xref: /llvm-project/clang/lib/StaticAnalyzer/Core/BugReporter.cpp (revision 35b4fbb559d909a7edf64412c665e99748398ac4)
1 //===- BugReporter.cpp - Generate PathDiagnostics for bugs ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines BugReporter, a utility class for generating
10 //  PathDiagnostics.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
15 #include "clang/AST/Decl.h"
16 #include "clang/AST/DeclBase.h"
17 #include "clang/AST/DeclObjC.h"
18 #include "clang/AST/Expr.h"
19 #include "clang/AST/ExprCXX.h"
20 #include "clang/AST/ParentMap.h"
21 #include "clang/AST/Stmt.h"
22 #include "clang/AST/StmtCXX.h"
23 #include "clang/AST/StmtObjC.h"
24 #include "clang/Analysis/AnalysisDeclContext.h"
25 #include "clang/Analysis/CFG.h"
26 #include "clang/Analysis/CFGStmtMap.h"
27 #include "clang/Analysis/PathDiagnostic.h"
28 #include "clang/Analysis/ProgramPoint.h"
29 #include "clang/Basic/LLVM.h"
30 #include "clang/Basic/SourceLocation.h"
31 #include "clang/Basic/SourceManager.h"
32 #include "clang/StaticAnalyzer/Core/AnalyzerOptions.h"
33 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporterVisitors.h"
34 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
35 #include "clang/StaticAnalyzer/Core/Checker.h"
36 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
37 #include "clang/StaticAnalyzer/Core/CheckerRegistryData.h"
38 #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h"
39 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
40 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
41 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
42 #include "clang/StaticAnalyzer/Core/PathSensitive/SMTConv.h"
43 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
44 #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h"
45 #include "llvm/ADT/ArrayRef.h"
46 #include "llvm/ADT/DenseMap.h"
47 #include "llvm/ADT/DenseSet.h"
48 #include "llvm/ADT/FoldingSet.h"
49 #include "llvm/ADT/None.h"
50 #include "llvm/ADT/Optional.h"
51 #include "llvm/ADT/STLExtras.h"
52 #include "llvm/ADT/SmallPtrSet.h"
53 #include "llvm/ADT/SmallString.h"
54 #include "llvm/ADT/SmallVector.h"
55 #include "llvm/ADT/Statistic.h"
56 #include "llvm/ADT/StringExtras.h"
57 #include "llvm/ADT/StringRef.h"
58 #include "llvm/ADT/iterator_range.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/Compiler.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include "llvm/Support/MemoryBuffer.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include <algorithm>
65 #include <cassert>
66 #include <cstddef>
67 #include <iterator>
68 #include <memory>
69 #include <queue>
70 #include <string>
71 #include <tuple>
72 #include <utility>
73 #include <vector>
74 
75 using namespace clang;
76 using namespace ento;
77 using namespace llvm;
78 
79 #define DEBUG_TYPE "BugReporter"
80 
81 STATISTIC(MaxBugClassSize,
82           "The maximum number of bug reports in the same equivalence class");
83 STATISTIC(MaxValidBugClassSize,
84           "The maximum number of bug reports in the same equivalence class "
85           "where at least one report is valid (not suppressed)");
86 
87 BugReporterVisitor::~BugReporterVisitor() = default;
88 
89 void BugReporterContext::anchor() {}
90 
91 //===----------------------------------------------------------------------===//
92 // PathDiagnosticBuilder and its associated routines and helper objects.
93 //===----------------------------------------------------------------------===//
94 
95 namespace {
96 
97 /// A (CallPiece, node assiciated with its CallEnter) pair.
98 using CallWithEntry =
99     std::pair<PathDiagnosticCallPiece *, const ExplodedNode *>;
100 using CallWithEntryStack = SmallVector<CallWithEntry, 6>;
101 
102 /// Map from each node to the diagnostic pieces visitors emit for them.
103 using VisitorsDiagnosticsTy =
104     llvm::DenseMap<const ExplodedNode *, std::vector<PathDiagnosticPieceRef>>;
105 
106 /// A map from PathDiagnosticPiece to the LocationContext of the inlined
107 /// function call it represents.
108 using LocationContextMap =
109     llvm::DenseMap<const PathPieces *, const LocationContext *>;
110 
111 /// A helper class that contains everything needed to construct a
112 /// PathDiagnostic object. It does no much more then providing convenient
113 /// getters and some well placed asserts for extra security.
114 class PathDiagnosticConstruct {
115   /// The consumer we're constructing the bug report for.
116   const PathDiagnosticConsumer *Consumer;
117   /// Our current position in the bug path, which is owned by
118   /// PathDiagnosticBuilder.
119   const ExplodedNode *CurrentNode;
120   /// A mapping from parts of the bug path (for example, a function call, which
121   /// would span backwards from a CallExit to a CallEnter with the nodes in
122   /// between them) with the location contexts it is associated with.
123   LocationContextMap LCM;
124   const SourceManager &SM;
125 
126 public:
127   /// We keep stack of calls to functions as we're ascending the bug path.
128   /// TODO: PathDiagnostic has a stack doing the same thing, shouldn't we use
129   /// that instead?
130   CallWithEntryStack CallStack;
131   /// The bug report we're constructing. For ease of use, this field is kept
132   /// public, though some "shortcut" getters are provided for commonly used
133   /// methods of PathDiagnostic.
134   std::unique_ptr<PathDiagnostic> PD;
135 
136 public:
137   PathDiagnosticConstruct(const PathDiagnosticConsumer *PDC,
138                           const ExplodedNode *ErrorNode,
139                           const PathSensitiveBugReport *R);
140 
141   /// \returns the location context associated with the current position in the
142   /// bug path.
143   const LocationContext *getCurrLocationContext() const {
144     assert(CurrentNode && "Already reached the root!");
145     return CurrentNode->getLocationContext();
146   }
147 
148   /// Same as getCurrLocationContext (they should always return the same
149   /// location context), but works after reaching the root of the bug path as
150   /// well.
151   const LocationContext *getLocationContextForActivePath() const {
152     return LCM.find(&PD->getActivePath())->getSecond();
153   }
154 
155   const ExplodedNode *getCurrentNode() const { return CurrentNode; }
156 
157   /// Steps the current node to its predecessor.
158   /// \returns whether we reached the root of the bug path.
159   bool ascendToPrevNode() {
160     CurrentNode = CurrentNode->getFirstPred();
161     return static_cast<bool>(CurrentNode);
162   }
163 
164   const ParentMap &getParentMap() const {
165     return getCurrLocationContext()->getParentMap();
166   }
167 
168   const SourceManager &getSourceManager() const { return SM; }
169 
170   const Stmt *getParent(const Stmt *S) const {
171     return getParentMap().getParent(S);
172   }
173 
174   void updateLocCtxMap(const PathPieces *Path, const LocationContext *LC) {
175     assert(Path && LC);
176     LCM[Path] = LC;
177   }
178 
179   const LocationContext *getLocationContextFor(const PathPieces *Path) const {
180     assert(LCM.count(Path) &&
181            "Failed to find the context associated with these pieces!");
182     return LCM.find(Path)->getSecond();
183   }
184 
185   bool isInLocCtxMap(const PathPieces *Path) const { return LCM.count(Path); }
186 
187   PathPieces &getActivePath() { return PD->getActivePath(); }
188   PathPieces &getMutablePieces() { return PD->getMutablePieces(); }
189 
190   bool shouldAddPathEdges() const { return Consumer->shouldAddPathEdges(); }
191   bool shouldAddControlNotes() const {
192     return Consumer->shouldAddControlNotes();
193   }
194   bool shouldGenerateDiagnostics() const {
195     return Consumer->shouldGenerateDiagnostics();
196   }
197   bool supportsLogicalOpControlFlow() const {
198     return Consumer->supportsLogicalOpControlFlow();
199   }
200 };
201 
202 /// Contains every contextual information needed for constructing a
203 /// PathDiagnostic object for a given bug report. This class and its fields are
204 /// immutable, and passes a BugReportConstruct object around during the
205 /// construction.
206 class PathDiagnosticBuilder : public BugReporterContext {
207   /// A linear path from the error node to the root.
208   std::unique_ptr<const ExplodedGraph> BugPath;
209   /// The bug report we're describing. Visitors create their diagnostics with
210   /// them being the last entities being able to modify it (for example,
211   /// changing interestingness here would cause inconsistencies as to how this
212   /// file and visitors construct diagnostics), hence its const.
213   const PathSensitiveBugReport *R;
214   /// The leaf of the bug path. This isn't the same as the bug reports error
215   /// node, which refers to the *original* graph, not the bug path.
216   const ExplodedNode *const ErrorNode;
217   /// The diagnostic pieces visitors emitted, which is expected to be collected
218   /// by the time this builder is constructed.
219   std::unique_ptr<const VisitorsDiagnosticsTy> VisitorsDiagnostics;
220 
221 public:
222   /// Find a non-invalidated report for a given equivalence class,  and returns
223   /// a PathDiagnosticBuilder able to construct bug reports for different
224   /// consumers. Returns std::nullopt if no valid report is found.
225   static Optional<PathDiagnosticBuilder>
226   findValidReport(ArrayRef<PathSensitiveBugReport *> &bugReports,
227                   PathSensitiveBugReporter &Reporter);
228 
229   PathDiagnosticBuilder(
230       BugReporterContext BRC, std::unique_ptr<ExplodedGraph> BugPath,
231       PathSensitiveBugReport *r, const ExplodedNode *ErrorNode,
232       std::unique_ptr<VisitorsDiagnosticsTy> VisitorsDiagnostics);
233 
234   /// This function is responsible for generating diagnostic pieces that are
235   /// *not* provided by bug report visitors.
236   /// These diagnostics may differ depending on the consumer's settings,
237   /// and are therefore constructed separately for each consumer.
238   ///
239   /// There are two path diagnostics generation modes: with adding edges (used
240   /// for plists) and without  (used for HTML and text). When edges are added,
241   /// the path is modified to insert artificially generated edges.
242   /// Otherwise, more detailed diagnostics is emitted for block edges,
243   /// explaining the transitions in words.
244   std::unique_ptr<PathDiagnostic>
245   generate(const PathDiagnosticConsumer *PDC) const;
246 
247 private:
248   void updateStackPiecesWithMessage(PathDiagnosticPieceRef P,
249                                     const CallWithEntryStack &CallStack) const;
250   void generatePathDiagnosticsForNode(PathDiagnosticConstruct &C,
251                                       PathDiagnosticLocation &PrevLoc) const;
252 
253   void generateMinimalDiagForBlockEdge(PathDiagnosticConstruct &C,
254                                        BlockEdge BE) const;
255 
256   PathDiagnosticPieceRef
257   generateDiagForGotoOP(const PathDiagnosticConstruct &C, const Stmt *S,
258                         PathDiagnosticLocation &Start) const;
259 
260   PathDiagnosticPieceRef
261   generateDiagForSwitchOP(const PathDiagnosticConstruct &C, const CFGBlock *Dst,
262                           PathDiagnosticLocation &Start) const;
263 
264   PathDiagnosticPieceRef
265   generateDiagForBinaryOP(const PathDiagnosticConstruct &C, const Stmt *T,
266                           const CFGBlock *Src, const CFGBlock *DstC) const;
267 
268   PathDiagnosticLocation
269   ExecutionContinues(const PathDiagnosticConstruct &C) const;
270 
271   PathDiagnosticLocation
272   ExecutionContinues(llvm::raw_string_ostream &os,
273                      const PathDiagnosticConstruct &C) const;
274 
275   const PathSensitiveBugReport *getBugReport() const { return R; }
276 };
277 
278 } // namespace
279 
280 //===----------------------------------------------------------------------===//
281 // Base implementation of stack hint generators.
282 //===----------------------------------------------------------------------===//
283 
284 StackHintGenerator::~StackHintGenerator() = default;
285 
286 std::string StackHintGeneratorForSymbol::getMessage(const ExplodedNode *N){
287   if (!N)
288     return getMessageForSymbolNotFound();
289 
290   ProgramPoint P = N->getLocation();
291   CallExitEnd CExit = P.castAs<CallExitEnd>();
292 
293   // FIXME: Use CallEvent to abstract this over all calls.
294   const Stmt *CallSite = CExit.getCalleeContext()->getCallSite();
295   const auto *CE = dyn_cast_or_null<CallExpr>(CallSite);
296   if (!CE)
297     return {};
298 
299   // Check if one of the parameters are set to the interesting symbol.
300   unsigned ArgIndex = 0;
301   for (CallExpr::const_arg_iterator I = CE->arg_begin(),
302                                     E = CE->arg_end(); I != E; ++I, ++ArgIndex){
303     SVal SV = N->getSVal(*I);
304 
305     // Check if the variable corresponding to the symbol is passed by value.
306     SymbolRef AS = SV.getAsLocSymbol();
307     if (AS == Sym) {
308       return getMessageForArg(*I, ArgIndex);
309     }
310 
311     // Check if the parameter is a pointer to the symbol.
312     if (Optional<loc::MemRegionVal> Reg = SV.getAs<loc::MemRegionVal>()) {
313       // Do not attempt to dereference void*.
314       if ((*I)->getType()->isVoidPointerType())
315         continue;
316       SVal PSV = N->getState()->getSVal(Reg->getRegion());
317       SymbolRef AS = PSV.getAsLocSymbol();
318       if (AS == Sym) {
319         return getMessageForArg(*I, ArgIndex);
320       }
321     }
322   }
323 
324   // Check if we are returning the interesting symbol.
325   SVal SV = N->getSVal(CE);
326   SymbolRef RetSym = SV.getAsLocSymbol();
327   if (RetSym == Sym) {
328     return getMessageForReturn(CE);
329   }
330 
331   return getMessageForSymbolNotFound();
332 }
333 
334 std::string StackHintGeneratorForSymbol::getMessageForArg(const Expr *ArgE,
335                                                           unsigned ArgIndex) {
336   // Printed parameters start at 1, not 0.
337   ++ArgIndex;
338 
339   return (llvm::Twine(Msg) + " via " + std::to_string(ArgIndex) +
340           llvm::getOrdinalSuffix(ArgIndex) + " parameter").str();
341 }
342 
343 //===----------------------------------------------------------------------===//
344 // Diagnostic cleanup.
345 //===----------------------------------------------------------------------===//
346 
347 static PathDiagnosticEventPiece *
348 eventsDescribeSameCondition(PathDiagnosticEventPiece *X,
349                             PathDiagnosticEventPiece *Y) {
350   // Prefer diagnostics that come from ConditionBRVisitor over
351   // those that came from TrackConstraintBRVisitor,
352   // unless the one from ConditionBRVisitor is
353   // its generic fallback diagnostic.
354   const void *tagPreferred = ConditionBRVisitor::getTag();
355   const void *tagLesser = TrackConstraintBRVisitor::getTag();
356 
357   if (X->getLocation() != Y->getLocation())
358     return nullptr;
359 
360   if (X->getTag() == tagPreferred && Y->getTag() == tagLesser)
361     return ConditionBRVisitor::isPieceMessageGeneric(X) ? Y : X;
362 
363   if (Y->getTag() == tagPreferred && X->getTag() == tagLesser)
364     return ConditionBRVisitor::isPieceMessageGeneric(Y) ? X : Y;
365 
366   return nullptr;
367 }
368 
369 /// An optimization pass over PathPieces that removes redundant diagnostics
370 /// generated by both ConditionBRVisitor and TrackConstraintBRVisitor.  Both
371 /// BugReporterVisitors use different methods to generate diagnostics, with
372 /// one capable of emitting diagnostics in some cases but not in others.  This
373 /// can lead to redundant diagnostic pieces at the same point in a path.
374 static void removeRedundantMsgs(PathPieces &path) {
375   unsigned N = path.size();
376   if (N < 2)
377     return;
378   // NOTE: this loop intentionally is not using an iterator.  Instead, we
379   // are streaming the path and modifying it in place.  This is done by
380   // grabbing the front, processing it, and if we decide to keep it append
381   // it to the end of the path.  The entire path is processed in this way.
382   for (unsigned i = 0; i < N; ++i) {
383     auto piece = std::move(path.front());
384     path.pop_front();
385 
386     switch (piece->getKind()) {
387       case PathDiagnosticPiece::Call:
388         removeRedundantMsgs(cast<PathDiagnosticCallPiece>(*piece).path);
389         break;
390       case PathDiagnosticPiece::Macro:
391         removeRedundantMsgs(cast<PathDiagnosticMacroPiece>(*piece).subPieces);
392         break;
393       case PathDiagnosticPiece::Event: {
394         if (i == N-1)
395           break;
396 
397         if (auto *nextEvent =
398             dyn_cast<PathDiagnosticEventPiece>(path.front().get())) {
399           auto *event = cast<PathDiagnosticEventPiece>(piece.get());
400           // Check to see if we should keep one of the two pieces.  If we
401           // come up with a preference, record which piece to keep, and consume
402           // another piece from the path.
403           if (auto *pieceToKeep =
404                   eventsDescribeSameCondition(event, nextEvent)) {
405             piece = std::move(pieceToKeep == event ? piece : path.front());
406             path.pop_front();
407             ++i;
408           }
409         }
410         break;
411       }
412       case PathDiagnosticPiece::ControlFlow:
413       case PathDiagnosticPiece::Note:
414       case PathDiagnosticPiece::PopUp:
415         break;
416     }
417     path.push_back(std::move(piece));
418   }
419 }
420 
421 /// Recursively scan through a path and prune out calls and macros pieces
422 /// that aren't needed.  Return true if afterwards the path contains
423 /// "interesting stuff" which means it shouldn't be pruned from the parent path.
