1 //===- BugReporter.cpp - Generate PathDiagnostics for bugs ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines BugReporter, a utility class for generating 10 // PathDiagnostics. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h" 15 #include "clang/AST/ASTTypeTraits.h" 16 #include "clang/AST/Attr.h" 17 #include "clang/AST/Decl.h" 18 #include "clang/AST/DeclBase.h" 19 #include "clang/AST/DeclObjC.h" 20 #include "clang/AST/Expr.h" 21 #include "clang/AST/ExprCXX.h" 22 #include "clang/AST/ParentMap.h" 23 #include "clang/AST/ParentMapContext.h" 24 #include "clang/AST/Stmt.h" 25 #include "clang/AST/StmtCXX.h" 26 #include "clang/AST/StmtObjC.h" 27 #include "clang/Analysis/AnalysisDeclContext.h" 28 #include "clang/Analysis/CFG.h" 29 #include "clang/Analysis/CFGStmtMap.h" 30 #include "clang/Analysis/PathDiagnostic.h" 31 #include "clang/Analysis/ProgramPoint.h" 32 #include "clang/Basic/LLVM.h" 33 #include "clang/Basic/SourceLocation.h" 34 #include "clang/Basic/SourceManager.h" 35 #include "clang/StaticAnalyzer/Core/AnalyzerOptions.h" 36 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporterVisitors.h" 37 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 38 #include "clang/StaticAnalyzer/Core/BugReporter/Z3CrosscheckVisitor.h" 39 #include "clang/StaticAnalyzer/Core/Checker.h" 40 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 41 #include "clang/StaticAnalyzer/Core/CheckerRegistryData.h" 42 #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h" 43 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" 44 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h" 45 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 46 #include "clang/StaticAnalyzer/Core/PathSensitive/SMTConv.h" 47 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h" 48 #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h" 49 #include "llvm/ADT/ArrayRef.h" 50 #include "llvm/ADT/DenseMap.h" 51 #include "llvm/ADT/DenseSet.h" 52 #include "llvm/ADT/FoldingSet.h" 53 #include "llvm/ADT/STLExtras.h" 54 #include "llvm/ADT/SmallPtrSet.h" 55 #include "llvm/ADT/SmallString.h" 56 #include "llvm/ADT/SmallVector.h" 57 #include "llvm/ADT/Statistic.h" 58 #include "llvm/ADT/StringExtras.h" 59 #include "llvm/ADT/StringRef.h" 60 #include "llvm/ADT/iterator_range.h" 61 #include "llvm/Support/Casting.h" 62 #include "llvm/Support/Compiler.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/MemoryBuffer.h" 65 #include "llvm/Support/raw_ostream.h" 66 #include <algorithm> 67 #include <cassert> 68 #include <cstddef> 69 #include <iterator> 70 #include <memory> 71 #include <optional> 72 #include <queue> 73 #include <string> 74 #include <tuple> 75 #include <utility> 76 #include <vector> 77 78 using namespace clang; 79 using namespace ento; 80 using namespace llvm; 81 82 #define DEBUG_TYPE "BugReporter" 83 84 STATISTIC(MaxBugClassSize, 85 "The maximum number of bug reports in the same equivalence class"); 86 STATISTIC(MaxValidBugClassSize, 87 "The maximum number of bug reports in the same equivalence class " 88 "where at least one report is valid (not suppressed)"); 89 90 STATISTIC(NumTimesReportPassesZ3, "Number of reports passed Z3"); 91 STATISTIC(NumTimesReportRefuted, "Number of reports refuted by Z3"); 92 STATISTIC(NumTimesReportEQClassAborted, 93 "Number of times a report equivalence class was aborted by the Z3 " 94 "oracle heuristic"); 95 STATISTIC(NumTimesReportEQClassWasExhausted, 96 "Number of times all reports of an equivalence class was refuted"); 97 98 BugReporterVisitor::~BugReporterVisitor() = default; 99 100 void BugReporterContext::anchor() {} 101 102 //===----------------------------------------------------------------------===// 103 // PathDiagnosticBuilder and its associated routines and helper objects. 104 //===----------------------------------------------------------------------===// 105 106 namespace { 107 108 /// A (CallPiece, node assiciated with its CallEnter) pair. 109 using CallWithEntry = 110 std::pair<PathDiagnosticCallPiece *, const ExplodedNode *>; 111 using CallWithEntryStack = SmallVector<CallWithEntry, 6>; 112 113 /// Map from each node to the diagnostic pieces visitors emit for them. 114 using VisitorsDiagnosticsTy = 115 llvm::DenseMap<const ExplodedNode *, std::vector<PathDiagnosticPieceRef>>; 116 117 /// A map from PathDiagnosticPiece to the LocationContext of the inlined 118 /// function call it represents. 119 using LocationContextMap = 120 llvm::DenseMap<const PathPieces *, const LocationContext *>; 121 122 /// A helper class that contains everything needed to construct a 123 /// PathDiagnostic object. It does no much more then providing convenient 124 /// getters and some well placed asserts for extra security. 125 class PathDiagnosticConstruct { 126 /// The consumer we're constructing the bug report for. 127 const PathDiagnosticConsumer *Consumer; 128 /// Our current position in the bug path, which is owned by 129 /// PathDiagnosticBuilder. 130 const ExplodedNode *CurrentNode; 131 /// A mapping from parts of the bug path (for example, a function call, which 132 /// would span backwards from a CallExit to a CallEnter with the nodes in 133 /// between them) with the location contexts it is associated with. 134 LocationContextMap LCM; 135 const SourceManager &SM; 136 137 public: 138 /// We keep stack of calls to functions as we're ascending the bug path. 139 /// TODO: PathDiagnostic has a stack doing the same thing, shouldn't we use 140 /// that instead? 141 CallWithEntryStack CallStack; 142 /// The bug report we're constructing. For ease of use, this field is kept 143 /// public, though some "shortcut" getters are provided for commonly used 144 /// methods of PathDiagnostic. 145 std::unique_ptr<PathDiagnostic> PD; 146 147 public: 148 PathDiagnosticConstruct(const PathDiagnosticConsumer *PDC, 149 const ExplodedNode *ErrorNode, 150 const PathSensitiveBugReport *R, 151 const Decl *AnalysisEntryPoint); 152 153 /// \returns the location context associated with the current position in the 154 /// bug path. 155 const LocationContext *getCurrLocationContext() const { 156 assert(CurrentNode && "Already reached the root!"); 157 return CurrentNode->getLocationContext(); 158 } 159 160 /// Same as getCurrLocationContext (they should always return the same 161 /// location context), but works after reaching the root of the bug path as 162 /// well. 163 const LocationContext *getLocationContextForActivePath() const { 164 return LCM.find(&PD->getActivePath())->getSecond(); 165 } 166 167 const ExplodedNode *getCurrentNode() const { return CurrentNode; } 168 169 /// Steps the current node to its predecessor. 170 /// \returns whether we reached the root of the bug path. 171 bool ascendToPrevNode() { 172 CurrentNode = CurrentNode->getFirstPred(); 173 return static_cast<bool>(CurrentNode); 174 } 175 176 const ParentMap &getParentMap() const { 177 return getCurrLocationContext()->getParentMap(); 178 } 179 180 const SourceManager &getSourceManager() const { return SM; } 181 182 const Stmt *getParent(const Stmt *S) const { 183 return getParentMap().getParent(S); 184 } 185 186 void updateLocCtxMap(const PathPieces *Path, const LocationContext *LC) { 187 assert(Path && LC); 188 LCM[Path] = LC; 189 } 190 191 const LocationContext *getLocationContextFor(const PathPieces *Path) const { 192 assert(LCM.count(Path) && 193 "Failed to find the context associated with these pieces!"); 194 return LCM.find(Path)->getSecond(); 195 } 196 197 bool isInLocCtxMap(const PathPieces *Path) const { return LCM.count(Path); } 198 199 PathPieces &getActivePath() { return PD->getActivePath(); } 200 PathPieces &getMutablePieces() { return PD->getMutablePieces(); } 201 202 bool shouldAddPathEdges() const { return Consumer->shouldAddPathEdges(); } 203 bool shouldAddControlNotes() const { 204 return Consumer->shouldAddControlNotes(); 205 } 206 bool shouldGenerateDiagnostics() const { 207 return Consumer->shouldGenerateDiagnostics(); 208 } 209 bool supportsLogicalOpControlFlow() const { 210 return Consumer->supportsLogicalOpControlFlow(); 211 } 212 }; 213 214 /// Contains every contextual information needed for constructing a 215 /// PathDiagnostic object for a given bug report. This class and its fields are 216 /// immutable, and passes a BugReportConstruct object around during the 217 /// construction. 218 class PathDiagnosticBuilder : public BugReporterContext { 219 /// A linear path from the error node to the root. 220 std::unique_ptr<const ExplodedGraph> BugPath; 221 /// The bug report we're describing. Visitors create their diagnostics with 222 /// them being the last entities being able to modify it (for example, 223 /// changing interestingness here would cause inconsistencies as to how this 224 /// file and visitors construct diagnostics), hence its const. 225 const PathSensitiveBugReport *R; 226 /// The leaf of the bug path. This isn't the same as the bug reports error 227 /// node, which refers to the *original* graph, not the bug path. 228 const ExplodedNode *const ErrorNode; 229 /// The diagnostic pieces visitors emitted, which is expected to be collected 230 /// by the time this builder is constructed. 231 std::unique_ptr<const VisitorsDiagnosticsTy> VisitorsDiagnostics; 232 233 public: 234 /// Find a non-invalidated report for a given equivalence class, and returns 235 /// a PathDiagnosticBuilder able to construct bug reports for different 236 /// consumers. Returns std::nullopt if no valid report is found. 237 static std::optional<PathDiagnosticBuilder> 238 findValidReport(ArrayRef<PathSensitiveBugReport *> &bugReports, 239 PathSensitiveBugReporter &Reporter); 240 241 PathDiagnosticBuilder( 242 BugReporterContext BRC, std::unique_ptr<ExplodedGraph> BugPath, 243 PathSensitiveBugReport *r, const ExplodedNode *ErrorNode, 244 std::unique_ptr<VisitorsDiagnosticsTy> VisitorsDiagnostics); 245 246 /// This function is responsible for generating diagnostic pieces that are 247 /// *not* provided by bug report visitors. 248 /// These diagnostics may differ depending on the consumer's settings, 249 /// and are therefore constructed separately for each consumer. 250 /// 251 /// There are two path diagnostics generation modes: with adding edges (used 252 /// for plists) and without (used for HTML and text). When edges are added, 253 /// the path is modified to insert artificially generated edges. 254 /// Otherwise, more detailed diagnostics is emitted for block edges, 255 /// explaining the transitions in words. 256 std::unique_ptr<PathDiagnostic> 257 generate(const PathDiagnosticConsumer *PDC) const; 258 259 private: 260 void updateStackPiecesWithMessage(PathDiagnosticPieceRef P, 261 const CallWithEntryStack &CallStack) const; 262 void generatePathDiagnosticsForNode(PathDiagnosticConstruct &C, 263 PathDiagnosticLocation &PrevLoc) const; 264 265 void generateMinimalDiagForBlockEdge(PathDiagnosticConstruct &C, 266 BlockEdge BE) const; 267 268 PathDiagnosticPieceRef 269 generateDiagForGotoOP(const PathDiagnosticConstruct &C, const Stmt *S, 270 PathDiagnosticLocation &Start) const; 271 272 PathDiagnosticPieceRef 273 generateDiagForSwitchOP(const PathDiagnosticConstruct &C, const CFGBlock *Dst, 274 PathDiagnosticLocation &Start) const; 275 276 PathDiagnosticPieceRef 277 generateDiagForBinaryOP(const PathDiagnosticConstruct &C, const Stmt *T, 278 const CFGBlock *Src, const CFGBlock *DstC) const; 279 280 PathDiagnosticLocation 281 ExecutionContinues(const PathDiagnosticConstruct &C) const; 282 283 PathDiagnosticLocation 284 ExecutionContinues(llvm::raw_string_ostream &os, 285 const PathDiagnosticConstruct &C) const; 286 287 const PathSensitiveBugReport *getBugReport() const { return R; } 288 }; 289 290 } // namespace 291 292 //===----------------------------------------------------------------------===// 293 // Base implementation of stack hint generators. 294 //===----------------------------------------------------------------------===// 295 296 StackHintGenerator::~StackHintGenerator() = default; 297 298 std::string StackHintGeneratorForSymbol::getMessage(const ExplodedNode *N){ 299 if (!N) 300 return getMessageForSymbolNotFound(); 301 302 ProgramPoint P = N->getLocation(); 303 CallExitEnd CExit = P.castAs<CallExitEnd>(); 304 305 // FIXME: Use CallEvent to abstract this over all calls. 306 const Stmt *CallSite = CExit.getCalleeContext()->getCallSite(); 307 const auto *CE = dyn_cast_or_null<CallExpr>(CallSite); 308 if (!CE) 309 return {}; 310 311 // Check if one of the parameters are set to the interesting symbol. 312 for (auto [Idx, ArgExpr] : llvm::enumerate(CE->arguments())) { 313 SVal SV = N->getSVal(ArgExpr); 314 315 // Check if the variable corresponding to the symbol is passed by value. 316 SymbolRef AS = SV.getAsLocSymbol(); 317 if (AS == Sym) { 318 return getMessageForArg(ArgExpr, Idx); 319 } 320 321 // Check if the parameter is a pointer to the symbol. 322 if (std::optional<loc::MemRegionVal> Reg = SV.getAs<loc::MemRegionVal>()) { 323 // Do not attempt to dereference void*. 324 if (ArgExpr->getType()->isVoidPointerType()) 325 continue; 326 SVal PSV = N->getState()->getSVal(Reg->getRegion()); 327 SymbolRef AS = PSV.getAsLocSymbol(); 328 if (AS == Sym) { 329 return getMessageForArg(ArgExpr, Idx); 330 } 331 } 332 } 333 334 // Check if we are returning the interesting symbol. 335 SVal SV = N->getSVal(CE); 336 SymbolRef RetSym = SV.getAsLocSymbol(); 337 if (RetSym == Sym) { 338 return getMessageForReturn(CE); 339 } 340 341 return getMessageForSymbolNotFound(); 342 } 343 344 std::string StackHintGeneratorForSymbol::getMessageForArg(const Expr *ArgE, 345 unsigned ArgIndex) { 346 // Printed parameters start at 1, not 0. 347 ++ArgIndex; 348 349 return (llvm::Twine(Msg) + " via " + std::to_string(ArgIndex) + 350 llvm::getOrdinalSuffix(ArgIndex) + " parameter").str(); 351 } 352 353 //===----------------------------------------------------------------------===// 354 // Diagnostic cleanup. 355 //===----------------------------------------------------------------------===// 356 357 static PathDiagnosticEventPiece * 358 eventsDescribeSameCondition(PathDiagnosticEventPiece *X, 359 PathDiagnosticEventPiece *Y) { 360 // Prefer diagnostics that come from ConditionBRVisitor over 361 // those that came from TrackConstraintBRVisitor, 362 // unless the one from ConditionBRVisitor is 363 // its generic fallback diagnostic. 