1 //===- BugReporter.cpp - Generate PathDiagnostics for bugs ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines BugReporter, a utility class for generating 10 // PathDiagnostics. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h" 15 #include "clang/AST/Decl.h" 16 #include "clang/AST/DeclBase.h" 17 #include "clang/AST/DeclObjC.h" 18 #include "clang/AST/Expr.h" 19 #include "clang/AST/ExprCXX.h" 20 #include "clang/AST/ParentMap.h" 21 #include "clang/AST/Stmt.h" 22 #include "clang/AST/StmtCXX.h" 23 #include "clang/AST/StmtObjC.h" 24 #include "clang/Analysis/AnalysisDeclContext.h" 25 #include "clang/Analysis/CFG.h" 26 #include "clang/Analysis/CFGStmtMap.h" 27 #include "clang/Analysis/PathDiagnostic.h" 28 #include "clang/Analysis/ProgramPoint.h" 29 #include "clang/Basic/LLVM.h" 30 #include "clang/Basic/SourceLocation.h" 31 #include "clang/Basic/SourceManager.h" 32 #include "clang/StaticAnalyzer/Core/AnalyzerOptions.h" 33 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporterVisitors.h" 34 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 35 #include "clang/StaticAnalyzer/Core/Checker.h" 36 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 37 #include "clang/StaticAnalyzer/Core/CheckerRegistryData.h" 38 #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h" 39 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" 40 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h" 41 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 42 #include "clang/StaticAnalyzer/Core/PathSensitive/SMTConv.h" 43 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h" 44 #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h" 45 #include "llvm/ADT/ArrayRef.h" 46 #include "llvm/ADT/DenseMap.h" 47 #include "llvm/ADT/DenseSet.h" 48 #include "llvm/ADT/FoldingSet.h" 49 #include "llvm/ADT/None.h" 50 #include "llvm/ADT/Optional.h" 51 #include "llvm/ADT/STLExtras.h" 52 #include "llvm/ADT/SmallPtrSet.h" 53 #include "llvm/ADT/SmallString.h" 54 #include "llvm/ADT/SmallVector.h" 55 #include "llvm/ADT/Statistic.h" 56 #include "llvm/ADT/StringExtras.h" 57 #include "llvm/ADT/StringRef.h" 58 #include "llvm/ADT/iterator_range.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/Compiler.h" 61 #include "llvm/Support/ErrorHandling.h" 62 #include "llvm/Support/MemoryBuffer.h" 63 #include "llvm/Support/raw_ostream.h" 64 #include <algorithm> 65 #include <cassert> 66 #include <cstddef> 67 #include <iterator> 68 #include <memory> 69 #include <queue> 70 #include <string> 71 #include <tuple> 72 #include <utility> 73 #include <vector> 74 75 using namespace clang; 76 using namespace ento; 77 using namespace llvm; 78 79 #define DEBUG_TYPE "BugReporter" 80 81 STATISTIC(MaxBugClassSize, 82 "The maximum number of bug reports in the same equivalence class"); 83 STATISTIC(MaxValidBugClassSize, 84 "The maximum number of bug reports in the same equivalence class " 85 "where at least one report is valid (not suppressed)"); 86 87 BugReporterVisitor::~BugReporterVisitor() = default; 88 89 void BugReporterContext::anchor() {} 90 91 //===----------------------------------------------------------------------===// 92 // PathDiagnosticBuilder and its associated routines and helper objects. 93 //===----------------------------------------------------------------------===// 94 95 namespace { 96 97 /// A (CallPiece, node assiciated with its CallEnter) pair. 98 using CallWithEntry = 99 std::pair<PathDiagnosticCallPiece *, const ExplodedNode *>; 100 using CallWithEntryStack = SmallVector<CallWithEntry, 6>; 101 102 /// Map from each node to the diagnostic pieces visitors emit for them. 103 using VisitorsDiagnosticsTy = 104 llvm::DenseMap<const ExplodedNode *, std::vector<PathDiagnosticPieceRef>>; 105 106 /// A map from PathDiagnosticPiece to the LocationContext of the inlined 107 /// function call it represents. 108 using LocationContextMap = 109 llvm::DenseMap<const PathPieces *, const LocationContext *>; 110 111 /// A helper class that contains everything needed to construct a 112 /// PathDiagnostic object. It does no much more then providing convenient 113 /// getters and some well placed asserts for extra security. 114 class PathDiagnosticConstruct { 115 /// The consumer we're constructing the bug report for. 116 const PathDiagnosticConsumer *Consumer; 117 /// Our current position in the bug path, which is owned by 118 /// PathDiagnosticBuilder. 