424 static bool removeUnneededCalls(const PathDiagnosticConstruct &C,
425                                 PathPieces &pieces,
426                                 const PathSensitiveBugReport *R,
427                                 bool IsInteresting = false) {
428   bool containsSomethingInteresting = IsInteresting;
429   const unsigned N = pieces.size();
430 
431   for (unsigned i = 0 ; i < N ; ++i) {
432     // Remove the front piece from the path.  If it is still something we
433     // want to keep once we are done, we will push it back on the end.
434     auto piece = std::move(pieces.front());
435     pieces.pop_front();
436 
437     switch (piece->getKind()) {
438       case PathDiagnosticPiece::Call: {
439         auto &call = cast<PathDiagnosticCallPiece>(*piece);
440         // Check if the location context is interesting.
441         if (!removeUnneededCalls(
442                 C, call.path, R,
443                 R->isInteresting(C.getLocationContextFor(&call.path))))
444           continue;
445 
446         containsSomethingInteresting = true;
447         break;
448       }
449       case PathDiagnosticPiece::Macro: {
450         auto &macro = cast<PathDiagnosticMacroPiece>(*piece);
451         if (!removeUnneededCalls(C, macro.subPieces, R, IsInteresting))
452           continue;
453         containsSomethingInteresting = true;
454         break;
455       }
456       case PathDiagnosticPiece::Event: {
457         auto &event = cast<PathDiagnosticEventPiece>(*piece);
458 
459         // We never throw away an event, but we do throw it away wholesale
460         // as part of a path if we throw the entire path away.
461         containsSomethingInteresting |= !event.isPrunable();
462         break;
463       }
464       case PathDiagnosticPiece::ControlFlow:
465       case PathDiagnosticPiece::Note:
466       case PathDiagnosticPiece::PopUp:
467         break;
468     }
469 
470     pieces.push_back(std::move(piece));
471   }
472 
473   return containsSomethingInteresting;
474 }
475 
476 /// Same logic as above to remove extra pieces.
477 static void removePopUpNotes(PathPieces &Path) {
478   for (unsigned int i = 0; i < Path.size(); ++i) {
479     auto Piece = std::move(Path.front());
480     Path.pop_front();
481     if (!isa<PathDiagnosticPopUpPiece>(*Piece))
482       Path.push_back(std::move(Piece));
483   }
484 }
485 
486 /// Returns true if the given decl has been implicitly given a body, either by
487 /// the analyzer or by the compiler proper.
488 static bool hasImplicitBody(const Decl *D) {
489   assert(D);
490   return D->isImplicit() || !D->hasBody();
491 }
492 
493 /// Recursively scan through a path and make sure that all call pieces have
494 /// valid locations.
495 static void
496 adjustCallLocations(PathPieces &Pieces,
497                     PathDiagnosticLocation *LastCallLocation = nullptr) {
498   for (const auto &I : Pieces) {
499     auto *Call = dyn_cast<PathDiagnosticCallPiece>(I.get());
500 
501     if (!Call)
502       continue;
503 
504     if (LastCallLocation) {
505       bool CallerIsImplicit = hasImplicitBody(Call->getCaller());
506       if (CallerIsImplicit || !Call->callEnter.asLocation().isValid())
507         Call->callEnter = *LastCallLocation;
508       if (CallerIsImplicit || !Call->callReturn.asLocation().isValid())
509         Call->callReturn = *LastCallLocation;
510     }
511 
512     // Recursively clean out the subclass.  Keep this call around if
513     // it contains any informative diagnostics.
514     PathDiagnosticLocation *ThisCallLocation;
515     if (Call->callEnterWithin.asLocation().isValid() &&
516         !hasImplicitBody(Call->getCallee()))
517       ThisCallLocation = &Call->callEnterWithin;
518     else
519       ThisCallLocation = &Call->callEnter;
520 
521     assert(ThisCallLocation && "Outermost call has an invalid location");
522     adjustCallLocations(Call->path, ThisCallLocation);
523   }
524 }
525 
526 /// Remove edges in and out of C++ default initializer expressions. These are
527 /// for fields that have in-class initializers, as opposed to being initialized
528 /// explicitly in a constructor or braced list.
529 static void removeEdgesToDefaultInitializers(PathPieces &Pieces) {
530   for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E;) {
531     if (auto *C = dyn_cast<PathDiagnosticCallPiece>(I->get()))
532       removeEdgesToDefaultInitializers(C->path);
533 
534     if (auto *M = dyn_cast<PathDiagnosticMacroPiece>(I->get()))
535       removeEdgesToDefaultInitializers(M->subPieces);
536 
537     if (auto *CF = dyn_cast<PathDiagnosticControlFlowPiece>(I->get())) {
538       const Stmt *Start = CF->getStartLocation().asStmt();
539       const Stmt *End = CF->getEndLocation().asStmt();
540       if (isa_and_nonnull<CXXDefaultInitExpr>(Start)) {
541         I = Pieces.erase(I);
542         continue;
543       } else if (isa_and_nonnull<CXXDefaultInitExpr>(End)) {
544         PathPieces::iterator Next = std::next(I);
545         if (Next != E) {
546           if (auto *NextCF =
547                   dyn_cast<PathDiagnosticControlFlowPiece>(Next->get())) {
548             NextCF->setStartLocation(CF->getStartLocation());
549           }
550         }
551         I = Pieces.erase(I);
552         continue;
553       }
554     }
555 
556     I++;
557   }
558 }
559 
560 /// Remove all pieces with invalid locations as these cannot be serialized.
561 /// We might have pieces with invalid locations as a result of inlining Body
562 /// Farm generated functions.
563 static void removePiecesWithInvalidLocations(PathPieces &Pieces) {
564   for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E;) {
565     if (auto *C = dyn_cast<PathDiagnosticCallPiece>(I->get()))
566       removePiecesWithInvalidLocations(C->path);
567 
568     if (auto *M = dyn_cast<PathDiagnosticMacroPiece>(I->get()))
569       removePiecesWithInvalidLocations(M->subPieces);
570 
571     if (!(*I)->getLocation().isValid() ||
572         !(*I)->getLocation().asLocation().isValid()) {
573       I = Pieces.erase(I);
574       continue;
575     }
576     I++;
577   }
578 }
579 
580 PathDiagnosticLocation PathDiagnosticBuilder::ExecutionContinues(
581     const PathDiagnosticConstruct &C) const {
582   if (const Stmt *S = C.getCurrentNode()->getNextStmtForDiagnostics())
583     return PathDiagnosticLocation(S, getSourceManager(),
584                                   C.getCurrLocationContext());
585 
586   return PathDiagnosticLocation::createDeclEnd(C.getCurrLocationContext(),
587                                                getSourceManager());
588 }
589 
590 PathDiagnosticLocation PathDiagnosticBuilder::ExecutionContinues(
591     llvm::raw_string_ostream &os, const PathDiagnosticConstruct &C) const {
592   // Slow, but probably doesn't matter.
593   if (os.str().empty())
594     os << ' ';
595 
596   const PathDiagnosticLocation &Loc = ExecutionContinues(C);
597 
598   if (Loc.asStmt())
599     os << "Execution continues on line "
600        << getSourceManager().getExpansionLineNumber(Loc.asLocation())
601        << '.';
602   else {
603     os << "Execution jumps to the end of the ";
604     const Decl *D = C.getCurrLocationContext()->getDecl();
605     if (isa<ObjCMethodDecl>(D))
606       os << "method";
607     else if (isa<FunctionDecl>(D))
608       os << "function";
609     else {
610       assert(isa<BlockDecl>(D));
611       os << "anonymous block";
612     }
613     os << '.';
614   }
615 
616   return Loc;
617 }
618 
619 static const Stmt *getEnclosingParent(const Stmt *S, const ParentMap &PM) {
620   if (isa<Expr>(S) && PM.isConsumedExpr(cast<Expr>(S)))
621     return PM.getParentIgnoreParens(S);
622 
623   const Stmt *Parent = PM.getParentIgnoreParens(S);
624   if (!Parent)
625     return nullptr;
626 
627   switch (Parent->getStmtClass()) {
628   case Stmt::ForStmtClass:
629   case Stmt::DoStmtClass:
630   case Stmt::WhileStmtClass:
631   case Stmt::ObjCForCollectionStmtClass:
632   case Stmt::CXXForRangeStmtClass:
633     return Parent;
634   default:
635     break;
636   }
637 
638   return nullptr;
639 }
640 
641 static PathDiagnosticLocation
642 getEnclosingStmtLocation(const Stmt *S, const LocationContext *LC,
643                          bool allowNestedContexts = false) {
644   if (!S)
645     return {};
646 
647   const SourceManager &SMgr = LC->getDecl()->getASTContext().getSourceManager();
648 
649   while (const Stmt *Parent = getEnclosingParent(S, LC->getParentMap())) {
650     switch (Parent->getStmtClass()) {
651       case Stmt::BinaryOperatorClass: {
652         const auto *B = cast<BinaryOperator>(Parent);
653         if (B->isLogicalOp())
654           return PathDiagnosticLocation(allowNestedContexts ? B : S, SMgr, LC);
655         break;
656       }
657       case Stmt::CompoundStmtClass:
658       case Stmt::StmtExprClass:
659         return PathDiagnosticLocation(S, SMgr, LC);
660       case Stmt::ChooseExprClass:
661         // Similar to '?' if we are referring to condition, just have the edge
662         // point to the entire choose expression.
663         if (allowNestedContexts || cast<ChooseExpr>(Parent)->getCond() == S)
664           return PathDiagnosticLocation(Parent, SMgr, LC);
665         else
666           return PathDiagnosticLocation(S, SMgr, LC);
667       case Stmt::BinaryConditionalOperatorClass:
668       case Stmt::ConditionalOperatorClass:
669         // For '?', if we are referring to condition, just have the edge point
670         // to the entire '?' expression.
671         if (allowNestedContexts ||
672             cast<AbstractConditionalOperator>(Parent)->getCond() == S)
673           return PathDiagnosticLocation(Parent, SMgr, LC);
674         else
675           return PathDiagnosticLocation(S, SMgr, LC);
676       case Stmt::CXXForRangeStmtClass:
677         if (cast<CXXForRangeStmt>(Parent)->getBody() == S)
678           return PathDiagnosticLocation(S, SMgr, LC);
679         break;
680       case Stmt::DoStmtClass:
681           return PathDiagnosticLocation(S, SMgr, LC);
682       case Stmt::ForStmtClass:
683         if (cast<ForStmt>(Parent)->getBody() == S)
684           return PathDiagnosticLocation(S, SMgr, LC);
685         break;
686       case Stmt::IfStmtClass:
687         if (cast<IfStmt>(Parent)->getCond() != S)
688           return PathDiagnosticLocation(S, SMgr, LC);
689         break;
690       case Stmt::ObjCForCollectionStmtClass:
691         if (cast<ObjCForCollectionStmt>(Parent)->getBody() == S)
692           return PathDiagnosticLocation(S, SMgr, LC);
693         break;
694       case Stmt::WhileStmtClass:
695         if (cast<WhileStmt>(Parent)->getCond() != S)
696           return PathDiagnosticLocation(S, SMgr, LC);
697         break;
698       default:
699         break;
700     }
701 
702     S = Parent;
703   }
704 
705   assert(S && "Cannot have null Stmt for PathDiagnosticLocation");
706 
707   return PathDiagnosticLocation(S, SMgr, LC);
708 }
709 
710 //===----------------------------------------------------------------------===//
711 // "Minimal" path diagnostic generation algorithm.
712 //===----------------------------------------------------------------------===//
713 
714 /// If the piece contains a special message, add it to all the call pieces on
715 /// the active stack. For example, my_malloc allocated memory, so MallocChecker
716 /// will construct an event at the call to malloc(), and add a stack hint that
717 /// an allocated memory was returned. We'll use this hint to construct a message
718 /// when returning from the call to my_malloc
719 ///
720 ///   void *my_malloc() { return malloc(sizeof(int)); }
721 ///   void fishy() {
722 ///     void *ptr = my_malloc(); // returned allocated memory
723 ///   } // leak
724 void PathDiagnosticBuilder::updateStackPiecesWithMessage(
725     PathDiagnosticPieceRef P, const CallWithEntryStack &CallStack) const {
726   if (R->hasCallStackHint(P))
727     for (const auto &I : CallStack) {
728       PathDiagnosticCallPiece *CP = I.first;
729       const ExplodedNode *N = I.second;
730       std::string stackMsg = R->getCallStackMessage(P, N);
731 
732       // The last message on the path to final bug is the most important
733       // one. Since we traverse the path backwards, do not add the message
734       // if one has been previously added.
735       if (!CP->hasCallStackMessage())
736         CP->setCallStackMessage(stackMsg);
737     }
738 }
739 
740 static void CompactMacroExpandedPieces(PathPieces &path,
741                                        const SourceManager& SM);
742 
743 PathDiagnosticPieceRef PathDiagnosticBuilder::generateDiagForSwitchOP(
744     const PathDiagnosticConstruct &C, const CFGBlock *Dst,
745     PathDiagnosticLocation &Start) const {
746 
747   const SourceManager &SM = getSourceManager();
748   // Figure out what case arm we took.
749   std::string sbuf;
750   llvm::raw_string_ostream os(sbuf);
751   PathDiagnosticLocation End;
752 
753   if (const Stmt *S = Dst->getLabel()) {
754     End = PathDiagnosticLocation(S, SM, C.getCurrLocationContext());
755 
756     switch (S->getStmtClass()) {
757     default:
758       os << "No cases match in the switch statement. "
759         "Control jumps to line "
760         << End.asLocation().getExpansionLineNumber();
761       break;
762     case Stmt::DefaultStmtClass:
763       os << "Control jumps to the 'default' case at line "
764         << End.asLocation().getExpansionLineNumber();
765       break;
766 
767     case Stmt::CaseStmtClass: {
768       os << "Control jumps to 'case ";
769       const auto *Case = cast<CaseStmt>(S);
770       const Expr *LHS = Case->getLHS()->IgnoreParenCasts();
771 
772       // Determine if it is an enum.
773       bool GetRawInt = true;
774 
775       if (const auto *DR = dyn_cast<DeclRefExpr>(LHS)) {
776         // FIXME: Maybe this should be an assertion.  Are there cases
777         // were it is not an EnumConstantDecl?
778         const auto *D = dyn_cast<EnumConstantDecl>(DR->getDecl());
779 
780         if (D) {
781           GetRawInt = false;
782           os << *D;
783         }
784       }
785 
786       if (GetRawInt)
787         os << LHS->EvaluateKnownConstInt(getASTContext());
788 
789       os << ":'  at line " << End.asLocation().getExpansionLineNumber();
790       break;
791     }
792     }
793   } else {
794     os << "'Default' branch taken. ";
795     End = ExecutionContinues(os, C);
796   }
797   return std::make_shared<PathDiagnosticControlFlowPiece>(Start, End,
798                                                        os.str());
799 }
800 
801 PathDiagnosticPieceRef PathDiagnosticBuilder::generateDiagForGotoOP(
802     const PathDiagnosticConstruct &C, const Stmt *S,
803     PathDiagnosticLocation &Start) const {
804   std::string sbuf;
805   llvm::raw_string_ostream os(sbuf);
806   const PathDiagnosticLocation &End =
807       getEnclosingStmtLocation(S, C.getCurrLocationContext());
808   os << "Control jumps to line " << End.asLocation().getExpansionLineNumber();
809   return std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, os.str());
810 }
811 
812 PathDiagnosticPieceRef PathDiagnosticBuilder::generateDiagForBinaryOP(
813     const PathDiagnosticConstruct &C, const Stmt *T, const CFGBlock *Src,
814     const CFGBlock *Dst) const {
815 
816   const SourceManager &SM = getSourceManager();
817 
818   const auto *B = cast<BinaryOperator>(T);
819   std::string sbuf;
820   llvm::raw_string_ostream os(sbuf);
821   os << "Left side of '";
822   PathDiagnosticLocation Start, End;
823 
824   if (B->getOpcode() == BO_LAnd) {
825     os << "&&"
826       << "' is ";
827 
828     if (*(Src->succ_begin() + 1) == Dst) {
829       os << "false";
830       End = PathDiagnosticLocation(B->getLHS(), SM, C.getCurrLocationContext());
831       Start =
832         PathDiagnosticLocation::createOperatorLoc(B, SM);
833     } else {
834       os << "true";
835       Start =
836           PathDiagnosticLocation(B->getLHS(), SM, C.getCurrLocationContext());
837       End = ExecutionContinues(C);
838     }
839   } else {
840     assert(B->getOpcode() == BO_LOr);
841     os << "||"
842       << "' is ";
843 
844     if (*(Src->succ_begin() + 1) == Dst) {
845       os << "false";
846       Start =
847           PathDiagnosticLocation(B->getLHS(), SM, C.getCurrLocationContext());
848       End = ExecutionContinues(C);
849     } else {
850       os << "true";
851       End = PathDiagnosticLocation(B->getLHS(), SM, C.getCurrLocationContext());
852       Start =
853         PathDiagnosticLocation::createOperatorLoc(B, SM);
854     }
855   }
856   return std::make_shared<PathDiagnosticControlFlowPiece>(Start, End,
857                                                          os.str());
858 }
859 
860 void PathDiagnosticBuilder::generateMinimalDiagForBlockEdge(
861     PathDiagnosticConstruct &C, BlockEdge BE) const {
862   const SourceManager &SM = getSourceManager();
863   const LocationContext *LC = C.getCurrLocationContext();
864   const CFGBlock *Src = BE.getSrc();
865   const CFGBlock *Dst = BE.getDst();
866   const Stmt *T = Src->getTerminatorStmt();
867   if (!T)
868     return;
869 
870   auto Start = PathDiagnosticLocation::createBegin(T, SM, LC);
871   switch (T->getStmtClass()) {
872   default:
873     break;
874 
875   case Stmt::GotoStmtClass:
876   case Stmt::IndirectGotoStmtClass: {
877     if (const Stmt *S = C.getCurrentNode()->getNextStmtForDiagnostics())
878       C.getActivePath().push_front(generateDiagForGotoOP(C, S, Start));
879     break;
880   }
881 
882   case Stmt::SwitchStmtClass: {
883     C.getActivePath().push_front(generateDiagForSwitchOP(C, Dst, Start));
884     break;
885   }
886 
887   case Stmt::BreakStmtClass:
888   case Stmt::ContinueStmtClass: {
889     std::string sbuf;
890     llvm::raw_string_ostream os(sbuf);
891     PathDiagnosticLocation End = ExecutionContinues(os, C);
892     C.getActivePath().push_front(
893         std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, os.str()));
894     break;
895   }
896 
897   // Determine control-flow for ternary '?'.