364 const void *tagPreferred = ConditionBRVisitor::getTag(); 365 const void *tagLesser = TrackConstraintBRVisitor::getTag(); 366 367 if (X->getLocation() != Y->getLocation()) 368 return nullptr; 369 370 if (X->getTag() == tagPreferred && Y->getTag() == tagLesser) 371 return ConditionBRVisitor::isPieceMessageGeneric(X) ? Y : X; 372 373 if (Y->getTag() == tagPreferred && X->getTag() == tagLesser) 374 return ConditionBRVisitor::isPieceMessageGeneric(Y) ? X : Y; 375 376 return nullptr; 377 } 378 379 /// An optimization pass over PathPieces that removes redundant diagnostics 380 /// generated by both ConditionBRVisitor and TrackConstraintBRVisitor. Both 381 /// BugReporterVisitors use different methods to generate diagnostics, with 382 /// one capable of emitting diagnostics in some cases but not in others. This 383 /// can lead to redundant diagnostic pieces at the same point in a path. 384 static void removeRedundantMsgs(PathPieces &path) { 385 unsigned N = path.size(); 386 if (N < 2) 387 return; 388 // NOTE: this loop intentionally is not using an iterator. Instead, we 389 // are streaming the path and modifying it in place. This is done by 390 // grabbing the front, processing it, and if we decide to keep it append 391 // it to the end of the path. The entire path is processed in this way. 392 for (unsigned i = 0; i < N; ++i) { 393 auto piece = std::move(path.front()); 394 path.pop_front(); 395 396 switch (piece->getKind()) { 397 case PathDiagnosticPiece::Call: 398 removeRedundantMsgs(cast<PathDiagnosticCallPiece>(*piece).path); 399 break; 400 case PathDiagnosticPiece::Macro: 401 removeRedundantMsgs(cast<PathDiagnosticMacroPiece>(*piece).subPieces); 402 break; 403 case PathDiagnosticPiece::Event: { 404 if (i == N-1) 405 break; 406 407 if (auto *nextEvent = 408 dyn_cast<PathDiagnosticEventPiece>(path.front().get())) { 409 auto *event = cast<PathDiagnosticEventPiece>(piece.get()); 410 // Check to see if we should keep one of the two pieces. If we 411 // come up with a preference, record which piece to keep, and consume 412 // another piece from the path. 413 if (auto *pieceToKeep = 414 eventsDescribeSameCondition(event, nextEvent)) { 415 piece = std::move(pieceToKeep == event ? piece : path.front()); 416 path.pop_front(); 417 ++i; 418 } 419 } 420 break; 421 } 422 case PathDiagnosticPiece::ControlFlow: 423 case PathDiagnosticPiece::Note: 424 case PathDiagnosticPiece::PopUp: 425 break; 426 } 427 path.push_back(std::move(piece)); 428 } 429 } 430 431 /// Recursively scan through a path and prune out calls and macros pieces 432 /// that aren't needed. Return true if afterwards the path contains 433 /// "interesting stuff" which means it shouldn't be pruned from the parent path. 434 static bool removeUnneededCalls(const PathDiagnosticConstruct &C, 435 PathPieces &pieces, 436 const PathSensitiveBugReport *R, 437 bool IsInteresting = false) { 438 bool containsSomethingInteresting = IsInteresting; 439 const unsigned N = pieces.size(); 440 441 for (unsigned i = 0 ; i < N ; ++i) { 442 // Remove the front piece from the path. If it is still something we 443 // want to keep once we are done, we will push it back on the end. 444 auto piece = std::move(pieces.front()); 445 pieces.pop_front(); 446 447 switch (piece->getKind()) { 448 case PathDiagnosticPiece::Call: { 449 auto &call = cast<PathDiagnosticCallPiece>(*piece); 450 // Check if the location context is interesting. 451 if (!removeUnneededCalls( 452 C, call.path, R, 453 R->isInteresting(C.getLocationContextFor(&call.path)))) 454 continue; 455 456 containsSomethingInteresting = true; 457 break; 458 } 459 case PathDiagnosticPiece::Macro: { 460 auto ¯o = cast<PathDiagnosticMacroPiece>(*piece); 461 if (!removeUnneededCalls(C, macro.subPieces, R, IsInteresting)) 462 continue; 463 containsSomethingInteresting = true; 464 break; 465 } 466 case PathDiagnosticPiece::Event: { 467 auto &event = cast<PathDiagnosticEventPiece>(*piece); 468 469 // We never throw away an event, but we do throw it away wholesale 470 // as part of a path if we throw the entire path away. 471 containsSomethingInteresting |= !event.isPrunable(); 472 break; 473 } 474 case PathDiagnosticPiece::ControlFlow: 475 case PathDiagnosticPiece::Note: 476 case PathDiagnosticPiece::PopUp: 477 break; 478 } 479 480 pieces.push_back(std::move(piece)); 481 } 482 483 return containsSomethingInteresting; 484 } 485 486 /// Same logic as above to remove extra pieces. 487 static void removePopUpNotes(PathPieces &Path) { 488 for (unsigned int i = 0; i < Path.size(); ++i) { 489 auto Piece = std::move(Path.front()); 490 Path.pop_front(); 491 if (!isa<PathDiagnosticPopUpPiece>(*Piece)) 492 Path.push_back(std::move(Piece)); 493 } 494 } 495 496 /// Returns true if the given decl has been implicitly given a body, either by 497 /// the analyzer or by the compiler proper. 498 static bool hasImplicitBody(const Decl *D) { 499 assert(D); 500 return D->isImplicit() || !D->hasBody(); 501 } 502 503 /// Recursively scan through a path and make sure that all call pieces have 504 /// valid locations. 505 static void 506 adjustCallLocations(PathPieces &Pieces, 507 PathDiagnosticLocation *LastCallLocation = nullptr) { 508 for (const auto &I : Pieces) { 509 auto *Call = dyn_cast<PathDiagnosticCallPiece>(I.get()); 510 511 if (!Call) 512 continue; 513 514 if (LastCallLocation) { 515 bool CallerIsImplicit = hasImplicitBody(Call->getCaller()); 516 if (CallerIsImplicit || !Call->callEnter.asLocation().isValid()) 517 Call->callEnter = *LastCallLocation; 518 if (CallerIsImplicit || !Call->callReturn.asLocation().isValid()) 519 Call->callReturn = *LastCallLocation; 520 } 521 522 // Recursively clean out the subclass. Keep this call around if 523 // it contains any informative diagnostics. 524 PathDiagnosticLocation *ThisCallLocation; 525 if (Call->callEnterWithin.asLocation().isValid() && 526 !hasImplicitBody(Call->getCallee())) 527 ThisCallLocation = &Call->callEnterWithin; 528 else 529 ThisCallLocation = &Call->callEnter; 530 531 assert(ThisCallLocation && "Outermost call has an invalid location"); 532 adjustCallLocations(Call->path, ThisCallLocation); 533 } 534 } 535 536 /// Remove edges in and out of C++ default initializer expressions. These are 537 /// for fields that have in-class initializers, as opposed to being initialized 538 /// explicitly in a constructor or braced list. 539 static void removeEdgesToDefaultInitializers(PathPieces &Pieces) { 540 for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E;) { 541 if (auto *C = dyn_cast<PathDiagnosticCallPiece>(I->get())) 542 removeEdgesToDefaultInitializers(C->path); 543 544 if (auto *M = dyn_cast<PathDiagnosticMacroPiece>(I->get())) 545 removeEdgesToDefaultInitializers(M->subPieces); 546 547 if (auto *CF = dyn_cast<PathDiagnosticControlFlowPiece>(I->get())) { 548 const Stmt *Start = CF->getStartLocation().asStmt(); 549 const Stmt *End = CF->getEndLocation().asStmt(); 550 if (isa_and_nonnull<CXXDefaultInitExpr>(Start)) { 551 I = Pieces.erase(I); 552 continue; 553 } else if (isa_and_nonnull<CXXDefaultInitExpr>(End)) { 554 PathPieces::iterator Next = std::next(I); 555 if (Next != E) { 556 if (auto *NextCF = 557 dyn_cast<PathDiagnosticControlFlowPiece>(Next->get())) { 558 NextCF->setStartLocation(CF->getStartLocation()); 559 } 560 } 561 I = Pieces.erase(I); 562 continue; 563 } 564 } 565 566 I++; 567 } 568 } 569 570 /// Remove all pieces with invalid locations as these cannot be serialized. 571 /// We might have pieces with invalid locations as a result of inlining Body 572 /// Farm generated functions. 573 static void removePiecesWithInvalidLocations(PathPieces &Pieces) { 574 for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E;) { 575 if (auto *C = dyn_cast<PathDiagnosticCallPiece>(I->get())) 576 removePiecesWithInvalidLocations(C->path); 577 578 if (auto *M = dyn_cast<PathDiagnosticMacroPiece>(I->get())) 579 removePiecesWithInvalidLocations(M->subPieces); 580 581 if (!(*I)->getLocation().isValid() || 582 !(*I)->getLocation().asLocation().isValid()) { 583 I = Pieces.erase(I); 584 continue; 585 } 586 I++; 587 } 588 } 589 590 PathDiagnosticLocation PathDiagnosticBuilder::ExecutionContinues( 591 const PathDiagnosticConstruct &C) const { 592 if (const Stmt *S = C.getCurrentNode()->getNextStmtForDiagnostics()) 593 return PathDiagnosticLocation(S, getSourceManager(), 594 C.getCurrLocationContext()); 595 596 return PathDiagnosticLocation::createDeclEnd(C.getCurrLocationContext(), 597 getSourceManager()); 598 } 599 600 PathDiagnosticLocation PathDiagnosticBuilder::ExecutionContinues( 601 llvm::raw_string_ostream &os, const PathDiagnosticConstruct &C) const { 602 // Slow, but probably doesn't matter. 603 if (os.str().empty()) 604 os << ' '; 605 606 const PathDiagnosticLocation &Loc = ExecutionContinues(C); 607 608 if (Loc.asStmt()) 609 os << "Execution continues on line " 610 << getSourceManager().getExpansionLineNumber(Loc.asLocation()) 611 << '.'; 612 else { 613 os << "Execution jumps to the end of the "; 614 const Decl *D = C.getCurrLocationContext()->getDecl(); 615 if (isa<ObjCMethodDecl>(D)) 616 os << "method"; 617 else if (isa<FunctionDecl>(D)) 618 os << "function"; 619 else { 620 assert(isa<BlockDecl>(D)); 621 os << "anonymous block"; 622 } 623 os << '.'; 624 } 625 626 return Loc; 627 } 628 629 static const Stmt *getEnclosingParent(const Stmt *S, const ParentMap &PM) { 630 if (isa<Expr>(S) && PM.isConsumedExpr(cast<Expr>(S))) 631 return PM.getParentIgnoreParens(S); 632 633 const Stmt *Parent = PM.getParentIgnoreParens(S); 634 if (!Parent) 635 return nullptr; 636 637 switch (Parent->getStmtClass()) { 638 case Stmt::ForStmtClass: 639 case Stmt::DoStmtClass: 640 case Stmt::WhileStmtClass: 641 case Stmt::ObjCForCollectionStmtClass: 642 case Stmt::CXXForRangeStmtClass: 643 return Parent; 644 default: 645 break; 646 } 647 648 return nullptr; 649 } 650 651 static PathDiagnosticLocation 652 getEnclosingStmtLocation(const Stmt *S, const LocationContext *LC, 653 bool allowNestedContexts = false) { 654 if (!S) 655 return {}; 656 657 const SourceManager &SMgr = LC->getDecl()->getASTContext().getSourceManager(); 658 659 while (const Stmt *Parent = getEnclosingParent(S, LC->getParentMap())) { 660 switch (Parent->getStmtClass()) { 661 case Stmt::BinaryOperatorClass: { 662 const auto *B = cast<BinaryOperator>(Parent); 663 if (B->isLogicalOp()) 664 return PathDiagnosticLocation(allowNestedContexts ? B : S, SMgr, LC); 665 break; 666 } 667 case Stmt::CompoundStmtClass: 668 case Stmt::StmtExprClass: 669 return PathDiagnosticLocation(S, SMgr, LC); 670 case Stmt::ChooseExprClass: 671 // Similar to '?' if we are referring to condition, just have the edge 672 // point to the entire choose expression. 673 if (allowNestedContexts || cast<ChooseExpr>(Parent)->getCond() == S) 674 return PathDiagnosticLocation(Parent, SMgr, LC); 675 else 676 return PathDiagnosticLocation(S, SMgr, LC); 677 case Stmt::BinaryConditionalOperatorClass: 678 case Stmt::ConditionalOperatorClass: 679 // For '?', if we are referring to condition, just have the edge point 680 // to the entire '?' expression. 681 if (allowNestedContexts || 682 cast<AbstractConditionalOperator>(Parent)->getCond() == S) 683 return PathDiagnosticLocation(Parent, SMgr, LC); 684 else 685 return PathDiagnosticLocation(S, SMgr, LC); 686 case Stmt::CXXForRangeStmtClass: 687 if (cast<CXXForRangeStmt>(Parent)->getBody() == S) 688 return PathDiagnosticLocation(S, SMgr, LC); 689 break; 690 case Stmt::DoStmtClass: 691 return PathDiagnosticLocation(S, SMgr, LC); 692 case Stmt::ForStmtClass: 693 if (cast<ForStmt>(Parent)->getBody() == S) 694 return PathDiagnosticLocation(S, SMgr, LC); 695 break; 696 case Stmt::IfStmtClass: 697 if (cast<IfStmt>(Parent)->getCond() != S) 698 return PathDiagnosticLocation(S, SMgr, LC); 699 break; 700 case Stmt::ObjCForCollectionStmtClass: 701 if (cast<ObjCForCollectionStmt>(Parent)->getBody() == S) 702 return PathDiagnosticLocation(S, SMgr, LC); 703 break; 704 case Stmt::WhileStmtClass: 705 if (cast<WhileStmt>(Parent)->getCond() != S) 706 return PathDiagnosticLocation(S, SMgr, LC); 707 break; 708 default: 709 break; 710 } 711 712 S = Parent; 713 } 714 715 assert(S && "Cannot have null Stmt for PathDiagnosticLocation"); 716 717 return PathDiagnosticLocation(S, SMgr, LC); 718 } 719 720 //===----------------------------------------------------------------------===// 721 // "Minimal" path diagnostic generation algorithm. 722 //===----------------------------------------------------------------------===// 723 724 /// If the piece contains a special message, add it to all the call pieces on 725 /// the active stack. For example, my_malloc allocated memory, so MallocChecker 726 /// will construct an event at the call to malloc(), and add a stack hint that 727 /// an allocated memory was returned. We'll use this hint to construct a message 728 /// when returning from the call to my_malloc 729 /// 730 /// void *my_malloc() { return malloc(sizeof(int)); } 731 /// void fishy() { 732 /// void *ptr = my_malloc(); // returned allocated memory 733 /// } // leak 734 void PathDiagnosticBuilder::updateStackPiecesWithMessage( 735 PathDiagnosticPieceRef P, const CallWithEntryStack &CallStack) const { 736 if (R->hasCallStackHint(P)) 737 for (const auto &I : CallStack) { 738 PathDiagnosticCallPiece *CP = I.first; 739 const ExplodedNode *N = I.second; 740 std::string stackMsg = R->getCallStackMessage(P, N); 741 742 // The last message on the path to final bug is the most important 743 // one. Since we traverse the path backwards, do not add the message 744 // if one has been previously added. 745 if (!CP->hasCallStackMessage()) 746 CP->setCallStackMessage(stackMsg); 747 } 748 } 749 750 static void CompactMacroExpandedPieces(PathPieces &path, 751 const SourceManager& SM); 752 753 PathDiagnosticPieceRef PathDiagnosticBuilder::generateDiagForSwitchOP( 754 const PathDiagnosticConstruct &C, const CFGBlock *Dst, 755 PathDiagnosticLocation &Start) const { 756 757 const SourceManager &SM = getSourceManager(); 758 // Figure out what case arm we took. 759 std::string sbuf; 760 llvm::raw_string_ostream os(sbuf); 761 PathDiagnosticLocation End; 762 763 if (const Stmt *S = Dst->getLabel()) { 764 End = PathDiagnosticLocation(S, SM, C.getCurrLocationContext()); 765 766 switch (S->getStmtClass()) { 767 default: 768 os << "No cases match in the switch statement. " 769 "Control jumps to line " 770 << End.asLocation().getExpansionLineNumber(); 771 break; 772 case Stmt::DefaultStmtClass: 773 os << "Control jumps to the 'default' case at line " 774 << End.asLocation().getExpansionLineNumber(); 775 break; 776 777 case Stmt::CaseStmtClass: { 778 os << "Control jumps to 'case "; 779 const auto *Case = cast<CaseStmt>(S); 780 const Expr *LHS = Case->getLHS()->IgnoreParenImpCasts(); 781 782 // Determine if it is an enum. 783 bool GetRawInt = true; 784 785 if (const auto *DR = dyn_cast<DeclRefExpr>(LHS)) { 786 // FIXME: Maybe this should be an assertion. Are there cases 787 // were it is not an EnumConstantDecl? 