119 const ExplodedNode *CurrentNode; 120 /// A mapping from parts of the bug path (for example, a function call, which 121 /// would span backwards from a CallExit to a CallEnter with the nodes in 122 /// between them) with the location contexts it is associated with. 123 LocationContextMap LCM; 124 const SourceManager &SM; 125 126 public: 127 /// We keep stack of calls to functions as we're ascending the bug path. 128 /// TODO: PathDiagnostic has a stack doing the same thing, shouldn't we use 129 /// that instead? 130 CallWithEntryStack CallStack; 131 /// The bug report we're constructing. For ease of use, this field is kept 132 /// public, though some "shortcut" getters are provided for commonly used 133 /// methods of PathDiagnostic. 134 std::unique_ptr<PathDiagnostic> PD; 135 136 public: 137 PathDiagnosticConstruct(const PathDiagnosticConsumer *PDC, 138 const ExplodedNode *ErrorNode, 139 const PathSensitiveBugReport *R); 140 141 /// \returns the location context associated with the current position in the 142 /// bug path. 143 const LocationContext *getCurrLocationContext() const { 144 assert(CurrentNode && "Already reached the root!"); 145 return CurrentNode->getLocationContext(); 146 } 147 148 /// Same as getCurrLocationContext (they should always return the same 149 /// location context), but works after reaching the root of the bug path as 150 /// well. 151 const LocationContext *getLocationContextForActivePath() const { 152 return LCM.find(&PD->getActivePath())->getSecond(); 153 } 154 155 const ExplodedNode *getCurrentNode() const { return CurrentNode; } 156 157 /// Steps the current node to its predecessor. 158 /// \returns whether we reached the root of the bug path. 159 bool ascendToPrevNode() { 160 CurrentNode = CurrentNode->getFirstPred(); 161 return static_cast<bool>(CurrentNode); 162 } 163 164 const ParentMap &getParentMap() const { 165 return getCurrLocationContext()->getParentMap(); 166 } 167 168 const SourceManager &getSourceManager() const { return SM; } 169 170 const Stmt *getParent(const Stmt *S) const { 171 return getParentMap().getParent(S); 172 } 173 174 void updateLocCtxMap(const PathPieces *Path, const LocationContext *LC) { 175 assert(Path && LC); 176 LCM[Path] = LC; 177 } 178 179 const LocationContext *getLocationContextFor(const PathPieces *Path) const { 180 assert(LCM.count(Path) && 181 "Failed to find the context associated with these pieces!"); 182 return LCM.find(Path)->getSecond(); 183 } 184 185 bool isInLocCtxMap(const PathPieces *Path) const { return LCM.count(Path); } 186 187 PathPieces &getActivePath() { return PD->getActivePath(); } 188 PathPieces &getMutablePieces() { return PD->getMutablePieces(); } 189 190 bool shouldAddPathEdges() const { return Consumer->shouldAddPathEdges(); } 191 bool shouldAddControlNotes() const { 192 return Consumer->shouldAddControlNotes(); 193 } 194 bool shouldGenerateDiagnostics() const { 195 return Consumer->shouldGenerateDiagnostics(); 196 } 197 bool supportsLogicalOpControlFlow() const { 198 return Consumer->supportsLogicalOpControlFlow(); 199 } 200 }; 201 202 /// Contains every contextual information needed for constructing a 203 /// PathDiagnostic object for a given bug report. This class and its fields are 204 /// immutable, and passes a BugReportConstruct object around during the 205 /// construction. 206 class PathDiagnosticBuilder : public BugReporterContext { 207 /// A linear path from the error node to the root. 208 std::unique_ptr<const ExplodedGraph> BugPath; 209 /// The bug report we're describing. Visitors create their diagnostics with 210 /// them being the last entities being able to modify it (for example, 211 /// changing interestingness here would cause inconsistencies as to how this 212 /// file and visitors construct diagnostics), hence its const. 213 const PathSensitiveBugReport *R; 214 /// The leaf of the bug path. This isn't the same as the bug reports error 215 /// node, which refers to the *original* graph, not the bug path. 216 const ExplodedNode *const ErrorNode; 217 /// The diagnostic pieces visitors emitted, which is expected to be collected 218 /// by the time this builder is constructed. 219 std::unique_ptr<const VisitorsDiagnosticsTy> VisitorsDiagnostics; 220 221 public: 222 /// Find a non-invalidated report for a given equivalence class, and returns 223 /// a PathDiagnosticBuilder able to construct bug reports for different 224 /// consumers. Returns std::nullopt if no valid report is found. 