostream os(sbuf); 758 PathDiagnosticLocation End; 759 760 if (const Stmt *S = Dst->getLabel()) { 761 End = PathDiagnosticLocation(S, SM, C.getCurrLocationContext()); 762 763 switch (S->getStmtClass()) { 764 default: 765 os << "No cases match in the switch statement. " 766 "Control jumps to line " 767 << End.asLocation().getExpansionLineNumber(); 768 break; 769 case Stmt::DefaultStmtClass: 770 os << "Control jumps to the 'default' case at line " 771 << End.asLocation().getExpansionLineNumber(); 772 break; 773 774 case Stmt::CaseStmtClass: { 775 os << "Control jumps to 'case "; 776 const auto *Case = cast<CaseStmt>(S); 777 const Expr *LHS = Case->getLHS()->IgnoreParenImpCasts(); 778 779 // Determine if it is an enum. 780 bool GetRawInt = true; 781 782 if (const auto *DR = dyn_cast<DeclRefExpr>(LHS)) { 783 // FIXME: Maybe this should be an assertion. Are there cases 784 // were it is not an EnumConstantDecl? 785 const auto *D = dyn_cast<EnumConstantDecl>(DR->getDecl()); 786 787 if (D) { 788 GetRawInt = false; 789 os << *D; 790 } 791 } 792 793 if (GetRawInt) 794 os << LHS->EvaluateKnownConstInt(getASTContext()); 795 796 os << ":' at line " << End.asLocation().getExpansionLineNumber(); 797 break; 798 } 799 } 800 } else { 801 os << "'Default' branch taken. "; 802 End = ExecutionContinues(os, C); 803 } 804 return std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, 805 os.str()); 806 } 807 808 PathDiagnosticPieceRef PathDiagnosticBuilder::generateDiagForGotoOP( 809 const PathDiagnosticConstruct &C, const Stmt *S, 810 PathDiagnosticLocation &Start) const { 811 std::string sbuf; 812 llvm::raw_string_ostream os(sbuf); 813 const PathDiagnosticLocation &End = 814 getEnclosingStmtLocation(S, C.getCurrLocationContext()); 815 os << "Control jumps to line " << End.asLocation().getExpansionLineNumber(); 816 return std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, os.str()); 817 } 818 819 PathDiagnosticPieceRef PathDiagnosticBuilder::generateDiagForBinaryOP( 820 const PathDiagnosticConstruct &C, const Stmt *T, const CFGBlock *Src, 821 const CFGBlock *Dst) const { 822 823 const SourceManager &SM = getSourceManager(); 824 825 const auto *B = cast<BinaryOperator>(T); 826 std::string sbuf; 827 llvm::raw_string_ostream os(sbuf); 828 os << "Left side of '"; 829 PathDiagnosticLocation Start, End; 830 831 if (B->getOpcode() == BO_LAnd) { 832 os << "&&" 833 << "' is "; 834 835 if (*(Src->succ_begin() + 1) == Dst) { 836 os << "false"; 837 End = PathDiagnosticLocation(B->getLHS(), SM, C.getCurrLocationContext()); 838 Start = 839 PathDiagnosticLocation::createOperatorLoc(B, SM); 840 } else { 841 os << "true"; 842 Start = 843 PathDiagnosticLocation(B->getLHS(), SM, C.getCurrLocationContext()); 844 End = ExecutionContinues(C); 845 } 846 } else { 847 assert(B->getOpcode() == BO_LOr); 848 os << "||" 849 << "' is "; 850 851 if (*(Src->succ_begin() + 1) == Dst) { 852 os << "false"; 853 Start = 854 PathDiagnosticLocation(B->getLHS(), SM, C.getCurrLocationContext()); 855 End = ExecutionContinues(C); 856 } else { 857 os << "true"; 858 End = PathDiagnosticLocation(B->getLHS(), SM, C.getCurrLocationContext()); 859 Start = 860 PathDiagnosticLocation::createOperatorLoc(B, SM); 861 } 862 } 863 return std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, 864 os.str()); 865 } 866 867 void PathDiagnosticBuilder::generateMinimalDiagForBlockEdge( 868 PathDiagnosticConstruct &C, BlockEdge BE) const { 869 const SourceManager &SM = getSourceManager(); 870 const LocationContext *LC = C.getCurrLocationContext(); 871 const CFGBlock *Src = BE.getSrc(); 872 const CFGBlock *Dst = BE.getDst(); 873 const Stmt *T = Src->getTerminatorStmt(); 874 if (!T) 875 return; 876 877 auto Start = PathDiagnosticLocation::createBegin(T, SM, LC); 878 switch (T->getStmtClass()) { 879 default: 880 break; 881 882 case Stmt::GotoStmtClass: 883 case Stmt::IndirectGotoStmtClass: { 884 if (const Stmt *S = C.getCurrentNode()->getNextStmtForDiagnostics()) 885 C.getActivePath().push_front(generateDiagForGotoOP(C, S, Start)); 886 break; 887 } 888 889 case Stmt::SwitchStmtClass: { 890 C.getActivePath().push_front(generateDiagForSwitchOP(C, Dst, Start)); 891 break; 892 } 893 894 case Stmt::BreakStmtClass: 895 case Stmt::ContinueStmtClass: { 896 std::string sbuf; 897 llvm::raw_string_ostream os(sbuf); 898 PathDiagnosticLocation End = ExecutionContinues(os, C); 899 C.getActivePath().push_front( 900 std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, os.str())); 901 break; 902 } 903 904 // Determine control-flow for ternary '?'. 905 case Stmt::BinaryConditionalOperatorClass: 906 case Stmt::ConditionalOperatorClass: { 907 std::string sbuf; 908 llvm::raw_string_ostream os(sbuf); 909 os << "'?' condition is "; 910 911 if (*(Src->succ_begin() + 1) == Dst) 912 os << "false"; 913 else 914 os << "true"; 915 916 PathDiagnosticLocation End = ExecutionContinues(C); 917 918 if (const Stmt *S = End.asStmt()) 919 End = getEnclosingStmtLocation(S, C.getCurrLocationContext()); 920 921 C.getActivePath().push_front( 922 std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, os.str())); 923 break; 924 } 925 926 // Determine control-flow for short-circuited '&&' and '||'. 927 case Stmt::BinaryOperatorClass: { 928 if (!C.supportsLogicalOpControlFlow()) 929 break; 930 931 C.getActivePath().push_front(generateDiagForBinaryOP(C, T, Src, Dst)); 932 break; 933 } 934 935 case Stmt::DoStmtClass: 936 if (*(Src->succ_begin()) == Dst) { 937 std::string sbuf; 938 llvm::raw_string_ostream os(sbuf); 939 940 os << "Loop condition is true. "; 941 PathDiagnosticLocation End = ExecutionContinues(os, C); 942 943 if (const Stmt *S = End.asStmt()) 944 End = getEnclosingStmtLocation(S, C.getCurrLocationContext()); 945 946 C.getActivePath().push_front( 947 std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, 948 os.str())); 949 } else { 950 PathDiagnosticLocation End = ExecutionContinues(C); 951 952 if (const Stmt *S = End.asStmt()) 953 End = getEnclosingStmtLocation(S, C.getCurrLocationContext()); 954 955 C.getActivePath().push_front( 956 std::make_shared<PathDiagnosticControlFlowPiece>( 957 Start, End, "Loop condition is false. Exiting loop")); 958 } 959 break; 960 961 case Stmt::WhileStmtClass: 962 case Stmt::ForStmtClass: 963 if (*(Src->succ_begin() + 1) == Dst) { 964 std::string sbuf; 965 llvm::raw_string_ostream os(sbuf); 966 967 os << "Loop condition is false. "; 968 PathDiagnosticLocation End = ExecutionContinues(os, C); 969 if (const Stmt *S = End.asStmt()) 970 End = getEnclosingStmtLocation(S, C.getCurrLocationContext()); 971 972 C.getActivePath().push_front( 973 std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, 974 os.str())); 975 } else { 976 PathDiagnosticLocation End = ExecutionContinues(C); 977 if (const Stmt *S = End.asStmt()) 978 End = getEnclosingStmtLocation(S, C.getCurrLocationContext()); 979 980 C.getActivePath().push_front( 981 std::make_shared<PathDiagnosticControlFlowPiece>( 982 Start, End, "Loop condition is true. Entering loop body")); 983 } 984 985 break; 986 987 case Stmt::IfStmtClass: { 988 PathDiagnosticLocation End = ExecutionContinues(C); 989 990 if (const Stmt *S = End.asStmt()) 991 End = getEnclosingStmtLocation(S, C.getCurrLocationContext()); 992 993 if (*(Src->succ_begin() + 1) == Dst) 994 C.getActivePath().push_front( 995 std::make_shared<PathDiagnosticControlFlowPiece>( 996 Start, End, "Taking false branch")); 997 else 998 C.getActivePath().push_front( 999 std::make_shared<PathDiagnosticControlFlowPiece>( 1000 Start, End, "Taking true branch")); 1001 1002 break; 1003 } 1004 } 1005 } 1006 1007 //===----------------------------------------------------------------------===// 1008 // Functions for determining if a loop was executed 0 times. 1009 //===----------------------------------------------------------------------===// 1010 1011 static bool isLoop(const Stmt *Term) { 1012 switch (Term->getStmtClass()) { 1013 case Stmt::ForStmtClass: 1014 case Stmt::WhileStmtClass: 1015 case Stmt::ObjCForCollectionStmtClass: 1016 case Stmt::CXXForRangeStmtClass: 1017 return true; 1018 default: 1019 // Note that we intentionally do not include do..while here. 1020 return false; 1021 } 1022 } 1023 1024 static bool isJumpToFalseBranch(const BlockEdge *BE) { 1025 const CFGBlock *Src = BE->getSrc(); 1026 assert(Src->succ_size() == 2); 1027 return (*(Src->succ_begin()+1) == BE->getDst()); 1028 } 1029 1030 static bool isContainedByStmt(const ParentMap &PM, const Stmt *S, 1031 const Stmt *SubS) { 1032 while (SubS) { 1033 if (SubS == S) 1034 return true; 1035 SubS = PM.getParent(SubS); 1036 } 1037 return false; 1038 } 1039 1040 static const Stmt *getStmtBeforeCond(const ParentMap &PM, const Stmt *Term, 1041 const ExplodedNode *N) { 1042 while (N) { 1043 std::optional<StmtPoint> SP = N->getLocation().getAs<StmtPoint>(); 1044 if (SP) { 1045 const Stmt *S = SP->getStmt(); 1046 if (!isContainedByStmt(PM, Term, S)) 1047 return S; 1048 } 1049 N = N->getFirstPred(); 1050 } 1051 return nullptr; 1052 } 1053 1054 static bool isInLoopBody(const ParentMap &PM, const Stmt *S, const Stmt *Term) { 1055 const Stmt *LoopBody = nullptr; 1056 switch (Term->getStmtClass()) { 1057 case Stmt::CXXForRangeStmtClass: { 1058 const auto *FR = cast<CXXForRangeStmt>(Term); 1059 if (isContainedByStmt(PM, FR->getInc(), S)) 1060 return true; 1061 if (isContainedByStmt(PM, FR->getLoopVarStmt(), S)) 1062 return true; 1063 LoopBody = FR->getBody(); 1064 break; 1065 } 1066 case Stmt::ForStmtClass: { 1067 const auto *FS = cast<ForStmt>(Term); 1068 if (isContainedByStmt(PM, FS->getInc(), S)) 1069 return true; 1070 LoopBody = FS->getBody(); 1071 break; 1072 } 1073 case Stmt::ObjCForCollectionStmtClass: { 1074 const auto *FC = cast<ObjCForCollectionStmt>(Term); 1075 LoopBody = FC->getBody(); 1076 break; 1077 } 1078 case Stmt::WhileStmtClass: 1079 LoopBody = cast<WhileStmt>(Term)->getBody(); 1080 break; 1081 default: 1082 return false; 1083 } 1084 return isContainedByStmt(PM, LoopBody, S); 1085 } 1086 1087 /// Adds a sanitized control-flow diagnostic edge to a path. 1088 static void addEdgeToPath(PathPieces &path, 1089 PathDiagnosticLocation &PrevLoc, 1090 PathDiagnosticLocation NewLoc) { 1091 if (!NewLoc.isValid()) 1092 return; 1093 1094 SourceLocation NewLocL = NewLoc.asLocation(); 1095 if (NewLocL.isInvalid()) 1096 return; 1097 1098 if (!PrevLoc.isValid() || !PrevLoc.asLocation().isValid()) { 1099 PrevLoc = NewLoc; 1100 return; 1101 } 1102 1103 // Ignore self-edges, which occur when there are multiple nodes at the same 1104 // statement. 1105 if (NewLoc.asStmt() && NewLoc.asStmt() == PrevLoc.asStmt()) 1106 return; 1107 1108 path.push_front( 1109 std::make_shared<PathDiagnosticControlFlowPiece>(NewLoc, PrevLoc)); 1110 PrevLoc = NewLoc; 1111 } 1112 1113 /// A customized wrapper for CFGBlock::getTerminatorCondition() 1114 /// which returns the element for ObjCForCollectionStmts. 1115 static const Stmt *getTerminatorCondition(const CFGBlock *B) { 1116 const Stmt *S = B->getTerminatorCondition(); 1117 if (const auto *FS = dyn_cast_or_null<ObjCForCollectionStmt>(S)) 1118 return FS->getElement(); 1119 return S; 1120 } 1121 1122 constexpr llvm::StringLiteral StrEnteringLoop = "Entering loop body"; 1123 constexpr llvm::StringLiteral StrLoopBodyZero = "Loop body executed 0 times"; 1124 constexpr llvm::StringLiteral StrLoopRangeEmpty = 1125 "Loop body skipped when range is empty"; 1126 constexpr llvm::StringLiteral StrLoopCollectionEmpty = 1127 "Loop body skipped when collection is empty"; 1128 1129 static std::unique_ptr<FilesToLineNumsMap> 1130 findExecutedLines(const SourceManager &SM, const ExplodedNode *N); 1131 1132 void PathDiagnosticBuilder::generatePathDiagnosticsForNode( 1133 PathDiagnosticConstruct &C, PathDiagnosticLocation &PrevLoc) const { 1134 ProgramPoint P = C.getCurrentNode()->getLocation(); 1135 const SourceManager &SM = getSourceManager(); 1136 1137 // Have we encountered an entrance to a call? It may be 1138 // the case that we have not encountered a matching 1139 // call exit before this point. This means that the path 1140 // terminated within the call itself. 