788 const auto *D = dyn_cast<EnumConstantDecl>(DR->getDecl()); 789 790 if (D) { 791 GetRawInt = false; 792 os << *D; 793 } 794 } 795 796 if (GetRawInt) 797 os << LHS->EvaluateKnownConstInt(getASTContext()); 798 799 os << ":' at line " << End.asLocation().getExpansionLineNumber(); 800 break; 801 } 802 } 803 } else { 804 os << "'Default' branch taken. "; 805 End = ExecutionContinues(os, C); 806 } 807 return std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, sbuf); 808 } 809 810 PathDiagnosticPieceRef PathDiagnosticBuilder::generateDiagForGotoOP( 811 const PathDiagnosticConstruct &C, const Stmt *S, 812 PathDiagnosticLocation &Start) const { 813 std::string sbuf; 814 llvm::raw_string_ostream os(sbuf); 815 const PathDiagnosticLocation &End = 816 getEnclosingStmtLocation(S, C.getCurrLocationContext()); 817 os << "Control jumps to line " << End.asLocation().getExpansionLineNumber(); 818 return std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, sbuf); 819 } 820 821 PathDiagnosticPieceRef PathDiagnosticBuilder::generateDiagForBinaryOP( 822 const PathDiagnosticConstruct &C, const Stmt *T, const CFGBlock *Src, 823 const CFGBlock *Dst) const { 824 825 const SourceManager &SM = getSourceManager(); 826 827 const auto *B = cast<BinaryOperator>(T); 828 std::string sbuf; 829 llvm::raw_string_ostream os(sbuf); 830 os << "Left side of '"; 831 PathDiagnosticLocation Start, End; 832 833 if (B->getOpcode() == BO_LAnd) { 834 os << "&&" 835 << "' is "; 836 837 if (*(Src->succ_begin() + 1) == Dst) { 838 os << "false"; 839 End = PathDiagnosticLocation(B->getLHS(), SM, C.getCurrLocationContext()); 840 Start = 841 PathDiagnosticLocation::createOperatorLoc(B, SM); 842 } else { 843 os << "true"; 844 Start = 845 PathDiagnosticLocation(B->getLHS(), SM, C.getCurrLocationContext()); 846 End = ExecutionContinues(C); 847 } 848 } else { 849 assert(B->getOpcode() == BO_LOr); 850 os << "||" 851 << "' is "; 852 853 if (*(Src->succ_begin() + 1) == Dst) { 854 os << "false"; 855 Start = 856 PathDiagnosticLocation(B->getLHS(), SM, C.getCurrLocationContext()); 857 End = ExecutionContinues(C); 858 } else { 859 os << "true"; 860 End = PathDiagnosticLocation(B->getLHS(), SM, C.getCurrLocationContext()); 861 Start = 862 PathDiagnosticLocation::createOperatorLoc(B, SM); 863 } 864 } 865 return std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, sbuf); 866 } 867 868 void PathDiagnosticBuilder::generateMinimalDiagForBlockEdge( 869 PathDiagnosticConstruct &C, BlockEdge BE) const { 870 const SourceManager &SM = getSourceManager(); 871 const LocationContext *LC = C.getCurrLocationContext(); 872 const CFGBlock *Src = BE.getSrc(); 873 const CFGBlock *Dst = BE.getDst(); 874 const Stmt *T = Src->getTerminatorStmt(); 875 if (!T) 876 return; 877 878 auto Start = PathDiagnosticLocation::createBegin(T, SM, LC); 879 switch (T->getStmtClass()) { 880 default: 881 break; 882 883 case Stmt::GotoStmtClass: 884 case Stmt::IndirectGotoStmtClass: { 885 if (const Stmt *S = C.getCurrentNode()->getNextStmtForDiagnostics()) 886 C.getActivePath().push_front(generateDiagForGotoOP(C, S, Start)); 887 break; 888 } 889 890 case Stmt::SwitchStmtClass: { 891 C.getActivePath().push_front(generateDiagForSwitchOP(C, Dst, Start)); 892 break; 893 } 894 895 case Stmt::BreakStmtClass: 896 case Stmt::ContinueStmtClass: { 897 std::string sbuf; 898 llvm::raw_string_ostream os(sbuf); 899 PathDiagnosticLocation End = ExecutionContinues(os, C); 900 C.getActivePath().push_front( 901 std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, sbuf)); 902 break; 903 } 904 905 // Determine control-flow for ternary '?'. 906 case Stmt::BinaryConditionalOperatorClass: 907 case Stmt::ConditionalOperatorClass: { 908 std::string sbuf; 909 llvm::raw_string_ostream os(sbuf); 910 os << "'?' condition is "; 911 912 if (*(Src->succ_begin() + 1) == Dst) 913 os << "false"; 914 else 915 os << "true"; 916 917 PathDiagnosticLocation End = ExecutionContinues(C); 918 919 if (const Stmt *S = End.asStmt()) 920 End = getEnclosingStmtLocation(S, C.getCurrLocationContext()); 921 922 C.getActivePath().push_front( 923 std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, sbuf)); 924 break; 925 } 926 927 // Determine control-flow for short-circuited '&&' and '||'. 928 case Stmt::BinaryOperatorClass: { 929 if (!C.supportsLogicalOpControlFlow()) 930 break; 931 932 C.getActivePath().push_front(generateDiagForBinaryOP(C, T, Src, Dst)); 933 break; 934 } 935 936 case Stmt::DoStmtClass: 937 if (*(Src->succ_begin()) == Dst) { 938 std::string sbuf; 939 llvm::raw_string_ostream os(sbuf); 940 941 os << "Loop condition is true. "; 942 PathDiagnosticLocation End = ExecutionContinues(os, C); 943 944 if (const Stmt *S = End.asStmt()) 945 End = getEnclosingStmtLocation(S, C.getCurrLocationContext()); 946 947 C.getActivePath().push_front( 948 std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, sbuf)); 949 } else { 950 PathDiagnosticLocation End = ExecutionContinues(C); 951 952 if (const Stmt *S = End.asStmt()) 953 End = getEnclosingStmtLocation(S, C.getCurrLocationContext()); 954 955 C.getActivePath().push_front( 956 std::make_shared<PathDiagnosticControlFlowPiece>( 957 Start, End, "Loop condition is false. Exiting loop")); 958 } 959 break; 960 961 case Stmt::WhileStmtClass: 962 case Stmt::ForStmtClass: 963 if (*(Src->succ_begin() + 1) == Dst) { 964 std::string sbuf; 965 llvm::raw_string_ostream os(sbuf); 966 967 os << "Loop condition is false. "; 968 PathDiagnosticLocation End = ExecutionContinues(os, C); 969 if (const Stmt *S = End.asStmt()) 970 End = getEnclosingStmtLocation(S, C.getCurrLocationContext()); 971 972 C.getActivePath().push_front( 973 std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, sbuf)); 974 } else { 975 PathDiagnosticLocation End = ExecutionContinues(C); 976 if (const Stmt *S = End.asStmt()) 977 End = getEnclosingStmtLocation(S, C.getCurrLocationContext()); 978 979 C.getActivePath().push_front( 980 std::make_shared<PathDiagnosticControlFlowPiece>( 981 Start, End, "Loop condition is true. Entering loop body")); 982 } 983 984 break; 985 986 case Stmt::IfStmtClass: { 987 PathDiagnosticLocation End = ExecutionContinues(C); 988 989 if (const Stmt *S = End.asStmt()) 990 End = getEnclosingStmtLocation(S, C.getCurrLocationContext()); 991 992 if (*(Src->succ_begin() + 1) == Dst) 993 C.getActivePath().push_front( 994 std::make_shared<PathDiagnosticControlFlowPiece>( 995 Start, End, "Taking false branch")); 996 else 997 C.getActivePath().push_front( 998 std::make_shared<PathDiagnosticControlFlowPiece>( 999 Start, End, "Taking true branch")); 1000 1001 break; 1002 } 1003 } 1004 } 1005 1006 //===----------------------------------------------------------------------===// 1007 // Functions for determining if a loop was executed 0 times. 1008 //===----------------------------------------------------------------------===// 1009 1010 static bool isLoop(const Stmt *Term) { 1011 switch (Term->getStmtClass()) { 1012 case Stmt::ForStmtClass: 1013 case Stmt::WhileStmtClass: 1014 case Stmt::ObjCForCollectionStmtClass: 1015 case Stmt::CXXForRangeStmtClass: 1016 return true; 1017 default: 1018 // Note that we intentionally do not include do..while here. 1019 return false; 1020 } 1021 } 1022 1023 static bool isJumpToFalseBranch(const BlockEdge *BE) { 1024 const CFGBlock *Src = BE->getSrc(); 1025 assert(Src->succ_size() == 2); 1026 return (*(Src->succ_begin()+1) == BE->getDst()); 1027 } 1028 1029 static bool isContainedByStmt(const ParentMap &PM, const Stmt *S, 1030 const Stmt *SubS) { 1031 while (SubS) { 1032 if (SubS == S) 1033 return true; 1034 SubS = PM.getParent(SubS); 1035 } 1036 return false; 1037 } 1038 1039 static const Stmt *getStmtBeforeCond(const ParentMap &PM, const Stmt *Term, 1040 const ExplodedNode *N) { 1041 while (N) { 1042 std::optional<StmtPoint> SP = N->getLocation().getAs<StmtPoint>(); 1043 if (SP) { 1044 const Stmt *S = SP->getStmt(); 1045 if (!isContainedByStmt(PM, Term, S)) 1046 return S; 1047 } 1048 N = N->getFirstPred(); 1049 } 1050 return nullptr; 1051 } 1052 1053 static bool isInLoopBody(const ParentMap &PM, const Stmt *S, const Stmt *Term) { 1054 const Stmt *LoopBody = nullptr; 1055 switch (Term->getStmtClass()) { 1056 case Stmt::CXXForRangeStmtClass: { 1057 const auto *FR = cast<CXXForRangeStmt>(Term); 1058 if (isContainedByStmt(PM, FR->getInc(), S)) 1059 return true; 1060 if (isContainedByStmt(PM, FR->getLoopVarStmt(), S)) 1061 return true; 1062 LoopBody = FR->getBody(); 1063 break; 1064 } 1065 case Stmt::ForStmtClass: { 1066 const auto *FS = cast<ForStmt>(Term); 1067 if (isContainedByStmt(PM, FS->getInc(), S)) 1068 return true; 1069 LoopBody = FS->getBody(); 1070 break; 1071 } 1072 case Stmt::ObjCForCollectionStmtClass: { 1073 const auto *FC = cast<ObjCForCollectionStmt>(Term); 1074 LoopBody = FC->getBody(); 1075 break; 1076 } 1077 case Stmt::WhileStmtClass: 1078 LoopBody = cast<WhileStmt>(Term)->getBody(); 1079 break; 1080 default: 1081 return false; 1082 } 1083 return isContainedByStmt(PM, LoopBody, S); 1084 } 1085 1086 /// Adds a sanitized control-flow diagnostic edge to a path. 1087 static void addEdgeToPath(PathPieces &path, 1088 PathDiagnosticLocation &PrevLoc, 1089 PathDiagnosticLocation NewLoc) { 1090 if (!NewLoc.isValid()) 1091 return; 1092 1093 SourceLocation NewLocL = NewLoc.asLocation(); 1094 if (NewLocL.isInvalid()) 1095 return; 1096 1097 if (!PrevLoc.isValid() || !PrevLoc.asLocation().isValid()) { 1098 PrevLoc = NewLoc; 1099 return; 1100 } 1101 1102 // Ignore self-edges, which occur when there are multiple nodes at the same 1103 // statement. 1104 if (NewLoc.asStmt() && NewLoc.asStmt() == PrevLoc.asStmt()) 1105 return; 1106 1107 path.push_front( 1108 std::make_shared<PathDiagnosticControlFlowPiece>(NewLoc, PrevLoc)); 1109 PrevLoc = NewLoc; 1110 } 1111 1112 /// A customized wrapper for CFGBlock::getTerminatorCondition() 1113 /// which returns the element for ObjCForCollectionStmts. 1114 static const Stmt *getTerminatorCondition(const CFGBlock *B) { 1115 const Stmt *S = B->getTerminatorCondition(); 1116 if (const auto *FS = dyn_cast_or_null<ObjCForCollectionStmt>(S)) 1117 return FS->getElement(); 1118 return S; 1119 } 1120 1121 constexpr llvm::StringLiteral StrEnteringLoop = "Entering loop body"; 1122 constexpr llvm::StringLiteral StrLoopBodyZero = "Loop body executed 0 times"; 1123 constexpr llvm::StringLiteral StrLoopRangeEmpty = 1124 "Loop body skipped when range is empty"; 1125 constexpr llvm::StringLiteral StrLoopCollectionEmpty = 1126 "Loop body skipped when collection is empty"; 1127 1128 static std::unique_ptr<FilesToLineNumsMap> 1129 findExecutedLines(const SourceManager &SM, const ExplodedNode *N); 1130 1131 void PathDiagnosticBuilder::generatePathDiagnosticsForNode( 1132 PathDiagnosticConstruct &C, PathDiagnosticLocation &PrevLoc) const { 1133 ProgramPoint P = C.getCurrentNode()->getLocation(); 1134 const SourceManager &SM = getSourceManager(); 1135 1136 // Have we encountered an entrance to a call? It may be 1137 // the case that we have not encountered a matching 1138 // call exit before this point. This means that the path 1139 // terminated within the call itself. 1140 if (auto CE = P.getAs<CallEnter>()) { 1141 1142 if (C.shouldAddPathEdges()) { 1143 // Add an edge to the start of the function. 1144 const StackFrameContext *CalleeLC = CE->getCalleeContext(); 1145 const Decl *D = CalleeLC->getDecl(); 1146 // Add the edge only when the callee has body. We jump to the beginning 1147 // of the *declaration*, however we expect it to be followed by the 1148 // body. This isn't the case for autosynthesized property accessors in 1149 // Objective-C. No need for a similar extra check for CallExit points 1150 // because the exit edge comes from a statement (i.e. return), 1151 // not from declaration. 1152 if (D->hasBody()) 1153 addEdgeToPath(C.getActivePath(), PrevLoc, 1154 PathDiagnosticLocation::createBegin(D, SM)); 1155 } 1156 1157 // Did we visit an entire call? 1158 bool VisitedEntireCall = C.PD->isWithinCall(); 1159 C.PD->popActivePath(); 1160 1161 PathDiagnosticCallPiece *Call; 1162 if (VisitedEntireCall) { 1163 Call = cast<PathDiagnosticCallPiece>(C.getActivePath().front().get()); 1164 } else { 1165 // The path terminated within a nested location context, create a new 1166 // call piece to encapsulate the rest of the path pieces. 1167 const Decl *Caller = CE->getLocationContext()->getDecl(); 1168 Call = PathDiagnosticCallPiece::construct(C.getActivePath(), Caller); 1169 assert(C.getActivePath().size() == 1 && 1170 C.getActivePath().front().get() == Call); 1171 1172 // Since we just transferred the path over to the call piece, reset the 1173 // mapping of the active path to the current location context. 1174 assert(C.isInLocCtxMap(&C.getActivePath()) && 1175 "When we ascend to a previously unvisited call, the active path's " 1176 "address shouldn't change, but rather should be compacted into " 1177 "a single CallEvent!"); 1178 C.updateLocCtxMap(&C.getActivePath(), C.getCurrLocationContext()); 1179 1180 // Record the location context mapping for the path within the call. 1181 assert(!C.isInLocCtxMap(&Call->path) && 1182 "When we ascend to a previously unvisited call, this must be the " 1183 "first time we encounter the caller context!"); 1184 C.updateLocCtxMap(&Call->path, CE->getCalleeContext()); 1185 } 1186 Call->setCallee(*CE, SM); 1187 1188 // Update the previous location in the active path. 1189 PrevLoc = Call->getLocation(); 1190 1191 if (!C.CallStack.empty()) { 1192 assert(C.CallStack.back().first == Call); 1193 C.CallStack.pop_back(); 1194 } 1195 return; 1196 } 1197 1198 assert(C.getCurrLocationContext() == C.getLocationContextForActivePath() && 1199 "The current position in the bug path is out of sync with the " 1200 "location context associated with the active path!"); 1201 1202 // Have we encountered an exit from a function call? 1203 if (std::optional<CallExitEnd> CE = P.getAs<CallExitEnd>()) { 1204 1205 // We are descending into a call (backwards). Construct 1206 // a new call piece to contain the path pieces for that call. 1207 auto Call = PathDiagnosticCallPiece::construct(*CE, SM); 1208 // Record the mapping from call piece to LocationContext. 1209 assert(!C.isInLocCtxMap(&Call->path) && 1210 "We just entered a call, this must've been the first time we " 1211 "encounter its context!"); 1212 C.updateLocCtxMap(&Call->path, CE->getCalleeContext()); 1213 1214 if (C.shouldAddPathEdges()) { 1215 // Add the edge to the return site. 1216 addEdgeToPath(C.getActivePath(), PrevLoc, Call->callReturn); 1217 PrevLoc.invalidate(); 1218 } 1219 1220 auto *P = Call.get(); 1221 C.getActivePath().push_front(std::move(Call)); 1222 1223 // Make the contents of the call the active path for now. 1224 C.PD->pushActivePath(&P->path); 1225 C.CallStack.push_back(CallWithEntry(P, C.getCurrentNode())); 1226 return; 1227 } 1228 1229 if (auto PS = P.getAs<PostStmt>()) { 1230 if (!C.shouldAddPathEdges()) 1231 return; 1232 1233 // Add an edge. If this is an ObjCForCollectionStmt do 1234 // not add an edge here as it appears in the CFG both 1235 // as a terminator and as a terminator condition. 1236 if (!isa<ObjCForCollectionStmt>(PS->getStmt())) { 1237 PathDiagnosticLocation L = 1238 PathDiagnosticLocation(PS->getStmt(), SM, C.getCurrLocationContext()); 1239 addEdgeToPath(C.getActivePath(), PrevLoc, L); 1240 } 1241 1242 } else if (auto BE = P.getAs<BlockEdge>()) { 1243 1244 if (C.shouldAddControlNotes()) { 1245 generateMinimalDiagForBlockEdge(C, *BE); 1246 } 1247 1248 if (!C.shouldAddPathEdges()) { 1249 return; 1250 } 1251 1252 // Are we jumping to the head of a loop? Add a special diagnostic. 1253 if (const Stmt *Loop = BE->getSrc()->getLoopTarget()) { 1254 PathDiagnosticLocation L(Loop, SM, C.getCurrLocationContext()); 1255 const Stmt *Body = nullptr; 1256 1257 if (const auto *FS = dyn_cast<ForStmt>(Loop)) 1258 Body = FS->getBody(); 1259 else if (const auto *WS = dyn_cast<WhileStmt>(Loop)) 1260 Body = WS->getBody(); 1261 else if (const auto *OFS = dyn_cast<ObjCForCollectionStmt>(Loop)) { 1262 Body = OFS->getBody(); 1263 } else if (const auto *FRS = dyn_cast<CXXForRangeStmt>(Loop)) { 1264 Body = FRS->getBody(); 1265 } 1266 // do-while statements are explicitly excluded here 1267 1268 auto p = std::make_shared<PathDiagnosticEventPiece>( 1269 L, "Looping back to the head of the loop"); 1270 p->setPrunable(true); 1271 1272 addEdgeToPath(C.getActivePath(), PrevLoc, p->getLocation()); 1273 // We might've added a very similar control node already 1274 if (!C.shouldAddControlNotes()) { 1275 C.getActivePath().push_front(std::move(p)); 1276 } 1277 1278 if (const auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 1279 addEdgeToPath(C.getActivePath(), PrevLoc, 1280 PathDiagnosticLocation::createEndBrace(CS, SM)); 1281 } 1282 } 1283 1284 const CFGBlock *BSrc = BE->getSrc(); 1285 const ParentMap &PM = C.getParentMap(); 1286 1287 if (const Stmt *Term = BSrc->getTerminatorStmt()) { 1288 // Are we jumping past the loop body without ever executing the 1289 // loop (because the condition was false)? 