225 static Optional<PathDiagnosticBuilder> 226 findValidReport(ArrayRef<PathSensitiveBugReport *> &bugReports, 227 PathSensitiveBugReporter &Reporter); 228 229 PathDiagnosticBuilder( 230 BugReporterContext BRC, std::unique_ptr<ExplodedGraph> BugPath, 231 PathSensitiveBugReport *r, const ExplodedNode *ErrorNode, 232 std::unique_ptr<VisitorsDiagnosticsTy> VisitorsDiagnostics); 233 234 /// This function is responsible for generating diagnostic pieces that are 235 /// *not* provided by bug report visitors. 236 /// These diagnostics may differ depending on the consumer's settings, 237 /// and are therefore constructed separately for each consumer. 238 /// 239 /// There are two path diagnostics generation modes: with adding edges (used 240 /// for plists) and without (used for HTML and text). When edges are added, 241 /// the path is modified to insert artificially generated edges. 242 /// Otherwise, more detailed diagnostics is emitted for block edges, 243 /// explaining the transitions in words. 244 std::unique_ptr<PathDiagnostic> 245 generate(const PathDiagnosticConsumer *PDC) const; 246 247 private: 248 void updateStackPiecesWithMessage(PathDiagnosticPieceRef P, 249 const CallWithEntryStack &CallStack) const; 250 void generatePathDiagnosticsForNode(PathDiagnosticConstruct &C, 251 PathDiagnosticLocation &PrevLoc) const; 252 253 void generateMinimalDiagForBlockEdge(PathDiagnosticConstruct &C, 254 BlockEdge BE) const; 255 256 PathDiagnosticPieceRef 257 generateDiagForGotoOP(const PathDiagnosticConstruct &C, const Stmt *S, 258 PathDiagnosticLocation &Start) const; 259 260 PathDiagnosticPieceRef 261 generateDiagForSwitchOP(const PathDiagnosticConstruct &C, const CFGBlock *Dst, 262 PathDiagnosticLocation &Start) const; 263 264 PathDiagnosticPieceRef 265 generateDiagForBinaryOP(const PathDiagnosticConstruct &C, const Stmt *T, 266 const CFGBlock *Src, const CFGBlock *DstC) const; 267 268 PathDiagnosticLocation 269 ExecutionContinues(const PathDiagnosticConstruct &C) const; 270 271 PathDiagnosticLocation 272 ExecutionContinues(llvm::raw_string_ostream &os, 273 const PathDiagnosticConstruct &C) const; 274 275 const PathSensitiveBugReport *getBugReport() const { return R; } 276 }; 277 278 } // namespace 279 280 //===----------------------------------------------------------------------===// 281 // Base implementation of stack hint generators. 282 //===----------------------------------------------------------------------===// 283 284 StackHintGenerator::~StackHintGenerator() = default; 285 286 std::string StackHintGeneratorForSymbol::getMessage(const ExplodedNode *N){ 287 if (!N) 288 return getMessageForSymbolNotFound(); 289 290 ProgramPoint P = N->getLocation(); 291 CallExitEnd CExit = P.castAs<CallExitEnd>(); 292 293 // FIXME: Use CallEvent to abstract this over all calls. 294 const Stmt *CallSite = CExit.getCalleeContext()->getCallSite(); 295 const auto *CE = dyn_cast_or_null<CallExpr>(CallSite); 296 if (!CE) 297 return {}; 298 299 // Check if one of the parameters are set to the interesting symbol. 300 unsigned ArgIndex = 0; 301 for (CallExpr::const_arg_iterator I = CE->arg_begin(), 302 E = CE->arg_end(); I != E; ++I, ++ArgIndex){ 303 SVal SV = N->getSVal(*I); 304 305 // Check if the variable corresponding to the symbol is passed by value. 306 SymbolRef AS = SV.getAsLocSymbol(); 307 if (AS == Sym) { 308 return getMessageForArg(*I, ArgIndex); 309 } 310 311 // Check if the parameter is a pointer to the symbol. 312 if (Optional<loc::MemRegionVal> Reg = SV.getAs<loc::MemRegionVal>()) { 313 // Do not attempt to dereference void*. 314 if ((*I)->getType()->isVoidPointerType()) 315 continue; 316 SVal PSV = N->getState()->getSVal(Reg->getRegion()); 317 SymbolRef AS = PSV.getAsLocSymbol(); 318 if (AS == Sym) { 319 return getMessageForArg(*I, ArgIndex); 320 } 321 } 322 } 323 324 // Check if we are returning the interesting symbol. 325 SVal SV = N->getSVal(CE); 326 SymbolRef RetSym = SV.getAsLocSymbol(); 327 if (RetSym == Sym) { 328 return getMessageForReturn(CE); 329 } 330 331 return getMessageForSymbolNotFound(); 332 } 333 334 std::string StackHintGeneratorForSymbol::getMessageForArg(const Expr *ArgE, 335 unsigned ArgIndex) { 336 // Printed parameters start at 1, not 0. 