1141 if (auto CE = P.getAs<CallEnter>()) { 1142 1143 if (C.shouldAddPathEdges()) { 1144 // Add an edge to the start of the function. 1145 const StackFrameContext *CalleeLC = CE->getCalleeContext(); 1146 const Decl *D = CalleeLC->getDecl(); 1147 // Add the edge only when the callee has body. We jump to the beginning 1148 // of the *declaration*, however we expect it to be followed by the 1149 // body. This isn't the case for autosynthesized property accessors in 1150 // Objective-C. No need for a similar extra check for CallExit points 1151 // because the exit edge comes from a statement (i.e. return), 1152 // not from declaration. 1153 if (D->hasBody()) 1154 addEdgeToPath(C.getActivePath(), PrevLoc, 1155 PathDiagnosticLocation::createBegin(D, SM)); 1156 } 1157 1158 // Did we visit an entire call? 1159 bool VisitedEntireCall = C.PD->isWithinCall(); 1160 C.PD->popActivePath(); 1161 1162 PathDiagnosticCallPiece *Call; 1163 if (VisitedEntireCall) { 1164 Call = cast<PathDiagnosticCallPiece>(C.getActivePath().front().get()); 1165 } else { 1166 // The path terminated within a nested location context, create a new 1167 // call piece to encapsulate the rest of the path pieces. 1168 const Decl *Caller = CE->getLocationContext()->getDecl(); 1169 Call = PathDiagnosticCallPiece::construct(C.getActivePath(), Caller); 1170 assert(C.getActivePath().size() == 1 && 1171 C.getActivePath().front().get() == Call); 1172 1173 // Since we just transferred the path over to the call piece, reset the 1174 // mapping of the active path to the current location context. 1175 assert(C.isInLocCtxMap(&C.getActivePath()) && 1176 "When we ascend to a previously unvisited call, the active path's " 1177 "address shouldn't change, but rather should be compacted into " 1178 "a single CallEvent!"); 1179 C.updateLocCtxMap(&C.getActivePath(), C.getCurrLocationContext()); 1180 1181 // Record the location context mapping for the path within the call. 1182 assert(!C.isInLocCtxMap(&Call->path) && 1183 "When we ascend to a previously unvisited call, this must be the " 1184 "first time we encounter the caller context!"); 1185 C.updateLocCtxMap(&Call->path, CE->getCalleeContext()); 1186 } 1187 Call->setCallee(*CE, SM); 1188 1189 // Update the previous location in the active path. 1190 PrevLoc = Call->getLocation(); 1191 1192 if (!C.CallStack.empty()) { 1193 assert(C.CallStack.back().first == Call); 1194 C.CallStack.pop_back(); 1195 } 1196 return; 1197 } 1198 1199 assert(C.getCurrLocationContext() == C.getLocationContextForActivePath() && 1200 "The current position in the bug path is out of sync with the " 1201 "location context associated with the active path!"); 1202 1203 // Have we encountered an exit from a function call? 1204 if (std::optional<CallExitEnd> CE = P.getAs<CallExitEnd>()) { 1205 1206 // We are descending into a call (backwards). Construct 1207 // a new call piece to contain the path pieces for that call. 1208 auto Call = PathDiagnosticCallPiece::construct(*CE, SM); 1209 // Record the mapping from call piece to LocationContext. 1210 assert(!C.isInLocCtxMap(&Call->path) && 1211 "We just entered a call, this must've been the first time we " 1212 "encounter its context!"); 1213 C.updateLocCtxMap(&Call->path, CE->getCalleeContext()); 1214 1215 if (C.shouldAddPathEdges()) { 1216 // Add the edge to the return site. 1217 addEdgeToPath(C.getActivePath(), PrevLoc, Call->callReturn); 1218 PrevLoc.invalidate(); 1219 } 1220 1221 auto *P = Call.get(); 1222 C.getActivePath().push_front(std::move(Call)); 1223 1224 // Make the contents of the call the active path for now. 1225 C.PD->pushActivePath(&P->path); 1226 C.CallStack.push_back(CallWithEntry(P, C.getCurrentNode())); 1227 return; 1228 } 1229 1230 if (auto PS = P.getAs<PostStmt>()) { 1231 if (!C.shouldAddPathEdges()) 1232 return; 1233 1234 // Add an edge. If this is an ObjCForCollectionStmt do 1235 // not add an edge here as it appears in the CFG both 1236 // as a terminator and as a terminator condition. 1237 if (!isa<ObjCForCollectionStmt>(PS->getStmt())) { 1238 PathDiagnosticLocation L = 1239 PathDiagnosticLocation(PS->getStmt(), SM, C.getCurrLocationContext()); 1240 addEdgeToPath(C.getActivePath(), PrevLoc, L); 1241 } 1242 1243 } else if (auto BE = P.getAs<BlockEdge>()) { 1244 1245 if (C.shouldAddControlNotes()) { 1246 generateMinimalDiagForBlockEdge(C, *BE); 1247 } 1248 1249 if (!C.shouldAddPathEdges()) { 1250 return; 1251 } 1252 1253 // Are we jumping to the head of a loop? Add a special diagnostic. 1254 if (const Stmt *Loop = BE->getSrc()->getLoopTarget()) { 1255 PathDiagnosticLocation L(Loop, SM, C.getCurrLocationContext()); 1256 const Stmt *Body = nullptr; 1257 1258 if (const auto *FS = dyn_cast<ForStmt>(Loop)) 1259 Body = FS->getBody(); 1260 else if (const auto *WS = dyn_cast<WhileStmt>(Loop)) 1261 Body = WS->getBody(); 1262 else if (const auto *OFS = dyn_cast<ObjCForCollectionStmt>(Loop)) { 1263 Body = OFS->getBody(); 1264 } else if (const auto *FRS = dyn_cast<CXXForRangeStmt>(Loop)) { 1265 Body = FRS->getBody(); 1266 } 1267 // do-while statements are explicitly excluded here 1268 1269 auto p = std::make_shared<PathDiagnosticEventPiece>( 1270 L, "Looping back to the head of the loop"); 1271 p->setPrunable(true); 1272 1273 addEdgeToPath(C.getActivePath(), PrevLoc, p->getLocation()); 1274 // We might've added a very similar control node already 1275 if (!C.shouldAddControlNotes()) { 1276 C.getActivePath().push_front(std::move(p)); 1277 } 1278 1279 if (const auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 1280 addEdgeToPath(C.getActivePath(), PrevLoc, 1281 PathDiagnosticLocation::createEndBrace(CS, SM)); 1282 } 1283 } 1284 1285 const CFGBlock *BSrc = BE->getSrc(); 1286 const ParentMap &PM = C.getParentMap(); 1287 1288 if (const Stmt *Term = BSrc->getTerminatorStmt()) { 1289 // Are we jumping past the loop body without ever executing the 1290 // loop (because the condition was false)? 1291 if (isLoop(Term)) { 1292 const Stmt *TermCond = getTerminatorCondition(BSrc); 1293 bool IsInLoopBody = isInLoopBody( 1294 PM, getStmtBeforeCond(PM, TermCond, C.getCurrentNode()), Term); 1295 1296 StringRef str; 1297 1298 if (isJumpToFalseBranch(&*BE)) { 1299 if (!IsInLoopBody) { 1300 if (isa<ObjCForCollectionStmt>(Term)) { 1301 str = StrLoopCollectionEmpty; 1302 } else if (isa<CXXForRangeStmt>(Term)) { 1303 str = StrLoopRangeEmpty; 1304 } else { 1305 str = StrLoopBodyZero; 1306 } 1307 } 1308 } else { 1309 str = StrEnteringLoop; 1310 } 1311 1312 if (!str.empty()) { 1313 PathDiagnosticLocation L(TermCond ? TermCond : Term, SM, 1314 C.getCurrLocationContext()); 1315 auto PE = std::make_shared<PathDiagnosticEventPiece>(L, str); 1316 PE->setPrunable(true); 1317 addEdgeToPath(C.getActivePath(), PrevLoc, PE->getLocation()); 1318 1319 // We might've added a very similar control node already 1320 if (!C.shouldAddControlNotes()) { 1321 C.getActivePath().push_front(std::move(PE)); 1322 } 1323 } 1324 } else if (isa<BreakStmt, ContinueStmt, GotoStmt>(Term)) { 1325 PathDiagnosticLocation L(Term, SM, C.getCurrLocationContext()); 1326 addEdgeToPath(C.getActivePath(), PrevLoc, L); 1327 } 1328 } 1329 } 1330 } 1331 1332 static std::unique_ptr<PathDiagnostic> 1333 generateDiagnosticForBasicReport(const BasicBugReport *R, 1334 const Decl *AnalysisEntryPoint) { 1335 const BugType &BT = R->getBugType(); 1336 return std::make_unique<PathDiagnostic>( 1337 BT.getCheckerName(), R->getDeclWithIssue(), BT.getDescription(), 1338 R->getDescription(), R->getShortDescription(/*UseFallback=*/false), 1339 BT.getCategory(), R->getUniqueingLocation(), R->getUniqueingDecl(), 1340 AnalysisEntryPoint, std::make_unique<FilesToLineNumsMap>()); 1341 } 1342 1343 static std::unique_ptr<PathDiagnostic> 1344 generateEmptyDiagnosticForReport(const PathSensitiveBugReport *R, 1345 const SourceManager &SM, 1346 const Decl *AnalysisEntryPoint) { 1347 const BugType &BT = R->getBugType(); 1348 return std::make_unique<PathDiagnostic>( 1349 BT.getCheckerName(), R->getDeclWithIssue(), BT.getDescription(), 1350 R->getDescription(), R->getShortDescription(/*UseFallback=*/false), 1351 BT.getCategory(), R->getUniqueingLocation(), R->getUniqueingDecl(), 1352 AnalysisEntryPoint, findExecutedLines(SM, R->getErrorNode())); 1353 } 1354 1355 static const Stmt *getStmtParent(const Stmt *S, const ParentMap &PM) { 1356 if (!S) 1357 return nullptr; 1358 1359 while (true) { 1360 S = PM.getParentIgnoreParens(S); 1361 1362 if (!S) 1363 break; 1364 1365 if (isa<FullExpr, CXXBindTemporaryExpr, SubstNonTypeTemplateParmExpr>(S)) 1366 continue; 1367 1368 break; 1369 } 1370 1371 return S; 1372 } 1373 1374 static bool isConditionForTerminator(const Stmt *S, const Stmt *Cond) { 1375 switch (S->getStmtClass()) { 1376 case Stmt::BinaryOperatorClass: { 1377 const auto *BO = cast<BinaryOperator>(S); 1378 if (!BO->isLogicalOp()) 1379 return false; 1380 return BO->getLHS() == Cond || BO->getRHS() == Cond; 1381 } 1382 case Stmt::IfStmtClass: 1383 return cast<IfStmt>(S)->getCond() == Cond; 1384 case Stmt::ForStmtClass: 1385 return cast<ForStmt>(S)->getCond() == Cond; 1386 case Stmt::WhileStmtClass: 1387 return cast<WhileStmt>(S)->getCond() == Cond; 1388 case Stmt::DoStmtClass: 1389 return cast<DoStmt>(S)->getCond() == Cond; 1390 case Stmt::ChooseExprClass: 1391 return cast<ChooseExpr>(S)->getCond() == Cond; 1392 case Stmt::IndirectGotoStmtClass: 1393 return cast<IndirectGotoStmt>(S)->getTarget() == Cond; 1394 case Stmt::SwitchStmtClass: 1395 return cast<SwitchStmt>(S)->getCond() == Cond; 1396 case Stmt::BinaryConditionalOperatorClass: 1397 return cast<BinaryConditionalOperator>(S)->getCond() == Cond; 1398 case Stmt::ConditionalOperatorClass: { 1399 const auto *CO = cast<ConditionalOperator>(S); 1400 return CO->getCond() == Cond || 1401 CO->getLHS() == Cond || 1402 CO->getRHS() == Cond; 1403 } 1404 case Stmt::ObjCForCollectionStmtClass: 1405 return cast<ObjCForCollectionStmt>(S)->getElement() == Cond; 1406 case Stmt::CXXForRangeStmtClass: { 1407 const auto *FRS = cast<CXXForRangeStmt>(S); 1408 return FRS->getCond() == Cond || FRS->getRangeInit() == Cond; 1409 } 1410 default: 1411 return false; 1412 } 1413 } 1414 1415 static bool isIncrementOrInitInForLoop(const Stmt *S, const Stmt *FL) { 1416 if (const auto *FS = dyn_cast<ForStmt>(FL)) 1417 return FS->getInc() == S || FS->getInit() == S; 1418 if (const auto *FRS = dyn_cast<CXXForRangeStmt>(FL)) 1419 return FRS->getInc() == S || FRS->getRangeStmt() == S || 1420 FRS->getLoopVarStmt() || FRS->getRangeInit() == S; 1421 return false; 1422 } 1423 1424 using OptimizedCallsSet = llvm::DenseSet<const PathDiagnosticCallPiece *>; 1425 1426 /// Adds synthetic edges from top-level statements to their subexpressions. 1427 /// 1428 /// This avoids a "swoosh" effect, where an edge from a top-level statement A 1429 /// points to a sub-expression B.1 that's not at the start of B. In these cases, 1430 /// we'd like to see an edge from A to B, then another one from B to B.1. 