1290 if (isLoop(Term)) { 1291 const Stmt *TermCond = getTerminatorCondition(BSrc); 1292 bool IsInLoopBody = isInLoopBody( 1293 PM, getStmtBeforeCond(PM, TermCond, C.getCurrentNode()), Term); 1294 1295 StringRef str; 1296 1297 if (isJumpToFalseBranch(&*BE)) { 1298 if (!IsInLoopBody) { 1299 if (isa<ObjCForCollectionStmt>(Term)) { 1300 str = StrLoopCollectionEmpty; 1301 } else if (isa<CXXForRangeStmt>(Term)) { 1302 str = StrLoopRangeEmpty; 1303 } else { 1304 str = StrLoopBodyZero; 1305 } 1306 } 1307 } else { 1308 str = StrEnteringLoop; 1309 } 1310 1311 if (!str.empty()) { 1312 PathDiagnosticLocation L(TermCond ? TermCond : Term, SM, 1313 C.getCurrLocationContext()); 1314 auto PE = std::make_shared<PathDiagnosticEventPiece>(L, str); 1315 PE->setPrunable(true); 1316 addEdgeToPath(C.getActivePath(), PrevLoc, PE->getLocation()); 1317 1318 // We might've added a very similar control node already 1319 if (!C.shouldAddControlNotes()) { 1320 C.getActivePath().push_front(std::move(PE)); 1321 } 1322 } 1323 } else if (isa<BreakStmt, ContinueStmt, GotoStmt>(Term)) { 1324 PathDiagnosticLocation L(Term, SM, C.getCurrLocationContext()); 1325 addEdgeToPath(C.getActivePath(), PrevLoc, L); 1326 } 1327 } 1328 } 1329 } 1330 1331 static std::unique_ptr<PathDiagnostic> 1332 generateDiagnosticForBasicReport(const BasicBugReport *R, 1333 const Decl *AnalysisEntryPoint) { 1334 const BugType &BT = R->getBugType(); 1335 return std::make_unique<PathDiagnostic>( 1336 BT.getCheckerName(), R->getDeclWithIssue(), BT.getDescription(), 1337 R->getDescription(), R->getShortDescription(/*UseFallback=*/false), 1338 BT.getCategory(), R->getUniqueingLocation(), R->getUniqueingDecl(), 1339 AnalysisEntryPoint, std::make_unique<FilesToLineNumsMap>()); 1340 } 1341 1342 static std::unique_ptr<PathDiagnostic> 1343 generateEmptyDiagnosticForReport(const PathSensitiveBugReport *R, 1344 const SourceManager &SM, 1345 const Decl *AnalysisEntryPoint) { 1346 const BugType &BT = R->getBugType(); 1347 return std::make_unique<PathDiagnostic>( 1348 BT.getCheckerName(), R->getDeclWithIssue(), BT.getDescription(), 1349 R->getDescription(), R->getShortDescription(/*UseFallback=*/false), 1350 BT.getCategory(), R->getUniqueingLocation(), R->getUniqueingDecl(), 1351 AnalysisEntryPoint, findExecutedLines(SM, R->getErrorNode())); 1352 } 1353 1354 static const Stmt *getStmtParent(const Stmt *S, const ParentMap &PM) { 1355 if (!S) 1356 return nullptr; 1357 1358 while (true) { 1359 S = PM.getParentIgnoreParens(S); 1360 1361 if (!S) 1362 break; 1363 1364 if (isa<FullExpr, CXXBindTemporaryExpr, SubstNonTypeTemplateParmExpr>(S)) 1365 continue; 1366 1367 break; 1368 } 1369 1370 return S; 1371 } 1372 1373 static bool isConditionForTerminator(const Stmt *S, const Stmt *Cond) { 1374 switch (S->getStmtClass()) { 1375 case Stmt::BinaryOperatorClass: { 1376 const auto *BO = cast<BinaryOperator>(S); 1377 if (!BO->isLogicalOp()) 1378 return false; 1379 return BO->getLHS() == Cond || BO->getRHS() == Cond; 1380 } 1381 case Stmt::IfStmtClass: 1382 return cast<IfStmt>(S)->getCond() == Cond; 1383 case Stmt::ForStmtClass: 1384 return cast<ForStmt>(S)->getCond() == Cond; 1385 case Stmt::WhileStmtClass: 1386 return cast<WhileStmt>(S)->getCond() == Cond; 1387 case Stmt::DoStmtClass: 1388 return cast<DoStmt>(S)->getCond() == Cond; 1389 case Stmt::ChooseExprClass: 1390 return cast<ChooseExpr>(S)->getCond() == Cond; 1391 case Stmt::IndirectGotoStmtClass: 1392 return cast<IndirectGotoStmt>(S)->getTarget() == Cond; 1393 case Stmt::SwitchStmtClass: 1394 return cast<SwitchStmt>(S)->getCond() == Cond; 1395 case Stmt::BinaryConditionalOperatorClass: 1396 return cast<BinaryConditionalOperator>(S)->getCond() == Cond; 1397 case Stmt::ConditionalOperatorClass: { 1398 const auto *CO = cast<ConditionalOperator>(S); 1399 return CO->getCond() == Cond || 1400 CO->getLHS() == Cond || 1401 CO->getRHS() == Cond; 1402 } 1403 case Stmt::ObjCForCollectionStmtClass: 1404 return cast<ObjCForCollectionStmt>(S)->getElement() == Cond; 1405 case Stmt::CXXForRangeStmtClass: { 1406 const auto *FRS = cast<CXXForRangeStmt>(S); 1407 return FRS->getCond() == Cond || FRS->getRangeInit() == Cond; 1408 } 1409 default: 1410 return false; 1411 } 1412 } 1413 1414 static bool isIncrementOrInitInForLoop(const Stmt *S, const Stmt *FL) { 1415 if (const auto *FS = dyn_cast<ForStmt>(FL)) 1416 return FS->getInc() == S || FS->getInit() == S; 1417 if (const auto *FRS = dyn_cast<CXXForRangeStmt>(FL)) 1418 return FRS->getInc() == S || FRS->getRangeStmt() == S || 1419 FRS->getLoopVarStmt() || FRS->getRangeInit() == S; 1420 return false; 1421 } 1422 1423 using OptimizedCallsSet = llvm::DenseSet<const PathDiagnosticCallPiece *>; 1424 1425 /// Adds synthetic edges from top-level statements to their subexpressions. 1426 /// 1427 /// This avoids a "swoosh" effect, where an edge from a top-level statement A 1428 /// points to a sub-expression B.1 that's not at the start of B. In these cases, 1429 /// we'd like to see an edge from A to B, then another one from B to B.1. 1430 static void addContextEdges(PathPieces &pieces, const LocationContext *LC) { 1431 const ParentMap &PM = LC->getParentMap(); 1432 PathPieces::iterator Prev = pieces.end(); 1433 for (PathPieces::iterator I = pieces.begin(), E = Prev; I != E; 1434 Prev = I, ++I) { 1435 auto *Piece = dyn_cast<PathDiagnosticControlFlowPiece>(I->get()); 1436 1437 if (!Piece) 1438 continue; 1439 1440 PathDiagnosticLocation SrcLoc = Piece->getStartLocation(); 1441 SmallVector<PathDiagnosticLocation, 4> SrcContexts; 1442 1443 PathDiagnosticLocation NextSrcContext = SrcLoc; 1444 const Stmt *InnerStmt = nullptr; 1445 while (NextSrcContext.isValid() && NextSrcContext.asStmt() != InnerStmt) { 1446 SrcContexts.push_back(NextSrcContext); 1447 InnerStmt = NextSrcContext.asStmt(); 1448 NextSrcContext = getEnclosingStmtLocation(InnerStmt, LC, 1449 /*allowNested=*/true); 1450 } 1451 1452 // Repeatedly split the edge as necessary. 1453 // This is important for nested logical expressions (||, &&, ?:) where we 1454 // want to show all the levels of context. 1455 while (true) { 1456 const Stmt *Dst = Piece->getEndLocation().getStmtOrNull(); 1457 1458 // We are looking at an edge. Is the destination within a larger 1459 // expression? 1460 PathDiagnosticLocation DstContext = 1461 getEnclosingStmtLocation(Dst, LC, /*allowNested=*/true); 1462 if (!DstContext.isValid() || DstContext.asStmt() == Dst) 1463 break; 1464 1465 // If the source is in the same context, we're already good. 1466 if (llvm::is_contained(SrcContexts, DstContext)) 1467 break; 1468 1469 // Update the subexpression node to point to the context edge. 1470 Piece->setStartLocation(DstContext); 1471 1472 // Try to extend the previous edge if it's at the same level as the source 1473 // context. 1474 if (Prev != E) { 1475 auto *PrevPiece = dyn_cast<PathDiagnosticControlFlowPiece>(Prev->get()); 1476 1477 if (PrevPiece) { 1478 if (const Stmt *PrevSrc = 1479 PrevPiece->getStartLocation().getStmtOrNull()) { 1480 const Stmt *PrevSrcParent = getStmtParent(PrevSrc, PM); 1481 if (PrevSrcParent == 1482 getStmtParent(DstContext.getStmtOrNull(), PM)) { 1483 PrevPiece->setEndLocation(DstContext); 1484 break; 1485 } 1486 } 1487 } 1488 } 1489 1490 // Otherwise, split the current edge into a context edge and a 1491 // subexpression edge. Note that the context statement may itself have 1492 // context. 1493 auto P = 1494 std::make_shared<PathDiagnosticControlFlowPiece>(SrcLoc, DstContext); 1495 Piece = P.get(); 1496 I = pieces.insert(I, std::move(P)); 1497 } 1498 } 1499 } 1500 1501 /// Move edges from a branch condition to a branch target 1502 /// when the condition is simple. 1503 /// 1504 /// This restructures some of the work of addContextEdges. That function 1505 /// creates edges this may destroy, but they work together to create a more 1506 /// aesthetically set of edges around branches. After the call to 1507 /// addContextEdges, we may have (1) an edge to the branch, (2) an edge from 1508 /// the branch to the branch condition, and (3) an edge from the branch 1509 /// condition to the branch target. We keep (1), but may wish to remove (2) 1510 /// and move the source of (3) to the branch if the branch condition is simple. 1511 static void simplifySimpleBranches(PathPieces &pieces) { 1512 for (PathPieces::iterator I = pieces.begin(), E = pieces.end(); I != E; ++I) { 1513 const auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get()); 1514 1515 if (!PieceI) 1516 continue; 1517 1518 const Stmt *s1Start = PieceI->getStartLocation().getStmtOrNull(); 1519 const Stmt *s1End = PieceI->getEndLocation().getStmtOrNull(); 1520 1521 if (!s1Start || !s1End) 1522 continue; 1523 1524 PathPieces::iterator NextI = I; ++NextI; 1525 if (NextI == E) 1526 break; 1527 1528 PathDiagnosticControlFlowPiece *PieceNextI = nullptr; 1529 1530 while (true) { 1531 if (NextI == E) 1532 break; 1533 1534 const auto *EV = dyn_cast<PathDiagnosticEventPiece>(NextI->get()); 1535 if (EV) { 1536 StringRef S = EV->getString(); 1537 if (S == StrEnteringLoop || S == StrLoopBodyZero || 1538 S == StrLoopCollectionEmpty || S == StrLoopRangeEmpty) { 1539 ++NextI; 1540 continue; 1541 } 1542 break; 1543 } 1544 1545 PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get()); 1546 break; 1547 } 1548 1549 if (!PieceNextI) 1550 continue; 1551 1552 const Stmt *s2Start = PieceNextI->getStartLocation().getStmtOrNull(); 1553 const Stmt *s2End = PieceNextI->getEndLocation().getStmtOrNull(); 1554 1555 if (!s2Start || !s2End || s1End != s2Start) 1556 continue; 1557 1558 // We only perform this transformation for specific branch kinds. 1559 // We don't want to do this for do..while, for example. 1560 if (!isa<ForStmt, WhileStmt, IfStmt, ObjCForCollectionStmt, 1561 CXXForRangeStmt>(s1Start)) 1562 continue; 1563 1564 // Is s1End the branch condition? 1565 if (!isConditionForTerminator(s1Start, s1End)) 1566 continue; 1567 1568 // Perform the hoisting by eliminating (2) and changing the start 1569 // location of (3). 1570 PieceNextI->setStartLocation(PieceI->getStartLocation()); 1571 I = pieces.erase(I); 1572 } 1573 } 1574 1575 /// Returns the number of bytes in the given (character-based) SourceRange. 1576 /// 1577 /// If the locations in the range are not on the same line, returns 1578 /// std::nullopt. 1579 /// 1580 /// Note that this does not do a precise user-visible character or column count. 1581 static std::optional<size_t> getLengthOnSingleLine(const SourceManager &SM, 1582 SourceRange Range) { 1583 SourceRange ExpansionRange(SM.getExpansionLoc(Range.getBegin()), 1584 SM.getExpansionRange(Range.getEnd()).getEnd()); 1585 1586 FileID FID = SM.getFileID(ExpansionRange.getBegin()); 1587 if (FID != SM.getFileID(ExpansionRange.getEnd())) 1588 return std::nullopt; 1589 1590 std::optional<MemoryBufferRef> Buffer = SM.getBufferOrNone(FID); 1591 if (!Buffer) 1592 return std::nullopt; 1593 1594 unsigned BeginOffset = SM.getFileOffset(ExpansionRange.getBegin()); 1595 unsigned EndOffset = SM.getFileOffset(ExpansionRange.getEnd()); 1596 StringRef Snippet = Buffer->getBuffer().slice(BeginOffset, EndOffset); 1597 1598 // We're searching the raw bytes of the buffer here, which might include 1599 // escaped newlines and such. That's okay; we're trying to decide whether the 1600 // SourceRange is covering a large or small amount of space in the user's 1601 // editor. 1602 if (Snippet.find_first_of("\r\n") != StringRef::npos) 1603 return std::nullopt; 1604 1605 // This isn't Unicode-aware, but it doesn't need to be. 1606 return Snippet.size(); 1607 } 1608 1609 /// \sa getLengthOnSingleLine(SourceManager, SourceRange) 1610 static std::optional<size_t> getLengthOnSingleLine(const SourceManager &SM, 1611 const Stmt *S) { 1612 return getLengthOnSingleLine(SM, S->getSourceRange()); 1613 } 1614 1615 /// Eliminate two-edge cycles created by addContextEdges(). 1616 /// 1617 /// Once all the context edges are in place, there are plenty of cases where 1618 /// there's a single edge from a top-level statement to a subexpression, 1619 /// followed by a single path note, and then a reverse edge to get back out to 1620 /// the top level. If the statement is simple enough, the subexpression edges 1621 /// just add noise and make it harder to understand what's going on. 1622 /// 1623 /// This function only removes edges in pairs, because removing only one edge 1624 /// might leave other edges dangling. 1625 /// 1626 /// This will not remove edges in more complicated situations: 1627 /// - if there is more than one "hop" leading to or from a subexpression. 1628 /// - if there is an inlined call between the edges instead of a single event. 1629 /// - if the whole statement is large enough that having subexpression arrows 1630 /// might be helpful. 1631 static void removeContextCycles(PathPieces &Path, const SourceManager &SM) { 1632 for (PathPieces::iterator I = Path.begin(), E = Path.end(); I != E; ) { 1633 // Pattern match the current piece and its successor. 1634 const auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get()); 1635 1636 if (!PieceI) { 1637 ++I; 1638 continue; 1639 } 1640 1641 const Stmt *s1Start = PieceI->getStartLocation().getStmtOrNull(); 1642 const Stmt *s1End = PieceI->getEndLocation().getStmtOrNull(); 1643 1644 PathPieces::iterator NextI = I; ++NextI; 1645 if (NextI == E) 1646 break; 1647 1648 const auto *PieceNextI = 1649 dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get()); 1650 1651 if (!PieceNextI) { 1652 if (isa<PathDiagnosticEventPiece>(NextI->get())) { 1653 ++NextI; 1654 if (NextI == E) 1655 break; 1656 PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get()); 1657 } 1658 1659 if (!PieceNextI) { 1660 ++I; 1661 continue; 1662 } 1663 } 1664 1665 const Stmt *s2Start = PieceNextI->getStartLocation().getStmtOrNull(); 1666 const Stmt *s2End = PieceNextI->getEndLocation().getStmtOrNull(); 1667 1668 if (s1Start && s2Start && s1Start == s2End && s2Start == s1End) { 1669 const size_t MAX_SHORT_LINE_LENGTH = 80; 1670 std::optional<size_t> s1Length = getLengthOnSingleLine(SM, s1Start); 1671 if (s1Length && *s1Length <= MAX_SHORT_LINE_LENGTH) { 1672 std::optional<size_t> s2Length = getLengthOnSingleLine(SM, s2Start); 1673 if (s2Length && *s2Length <= MAX_SHORT_LINE_LENGTH) { 1674 Path.erase(I); 1675 I = Path.erase(NextI); 1676 continue; 1677 } 1678 } 1679 } 1680 1681 ++I; 1682 } 1683 } 1684 1685 /// Return true if X is contained by Y. 1686 static bool lexicalContains(const ParentMap &PM, const Stmt *X, const Stmt *Y) { 1687 while (X) { 1688 if (X == Y) 1689 return true; 1690 X = PM.getParent(X); 1691 } 1692 return false; 1693 } 1694 1695 // Remove short edges on the same line less than 3 columns in difference. 