898   case Stmt::BinaryConditionalOperatorClass:
899   case Stmt::ConditionalOperatorClass: {
900     std::string sbuf;
901     llvm::raw_string_ostream os(sbuf);
902     os << "'?' condition is ";
903 
904     if (*(Src->succ_begin() + 1) == Dst)
905       os << "false";
906     else
907       os << "true";
908 
909     PathDiagnosticLocation End = ExecutionContinues(C);
910 
911     if (const Stmt *S = End.asStmt())
912       End = getEnclosingStmtLocation(S, C.getCurrLocationContext());
913 
914     C.getActivePath().push_front(
915         std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, os.str()));
916     break;
917   }
918 
919   // Determine control-flow for short-circuited '&&' and '||'.
920   case Stmt::BinaryOperatorClass: {
921     if (!C.supportsLogicalOpControlFlow())
922       break;
923 
924     C.getActivePath().push_front(generateDiagForBinaryOP(C, T, Src, Dst));
925     break;
926   }
927 
928   case Stmt::DoStmtClass:
929     if (*(Src->succ_begin()) == Dst) {
930       std::string sbuf;
931       llvm::raw_string_ostream os(sbuf);
932 
933       os << "Loop condition is true. ";
934       PathDiagnosticLocation End = ExecutionContinues(os, C);
935 
936       if (const Stmt *S = End.asStmt())
937         End = getEnclosingStmtLocation(S, C.getCurrLocationContext());
938 
939       C.getActivePath().push_front(
940           std::make_shared<PathDiagnosticControlFlowPiece>(Start, End,
941                                                            os.str()));
942     } else {
943       PathDiagnosticLocation End = ExecutionContinues(C);
944 
945       if (const Stmt *S = End.asStmt())
946         End = getEnclosingStmtLocation(S, C.getCurrLocationContext());
947 
948       C.getActivePath().push_front(
949           std::make_shared<PathDiagnosticControlFlowPiece>(
950               Start, End, "Loop condition is false.  Exiting loop"));
951     }
952     break;
953 
954   case Stmt::WhileStmtClass:
955   case Stmt::ForStmtClass:
956     if (*(Src->succ_begin() + 1) == Dst) {
957       std::string sbuf;
958       llvm::raw_string_ostream os(sbuf);
959 
960       os << "Loop condition is false. ";
961       PathDiagnosticLocation End = ExecutionContinues(os, C);
962       if (const Stmt *S = End.asStmt())
963         End = getEnclosingStmtLocation(S, C.getCurrLocationContext());
964 
965       C.getActivePath().push_front(
966           std::make_shared<PathDiagnosticControlFlowPiece>(Start, End,
967                                                            os.str()));
968     } else {
969       PathDiagnosticLocation End = ExecutionContinues(C);
970       if (const Stmt *S = End.asStmt())
971         End = getEnclosingStmtLocation(S, C.getCurrLocationContext());
972 
973       C.getActivePath().push_front(
974           std::make_shared<PathDiagnosticControlFlowPiece>(
975               Start, End, "Loop condition is true.  Entering loop body"));
976     }
977 
978     break;
979 
980   case Stmt::IfStmtClass: {
981     PathDiagnosticLocation End = ExecutionContinues(C);
982 
983     if (const Stmt *S = End.asStmt())
984       End = getEnclosingStmtLocation(S, C.getCurrLocationContext());
985 
986     if (*(Src->succ_begin() + 1) == Dst)
987       C.getActivePath().push_front(
988           std::make_shared<PathDiagnosticControlFlowPiece>(
989               Start, End, "Taking false branch"));
990     else
991       C.getActivePath().push_front(
992           std::make_shared<PathDiagnosticControlFlowPiece>(
993               Start, End, "Taking true branch"));
994 
995     break;
996   }
997   }
998 }
999 
1000 //===----------------------------------------------------------------------===//
1001 // Functions for determining if a loop was executed 0 times.
1002 //===----------------------------------------------------------------------===//
1003 
1004 static bool isLoop(const Stmt *Term) {
1005   switch (Term->getStmtClass()) {
1006     case Stmt::ForStmtClass:
1007     case Stmt::WhileStmtClass:
1008     case Stmt::ObjCForCollectionStmtClass:
1009     case Stmt::CXXForRangeStmtClass:
1010       return true;
1011     default:
1012       // Note that we intentionally do not include do..while here.
1013       return false;
1014   }
1015 }
1016 
1017 static bool isJumpToFalseBranch(const BlockEdge *BE) {
1018   const CFGBlock *Src = BE->getSrc();
1019   assert(Src->succ_size() == 2);
1020   return (*(Src->succ_begin()+1) == BE->getDst());
1021 }
1022 
1023 static bool isContainedByStmt(const ParentMap &PM, const Stmt *S,
1024                               const Stmt *SubS) {
1025   while (SubS) {
1026     if (SubS == S)
1027       return true;
1028     SubS = PM.getParent(SubS);
1029   }
1030   return false;
1031 }
1032 
1033 static const Stmt *getStmtBeforeCond(const ParentMap &PM, const Stmt *Term,
1034                                      const ExplodedNode *N) {
1035   while (N) {
1036     Optional<StmtPoint> SP = N->getLocation().getAs<StmtPoint>();
1037     if (SP) {
1038       const Stmt *S = SP->getStmt();
1039       if (!isContainedByStmt(PM, Term, S))
1040         return S;
1041     }
1042     N = N->getFirstPred();
1043   }
1044   return nullptr;
1045 }
1046 
1047 static bool isInLoopBody(const ParentMap &PM, const Stmt *S, const Stmt *Term) {
1048   const Stmt *LoopBody = nullptr;
1049   switch (Term->getStmtClass()) {
1050     case Stmt::CXXForRangeStmtClass: {
1051       const auto *FR = cast<CXXForRangeStmt>(Term);
1052       if (isContainedByStmt(PM, FR->getInc(), S))
1053         return true;
1054       if (isContainedByStmt(PM, FR->getLoopVarStmt(), S))
1055         return true;
1056       LoopBody = FR->getBody();
1057       break;
1058     }
1059     case Stmt::ForStmtClass: {
1060       const auto *FS = cast<ForStmt>(Term);
1061       if (isContainedByStmt(PM, FS->getInc(), S))
1062         return true;
1063       LoopBody = FS->getBody();
1064       break;
1065     }
1066     case Stmt::ObjCForCollectionStmtClass: {
1067       const auto *FC = cast<ObjCForCollectionStmt>(Term);
1068       LoopBody = FC->getBody();
1069       break;
1070     }
1071     case Stmt::WhileStmtClass:
1072       LoopBody = cast<WhileStmt>(Term)->getBody();
1073       break;
1074     default:
1075       return false;
1076   }
1077   return isContainedByStmt(PM, LoopBody, S);
1078 }
1079 
1080 /// Adds a sanitized control-flow diagnostic edge to a path.
1081 static void addEdgeToPath(PathPieces &path,
1082                           PathDiagnosticLocation &PrevLoc,
1083                           PathDiagnosticLocation NewLoc) {
1084   if (!NewLoc.isValid())
1085     return;
1086 
1087   SourceLocation NewLocL = NewLoc.asLocation();
1088   if (NewLocL.isInvalid())
1089     return;
1090 
1091   if (!PrevLoc.isValid() || !PrevLoc.asLocation().isValid()) {
1092     PrevLoc = NewLoc;
1093     return;
1094   }
1095 
1096   // Ignore self-edges, which occur when there are multiple nodes at the same
1097   // statement.
1098   if (NewLoc.asStmt() && NewLoc.asStmt() == PrevLoc.asStmt())
1099     return;
1100 
1101   path.push_front(
1102       std::make_shared<PathDiagnosticControlFlowPiece>(NewLoc, PrevLoc));
1103   PrevLoc = NewLoc;
1104 }
1105 
1106 /// A customized wrapper for CFGBlock::getTerminatorCondition()
1107 /// which returns the element for ObjCForCollectionStmts.
1108 static const Stmt *getTerminatorCondition(const CFGBlock *B) {
1109   const Stmt *S = B->getTerminatorCondition();
1110   if (const auto *FS = dyn_cast_or_null<ObjCForCollectionStmt>(S))
1111     return FS->getElement();
1112   return S;
1113 }
1114 
1115 constexpr llvm::StringLiteral StrEnteringLoop = "Entering loop body";
1116 constexpr llvm::StringLiteral StrLoopBodyZero = "Loop body executed 0 times";
1117 constexpr llvm::StringLiteral StrLoopRangeEmpty =
1118     "Loop body skipped when range is empty";
1119 constexpr llvm::StringLiteral StrLoopCollectionEmpty =
1120     "Loop body skipped when collection is empty";
1121 
1122 static std::unique_ptr<FilesToLineNumsMap>
1123 findExecutedLines(const SourceManager &SM, const ExplodedNode *N);
1124 
1125 void PathDiagnosticBuilder::generatePathDiagnosticsForNode(
1126     PathDiagnosticConstruct &C, PathDiagnosticLocation &PrevLoc) const {
1127   ProgramPoint P = C.getCurrentNode()->getLocation();
1128   const SourceManager &SM = getSourceManager();
1129 
1130   // Have we encountered an entrance to a call?  It may be
1131   // the case that we have not encountered a matching
1132   // call exit before this point.  This means that the path
1133   // terminated within the call itself.
1134   if (auto CE = P.getAs<CallEnter>()) {
1135 
1136     if (C.shouldAddPathEdges()) {
1137       // Add an edge to the start of the function.
1138       const StackFrameContext *CalleeLC = CE->getCalleeContext();
1139       const Decl *D = CalleeLC->getDecl();
1140       // Add the edge only when the callee has body. We jump to the beginning
1141       // of the *declaration*, however we expect it to be followed by the
1142       // body. This isn't the case for autosynthesized property accessors in
1143       // Objective-C. No need for a similar extra check for CallExit points
1144       // because the exit edge comes from a statement (i.e. return),
1145       // not from declaration.
1146       if (D->hasBody())
1147         addEdgeToPath(C.getActivePath(), PrevLoc,
1148                       PathDiagnosticLocation::createBegin(D, SM));
1149     }
1150 
1151     // Did we visit an entire call?
1152     bool VisitedEntireCall = C.PD->isWithinCall();
1153     C.PD->popActivePath();
1154 
1155     PathDiagnosticCallPiece *Call;
1156     if (VisitedEntireCall) {
1157       Call = cast<PathDiagnosticCallPiece>(C.getActivePath().front().get());
1158     } else {
1159       // The path terminated within a nested location context, create a new
1160       // call piece to encapsulate the rest of the path pieces.
1161       const Decl *Caller = CE->getLocationContext()->getDecl();
1162       Call = PathDiagnosticCallPiece::construct(C.getActivePath(), Caller);
1163       assert(C.getActivePath().size() == 1 &&
1164              C.getActivePath().front().get() == Call);
1165 
1166       // Since we just transferred the path over to the call piece, reset the
1167       // mapping of the active path to the current location context.
1168       assert(C.isInLocCtxMap(&C.getActivePath()) &&
1169              "When we ascend to a previously unvisited call, the active path's "
1170              "address shouldn't change, but rather should be compacted into "
1171              "a single CallEvent!");
1172       C.updateLocCtxMap(&C.getActivePath(), C.getCurrLocationContext());
1173 
1174       // Record the location context mapping for the path within the call.
1175       assert(!C.isInLocCtxMap(&Call->path) &&
1176              "When we ascend to a previously unvisited call, this must be the "
1177              "first time we encounter the caller context!");
1178       C.updateLocCtxMap(&Call->path, CE->getCalleeContext());
1179     }
1180     Call->setCallee(*CE, SM);
1181 
1182     // Update the previous location in the active path.
1183     PrevLoc = Call->getLocation();
1184 
1185     if (!C.CallStack.empty()) {
1186       assert(C.CallStack.back().first == Call);
1187       C.CallStack.pop_back();
1188     }
1189     return;
1190   }
1191 
1192   assert(C.getCurrLocationContext() == C.getLocationContextForActivePath() &&
1193          "The current position in the bug path is out of sync with the "
1194          "location context associated with the active path!");
1195 
1196   // Have we encountered an exit from a function call?
1197   if (Optional<CallExitEnd> CE = P.getAs<CallExitEnd>()) {
1198 
1199     // We are descending into a call (backwards).  Construct
1200     // a new call piece to contain the path pieces for that call.
1201     auto Call = PathDiagnosticCallPiece::construct(*CE, SM);
1202     // Record the mapping from call piece to LocationContext.
1203     assert(!C.isInLocCtxMap(&Call->path) &&
1204            "We just entered a call, this must've been the first time we "
1205            "encounter its context!");
1206     C.updateLocCtxMap(&Call->path, CE->getCalleeContext());
1207 
1208     if (C.shouldAddPathEdges()) {
1209       // Add the edge to the return site.
1210       addEdgeToPath(C.getActivePath(), PrevLoc, Call->callReturn);
1211       PrevLoc.invalidate();
1212     }
1213 
1214     auto *P = Call.get();
1215     C.getActivePath().push_front(std::move(Call));
1216 
1217     // Make the contents of the call the active path for now.
1218     C.PD->pushActivePath(&P->path);
1219     C.CallStack.push_back(CallWithEntry(P, C.getCurrentNode()));
1220     return;
1221   }
1222 
1223   if (auto PS = P.getAs<PostStmt>()) {
1224     if (!C.shouldAddPathEdges())
1225       return;
1226 
1227     // Add an edge.  If this is an ObjCForCollectionStmt do
1228     // not add an edge here as it appears in the CFG both
1229     // as a terminator and as a terminator condition.
1230     if (!isa<ObjCForCollectionStmt>(PS->getStmt())) {
1231       PathDiagnosticLocation L =
1232           PathDiagnosticLocation(PS->getStmt(), SM, C.getCurrLocationContext());
1233       addEdgeToPath(C.getActivePath(), PrevLoc, L);
1234     }
1235 
1236   } else if (auto BE = P.getAs<BlockEdge>()) {
1237 
1238     if (C.shouldAddControlNotes()) {
1239       generateMinimalDiagForBlockEdge(C, *BE);
1240     }
1241 
1242     if (!C.shouldAddPathEdges()) {
1243       return;
1244     }
1245 
1246     // Are we jumping to the head of a loop?  Add a special diagnostic.
1247     if (const Stmt *Loop = BE->getSrc()->getLoopTarget()) {
1248       PathDiagnosticLocation L(Loop, SM, C.getCurrLocationContext());
1249       const Stmt *Body = nullptr;
1250 
1251       if (const auto *FS = dyn_cast<ForStmt>(Loop))
1252         Body = FS->getBody();
1253       else if (const auto *WS = dyn_cast<WhileStmt>(Loop))
1254         Body = WS->getBody();
1255       else if (const auto *OFS = dyn_cast<ObjCForCollectionStmt>(Loop)) {
1256         Body = OFS->getBody();
1257       } else if (const auto *FRS = dyn_cast<CXXForRangeStmt>(Loop)) {
1258         Body = FRS->getBody();
1259       }
1260       // do-while statements are explicitly excluded here
1261 
1262       auto p = std::make_shared<PathDiagnosticEventPiece>(
1263           L, "Looping back to the head of the loop");
1264       p->setPrunable(true);
1265 
1266       addEdgeToPath(C.getActivePath(), PrevLoc, p->getLocation());
1267       // We might've added a very similar control node already
1268       if (!C.shouldAddControlNotes()) {
1269         C.getActivePath().push_front(std::move(p));
1270       }
1271 
1272       if (const auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
1273         addEdgeToPath(C.getActivePath(), PrevLoc,
1274                       PathDiagnosticLocation::createEndBrace(CS, SM));
1275       }
1276     }
1277 
1278     const CFGBlock *BSrc = BE->getSrc();
1279     const ParentMap &PM = C.getParentMap();
1280 
1281     if (const Stmt *Term = BSrc->getTerminatorStmt()) {
1282       // Are we jumping past the loop body without ever executing the
1283       // loop (because the condition was false)?