1431 static void addContextEdges(PathPieces &pieces, const LocationContext *LC) { 1432 const ParentMap &PM = LC->getParentMap(); 1433 PathPieces::iterator Prev = pieces.end(); 1434 for (PathPieces::iterator I = pieces.begin(), E = Prev; I != E; 1435 Prev = I, ++I) { 1436 auto *Piece = dyn_cast<PathDiagnosticControlFlowPiece>(I->get()); 1437 1438 if (!Piece) 1439 continue; 1440 1441 PathDiagnosticLocation SrcLoc = Piece->getStartLocation(); 1442 SmallVector<PathDiagnosticLocation, 4> SrcContexts; 1443 1444 PathDiagnosticLocation NextSrcContext = SrcLoc; 1445 const Stmt *InnerStmt = nullptr; 1446 while (NextSrcContext.isValid() && NextSrcContext.asStmt() != InnerStmt) { 1447 SrcContexts.push_back(NextSrcContext); 1448 InnerStmt = NextSrcContext.asStmt(); 1449 NextSrcContext = getEnclosingStmtLocation(InnerStmt, LC, 1450 /*allowNested=*/true); 1451 } 1452 1453 // Repeatedly split the edge as necessary. 1454 // This is important for nested logical expressions (||, &&, ?:) where we 1455 // want to show all the levels of context. 1456 while (true) { 1457 const Stmt *Dst = Piece->getEndLocation().getStmtOrNull(); 1458 1459 // We are looking at an edge. Is the destination within a larger 1460 // expression? 1461 PathDiagnosticLocation DstContext = 1462 getEnclosingStmtLocation(Dst, LC, /*allowNested=*/true); 1463 if (!DstContext.isValid() || DstContext.asStmt() == Dst) 1464 break; 1465 1466 // If the source is in the same context, we're already good. 1467 if (llvm::is_contained(SrcContexts, DstContext)) 1468 break; 1469 1470 // Update the subexpression node to point to the context edge. 1471 Piece->setStartLocation(DstContext); 1472 1473 // Try to extend the previous edge if it's at the same level as the source 1474 // context. 1475 if (Prev != E) { 1476 auto *PrevPiece = dyn_cast<PathDiagnosticControlFlowPiece>(Prev->get()); 1477 1478 if (PrevPiece) { 1479 if (const Stmt *PrevSrc = 1480 PrevPiece->getStartLocation().getStmtOrNull()) { 1481 const Stmt *PrevSrcParent = getStmtParent(PrevSrc, PM); 1482 if (PrevSrcParent == 1483 getStmtParent(DstContext.getStmtOrNull(), PM)) { 1484 PrevPiece->setEndLocation(DstContext); 1485 break; 1486 } 1487 } 1488 } 1489 } 1490 1491 // Otherwise, split the current edge into a context edge and a 1492 // subexpression edge. Note that the context statement may itself have 1493 // context. 1494 auto P = 1495 std::make_shared<PathDiagnosticControlFlowPiece>(SrcLoc, DstContext); 1496 Piece = P.get(); 1497 I = pieces.insert(I, std::move(P)); 1498 } 1499 } 1500 } 1501 1502 /// Move edges from a branch condition to a branch target 1503 /// when the condition is simple. 1504 /// 1505 /// This restructures some of the work of addContextEdges. That function 1506 /// creates edges this may destroy, but they work together to create a more 1507 /// aesthetically set of edges around branches. After the call to 1508 /// addContextEdges, we may have (1) an edge to the branch, (2) an edge from 1509 /// the branch to the branch condition, and (3) an edge from the branch 1510 /// condition to the branch target. We keep (1), but may wish to remove (2) 1511 /// and move the source of (3) to the branch if the branch condition is simple. 1512 static void simplifySimpleBranches(PathPieces &pieces) { 1513 for (PathPieces::iterator I = pieces.begin(), E = pieces.end(); I != E; ++I) { 1514 const auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get()); 1515 1516 if (!PieceI) 1517 continue; 1518 1519 const Stmt *s1Start = PieceI->getStartLocation().getStmtOrNull(); 1520 const Stmt *s1End = PieceI->getEndLocation().getStmtOrNull(); 1521 1522 if (!s1Start || !s1End) 1523 continue; 1524 1525 PathPieces::iterator NextI = I; ++NextI; 1526 if (NextI == E) 1527 break; 1528 1529 PathDiagnosticControlFlowPiece *PieceNextI = nullptr; 1530 1531 while (true) { 1532 if (NextI == E) 1533 break; 1534 1535 const auto *EV = dyn_cast<PathDiagnosticEventPiece>(NextI->get()); 1536 if (EV) { 1537 StringRef S = EV->getString(); 1538 if (S == StrEnteringLoop || S == StrLoopBodyZero || 1539 S == StrLoopCollectionEmpty || S == StrLoopRangeEmpty) { 1540 ++NextI; 1541 continue; 1542 } 1543 break; 1544 } 1545 1546 PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get()); 1547 break; 1548 } 1549 1550 if (!PieceNextI) 1551 continue; 1552 1553 const Stmt *s2Start = PieceNextI->getStartLocation().getStmtOrNull(); 1554 const Stmt *s2End = PieceNextI->getEndLocation().getStmtOrNull(); 1555 1556 if (!s2Start || !s2End || s1End != s2Start) 1557 continue; 1558 1559 // We only perform this transformation for specific branch kinds. 1560 // We don't want to do this for do..while, for example. 1561 if (!isa<ForStmt, WhileStmt, IfStmt, ObjCForCollectionStmt, 1562 CXXForRangeStmt>(s1Start)) 1563 continue; 1564 1565 // Is s1End the branch condition? 1566 if (!isConditionForTerminator(s1Start, s1End)) 1567 continue; 1568 1569 // Perform the hoisting by eliminating (2) and changing the start 1570 // location of (3). 1571 PieceNextI->setStartLocation(PieceI->getStartLocation()); 1572 I = pieces.erase(I); 1573 } 1574 } 1575 1576 /// Returns the number of bytes in the given (character-based) SourceRange. 1577 /// 1578 /// If the locations in the range are not on the same line, returns 1579 /// std::nullopt. 1580 /// 1581 /// Note that this does not do a precise user-visible character or column count. 1582 static std::optional<size_t> getLengthOnSingleLine(const SourceManager &SM, 1583 SourceRange Range) { 1584 SourceRange ExpansionRange(SM.getExpansionLoc(Range.getBegin()), 1585 SM.getExpansionRange(Range.getEnd()).getEnd()); 1586 1587 FileID FID = SM.getFileID(ExpansionRange.getBegin()); 1588 if (FID != SM.getFileID(ExpansionRange.getEnd())) 1589 return std::nullopt; 1590 1591 std::optional<MemoryBufferRef> Buffer = SM.getBufferOrNone(FID); 1592 if (!Buffer) 1593 return std::nullopt; 1594 1595 unsigned BeginOffset = SM.getFileOffset(ExpansionRange.getBegin()); 1596 unsigned EndOffset = SM.getFileOffset(ExpansionRange.getEnd()); 1597 StringRef Snippet = Buffer->getBuffer().slice(BeginOffset, EndOffset); 1598 1599 // We're searching the raw bytes of the buffer here, which might include 1600 // escaped newlines and such. That's okay; we're trying to decide whether the 1601 // SourceRange is covering a large or small amount of space in the user's 1602 // editor. 1603 if (Snippet.find_first_of("\r\n") != StringRef::npos) 1604 return std::nullopt; 1605 1606 // This isn't Unicode-aware, but it doesn't need to be. 1607 return Snippet.size(); 1608 } 1609 1610 /// \sa getLengthOnSingleLine(SourceManager, SourceRange) 1611 static std::optional<size_t> getLengthOnSingleLine(const SourceManager &SM, 1612 const Stmt *S) { 1613 return getLengthOnSingleLine(SM, S->getSourceRange()); 1614 } 1615 1616 /// Eliminate two-edge cycles created by addContextEdges(). 1617 /// 1618 /// Once all the context edges are in place, there are plenty of cases where 1619 /// there's a single edge from a top-level statement to a subexpression, 1620 /// followed by a single path note, and then a reverse edge to get back out to 1621 /// the top level. If the statement is simple enough, the subexpression edges 1622 /// just add noise and make it harder to understand what's going on. 1623 /// 1624 /// This function only removes edges in pairs, because removing only one edge 1625 /// might leave other edges dangling. 1626 /// 1627 /// This will not remove edges in more complicated situations: 1628 /// - if there is more than one "hop" leading to or from a subexpression. 1629 /// - if there is an inlined call between the edges instead of a single event. 1630 /// - if the whole statement is large enough that having subexpression arrows 1631 /// might be helpful. 1632 static void removeContextCycles(PathPieces &Path, const SourceManager &SM) { 1633 for (PathPieces::iterator I = Path.begin(), E = Path.end(); I != E; ) { 1634 // Pattern match the current piece and its successor. 1635 const auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get()); 1636 1637 if (!PieceI) { 1638 ++I; 1639 continue; 1640 } 1641 1642 const Stmt *s1Start = PieceI->getStartLocation().getStmtOrNull(); 1643 const Stmt *s1End = PieceI->getEndLocation().getStmtOrNull(); 1644 1645 PathPieces::iterator NextI = I; ++NextI; 1646 if (NextI == E) 1647 break; 1648 1649 const auto *PieceNextI = 1650 dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get()); 1651 1652 if (!PieceNextI) { 1653 if (isa<PathDiagnosticEventPiece>(NextI->get())) { 1654 ++NextI; 1655 if (NextI == E) 1656 break; 1657 PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get()); 1658 } 1659 1660 if (!PieceNextI) { 1661 ++I; 1662 continue; 1663 } 1664 } 1665 1666 const Stmt *s2Start = PieceNextI->getStartLocation().getStmtOrNull(); 1667 const Stmt *s2End = PieceNextI->getEndLocation().getStmtOrNull(); 1668 1669 if (s1Start && s2Start && s1Start == s2End && s2Start == s1End) { 1670 const size_t MAX_SHORT_LINE_LENGTH = 80; 1671 std::optional<size_t> s1Length = getLengthOnSingleLine(SM, s1Start); 1672 if (s1Length && *s1Length <= MAX_SHORT_LINE_LENGTH) { 1673 std::optional<size_t> s2Length = getLengthOnSingleLine(SM, s2Start); 1674 if (s2Length && *s2Length <= MAX_SHORT_LINE_LENGTH) { 1675 Path.erase(I); 1676 I = Path.erase(NextI); 1677 continue; 1678 } 1679 } 1680 } 1681 1682 ++I; 1683 } 1684 } 1685 1686 /// Return true if X is contained by Y. 1687 static bool lexicalContains(const ParentMap &PM, const Stmt *X, const Stmt *Y) { 1688 while (X) { 1689 if (X == Y) 1690 return true; 1691 X = PM.getParent(X); 1692 } 1693 return false; 1694 } 1695 1696 // Remove short edges on the same line less than 3 columns in difference. 1697 static void removePunyEdges(PathPieces &path, const SourceManager &SM, 1698 const ParentMap &PM) { 1699 bool erased = false; 1700 1701 for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; 1702 erased ? I : ++I) { 1703 erased = false; 1704 1705 const auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get()); 1706 1707 if (!PieceI) 1708 continue; 1709 1710 const Stmt *start = PieceI->getStartLocation().getStmtOrNull(); 1711 const Stmt *end = PieceI->getEndLocation().getStmtOrNull(); 1712 1713 if (!start || !end) 1714 continue; 1715 1716 const Stmt *endParent = PM.getParent(end); 1717 if (!endParent) 1718 continue; 1719 1720 if (isConditionForTerminator(end, endParent)) 1721 continue; 1722 1723 SourceLocation FirstLoc = start->getBeginLoc(); 1724 SourceLocation SecondLoc = end->getBeginLoc(); 1725 1726 if (!SM.isWrittenInSameFile(FirstLoc, SecondLoc)) 1727 continue; 1728 if (SM.isBeforeInTranslationUnit(SecondLoc, FirstLoc)) 1729 std::swap(SecondLoc, FirstLoc); 1730 1731 SourceRange EdgeRange(FirstLoc, SecondLoc); 1732 std::optional<size_t> ByteWidth = getLengthOnSingleLine(SM, EdgeRange); 1733 1734 // If the statements are on different lines, continue. 1735 if (!ByteWidth) 1736 continue; 1737 1738 const size_t MAX_PUNY_EDGE_LENGTH = 2; 1739 if (*ByteWidth <= MAX_PUNY_EDGE_LENGTH) { 1740 // FIXME: There are enough /bytes/ between the endpoints of the edge, but 1741 // there might not be enough /columns/. A proper user-visible column count 1742 // is probably too expensive, though. 1743 I = path.erase(I); 1744 erased = true; 1745 continue; 1746 } 1747 } 1748 } 1749 1750 static void removeIdenticalEvents(PathPieces &path) { 1751 for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; ++I) { 1752 const auto *PieceI = dyn_cast<PathDiagnosticEventPiece>(I->get()); 1753 1754 if (!PieceI) 1755 continue; 1756 1757 PathPieces::iterator NextI = I; ++NextI; 1758 if (NextI == E) 1759 return; 1760 1761 const auto *PieceNextI = dyn_cast<PathDiagnosticEventPiece>(NextI->get()); 1762 1763 if (!PieceNextI) 1764 continue; 1765 1766 // Erase the second piece if it has the same exact message text. 1767 if (PieceI->getString() == PieceNextI->getString()) { 1768 path.erase(NextI); 1769 } 1770 } 1771 } 1772 1773 static bool optimizeEdges(const PathDiagnosticConstruct &C, PathPieces &path, 1774 OptimizedCallsSet &OCS) { 1775 bool hasChanges = false; 1776 const LocationContext *LC = C.getLocationContextFor(&path); 1777 assert(LC); 1778 const ParentMap &PM = LC->getParentMap(); 1779 const SourceManager &SM = C.getSourceManager(); 1780 1781 for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; ) { 1782 // Optimize subpaths. 