1696 static void removePunyEdges(PathPieces &path, const SourceManager &SM, 1697 const ParentMap &PM) { 1698 bool erased = false; 1699 1700 for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; 1701 erased ? I : ++I) { 1702 erased = false; 1703 1704 const auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get()); 1705 1706 if (!PieceI) 1707 continue; 1708 1709 const Stmt *start = PieceI->getStartLocation().getStmtOrNull(); 1710 const Stmt *end = PieceI->getEndLocation().getStmtOrNull(); 1711 1712 if (!start || !end) 1713 continue; 1714 1715 const Stmt *endParent = PM.getParent(end); 1716 if (!endParent) 1717 continue; 1718 1719 if (isConditionForTerminator(end, endParent)) 1720 continue; 1721 1722 SourceLocation FirstLoc = start->getBeginLoc(); 1723 SourceLocation SecondLoc = end->getBeginLoc(); 1724 1725 if (!SM.isWrittenInSameFile(FirstLoc, SecondLoc)) 1726 continue; 1727 if (SM.isBeforeInTranslationUnit(SecondLoc, FirstLoc)) 1728 std::swap(SecondLoc, FirstLoc); 1729 1730 SourceRange EdgeRange(FirstLoc, SecondLoc); 1731 std::optional<size_t> ByteWidth = getLengthOnSingleLine(SM, EdgeRange); 1732 1733 // If the statements are on different lines, continue. 1734 if (!ByteWidth) 1735 continue; 1736 1737 const size_t MAX_PUNY_EDGE_LENGTH = 2; 1738 if (*ByteWidth <= MAX_PUNY_EDGE_LENGTH) { 1739 // FIXME: There are enough /bytes/ between the endpoints of the edge, but 1740 // there might not be enough /columns/. A proper user-visible column count 1741 // is probably too expensive, though. 1742 I = path.erase(I); 1743 erased = true; 1744 continue; 1745 } 1746 } 1747 } 1748 1749 static void removeIdenticalEvents(PathPieces &path) { 1750 for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; ++I) { 1751 const auto *PieceI = dyn_cast<PathDiagnosticEventPiece>(I->get()); 1752 1753 if (!PieceI) 1754 continue; 1755 1756 PathPieces::iterator NextI = I; ++NextI; 1757 if (NextI == E) 1758 return; 1759 1760 const auto *PieceNextI = dyn_cast<PathDiagnosticEventPiece>(NextI->get()); 1761 1762 if (!PieceNextI) 1763 continue; 1764 1765 // Erase the second piece if it has the same exact message text. 1766 if (PieceI->getString() == PieceNextI->getString()) { 1767 path.erase(NextI); 1768 } 1769 } 1770 } 1771 1772 static bool optimizeEdges(const PathDiagnosticConstruct &C, PathPieces &path, 1773 OptimizedCallsSet &OCS) { 1774 bool hasChanges = false; 1775 const LocationContext *LC = C.getLocationContextFor(&path); 1776 assert(LC); 1777 const ParentMap &PM = LC->getParentMap(); 1778 const SourceManager &SM = C.getSourceManager(); 1779 1780 for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; ) { 1781 // Optimize subpaths. 1782 if (auto *CallI = dyn_cast<PathDiagnosticCallPiece>(I->get())) { 1783 // Record the fact that a call has been optimized so we only do the 1784 // effort once. 1785 if (!OCS.count(CallI)) { 1786 while (optimizeEdges(C, CallI->path, OCS)) { 1787 } 1788 OCS.insert(CallI); 1789 } 1790 ++I; 1791 continue; 1792 } 1793 1794 // Pattern match the current piece and its successor. 1795 auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get()); 1796 1797 if (!PieceI) { 1798 ++I; 1799 continue; 1800 } 1801 1802 const Stmt *s1Start = PieceI->getStartLocation().getStmtOrNull(); 1803 const Stmt *s1End = PieceI->getEndLocation().getStmtOrNull(); 1804 const Stmt *level1 = getStmtParent(s1Start, PM); 1805 const Stmt *level2 = getStmtParent(s1End, PM); 1806 1807 PathPieces::iterator NextI = I; ++NextI; 1808 if (NextI == E) 1809 break; 1810 1811 const auto *PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get()); 1812 1813 if (!PieceNextI) { 1814 ++I; 1815 continue; 1816 } 1817 1818 const Stmt *s2Start = PieceNextI->getStartLocation().getStmtOrNull(); 1819 const Stmt *s2End = PieceNextI->getEndLocation().getStmtOrNull(); 1820 const Stmt *level3 = getStmtParent(s2Start, PM); 1821 const Stmt *level4 = getStmtParent(s2End, PM); 1822 1823 // Rule I. 1824 // 1825 // If we have two consecutive control edges whose end/begin locations 1826 // are at the same level (e.g. statements or top-level expressions within 1827 // a compound statement, or siblings share a single ancestor expression), 1828 // then merge them if they have no interesting intermediate event. 1829 // 1830 // For example: 1831 // 1832 // (1.1 -> 1.2) -> (1.2 -> 1.3) becomes (1.1 -> 1.3) because the common 1833 // parent is '1'. Here 'x.y.z' represents the hierarchy of statements. 1834 // 1835 // NOTE: this will be limited later in cases where we add barriers 1836 // to prevent this optimization. 1837 if (level1 && level1 == level2 && level1 == level3 && level1 == level4) { 1838 PieceI->setEndLocation(PieceNextI->getEndLocation()); 1839 path.erase(NextI); 1840 hasChanges = true; 1841 continue; 1842 } 1843 1844 // Rule II. 1845 // 1846 // Eliminate edges between subexpressions and parent expressions 1847 // when the subexpression is consumed. 1848 // 1849 // NOTE: this will be limited later in cases where we add barriers 1850 // to prevent this optimization. 1851 if (s1End && s1End == s2Start && level2) { 1852 bool removeEdge = false; 1853 // Remove edges into the increment or initialization of a 1854 // loop that have no interleaving event. This means that 1855 // they aren't interesting. 1856 if (isIncrementOrInitInForLoop(s1End, level2)) 1857 removeEdge = true; 1858 // Next only consider edges that are not anchored on 1859 // the condition of a terminator. This are intermediate edges 1860 // that we might want to trim. 1861 else if (!isConditionForTerminator(level2, s1End)) { 1862 // Trim edges on expressions that are consumed by 1863 // the parent expression. 1864 if (isa<Expr>(s1End) && PM.isConsumedExpr(cast<Expr>(s1End))) { 1865 removeEdge = true; 1866 } 1867 // Trim edges where a lexical containment doesn't exist. 1868 // For example: 1869 // 1870 // X -> Y -> Z 1871 // 1872 // If 'Z' lexically contains Y (it is an ancestor) and 1873 // 'X' does not lexically contain Y (it is a descendant OR 1874 // it has no lexical relationship at all) then trim. 1875 // 1876 // This can eliminate edges where we dive into a subexpression 1877 // and then pop back out, etc. 1878 else if (s1Start && s2End && 1879 lexicalContains(PM, s2Start, s2End) && 1880 !lexicalContains(PM, s1End, s1Start)) { 1881 removeEdge = true; 1882 } 1883 // Trim edges from a subexpression back to the top level if the 1884 // subexpression is on a different line. 1885 // 1886 // A.1 -> A -> B 1887 // becomes 1888 // A.1 -> B 1889 // 1890 // These edges just look ugly and don't usually add anything. 1891 else if (s1Start && s2End && 1892 lexicalContains(PM, s1Start, s1End)) { 1893 SourceRange EdgeRange(PieceI->getEndLocation().asLocation(), 1894 PieceI->getStartLocation().asLocation()); 1895 if (!getLengthOnSingleLine(SM, EdgeRange)) 1896 removeEdge = true; 1897 } 1898 } 1899 1900 if (removeEdge) { 1901 PieceI->setEndLocation(PieceNextI->getEndLocation()); 1902 path.erase(NextI); 1903 hasChanges = true; 1904 continue; 1905 } 1906 } 1907 1908 // Optimize edges for ObjC fast-enumeration loops. 1909 // 1910 // (X -> collection) -> (collection -> element) 1911 // 1912 // becomes: 1913 // 1914 // (X -> element) 1915 if (s1End == s2Start) { 1916 const auto *FS = dyn_cast_or_null<ObjCForCollectionStmt>(level3); 1917 if (FS && FS->getCollection()->IgnoreParens() == s2Start && 1918 s2End == FS->getElement()) { 1919 PieceI->setEndLocation(PieceNextI->getEndLocation()); 1920 path.erase(NextI); 1921 hasChanges = true; 1922 continue; 1923 } 1924 } 1925 1926 // No changes at this index? Move to the next one. 1927 ++I; 1928 } 1929 1930 if (!hasChanges) { 1931 // Adjust edges into subexpressions to make them more uniform 1932 // and aesthetically pleasing. 1933 addContextEdges(path, LC); 1934 // Remove "cyclical" edges that include one or more context edges. 1935 removeContextCycles(path, SM); 1936 // Hoist edges originating from branch conditions to branches 1937 // for simple branches. 1938 simplifySimpleBranches(path); 1939 // Remove any puny edges left over after primary optimization pass. 1940 removePunyEdges(path, SM, PM); 1941 // Remove identical events. 1942 removeIdenticalEvents(path); 1943 } 1944 1945 return hasChanges; 1946 } 1947 1948 /// Drop the very first edge in a path, which should be a function entry edge. 1949 /// 1950 /// If the first edge is not a function entry edge (say, because the first 1951 /// statement had an invalid source location), this function does nothing. 1952 // FIXME: We should just generate invalid edges anyway and have the optimizer 1953 // deal with them. 1954 static void dropFunctionEntryEdge(const PathDiagnosticConstruct &C, 1955 PathPieces &Path) { 1956 const auto *FirstEdge = 1957 dyn_cast<PathDiagnosticControlFlowPiece>(Path.front().get()); 1958 if (!FirstEdge) 1959 return; 1960 1961 const Decl *D = C.getLocationContextFor(&Path)->getDecl(); 1962 PathDiagnosticLocation EntryLoc = 1963 PathDiagnosticLocation::createBegin(D, C.getSourceManager()); 1964 if (FirstEdge->getStartLocation() != EntryLoc) 1965 return; 1966 1967 Path.pop_front(); 1968 } 1969 1970 /// Populate executes lines with lines containing at least one diagnostics. 1971 static void updateExecutedLinesWithDiagnosticPieces(PathDiagnostic &PD) { 1972 1973 PathPieces path = PD.path.flatten(/*ShouldFlattenMacros=*/true); 1974 FilesToLineNumsMap &ExecutedLines = PD.getExecutedLines(); 1975 1976 for (const auto &P : path) { 1977 FullSourceLoc Loc = P->getLocation().asLocation().getExpansionLoc(); 1978 FileID FID = Loc.getFileID(); 1979 unsigned LineNo = Loc.getLineNumber(); 1980 assert(FID.isValid()); 1981 ExecutedLines[FID].insert(LineNo); 1982 } 1983 } 1984 1985 PathDiagnosticConstruct::PathDiagnosticConstruct( 1986 const PathDiagnosticConsumer *PDC, const ExplodedNode *ErrorNode, 1987 const PathSensitiveBugReport *R, const Decl *AnalysisEntryPoint) 1988 : Consumer(PDC), CurrentNode(ErrorNode), 1989 SM(CurrentNode->getCodeDecl().getASTContext().getSourceManager()), 1990 PD(generateEmptyDiagnosticForReport(R, getSourceManager(), 1991 AnalysisEntryPoint)) { 1992 LCM[&PD->getActivePath()] = ErrorNode->getLocationContext(); 1993 } 1994 1995 PathDiagnosticBuilder::PathDiagnosticBuilder( 1996 BugReporterContext BRC, std::unique_ptr<ExplodedGraph> BugPath, 1997 PathSensitiveBugReport *r, const ExplodedNode *ErrorNode, 1998 std::unique_ptr<VisitorsDiagnosticsTy> VisitorsDiagnostics) 1999 : BugReporterContext(BRC), BugPath(std::move(BugPath)), R(r), 2000 ErrorNode(ErrorNode), 2001 VisitorsDiagnostics(std::move(VisitorsDiagnostics)) {} 2002 2003 std::unique_ptr<PathDiagnostic> 2004 PathDiagnosticBuilder::generate(const PathDiagnosticConsumer *PDC) const { 2005 const Decl *EntryPoint = getBugReporter().getAnalysisEntryPoint(); 2006 PathDiagnosticConstruct Construct(PDC, ErrorNode, R, EntryPoint); 2007 2008 const SourceManager &SM = getSourceManager(); 2009 const AnalyzerOptions &Opts = getAnalyzerOptions(); 2010 2011 if (!PDC->shouldGenerateDiagnostics()) 2012 return generateEmptyDiagnosticForReport(R, getSourceManager(), EntryPoint); 2013 2014 // Construct the final (warning) event for the bug report. 2015 auto EndNotes = VisitorsDiagnostics->find(ErrorNode); 2016 PathDiagnosticPieceRef LastPiece; 2017 if (EndNotes != VisitorsDiagnostics->end()) { 2018 assert(!EndNotes->second.empty()); 2019 LastPiece = EndNotes->second[0]; 2020 } else { 2021 LastPiece = BugReporterVisitor::getDefaultEndPath(*this, ErrorNode, 2022 *getBugReport()); 2023 } 2024 Construct.PD->setEndOfPath(LastPiece); 2025 2026 PathDiagnosticLocation PrevLoc = Construct.PD->getLocation(); 2027 // From the error node to the root, ascend the bug path and construct the bug 2028 // report. 2029 while (Construct.ascendToPrevNode()) { 2030 generatePathDiagnosticsForNode(Construct, PrevLoc); 2031 2032 auto VisitorNotes = VisitorsDiagnostics->find(Construct.getCurrentNode()); 2033 if (VisitorNotes == VisitorsDiagnostics->end()) 2034 continue; 2035 2036 // This is a workaround due to inability to put shared PathDiagnosticPiece 2037 // into a FoldingSet. 2038 std::set<llvm::FoldingSetNodeID> DeduplicationSet; 2039 2040 // Add pieces from custom visitors. 2041 for (const PathDiagnosticPieceRef &Note : VisitorNotes->second) { 2042 llvm::FoldingSetNodeID ID; 2043 Note->Profile(ID); 2044 if (!DeduplicationSet.insert(ID).second) 2045 continue; 2046 2047 if (PDC->shouldAddPathEdges()) 2048 addEdgeToPath(Construct.getActivePath(), PrevLoc, Note->getLocation()); 2049 updateStackPiecesWithMessage(Note, Construct.CallStack); 2050 Construct.getActivePath().push_front(Note); 2051 } 2052 } 2053 2054 if (PDC->shouldAddPathEdges()) { 2055 // Add an edge to the start of the function. 2056 // We'll prune it out later, but it helps make diagnostics more uniform. 2057 const StackFrameContext *CalleeLC = 2058 Construct.getLocationContextForActivePath()->getStackFrame(); 2059 const Decl *D = CalleeLC->getDecl(); 2060 addEdgeToPath(Construct.getActivePath(), PrevLoc, 2061 PathDiagnosticLocation::createBegin(D, SM)); 2062 } 2063 2064 2065 // Finally, prune the diagnostic path of uninteresting stuff. 2066 if (!Construct.PD->path.empty()) { 2067 if (R->shouldPrunePath() && Opts.ShouldPrunePaths) { 2068 bool stillHasNotes = 2069 removeUnneededCalls(Construct, Construct.getMutablePieces(), R); 2070 assert(stillHasNotes); 2071 (void)stillHasNotes; 2072 } 2073 2074 // Remove pop-up notes if needed. 2075 if (!Opts.ShouldAddPopUpNotes) 2076 removePopUpNotes(Construct.getMutablePieces()); 2077 2078 // Redirect all call pieces to have valid locations. 2079 adjustCallLocations(Construct.getMutablePieces()); 2080 removePiecesWithInvalidLocations(Construct.getMutablePieces()); 2081 2082 if (PDC->shouldAddPathEdges()) { 2083 2084 // Reduce the number of edges from a very conservative set 2085 // to an aesthetically pleasing subset that conveys the 2086 // necessary information. 2087 OptimizedCallsSet OCS; 2088 while (optimizeEdges(Construct, Construct.getMutablePieces(), OCS)) { 2089 } 2090 2091 // Drop the very first function-entry edge. It's not really necessary 2092 // for top-level functions. 2093 dropFunctionEntryEdge(Construct, Construct.getMutablePieces()); 2094 } 2095 2096 // Remove messages that are basically the same, and edges that may not 2097 // make sense. 2098 // We have to do this after edge optimization in the Extensive mode. 2099 removeRedundantMsgs(Construct.getMutablePieces()); 2100 removeEdgesToDefaultInitializers(Construct.getMutablePieces()); 2101 } 2102 2103 if (Opts.ShouldDisplayMacroExpansions) 2104 CompactMacroExpandedPieces(Construct.getMutablePieces(), SM); 2105 2106 return std::move(Construct.PD); 2107 } 2108 2109 //===----------------------------------------------------------------------===// 2110 // Methods for BugType and subclasses. 2111 //===----------------------------------------------------------------------===// 2112 2113 void BugType::anchor() {} 2114 2115 //===----------------------------------------------------------------------===// 2116 // Methods for BugReport and subclasses. 