337 ++ArgIndex; 338 339 return (llvm::Twine(Msg) + " via " + std::to_string(ArgIndex) + 340 llvm::getOrdinalSuffix(ArgIndex) + " parameter").str(); 341 } 342 343 //===----------------------------------------------------------------------===// 344 // Diagnostic cleanup. 345 //===----------------------------------------------------------------------===// 346 347 static PathDiagnosticEventPiece * 348 eventsDescribeSameCondition(PathDiagnosticEventPiece *X, 349 PathDiagnosticEventPiece *Y) { 350 // Prefer diagnostics that come from ConditionBRVisitor over 351 // those that came from TrackConstraintBRVisitor, 352 // unless the one from ConditionBRVisitor is 353 // its generic fallback diagnostic. 354 const void *tagPreferred = ConditionBRVisitor::getTag(); 355 const void *tagLesser = TrackConstraintBRVisitor::getTag(); 356 357 if (X->getLocation() != Y->getLocation()) 358 return nullptr; 359 360 if (X->getTag() == tagPreferred && Y->getTag() == tagLesser) 361 return ConditionBRVisitor::isPieceMessageGeneric(X) ? Y : X; 362 363 if (Y->getTag() == tagPreferred && X->getTag() == tagLesser) 364 return ConditionBRVisitor::isPieceMessageGeneric(Y) ? X : Y; 365 366 return nullptr; 367 } 368 369 /// An optimization pass over PathPieces that removes redundant diagnostics 370 /// generated by both ConditionBRVisitor and TrackConstraintBRVisitor. Both 371 /// BugReporterVisitors use different methods to generate diagnostics, with 372 /// one capable of emitting diagnostics in some cases but not in others. This 373 /// can lead to redundant diagnostic pieces at the same point in a path. 374 static void removeRedundantMsgs(PathPieces &path) { 375 unsigned N = path.size(); 376 if (N < 2) 377 return; 378 // NOTE: this loop intentionally is not using an iterator. Instead, we 379 // are streaming the path and modifying it in place. This is done by 380 // grabbing the front, processing it, and if we decide to keep it append 381 // it to the end of the path. The entire path is processed in this way. 382 for (unsigned i = 0; i < N; ++i) { 383 auto piece = std::move(path.front()); 384 path.pop_front(); 385 386 switch (piece->getKind()) { 387 case PathDiagnosticPiece::Call: 388 removeRedundantMsgs(cast<PathDiagnosticCallPiece>(*piece).path); 389 break; 390 case PathDiagnosticPiece::Macro: 391 removeRedundantMsgs(cast<PathDiagnosticMacroPiece>(*piece).subPieces); 392 break; 393 case PathDiagnosticPiece::Event: { 394 if (i == N-1) 395 break; 396 397 if (auto *nextEvent = 398 dyn_cast<PathDiagnosticEventPiece>(path.front().get())) { 399 auto *event = cast<PathDiagnosticEventPiece>(piece.get()); 400 // Check to see if we should keep one of the two pieces. If we 401 // come up with a preference, record which piece to keep, and consume 402 // another piece from the path. 403 if (auto *pieceToKeep = 404 eventsDescribeSameCondition(event, nextEvent)) { 405 piece = std::move(pieceToKeep == event ? piece : path.front()); 406 path.pop_front(); 407 ++i; 408 } 409 } 410 break; 411 } 412 case PathDiagnosticPiece::ControlFlow: 413 case PathDiagnosticPiece::Note: 414 case PathDiagnosticPiece::PopUp: 415 break; 416 } 417 path.push_back(std::move(piece)); 418 } 419 } 420 421 /// Recursively scan through a path and prune out calls and macros pieces 422 /// that aren't needed. Return true if afterwards the path contains 423 /// "interesting stuff" which means it shouldn't be pruned from the parent path. 424 static bool removeUnneededCalls(const PathDiagnosticConstruct &C, 425 PathPieces &pieces, 426 const PathSensitiveBugReport *R, 427 bool IsInteresting = false) { 428 bool containsSomethingInteresting = IsInteresting; 429 const unsigned N = pieces.size(); 430 431 for (unsigned i = 0 ; i < N ; ++i) { 432 // Remove the front piece from the path. If it is still something we 433 // want to keep once we are done, we will push it back on the end. 434 auto piece = std::move(pieces.front()); 435 pieces.pop_front(); 436 437 switch (piece->getKind()) { 438 case PathDiagnosticPiece::Call: { 439 auto &call = cast<PathDiagnosticCallPiece>(*piece); 440 // Check if the location context is interesting. 