1783 if (auto *CallI = dyn_cast<PathDiagnosticCallPiece>(I->get())) { 1784 // Record the fact that a call has been optimized so we only do the 1785 // effort once. 1786 if (!OCS.count(CallI)) { 1787 while (optimizeEdges(C, CallI->path, OCS)) { 1788 } 1789 OCS.insert(CallI); 1790 } 1791 ++I; 1792 continue; 1793 } 1794 1795 // Pattern match the current piece and its successor. 1796 auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get()); 1797 1798 if (!PieceI) { 1799 ++I; 1800 continue; 1801 } 1802 1803 const Stmt *s1Start = PieceI->getStartLocation().getStmtOrNull(); 1804 const Stmt *s1End = PieceI->getEndLocation().getStmtOrNull(); 1805 const Stmt *level1 = getStmtParent(s1Start, PM); 1806 const Stmt *level2 = getStmtParent(s1End, PM); 1807 1808 PathPieces::iterator NextI = I; ++NextI; 1809 if (NextI == E) 1810 break; 1811 1812 const auto *PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get()); 1813 1814 if (!PieceNextI) { 1815 ++I; 1816 continue; 1817 } 1818 1819 const Stmt *s2Start = PieceNextI->getStartLocation().getStmtOrNull(); 1820 const Stmt *s2End = PieceNextI->getEndLocation().getStmtOrNull(); 1821 const Stmt *level3 = getStmtParent(s2Start, PM); 1822 const Stmt *level4 = getStmtParent(s2End, PM); 1823 1824 // Rule I. 1825 // 1826 // If we have two consecutive control edges whose end/begin locations 1827 // are at the same level (e.g. statements or top-level expressions within 1828 // a compound statement, or siblings share a single ancestor expression), 1829 // then merge them if they have no interesting intermediate event. 1830 // 1831 // For example: 1832 // 1833 // (1.1 -> 1.2) -> (1.2 -> 1.3) becomes (1.1 -> 1.3) because the common 1834 // parent is '1'. Here 'x.y.z' represents the hierarchy of statements. 1835 // 1836 // NOTE: this will be limited later in cases where we add barriers 1837 // to prevent this optimization. 1838 if (level1 && level1 == level2 && level1 == level3 && level1 == level4) { 1839 PieceI->setEndLocation(PieceNextI->getEndLocation()); 1840 path.erase(NextI); 1841 hasChanges = true; 1842 continue; 1843 } 1844 1845 // Rule II. 1846 // 1847 // Eliminate edges between subexpressions and parent expressions 1848 // when the subexpression is consumed. 1849 // 1850 // NOTE: this will be limited later in cases where we add barriers 1851 // to prevent this optimization. 1852 if (s1End && s1End == s2Start && level2) { 1853 bool removeEdge = false; 1854 // Remove edges into the increment or initialization of a 1855 // loop that have no interleaving event. This means that 1856 // they aren't interesting. 1857 if (isIncrementOrInitInForLoop(s1End, level2)) 1858 removeEdge = true; 1859 // Next only consider edges that are not anchored on 1860 // the condition of a terminator. This are intermediate edges 1861 // that we might want to trim. 1862 else if (!isConditionForTerminator(level2, s1End)) { 1863 // Trim edges on expressions that are consumed by 1864 // the parent expression. 1865 if (isa<Expr>(s1End) && PM.isConsumedExpr(cast<Expr>(s1End))) { 1866 removeEdge = true; 1867 } 1868 // Trim edges where a lexical containment doesn't exist. 1869 // For example: 1870 // 1871 // X -> Y -> Z 1872 // 1873 // If 'Z' lexically contains Y (it is an ancestor) and 1874 // 'X' does not lexically contain Y (it is a descendant OR 1875 // it has no lexical relationship at all) then trim. 1876 // 1877 // This can eliminate edges where we dive into a subexpression 1878 // and then pop back out, etc. 1879 else if (s1Start && s2End && 1880 lexicalContains(PM, s2Start, s2End) && 1881 !lexicalContains(PM, s1End, s1Start)) { 1882 removeEdge = true; 1883 } 1884 // Trim edges from a subexpression back to the top level if the 1885 // subexpression is on a different line. 1886 // 1887 // A.1 -> A -> B 1888 // becomes 1889 // A.1 -> B 1890 // 1891 // These edges just look ugly and don't usually add anything. 1892 else if (s1Start && s2End && 1893 lexicalContains(PM, s1Start, s1End)) { 1894 SourceRange EdgeRange(PieceI->getEndLocation().asLocation(), 1895 PieceI->getStartLocation().asLocation()); 1896 if (!getLengthOnSingleLine(SM, EdgeRange)) 1897 removeEdge = true; 1898 } 1899 } 1900 1901 if (removeEdge) { 1902 PieceI->setEndLocation(PieceNextI->getEndLocation()); 1903 path.erase(NextI); 1904 hasChanges = true; 1905 continue; 1906 } 1907 } 1908 1909 // Optimize edges for ObjC fast-enumeration loops. 1910 // 1911 // (X -> collection) -> (collection -> element) 1912 // 1913 // becomes: 1914 // 1915 // (X -> element) 1916 if (s1End == s2Start) { 1917 const auto *FS = dyn_cast_or_null<ObjCForCollectionStmt>(level3); 1918 if (FS && FS->getCollection()->IgnoreParens() == s2Start && 1919 s2End == FS->getElement()) { 1920 PieceI->setEndLocation(PieceNextI->getEndLocation()); 1921 path.erase(NextI); 1922 hasChanges = true; 1923 continue; 1924 } 1925 } 1926 1927 // No changes at this index? Move to the next one. 1928 ++I; 1929 } 1930 1931 if (!hasChanges) { 1932 // Adjust edges into subexpressions to make them more uniform 1933 // and aesthetically pleasing. 1934 addContextEdges(path, LC); 1935 // Remove "cyclical" edges that include one or more context edges. 1936 removeContextCycles(path, SM); 1937 // Hoist edges originating from branch conditions to branches 1938 // for simple branches. 1939 simplifySimpleBranches(path); 1940 // Remove any puny edges left over after primary optimization pass. 1941 removePunyEdges(path, SM, PM); 1942 // Remove identical events. 1943 removeIdenticalEvents(path); 1944 } 1945 1946 return hasChanges; 1947 } 1948 1949 /// Drop the very first edge in a path, which should be a function entry edge. 1950 /// 1951 /// If the first edge is not a function entry edge (say, because the first 1952 /// statement had an invalid source location), this function does nothing. 1953 // FIXME: We should just generate invalid edges anyway and have the optimizer 1954 // deal with them. 1955 static void dropFunctionEntryEdge(const PathDiagnosticConstruct &C, 1956 PathPieces &Path) { 1957 const auto *FirstEdge = 1958 dyn_cast<PathDiagnosticControlFlowPiece>(Path.front().get()); 1959 if (!FirstEdge) 1960 return; 1961 1962 const Decl *D = C.getLocationContextFor(&Path)->getDecl(); 1963 PathDiagnosticLocation EntryLoc = 1964 PathDiagnosticLocation::createBegin(D, C.getSourceManager()); 1965 if (FirstEdge->getStartLocation() != EntryLoc) 1966 return; 1967 1968 Path.pop_front(); 1969 } 1970 1971 /// Populate executes lines with lines containing at least one diagnostics. 1972 static void updateExecutedLinesWithDiagnosticPieces(PathDiagnostic &PD) { 1973 1974 PathPieces path = PD.path.flatten(/*ShouldFlattenMacros=*/true); 1975 FilesToLineNumsMap &ExecutedLines = PD.getExecutedLines(); 1976 1977 for (const auto &P : path) { 1978 FullSourceLoc Loc = P->getLocation().asLocation().getExpansionLoc(); 1979 FileID FID = Loc.getFileID(); 1980 unsigned LineNo = Loc.getLineNumber(); 1981 assert(FID.isValid()); 1982 ExecutedLines[FID].insert(LineNo); 1983 } 1984 } 1985 1986 PathDiagnosticConstruct::PathDiagnosticConstruct( 1987 const PathDiagnosticConsumer *PDC, const ExplodedNode *ErrorNode, 1988 const PathSensitiveBugReport *R, const Decl *AnalysisEntryPoint) 1989 : Consumer(PDC), CurrentNode(ErrorNode), 1990 SM(CurrentNode->getCodeDecl().getASTContext().getSourceManager()), 1991 PD(generateEmptyDiagnosticForReport(R, getSourceManager(), 1992 AnalysisEntryPoint)) { 1993 LCM[&PD->getActivePath()] = ErrorNode->getLocationContext(); 1994 } 1995 1996 PathDiagnosticBuilder::PathDiagnosticBuilder( 1997 BugReporterContext BRC, std::unique_ptr<ExplodedGraph> BugPath, 1998 PathSensitiveBugReport *r, const ExplodedNode *ErrorNode, 1999 std::unique_ptr<VisitorsDiagnosticsTy> VisitorsDiagnostics) 2000 : BugReporterContext(BRC), BugPath(std::move(BugPath)), R(r), 2001 ErrorNode(ErrorNode), 2002 VisitorsDiagnostics(std::move(VisitorsDiagnostics)) {} 2003 2004 std::unique_ptr<PathDiagnostic> 2005 PathDiagnosticBuilder::generate(const PathDiagnosticConsumer *PDC) const { 2006 const Decl *EntryPoint = getBugReporter().getAnalysisEntryPoint(); 2007 PathDiagnosticConstruct Construct(PDC, ErrorNode, R, EntryPoint); 2008 2009 const SourceManager &SM = getSourceManager(); 2010 const AnalyzerOptions &Opts = getAnalyzerOptions(); 2011 2012 if (!PDC->shouldGenerateDiagnostics()) 2013 return generateEmptyDiagnosticForReport(R, getSourceManager(), EntryPoint); 2014 2015 // Construct the final (warning) event for the bug report. 2016 auto EndNotes = VisitorsDiagnostics->find(ErrorNode); 2017 PathDiagnosticPieceRef LastPiece; 2018 if (EndNotes != VisitorsDiagnostics->end()) { 2019 assert(!EndNotes->second.empty()); 2020 LastPiece = EndNotes->second[0]; 2021 } else { 2022 LastPiece = BugReporterVisitor::getDefaultEndPath(*this, ErrorNode, 2023 *getBugReport()); 2024 } 2025 Construct.PD->setEndOfPath(LastPiece); 2026 2027 PathDiagnosticLocation PrevLoc = Construct.PD->getLocation(); 2028 // From the error node to the root, ascend the bug path and construct the bug 2029 // report. 2030 while (Construct.ascendToPrevNode()) { 2031 generatePathDiagnosticsForNode(Construct, PrevLoc); 2032 2033 auto VisitorNotes = VisitorsDiagnostics->find(Construct.getCurrentNode()); 2034 if (VisitorNotes == VisitorsDiagnostics->end()) 2035 continue; 2036 2037 // This is a workaround due to inability to put shared PathDiagnosticPiece 2038 // into a FoldingSet. 2039 std::set<llvm::FoldingSetNodeID> DeduplicationSet; 2040 2041 // Add pieces from custom visitors. 2042 for (const PathDiagnosticPieceRef &Note : VisitorNotes->second) { 2043 llvm::FoldingSetNodeID ID; 2044 Note->Profile(ID); 2045 if (!DeduplicationSet.insert(ID).second) 2046 continue; 2047 2048 if (PDC->shouldAddPathEdges()) 2049 addEdgeToPath(Construct.getActivePath(), PrevLoc, Note->getLocation()); 2050 updateStackPiecesWithMessage(Note, Construct.CallStack); 2051 Construct.getActivePath().push_front(Note); 2052 } 2053 } 2054 2055 if (PDC->shouldAddPathEdges()) { 2056 // Add an edge to the start of the function. 2057 // We'll prune it out later, but it helps make diagnostics more uniform. 2058 const StackFrameContext *CalleeLC = 2059 Construct.getLocationContextForActivePath()->getStackFrame(); 2060 const Decl *D = CalleeLC->getDecl(); 2061 addEdgeToPath(Construct.getActivePath(), PrevLoc, 2062 PathDiagnosticLocation::createBegin(D, SM)); 2063 } 2064 2065 2066 // Finally, prune the diagnostic path of uninteresting stuff. 2067 if (!Construct.PD->path.empty()) { 2068 if (R->shouldPrunePath() && Opts.ShouldPrunePaths) { 2069 bool stillHasNotes = 2070 removeUnneededCalls(Construct, Construct.getMutablePieces(), R); 2071 assert(stillHasNotes); 2072 (void)stillHasNotes; 2073 } 2074 2075 // Remove pop-up notes if needed. 2076 if (!Opts.ShouldAddPopUpNotes) 2077 removePopUpNotes(Construct.getMutablePieces()); 2078 2079 // Redirect all call pieces to have valid locations. 2080 adjustCallLocations(Construct.getMutablePieces()); 2081 removePiecesWithInvalidLocations(Construct.getMutablePieces()); 2082 2083 if (PDC->shouldAddPathEdges()) { 2084 2085 // Reduce the number of edges from a very conservative set 2086 // to an aesthetically pleasing subset that conveys the 2087 // necessary information. 