2117 //===----------------------------------------------------------------------===// 2118 2119 LLVM_ATTRIBUTE_USED static bool 2120 isDependency(const CheckerRegistryData &Registry, StringRef CheckerName) { 2121 for (const std::pair<StringRef, StringRef> &Pair : Registry.Dependencies) { 2122 if (Pair.second == CheckerName) 2123 return true; 2124 } 2125 return false; 2126 } 2127 2128 LLVM_ATTRIBUTE_USED static bool isHidden(const CheckerRegistryData &Registry, 2129 StringRef CheckerName) { 2130 for (const CheckerInfo &Checker : Registry.Checkers) { 2131 if (Checker.FullName == CheckerName) 2132 return Checker.IsHidden; 2133 } 2134 llvm_unreachable( 2135 "Checker name not found in CheckerRegistry -- did you retrieve it " 2136 "correctly from CheckerManager::getCurrentCheckerName?"); 2137 } 2138 2139 PathSensitiveBugReport::PathSensitiveBugReport( 2140 const BugType &bt, StringRef shortDesc, StringRef desc, 2141 const ExplodedNode *errorNode, PathDiagnosticLocation LocationToUnique, 2142 const Decl *DeclToUnique) 2143 : BugReport(Kind::PathSensitive, bt, shortDesc, desc), ErrorNode(errorNode), 2144 ErrorNodeRange(getStmt() ? getStmt()->getSourceRange() : SourceRange()), 2145 UniqueingLocation(LocationToUnique), UniqueingDecl(DeclToUnique) { 2146 assert(!isDependency(ErrorNode->getState() 2147 ->getAnalysisManager() 2148 .getCheckerManager() 2149 ->getCheckerRegistryData(), 2150 bt.getCheckerName()) && 2151 "Some checkers depend on this one! We don't allow dependency " 2152 "checkers to emit warnings, because checkers should depend on " 2153 "*modeling*, not *diagnostics*."); 2154 2155 assert((bt.getCheckerName().starts_with("debug") || 2156 !isHidden(ErrorNode->getState() 2157 ->getAnalysisManager() 2158 .getCheckerManager() 2159 ->getCheckerRegistryData(), 2160 bt.getCheckerName())) && 2161 "Hidden checkers musn't emit diagnostics as they are by definition " 2162 "non-user facing!"); 2163 } 2164 2165 void PathSensitiveBugReport::addVisitor( 2166 std::unique_ptr<BugReporterVisitor> visitor) { 2167 if (!visitor) 2168 return; 2169 2170 llvm::FoldingSetNodeID ID; 2171 visitor->Profile(ID); 2172 2173 void *InsertPos = nullptr; 2174 if (CallbacksSet.FindNodeOrInsertPos(ID, InsertPos)) { 2175 return; 2176 } 2177 2178 Callbacks.push_back(std::move(visitor)); 2179 } 2180 2181 void PathSensitiveBugReport::clearVisitors() { 2182 Callbacks.clear(); 2183 } 2184 2185 const Decl *PathSensitiveBugReport::getDeclWithIssue() const { 2186 const ExplodedNode *N = getErrorNode(); 2187 if (!N) 2188 return nullptr; 2189 2190 const LocationContext *LC = N->getLocationContext(); 2191 return LC->getStackFrame()->getDecl(); 2192 } 2193 2194 void BasicBugReport::Profile(llvm::FoldingSetNodeID& hash) const { 2195 hash.AddInteger(static_cast<int>(getKind())); 2196 hash.AddPointer(&BT); 2197 hash.AddString(getShortDescription()); 2198 assert(Location.isValid()); 2199 Location.Profile(hash); 2200 2201 for (SourceRange range : Ranges) { 2202 if (!range.isValid()) 2203 continue; 2204 hash.Add(range.getBegin()); 2205 hash.Add(range.getEnd()); 2206 } 2207 } 2208 2209 void PathSensitiveBugReport::Profile(llvm::FoldingSetNodeID &hash) const { 2210 hash.AddInteger(static_cast<int>(getKind())); 2211 hash.AddPointer(&BT); 2212 hash.AddString(getShortDescription()); 2213 PathDiagnosticLocation UL = getUniqueingLocation(); 2214 if (UL.isValid()) { 2215 UL.Profile(hash); 2216 } else { 2217 // TODO: The statement may be null if the report was emitted before any 2218 // statements were executed. In particular, some checkers by design 2219 // occasionally emit their reports in empty functions (that have no 2220 // statements in their body). Do we profile correctly in this case? 2221 hash.AddPointer(ErrorNode->getCurrentOrPreviousStmtForDiagnostics()); 2222 } 2223 2224 for (SourceRange range : Ranges) { 2225 if (!range.isValid()) 2226 continue; 2227 hash.Add(range.getBegin()); 2228 hash.Add(range.getEnd()); 2229 } 2230 } 2231 2232 template <class T> 2233 static void insertToInterestingnessMap( 2234 llvm::DenseMap<T, bugreporter::TrackingKind> &InterestingnessMap, T Val, 2235 bugreporter::TrackingKind TKind) { 2236 auto Result = InterestingnessMap.insert({Val, TKind}); 2237 2238 if (Result.second) 2239 return; 2240 2241 // Even if this symbol/region was already marked as interesting as a 2242 // condition, if we later mark it as interesting again but with 2243 // thorough tracking, overwrite it. Entities marked with thorough 2244 // interestiness are the most important (or most interesting, if you will), 2245 // and we wouldn't like to downplay their importance. 2246 2247 switch (TKind) { 2248 case bugreporter::TrackingKind::Thorough: 2249 Result.first->getSecond() = bugreporter::TrackingKind::Thorough; 2250 return; 2251 case bugreporter::TrackingKind::Condition: 2252 return; 2253 } 2254 2255 llvm_unreachable( 2256 "BugReport::markInteresting currently can only handle 2 different " 2257 "tracking kinds! Please define what tracking kind should this entitiy" 2258 "have, if it was already marked as interesting with a different kind!"); 2259 } 2260 2261 void PathSensitiveBugReport::markInteresting(SymbolRef sym, 2262 bugreporter::TrackingKind TKind) { 2263 if (!sym) 2264 return; 2265 2266 insertToInterestingnessMap(InterestingSymbols, sym, TKind); 2267 2268 // FIXME: No tests exist for this code and it is questionable: 2269 // How to handle multiple metadata for the same region? 2270 if (const auto *meta = dyn_cast<SymbolMetadata>(sym)) 2271 markInteresting(meta->getRegion(), TKind); 2272 } 2273 2274 void PathSensitiveBugReport::markNotInteresting(SymbolRef sym) { 2275 if (!sym) 2276 return; 2277 InterestingSymbols.erase(sym); 2278 2279 // The metadata part of markInteresting is not reversed here. 2280 // Just making the same region not interesting is incorrect 2281 // in specific cases. 2282 if (const auto *meta = dyn_cast<SymbolMetadata>(sym)) 2283 markNotInteresting(meta->getRegion()); 2284 } 2285 2286 void PathSensitiveBugReport::markInteresting(const MemRegion *R, 2287 bugreporter::TrackingKind TKind) { 2288 if (!R) 2289 return; 2290 2291 R = R->getBaseRegion(); 2292 insertToInterestingnessMap(InterestingRegions, R, TKind); 2293 2294 if (const auto *SR = dyn_cast<SymbolicRegion>(R)) 2295 markInteresting(SR->getSymbol(), TKind); 2296 } 2297 2298 void PathSensitiveBugReport::markNotInteresting(const MemRegion *R) { 2299 if (!R) 2300 return; 2301 2302 R = R->getBaseRegion(); 2303 InterestingRegions.erase(R); 2304 2305 if (const auto *SR = dyn_cast<SymbolicRegion>(R)) 2306 markNotInteresting(SR->getSymbol()); 2307 } 2308 2309 void PathSensitiveBugReport::markInteresting(SVal V, 2310 bugreporter::TrackingKind TKind) { 2311 markInteresting(V.getAsRegion(), TKind); 2312 markInteresting(V.getAsSymbol(), TKind); 2313 } 2314 2315 void PathSensitiveBugReport::markInteresting(const LocationContext *LC) { 2316 if (!LC) 2317 return; 2318 InterestingLocationContexts.insert(LC); 2319 } 2320 2321 std::optional<bugreporter::TrackingKind> 2322 PathSensitiveBugReport::getInterestingnessKind(SVal V) const { 2323 auto RKind = getInterestingnessKind(V.getAsRegion()); 2324 auto SKind = getInterestingnessKind(V.getAsSymbol()); 2325 if (!RKind) 2326 return SKind; 2327 if (!SKind) 2328 return RKind; 2329 2330 // If either is marked with throrough tracking, return that, we wouldn't like 2331 // to downplay a note's importance by 'only' mentioning it as a condition. 2332 switch(*RKind) { 2333 case bugreporter::TrackingKind::Thorough: 2334 return RKind; 2335 case bugreporter::TrackingKind::Condition: 2336 return SKind; 2337 } 2338 2339 llvm_unreachable( 2340 "BugReport::getInterestingnessKind currently can only handle 2 different " 2341 "tracking kinds! Please define what tracking kind should we return here " 2342 "when the kind of getAsRegion() and getAsSymbol() is different!"); 2343 return std::nullopt; 2344 } 2345 2346 std::optional<bugreporter::TrackingKind> 2347 PathSensitiveBugReport::getInterestingnessKind(SymbolRef sym) const { 2348 if (!sym) 2349 return std::nullopt; 2350 // We don't currently consider metadata symbols to be interesting 2351 // even if we know their region is interesting. Is that correct behavior? 2352 auto It = InterestingSymbols.find(sym); 2353 if (It == InterestingSymbols.end()) 2354 return std::nullopt; 2355 return It->getSecond(); 2356 } 2357 2358 std::optional<bugreporter::TrackingKind> 2359 PathSensitiveBugReport::getInterestingnessKind(const MemRegion *R) const { 2360 if (!R) 2361 return std::nullopt; 2362 2363 R = R->getBaseRegion(); 2364 auto It = InterestingRegions.find(R); 2365 if (It != InterestingRegions.end()) 2366 return It->getSecond(); 2367 2368 if (const auto *SR = dyn_cast<SymbolicRegion>(R)) 2369 return getInterestingnessKind(SR->getSymbol()); 2370 return std::nullopt; 2371 } 2372 2373 bool PathSensitiveBugReport::isInteresting(SVal V) const { 2374 return getInterestingnessKind(V).has_value(); 2375 } 2376 2377 bool PathSensitiveBugReport::isInteresting(SymbolRef sym) const { 2378 return getInterestingnessKind(sym).has_value(); 2379 } 2380 2381 bool PathSensitiveBugReport::isInteresting(const MemRegion *R) const { 2382 return getInterestingnessKind(R).has_value(); 2383 } 2384 2385 bool PathSensitiveBugReport::isInteresting(const LocationContext *LC) const { 2386 if (!LC) 2387 return false; 2388 return InterestingLocationContexts.count(LC); 2389 } 2390 2391 const Stmt *PathSensitiveBugReport::getStmt() const { 2392 if (!ErrorNode) 2393 return nullptr; 2394 2395 ProgramPoint ProgP = ErrorNode->getLocation(); 2396 const Stmt *S = nullptr; 2397 2398 if (std::optional<BlockEntrance> BE = ProgP.getAs<BlockEntrance>()) { 2399 CFGBlock &Exit = ProgP.getLocationContext()->getCFG()->getExit(); 2400 if (BE->getBlock() == &Exit) 2401 S = ErrorNode->getPreviousStmtForDiagnostics(); 2402 } 2403 if (!S) 2404 S = ErrorNode->getStmtForDiagnostics(); 2405 2406 return S; 2407 } 2408 2409 ArrayRef<SourceRange> 2410 PathSensitiveBugReport::getRanges() const { 2411 // If no custom ranges, add the range of the statement corresponding to 2412 // the error node. 2413 if (Ranges.empty() && isa_and_nonnull<Expr>(getStmt())) 2414 return ErrorNodeRange; 2415 2416 return Ranges; 2417 } 2418 2419 static bool exitingDestructor(const ExplodedNode *N) { 2420 // Need to loop here, as some times the Error node is already outside of the 2421 // destructor context, and the previous node is an edge that is also outside. 2422 while (N && !N->getLocation().getAs<StmtPoint>()) { 2423 N = N->getFirstPred(); 2424 } 2425 return N && isa<CXXDestructorDecl>(N->getLocationContext()->getDecl()); 2426 } 2427 2428 static const Stmt * 2429 findReasonableStmtCloseToFunctionExit(const ExplodedNode *N) { 2430 if (exitingDestructor(N)) { 2431 // If we are exiting a destructor call, it is more useful to point to 2432 // the next stmt which is usually the temporary declaration. 2433 if (const Stmt *S = N->getNextStmtForDiagnostics()) 2434 return S; 2435 // If next stmt is not found, it is likely the end of a top-level 2436 // function analysis. find the last execution statement then. 2437 } 2438 return N->getPreviousStmtForDiagnostics(); 2439 } 2440 2441 PathDiagnosticLocation 2442 PathSensitiveBugReport::getLocation() const { 2443 assert(ErrorNode && "Cannot create a location with a null node."); 2444 const Stmt *S = ErrorNode->getStmtForDiagnostics(); 2445 ProgramPoint P = ErrorNode->getLocation(); 2446 const LocationContext *LC = P.getLocationContext(); 2447 SourceManager &SM = 2448 ErrorNode->getState()->getStateManager().getContext().getSourceManager(); 2449 2450 if (!S) { 2451 // If this is an implicit call, return the implicit call point location. 2452 if (std::optional<PreImplicitCall> PIE = P.getAs<PreImplicitCall>()) 2453 return PathDiagnosticLocation(PIE->getLocation(), SM); 2454 if (auto FE = P.getAs<FunctionExitPoint>()) { 2455 if (const ReturnStmt *RS = FE->getStmt()) 2456 return PathDiagnosticLocation::createBegin(RS, SM, LC); 2457 2458 S = findReasonableStmtCloseToFunctionExit(ErrorNode); 2459 } 2460 if (!S) 2461 S = ErrorNode->getNextStmtForDiagnostics(); 2462 } 2463 2464 if (S) { 2465 // Attributed statements usually have corrupted begin locations, 2466 // it's OK to ignore attributes for our purposes and deal with 2467 // the actual annotated statement. 2468 if (const auto *AS = dyn_cast<AttributedStmt>(S)) 2469 S = AS->getSubStmt(); 2470 2471 // For member expressions, return the location of the '.' or '->'. 2472 if (const auto *ME = dyn_cast<MemberExpr>(S)) 2473 return PathDiagnosticLocation::createMemberLoc(ME, SM); 2474 2475 // For binary operators, return the location of the operator. 2476 if (const auto *B = dyn_cast<BinaryOperator>(S)) 2477 return PathDiagnosticLocation::createOperatorLoc(B, SM); 2478 2479 if (P.getAs<PostStmtPurgeDeadSymbols>()) 2480 return PathDiagnosticLocation::createEnd(S, SM, LC); 2481 2482 if (S->getBeginLoc().isValid()) 2483 return PathDiagnosticLocation(S, SM, LC); 2484 2485 return PathDiagnosticLocation( 2486 PathDiagnosticLocation::getValidSourceLocation(S, LC), SM); 2487 } 2488 2489 return PathDiagnosticLocation::createDeclEnd(ErrorNode->getLocationContext(), 2490 SM); 2491 } 2492 2493 //===----------------------------------------------------------------------===// 2494 // Methods for BugReporter and subclasses. 2495 //===----------------------------------------------------------------------===// 2496 2497 const ExplodedGraph &PathSensitiveBugReporter::getGraph() const { 2498 return Eng.getGraph(); 2499 } 2500 2501 ProgramStateManager &PathSensitiveBugReporter::getStateManager() const { 2502 return Eng.getStateManager(); 2503 } 2504 2505 BugReporter::BugReporter(BugReporterData &D) 2506 : D(D), UserSuppressions(D.getASTContext()) {} 2507 2508 BugReporter::~BugReporter() { 2509 // Make sure reports are flushed. 2510 assert(StrBugTypes.empty() && 2511 "Destroying BugReporter before diagnostics are emitted!"); 2512 2513 // Free the bug reports we are tracking. 2514 for (const auto I : EQClassesVector) 2515 delete I; 2516 } 2517 2518 void BugReporter::FlushReports() { 2519 // We need to flush reports in deterministic order to ensure the order 2520 // of the reports is consistent between runs. 2521 for (const auto EQ : EQClassesVector) 2522 FlushReport(*EQ); 2523 2524 // BugReporter owns and deletes only BugTypes created implicitly through 2525 // EmitBasicReport. 2526 // FIXME: There are leaks from checkers that assume that the BugTypes they 2527 // create will be destroyed by the BugReporter. 2528 StrBugTypes.clear(); 2529 } 2530 2531 //===----------------------------------------------------------------------===// 2532 // PathDiagnostics generation. 2533 //===----------------------------------------------------------------------===// 2534 2535 namespace { 2536 2537 /// A wrapper around an ExplodedGraph that contains a single path from the root 2538 /// to the error node. 2539 class BugPathInfo { 2540 public: 2541 std::unique_ptr<ExplodedGraph> BugPath; 2542 PathSensitiveBugReport *Report; 2543 const ExplodedNode *ErrorNode; 2544 }; 2545 2546 /// A wrapper around an ExplodedGraph whose leafs are all error nodes. Can 2547 /// conveniently retrieve bug paths from a single error node to the root. 2548 class BugPathGetter { 2549 std::unique_ptr<ExplodedGraph> TrimmedGraph; 2550 2551 using PriorityMapTy = llvm::DenseMap<const ExplodedNode *, unsigned>; 2552 2553 /// Assign each node with its distance from the root. 2554 PriorityMapTy PriorityMap; 2555 2556 /// Since the getErrorNode() or BugReport refers to the original ExplodedGraph, 2557 /// we need to pair it to the error node of the constructed trimmed graph. 2558 using ReportNewNodePair = 2559 std::pair<PathSensitiveBugReport *, const ExplodedNode *>; 2560 SmallVector<ReportNewNodePair, 32> ReportNodes; 2561 2562 BugPathInfo CurrentBugPath; 2563 2564 /// A helper class for sorting ExplodedNodes by priority. 