441 if (!removeUnneededCalls( 442 C, call.path, R, 443 R->isInteresting(C.getLocationContextFor(&call.path)))) 444 continue; 445 446 containsSomethingInteresting = true; 447 break; 448 } 449 case PathDiagnosticPiece::Macro: { 450 auto ¯o = cast<PathDiagnosticMacroPiece>(*piece); 451 if (!removeUnneededCalls(C, macro.subPieces, R, IsInteresting)) 452 continue; 453 containsSomethingInteresting = true; 454 break; 455 } 456 case PathDiagnosticPiece::Event: { 457 auto &event = cast<PathDiagnosticEventPiece>(*piece); 458 459 // We never throw away an event, but we do throw it away wholesale 460 // as part of a path if we throw the entire path away. 461 containsSomethingInteresting |= !event.isPrunable(); 462 break; 463 } 464 case PathDiagnosticPiece::ControlFlow: 465 case PathDiagnosticPiece::Note: 466 case PathDiagnosticPiece::PopUp: 467 break; 468 } 469 470 pieces.push_back(std::move(piece)); 471 } 472 473 return containsSomethingInteresting; 474 } 475 476 /// Same logic as above to remove extra pieces. 477 static void removePopUpNotes(PathPieces &Path) { 478 for (unsigned int i = 0; i < Path.size(); ++i) { 479 auto Piece = std::move(Path.front()); 480 Path.pop_front(); 481 if (!isa<PathDiagnosticPopUpPiece>(*Piece)) 482 Path.push_back(std::move(Piece)); 483 } 484 } 485 486 /// Returns true if the given decl has been implicitly given a body, either by 487 /// the analyzer or by the compiler proper. 488 static bool hasImplicitBody(const Decl *D) { 489 assert(D); 490 return D->isImplicit() || !D->hasBody(); 491 } 492 493 /// Recursively scan through a path and make sure that all call pieces have 494 /// valid locations. 495 static void 496 adjustCallLocations(PathPieces &Pieces, 497 PathDiagnosticLocation *LastCallLocation = nullptr) { 498 for (const auto &I : Pieces) { 499 auto *Call = dyn_cast<PathDiagnosticCallPiece>(I.get()); 500 501 if (!Call) 502 continue; 503 504 if (LastCallLocation) { 505 bool CallerIsImplicit = hasImplicitBody(Call->getCaller()); 506 if (CallerIsImplicit || !Call->callEnter.asLocation().isValid()) 507 Call->callEnter = *LastCallLocation; 508 if (CallerIsImplicit || !Call->callReturn.asLocation().isValid()) 509 Call->callReturn = *LastCallLocation; 510 } 511 512 // Recursively clean out the subclass. Keep this call around if 513 // it contains any informative diagnostics. 514 PathDiagnosticLocation *ThisCallLocation; 515 if (Call->callEnterWithin.asLocation().isValid() && 516 !hasImplicitBody(Call->getCallee())) 517 ThisCallLocation = &Call->callEnterWithin; 518 else 519 ThisCallLocation = &Call->callEnter; 520 521 assert(ThisCallLocation && "Outermost call has an invalid location"); 522 adjustCallLocations(Call->path, ThisCallLocation); 523 } 524 } 525 526 /// Remove edges in and out of C++ default initializer expressions. These are 527 /// for fields that have in-class initializers, as opposed to being initialized 528 /// explicitly in a constructor or braced list. 529 static void removeEdgesToDefaultInitializers(PathPieces &Pieces) { 530 for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E;) { 531 if (auto *C = dyn_cast<PathDiagnosticCallPiece>(I->get())) 532 removeEdgesToDefaultInitializers(C->path); 533 534 if (auto *M = dyn_cast<PathDiagnosticMacroPiece>(I->get())) 535 removeEdgesToDefaultInitializers(M->subPieces); 536 537 if (auto *CF = dyn_cast<PathDiagnosticControlFlowPiece>(I->get())) { 538 const Stmt *Start = CF->getStartLocation().asStmt(); 539 const Stmt *End = CF->getEndLocation().asStmt(); 540 if (isa_and_nonnull<CXXDefaultInitExpr>(Start)) { 541 I = Pieces.erase(I); 542 continue; 543 } else if (isa_and_nonnull<CXXDefaultInitExpr>(End)) { 544 PathPieces::iterator Next = std::next(I); 545 if (Next != E) { 546 if (auto *NextCF = 547 dyn_cast<PathDiagnosticControlFlowPiece>(Next->get())) { 548 NextCF->setStartLocation(CF->getStartLocation()); 549 } 550 } 551 I = Pieces.erase(I); 552 continue; 553 } 554 } 555 556 I++; 557 } 558 } 559 560 /// Remove all pieces with invalid locations as these cannot be serialized. 561 /// We might have pieces with invalid locations as a result of inlining Body 562 /// Farm generated functions. 563 static void removePiecesWithInvalidLocations(PathPieces &Pieces) { 564 for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E;) { 565 if (auto *C = dyn_cast<PathDiagnosticCallPiece>(I->get())) 566 removePiecesWithInvalidLocations(C->path); 567 568 if (auto *M = dyn_cast<PathDiagnosticMacroPiece>(I->get())) 569 removePiecesWithInvalidLocations(M->subPieces); 570 571 if (!(*I)->getLocation().isValid() || 572 !