1284       if (isLoop(Term)) {
1285         const Stmt *TermCond = getTerminatorCondition(BSrc);
1286         bool IsInLoopBody = isInLoopBody(
1287             PM, getStmtBeforeCond(PM, TermCond, C.getCurrentNode()), Term);
1288 
1289         StringRef str;
1290 
1291         if (isJumpToFalseBranch(&*BE)) {
1292           if (!IsInLoopBody) {
1293             if (isa<ObjCForCollectionStmt>(Term)) {
1294               str = StrLoopCollectionEmpty;
1295             } else if (isa<CXXForRangeStmt>(Term)) {
1296               str = StrLoopRangeEmpty;
1297             } else {
1298               str = StrLoopBodyZero;
1299             }
1300           }
1301         } else {
1302           str = StrEnteringLoop;
1303         }
1304 
1305         if (!str.empty()) {
1306           PathDiagnosticLocation L(TermCond ? TermCond : Term, SM,
1307                                    C.getCurrLocationContext());
1308           auto PE = std::make_shared<PathDiagnosticEventPiece>(L, str);
1309           PE->setPrunable(true);
1310           addEdgeToPath(C.getActivePath(), PrevLoc, PE->getLocation());
1311 
1312           // We might've added a very similar control node already
1313           if (!C.shouldAddControlNotes()) {
1314             C.getActivePath().push_front(std::move(PE));
1315           }
1316         }
1317       } else if (isa<BreakStmt, ContinueStmt, GotoStmt>(Term)) {
1318         PathDiagnosticLocation L(Term, SM, C.getCurrLocationContext());
1319         addEdgeToPath(C.getActivePath(), PrevLoc, L);
1320       }
1321     }
1322   }
1323 }
1324 
1325 static std::unique_ptr<PathDiagnostic>
1326 generateDiagnosticForBasicReport(const BasicBugReport *R) {
1327   const BugType &BT = R->getBugType();
1328   return std::make_unique<PathDiagnostic>(
1329       BT.getCheckerName(), R->getDeclWithIssue(), BT.getDescription(),
1330       R->getDescription(), R->getShortDescription(/*UseFallback=*/false),
1331       BT.getCategory(), R->getUniqueingLocation(), R->getUniqueingDecl(),
1332       std::make_unique<FilesToLineNumsMap>());
1333 }
1334 
1335 static std::unique_ptr<PathDiagnostic>
1336 generateEmptyDiagnosticForReport(const PathSensitiveBugReport *R,
1337                                  const SourceManager &SM) {
1338   const BugType &BT = R->getBugType();
1339   return std::make_unique<PathDiagnostic>(
1340       BT.getCheckerName(), R->getDeclWithIssue(), BT.getDescription(),
1341       R->getDescription(), R->getShortDescription(/*UseFallback=*/false),
1342       BT.getCategory(), R->getUniqueingLocation(), R->getUniqueingDecl(),
1343       findExecutedLines(SM, R->getErrorNode()));
1344 }
1345 
1346 static const Stmt *getStmtParent(const Stmt *S, const ParentMap &PM) {
1347   if (!S)
1348     return nullptr;
1349 
1350   while (true) {
1351     S = PM.getParentIgnoreParens(S);
1352 
1353     if (!S)
1354       break;
1355 
1356     if (isa<FullExpr, CXXBindTemporaryExpr, SubstNonTypeTemplateParmExpr>(S))
1357       continue;
1358 
1359     break;
1360   }
1361 
1362   return S;
1363 }
1364 
1365 static bool isConditionForTerminator(const Stmt *S, const Stmt *Cond) {
1366   switch (S->getStmtClass()) {
1367     case Stmt::BinaryOperatorClass: {
1368       const auto *BO = cast<BinaryOperator>(S);
1369       if (!BO->isLogicalOp())
1370         return false;
1371       return BO->getLHS() == Cond || BO->getRHS() == Cond;
1372     }
1373     case Stmt::IfStmtClass:
1374       return cast<IfStmt>(S)->getCond() == Cond;
1375     case Stmt::ForStmtClass:
1376       return cast<ForStmt>(S)->getCond() == Cond;
1377     case Stmt::WhileStmtClass:
1378       return cast<WhileStmt>(S)->getCond() == Cond;
1379     case Stmt::DoStmtClass:
1380       return cast<DoStmt>(S)->getCond() == Cond;
1381     case Stmt::ChooseExprClass:
1382       return cast<ChooseExpr>(S)->getCond() == Cond;
1383     case Stmt::IndirectGotoStmtClass:
1384       return cast<IndirectGotoStmt>(S)->getTarget() == Cond;
1385     case Stmt::SwitchStmtClass:
1386       return cast<SwitchStmt>(S)->getCond() == Cond;
1387     case Stmt::BinaryConditionalOperatorClass:
1388       return cast<BinaryConditionalOperator>(S)->getCond() == Cond;
1389     case Stmt::ConditionalOperatorClass: {
1390       const auto *CO = cast<ConditionalOperator>(S);
1391       return CO->getCond() == Cond ||
1392              CO->getLHS() == Cond ||
1393              CO->getRHS() == Cond;
1394     }
1395     case Stmt::ObjCForCollectionStmtClass:
1396       return cast<ObjCForCollectionStmt>(S)->getElement() == Cond;
1397     case Stmt::CXXForRangeStmtClass: {
1398       const auto *FRS = cast<CXXForRangeStmt>(S);
1399       return FRS->getCond() == Cond || FRS->getRangeInit() == Cond;
1400     }
1401     default:
1402       return false;
1403   }
1404 }
1405 
1406 static bool isIncrementOrInitInForLoop(const Stmt *S, const Stmt *FL) {
1407   if (const auto *FS = dyn_cast<ForStmt>(FL))
1408     return FS->getInc() == S || FS->getInit() == S;
1409   if (const auto *FRS = dyn_cast<CXXForRangeStmt>(FL))
1410     return FRS->getInc() == S || FRS->getRangeStmt() == S ||
1411            FRS->getLoopVarStmt() || FRS->getRangeInit() == S;
1412   return false;
1413 }
1414 
1415 using OptimizedCallsSet = llvm::DenseSet<const PathDiagnosticCallPiece *>;
1416 
1417 /// Adds synthetic edges from top-level statements to their subexpressions.
1418 ///
1419 /// This avoids a "swoosh" effect, where an edge from a top-level statement A
1420 /// points to a sub-expression B.1 that's not at the start of B. In these cases,
1421 /// we'd like to see an edge from A to B, then another one from B to B.1.
1422 static void addContextEdges(PathPieces &pieces, const LocationContext *LC) {
1423   const ParentMap &PM = LC->getParentMap();
1424   PathPieces::iterator Prev = pieces.end();
1425   for (PathPieces::iterator I = pieces.begin(), E = Prev; I != E;
1426        Prev = I, ++I) {
1427     auto *Piece = dyn_cast<PathDiagnosticControlFlowPiece>(I->get());
1428 
1429     if (!Piece)
1430       continue;
1431 
1432     PathDiagnosticLocation SrcLoc = Piece->getStartLocation();
1433     SmallVector<PathDiagnosticLocation, 4> SrcContexts;
1434 
1435     PathDiagnosticLocation NextSrcContext = SrcLoc;
1436     const Stmt *InnerStmt = nullptr;
1437     while (NextSrcContext.isValid() && NextSrcContext.asStmt() != InnerStmt) {
1438       SrcContexts.push_back(NextSrcContext);
1439       InnerStmt = NextSrcContext.asStmt();
1440       NextSrcContext = getEnclosingStmtLocation(InnerStmt, LC,
1441                                                 /*allowNested=*/true);
1442     }
1443 
1444     // Repeatedly split the edge as necessary.
1445     // This is important for nested logical expressions (||, &&, ?:) where we
1446     // want to show all the levels of context.
1447     while (true) {
1448       const Stmt *Dst = Piece->getEndLocation().getStmtOrNull();
1449 
1450       // We are looking at an edge. Is the destination within a larger
1451       // expression?
1452       PathDiagnosticLocation DstContext =
1453           getEnclosingStmtLocation(Dst, LC, /*allowNested=*/true);
1454       if (!DstContext.isValid() || DstContext.asStmt() == Dst)
1455         break;
1456 
1457       // If the source is in the same context, we're already good.
1458       if (llvm::is_contained(SrcContexts, DstContext))
1459         break;
1460 
1461       // Update the subexpression node to point to the context edge.
1462       Piece->setStartLocation(DstContext);
1463 
1464       // Try to extend the previous edge if it's at the same level as the source
1465       // context.
1466       if (Prev != E) {
1467         auto *PrevPiece = dyn_cast<PathDiagnosticControlFlowPiece>(Prev->get());
1468 
1469         if (PrevPiece) {
1470           if (const Stmt *PrevSrc =
1471                   PrevPiece->getStartLocation().getStmtOrNull()) {
1472             const Stmt *PrevSrcParent = getStmtParent(PrevSrc, PM);
1473             if (PrevSrcParent ==
1474                 getStmtParent(DstContext.getStmtOrNull(), PM)) {
1475               PrevPiece->setEndLocation(DstContext);
1476               break;
1477             }
1478           }
1479         }
1480       }
1481 
1482       // Otherwise, split the current edge into a context edge and a
1483       // subexpression edge. Note that the context statement may itself have
1484       // context.
1485       auto P =
1486           std::make_shared<PathDiagnosticControlFlowPiece>(SrcLoc, DstContext);
1487       Piece = P.get();
1488       I = pieces.insert(I, std::move(P));
1489     }
1490   }
1491 }
1492 
1493 /// Move edges from a branch condition to a branch target
1494 ///        when the condition is simple.
1495 ///
1496 /// This restructures some of the work of addContextEdges.  That function
1497 /// creates edges this may destroy, but they work together to create a more
1498 /// aesthetically set of edges around branches.  After the call to
1499 /// addContextEdges, we may have (1) an edge to the branch, (2) an edge from
1500 /// the branch to the branch condition, and (3) an edge from the branch
1501 /// condition to the branch target.  We keep (1), but may wish to remove (2)
1502 /// and move the source of (3) to the branch if the branch condition is simple.
1503 static void simplifySimpleBranches(PathPieces &pieces) {
1504   for (PathPieces::iterator I = pieces.begin(), E = pieces.end(); I != E; ++I) {
1505     const auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get());
1506 
1507     if (!PieceI)
1508       continue;
1509 
1510     const Stmt *s1Start = PieceI->getStartLocation().getStmtOrNull();
1511     const Stmt *s1End   = PieceI->getEndLocation().getStmtOrNull();
1512 
1513     if (!s1Start || !s1End)
1514       continue;
1515 
1516     PathPieces::iterator NextI = I; ++NextI;
1517     if (NextI == E)
1518       break;
1519 
1520     PathDiagnosticControlFlowPiece *PieceNextI = nullptr;
1521 
1522     while (true) {
1523       if (NextI == E)
1524         break;
1525 
1526       const auto *EV = dyn_cast<PathDiagnosticEventPiece>(NextI->get());
1527       if (EV) {
1528         StringRef S = EV->getString();
1529         if (S == StrEnteringLoop || S == StrLoopBodyZero ||
1530             S == StrLoopCollectionEmpty || S == StrLoopRangeEmpty) {
1531           ++NextI;
1532           continue;
1533         }
1534         break;
1535       }
1536 
1537       PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get());
1538       break;
1539     }
1540 
1541     if (!PieceNextI)
1542       continue;
1543 
1544     const Stmt *s2Start = PieceNextI->getStartLocation().getStmtOrNull();
1545     const Stmt *s2End   = PieceNextI->getEndLocation().getStmtOrNull();
1546 
1547     if (!s2Start || !s2End || s1End != s2Start)
1548       continue;
1549 
1550     // We only perform this transformation for specific branch kinds.
1551     // We don't want to do this for do..while, for example.
1552     if (!isa<ForStmt, WhileStmt, IfStmt, ObjCForCollectionStmt,
1553              CXXForRangeStmt>(s1Start))
1554       continue;
1555 
1556     // Is s1End the branch condition?
1557     if (!isConditionForTerminator(s1Start, s1End))
1558       continue;
1559 
1560     // Perform the hoisting by eliminating (2) and changing the start
1561     // location of (3).
1562     PieceNextI->setStartLocation(PieceI->getStartLocation());
1563     I = pieces.erase(I);
1564   }
1565 }
1566 
1567 /// Returns the number of bytes in the given (character-based) SourceRange.
1568 ///
1569 /// If the locations in the range are not on the same line, returns
1570 /// std::nullopt.
1571 ///
1572 /// Note that this does not do a precise user-visible character or column count.
1573 static Optional<size_t> getLengthOnSingleLine(const SourceManager &SM,
1574                                               SourceRange Range) {
1575   SourceRange ExpansionRange(SM.getExpansionLoc(Range.getBegin()),
1576                              SM.getExpansionRange(Range.getEnd()).getEnd());
1577 
1578   FileID FID = SM.getFileID(ExpansionRange.getBegin());
1579   if (FID != SM.getFileID(ExpansionRange.getEnd()))
1580     return std::nullopt;
1581 
1582   Optional<MemoryBufferRef> Buffer = SM.getBufferOrNone(FID);
1583   if (!Buffer)
1584     return std::nullopt;
1585 
1586   unsigned BeginOffset = SM.getFileOffset(ExpansionRange.getBegin());
1587   unsigned EndOffset = SM.getFileOffset(ExpansionRange.getEnd());
1588   StringRef Snippet = Buffer->getBuffer().slice(BeginOffset, EndOffset);
1589 
1590   // We're searching the raw bytes of the buffer here, which might include
1591   // escaped newlines and such. That's okay; we're trying to decide whether the
1592   // SourceRange is covering a large or small amount of space in the user's
1593   // editor.
1594   if (Snippet.find_first_of("\r\n") != StringRef::npos)
1595     return std::nullopt;
1596 
1597   // This isn't Unicode-aware, but it doesn't need to be.
1598   return Snippet.size();
1599 }
1600 
1601 /// \sa getLengthOnSingleLine(SourceManager, SourceRange)
1602 static Optional<size_t> getLengthOnSingleLine(const SourceManager &SM,
1603                                               const Stmt *S) {
1604   return getLengthOnSingleLine(SM, S->getSourceRange());
1605 }
1606 
1607 /// Eliminate two-edge cycles created by addContextEdges().
1608 ///
1609 /// Once all the context edges are in place, there are plenty of cases where
1610 /// there's a single edge from a top-level statement to a subexpression,
1611 /// followed by a single path note, and then a reverse edge to get back out to
1612 /// the top level. If the statement is simple enough, the subexpression edges
1613 /// just add noise and make it harder to understand what's going on.
1614 ///
1615 /// This function only removes edges in pairs, because removing only one edge
1616 /// might leave other edges dangling.
1617 ///
1618 /// This will not remove edges in more complicated situations:
1619 /// - if there is more than one "hop" leading to or from a subexpression.
1620 /// - if there is an inlined call between the edges instead of a single event.
1621 /// - if the whole statement is large enough that having subexpression arrows
1622 ///   might be helpful.
1623 static void removeContextCycles(PathPieces &Path, const SourceManager &SM) {
1624   for (PathPieces::iterator I = Path.begin(), E = Path.end(); I != E; ) {
1625     // Pattern match the current piece and its successor.
1626     const auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get());
1627 
1628     if (!PieceI) {
1629       ++I;
1630       continue;
1631     }
1632 
1633     const Stmt *s1Start = PieceI->getStartLocation().getStmtOrNull();
1634     const Stmt *s1End   = PieceI->getEndLocation().getStmtOrNull();
1635 
1636     PathPieces::iterator NextI = I; ++NextI;
1637     if (NextI == E)
1638       break;
1639 
1640     const auto *PieceNextI =
1641         dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get());
1642 
1643     if (!PieceNextI) {
1644       if (isa<PathDiagnosticEventPiece>(NextI->get())) {
1645         ++NextI;
1646         if (NextI == E)
1647           break;
1648         PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get());
1649       }
1650 
1651       if (!PieceNextI) {
1652         ++I;
1653         continue;
1654       }
1655     }
1656 
1657     const Stmt *s2Start = PieceNextI->getStartLocation().getStmtOrNull();
1658     const Stmt *s2End   = PieceNextI->getEndLocation().getStmtOrNull();
1659 
1660     if (s1Start && s2Start && s1Start == s2End && s2Start == s1End) {
1661       const size_t MAX_SHORT_LINE_LENGTH = 80;
1662       Optional<size_t> s1Length = getLengthOnSingleLine(SM, s1Start);
1663       if (s1Length && *s1Length <= MAX_SHORT_LINE_LENGTH) {
1664         Optional<size_t> s2Length = getLengthOnSingleLine(SM, s2Start);
1665         if (s2Length && *s2Length <= MAX_SHORT_LINE_LENGTH) {
1666           Path.erase(I);
1667           I = Path.erase(NextI);
1668           continue;
1669         }
1670       }
1671     }
1672 
1673     ++I;
1674   }
1675 }
1676 
1677 /// Return true if X is contained by Y.
1678 static bool lexicalContains(const ParentMap &PM, const Stmt *X, const Stmt *Y) {
1679   while (X) {
1680     if (X == Y)
1681       return true;
1682     X = PM.getParent(X);
1683   }
1684   return false;
1685 }
1686 
1687 // Remove short edges on the same line less than 3 columns in difference.