2565 template <bool Descending> 2566 class PriorityCompare { 2567 const PriorityMapTy &PriorityMap; 2568 2569 public: 2570 PriorityCompare(const PriorityMapTy &M) : PriorityMap(M) {} 2571 2572 bool operator()(const ExplodedNode *LHS, const ExplodedNode *RHS) const { 2573 PriorityMapTy::const_iterator LI = PriorityMap.find(LHS); 2574 PriorityMapTy::const_iterator RI = PriorityMap.find(RHS); 2575 PriorityMapTy::const_iterator E = PriorityMap.end(); 2576 2577 if (LI == E) 2578 return Descending; 2579 if (RI == E) 2580 return !Descending; 2581 2582 return Descending ? LI->second > RI->second 2583 : LI->second < RI->second; 2584 } 2585 2586 bool operator()(const ReportNewNodePair &LHS, 2587 const ReportNewNodePair &RHS) const { 2588 return (*this)(LHS.second, RHS.second); 2589 } 2590 }; 2591 2592 public: 2593 BugPathGetter(const ExplodedGraph *OriginalGraph, 2594 ArrayRef<PathSensitiveBugReport *> &bugReports); 2595 2596 BugPathInfo *getNextBugPath(); 2597 }; 2598 2599 } // namespace 2600 2601 BugPathGetter::BugPathGetter(const ExplodedGraph *OriginalGraph, 2602 ArrayRef<PathSensitiveBugReport *> &bugReports) { 2603 SmallVector<const ExplodedNode *, 32> Nodes; 2604 for (const auto I : bugReports) { 2605 assert(I->isValid() && 2606 "We only allow BugReporterVisitors and BugReporter itself to " 2607 "invalidate reports!"); 2608 Nodes.emplace_back(I->getErrorNode()); 2609 } 2610 2611 // The trimmed graph is created in the body of the constructor to ensure 2612 // that the DenseMaps have been initialized already. 2613 InterExplodedGraphMap ForwardMap; 2614 TrimmedGraph = OriginalGraph->trim(Nodes, &ForwardMap); 2615 2616 // Find the (first) error node in the trimmed graph. We just need to consult 2617 // the node map which maps from nodes in the original graph to nodes 2618 // in the new graph. 2619 llvm::SmallPtrSet<const ExplodedNode *, 32> RemainingNodes; 2620 2621 for (PathSensitiveBugReport *Report : bugReports) { 2622 const ExplodedNode *NewNode = ForwardMap.lookup(Report->getErrorNode()); 2623 assert(NewNode && 2624 "Failed to construct a trimmed graph that contains this error " 2625 "node!"); 2626 ReportNodes.emplace_back(Report, NewNode); 2627 RemainingNodes.insert(NewNode); 2628 } 2629 2630 assert(!RemainingNodes.empty() && "No error node found in the trimmed graph"); 2631 2632 // Perform a forward BFS to find all the shortest paths. 2633 std::queue<const ExplodedNode *> WS; 2634 2635 assert(TrimmedGraph->num_roots() == 1); 2636 WS.push(*TrimmedGraph->roots_begin()); 2637 unsigned Priority = 0; 2638 2639 while (!WS.empty()) { 2640 const ExplodedNode *Node = WS.front(); 2641 WS.pop(); 2642 2643 PriorityMapTy::iterator PriorityEntry; 2644 bool IsNew; 2645 std::tie(PriorityEntry, IsNew) = PriorityMap.insert({Node, Priority}); 2646 ++Priority; 2647 2648 if (!IsNew) { 2649 assert(PriorityEntry->second <= Priority); 2650 continue; 2651 } 2652 2653 if (RemainingNodes.erase(Node)) 2654 if (RemainingNodes.empty()) 2655 break; 2656 2657 for (const ExplodedNode *Succ : Node->succs()) 2658 WS.push(Succ); 2659 } 2660 2661 // Sort the error paths from longest to shortest. 2662 llvm::sort(ReportNodes, PriorityCompare<true>(PriorityMap)); 2663 } 2664 2665 BugPathInfo *BugPathGetter::getNextBugPath() { 2666 if (ReportNodes.empty()) 2667 return nullptr; 2668 2669 const ExplodedNode *OrigN; 2670 std::tie(CurrentBugPath.Report, OrigN) = ReportNodes.pop_back_val(); 2671 assert(PriorityMap.contains(OrigN) && "error node not accessible from root"); 2672 2673 // Create a new graph with a single path. This is the graph that will be 2674 // returned to the caller. 2675 auto GNew = std::make_unique<ExplodedGraph>(); 2676 2677 // Now walk from the error node up the BFS path, always taking the 2678 // predeccessor with the lowest number. 2679 ExplodedNode *Succ = nullptr; 2680 while (true) { 2681 // Create the equivalent node in the new graph with the same state 2682 // and location. 2683 ExplodedNode *NewN = GNew->createUncachedNode( 2684 OrigN->getLocation(), OrigN->getState(), 2685 OrigN->getID(), OrigN->isSink()); 2686 2687 // Link up the new node with the previous node. 2688 if (Succ) 2689 Succ->addPredecessor(NewN, *GNew); 2690 else 2691 CurrentBugPath.ErrorNode = NewN; 2692 2693 Succ = NewN; 2694 2695 // Are we at the final node? 2696 if (OrigN->pred_empty()) { 2697 GNew->addRoot(NewN); 2698 break; 2699 } 2700 2701 // Find the next predeccessor node. We choose the node that is marked 2702 // with the lowest BFS number. 2703 OrigN = *std::min_element(OrigN->pred_begin(), OrigN->pred_end(), 2704 PriorityCompare<false>(PriorityMap)); 2705 } 2706 2707 CurrentBugPath.BugPath = std::move(GNew); 2708 2709 return &CurrentBugPath; 2710 } 2711 2712 /// CompactMacroExpandedPieces - This function postprocesses a PathDiagnostic 2713 /// object and collapses PathDiagosticPieces that are expanded by macros. 2714 static void CompactMacroExpandedPieces(PathPieces &path, 2715 const SourceManager& SM) { 2716 using MacroStackTy = std::vector< 2717 std::pair<std::shared_ptr<PathDiagnosticMacroPiece>, SourceLocation>>; 2718 2719 using PiecesTy = std::vector<PathDiagnosticPieceRef>; 2720 2721 MacroStackTy MacroStack; 2722 PiecesTy Pieces; 2723 2724 for (PathPieces::const_iterator I = path.begin(), E = path.end(); 2725 I != E; ++I) { 2726 const auto &piece = *I; 2727 2728 // Recursively compact calls. 2729 if (auto *call = dyn_cast<PathDiagnosticCallPiece>(&*piece)) { 2730 CompactMacroExpandedPieces(call->path, SM); 2731 } 2732 2733 // Get the location of the PathDiagnosticPiece. 2734 const FullSourceLoc Loc = piece->getLocation().asLocation(); 2735 2736 // Determine the instantiation location, which is the location we group 2737 // related PathDiagnosticPieces. 2738 SourceLocation InstantiationLoc = Loc.isMacroID() ? 2739 SM.getExpansionLoc(Loc) : 2740 SourceLocation(); 2741 2742 if (Loc.isFileID()) { 2743 MacroStack.clear(); 2744 Pieces.push_back(piece); 2745 continue; 2746 } 2747 2748 assert(Loc.isMacroID()); 2749 2750 // Is the PathDiagnosticPiece within the same macro group? 2751 if (!MacroStack.empty() && InstantiationLoc == MacroStack.back().second) { 2752 MacroStack.back().first->subPieces.push_back(piece); 2753 continue; 2754 } 2755 2756 // We aren't in the same group. Are we descending into a new macro 2757 // or are part of an old one? 2758 std::shared_ptr<PathDiagnosticMacroPiece> MacroGroup; 2759 2760 SourceLocation ParentInstantiationLoc = InstantiationLoc.isMacroID() ? 2761 SM.getExpansionLoc(Loc) : 2762 SourceLocation(); 2763 2764 // Walk the entire macro stack. 2765 while (!MacroStack.empty()) { 2766 if (InstantiationLoc == MacroStack.back().second) { 2767 MacroGroup = MacroStack.back().first; 2768 break; 2769 } 2770 2771 if (ParentInstantiationLoc == MacroStack.back().second) { 2772 MacroGroup = MacroStack.back().first; 2773 break; 2774 } 2775 2776 MacroStack.pop_back(); 2777 } 2778 2779 if (!MacroGroup || ParentInstantiationLoc == MacroStack.back().second) { 2780 // Create a new macro group and add it to the stack. 2781 auto NewGroup = std::make_shared<PathDiagnosticMacroPiece>( 2782 PathDiagnosticLocation::createSingleLocation(piece->getLocation())); 2783 2784 if (MacroGroup) 2785 MacroGroup->subPieces.push_back(NewGroup); 2786 else { 2787 assert(InstantiationLoc.isFileID()); 2788 Pieces.push_back(NewGroup); 2789 } 2790 2791 MacroGroup = NewGroup; 2792 MacroStack.push_back(std::make_pair(MacroGroup, InstantiationLoc)); 2793 } 2794 2795 // Finally, add the PathDiagnosticPiece to the group. 2796 MacroGroup->subPieces.push_back(piece); 2797 } 2798 2799 // Now take the pieces and construct a new PathDiagnostic. 2800 path.clear(); 2801 2802 path.insert(path.end(), Pieces.begin(), Pieces.end()); 2803 } 2804 2805 /// Generate notes from all visitors. 2806 /// Notes associated with @c ErrorNode are generated using 2807 /// @c getEndPath, and the rest are generated with @c VisitNode. 2808 static std::unique_ptr<VisitorsDiagnosticsTy> 2809 generateVisitorsDiagnostics(PathSensitiveBugReport *R, 2810 const ExplodedNode *ErrorNode, 2811 BugReporterContext &BRC) { 2812 std::unique_ptr<VisitorsDiagnosticsTy> Notes = 2813 std::make_unique<VisitorsDiagnosticsTy>(); 2814 PathSensitiveBugReport::VisitorList visitors; 2815 2816 // Run visitors on all nodes starting from the node *before* the last one. 2817 // The last node is reserved for notes generated with @c getEndPath. 2818 const ExplodedNode *NextNode = ErrorNode->getFirstPred(); 2819 while (NextNode) { 2820 2821 // At each iteration, move all visitors from report to visitor list. This is 2822 // important, because the Profile() functions of the visitors make sure that 2823 // a visitor isn't added multiple times for the same node, but it's fine 2824 // to add the a visitor with Profile() for different nodes (e.g. tracking 2825 // a region at different points of the symbolic execution). 2826 for (std::unique_ptr<BugReporterVisitor> &Visitor : R->visitors()) 2827 visitors.push_back(std::move(Visitor)); 2828 2829 R->clearVisitors(); 2830 2831 const ExplodedNode *Pred = NextNode->getFirstPred(); 2832 if (!Pred) { 2833 PathDiagnosticPieceRef LastPiece; 2834 for (auto &V : visitors) { 2835 V->finalizeVisitor(BRC, ErrorNode, *R); 2836 2837 if (auto Piece = V->getEndPath(BRC, ErrorNode, *R)) { 2838 assert(!LastPiece && 2839 "There can only be one final piece in a diagnostic."); 2840 assert(Piece->getKind() == PathDiagnosticPiece::Kind::Event && 2841 "The final piece must contain a message!"); 2842 LastPiece = std::move(Piece); 2843 (*Notes)[ErrorNode].push_back(LastPiece); 2844 } 2845 } 2846 break; 2847 } 2848 2849 for (auto &V : visitors) { 2850 auto P = V->VisitNode(NextNode, BRC, *R); 2851 if (P) 2852 (*Notes)[NextNode].push_back(std::move(P)); 2853 } 2854 2855 if (!R->isValid()) 2856 break; 2857 2858 NextNode = Pred; 2859 } 2860 2861 return Notes; 2862 } 2863 2864 std::optional<PathDiagnosticBuilder> PathDiagnosticBuilder::findValidReport( 2865 ArrayRef<PathSensitiveBugReport *> &bugReports, 2866 PathSensitiveBugReporter &Reporter) { 2867 Z3CrosscheckOracle Z3Oracle(Reporter.getAnalyzerOptions()); 2868 2869 BugPathGetter BugGraph(&Reporter.getGraph(), bugReports); 2870 2871 while (BugPathInfo *BugPath = BugGraph.getNextBugPath()) { 2872 // Find the BugReport with the original location. 2873 PathSensitiveBugReport *R = BugPath->Report; 2874 assert(R && "No original report found for sliced graph."); 2875 assert(R->isValid() && "Report selected by trimmed graph marked invalid."); 2876 const ExplodedNode *ErrorNode = BugPath->ErrorNode; 2877 2878 // Register refutation visitors first, if they mark the bug invalid no 2879 // further analysis is required 2880 R->addVisitor<LikelyFalsePositiveSuppressionBRVisitor>(); 2881 2882 // Register additional node visitors. 2883 R->addVisitor<NilReceiverBRVisitor>(); 2884 R->addVisitor<ConditionBRVisitor>(); 2885 R->addVisitor<TagVisitor>(); 2886 2887 BugReporterContext BRC(Reporter); 2888 2889 // Run all visitors on a given graph, once. 2890 std::unique_ptr<VisitorsDiagnosticsTy> visitorNotes = 2891 generateVisitorsDiagnostics(R, ErrorNode, BRC); 2892 2893 if (R->isValid()) { 2894 if (Reporter.getAnalyzerOptions().ShouldCrosscheckWithZ3) { 2895 // If crosscheck is enabled, remove all visitors, add the refutation 2896 // visitor and check again 2897 R->clearVisitors(); 2898 Z3CrosscheckVisitor::Z3Result CrosscheckResult; 2899 R->addVisitor<Z3CrosscheckVisitor>(CrosscheckResult, 2900 Reporter.getAnalyzerOptions()); 2901 2902 // We don't overwrite the notes inserted by other visitors because the 2903 // refutation manager does not add any new note to the path 2904 generateVisitorsDiagnostics(R, BugPath->ErrorNode, BRC); 2905 switch (Z3Oracle.interpretQueryResult(CrosscheckResult)) { 2906 case Z3CrosscheckOracle::RejectReport: 2907 ++NumTimesReportRefuted; 2908 R->markInvalid("Infeasible constraints", /*Data=*/nullptr); 2909 continue; 2910 case Z3CrosscheckOracle::RejectEQClass: 2911 ++NumTimesReportEQClassAborted; 2912 return {}; 2913 case Z3CrosscheckOracle::AcceptReport: 2914 ++NumTimesReportPassesZ3; 2915 break; 2916 } 2917 } 2918 2919 assert(R->isValid()); 2920 return PathDiagnosticBuilder(std::move(BRC), std::move(BugPath->BugPath), 2921 BugPath->Report, BugPath->ErrorNode, 2922 std::move(visitorNotes)); 2923 } 2924 } 2925 2926 ++NumTimesReportEQClassWasExhausted; 2927 return {}; 2928 } 2929 2930 std::unique_ptr<DiagnosticForConsumerMapTy> 2931 PathSensitiveBugReporter::generatePathDiagnostics( 2932 ArrayRef<PathDiagnosticConsumer *> consumers, 2933 ArrayRef<PathSensitiveBugReport *> &bugReports) { 2934 assert(!bugReports.empty()); 2935 2936 auto Out = std::make_unique<DiagnosticForConsumerMapTy>(); 2937 2938 std::optional<PathDiagnosticBuilder> PDB = 2939 PathDiagnosticBuilder::findValidReport(bugReports, *this); 2940 2941 if (PDB) { 2942 for (PathDiagnosticConsumer *PC : consumers) { 2943 if (std::unique_ptr<PathDiagnostic> PD = PDB->generate(PC)) { 2944 (*Out)[PC] = std::move(PD); 2945 } 2946 } 2947 } 2948 2949 return Out; 2950 } 2951 2952 void BugReporter::emitReport(std::unique_ptr<BugReport> R) { 2953 bool ValidSourceLoc = R->getLocation().isValid(); 2954 assert(ValidSourceLoc); 2955 // If we mess up in a release build, we'd still prefer to just drop the bug 2956 // instead of trying to go on. 2957 if (!ValidSourceLoc) 2958 return; 2959 2960 // If the user asked to suppress this report, we should skip it. 2961 if (UserSuppressions.isSuppressed(*R)) 2962 return; 2963 2964 // Compute the bug report's hash to determine its equivalence class. 2965 llvm::FoldingSetNodeID ID; 2966 R->Profile(ID); 2967 2968 // Lookup the equivance class. If there isn't one, create it. 2969 void *InsertPos; 2970 BugReportEquivClass* EQ = EQClasses.FindNodeOrInsertPos(ID, InsertPos); 2971 2972 if (!EQ) { 2973 EQ = new BugReportEquivClass(std::move(R)); 2974 EQClasses.InsertNode(EQ, InsertPos); 2975 EQClassesVector.push_back(EQ); 2976 } else 2977 EQ->AddReport(std::move(R)); 2978 } 2979 2980 void PathSensitiveBugReporter::emitReport(std::unique_ptr<BugReport> R) { 2981 if (auto PR = dyn_cast<PathSensitiveBugReport>(R.get())) 2982 if (const ExplodedNode *E = PR->getErrorNode()) { 2983 // An error node must either be a sink or have a tag, otherwise 2984 // it could get reclaimed before the path diagnostic is created. 2985 assert((E->isSink() || E->getLocation().getTag()) && 2986 "Error node must either be a sink or have a tag"); 2987 2988 const AnalysisDeclContext *DeclCtx = 2989 E->getLocationContext()->getAnalysisDeclContext(); 2990 // The source of autosynthesized body can be handcrafted AST or a model 2991 // file. The locations from handcrafted ASTs have no valid source 2992 // locations and have to be discarded. Locations from model files should 2993 // be preserved for processing and reporting. 2994 if (DeclCtx->isBodyAutosynthesized() && 2995 !DeclCtx->isBodyAutosynthesizedFromModelFile()) 2996 return; 2997 } 2998 2999 BugReporter::emitReport(std::move(R)); 3000 } 3001 3002 //===----------------------------------------------------------------------===// 3003 // Emitting reports in equivalence classes. 3004 //===----------------------------------------------------------------------===// 3005 3006 namespace { 3007 3008 struct FRIEC_WLItem { 3009 const ExplodedNode *N; 3010 ExplodedNode::const_succ_iterator I, E; 3011 3012 FRIEC_WLItem(const ExplodedNode *n) 3013 : N(n), I(N->succ_begin()), E(N->succ_end()) {} 3014 }; 3015 3016 } // namespace 3017 3018 BugReport *PathSensitiveBugReporter::findReportInEquivalenceClass( 3019 BugReportEquivClass &EQ, SmallVectorImpl<BugReport *> &bugReports) { 3020 // If we don't need to suppress any of the nodes because they are 3021 // post-dominated by a sink, simply add all the nodes in the equivalence class 3022 // to 'Nodes'. Any of the reports will serve as a "representative" report. 