2088 OptimizedCallsSet OCS; 2089 while (optimizeEdges(Construct, Construct.getMutablePieces(), OCS)) { 2090 } 2091 2092 // Drop the very first function-entry edge. It's not really necessary 2093 // for top-level functions. 2094 dropFunctionEntryEdge(Construct, Construct.getMutablePieces()); 2095 } 2096 2097 // Remove messages that are basically the same, and edges that may not 2098 // make sense. 2099 // We have to do this after edge optimization in the Extensive mode. 2100 removeRedundantMsgs(Construct.getMutablePieces()); 2101 removeEdgesToDefaultInitializers(Construct.getMutablePieces()); 2102 } 2103 2104 if (Opts.ShouldDisplayMacroExpansions) 2105 CompactMacroExpandedPieces(Construct.getMutablePieces(), SM); 2106 2107 return std::move(Construct.PD); 2108 } 2109 2110 //===----------------------------------------------------------------------===// 2111 // Methods for BugType and subclasses. 2112 //===----------------------------------------------------------------------===// 2113 2114 void BugType::anchor() {} 2115 2116 //===----------------------------------------------------------------------===// 2117 // Methods for BugReport and subclasses. 2118 //===----------------------------------------------------------------------===// 2119 2120 LLVM_ATTRIBUTE_USED static bool 2121 isDependency(const CheckerRegistryData &Registry, StringRef CheckerName) { 2122 for (const std::pair<StringRef, StringRef> &Pair : Registry.Dependencies) { 2123 if (Pair.second == CheckerName) 2124 return true; 2125 } 2126 return false; 2127 } 2128 2129 LLVM_ATTRIBUTE_USED static bool isHidden(const CheckerRegistryData &Registry, 2130 StringRef CheckerName) { 2131 for (const CheckerInfo &Checker : Registry.Checkers) { 2132 if (Checker.FullName == CheckerName) 2133 return Checker.IsHidden; 2134 } 2135 llvm_unreachable( 2136 "Checker name not found in CheckerRegistry -- did you retrieve it " 2137 "correctly from CheckerManager::getCurrentCheckerName?"); 2138 } 2139 2140 PathSensitiveBugReport::PathSensitiveBugReport( 2141 const BugType &bt, StringRef shortDesc, StringRef desc, 2142 const ExplodedNode *errorNode, PathDiagnosticLocation LocationToUnique, 2143 const Decl *DeclToUnique) 2144 : BugReport(Kind::PathSensitive, bt, shortDesc, desc), ErrorNode(errorNode), 2145 ErrorNodeRange(getStmt() ? getStmt()->getSourceRange() : SourceRange()), 2146 UniqueingLocation(LocationToUnique), UniqueingDecl(DeclToUnique) { 2147 assert(!isDependency(ErrorNode->getState() 2148 ->getAnalysisManager() 2149 .getCheckerManager() 2150 ->getCheckerRegistryData(), 2151 bt.getCheckerName()) && 2152 "Some checkers depend on this one! We don't allow dependency " 2153 "checkers to emit warnings, because checkers should depend on " 2154 "*modeling*, not *diagnostics*."); 2155 2156 assert((bt.getCheckerName().starts_with("debug") || 2157 !isHidden(ErrorNode->getState() 2158 ->getAnalysisManager() 2159 .getCheckerManager() 2160 ->getCheckerRegistryData(), 2161 bt.getCheckerName())) && 2162 "Hidden checkers musn't emit diagnostics as they are by definition " 2163 "non-user facing!"); 2164 } 2165 2166 void PathSensitiveBugReport::addVisitor( 2167 std::unique_ptr<BugReporterVisitor> visitor) { 2168 if (!visitor) 2169 return; 2170 2171 llvm::FoldingSetNodeID ID; 2172 visitor->Profile(ID); 2173 2174 void *InsertPos = nullptr; 2175 if (CallbacksSet.FindNodeOrInsertPos(ID, InsertPos)) { 2176 return; 2177 } 2178 2179 Callbacks.push_back(std::move(visitor)); 2180 } 2181 2182 void PathSensitiveBugReport::clearVisitors() { 2183 Callbacks.clear(); 2184 } 2185 2186 const Decl *PathSensitiveBugReport::getDeclWithIssue() const { 2187 const ExplodedNode *N = getErrorNode(); 2188 if (!N) 2189 return nullptr; 2190 2191 const LocationContext *LC = N->getLocationContext(); 2192 return LC->getStackFrame()->getDecl(); 2193 } 2194 2195 void BasicBugReport::Profile(llvm::FoldingSetNodeID& hash) const { 2196 hash.AddInteger(static_cast<int>(getKind())); 2197 hash.AddPointer(&BT); 2198 hash.AddString(Description); 2199 assert(Location.isValid()); 2200 Location.Profile(hash); 2201 2202 for (SourceRange range : Ranges) { 2203 if (!range.isValid()) 2204 continue; 2205 hash.Add(range.getBegin()); 2206 hash.Add(range.getEnd()); 2207 } 2208 } 2209 2210 void PathSensitiveBugReport::Profile(llvm::FoldingSetNodeID &hash) const { 2211 hash.AddInteger(static_cast<int>(getKind())); 2212 hash.AddPointer(&BT); 2213 hash.AddString(Description); 2214 PathDiagnosticLocation UL = getUniqueingLocation(); 2215 if (UL.isValid()) { 2216 UL.Profile(hash); 2217 } else { 2218 // TODO: The statement may be null if the report was emitted before any 2219 // statements were executed. In particular, some checkers by design 2220 // occasionally emit their reports in empty functions (that have no 2221 // statements in their body). Do we profile correctly in this case? 2222 hash.AddPointer(ErrorNode->getCurrentOrPreviousStmtForDiagnostics()); 2223 } 2224 2225 for (SourceRange range : Ranges) { 2226 if (!range.isValid()) 2227 continue; 2228 hash.Add(range.getBegin()); 2229 hash.Add(range.getEnd()); 2230 } 2231 } 2232 2233 template <class T> 2234 static void insertToInterestingnessMap( 2235 llvm::DenseMap<T, bugreporter::TrackingKind> &InterestingnessMap, T Val, 2236 bugreporter::TrackingKind TKind) { 2237 auto Result = InterestingnessMap.insert({Val, TKind}); 2238 2239 if (Result.second) 2240 return; 2241 2242 // Even if this symbol/region was already marked as interesting as a 2243 // condition, if we later mark it as interesting again but with 2244 // thorough tracking, overwrite it. Entities marked with thorough 2245 // interestiness are the most important (or most interesting, if you will), 2246 // and we wouldn't like to downplay their importance. 2247 2248 switch (TKind) { 2249 case bugreporter::TrackingKind::Thorough: 2250 Result.first->getSecond() = bugreporter::TrackingKind::Thorough; 2251 return; 2252 case bugreporter::TrackingKind::Condition: 2253 return; 2254 } 2255 2256 llvm_unreachable( 2257 "BugReport::markInteresting currently can only handle 2 different " 2258 "tracking kinds! Please define what tracking kind should this entitiy" 2259 "have, if it was already marked as interesting with a different kind!"); 2260 } 2261 2262 void PathSensitiveBugReport::markInteresting(SymbolRef sym, 2263 bugreporter::TrackingKind TKind) { 2264 if (!sym) 2265 return; 2266 2267 insertToInterestingnessMap(InterestingSymbols, sym, TKind); 2268 2269 // FIXME: No tests exist for this code and it is questionable: 2270 // How to handle multiple metadata for the same region? 2271 if (const auto *meta = dyn_cast<SymbolMetadata>(sym)) 2272 markInteresting(meta->getRegion(), TKind); 2273 } 2274 2275 void PathSensitiveBugReport::markNotInteresting(SymbolRef sym) { 2276 if (!sym) 2277 return; 2278 InterestingSymbols.erase(sym); 2279 2280 // The metadata part of markInteresting is not reversed here. 2281 // Just making the same region not interesting is incorrect 2282 // in specific cases. 2283 if (const auto *meta = dyn_cast<SymbolMetadata>(sym)) 2284 markNotInteresting(meta->getRegion()); 2285 } 2286 2287 void PathSensitiveBugReport::markInteresting(const MemRegion *R, 2288 bugreporter::TrackingKind TKind) { 2289 if (!R) 2290 return; 2291 2292 R = R->getBaseRegion(); 2293 insertToInterestingnessMap(InterestingRegions, R, TKind); 2294 2295 if (const auto *SR = dyn_cast<SymbolicRegion>(R)) 2296 markInteresting(SR->getSymbol(), TKind); 2297 } 2298 2299 void PathSensitiveBugReport::markNotInteresting(const MemRegion *R) { 2300 if (!R) 2301 return; 2302 2303 R = R->getBaseRegion(); 2304 InterestingRegions.erase(R); 2305 2306 if (const auto *SR = dyn_cast<SymbolicRegion>(R)) 2307 markNotInteresting(SR->getSymbol()); 2308 } 2309 2310 void PathSensitiveBugReport::markInteresting(SVal V, 2311 bugreporter::TrackingKind TKind) { 2312 markInteresting(V.getAsRegion(), TKind); 2313 markInteresting(V.getAsSymbol(), TKind); 2314 } 2315 2316 void PathSensitiveBugReport::markInteresting(const LocationContext *LC) { 2317 if (!LC) 2318 return; 2319 InterestingLocationContexts.insert(LC); 2320 } 2321 2322 std::optional<bugreporter::TrackingKind> 2323 PathSensitiveBugReport::getInterestingnessKind(SVal V) const { 2324 auto RKind = getInterestingnessKind(V.getAsRegion()); 2325 auto SKind = getInterestingnessKind(V.getAsSymbol()); 2326 if (!RKind) 2327 return SKind; 2328 if (!SKind) 2329 return RKind; 2330 2331 // If either is marked with throrough tracking, return that, we wouldn't like 2332 // to downplay a note's importance by 'only' mentioning it as a condition. 2333 switch(*RKind) { 2334 case bugreporter::TrackingKind::Thorough: 2335 return RKind; 2336 case bugreporter::TrackingKind::Condition: 2337 return SKind; 2338 } 2339 2340 llvm_unreachable( 2341 "BugReport::getInterestingnessKind currently can only handle 2 different " 2342 "tracking kinds! Please define what tracking kind should we return here " 2343 "when the kind of getAsRegion() and getAsSymbol() is different!"); 2344 return std::nullopt; 2345 } 2346 2347 std::optional<bugreporter::TrackingKind> 2348 PathSensitiveBugReport::getInterestingnessKind(SymbolRef sym) const { 2349 if (!sym) 2350 return std::nullopt; 2351 // We don't currently consider metadata symbols to be interesting 2352 // even if we know their region is interesting. Is that correct behavior? 2353 auto It = InterestingSymbols.find(sym); 2354 if (It == InterestingSymbols.end()) 2355 return std::nullopt; 2356 return It->getSecond(); 2357 } 2358 2359 std::optional<bugreporter::TrackingKind> 2360 PathSensitiveBugReport::getInterestingnessKind(const MemRegion *R) const { 2361 if (!R) 2362 return std::nullopt; 2363 2364 R = R->getBaseRegion(); 2365 auto It = InterestingRegions.find(R); 2366 if (It != InterestingRegions.end()) 2367 return It->getSecond(); 2368 2369 if (const auto *SR = dyn_cast<SymbolicRegion>(R)) 2370 return getInterestingnessKind(SR->getSymbol()); 2371 return std::nullopt; 2372 } 2373 2374 bool PathSensitiveBugReport::isInteresting(SVal V) const { 2375 return getInterestingnessKind(V).has_value(); 2376 } 2377 2378 bool PathSensitiveBugReport::isInteresting(SymbolRef sym) const { 2379 return getInterestingnessKind(sym).has_value(); 2380 } 2381 2382 bool PathSensitiveBugReport::isInteresting(const MemRegion *R) const { 2383 return getInterestingnessKind(R).has_value(); 2384 } 2385 2386 bool PathSensitiveBugReport::isInteresting(const LocationContext *LC) const { 2387 if (!LC) 2388 return false; 2389 return InterestingLocationContexts.count(LC); 2390 } 2391 2392 const Stmt *PathSensitiveBugReport::getStmt() const { 2393 if (!ErrorNode) 2394 return nullptr; 2395 2396 ProgramPoint ProgP = ErrorNode->getLocation(); 2397 const Stmt *S = nullptr; 2398 2399 if (std::optional<BlockEntrance> BE = ProgP.getAs<BlockEntrance>()) { 2400 CFGBlock &Exit = ProgP.getLocationContext()->getCFG()->getExit(); 2401 if (BE->getBlock() == &Exit) 2402 S = ErrorNode->getPreviousStmtForDiagnostics(); 2403 } 2404 if (!S) 2405 S = ErrorNode->getStmtForDiagnostics(); 2406 2407 return S; 2408 } 2409 2410 ArrayRef<SourceRange> 2411 PathSensitiveBugReport::getRanges() const { 2412 // If no custom ranges, add the range of the statement corresponding to 2413 // the error node. 2414 if (Ranges.empty() && isa_and_nonnull<Expr>(getStmt())) 2415 return ErrorNodeRange; 2416 2417 return Ranges; 2418 } 2419 2420 PathDiagnosticLocation 2421 PathSensitiveBugReport::getLocation() const { 2422 assert(ErrorNode && "Cannot create a location with a null node."); 2423 const Stmt *S = ErrorNode->getStmtForDiagnostics(); 2424 ProgramPoint P = ErrorNode->getLocation(); 2425 const LocationContext *LC = P.getLocationContext(); 2426 SourceManager &SM = 2427 ErrorNode->getState()->getStateManager().getContext().getSourceManager(); 2428 2429 if (!S) { 2430 // If this is an implicit call, return the implicit call point location. 