1688 static void removePunyEdges(PathPieces &path, const SourceManager &SM,
1689                             const ParentMap &PM) {
1690   bool erased = false;
1691 
1692   for (PathPieces::iterator I = path.begin(), E = path.end(); I != E;
1693        erased ? I : ++I) {
1694     erased = false;
1695 
1696     const auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get());
1697 
1698     if (!PieceI)
1699       continue;
1700 
1701     const Stmt *start = PieceI->getStartLocation().getStmtOrNull();
1702     const Stmt *end   = PieceI->getEndLocation().getStmtOrNull();
1703 
1704     if (!start || !end)
1705       continue;
1706 
1707     const Stmt *endParent = PM.getParent(end);
1708     if (!endParent)
1709       continue;
1710 
1711     if (isConditionForTerminator(end, endParent))
1712       continue;
1713 
1714     SourceLocation FirstLoc = start->getBeginLoc();
1715     SourceLocation SecondLoc = end->getBeginLoc();
1716 
1717     if (!SM.isWrittenInSameFile(FirstLoc, SecondLoc))
1718       continue;
1719     if (SM.isBeforeInTranslationUnit(SecondLoc, FirstLoc))
1720       std::swap(SecondLoc, FirstLoc);
1721 
1722     SourceRange EdgeRange(FirstLoc, SecondLoc);
1723     Optional<size_t> ByteWidth = getLengthOnSingleLine(SM, EdgeRange);
1724 
1725     // If the statements are on different lines, continue.
1726     if (!ByteWidth)
1727       continue;
1728 
1729     const size_t MAX_PUNY_EDGE_LENGTH = 2;
1730     if (*ByteWidth <= MAX_PUNY_EDGE_LENGTH) {
1731       // FIXME: There are enough /bytes/ between the endpoints of the edge, but
1732       // there might not be enough /columns/. A proper user-visible column count
1733       // is probably too expensive, though.
1734       I = path.erase(I);
1735       erased = true;
1736       continue;
1737     }
1738   }
1739 }
1740 
1741 static void removeIdenticalEvents(PathPieces &path) {
1742   for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; ++I) {
1743     const auto *PieceI = dyn_cast<PathDiagnosticEventPiece>(I->get());
1744 
1745     if (!PieceI)
1746       continue;
1747 
1748     PathPieces::iterator NextI = I; ++NextI;
1749     if (NextI == E)
1750       return;
1751 
1752     const auto *PieceNextI = dyn_cast<PathDiagnosticEventPiece>(NextI->get());
1753 
1754     if (!PieceNextI)
1755       continue;
1756 
1757     // Erase the second piece if it has the same exact message text.
1758     if (PieceI->getString() == PieceNextI->getString()) {
1759       path.erase(NextI);
1760     }
1761   }
1762 }
1763 
1764 static bool optimizeEdges(const PathDiagnosticConstruct &C, PathPieces &path,
1765                           OptimizedCallsSet &OCS) {
1766   bool hasChanges = false;
1767   const LocationContext *LC = C.getLocationContextFor(&path);
1768   assert(LC);
1769   const ParentMap &PM = LC->getParentMap();
1770   const SourceManager &SM = C.getSourceManager();
1771 
1772   for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; ) {
1773     // Optimize subpaths.
1774     if (auto *CallI = dyn_cast<PathDiagnosticCallPiece>(I->get())) {
1775       // Record the fact that a call has been optimized so we only do the
1776       // effort once.
1777       if (!OCS.count(CallI)) {
1778         while (optimizeEdges(C, CallI->path, OCS)) {
1779         }
1780         OCS.insert(CallI);
1781       }
1782       ++I;
1783       continue;
1784     }
1785 
1786     // Pattern match the current piece and its successor.
1787     auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get());
1788 
1789     if (!PieceI) {
1790       ++I;
1791       continue;
1792     }
1793 
1794     const Stmt *s1Start = PieceI->getStartLocation().getStmtOrNull();
1795     const Stmt *s1End   = PieceI->getEndLocation().getStmtOrNull();
1796     const Stmt *level1 = getStmtParent(s1Start, PM);
1797     const Stmt *level2 = getStmtParent(s1End, PM);
1798 
1799     PathPieces::iterator NextI = I; ++NextI;
1800     if (NextI == E)
1801       break;
1802 
1803     const auto *PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get());
1804 
1805     if (!PieceNextI) {
1806       ++I;
1807       continue;
1808     }
1809 
1810     const Stmt *s2Start = PieceNextI->getStartLocation().getStmtOrNull();
1811     const Stmt *s2End   = PieceNextI->getEndLocation().getStmtOrNull();
1812     const Stmt *level3 = getStmtParent(s2Start, PM);
1813     const Stmt *level4 = getStmtParent(s2End, PM);
1814 
1815     // Rule I.
1816     //
1817     // If we have two consecutive control edges whose end/begin locations
1818     // are at the same level (e.g. statements or top-level expressions within
1819     // a compound statement, or siblings share a single ancestor expression),
1820     // then merge them if they have no interesting intermediate event.
1821     //
1822     // For example:
1823     //
1824     // (1.1 -> 1.2) -> (1.2 -> 1.3) becomes (1.1 -> 1.3) because the common
1825     // parent is '1'.  Here 'x.y.z' represents the hierarchy of statements.
1826     //
1827     // NOTE: this will be limited later in cases where we add barriers
1828     // to prevent this optimization.
1829     if (level1 && level1 == level2 && level1 == level3 && level1 == level4) {
1830       PieceI->setEndLocation(PieceNextI->getEndLocation());
1831       path.erase(NextI);
1832       hasChanges = true;
1833       continue;
1834     }
1835 
1836     // Rule II.
1837     //
1838     // Eliminate edges between subexpressions and parent expressions
1839     // when the subexpression is consumed.
1840     //
1841     // NOTE: this will be limited later in cases where we add barriers
1842     // to prevent this optimization.
1843     if (s1End && s1End == s2Start && level2) {
1844       bool removeEdge = false;
1845       // Remove edges into the increment or initialization of a
1846       // loop that have no interleaving event.  This means that
1847       // they aren't interesting.
1848       if (isIncrementOrInitInForLoop(s1End, level2))
1849         removeEdge = true;
1850       // Next only consider edges that are not anchored on
1851       // the condition of a terminator.  This are intermediate edges
1852       // that we might want to trim.
1853       else if (!isConditionForTerminator(level2, s1End)) {
1854         // Trim edges on expressions that are consumed by
1855         // the parent expression.
1856         if (isa<Expr>(s1End) && PM.isConsumedExpr(cast<Expr>(s1End))) {
1857           removeEdge = true;
1858         }
1859         // Trim edges where a lexical containment doesn't exist.
1860         // For example:
1861         //
1862         //  X -> Y -> Z
1863         //
1864         // If 'Z' lexically contains Y (it is an ancestor) and
1865         // 'X' does not lexically contain Y (it is a descendant OR
1866         // it has no lexical relationship at all) then trim.
1867         //
1868         // This can eliminate edges where we dive into a subexpression
1869         // and then pop back out, etc.
1870         else if (s1Start && s2End &&
1871                  lexicalContains(PM, s2Start, s2End) &&
1872                  !lexicalContains(PM, s1End, s1Start)) {
1873           removeEdge = true;
1874         }
1875         // Trim edges from a subexpression back to the top level if the
1876         // subexpression is on a different line.
1877         //
1878         // A.1 -> A -> B
1879         // becomes
1880         // A.1 -> B
1881         //
1882         // These edges just look ugly and don't usually add anything.
1883         else if (s1Start && s2End &&
1884                  lexicalContains(PM, s1Start, s1End)) {
1885           SourceRange EdgeRange(PieceI->getEndLocation().asLocation(),
1886                                 PieceI->getStartLocation().asLocation());
1887           if (!getLengthOnSingleLine(SM, EdgeRange))
1888             removeEdge = true;
1889         }
1890       }
1891 
1892       if (removeEdge) {
1893         PieceI->setEndLocation(PieceNextI->getEndLocation());
1894         path.erase(NextI);
1895         hasChanges = true;
1896         continue;
1897       }
1898     }
1899 
1900     // Optimize edges for ObjC fast-enumeration loops.
1901     //
1902     // (X -> collection) -> (collection -> element)
1903     //
1904     // becomes:
1905     //
1906     // (X -> element)
1907     if (s1End == s2Start) {
1908       const auto *FS = dyn_cast_or_null<ObjCForCollectionStmt>(level3);
1909       if (FS && FS->getCollection()->IgnoreParens() == s2Start &&
1910           s2End == FS->getElement()) {
1911         PieceI->setEndLocation(PieceNextI->getEndLocation());
1912         path.erase(NextI);
1913         hasChanges = true;
1914         continue;
1915       }
1916     }
1917 
1918     // No changes at this index?  Move to the next one.
1919     ++I;
1920   }
1921 
1922   if (!hasChanges) {
1923     // Adjust edges into subexpressions to make them more uniform
1924     // and aesthetically pleasing.
1925     addContextEdges(path, LC);
1926     // Remove "cyclical" edges that include one or more context edges.
1927     removeContextCycles(path, SM);
1928     // Hoist edges originating from branch conditions to branches
1929     // for simple branches.
1930     simplifySimpleBranches(path);
1931     // Remove any puny edges left over after primary optimization pass.
1932     removePunyEdges(path, SM, PM);
1933     // Remove identical events.
1934     removeIdenticalEvents(path);
1935   }
1936 
1937   return hasChanges;
1938 }
1939 
1940 /// Drop the very first edge in a path, which should be a function entry edge.
1941 ///
1942 /// If the first edge is not a function entry edge (say, because the first
1943 /// statement had an invalid source location), this function does nothing.
1944 // FIXME: We should just generate invalid edges anyway and have the optimizer
1945 // deal with them.
1946 static void dropFunctionEntryEdge(const PathDiagnosticConstruct &C,
1947                                   PathPieces &Path) {
1948   const auto *FirstEdge =
1949       dyn_cast<PathDiagnosticControlFlowPiece>(Path.front().get());
1950   if (!FirstEdge)
1951     return;
1952 
1953   const Decl *D = C.getLocationContextFor(&Path)->getDecl();
1954   PathDiagnosticLocation EntryLoc =
1955       PathDiagnosticLocation::createBegin(D, C.getSourceManager());
1956   if (FirstEdge->getStartLocation() != EntryLoc)
1957     return;
1958 
1959   Path.pop_front();
1960 }
1961 
1962 /// Populate executes lines with lines containing at least one diagnostics.
1963 static void updateExecutedLinesWithDiagnosticPieces(PathDiagnostic &PD) {
1964 
1965   PathPieces path = PD.path.flatten(/*ShouldFlattenMacros=*/true);
1966   FilesToLineNumsMap &ExecutedLines = PD.getExecutedLines();
1967 
1968   for (const auto &P : path) {
1969     FullSourceLoc Loc = P->getLocation().asLocation().getExpansionLoc();
1970     FileID FID = Loc.getFileID();
1971     unsigned LineNo = Loc.getLineNumber();
1972     assert(FID.isValid());
1973     ExecutedLines[FID].insert(LineNo);
1974   }
1975 }
1976 
1977 PathDiagnosticConstruct::PathDiagnosticConstruct(
1978     const PathDiagnosticConsumer *PDC, const ExplodedNode *ErrorNode,
1979     const PathSensitiveBugReport *R)
1980     : Consumer(PDC), CurrentNode(ErrorNode),
1981       SM(CurrentNode->getCodeDecl().getASTContext().getSourceManager()),
1982       PD(generateEmptyDiagnosticForReport(R, getSourceManager())) {
1983   LCM[&PD->getActivePath()] = ErrorNode->getLocationContext();
1984 }
1985 
1986 PathDiagnosticBuilder::PathDiagnosticBuilder(
1987     BugReporterContext BRC, std::unique_ptr<ExplodedGraph> BugPath,
1988     PathSensitiveBugReport *r, const ExplodedNode *ErrorNode,
1989     std::unique_ptr<VisitorsDiagnosticsTy> VisitorsDiagnostics)
1990     : BugReporterContext(BRC), BugPath(std::move(BugPath)), R(r),
1991       ErrorNode(ErrorNode),
1992       VisitorsDiagnostics(std::move(VisitorsDiagnostics)) {}
1993 
1994 std::unique_ptr<PathDiagnostic>
1995 PathDiagnosticBuilder::generate(const PathDiagnosticConsumer *PDC) const {
1996   PathDiagnosticConstruct Construct(PDC, ErrorNode, R);
1997 
1998   const SourceManager &SM = getSourceManager();
1999   const AnalyzerOptions &Opts = getAnalyzerOptions();
2000 
2001   if (!PDC->shouldGenerateDiagnostics())
2002     return generateEmptyDiagnosticForReport(R, getSourceManager());
2003 
2004   // Construct the final (warning) event for the bug report.
2005   auto EndNotes = VisitorsDiagnostics->find(ErrorNode);
2006   PathDiagnosticPieceRef LastPiece;
2007   if (EndNotes != VisitorsDiagnostics->end()) {
2008     assert(!EndNotes->second.empty());
2009     LastPiece = EndNotes->second[0];
2010   } else {
2011     LastPiece = BugReporterVisitor::getDefaultEndPath(*this, ErrorNode,
2012                                                       *getBugReport());
2013   }
2014   Construct.PD->setEndOfPath(LastPiece);
2015 
2016   PathDiagnosticLocation PrevLoc = Construct.PD->getLocation();
2017   // From the error node to the root, ascend the bug path and construct the bug
2018   // report.
2019   while (Construct.ascendToPrevNode()) {
2020     generatePathDiagnosticsForNode(Construct, PrevLoc);
2021 
2022     auto VisitorNotes = VisitorsDiagnostics->find(Construct.getCurrentNode());
2023     if (VisitorNotes == VisitorsDiagnostics->end())
2024       continue;
2025 
2026     // This is a workaround due to inability to put shared PathDiagnosticPiece
2027     // into a FoldingSet.
2028     std::set<llvm::FoldingSetNodeID> DeduplicationSet;
2029 
2030     // Add pieces from custom visitors.
2031     for (const PathDiagnosticPieceRef &Note : VisitorNotes->second) {
2032       llvm::FoldingSetNodeID ID;
2033       Note->Profile(ID);
2034       if (!DeduplicationSet.insert(ID).second)
2035         continue;
2036 
2037       if (PDC->shouldAddPathEdges())
2038         addEdgeToPath(Construct.getActivePath(), PrevLoc, Note->getLocation());
2039       updateStackPiecesWithMessage(Note, Construct.CallStack);
2040       Construct.getActivePath().push_front(Note);
2041     }
2042   }
2043 
2044   if (PDC->shouldAddPathEdges()) {
2045     // Add an edge to the start of the function.
2046     // We'll prune it out later, but it helps make diagnostics more uniform.
2047     const StackFrameContext *CalleeLC =
2048         Construct.getLocationContextForActivePath()->getStackFrame();
2049     const Decl *D = CalleeLC->getDecl();
2050     addEdgeToPath(Construct.getActivePath(), PrevLoc,
2051                   PathDiagnosticLocation::createBegin(D, SM));
2052   }
2053 
2054 
2055   // Finally, prune the diagnostic path of uninteresting stuff.
2056   if (!Construct.PD->path.empty()) {
2057     if (R->shouldPrunePath() && Opts.ShouldPrunePaths) {
2058       bool stillHasNotes =
2059           removeUnneededCalls(Construct, Construct.getMutablePieces(), R);
2060       assert(stillHasNotes);
2061       (void)stillHasNotes;
2062     }
2063 
2064     // Remove pop-up notes if needed.
2065     if (!Opts.ShouldAddPopUpNotes)
2066       removePopUpNotes(Construct.getMutablePieces());
2067 
2068     // Redirect all call pieces to have valid locations.
2069     adjustCallLocations(Construct.getMutablePieces());
2070     removePiecesWithInvalidLocations(Construct.getMutablePieces());
2071 
2072     if (PDC->shouldAddPathEdges()) {
2073 
2074       // Reduce the number of edges from a very conservative set
2075       // to an aesthetically pleasing subset that conveys the
2076       // necessary information.
2077       OptimizedCallsSet OCS;
2078       while (optimizeEdges(Construct, Construct.getMutablePieces(), OCS)) {
2079       }
2080 
2081       // Drop the very first function-entry edge. It's not really necessary
2082       // for top-level functions.
2083       dropFunctionEntryEdge(Construct, Construct.getMutablePieces());
2084     }
2085 
2086     // Remove messages that are basically the same, and edges that may not
2087     // make sense.
2088     // We have to do this after edge optimization in the Extensive mode.
2089     removeRedundantMsgs(Construct.getMutablePieces());
2090     removeEdgesToDefaultInitializers(Construct.getMutablePieces());
2091   }
2092 
2093   if (Opts.ShouldDisplayMacroExpansions)
2094     CompactMacroExpandedPieces(Construct.getMutablePieces(), SM);
2095 
2096   return std::move(Construct.PD);
2097 }
2098 
2099 //===----------------------------------------------------------------------===//
2100 // Methods for BugType and subclasses.
2101 //===----------------------------------------------------------------------===//
2102 
2103 void BugType::anchor() {}
2104 
2105 void BuiltinBug::anchor() {}
2106 
2107 //===----------------------------------------------------------------------===//
2108 // Methods for BugReport and subclasses.