(*I)->getLocation().asLocation().isValid()) { 573 I = Pieces.erase(I); 574 continue; 575 } 576 I++; 577 } 578 } 579 580 PathDiagnosticLocation PathDiagnosticBuilder::ExecutionContinues( 581 const PathDiagnosticConstruct &C) const { 582 if (const Stmt *S = C.getCurrentNode()->getNextStmtForDiagnostics()) 583 return PathDiagnosticLocation(S, getSourceManager(), 584 C.getCurrLocationContext()); 585 586 return PathDiagnosticLocation::createDeclEnd(C.getCurrLocationContext(), 587 getSourceManager()); 588 } 589 590 PathDiagnosticLocation PathDiagnosticBuilder::ExecutionContinues( 591 llvm::raw_string_ostream &os, const PathDiagnosticConstruct &C) const { 592 // Slow, but probably doesn't matter. 593 if (os.str().empty()) 594 os << ' '; 595 596 const PathDiagnosticLocation &Loc = ExecutionContinues(C); 597 598 if (Loc.asStmt()) 599 os << "Execution continues on line " 600 << getSourceManager().getExpansionLineNumber(Loc.asLocation()) 601 << '.'; 602 else { 603 os << "Execution jumps to the end of the "; 604 const Decl *D = C.getCurrLocationContext()->getDecl(); 605 if (isa<ObjCMethodDecl>(D)) 606 os << "method"; 607 else if (isa<FunctionDecl>(D)) 608 os << "function"; 609 else { 610 assert(isa<BlockDecl>(D)); 611 os << "anonymous block"; 612 } 613 os << '.'; 614 } 615 616 return Loc; 617 } 618 619 static const Stmt *getEnclosingParent(const Stmt *S, const ParentMap &PM) { 620 if (isa<Expr>(S) && PM.isConsumedExpr(cast<Expr>(S))) 621 return PM.getParentIgnoreParens(S); 622 623 const Stmt *Parent = PM.getParentIgnoreParens(S); 624 if (!Parent) 625 return nullptr; 626 627 switch (Parent->getStmtClass()) { 628 case Stmt::ForStmtClass: 629 case Stmt::DoStmtClass: 630 case Stmt::WhileStmtClass: 631 case Stmt::ObjCForCollectionStmtClass: 632 case Stmt::CXXForRangeStmtClass: 633 return Parent; 634 default: 635 break; 636 } 637 638 return nullptr; 639 } 640 641 static PathDiagnosticLocation 642 getEnclosingStmtLocation(const Stmt *S, const LocationContext *LC, 643 bool allowNestedContexts = false) { 644 if (!S) 645 return {}; 646 647 const SourceManager &SMgr = LC->getDecl()->getASTContext().getSourceManager(); 648 649 while (const Stmt *Parent = getEnclosingParent(S, LC->getParentMap())) { 650 switch (Parent->getStmtClass()) { 651 case Stmt::BinaryOperatorClass: { 652 const auto *B = cast<BinaryOperator>(Parent); 653 if (B->isLogicalOp()) 654 return PathDiagnosticLocation(allowNestedContexts ? B : S, SMgr, LC); 655 break; 656 } 657 case Stmt::CompoundStmtClass: 658 case Stmt::StmtExprClass: 659 return PathDiagnosticLocation(S, SMgr, LC); 660 case Stmt::ChooseExprClass: 661 // Similar to '?' if we are referring to condition, just have the edge 662 // point to the entire choose expression. 663 if (allowNestedContexts || cast<ChooseExpr>(Parent)->getCond() == S) 664 return PathDiagnosticLocation(Parent, SMgr, LC); 665 else 666 return PathDiagnosticLocation(S, SMgr, LC); 667 case Stmt::BinaryConditionalOperatorClass: 668 case Stmt::ConditionalOperatorClass: 669 // For '?', if we are referring to condition, just have the edge point 670 // to the entire '?' expression. 671 if (allowNestedContexts || 672 cast<AbstractConditionalOperator>(Parent)->getCond() == S) 673 return PathDiagnosticLocation(Parent, SMgr, LC); 674 else 675 return PathDiagnosticLocation(S, SMgr, LC); 676 case Stmt::CXXForRangeStmtClass: 677 if (cast<CXXForRangeStmt>(Parent)->getBody() == S) 678 return PathDiagnosticLocation(S, SMgr, LC); 679 break; 680 case Stmt::DoStmtClass: 681 return PathDiagnosticLocation(S, SMgr, LC); 682 case Stmt::ForStmtClass: 683 if (cast<ForStmt>(Parent)->getBody() == S) 684 return PathDiagnosticLocation(S, SMgr, LC); 685 break; 686 case Stmt::IfStmtClass: 687 if (cast<IfStmt>(Parent)->getCond() != S) 688 return PathDiagnosticLocation(S, SMgr, LC); 689 break; 690 case Stmt::ObjCForCollectionStmtClass: 691 if (cast<ObjCForCollectionStmt>(Parent)->getBody() == S) 692 return PathDiagnosticLocation(S, SMgr, LC); 693 break; 694 case Stmt::WhileStmtClass: 695 if (cast<WhileStmt>(Parent)->getCond() != S) 696 return PathDiagnosticLocation(S, SMgr, LC); 697 break; 698 default: 699 break; 700 } 701 702 S = Parent; 703 } 704 705 assert(S && "Cannot have null Stmt for PathDiagnosticLocation"); 706 707 return PathDiagnosticLocation(S, SMgr, LC); 708 } 709 710 //===----------------------------------------------------------------------===// 711 // "Minimal" path diagnostic generation algorithm. 