2431 if (std::optional<PreImplicitCall> PIE = P.getAs<PreImplicitCall>()) 2432 return PathDiagnosticLocation(PIE->getLocation(), SM); 2433 if (auto FE = P.getAs<FunctionExitPoint>()) { 2434 if (const ReturnStmt *RS = FE->getStmt()) 2435 return PathDiagnosticLocation::createBegin(RS, SM, LC); 2436 } 2437 S = ErrorNode->getNextStmtForDiagnostics(); 2438 } 2439 2440 if (S) { 2441 // Attributed statements usually have corrupted begin locations, 2442 // it's OK to ignore attributes for our purposes and deal with 2443 // the actual annotated statement. 2444 if (const auto *AS = dyn_cast<AttributedStmt>(S)) 2445 S = AS->getSubStmt(); 2446 2447 // For member expressions, return the location of the '.' or '->'. 2448 if (const auto *ME = dyn_cast<MemberExpr>(S)) 2449 return PathDiagnosticLocation::createMemberLoc(ME, SM); 2450 2451 // For binary operators, return the location of the operator. 2452 if (const auto *B = dyn_cast<BinaryOperator>(S)) 2453 return PathDiagnosticLocation::createOperatorLoc(B, SM); 2454 2455 if (P.getAs<PostStmtPurgeDeadSymbols>()) 2456 return PathDiagnosticLocation::createEnd(S, SM, LC); 2457 2458 if (S->getBeginLoc().isValid()) 2459 return PathDiagnosticLocation(S, SM, LC); 2460 2461 return PathDiagnosticLocation( 2462 PathDiagnosticLocation::getValidSourceLocation(S, LC), SM); 2463 } 2464 2465 return PathDiagnosticLocation::createDeclEnd(ErrorNode->getLocationContext(), 2466 SM); 2467 } 2468 2469 //===----------------------------------------------------------------------===// 2470 // Methods for BugReporter and subclasses. 2471 //===----------------------------------------------------------------------===// 2472 2473 const ExplodedGraph &PathSensitiveBugReporter::getGraph() const { 2474 return Eng.getGraph(); 2475 } 2476 2477 ProgramStateManager &PathSensitiveBugReporter::getStateManager() const { 2478 return Eng.getStateManager(); 2479 } 2480 2481 BugReporter::BugReporter(BugReporterData &D) 2482 : D(D), UserSuppressions(D.getASTContext()) {} 2483 2484 BugReporter::~BugReporter() { 2485 // Make sure reports are flushed. 2486 assert(StrBugTypes.empty() && 2487 "Destroying BugReporter before diagnostics are emitted!"); 2488 2489 // Free the bug reports we are tracking. 2490 for (const auto I : EQClassesVector) 2491 delete I; 2492 } 2493 2494 void BugReporter::FlushReports() { 2495 // We need to flush reports in deterministic order to ensure the order 2496 // of the reports is consistent between runs. 2497 for (const auto EQ : EQClassesVector) 2498 FlushReport(*EQ); 2499 2500 // BugReporter owns and deletes only BugTypes created implicitly through 2501 // EmitBasicReport. 2502 // FIXME: There are leaks from checkers that assume that the BugTypes they 2503 // create will be destroyed by the BugReporter. 2504 StrBugTypes.clear(); 2505 } 2506 2507 //===----------------------------------------------------------------------===// 2508 // PathDiagnostics generation. 2509 //===----------------------------------------------------------------------===// 2510 2511 namespace { 2512 2513 /// A wrapper around an ExplodedGraph that contains a single path from the root 2514 /// to the error node. 2515 class BugPathInfo { 2516 public: 2517 std::unique_ptr<ExplodedGraph> BugPath; 2518 PathSensitiveBugReport *Report; 2519 const ExplodedNode *ErrorNode; 2520 }; 2521 2522 /// A wrapper around an ExplodedGraph whose leafs are all error nodes. Can 2523 /// conveniently retrieve bug paths from a single error node to the root. 2524 class BugPathGetter { 2525 std::unique_ptr<ExplodedGraph> TrimmedGraph; 2526 2527 using PriorityMapTy = llvm::DenseMap<const ExplodedNode *, unsigned>; 2528 2529 /// Assign each node with its distance from the root. 2530 PriorityMapTy PriorityMap; 2531 2532 /// Since the getErrorNode() or BugReport refers to the original ExplodedGraph, 2533 /// we need to pair it to the error node of the constructed trimmed graph. 2534 using ReportNewNodePair = 2535 std::pair<PathSensitiveBugReport *, const ExplodedNode *>; 2536 SmallVector<ReportNewNodePair, 32> ReportNodes; 2537 2538 BugPathInfo CurrentBugPath; 2539 2540 /// A helper class for sorting ExplodedNodes by priority. 2541 template <bool Descending> 2542 class PriorityCompare { 2543 const PriorityMapTy &PriorityMap; 2544 2545 public: 2546 PriorityCompare(const PriorityMapTy &M) : PriorityMap(M) {} 2547 2548 bool operator()(const ExplodedNode *LHS, const ExplodedNode *RHS) const { 2549 PriorityMapTy::const_iterator LI = PriorityMap.find(LHS); 2550 PriorityMapTy::const_iterator RI = PriorityMap.find(RHS); 2551 PriorityMapTy::const_iterator E = PriorityMap.end(); 2552 2553 if (LI == E) 2554 return Descending; 2555 if (RI == E) 2556 return !Descending; 2557 2558 return Descending ? LI->second > RI->second 2559 : LI->second < RI->second; 2560 } 2561 2562 bool operator()(const ReportNewNodePair &LHS, 2563 const ReportNewNodePair &RHS) const { 2564 return (*this)(LHS.second, RHS.second); 2565 } 2566 }; 2567 2568 public: 2569 BugPathGetter(const ExplodedGraph *OriginalGraph, 2570 ArrayRef<PathSensitiveBugReport *> &bugReports); 2571 2572 BugPathInfo *getNextBugPath(); 2573 }; 2574 2575 } // namespace 2576 2577 BugPathGetter::BugPathGetter(const ExplodedGraph *OriginalGraph, 2578 ArrayRef<PathSensitiveBugReport *> &bugReports) { 2579 SmallVector<const ExplodedNode *, 32> Nodes; 2580 for (const auto I : bugReports) { 2581 assert(I->isValid() && 2582 "We only allow BugReporterVisitors and BugReporter itself to " 2583 "invalidate reports!"); 2584 Nodes.emplace_back(I->getErrorNode()); 2585 } 2586 2587 // The trimmed graph is created in the body of the constructor to ensure 2588 // that the DenseMaps have been initialized already. 2589 InterExplodedGraphMap ForwardMap; 2590 TrimmedGraph = OriginalGraph->trim(Nodes, &ForwardMap); 2591 2592 // Find the (first) error node in the trimmed graph. We just need to consult 2593 // the node map which maps from nodes in the original graph to nodes 2594 // in the new graph. 2595 llvm::SmallPtrSet<const ExplodedNode *, 32> RemainingNodes; 2596 2597 for (PathSensitiveBugReport *Report : bugReports) { 2598 const ExplodedNode *NewNode = ForwardMap.lookup(Report->getErrorNode()); 2599 assert(NewNode && 2600 "Failed to construct a trimmed graph that contains this error " 2601 "node!"); 2602 ReportNodes.emplace_back(Report, NewNode); 2603 RemainingNodes.insert(NewNode); 2604 } 2605 2606 assert(!RemainingNodes.empty() && "No error node found in the trimmed graph"); 2607 2608 // Perform a forward BFS to find all the shortest paths. 2609 std::queue<const ExplodedNode *> WS; 2610 2611 assert(TrimmedGraph->num_roots() == 1); 2612 WS.push(*TrimmedGraph->roots_begin()); 2613 unsigned Priority = 0; 2614 2615 while (!WS.empty()) { 2616 const ExplodedNode *Node = WS.front(); 2617 WS.pop(); 2618 2619 PriorityMapTy::iterator PriorityEntry; 2620 bool IsNew; 2621 std::tie(PriorityEntry, IsNew) = PriorityMap.insert({Node, Priority}); 2622 ++Priority; 2623 2624 if (!IsNew) { 2625 assert(PriorityEntry->second <= Priority); 2626 continue; 2627 } 2628 2629 if (RemainingNodes.erase(Node)) 2630 if (RemainingNodes.empty()) 2631 break; 2632 2633 for (const ExplodedNode *Succ : Node->succs()) 2634 WS.push(Succ); 2635 } 2636 2637 // Sort the error paths from longest to shortest. 2638 llvm::sort(ReportNodes, PriorityCompare<true>(PriorityMap)); 2639 } 2640 2641 BugPathInfo *BugPathGetter::getNextBugPath() { 2642 if (ReportNodes.empty()) 2643 return nullptr; 2644 2645 const ExplodedNode *OrigN; 2646 std::tie(CurrentBugPath.Report, OrigN) = ReportNodes.pop_back_val(); 2647 assert(PriorityMap.contains(OrigN) && "error node not accessible from root"); 2648 2649 // Create a new graph with a single path. This is the graph that will be 2650 // returned to the caller. 2651 auto GNew = std::make_unique<ExplodedGraph>(); 2652 2653 // Now walk from the error node up the BFS path, always taking the 2654 // predeccessor with the lowest number. 2655 ExplodedNode *Succ = nullptr; 2656 while (true) { 2657 // Create the equivalent node in the new graph with the same state 2658 // and location. 2659 ExplodedNode *NewN = GNew->createUncachedNode( 2660 OrigN->getLocation(), OrigN->getState(), 2661 OrigN->getID(), OrigN->isSink()); 2662 2663 // Link up the new node with the previous node. 2664 if (Succ) 2665 Succ->addPredecessor(NewN, *GNew); 2666 else 2667 CurrentBugPath.ErrorNode = NewN; 2668 2669 Succ = NewN; 2670 2671 // Are we at the final node? 2672 if (OrigN->pred_empty()) { 2673 GNew->addRoot(NewN); 2674 break; 2675 } 2676 2677 // Find the next predeccessor node. We choose the node that is marked 2678 // with the lowest BFS number. 2679 OrigN = *std::min_element(OrigN->pred_begin(), OrigN->pred_end(), 2680 PriorityCompare<false>(PriorityMap)); 2681 } 2682 2683 CurrentBugPath.BugPath = std::move(GNew); 2684 2685 return &CurrentBugPath; 2686 } 2687 2688 /// CompactMacroExpandedPieces - This function postprocesses a PathDiagnostic 2689 /// object and collapses PathDiagosticPieces that are expanded by macros. 2690 static void CompactMacroExpandedPieces(PathPieces &path, 2691 const SourceManager& SM) { 2692 using MacroStackTy = std::vector< 2693 std::pair<std::shared_ptr<PathDiagnosticMacroPiece>, SourceLocation>>; 2694 2695 using PiecesTy = std::vector<PathDiagnosticPieceRef>; 2696 2697 MacroStackTy MacroStack; 2698 PiecesTy Pieces; 2699 2700 for (PathPieces::const_iterator I = path.begin(), E = path.end(); 2701 I != E; ++I) { 2702 const auto &piece = *I; 2703 2704 // Recursively compact calls. 2705 if (auto *call = dyn_cast<PathDiagnosticCallPiece>(&*piece)) { 2706 CompactMacroExpandedPieces(call->path, SM); 2707 } 2708 2709 // Get the location of the PathDiagnosticPiece. 2710 const FullSourceLoc Loc = piece->getLocation().asLocation(); 2711 2712 // Determine the instantiation location, which is the location we group 2713 // related PathDiagnosticPieces. 2714 SourceLocation InstantiationLoc = Loc.isMacroID() ? 2715 SM.getExpansionLoc(Loc) : 2716 SourceLocation(); 2717 2718 if (Loc.isFileID()) { 2719 MacroStack.clear(); 2720 Pieces.push_back(piece); 2721 continue; 2722 } 2723 2724 assert(Loc.isMacroID()); 2725 2726 // Is the PathDiagnosticPiece within the same macro group? 2727 if (!MacroStack.empty() && InstantiationLoc == MacroStack.back().second) { 2728 MacroStack.back().first->subPieces.push_back(piece); 2729 continue; 2730 } 2731 2732 // We aren't in the same group. Are we descending into a new macro 2733 // or are part of an old one? 2734 std::shared_ptr<PathDiagnosticMacroPiece> MacroGroup; 2735 2736 SourceLocation ParentInstantiationLoc = InstantiationLoc.isMacroID() ? 2737 SM.getExpansionLoc(Loc) : 2738 SourceLocation(); 2739 2740 // Walk the entire macro stack. 2741 while (!MacroStack.empty()) { 2742 if (InstantiationLoc == MacroStack.back().second) { 2743 MacroGroup = MacroStack.back().first; 2744 break; 2745 } 2746 2747 if (ParentInstantiationLoc == MacroStack.back().second) { 2748 MacroGroup = MacroStack.back().first; 2749 break; 2750 } 2751 2752 MacroStack.pop_back(); 2753 } 2754 2755 if (!MacroGroup || ParentInstantiationLoc == MacroStack.back().second) { 2756 // Create a new macro group and add it to the stack. 2757 auto NewGroup = std::make_shared<PathDiagnosticMacroPiece>( 2758 PathDiagnosticLocation::createSingleLocation(piece->getLocation())); 2759 2760 if (MacroGroup) 2761 MacroGroup->subPieces.push_back(NewGroup); 2762 else { 2763 assert(InstantiationLoc.isFileID()); 2764 Pieces.push_back(NewGroup); 2765 } 2766 2767 MacroGroup = NewGroup; 2768 MacroStack.push_back(std::make_pair(MacroGroup, InstantiationLoc)); 2769 } 2770 2771 // Finally, add the PathDiagnosticPiece to the group. 