2109 //===----------------------------------------------------------------------===//
2110 
2111 LLVM_ATTRIBUTE_USED static bool
2112 isDependency(const CheckerRegistryData &Registry, StringRef CheckerName) {
2113   for (const std::pair<StringRef, StringRef> &Pair : Registry.Dependencies) {
2114     if (Pair.second == CheckerName)
2115       return true;
2116   }
2117   return false;
2118 }
2119 
2120 LLVM_ATTRIBUTE_USED static bool isHidden(const CheckerRegistryData &Registry,
2121                                          StringRef CheckerName) {
2122   for (const CheckerInfo &Checker : Registry.Checkers) {
2123     if (Checker.FullName == CheckerName)
2124       return Checker.IsHidden;
2125   }
2126   llvm_unreachable(
2127       "Checker name not found in CheckerRegistry -- did you retrieve it "
2128       "correctly from CheckerManager::getCurrentCheckerName?");
2129 }
2130 
2131 PathSensitiveBugReport::PathSensitiveBugReport(
2132     const BugType &bt, StringRef shortDesc, StringRef desc,
2133     const ExplodedNode *errorNode, PathDiagnosticLocation LocationToUnique,
2134     const Decl *DeclToUnique)
2135     : BugReport(Kind::PathSensitive, bt, shortDesc, desc), ErrorNode(errorNode),
2136       ErrorNodeRange(getStmt() ? getStmt()->getSourceRange() : SourceRange()),
2137       UniqueingLocation(LocationToUnique), UniqueingDecl(DeclToUnique) {
2138   assert(!isDependency(ErrorNode->getState()
2139                            ->getAnalysisManager()
2140                            .getCheckerManager()
2141                            ->getCheckerRegistryData(),
2142                        bt.getCheckerName()) &&
2143          "Some checkers depend on this one! We don't allow dependency "
2144          "checkers to emit warnings, because checkers should depend on "
2145          "*modeling*, not *diagnostics*.");
2146 
2147   assert(
2148       (bt.getCheckerName().startswith("debug") ||
2149        !isHidden(ErrorNode->getState()
2150                      ->getAnalysisManager()
2151                      .getCheckerManager()
2152                      ->getCheckerRegistryData(),
2153                  bt.getCheckerName())) &&
2154           "Hidden checkers musn't emit diagnostics as they are by definition "
2155           "non-user facing!");
2156 }
2157 
2158 void PathSensitiveBugReport::addVisitor(
2159     std::unique_ptr<BugReporterVisitor> visitor) {
2160   if (!visitor)
2161     return;
2162 
2163   llvm::FoldingSetNodeID ID;
2164   visitor->Profile(ID);
2165 
2166   void *InsertPos = nullptr;
2167   if (CallbacksSet.FindNodeOrInsertPos(ID, InsertPos)) {
2168     return;
2169   }
2170 
2171   Callbacks.push_back(std::move(visitor));
2172 }
2173 
2174 void PathSensitiveBugReport::clearVisitors() {
2175   Callbacks.clear();
2176 }
2177 
2178 const Decl *PathSensitiveBugReport::getDeclWithIssue() const {
2179   const ExplodedNode *N = getErrorNode();
2180   if (!N)
2181     return nullptr;
2182 
2183   const LocationContext *LC = N->getLocationContext();
2184   return LC->getStackFrame()->getDecl();
2185 }
2186 
2187 void BasicBugReport::Profile(llvm::FoldingSetNodeID& hash) const {
2188   hash.AddInteger(static_cast<int>(getKind()));
2189   hash.AddPointer(&BT);
2190   hash.AddString(Description);
2191   assert(Location.isValid());
2192   Location.Profile(hash);
2193 
2194   for (SourceRange range : Ranges) {
2195     if (!range.isValid())
2196       continue;
2197     hash.Add(range.getBegin());
2198     hash.Add(range.getEnd());
2199   }
2200 }
2201 
2202 void PathSensitiveBugReport::Profile(llvm::FoldingSetNodeID &hash) const {
2203   hash.AddInteger(static_cast<int>(getKind()));
2204   hash.AddPointer(&BT);
2205   hash.AddString(Description);
2206   PathDiagnosticLocation UL = getUniqueingLocation();
2207   if (UL.isValid()) {
2208     UL.Profile(hash);
2209   } else {
2210     // TODO: The statement may be null if the report was emitted before any
2211     // statements were executed. In particular, some checkers by design
2212     // occasionally emit their reports in empty functions (that have no
2213     // statements in their body). Do we profile correctly in this case?
2214     hash.AddPointer(ErrorNode->getCurrentOrPreviousStmtForDiagnostics());
2215   }
2216 
2217   for (SourceRange range : Ranges) {
2218     if (!range.isValid())
2219       continue;
2220     hash.Add(range.getBegin());
2221     hash.Add(range.getEnd());
2222   }
2223 }
2224 
2225 template <class T>
2226 static void insertToInterestingnessMap(
2227     llvm::DenseMap<T, bugreporter::TrackingKind> &InterestingnessMap, T Val,
2228     bugreporter::TrackingKind TKind) {
2229   auto Result = InterestingnessMap.insert({Val, TKind});
2230 
2231   if (Result.second)
2232     return;
2233 
2234   // Even if this symbol/region was already marked as interesting as a
2235   // condition, if we later mark it as interesting again but with
2236   // thorough tracking, overwrite it. Entities marked with thorough
2237   // interestiness are the most important (or most interesting, if you will),
2238   // and we wouldn't like to downplay their importance.
2239 
2240   switch (TKind) {
2241     case bugreporter::TrackingKind::Thorough:
2242       Result.first->getSecond() = bugreporter::TrackingKind::Thorough;
2243       return;
2244     case bugreporter::TrackingKind::Condition:
2245       return;
2246     }
2247 
2248     llvm_unreachable(
2249         "BugReport::markInteresting currently can only handle 2 different "
2250         "tracking kinds! Please define what tracking kind should this entitiy"
2251         "have, if it was already marked as interesting with a different kind!");
2252 }
2253 
2254 void PathSensitiveBugReport::markInteresting(SymbolRef sym,
2255                                              bugreporter::TrackingKind TKind) {
2256   if (!sym)
2257     return;
2258 
2259   insertToInterestingnessMap(InterestingSymbols, sym, TKind);
2260 
2261   // FIXME: No tests exist for this code and it is questionable:
2262   // How to handle multiple metadata for the same region?
2263   if (const auto *meta = dyn_cast<SymbolMetadata>(sym))
2264     markInteresting(meta->getRegion(), TKind);
2265 }
2266 
2267 void PathSensitiveBugReport::markNotInteresting(SymbolRef sym) {
2268   if (!sym)
2269     return;
2270   InterestingSymbols.erase(sym);
2271 
2272   // The metadata part of markInteresting is not reversed here.
2273   // Just making the same region not interesting is incorrect
2274   // in specific cases.
2275   if (const auto *meta = dyn_cast<SymbolMetadata>(sym))
2276     markNotInteresting(meta->getRegion());
2277 }
2278 
2279 void PathSensitiveBugReport::markInteresting(const MemRegion *R,
2280                                              bugreporter::TrackingKind TKind) {
2281   if (!R)
2282     return;
2283 
2284   R = R->getBaseRegion();
2285   insertToInterestingnessMap(InterestingRegions, R, TKind);
2286 
2287   if (const auto *SR = dyn_cast<SymbolicRegion>(R))
2288     markInteresting(SR->getSymbol(), TKind);
2289 }
2290 
2291 void PathSensitiveBugReport::markNotInteresting(const MemRegion *R) {
2292   if (!R)
2293     return;
2294 
2295   R = R->getBaseRegion();
2296   InterestingRegions.erase(R);
2297 
2298   if (const auto *SR = dyn_cast<SymbolicRegion>(R))
2299     markNotInteresting(SR->getSymbol());
2300 }
2301 
2302 void PathSensitiveBugReport::markInteresting(SVal V,
2303                                              bugreporter::TrackingKind TKind) {
2304   markInteresting(V.getAsRegion(), TKind);
2305   markInteresting(V.getAsSymbol(), TKind);
2306 }
2307 
2308 void PathSensitiveBugReport::markInteresting(const LocationContext *LC) {
2309   if (!LC)
2310     return;
2311   InterestingLocationContexts.insert(LC);
2312 }
2313 
2314 Optional<bugreporter::TrackingKind>
2315 PathSensitiveBugReport::getInterestingnessKind(SVal V) const {
2316   auto RKind = getInterestingnessKind(V.getAsRegion());
2317   auto SKind = getInterestingnessKind(V.getAsSymbol());
2318   if (!RKind)
2319     return SKind;
2320   if (!SKind)
2321     return RKind;
2322 
2323   // If either is marked with throrough tracking, return that, we wouldn't like
2324   // to downplay a note's importance by 'only' mentioning it as a condition.
2325   switch(*RKind) {
2326     case bugreporter::TrackingKind::Thorough:
2327       return RKind;
2328     case bugreporter::TrackingKind::Condition:
2329       return SKind;
2330   }
2331 
2332   llvm_unreachable(
2333       "BugReport::getInterestingnessKind currently can only handle 2 different "
2334       "tracking kinds! Please define what tracking kind should we return here "
2335       "when the kind of getAsRegion() and getAsSymbol() is different!");
2336   return std::nullopt;
2337 }
2338 
2339 Optional<bugreporter::TrackingKind>
2340 PathSensitiveBugReport::getInterestingnessKind(SymbolRef sym) const {
2341   if (!sym)
2342     return std::nullopt;
2343   // We don't currently consider metadata symbols to be interesting
2344   // even if we know their region is interesting. Is that correct behavior?
2345   auto It = InterestingSymbols.find(sym);
2346   if (It == InterestingSymbols.end())
2347     return std::nullopt;
2348   return It->getSecond();
2349 }
2350 
2351 Optional<bugreporter::TrackingKind>
2352 PathSensitiveBugReport::getInterestingnessKind(const MemRegion *R) const {
2353   if (!R)
2354     return std::nullopt;
2355 
2356   R = R->getBaseRegion();
2357   auto It = InterestingRegions.find(R);
2358   if (It != InterestingRegions.end())
2359     return It->getSecond();
2360 
2361   if (const auto *SR = dyn_cast<SymbolicRegion>(R))
2362     return getInterestingnessKind(SR->getSymbol());
2363   return std::nullopt;
2364 }
2365 
2366 bool PathSensitiveBugReport::isInteresting(SVal V) const {
2367   return getInterestingnessKind(V).has_value();
2368 }
2369 
2370 bool PathSensitiveBugReport::isInteresting(SymbolRef sym) const {
2371   return getInterestingnessKind(sym).has_value();
2372 }
2373 
2374 bool PathSensitiveBugReport::isInteresting(const MemRegion *R) const {
2375   return getInterestingnessKind(R).has_value();
2376 }
2377 
2378 bool PathSensitiveBugReport::isInteresting(const LocationContext *LC)  const {
2379   if (!LC)
2380     return false;
2381   return InterestingLocationContexts.count(LC);
2382 }
2383 
2384 const Stmt *PathSensitiveBugReport::getStmt() const {
2385   if (!ErrorNode)
2386     return nullptr;
2387 
2388   ProgramPoint ProgP = ErrorNode->getLocation();
2389   const Stmt *S = nullptr;
2390 
2391   if (Optional<BlockEntrance> BE = ProgP.getAs<BlockEntrance>()) {
2392     CFGBlock &Exit = ProgP.getLocationContext()->getCFG()->getExit();
2393     if (BE->getBlock() == &Exit)
2394       S = ErrorNode->getPreviousStmtForDiagnostics();
2395   }
2396   if (!S)
2397     S = ErrorNode->getStmtForDiagnostics();
2398 
2399   return S;
2400 }
2401 
2402 ArrayRef<SourceRange>
2403 PathSensitiveBugReport::getRanges() const {
2404   // If no custom ranges, add the range of the statement corresponding to
2405   // the error node.
2406   if (Ranges.empty() && isa_and_nonnull<Expr>(getStmt()))
2407       return ErrorNodeRange;
2408 
2409   return Ranges;
2410 }
2411 
2412 PathDiagnosticLocation
2413 PathSensitiveBugReport::getLocation() const {
2414   assert(ErrorNode && "Cannot create a location with a null node.");
2415   const Stmt *S = ErrorNode->getStmtForDiagnostics();
2416     ProgramPoint P = ErrorNode->getLocation();
2417   const LocationContext *LC = P.getLocationContext();
2418   SourceManager &SM =
2419       ErrorNode->getState()->getStateManager().getContext().getSourceManager();
2420 
2421   if (!S) {
2422     // If this is an implicit call, return the implicit call point location.
2423     if (Optional<PreImplicitCall> PIE = P.getAs<PreImplicitCall>())
2424       return PathDiagnosticLocation(PIE->getLocation(), SM);
2425     if (auto FE = P.getAs<FunctionExitPoint>()) {
2426       if (const ReturnStmt *RS = FE->getStmt())
2427         return PathDiagnosticLocation::createBegin(RS, SM, LC);
2428     }
2429     S = ErrorNode->getNextStmtForDiagnostics();
2430   }
2431 
2432   if (S) {
2433     // For member expressions, return the location of the '.' or '->'.
2434     if (const auto *ME = dyn_cast<MemberExpr>(S))
2435       return PathDiagnosticLocation::createMemberLoc(ME, SM);
2436 
2437     // For binary operators, return the location of the operator.
2438     if (const auto *B = dyn_cast<BinaryOperator>(S))
2439       return PathDiagnosticLocation::createOperatorLoc(B, SM);
2440 
2441     if (P.getAs<PostStmtPurgeDeadSymbols>())
2442       return PathDiagnosticLocation::createEnd(S, SM, LC);
2443 
2444     if (S->getBeginLoc().isValid())
2445       return PathDiagnosticLocation(S, SM, LC);
2446 
2447     return PathDiagnosticLocation(
2448         PathDiagnosticLocation::getValidSourceLocation(S, LC), SM);
2449   }
2450 
2451   return PathDiagnosticLocation::createDeclEnd(ErrorNode->getLocationContext(),
2452                                                SM);
2453 }
2454 
2455 //===----------------------------------------------------------------------===//
2456 // Methods for BugReporter and subclasses.
2457 //===----------------------------------------------------------------------===//
2458 
2459 const ExplodedGraph &PathSensitiveBugReporter::getGraph() const {
2460   return Eng.getGraph();
2461 }
2462 
2463 ProgramStateManager &PathSensitiveBugReporter::getStateManager() const {
2464   return Eng.getStateManager();
2465 }
2466 
2467 BugReporter::BugReporter(BugReporterData &d) : D(d) {}
2468 BugReporter::~BugReporter() {
2469   // Make sure reports are flushed.
2470   assert(StrBugTypes.empty() &&
2471          "Destroying BugReporter before diagnostics are emitted!");
2472 
2473   // Free the bug reports we are tracking.
2474   for (const auto I : EQClassesVector)
2475     delete I;
2476 }
2477 
2478 void BugReporter::FlushReports() {
2479   // We need to flush reports in deterministic order to ensure the order
2480   // of the reports is consistent between runs.
2481   for (const auto EQ : EQClassesVector)
2482     FlushReport(*EQ);
2483 
2484   // BugReporter owns and deletes only BugTypes created implicitly through
2485   // EmitBasicReport.
2486   // FIXME: There are leaks from checkers that assume that the BugTypes they
2487   // create will be destroyed by the BugReporter.
2488   StrBugTypes.clear();
2489 }
2490 
2491 //===----------------------------------------------------------------------===//
2492 // PathDiagnostics generation.
2493 //===----------------------------------------------------------------------===//
2494 
2495 namespace {
2496 
2497 /// A wrapper around an ExplodedGraph that contains a single path from the root
2498 /// to the error node.
2499 class BugPathInfo {
2500 public:
2501   std::unique_ptr<ExplodedGraph> BugPath;
2502   PathSensitiveBugReport *Report;
2503   const ExplodedNode *ErrorNode;
2504 };
2505 
2506 /// A wrapper around an ExplodedGraph whose leafs are all error nodes. Can
2507 /// conveniently retrieve bug paths from a single error node to the root.
2508 class BugPathGetter {
2509   std::unique_ptr<ExplodedGraph> TrimmedGraph;
2510 
2511   using PriorityMapTy = llvm::DenseMap<const ExplodedNode *, unsigned>;
2512 
2513   /// Assign each node with its distance from the root.
2514   PriorityMapTy PriorityMap;
2515 
2516   /// Since the getErrorNode() or BugReport refers to the original ExplodedGraph,
2517   /// we need to pair it to the error node of the constructed trimmed graph.
2518   using ReportNewNodePair =
2519       std::pair<PathSensitiveBugReport *, const ExplodedNode *>;
2520   SmallVector<ReportNewNodePair, 32> ReportNodes;
2521 
2522   BugPathInfo CurrentBugPath;
2523 
2524   /// A helper class for sorting ExplodedNodes by priority.