3023 assert(EQ.getReports().size() > 0); 3024 const BugType& BT = EQ.getReports()[0]->getBugType(); 3025 if (!BT.isSuppressOnSink()) { 3026 BugReport *R = EQ.getReports()[0].get(); 3027 for (auto &J : EQ.getReports()) { 3028 if (auto *PR = dyn_cast<PathSensitiveBugReport>(J.get())) { 3029 R = PR; 3030 bugReports.push_back(PR); 3031 } 3032 } 3033 return R; 3034 } 3035 3036 // For bug reports that should be suppressed when all paths are post-dominated 3037 // by a sink node, iterate through the reports in the equivalence class 3038 // until we find one that isn't post-dominated (if one exists). We use a 3039 // DFS traversal of the ExplodedGraph to find a non-sink node. We could write 3040 // this as a recursive function, but we don't want to risk blowing out the 3041 // stack for very long paths. 3042 BugReport *exampleReport = nullptr; 3043 3044 for (const auto &I: EQ.getReports()) { 3045 auto *R = dyn_cast<PathSensitiveBugReport>(I.get()); 3046 if (!R) 3047 continue; 3048 3049 const ExplodedNode *errorNode = R->getErrorNode(); 3050 if (errorNode->isSink()) { 3051 llvm_unreachable( 3052 "BugType::isSuppressSink() should not be 'true' for sink end nodes"); 3053 } 3054 // No successors? By definition this nodes isn't post-dominated by a sink. 3055 if (errorNode->succ_empty()) { 3056 bugReports.push_back(R); 3057 if (!exampleReport) 3058 exampleReport = R; 3059 continue; 3060 } 3061 3062 // See if we are in a no-return CFG block. If so, treat this similarly 3063 // to being post-dominated by a sink. This works better when the analysis 3064 // is incomplete and we have never reached the no-return function call(s) 3065 // that we'd inevitably bump into on this path. 3066 if (const CFGBlock *ErrorB = errorNode->getCFGBlock()) 3067 if (ErrorB->isInevitablySinking()) 3068 continue; 3069 3070 // At this point we know that 'N' is not a sink and it has at least one 3071 // successor. Use a DFS worklist to find a non-sink end-of-path node. 3072 using WLItem = FRIEC_WLItem; 3073 using DFSWorkList = SmallVector<WLItem, 10>; 3074 3075 llvm::DenseMap<const ExplodedNode *, unsigned> Visited; 3076 3077 DFSWorkList WL; 3078 WL.push_back(errorNode); 3079 Visited[errorNode] = 1; 3080 3081 while (!WL.empty()) { 3082 WLItem &WI = WL.back(); 3083 assert(!WI.N->succ_empty()); 3084 3085 for (; WI.I != WI.E; ++WI.I) { 3086 const ExplodedNode *Succ = *WI.I; 3087 // End-of-path node? 3088 if (Succ->succ_empty()) { 3089 // If we found an end-of-path node that is not a sink. 3090 if (!Succ->isSink()) { 3091 bugReports.push_back(R); 3092 if (!exampleReport) 3093 exampleReport = R; 3094 WL.clear(); 3095 break; 3096 } 3097 // Found a sink? Continue on to the next successor. 3098 continue; 3099 } 3100 // Mark the successor as visited. If it hasn't been explored, 3101 // enqueue it to the DFS worklist. 3102 unsigned &mark = Visited[Succ]; 3103 if (!mark) { 3104 mark = 1; 3105 WL.push_back(Succ); 3106 break; 3107 } 3108 } 3109 3110 // The worklist may have been cleared at this point. First 3111 // check if it is empty before checking the last item. 3112 if (!WL.empty() && &WL.back() == &WI) 3113 WL.pop_back(); 3114 } 3115 } 3116 3117 // ExampleReport will be NULL if all the nodes in the equivalence class 3118 // were post-dominated by sinks. 3119 return exampleReport; 3120 } 3121 3122 void BugReporter::FlushReport(BugReportEquivClass& EQ) { 3123 SmallVector<BugReport*, 10> bugReports; 3124 BugReport *report = findReportInEquivalenceClass(EQ, bugReports); 3125 if (!report) 3126 return; 3127 3128 // See whether we need to silence the checker/package. 3129 for (const std::string &CheckerOrPackage : 3130 getAnalyzerOptions().SilencedCheckersAndPackages) { 3131 if (report->getBugType().getCheckerName().starts_with(CheckerOrPackage)) 3132 return; 3133 } 3134 3135 ArrayRef<PathDiagnosticConsumer*> Consumers = getPathDiagnosticConsumers(); 3136 std::unique_ptr<DiagnosticForConsumerMapTy> Diagnostics = 3137 generateDiagnosticForConsumerMap(report, Consumers, bugReports); 3138 3139 for (auto &P : *Diagnostics) { 3140 PathDiagnosticConsumer *Consumer = P.first; 3141 std::unique_ptr<PathDiagnostic> &PD = P.second; 3142 3143 // If the path is empty, generate a single step path with the location 3144 // of the issue. 3145 if (PD->path.empty()) { 3146 PathDiagnosticLocation L = report->getLocation(); 3147 auto piece = std::make_unique<PathDiagnosticEventPiece>( 3148 L, report->getDescription()); 3149 for (SourceRange Range : report->getRanges()) 3150 piece->addRange(Range); 3151 PD->setEndOfPath(std::move(piece)); 3152 } 3153 3154 PathPieces &Pieces = PD->getMutablePieces(); 3155 if (getAnalyzerOptions().ShouldDisplayNotesAsEvents) { 3156 // For path diagnostic consumers that don't support extra notes, 3157 // we may optionally convert those to path notes. 3158 for (const auto &I : llvm::reverse(report->getNotes())) { 3159 PathDiagnosticNotePiece *Piece = I.get(); 3160 auto ConvertedPiece = std::make_shared<PathDiagnosticEventPiece>( 3161 Piece->getLocation(), Piece->getString()); 3162 for (const auto &R: Piece->getRanges()) 3163 ConvertedPiece->addRange(R); 3164 3165 Pieces.push_front(std::move(ConvertedPiece)); 3166 } 3167 } else { 3168 for (const auto &I : llvm::reverse(report->getNotes())) 3169 Pieces.push_front(I); 3170 } 3171 3172 for (const auto &I : report->getFixits()) 3173 Pieces.back()->addFixit(I); 3174 3175 updateExecutedLinesWithDiagnosticPieces(*PD); 3176 3177 // If we are debugging, let's have the entry point as the first note. 3178 if (getAnalyzerOptions().AnalyzerDisplayProgress || 3179 getAnalyzerOptions().AnalyzerNoteAnalysisEntryPoints) { 3180 const Decl *EntryPoint = getAnalysisEntryPoint(); 3181 Pieces.push_front(std::make_shared<PathDiagnosticEventPiece>( 3182 PathDiagnosticLocation{EntryPoint->getLocation(), getSourceManager()}, 3183 "[debug] analyzing from " + 3184 AnalysisDeclContext::getFunctionName(EntryPoint))); 3185 } 3186 Consumer->HandlePathDiagnostic(std::move(PD)); 3187 } 3188 } 3189 3190 /// Insert all lines participating in the function signature \p Signature 3191 /// into \p ExecutedLines. 3192 static void populateExecutedLinesWithFunctionSignature( 3193 const Decl *Signature, const SourceManager &SM, 3194 FilesToLineNumsMap &ExecutedLines) { 3195 SourceRange SignatureSourceRange; 3196 const Stmt* Body = Signature->getBody(); 3197 if (const auto FD = dyn_cast<FunctionDecl>(Signature)) { 3198 SignatureSourceRange = FD->getSourceRange(); 3199 } else if (const auto OD = dyn_cast<ObjCMethodDecl>(Signature)) { 3200 SignatureSourceRange = OD->getSourceRange(); 3201 } else { 3202 return; 3203 } 3204 SourceLocation Start = SignatureSourceRange.getBegin(); 3205 SourceLocation End = Body ? Body->getSourceRange().getBegin() 3206 : SignatureSourceRange.getEnd(); 3207 if (!Start.isValid() || !End.isValid()) 3208 return; 3209 unsigned StartLine = SM.getExpansionLineNumber(Start); 3210 unsigned EndLine = SM.getExpansionLineNumber(End); 3211 3212 FileID FID = SM.getFileID(SM.getExpansionLoc(Start)); 3213 for (unsigned Line = StartLine; Line <= EndLine; Line++) 3214 ExecutedLines[FID].insert(Line); 3215 } 3216 3217 static void populateExecutedLinesWithStmt( 3218 const Stmt *S, const SourceManager &SM, 3219 FilesToLineNumsMap &ExecutedLines) { 3220 SourceLocation Loc = S->getSourceRange().getBegin(); 3221 if (!Loc.isValid()) 3222 return; 3223 SourceLocation ExpansionLoc = SM.getExpansionLoc(Loc); 3224 FileID FID = SM.getFileID(ExpansionLoc); 3225 unsigned LineNo = SM.getExpansionLineNumber(ExpansionLoc); 3226 ExecutedLines[FID].insert(LineNo); 3227 } 3228 3229 /// \return all executed lines including function signatures on the path 3230 /// starting from \p N. 3231 static std::unique_ptr<FilesToLineNumsMap> 3232 findExecutedLines(const SourceManager &SM, const ExplodedNode *N) { 3233 auto ExecutedLines = std::make_unique<FilesToLineNumsMap>(); 3234 3235 while (N) { 3236 if (N->getFirstPred() == nullptr) { 3237 // First node: show signature of the entrance point. 3238 const Decl *D = N->getLocationContext()->getDecl(); 3239 populateExecutedLinesWithFunctionSignature(D, SM, *ExecutedLines); 3240 } else if (auto CE = N->getLocationAs<CallEnter>()) { 3241 // Inlined function: show signature. 3242 const Decl* D = CE->getCalleeContext()->getDecl(); 3243 populateExecutedLinesWithFunctionSignature(D, SM, *ExecutedLines); 3244 } else if (const Stmt *S = N->getStmtForDiagnostics()) { 3245 populateExecutedLinesWithStmt(S, SM, *ExecutedLines); 3246 3247 // Show extra context for some parent kinds. 3248 const Stmt *P = N->getParentMap().getParent(S); 3249 3250 // The path exploration can die before the node with the associated 3251 // return statement is generated, but we do want to show the whole 3252 // return. 3253 if (const auto *RS = dyn_cast_or_null<ReturnStmt>(P)) { 3254 populateExecutedLinesWithStmt(RS, SM, *ExecutedLines); 3255 P = N->getParentMap().getParent(RS); 3256 } 3257 3258 if (isa_and_nonnull<SwitchCase, LabelStmt>(P)) 3259 populateExecutedLinesWithStmt(P, SM, *ExecutedLines); 3260 } 3261 3262 N = N->getFirstPred(); 3263 } 3264 return ExecutedLines; 3265 } 3266 3267 std::unique_ptr<DiagnosticForConsumerMapTy> 3268 BugReporter::generateDiagnosticForConsumerMap( 3269 BugReport *exampleReport, ArrayRef<PathDiagnosticConsumer *> consumers, 3270 ArrayRef<BugReport *> bugReports) { 3271 auto *basicReport = cast<BasicBugReport>(exampleReport); 3272 auto Out = std::make_unique<DiagnosticForConsumerMapTy>(); 3273 for (auto *Consumer : consumers) 3274 (*Out)[Consumer] = 3275 generateDiagnosticForBasicReport(basicReport, AnalysisEntryPoint); 3276 return Out; 3277 } 3278 3279 static PathDiagnosticCallPiece * 3280 getFirstStackedCallToHeaderFile(PathDiagnosticCallPiece *CP, 3281 const SourceManager &SMgr) { 3282 SourceLocation CallLoc = CP->callEnter.asLocation(); 3283 3284 // If the call is within a macro, don't do anything (for now). 3285 if (CallLoc.isMacroID()) 3286 return nullptr; 3287 3288 assert(AnalysisManager::isInCodeFile(CallLoc, SMgr) && 3289 "The call piece should not be in a header file."); 3290 3291 // Check if CP represents a path through a function outside of the main file. 3292 if (!AnalysisManager::isInCodeFile(CP->callEnterWithin.asLocation(), SMgr)) 3293 return CP; 3294 3295 const PathPieces &Path = CP->path; 3296 if (Path.empty()) 3297 return nullptr; 3298 3299 // Check if the last piece in the callee path is a call to a function outside 3300 // of the main file. 3301 if (auto *CPInner = dyn_cast<PathDiagnosticCallPiece>(Path.back().get())) 3302 return getFirstStackedCallToHeaderFile(CPInner, SMgr); 3303 3304 // Otherwise, the last piece is in the main file. 3305 return nullptr; 3306 } 3307 3308 static void resetDiagnosticLocationToMainFile(PathDiagnostic &PD) { 3309 if (PD.path.empty()) 3310 return; 3311 3312 PathDiagnosticPiece *LastP = PD.path.back().get(); 3313 assert(LastP); 3314 const SourceManager &SMgr = LastP->getLocation().getManager(); 3315 3316 // We only need to check if the report ends inside headers, if the last piece 3317 // is a call piece. 3318 if (auto *CP = dyn_cast<PathDiagnosticCallPiece>(LastP)) { 3319 CP = getFirstStackedCallToHeaderFile(CP, SMgr); 3320 if (CP) { 3321 // Mark the piece. 3322 CP->setAsLastInMainSourceFile(); 3323 3324 // Update the path diagnostic message. 3325 const auto *ND = dyn_cast<NamedDecl>(CP->getCallee()); 3326 if (ND) { 3327 SmallString<200> buf; 3328 llvm::raw_svector_ostream os(buf); 3329 os << " (within a call to '" << ND->getDeclName() << "')"; 3330 PD.appendToDesc(os.str()); 3331 } 3332 3333 // Reset the report containing declaration and location. 3334 PD.setDeclWithIssue(CP->getCaller()); 3335 PD.setLocation(CP->getLocation()); 3336 3337 return; 3338 } 3339 } 3340 } 3341 3342 3343 3344 std::unique_ptr<DiagnosticForConsumerMapTy> 3345 PathSensitiveBugReporter::generateDiagnosticForConsumerMap( 3346 BugReport *exampleReport, ArrayRef<PathDiagnosticConsumer *> consumers, 3347 ArrayRef<BugReport *> bugReports) { 3348 std::vector<BasicBugReport *> BasicBugReports; 3349 std::vector<PathSensitiveBugReport *> PathSensitiveBugReports; 3350 if (isa<BasicBugReport>(exampleReport)) 3351 return BugReporter::generateDiagnosticForConsumerMap(exampleReport, 3352 consumers, bugReports); 3353 3354 // Generate the full path sensitive diagnostic, using the generation scheme 3355 // specified by the PathDiagnosticConsumer. Note that we have to generate 3356 // path diagnostics even for consumers which do not support paths, because 3357 // the BugReporterVisitors may mark this bug as a false positive. 3358 assert(!bugReports.empty()); 3359 MaxBugClassSize.updateMax(bugReports.size()); 3360 3361 // Avoid copying the whole array because there may be a lot of reports. 3362 ArrayRef<PathSensitiveBugReport *> convertedArrayOfReports( 3363 reinterpret_cast<PathSensitiveBugReport *const *>(&*bugReports.begin()), 3364 reinterpret_cast<PathSensitiveBugReport *const *>(&*bugReports.end())); 3365 std::unique_ptr<DiagnosticForConsumerMapTy> Out = generatePathDiagnostics( 3366 consumers, convertedArrayOfReports); 3367 3368 if (Out->empty()) 3369 return Out; 3370 3371 MaxValidBugClassSize.updateMax(bugReports.size()); 3372 3373 // Examine the report and see if the last piece is in a header. Reset the 3374 // report location to the last piece in the main source file. 3375 const AnalyzerOptions &Opts = getAnalyzerOptions(); 3376 for (auto const &P : *Out) 3377 if (Opts.ShouldReportIssuesInMainSourceFile && !Opts.AnalyzeAll) 3378 resetDiagnosticLocationToMainFile(*P.second); 3379 3380 return Out; 3381 } 3382 3383 void BugReporter::EmitBasicReport(const Decl *DeclWithIssue, 3384 const CheckerBase *Checker, StringRef Name, 3385 StringRef Category, StringRef Str, 3386 PathDiagnosticLocation Loc, 3387 ArrayRef<SourceRange> Ranges, 3388 ArrayRef<FixItHint> Fixits) { 3389 EmitBasicReport(DeclWithIssue, Checker->getCheckerName(), Name, Category, Str, 3390 Loc, Ranges, Fixits); 3391 } 3392 3393 void BugReporter::EmitBasicReport(const Decl *DeclWithIssue, 3394 CheckerNameRef CheckName, 3395 StringRef name, StringRef category, 3396 StringRef str, PathDiagnosticLocation Loc, 3397 ArrayRef<SourceRange> Ranges, 3398 ArrayRef<FixItHint> Fixits) { 3399 // 'BT' is owned by BugReporter. 3400 BugType *BT = getBugTypeForName(CheckName, name, category); 3401 auto R = std::make_unique<BasicBugReport>(*BT, str, Loc); 3402 R->setDeclWithIssue(DeclWithIssue); 3403 for (const auto &SR : Ranges) 3404 R->addRange(SR); 3405 for (const auto &FH : Fixits) 3406 R->addFixItHint(FH); 3407 emitReport(std::move(R)); 3408 } 3409 3410 BugType *BugReporter::getBugTypeForName(CheckerNameRef CheckName, 3411 StringRef name, StringRef category) { 3412 SmallString<136> fullDesc; 3413 llvm::raw_svector_ostream(fullDesc) << CheckName.getName() << ":" << name 3414 << ":" << category; 3415 std::unique_ptr<BugType> &BT = StrBugTypes[fullDesc]; 3416 if (!BT) 3417 BT = std::make_unique<BugType>(CheckName, name, category); 3418 return BT.get(); 3419 } 3420