2772 MacroGroup->subPieces.push_back(piece); 2773 } 2774 2775 // Now take the pieces and construct a new PathDiagnostic. 2776 path.clear(); 2777 2778 path.insert(path.end(), Pieces.begin(), Pieces.end()); 2779 } 2780 2781 /// Generate notes from all visitors. 2782 /// Notes associated with @c ErrorNode are generated using 2783 /// @c getEndPath, and the rest are generated with @c VisitNode. 2784 static std::unique_ptr<VisitorsDiagnosticsTy> 2785 generateVisitorsDiagnostics(PathSensitiveBugReport *R, 2786 const ExplodedNode *ErrorNode, 2787 BugReporterContext &BRC) { 2788 std::unique_ptr<VisitorsDiagnosticsTy> Notes = 2789 std::make_unique<VisitorsDiagnosticsTy>(); 2790 PathSensitiveBugReport::VisitorList visitors; 2791 2792 // Run visitors on all nodes starting from the node *before* the last one. 2793 // The last node is reserved for notes generated with @c getEndPath. 2794 const ExplodedNode *NextNode = ErrorNode->getFirstPred(); 2795 while (NextNode) { 2796 2797 // At each iteration, move all visitors from report to visitor list. This is 2798 // important, because the Profile() functions of the visitors make sure that 2799 // a visitor isn't added multiple times for the same node, but it's fine 2800 // to add the a visitor with Profile() for different nodes (e.g. tracking 2801 // a region at different points of the symbolic execution). 2802 for (std::unique_ptr<BugReporterVisitor> &Visitor : R->visitors()) 2803 visitors.push_back(std::move(Visitor)); 2804 2805 R->clearVisitors(); 2806 2807 const ExplodedNode *Pred = NextNode->getFirstPred(); 2808 if (!Pred) { 2809 PathDiagnosticPieceRef LastPiece; 2810 for (auto &V : visitors) { 2811 V->finalizeVisitor(BRC, ErrorNode, *R); 2812 2813 if (auto Piece = V->getEndPath(BRC, ErrorNode, *R)) { 2814 assert(!LastPiece && 2815 "There can only be one final piece in a diagnostic."); 2816 assert(Piece->getKind() == PathDiagnosticPiece::Kind::Event && 2817 "The final piece must contain a message!"); 2818 LastPiece = std::move(Piece); 2819 (*Notes)[ErrorNode].push_back(LastPiece); 2820 } 2821 } 2822 break; 2823 } 2824 2825 for (auto &V : visitors) { 2826 auto P = V->VisitNode(NextNode, BRC, *R); 2827 if (P) 2828 (*Notes)[NextNode].push_back(std::move(P)); 2829 } 2830 2831 if (!R->isValid()) 2832 break; 2833 2834 NextNode = Pred; 2835 } 2836 2837 return Notes; 2838 } 2839 2840 std::optional<PathDiagnosticBuilder> PathDiagnosticBuilder::findValidReport( 2841 ArrayRef<PathSensitiveBugReport *> &bugReports, 2842 PathSensitiveBugReporter &Reporter) { 2843 2844 BugPathGetter BugGraph(&Reporter.getGraph(), bugReports); 2845 2846 while (BugPathInfo *BugPath = BugGraph.getNextBugPath()) { 2847 // Find the BugReport with the original location. 2848 PathSensitiveBugReport *R = BugPath->Report; 2849 assert(R && "No original report found for sliced graph."); 2850 assert(R->isValid() && "Report selected by trimmed graph marked invalid."); 2851 const ExplodedNode *ErrorNode = BugPath->ErrorNode; 2852 2853 // Register refutation visitors first, if they mark the bug invalid no 2854 // further analysis is required 2855 R->addVisitor<LikelyFalsePositiveSuppressionBRVisitor>(); 2856 2857 // Register additional node visitors. 2858 R->addVisitor<NilReceiverBRVisitor>(); 2859 R->addVisitor<ConditionBRVisitor>(); 2860 R->addVisitor<TagVisitor>(); 2861 2862 BugReporterContext BRC(Reporter); 2863 2864 // Run all visitors on a given graph, once. 2865 std::unique_ptr<VisitorsDiagnosticsTy> visitorNotes = 2866 generateVisitorsDiagnostics(R, ErrorNode, BRC); 2867 2868 if (R->isValid()) { 2869 if (Reporter.getAnalyzerOptions().ShouldCrosscheckWithZ3) { 2870 // If crosscheck is enabled, remove all visitors, add the refutation 2871 // visitor and check again 2872 R->clearVisitors(); 2873 Z3CrosscheckVisitor::Z3Result CrosscheckResult; 2874 R->addVisitor<Z3CrosscheckVisitor>(CrosscheckResult); 2875 2876 // We don't overwrite the notes inserted by other visitors because the 2877 // refutation manager does not add any new note to the path 2878 generateVisitorsDiagnostics(R, BugPath->ErrorNode, BRC); 2879 switch (Z3CrosscheckOracle::interpretQueryResult(CrosscheckResult)) { 2880 case Z3CrosscheckOracle::RejectReport: 2881 ++NumTimesReportRefuted; 2882 R->markInvalid("Infeasible constraints", /*Data=*/nullptr); 2883 continue; 2884 case Z3CrosscheckOracle::AcceptReport: 2885 ++NumTimesReportPassesZ3; 2886 break; 2887 } 2888 } 2889 2890 assert(R->isValid()); 2891 return PathDiagnosticBuilder(std::move(BRC), std::move(BugPath->BugPath), 2892 BugPath->Report, BugPath->ErrorNode, 2893 std::move(visitorNotes)); 2894 } 2895 } 2896 2897 ++NumTimesReportEQClassWasExhausted; 2898 return {}; 2899 } 2900 2901 std::unique_ptr<DiagnosticForConsumerMapTy> 2902 PathSensitiveBugReporter::generatePathDiagnostics( 2903 ArrayRef<PathDiagnosticConsumer *> consumers, 2904 ArrayRef<PathSensitiveBugReport *> &bugReports) { 2905 assert(!bugReports.empty()); 2906 2907 auto Out = std::make_unique<DiagnosticForConsumerMapTy>(); 2908 2909 std::optional<PathDiagnosticBuilder> PDB = 2910 PathDiagnosticBuilder::findValidReport(bugReports, *this); 2911 2912 if (PDB) { 2913 for (PathDiagnosticConsumer *PC : consumers) { 2914 if (std::unique_ptr<PathDiagnostic> PD = PDB->generate(PC)) { 2915 (*Out)[PC] = std::move(PD); 2916 } 2917 } 2918 } 2919 2920 return Out; 2921 } 2922 2923 void BugReporter::emitReport(std::unique_ptr<BugReport> R) { 2924 bool ValidSourceLoc = R->getLocation().isValid(); 2925 assert(ValidSourceLoc); 2926 // If we mess up in a release build, we'd still prefer to just drop the bug 2927 // instead of trying to go on. 2928 if (!ValidSourceLoc) 2929 return; 2930 2931 // If the user asked to suppress this report, we should skip it. 2932 if (UserSuppressions.isSuppressed(*R)) 2933 return; 2934 2935 // Compute the bug report's hash to determine its equivalence class. 2936 llvm::FoldingSetNodeID ID; 2937 R->Profile(ID); 2938 2939 // Lookup the equivance class. If there isn't one, create it. 2940 void *InsertPos; 2941 BugReportEquivClass* EQ = EQClasses.FindNodeOrInsertPos(ID, InsertPos); 2942 2943 if (!EQ) { 2944 EQ = new BugReportEquivClass(std::move(R)); 2945 EQClasses.InsertNode(EQ, InsertPos); 2946 EQClassesVector.push_back(EQ); 2947 } else 2948 EQ->AddReport(std::move(R)); 2949 } 2950 2951 void PathSensitiveBugReporter::emitReport(std::unique_ptr<BugReport> R) { 2952 if (auto PR = dyn_cast<PathSensitiveBugReport>(R.get())) 2953 if (const ExplodedNode *E = PR->getErrorNode()) { 2954 // An error node must either be a sink or have a tag, otherwise 2955 // it could get reclaimed before the path diagnostic is created. 2956 assert((E->isSink() || E->getLocation().getTag()) && 2957 "Error node must either be a sink or have a tag"); 2958 2959 const AnalysisDeclContext *DeclCtx = 2960 E->getLocationContext()->getAnalysisDeclContext(); 2961 // The source of autosynthesized body can be handcrafted AST or a model 2962 // file. The locations from handcrafted ASTs have no valid source 2963 // locations and have to be discarded. Locations from model files should 2964 // be preserved for processing and reporting. 2965 if (DeclCtx->isBodyAutosynthesized() && 2966 !DeclCtx->isBodyAutosynthesizedFromModelFile()) 2967 return; 2968 } 2969 2970 BugReporter::emitReport(std::move(R)); 2971 } 2972 2973 //===----------------------------------------------------------------------===// 2974 // Emitting reports in equivalence classes. 2975 //===----------------------------------------------------------------------===// 2976 2977 namespace { 2978 2979 struct FRIEC_WLItem { 2980 const ExplodedNode *N; 2981 ExplodedNode::const_succ_iterator I, E; 2982 2983 FRIEC_WLItem(const ExplodedNode *n) 2984 : N(n), I(N->succ_begin()), E(N->succ_end()) {} 2985 }; 2986 2987 } // namespace 2988 2989 BugReport *PathSensitiveBugReporter::findReportInEquivalenceClass( 2990 BugReportEquivClass &EQ, SmallVectorImpl<BugReport *> &bugReports) { 2991 // If we don't need to suppress any of the nodes because they are 2992 // post-dominated by a sink, simply add all the nodes in the equivalence class 2993 // to 'Nodes'. Any of the reports will serve as a "representative" report. 2994 assert(EQ.getReports().size() > 0); 2995 const BugType& BT = EQ.getReports()[0]->getBugType(); 2996 if (!BT.isSuppressOnSink()) { 2997 BugReport *R = EQ.getReports()[0].get(); 2998 for (auto &J : EQ.getReports()) { 2999 if (auto *PR = dyn_cast<PathSensitiveBugReport>(J.get())) { 3000 R = PR; 3001 bugReports.push_back(PR); 3002 } 3003 } 3004 return R; 3005 } 3006 3007 // For bug reports that should be suppressed when all paths are post-dominated 3008 // by a sink node, iterate through the reports in the equivalence class 3009 // until we find one that isn't post-dominated (if one exists). We use a 3010 // DFS traversal of the ExplodedGraph to find a non-sink node. We could write 3011 // this as a recursive function, but we don't want to risk blowing out the 3012 // stack for very long paths. 3013 BugReport *exampleReport = nullptr; 3014 3015 for (const auto &I: EQ.getReports()) { 3016 auto *R = dyn_cast<PathSensitiveBugReport>(I.get()); 3017 if (!R) 3018 continue; 3019 3020 const ExplodedNode *errorNode = R->getErrorNode(); 3021 if (errorNode->isSink()) { 3022 llvm_unreachable( 3023 "BugType::isSuppressSink() should not be 'true' for sink end nodes"); 3024 } 3025 // No successors? By definition this nodes isn't post-dominated by a sink. 3026 if (errorNode->succ_empty()) { 3027 bugReports.push_back(R); 3028 if (!exampleReport) 3029 exampleReport = R; 3030 continue; 3031 } 3032 3033 // See if we are in a no-return CFG block. If so, treat this similarly 3034 // to being post-dominated by a sink. This works better when the analysis 3035 // is incomplete and we have never reached the no-return function call(s) 3036 // that we'd inevitably bump into on this path. 3037 if (const CFGBlock *ErrorB = errorNode->getCFGBlock()) 3038 if (ErrorB->isInevitablySinking()) 3039 continue; 3040 3041 // At this point we know that 'N' is not a sink and it has at least one 3042 // successor. Use a DFS worklist to find a non-sink end-of-path node. 3043 using WLItem = FRIEC_WLItem; 3044 using DFSWorkList = SmallVector<WLItem, 10>; 3045 3046 llvm::DenseMap<const ExplodedNode *, unsigned> Visited; 3047 3048 DFSWorkList WL; 3049 WL.push_back(errorNode); 3050 Visited[errorNode] = 1; 3051 3052 while (!WL.empty()) { 3053 WLItem &WI = WL.back(); 3054 assert(!WI.N->succ_empty()); 3055 3056 for (; WI.I != WI.E; ++WI.I) { 3057 const ExplodedNode *Succ = *WI.I; 3058 // End-of-path node? 3059 if (Succ->succ_empty()) { 3060 // If we found an end-of-path node that is not a sink. 3061 if (!Succ->isSink()) { 3062 bugReports.push_back(R); 3063 if (!exampleReport) 3064 exampleReport = R; 3065 WL.clear(); 3066 break; 3067 } 3068 // Found a sink? Continue on to the next successor. 3069 continue; 3070 } 3071 // Mark the successor as visited. If it hasn't been explored, 3072 // enqueue it to the DFS worklist. 3073 unsigned &mark = Visited[Succ]; 3074 if (!mark) { 3075 mark = 1; 3076 WL.push_back(Succ); 3077 break; 3078 } 3079 } 3080 3081 // The worklist may have been cleared at this point. First 3082 // check if it is empty before checking the last item. 3083 if (!WL.empty() && &WL.back() == &WI) 3084 WL.pop_back(); 3085 } 3086 } 3087 3088 // ExampleReport will be NULL if all the nodes in the equivalence class 3089 // were post-dominated by sinks. 