2525   template <bool Descending>
2526   class PriorityCompare {
2527     const PriorityMapTy &PriorityMap;
2528 
2529   public:
2530     PriorityCompare(const PriorityMapTy &M) : PriorityMap(M) {}
2531 
2532     bool operator()(const ExplodedNode *LHS, const ExplodedNode *RHS) const {
2533       PriorityMapTy::const_iterator LI = PriorityMap.find(LHS);
2534       PriorityMapTy::const_iterator RI = PriorityMap.find(RHS);
2535       PriorityMapTy::const_iterator E = PriorityMap.end();
2536 
2537       if (LI == E)
2538         return Descending;
2539       if (RI == E)
2540         return !Descending;
2541 
2542       return Descending ? LI->second > RI->second
2543                         : LI->second < RI->second;
2544     }
2545 
2546     bool operator()(const ReportNewNodePair &LHS,
2547                     const ReportNewNodePair &RHS) const {
2548       return (*this)(LHS.second, RHS.second);
2549     }
2550   };
2551 
2552 public:
2553   BugPathGetter(const ExplodedGraph *OriginalGraph,
2554                 ArrayRef<PathSensitiveBugReport *> &bugReports);
2555 
2556   BugPathInfo *getNextBugPath();
2557 };
2558 
2559 } // namespace
2560 
2561 BugPathGetter::BugPathGetter(const ExplodedGraph *OriginalGraph,
2562                              ArrayRef<PathSensitiveBugReport *> &bugReports) {
2563   SmallVector<const ExplodedNode *, 32> Nodes;
2564   for (const auto I : bugReports) {
2565     assert(I->isValid() &&
2566            "We only allow BugReporterVisitors and BugReporter itself to "
2567            "invalidate reports!");
2568     Nodes.emplace_back(I->getErrorNode());
2569   }
2570 
2571   // The trimmed graph is created in the body of the constructor to ensure
2572   // that the DenseMaps have been initialized already.
2573   InterExplodedGraphMap ForwardMap;
2574   TrimmedGraph = OriginalGraph->trim(Nodes, &ForwardMap);
2575 
2576   // Find the (first) error node in the trimmed graph.  We just need to consult
2577   // the node map which maps from nodes in the original graph to nodes
2578   // in the new graph.
2579   llvm::SmallPtrSet<const ExplodedNode *, 32> RemainingNodes;
2580 
2581   for (PathSensitiveBugReport *Report : bugReports) {
2582     const ExplodedNode *NewNode = ForwardMap.lookup(Report->getErrorNode());
2583     assert(NewNode &&
2584            "Failed to construct a trimmed graph that contains this error "
2585            "node!");
2586     ReportNodes.emplace_back(Report, NewNode);
2587     RemainingNodes.insert(NewNode);
2588   }
2589 
2590   assert(!RemainingNodes.empty() && "No error node found in the trimmed graph");
2591 
2592   // Perform a forward BFS to find all the shortest paths.
2593   std::queue<const ExplodedNode *> WS;
2594 
2595   assert(TrimmedGraph->num_roots() == 1);
2596   WS.push(*TrimmedGraph->roots_begin());
2597   unsigned Priority = 0;
2598 
2599   while (!WS.empty()) {
2600     const ExplodedNode *Node = WS.front();
2601     WS.pop();
2602 
2603     PriorityMapTy::iterator PriorityEntry;
2604     bool IsNew;
2605     std::tie(PriorityEntry, IsNew) = PriorityMap.insert({Node, Priority});
2606     ++Priority;
2607 
2608     if (!IsNew) {
2609       assert(PriorityEntry->second <= Priority);
2610       continue;
2611     }
2612 
2613     if (RemainingNodes.erase(Node))
2614       if (RemainingNodes.empty())
2615         break;
2616 
2617     for (const ExplodedNode *Succ : Node->succs())
2618       WS.push(Succ);
2619   }
2620 
2621   // Sort the error paths from longest to shortest.
2622   llvm::sort(ReportNodes, PriorityCompare<true>(PriorityMap));
2623 }
2624 
2625 BugPathInfo *BugPathGetter::getNextBugPath() {
2626   if (ReportNodes.empty())
2627     return nullptr;
2628 
2629   const ExplodedNode *OrigN;
2630   std::tie(CurrentBugPath.Report, OrigN) = ReportNodes.pop_back_val();
2631   assert(PriorityMap.find(OrigN) != PriorityMap.end() &&
2632          "error node not accessible from root");
2633 
2634   // Create a new graph with a single path. This is the graph that will be
2635   // returned to the caller.
2636   auto GNew = std::make_unique<ExplodedGraph>();
2637 
2638   // Now walk from the error node up the BFS path, always taking the
2639   // predeccessor with the lowest number.
2640   ExplodedNode *Succ = nullptr;
2641   while (true) {
2642     // Create the equivalent node in the new graph with the same state
2643     // and location.
2644     ExplodedNode *NewN = GNew->createUncachedNode(
2645         OrigN->getLocation(), OrigN->getState(),
2646         OrigN->getID(), OrigN->isSink());
2647 
2648     // Link up the new node with the previous node.
2649     if (Succ)
2650       Succ->addPredecessor(NewN, *GNew);
2651     else
2652       CurrentBugPath.ErrorNode = NewN;
2653 
2654     Succ = NewN;
2655 
2656     // Are we at the final node?
2657     if (OrigN->pred_empty()) {
2658       GNew->addRoot(NewN);
2659       break;
2660     }
2661 
2662     // Find the next predeccessor node.  We choose the node that is marked
2663     // with the lowest BFS number.
2664     OrigN = *std::min_element(OrigN->pred_begin(), OrigN->pred_end(),
2665                               PriorityCompare<false>(PriorityMap));
2666   }
2667 
2668   CurrentBugPath.BugPath = std::move(GNew);
2669 
2670   return &CurrentBugPath;
2671 }
2672 
2673 /// CompactMacroExpandedPieces - This function postprocesses a PathDiagnostic
2674 /// object and collapses PathDiagosticPieces that are expanded by macros.
2675 static void CompactMacroExpandedPieces(PathPieces &path,
2676                                        const SourceManager& SM) {
2677   using MacroStackTy = std::vector<
2678       std::pair<std::shared_ptr<PathDiagnosticMacroPiece>, SourceLocation>>;
2679 
2680   using PiecesTy = std::vector<PathDiagnosticPieceRef>;
2681 
2682   MacroStackTy MacroStack;
2683   PiecesTy Pieces;
2684 
2685   for (PathPieces::const_iterator I = path.begin(), E = path.end();
2686        I != E; ++I) {
2687     const auto &piece = *I;
2688 
2689     // Recursively compact calls.
2690     if (auto *call = dyn_cast<PathDiagnosticCallPiece>(&*piece)) {
2691       CompactMacroExpandedPieces(call->path, SM);
2692     }
2693 
2694     // Get the location of the PathDiagnosticPiece.
2695     const FullSourceLoc Loc = piece->getLocation().asLocation();
2696 
2697     // Determine the instantiation location, which is the location we group
2698     // related PathDiagnosticPieces.
2699     SourceLocation InstantiationLoc = Loc.isMacroID() ?
2700                                       SM.getExpansionLoc(Loc) :
2701                                       SourceLocation();
2702 
2703     if (Loc.isFileID()) {
2704       MacroStack.clear();
2705       Pieces.push_back(piece);
2706       continue;
2707     }
2708 
2709     assert(Loc.isMacroID());
2710 
2711     // Is the PathDiagnosticPiece within the same macro group?
2712     if (!MacroStack.empty() && InstantiationLoc == MacroStack.back().second) {
2713       MacroStack.back().first->subPieces.push_back(piece);
2714       continue;
2715     }
2716 
2717     // We aren't in the same group.  Are we descending into a new macro
2718     // or are part of an old one?
2719     std::shared_ptr<PathDiagnosticMacroPiece> MacroGroup;
2720 
2721     SourceLocation ParentInstantiationLoc = InstantiationLoc.isMacroID() ?
2722                                           SM.getExpansionLoc(Loc) :
2723                                           SourceLocation();
2724 
2725     // Walk the entire macro stack.
2726     while (!MacroStack.empty()) {
2727       if (InstantiationLoc == MacroStack.back().second) {
2728         MacroGroup = MacroStack.back().first;
2729         break;
2730       }
2731 
2732       if (ParentInstantiationLoc == MacroStack.back().second) {
2733         MacroGroup = MacroStack.back().first;
2734         break;
2735       }
2736 
2737       MacroStack.pop_back();
2738     }
2739 
2740     if (!MacroGroup || ParentInstantiationLoc == MacroStack.back().second) {
2741       // Create a new macro group and add it to the stack.
2742       auto NewGroup = std::make_shared<PathDiagnosticMacroPiece>(
2743           PathDiagnosticLocation::createSingleLocation(piece->getLocation()));
2744 
2745       if (MacroGroup)
2746         MacroGroup->subPieces.push_back(NewGroup);
2747       else {
2748         assert(InstantiationLoc.isFileID());
2749         Pieces.push_back(NewGroup);
2750       }
2751 
2752       MacroGroup = NewGroup;
2753       MacroStack.push_back(std::make_pair(MacroGroup, InstantiationLoc));
2754     }
2755 
2756     // Finally, add the PathDiagnosticPiece to the group.
2757     MacroGroup->subPieces.push_back(piece);
2758   }
2759 
2760   // Now take the pieces and construct a new PathDiagnostic.
2761   path.clear();
2762 
2763   path.insert(path.end(), Pieces.begin(), Pieces.end());
2764 }
2765 
2766 /// Generate notes from all visitors.
2767 /// Notes associated with @c ErrorNode are generated using
2768 /// @c getEndPath, and the rest are generated with @c VisitNode.
2769 static std::unique_ptr<VisitorsDiagnosticsTy>
2770 generateVisitorsDiagnostics(PathSensitiveBugReport *R,
2771                             const ExplodedNode *ErrorNode,
2772                             BugReporterContext &BRC) {
2773   std::unique_ptr<VisitorsDiagnosticsTy> Notes =
2774       std::make_unique<VisitorsDiagnosticsTy>();
2775   PathSensitiveBugReport::VisitorList visitors;
2776 
2777   // Run visitors on all nodes starting from the node *before* the last one.
2778   // The last node is reserved for notes generated with @c getEndPath.
2779   const ExplodedNode *NextNode = ErrorNode->getFirstPred();
2780   while (NextNode) {
2781 
2782     // At each iteration, move all visitors from report to visitor list. This is
2783     // important, because the Profile() functions of the visitors make sure that
2784     // a visitor isn't added multiple times for the same node, but it's fine
2785     // to add the a visitor with Profile() for different nodes (e.g. tracking
2786     // a region at different points of the symbolic execution).
2787     for (std::unique_ptr<BugReporterVisitor> &Visitor : R->visitors())
2788       visitors.push_back(std::move(Visitor));
2789 
2790     R->clearVisitors();
2791 
2792     const ExplodedNode *Pred = NextNode->getFirstPred();
2793     if (!Pred) {
2794       PathDiagnosticPieceRef LastPiece;
2795       for (auto &V : visitors) {
2796         V->finalizeVisitor(BRC, ErrorNode, *R);
2797 
2798         if (auto Piece = V->getEndPath(BRC, ErrorNode, *R)) {
2799           assert(!LastPiece &&
2800                  "There can only be one final piece in a diagnostic.");
2801           assert(Piece->getKind() == PathDiagnosticPiece::Kind::Event &&
2802                  "The final piece must contain a message!");
2803           LastPiece = std::move(Piece);
2804           (*Notes)[ErrorNode].push_back(LastPiece);
2805         }
2806       }
2807       break;
2808     }
2809 
2810     for (auto &V : visitors) {
2811       auto P = V->VisitNode(NextNode, BRC, *R);
2812       if (P)
2813         (*Notes)[NextNode].push_back(std::move(P));
2814     }
2815 
2816     if (!R->isValid())
2817       break;
2818 
2819     NextNode = Pred;
2820   }
2821 
2822   return Notes;
2823 }
2824 
2825 Optional<PathDiagnosticBuilder> PathDiagnosticBuilder::findValidReport(
2826     ArrayRef<PathSensitiveBugReport *> &bugReports,
2827     PathSensitiveBugReporter &Reporter) {
2828 
2829   BugPathGetter BugGraph(&Reporter.getGraph(), bugReports);
2830 
2831   while (BugPathInfo *BugPath = BugGraph.getNextBugPath()) {
2832     // Find the BugReport with the original location.
2833     PathSensitiveBugReport *R = BugPath->Report;
2834     assert(R && "No original report found for sliced graph.");
2835     assert(R->isValid() && "Report selected by trimmed graph marked invalid.");
2836     const ExplodedNode *ErrorNode = BugPath->ErrorNode;
2837 
2838     // Register refutation visitors first, if they mark the bug invalid no
2839     // further analysis is required
2840     R->addVisitor<LikelyFalsePositiveSuppressionBRVisitor>();
2841 
2842     // Register additional node visitors.
2843     R->addVisitor<NilReceiverBRVisitor>();
2844     R->addVisitor<ConditionBRVisitor>();
2845     R->addVisitor<TagVisitor>();
2846 
2847     BugReporterContext BRC(Reporter);
2848 
2849     // Run all visitors on a given graph, once.
2850     std::unique_ptr<VisitorsDiagnosticsTy> visitorNotes =
2851         generateVisitorsDiagnostics(R, ErrorNode, BRC);
2852 
2853     if (R->isValid()) {
2854       if (Reporter.getAnalyzerOptions().ShouldCrosscheckWithZ3) {
2855         // If crosscheck is enabled, remove all visitors, add the refutation
2856         // visitor and check again
2857         R->clearVisitors();
2858         R->addVisitor<FalsePositiveRefutationBRVisitor>();
2859 
2860         // We don't overwrite the notes inserted by other visitors because the
2861         // refutation manager does not add any new note to the path
2862         generateVisitorsDiagnostics(R, BugPath->ErrorNode, BRC);
2863       }
2864 
2865       // Check if the bug is still valid
2866       if (R->isValid())
2867         return PathDiagnosticBuilder(
2868             std::move(BRC), std::move(BugPath->BugPath), BugPath->Report,
2869             BugPath->ErrorNode, std::move(visitorNotes));
2870     }
2871   }
2872 
2873   return {};
2874 }
2875 
2876 std::unique_ptr<DiagnosticForConsumerMapTy>
2877 PathSensitiveBugReporter::generatePathDiagnostics(
2878     ArrayRef<PathDiagnosticConsumer *> consumers,
2879     ArrayRef<PathSensitiveBugReport *> &bugReports) {
2880   assert(!bugReports.empty());
2881 
2882   auto Out = std::make_unique<DiagnosticForConsumerMapTy>();
2883 
2884   Optional<PathDiagnosticBuilder> PDB =
2885       PathDiagnosticBuilder::findValidReport(bugReports, *this);
2886 
2887   if (PDB) {
2888     for (PathDiagnosticConsumer *PC : consumers) {
2889       if (std::unique_ptr<PathDiagnostic> PD = PDB->generate(PC)) {
2890         (*Out)[PC] = std::move(PD);
2891       }
2892     }
2893   }
2894 
2895   return Out;
2896 }
2897 
2898 void BugReporter::emitReport(std::unique_ptr<BugReport> R) {
2899   bool ValidSourceLoc = R->getLocation().isValid();
2900   assert(ValidSourceLoc);
2901   // If we mess up in a release build, we'd still prefer to just drop the bug
2902   // instead of trying to go on.
2903   if (!ValidSourceLoc)
2904     return;
2905 
2906   // Compute the bug report's hash to determine its equivalence class.
2907   llvm::FoldingSetNodeID ID;
2908   R->Profile(ID);
2909 
2910   // Lookup the equivance class.  If there isn't one, create it.
2911   void *InsertPos;
2912   BugReportEquivClass* EQ = EQClasses.FindNodeOrInsertPos(ID, InsertPos);
2913 
2914   if (!EQ) {
2915     EQ = new BugReportEquivClass(std::move(R));
2916     EQClasses.InsertNode(EQ, InsertPos);
2917     EQClassesVector.push_back(EQ);
2918   } else
2919     EQ->AddReport(std::move(R));
2920 }
2921 
2922 void PathSensitiveBugReporter::emitReport(std::unique_ptr<BugReport> R) {
2923   if (auto PR = dyn_cast<PathSensitiveBugReport>(R.get()))
2924     if (const ExplodedNode *E = PR->getErrorNode()) {
2925       // An error node must either be a sink or have a tag, otherwise
2926       // it could get reclaimed before the path diagnostic is created.
2927       assert((E->isSink() || E->getLocation().getTag()) &&
2928              "Error node must either be a sink or have a tag");
2929 
2930       const AnalysisDeclContext *DeclCtx =
2931           E->getLocationContext()->getAnalysisDeclContext();
2932       // The source of autosynthesized body can be handcrafted AST or a model
2933       // file. The locations from handcrafted ASTs have no valid source
2934       // locations and have to be discarded. Locations from model files should
2935       // be preserved for processing and reporting.
2936       if (DeclCtx->isBodyAutosynthesized() &&
2937           !DeclCtx->isBodyAutosynthesizedFromModelFile())
2938         return;
2939     }
2940 
2941   BugReporter::emitReport(std::move(R));
2942 }
2943 
2944 //===----------------------------------------------------------------------===//
2945 // Emitting reports in equivalence classes.
2946 //===----------------------------------------------------------------------===//
2947 
2948 namespace {
2949 
2950 struct FRIEC_WLItem {
2951   const ExplodedNode *N;
2952   ExplodedNode::const_succ_iterator I, E;
2953 
2954   FRIEC_WLItem(const ExplodedNode *n)
2955       : N(n), I(N->succ_begin()), E(N->succ_end()) {}
2956 };
2957 
2958 } // namespace
2959 
2960 BugReport *PathSensitiveBugReporter::findReportInEquivalenceClass(
2961     BugReportEquivClass &EQ, SmallVectorImpl<BugReport *> &bugReports) {
2962   // If we don't need to suppress any of the nodes because they are
2963   // post-dominated by a sink, simply add all the nodes in the equivalence class
2964   // to 'Nodes'.  Any of the reports will serve as a "representative" report.