3090 return exampleReport; 3091 } 3092 3093 void BugReporter::FlushReport(BugReportEquivClass& EQ) { 3094 SmallVector<BugReport*, 10> bugReports; 3095 BugReport *report = findReportInEquivalenceClass(EQ, bugReports); 3096 if (!report) 3097 return; 3098 3099 // See whether we need to silence the checker/package. 3100 for (const std::string &CheckerOrPackage : 3101 getAnalyzerOptions().SilencedCheckersAndPackages) { 3102 if (report->getBugType().getCheckerName().starts_with(CheckerOrPackage)) 3103 return; 3104 } 3105 3106 ArrayRef<PathDiagnosticConsumer*> Consumers = getPathDiagnosticConsumers(); 3107 std::unique_ptr<DiagnosticForConsumerMapTy> Diagnostics = 3108 generateDiagnosticForConsumerMap(report, Consumers, bugReports); 3109 3110 for (auto &P : *Diagnostics) { 3111 PathDiagnosticConsumer *Consumer = P.first; 3112 std::unique_ptr<PathDiagnostic> &PD = P.second; 3113 3114 // If the path is empty, generate a single step path with the location 3115 // of the issue. 3116 if (PD->path.empty()) { 3117 PathDiagnosticLocation L = report->getLocation(); 3118 auto piece = std::make_unique<PathDiagnosticEventPiece>( 3119 L, report->getDescription()); 3120 for (SourceRange Range : report->getRanges()) 3121 piece->addRange(Range); 3122 PD->setEndOfPath(std::move(piece)); 3123 } 3124 3125 PathPieces &Pieces = PD->getMutablePieces(); 3126 if (getAnalyzerOptions().ShouldDisplayNotesAsEvents) { 3127 // For path diagnostic consumers that don't support extra notes, 3128 // we may optionally convert those to path notes. 3129 for (const auto &I : llvm::reverse(report->getNotes())) { 3130 PathDiagnosticNotePiece *Piece = I.get(); 3131 auto ConvertedPiece = std::make_shared<PathDiagnosticEventPiece>( 3132 Piece->getLocation(), Piece->getString()); 3133 for (const auto &R: Piece->getRanges()) 3134 ConvertedPiece->addRange(R); 3135 3136 Pieces.push_front(std::move(ConvertedPiece)); 3137 } 3138 } else { 3139 for (const auto &I : llvm::reverse(report->getNotes())) 3140 Pieces.push_front(I); 3141 } 3142 3143 for (const auto &I : report->getFixits()) 3144 Pieces.back()->addFixit(I); 3145 3146 updateExecutedLinesWithDiagnosticPieces(*PD); 3147 3148 // If we are debugging, let's have the entry point as the first note. 3149 if (getAnalyzerOptions().AnalyzerDisplayProgress || 3150 getAnalyzerOptions().AnalyzerNoteAnalysisEntryPoints) { 3151 const Decl *EntryPoint = getAnalysisEntryPoint(); 3152 Pieces.push_front(std::make_shared<PathDiagnosticEventPiece>( 3153 PathDiagnosticLocation{EntryPoint->getLocation(), getSourceManager()}, 3154 "[debug] analyzing from " + 3155 AnalysisDeclContext::getFunctionName(EntryPoint))); 3156 } 3157 Consumer->HandlePathDiagnostic(std::move(PD)); 3158 } 3159 } 3160 3161 /// Insert all lines participating in the function signature \p Signature 3162 /// into \p ExecutedLines. 3163 static void populateExecutedLinesWithFunctionSignature( 3164 const Decl *Signature, const SourceManager &SM, 3165 FilesToLineNumsMap &ExecutedLines) { 3166 SourceRange SignatureSourceRange; 3167 const Stmt* Body = Signature->getBody(); 3168 if (const auto FD = dyn_cast<FunctionDecl>(Signature)) { 3169 SignatureSourceRange = FD->getSourceRange(); 3170 } else if (const auto OD = dyn_cast<ObjCMethodDecl>(Signature)) { 3171 SignatureSourceRange = OD->getSourceRange(); 3172 } else { 3173 return; 3174 } 3175 SourceLocation Start = SignatureSourceRange.getBegin(); 3176 SourceLocation End = Body ? Body->getSourceRange().getBegin() 3177 : SignatureSourceRange.getEnd(); 3178 if (!Start.isValid() || !End.isValid()) 3179 return; 3180 unsigned StartLine = SM.getExpansionLineNumber(Start); 3181 unsigned EndLine = SM.getExpansionLineNumber(End); 3182 3183 FileID FID = SM.getFileID(SM.getExpansionLoc(Start)); 3184 for (unsigned Line = StartLine; Line <= EndLine; Line++) 3185 ExecutedLines[FID].insert(Line); 3186 } 3187 3188 static void populateExecutedLinesWithStmt( 3189 const Stmt *S, const SourceManager &SM, 3190 FilesToLineNumsMap &ExecutedLines) { 3191 SourceLocation Loc = S->getSourceRange().getBegin(); 3192 if (!Loc.isValid()) 3193 return; 3194 SourceLocation ExpansionLoc = SM.getExpansionLoc(Loc); 3195 FileID FID = SM.getFileID(ExpansionLoc); 3196 unsigned LineNo = SM.getExpansionLineNumber(ExpansionLoc); 3197 ExecutedLines[FID].insert(LineNo); 3198 } 3199 3200 /// \return all executed lines including function signatures on the path 3201 /// starting from \p N. 3202 static std::unique_ptr<FilesToLineNumsMap> 3203 findExecutedLines(const SourceManager &SM, const ExplodedNode *N) { 3204 auto ExecutedLines = std::make_unique<FilesToLineNumsMap>(); 3205 3206 while (N) { 3207 if (N->getFirstPred() == nullptr) { 3208 // First node: show signature of the entrance point. 3209 const Decl *D = N->getLocationContext()->getDecl(); 3210 populateExecutedLinesWithFunctionSignature(D, SM, *ExecutedLines); 3211 } else if (auto CE = N->getLocationAs<CallEnter>()) { 3212 // Inlined function: show signature. 3213 const Decl* D = CE->getCalleeContext()->getDecl(); 3214 populateExecutedLinesWithFunctionSignature(D, SM, *ExecutedLines); 3215 } else if (const Stmt *S = N->getStmtForDiagnostics()) { 3216 populateExecutedLinesWithStmt(S, SM, *ExecutedLines); 3217 3218 // Show extra context for some parent kinds. 3219 const Stmt *P = N->getParentMap().getParent(S); 3220 3221 // The path exploration can die before the node with the associated 3222 // return statement is generated, but we do want to show the whole 3223 // return. 3224 if (const auto *RS = dyn_cast_or_null<ReturnStmt>(P)) { 3225 populateExecutedLinesWithStmt(RS, SM, *ExecutedLines); 3226 P = N->getParentMap().getParent(RS); 3227 } 3228 3229 if (isa_and_nonnull<SwitchCase, LabelStmt>(P)) 3230 populateExecutedLinesWithStmt(P, SM, *ExecutedLines); 3231 } 3232 3233 N = N->getFirstPred(); 3234 } 3235 return ExecutedLines; 3236 } 3237 3238 std::unique_ptr<DiagnosticForConsumerMapTy> 3239 BugReporter::generateDiagnosticForConsumerMap( 3240 BugReport *exampleReport, ArrayRef<PathDiagnosticConsumer *> consumers, 3241 ArrayRef<BugReport *> bugReports) { 3242 auto *basicReport = cast<BasicBugReport>(exampleReport); 3243 auto Out = std::make_unique<DiagnosticForConsumerMapTy>(); 3244 for (auto *Consumer : consumers) 3245 (*Out)[Consumer] = 3246 generateDiagnosticForBasicReport(basicReport, AnalysisEntryPoint); 3247 return Out; 3248 } 3249 3250 static PathDiagnosticCallPiece * 3251 getFirstStackedCallToHeaderFile(PathDiagnosticCallPiece *CP, 3252 const SourceManager &SMgr) { 3253 SourceLocation CallLoc = CP->callEnter.asLocation(); 3254 3255 // If the call is within a macro, don't do anything (for now). 3256 if (CallLoc.isMacroID()) 3257 return nullptr; 3258 3259 assert(AnalysisManager::isInCodeFile(CallLoc, SMgr) && 3260 "The call piece should not be in a header file."); 3261 3262 // Check if CP represents a path through a function outside of the main file. 3263 if (!AnalysisManager::isInCodeFile(CP->callEnterWithin.asLocation(), SMgr)) 3264 return CP; 3265 3266 const PathPieces &Path = CP->path; 3267 if (Path.empty()) 3268 return nullptr; 3269 3270 // Check if the last piece in the callee path is a call to a function outside 3271 // of the main file. 3272 if (auto *CPInner = dyn_cast<PathDiagnosticCallPiece>(Path.back().get())) 3273 return getFirstStackedCallToHeaderFile(CPInner, SMgr); 3274 3275 // Otherwise, the last piece is in the main file. 3276 return nullptr; 3277 } 3278 3279 static void resetDiagnosticLocationToMainFile(PathDiagnostic &PD) { 3280 if (PD.path.empty()) 3281 return; 3282 3283 PathDiagnosticPiece *LastP = PD.path.back().get(); 3284 assert(LastP); 3285 const SourceManager &SMgr = LastP->getLocation().getManager(); 3286 3287 // We only need to check if the report ends inside headers, if the last piece 3288 // is a call piece. 3289 if (auto *CP = dyn_cast<PathDiagnosticCallPiece>(LastP)) { 3290 CP = getFirstStackedCallToHeaderFile(CP, SMgr); 3291 if (CP) { 3292 // Mark the piece. 3293 CP->setAsLastInMainSourceFile(); 3294 3295 // Update the path diagnostic message. 3296 const auto *ND = dyn_cast<NamedDecl>(CP->getCallee()); 3297 if (ND) { 3298 SmallString<200> buf; 3299 llvm::raw_svector_ostream os(buf); 3300 os << " (within a call to '" << ND->getDeclName() << "')"; 3301 PD.appendToDesc(os.str()); 3302 } 3303 3304 // Reset the report containing declaration and location. 3305 PD.setDeclWithIssue(CP->getCaller()); 3306 PD.setLocation(CP->getLocation()); 3307 3308 return; 3309 } 3310 } 3311 } 3312 3313 3314 3315 std::unique_ptr<DiagnosticForConsumerMapTy> 3316 PathSensitiveBugReporter::generateDiagnosticForConsumerMap( 3317 BugReport *exampleReport, ArrayRef<PathDiagnosticConsumer *> consumers, 3318 ArrayRef<BugReport *> bugReports) { 3319 std::vector<BasicBugReport *> BasicBugReports; 3320 std::vector<PathSensitiveBugReport *> PathSensitiveBugReports; 3321 if (isa<BasicBugReport>(exampleReport)) 3322 return BugReporter::generateDiagnosticForConsumerMap(exampleReport, 3323 consumers, bugReports); 3324 3325 // Generate the full path sensitive diagnostic, using the generation scheme 3326 // specified by the PathDiagnosticConsumer. Note that we have to generate 3327 // path diagnostics even for consumers which do not support paths, because 3328 // the BugReporterVisitors may mark this bug as a false positive. 3329 assert(!bugReports.empty()); 3330 MaxBugClassSize.updateMax(bugReports.size()); 3331 3332 // Avoid copying the whole array because there may be a lot of reports. 3333 ArrayRef<PathSensitiveBugReport *> convertedArrayOfReports( 3334 reinterpret_cast<PathSensitiveBugReport *const *>(&*bugReports.begin()), 3335 reinterpret_cast<PathSensitiveBugReport *const *>(&*bugReports.end())); 3336 std::unique_ptr<DiagnosticForConsumerMapTy> Out = generatePathDiagnostics( 3337 consumers, convertedArrayOfReports); 3338 3339 if (Out->empty()) 3340 return Out; 3341 3342 MaxValidBugClassSize.updateMax(bugReports.size()); 3343 3344 // Examine the report and see if the last piece is in a header. Reset the 3345 // report location to the last piece in the main source file. 3346 const AnalyzerOptions &Opts = getAnalyzerOptions(); 3347 for (auto const &P : *Out) 3348 if (Opts.ShouldReportIssuesInMainSourceFile && !Opts.AnalyzeAll) 3349 resetDiagnosticLocationToMainFile(*P.second); 3350 3351 return Out; 3352 } 3353 3354 void BugReporter::EmitBasicReport(const Decl *DeclWithIssue, 3355 const CheckerBase *Checker, StringRef Name, 3356 StringRef Category, StringRef Str, 3357 PathDiagnosticLocation Loc, 3358 ArrayRef<SourceRange> Ranges, 3359 ArrayRef<FixItHint> Fixits) { 3360 EmitBasicReport(DeclWithIssue, Checker->getCheckerName(), Name, Category, Str, 3361 Loc, Ranges, Fixits); 3362 } 3363 3364 void BugReporter::EmitBasicReport(const Decl *DeclWithIssue, 3365 CheckerNameRef CheckName, 3366 StringRef name, StringRef category, 3367 StringRef str, PathDiagnosticLocation Loc, 3368 ArrayRef<SourceRange> Ranges, 3369 ArrayRef<FixItHint> Fixits) { 3370 // 'BT' is owned by BugReporter. 3371 BugType *BT = getBugTypeForName(CheckName, name, category); 3372 auto R = std::make_unique<BasicBugReport>(*BT, str, Loc); 3373 R->setDeclWithIssue(DeclWithIssue); 3374 for (const auto &SR : Ranges) 3375 R->addRange(SR); 3376 for (const auto &FH : Fixits) 3377 R->addFixItHint(FH); 3378 emitReport(std::move(R)); 3379 } 3380 3381 BugType *BugReporter::getBugTypeForName(CheckerNameRef CheckName, 3382 StringRef name, StringRef category) { 3383 SmallString<136> fullDesc; 3384 llvm::raw_svector_ostream(fullDesc) << CheckName.getName() << ":" << name 3385 << ":" << category; 3386 std::unique_ptr<BugType> &BT = StrBugTypes[fullDesc]; 3387 if (!BT) 3388 BT = std::make_unique<BugType>(CheckName, name, category); 3389 return BT.get(); 3390 } 3391