2965   assert(EQ.getReports().size() > 0);
2966   const BugType& BT = EQ.getReports()[0]->getBugType();
2967   if (!BT.isSuppressOnSink()) {
2968     BugReport *R = EQ.getReports()[0].get();
2969     for (auto &J : EQ.getReports()) {
2970       if (auto *PR = dyn_cast<PathSensitiveBugReport>(J.get())) {
2971         R = PR;
2972         bugReports.push_back(PR);
2973       }
2974     }
2975     return R;
2976   }
2977 
2978   // For bug reports that should be suppressed when all paths are post-dominated
2979   // by a sink node, iterate through the reports in the equivalence class
2980   // until we find one that isn't post-dominated (if one exists).  We use a
2981   // DFS traversal of the ExplodedGraph to find a non-sink node.  We could write
2982   // this as a recursive function, but we don't want to risk blowing out the
2983   // stack for very long paths.
2984   BugReport *exampleReport = nullptr;
2985 
2986   for (const auto &I: EQ.getReports()) {
2987     auto *R = dyn_cast<PathSensitiveBugReport>(I.get());
2988     if (!R)
2989       continue;
2990 
2991     const ExplodedNode *errorNode = R->getErrorNode();
2992     if (errorNode->isSink()) {
2993       llvm_unreachable(
2994            "BugType::isSuppressSink() should not be 'true' for sink end nodes");
2995     }
2996     // No successors?  By definition this nodes isn't post-dominated by a sink.
2997     if (errorNode->succ_empty()) {
2998       bugReports.push_back(R);
2999       if (!exampleReport)
3000         exampleReport = R;
3001       continue;
3002     }
3003 
3004     // See if we are in a no-return CFG block. If so, treat this similarly
3005     // to being post-dominated by a sink. This works better when the analysis
3006     // is incomplete and we have never reached the no-return function call(s)
3007     // that we'd inevitably bump into on this path.
3008     if (const CFGBlock *ErrorB = errorNode->getCFGBlock())
3009       if (ErrorB->isInevitablySinking())
3010         continue;
3011 
3012     // At this point we know that 'N' is not a sink and it has at least one
3013     // successor.  Use a DFS worklist to find a non-sink end-of-path node.
3014     using WLItem = FRIEC_WLItem;
3015     using DFSWorkList = SmallVector<WLItem, 10>;
3016 
3017     llvm::DenseMap<const ExplodedNode *, unsigned> Visited;
3018 
3019     DFSWorkList WL;
3020     WL.push_back(errorNode);
3021     Visited[errorNode] = 1;
3022 
3023     while (!WL.empty()) {
3024       WLItem &WI = WL.back();
3025       assert(!WI.N->succ_empty());
3026 
3027       for (; WI.I != WI.E; ++WI.I) {
3028         const ExplodedNode *Succ = *WI.I;
3029         // End-of-path node?
3030         if (Succ->succ_empty()) {
3031           // If we found an end-of-path node that is not a sink.
3032           if (!Succ->isSink()) {
3033             bugReports.push_back(R);
3034             if (!exampleReport)
3035               exampleReport = R;
3036             WL.clear();
3037             break;
3038           }
3039           // Found a sink?  Continue on to the next successor.
3040           continue;
3041         }
3042         // Mark the successor as visited.  If it hasn't been explored,
3043         // enqueue it to the DFS worklist.
3044         unsigned &mark = Visited[Succ];
3045         if (!mark) {
3046           mark = 1;
3047           WL.push_back(Succ);
3048           break;
3049         }
3050       }
3051 
3052       // The worklist may have been cleared at this point.  First
3053       // check if it is empty before checking the last item.
3054       if (!WL.empty() && &WL.back() == &WI)
3055         WL.pop_back();
3056     }
3057   }
3058 
3059   // ExampleReport will be NULL if all the nodes in the equivalence class
3060   // were post-dominated by sinks.
3061   return exampleReport;
3062 }
3063 
3064 void BugReporter::FlushReport(BugReportEquivClass& EQ) {
3065   SmallVector<BugReport*, 10> bugReports;
3066   BugReport *report = findReportInEquivalenceClass(EQ, bugReports);
3067   if (!report)
3068     return;
3069 
3070   // See whether we need to silence the checker/package.
3071   for (const std::string &CheckerOrPackage :
3072        getAnalyzerOptions().SilencedCheckersAndPackages) {
3073     if (report->getBugType().getCheckerName().startswith(
3074             CheckerOrPackage))
3075       return;
3076   }
3077 
3078   ArrayRef<PathDiagnosticConsumer*> Consumers = getPathDiagnosticConsumers();
3079   std::unique_ptr<DiagnosticForConsumerMapTy> Diagnostics =
3080       generateDiagnosticForConsumerMap(report, Consumers, bugReports);
3081 
3082   for (auto &P : *Diagnostics) {
3083     PathDiagnosticConsumer *Consumer = P.first;
3084     std::unique_ptr<PathDiagnostic> &PD = P.second;
3085 
3086     // If the path is empty, generate a single step path with the location
3087     // of the issue.
3088     if (PD->path.empty()) {
3089       PathDiagnosticLocation L = report->getLocation();
3090       auto piece = std::make_unique<PathDiagnosticEventPiece>(
3091         L, report->getDescription());
3092       for (SourceRange Range : report->getRanges())
3093         piece->addRange(Range);
3094       PD->setEndOfPath(std::move(piece));
3095     }
3096 
3097     PathPieces &Pieces = PD->getMutablePieces();
3098     if (getAnalyzerOptions().ShouldDisplayNotesAsEvents) {
3099       // For path diagnostic consumers that don't support extra notes,
3100       // we may optionally convert those to path notes.
3101       for (const auto &I : llvm::reverse(report->getNotes())) {
3102         PathDiagnosticNotePiece *Piece = I.get();
3103         auto ConvertedPiece = std::make_shared<PathDiagnosticEventPiece>(
3104           Piece->getLocation(), Piece->getString());
3105         for (const auto &R: Piece->getRanges())
3106           ConvertedPiece->addRange(R);
3107 
3108         Pieces.push_front(std::move(ConvertedPiece));
3109       }
3110     } else {
3111       for (const auto &I : llvm::reverse(report->getNotes()))
3112         Pieces.push_front(I);
3113     }
3114 
3115     for (const auto &I : report->getFixits())
3116       Pieces.back()->addFixit(I);
3117 
3118     updateExecutedLinesWithDiagnosticPieces(*PD);
3119     Consumer->HandlePathDiagnostic(std::move(PD));
3120   }
3121 }
3122 
3123 /// Insert all lines participating in the function signature \p Signature
3124 /// into \p ExecutedLines.
3125 static void populateExecutedLinesWithFunctionSignature(
3126     const Decl *Signature, const SourceManager &SM,
3127     FilesToLineNumsMap &ExecutedLines) {
3128   SourceRange SignatureSourceRange;
3129   const Stmt* Body = Signature->getBody();
3130   if (const auto FD = dyn_cast<FunctionDecl>(Signature)) {
3131     SignatureSourceRange = FD->getSourceRange();
3132   } else if (const auto OD = dyn_cast<ObjCMethodDecl>(Signature)) {
3133     SignatureSourceRange = OD->getSourceRange();
3134   } else {
3135     return;
3136   }
3137   SourceLocation Start = SignatureSourceRange.getBegin();
3138   SourceLocation End = Body ? Body->getSourceRange().getBegin()
3139     : SignatureSourceRange.getEnd();
3140   if (!Start.isValid() || !End.isValid())
3141     return;
3142   unsigned StartLine = SM.getExpansionLineNumber(Start);
3143   unsigned EndLine = SM.getExpansionLineNumber(End);
3144 
3145   FileID FID = SM.getFileID(SM.getExpansionLoc(Start));
3146   for (unsigned Line = StartLine; Line <= EndLine; Line++)
3147     ExecutedLines[FID].insert(Line);
3148 }
3149 
3150 static void populateExecutedLinesWithStmt(
3151     const Stmt *S, const SourceManager &SM,
3152     FilesToLineNumsMap &ExecutedLines) {
3153   SourceLocation Loc = S->getSourceRange().getBegin();
3154   if (!Loc.isValid())
3155     return;
3156   SourceLocation ExpansionLoc = SM.getExpansionLoc(Loc);
3157   FileID FID = SM.getFileID(ExpansionLoc);
3158   unsigned LineNo = SM.getExpansionLineNumber(ExpansionLoc);
3159   ExecutedLines[FID].insert(LineNo);
3160 }
3161 
3162 /// \return all executed lines including function signatures on the path
3163 /// starting from \p N.
3164 static std::unique_ptr<FilesToLineNumsMap>
3165 findExecutedLines(const SourceManager &SM, const ExplodedNode *N) {
3166   auto ExecutedLines = std::make_unique<FilesToLineNumsMap>();
3167 
3168   while (N) {
3169     if (N->getFirstPred() == nullptr) {
3170       // First node: show signature of the entrance point.
3171       const Decl *D = N->getLocationContext()->getDecl();
3172       populateExecutedLinesWithFunctionSignature(D, SM, *ExecutedLines);
3173     } else if (auto CE = N->getLocationAs<CallEnter>()) {
3174       // Inlined function: show signature.
3175       const Decl* D = CE->getCalleeContext()->getDecl();
3176       populateExecutedLinesWithFunctionSignature(D, SM, *ExecutedLines);
3177     } else if (const Stmt *S = N->getStmtForDiagnostics()) {
3178       populateExecutedLinesWithStmt(S, SM, *ExecutedLines);
3179 
3180       // Show extra context for some parent kinds.
3181       const Stmt *P = N->getParentMap().getParent(S);
3182 
3183       // The path exploration can die before the node with the associated
3184       // return statement is generated, but we do want to show the whole
3185       // return.
3186       if (const auto *RS = dyn_cast_or_null<ReturnStmt>(P)) {
3187         populateExecutedLinesWithStmt(RS, SM, *ExecutedLines);
3188         P = N->getParentMap().getParent(RS);
3189       }
3190 
3191       if (isa_and_nonnull<SwitchCase, LabelStmt>(P))
3192         populateExecutedLinesWithStmt(P, SM, *ExecutedLines);
3193     }
3194 
3195     N = N->getFirstPred();
3196   }
3197   return ExecutedLines;
3198 }
3199 
3200 std::unique_ptr<DiagnosticForConsumerMapTy>
3201 BugReporter::generateDiagnosticForConsumerMap(
3202     BugReport *exampleReport, ArrayRef<PathDiagnosticConsumer *> consumers,
3203     ArrayRef<BugReport *> bugReports) {
3204   auto *basicReport = cast<BasicBugReport>(exampleReport);
3205   auto Out = std::make_unique<DiagnosticForConsumerMapTy>();
3206   for (auto *Consumer : consumers)
3207     (*Out)[Consumer] = generateDiagnosticForBasicReport(basicReport);
3208   return Out;
3209 }
3210 
3211 static PathDiagnosticCallPiece *
3212 getFirstStackedCallToHeaderFile(PathDiagnosticCallPiece *CP,
3213                                 const SourceManager &SMgr) {
3214   SourceLocation CallLoc = CP->callEnter.asLocation();
3215 
3216   // If the call is within a macro, don't do anything (for now).
3217   if (CallLoc.isMacroID())
3218     return nullptr;
3219 
3220   assert(AnalysisManager::isInCodeFile(CallLoc, SMgr) &&
3221          "The call piece should not be in a header file.");
3222 
3223   // Check if CP represents a path through a function outside of the main file.
3224   if (!AnalysisManager::isInCodeFile(CP->callEnterWithin.asLocation(), SMgr))
3225     return CP;
3226 
3227   const PathPieces &Path = CP->path;
3228   if (Path.empty())
3229     return nullptr;
3230 
3231   // Check if the last piece in the callee path is a call to a function outside
3232   // of the main file.
3233   if (auto *CPInner = dyn_cast<PathDiagnosticCallPiece>(Path.back().get()))
3234     return getFirstStackedCallToHeaderFile(CPInner, SMgr);
3235 
3236   // Otherwise, the last piece is in the main file.
3237   return nullptr;
3238 }
3239 
3240 static void resetDiagnosticLocationToMainFile(PathDiagnostic &PD) {
3241   if (PD.path.empty())
3242     return;
3243 
3244   PathDiagnosticPiece *LastP = PD.path.back().get();
3245   assert(LastP);
3246   const SourceManager &SMgr = LastP->getLocation().getManager();
3247 
3248   // We only need to check if the report ends inside headers, if the last piece
3249   // is a call piece.
3250   if (auto *CP = dyn_cast<PathDiagnosticCallPiece>(LastP)) {
3251     CP = getFirstStackedCallToHeaderFile(CP, SMgr);
3252     if (CP) {
3253       // Mark the piece.
3254        CP->setAsLastInMainSourceFile();
3255 
3256       // Update the path diagnostic message.
3257       const auto *ND = dyn_cast<NamedDecl>(CP->getCallee());
3258       if (ND) {
3259         SmallString<200> buf;
3260         llvm::raw_svector_ostream os(buf);
3261         os << " (within a call to '" << ND->getDeclName() << "')";
3262         PD.appendToDesc(os.str());
3263       }
3264 
3265       // Reset the report containing declaration and location.
3266       PD.setDeclWithIssue(CP->getCaller());
3267       PD.setLocation(CP->getLocation());
3268 
3269       return;
3270     }
3271   }
3272 }
3273 
3274 
3275 
3276 std::unique_ptr<DiagnosticForConsumerMapTy>
3277 PathSensitiveBugReporter::generateDiagnosticForConsumerMap(
3278     BugReport *exampleReport, ArrayRef<PathDiagnosticConsumer *> consumers,
3279     ArrayRef<BugReport *> bugReports) {
3280   std::vector<BasicBugReport *> BasicBugReports;
3281   std::vector<PathSensitiveBugReport *> PathSensitiveBugReports;
3282   if (isa<BasicBugReport>(exampleReport))
3283     return BugReporter::generateDiagnosticForConsumerMap(exampleReport,
3284                                                          consumers, bugReports);
3285 
3286   // Generate the full path sensitive diagnostic, using the generation scheme
3287   // specified by the PathDiagnosticConsumer. Note that we have to generate
3288   // path diagnostics even for consumers which do not support paths, because
3289   // the BugReporterVisitors may mark this bug as a false positive.
3290   assert(!bugReports.empty());
3291   MaxBugClassSize.updateMax(bugReports.size());
3292 
3293   // Avoid copying the whole array because there may be a lot of reports.
3294   ArrayRef<PathSensitiveBugReport *> convertedArrayOfReports(
3295       reinterpret_cast<PathSensitiveBugReport *const *>(&*bugReports.begin()),
3296       reinterpret_cast<PathSensitiveBugReport *const *>(&*bugReports.end()));
3297   std::unique_ptr<DiagnosticForConsumerMapTy> Out = generatePathDiagnostics(
3298       consumers, convertedArrayOfReports);
3299 
3300   if (Out->empty())
3301     return Out;
3302 
3303   MaxValidBugClassSize.updateMax(bugReports.size());
3304 
3305   // Examine the report and see if the last piece is in a header. Reset the
3306   // report location to the last piece in the main source file.
3307   const AnalyzerOptions &Opts = getAnalyzerOptions();
3308   for (auto const &P : *Out)
3309     if (Opts.ShouldReportIssuesInMainSourceFile && !Opts.AnalyzeAll)
3310       resetDiagnosticLocationToMainFile(*P.second);
3311 
3312   return Out;
3313 }
3314 
3315 void BugReporter::EmitBasicReport(const Decl *DeclWithIssue,
3316                                   const CheckerBase *Checker, StringRef Name,
3317                                   StringRef Category, StringRef Str,
3318                                   PathDiagnosticLocation Loc,
3319                                   ArrayRef<SourceRange> Ranges,
3320                                   ArrayRef<FixItHint> Fixits) {
3321   EmitBasicReport(DeclWithIssue, Checker->getCheckerName(), Name, Category, Str,
3322                   Loc, Ranges, Fixits);
3323 }
3324 
3325 void BugReporter::EmitBasicReport(const Decl *DeclWithIssue,
3326                                   CheckerNameRef CheckName,
3327                                   StringRef name, StringRef category,
3328                                   StringRef str, PathDiagnosticLocation Loc,
3329                                   ArrayRef<SourceRange> Ranges,
3330                                   ArrayRef<FixItHint> Fixits) {
3331   // 'BT' is owned by BugReporter.
3332   BugType *BT = getBugTypeForName(CheckName, name, category);
3333   auto R = std::make_unique<BasicBugReport>(*BT, str, Loc);
3334   R->setDeclWithIssue(DeclWithIssue);
3335   for (const auto &SR : Ranges)
3336     R->addRange(SR);
3337   for (const auto &FH : Fixits)
3338     R->addFixItHint(FH);
3339   emitReport(std::move(R));
3340 }
3341 
3342 BugType *BugReporter::getBugTypeForName(CheckerNameRef CheckName,
3343                                         StringRef name, StringRef category) {
3344   SmallString<136> fullDesc;
3345   llvm::raw_svector_ostream(fullDesc) << CheckName.getName() << ":" << name
3346                                       << ":" << category;
3347   std::unique_ptr<BugType> &BT = StrBugTypes[fullDesc];
3348   if (!BT)
3349     BT = std::make_unique<BugType>(CheckName, name, category);
3350   return BT.get();
3351 }
3352