712 //===----------------------------------------------------------------------===// 713 714 /// If the piece contains a special message, add it to all the call pieces on 715 /// the active stack. For example, my_malloc allocated memory, so MallocChecker 716 /// will construct an event at the call to malloc(), and add a stack hint that 717 /// an allocated memory was returned. We'll use this hint to construct a message 718 /// when returning from the call to my_malloc 719 /// 720 /// void *my_malloc() { return malloc(sizeof(int)); } 721 /// void fishy() { 722 /// void *ptr = my_malloc(); // returned allocated memory 723 /// } // leak 724 void PathDiagnosticBuilder::updateStackPiecesWithMessage( 725 PathDiagnosticPieceRef P, const CallWithEntryStack &CallStack) const { 726 if (R->hasCallStackHint(P)) 727 for (const auto &I : CallStack) { 728 PathDiagnosticCallPiece *CP = I.first; 729 const ExplodedNode *N = I.second; 730 std::string stackMsg = R->getCallStackMessage(P, N); 731 732 // The last message on the path to final bug is the most important 733 // one. Since we traverse the path backwards, do not add the message 734 // if one has been previously added. 735 if (!CP->hasCallStackMessage()) 736 CP->setCallStackMessage(stackMsg); 737 } 738 } 739 740 static void CompactMacroExpandedPieces(PathPieces &path, 741 const SourceManager& SM); 742 743 PathDiagnosticPieceRef PathDiagnosticBuilder::generateDiagForSwitchOP( 744 const PathDiagnosticConstruct &C, const CFGBlock *Dst, 745 PathDiagnosticLocation &Start) const { 746 747 const SourceManager &SM = getSourceManager(); 748 // Figure out what case arm we took. 749 std::string sbuf; 750 llvm::raw_string_ostream os(sbuf); 751 PathDiagnosticLocation End; 752 753 if (const Stmt *S = Dst->getLabel()) { 754 End = PathDiagnosticLocation(S, SM, C.getCurrLocationContext()); 755 756 switch (S->getStmtClass()) { 757 default: 758 os << "No cases match in the switch statement. " 759 "Control jumps to line " 760 << End.asLocation().getExpansionLineNumber(); 761 break; 762 case Stmt::DefaultStmtClass: 763 os << "Control jumps to the 'default' case at line " 764 << End.asLocation().getExpansionLineNumber(); 765 break; 766 767 case Stmt::CaseStmtClass: { 768 os << "Control jumps to 'case "; 769 const auto *Case = cast<CaseStmt>(S); 770 const Expr *LHS = Case->getLHS()->IgnoreParenCasts(); 771 772 // Determine if it is an enum. 773 bool GetRawInt = true; 774 775 if (const auto *DR = dyn_cast<DeclRefExpr>(LHS)) { 776 // FIXME: Maybe this should be an assertion. Are there cases 777 // were it is not an EnumConstantDecl? 778 const auto *D = dyn_cast<EnumConstantDecl>(DR->getDecl()); 779 780 if (D) { 781 GetRawInt = false; 782 os << *D; 783 } 784 } 785 786 if (GetRawInt) 787 os << LHS->EvaluateKnownConstInt(getASTContext()); 788 789 os << ":' at line " << End.asLocation().getExpansionLineNumber(); 790 break; 791 } 792 } 793 } else { 794 os << "'Default' branch taken. "; 795 End = ExecutionContinues(os, C); 796 } 797 return std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, 798 os.str()); 799 } 800 801 PathDiagnosticPieceRef PathDiagnosticBuilder::generateDiagForGotoOP( 802 const PathDiagnosticConstruct &C, const Stmt *S, 803 PathDiagnosticLocation &Start) const { 804 std::string sbuf; 805 llvm::raw_string_ostream os(sbuf); 806 const PathDiagnosticLocation &End = 807 getEnclosingStmtLocation(S, C.getCurrLocationContext()); 808 os << "Control jumps to line " << End.asLocation().getExpansionLineNumber(); 809 return std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, os.str()); 810 } 811 812 PathDiagnosticPieceRef PathDiagnosticBuilder::generateDiagForBinaryOP( 813 const PathDiagnosticConstruct &C, const Stmt *T, const CFGBlock *Src, 814 const CFGBlock *Dst) const { 815 816 const SourceManager &SM = getSourceManager(); 817 818 const auto *B = cast<BinaryOperator>(T); 819 std::string sbuf; 820 llvm::raw_string_ostream os(sbuf); 821 os << "Left side of '"; 822 PathDiagnosticLocation Start, End; 823 824 if (B->getOpcode() == BO_LAnd) { 825 os << "&&" 826 << "' is "; 827 828 if (*(Src->succ_begin() + 1) == Dst) { 829 os << "false"; 830 End = PathDiagnosticLocation(B->getLHS(), SM, C.getCurrLocationContext()); 831 Start = 832 PathDiagnosticLocation::createOperatorLoc(B, SM); 833 } else { 834 os << "true"; 835 Start = 836 PathDiagnosticLocation(B->getLHS(), SM, C.getCurrLocationContext()); 837 End = ExecutionContinues(C); 838 } 839 } else { 840 assert(B->getOpcode() == BO_LOr); 841 os << "||" 842 << "' is "; 843 844 if (*(Src->succ_begin() + 1) == Dst) { 845 os << "false"; 846 Start = 847 PathDiagnosticLocation(B->getLHS(), SM, C.getCurrLocationContext()); 848 End = ExecutionContinues(C); 849 } else { 850 os << "true"; 851 End = PathDiagnosticLocation(B->getLHS(), SM, C.getCurrLocationContext()); 852 Start = 853 PathDiagnosticLocation::createOperatorLoc(B, SM); 854 } 855 } 856 return std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, 857 os.str()); 858 } 859 860 void PathDiagnosticBuilder::generateMinimalDiagForBlockEdge( 861 PathDiagnosticConstruct &C, BlockEdge BE) const { 862 const SourceManager &SM = getSourceManager(); 863 const LocationContext *LC = C.getCurrLocationContext(); 864 const CFGBlock *Src = BE.getSrc(); 865 const CFGBlock *Dst = BE.getDst(); 866 const Stmt *T = Src->getTerminatorStmt(); 867 if (!T) 868 return; 869 870 auto Start = PathDiagnosticLocation::createBegin(T, SM, LC); 871 switch (T->getStmtClass()) { 872 default: 873 break; 874 875 case Stmt::GotoStmtClass: 876 case Stmt::IndirectGotoStmtClass: { 877 if (const Stmt *S = C.getCurrentNode()->getNextStmtForDiagnostics()) 878 C.getActivePath().push_front(generateDiagForGotoOP(C, S, Start)); 879 break; 880 } 881 882 case Stmt::SwitchStmtClass: { 883 C.getActivePath().push_front(generateDiagForSwitchOP(C, Dst, Start)); 884 break; 885 } 886 887 case Stmt::BreakStmtClass: 888 case Stmt::ContinueStmtClass: { 889 std::string sbuf; 890 llvm::raw_string_ostream os(sbuf); 891 PathDiagnosticLocation End = ExecutionContinues(os, C); 892 C.getActivePath().push_front( 893 std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, os.str())); 894 break; 895 } 896 897 // Determine control-flow for ternary '?'. 898 case Stmt::BinaryConditionalOperatorClass: 899 case Stmt::ConditionalOperatorClass: { 900 std::string sbuf; 901 llvm::raw_string_ostream os(sbuf); 902 os << "'?' condition is "; 903 904 if (*(Src->succ_begin() + 1) == Dst) 905 os << "false"; 906 else 907 os << "true"; 908 909 PathDiagnosticLocation End = ExecutionContinues(C); 910 911 if (const Stmt *S = End.asStmt()) 912 End = getEnclosingStmtLocation(S, C.getCurrLocationContext()); 913 914 C.getActivePath().push_front( 915 std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, os.str())); 916 break; 917 } 918 919 // Determine control-flow for short-circuited '&&' and '||'. 920 case Stmt::BinaryOperatorClass: { 921 if (!C.supportsLogicalOpControlFlow()) 922 break; 923 924 C.getActivePath().push_front(generateDiagForBinaryOP(C, T, Src, Dst)); 925 break; 926 } 927 928 case Stmt::DoStmtClass: 929 if (*(Src->succ_begin()) == Dst) { 930 std::string sbuf; 931 llvm::raw_string_ostream os(sbuf); 932 933 os << "Loop condition is true. "; 934 PathDiagnosticLocation End = ExecutionContinues(os, C); 935 936 if (const Stmt *S = End.asStmt()) 937 End = getEnclosingStmtLocation(S, C.getCurrLocationContext()); 938 939 C.getActivePath().push_front( 940 std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, 941 os.str())); 942 } else { 943 PathDiagnosticLocation End = ExecutionContinues(C); 944 945 if (const Stmt *S = End.asStmt()) 946 End = getEnclosingStmtLocation(S, C.getCurrLocationContext()); 947 948 C.getActivePath().push_front( 949 std::make_shared<PathDiagnosticControlFlowPiece>( 950 Start, End, "Loop condition is false. Exiting loop")); 951 } 952 break; 953 954 case Stmt::WhileStmtClass: 955 case Stmt::ForStmtClass: 956 if (*(Src->succ_begin() + 1) == Dst) { 957 std::string sbuf; 958 llvm::raw_string_ostream os(sbuf); 959 960 os << "Loop condition is false. "; 961 PathDiagnosticLocation End = ExecutionContinues(os, C); 962 if (const Stmt *S = End.asStmt()) 963 End = getEnclosingStmtLocation(S, C.getCurrLocationContext()); 964 965 C.getActivePath().push_front( 966 std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, 967 os.str())); 968 } else { 969 PathDiagnosticLocation End = ExecutionContinues(C); 970 if (const Stmt *S = End.asStmt()) 971 End = getEnclosingStmtLocation(S, C.getCurrLocationContext()); 972 973 C.getActivePath().push_front( 974 std::make_shared<PathDiagnosticControlFlowPiece>( 975 Start, End, "Loop condition is true. Entering loop body")); 976 } 977 978 break; 979 980 case Stmt::IfStmtClass: { 981 PathDiagnosticLocation End = ExecutionContinues(C); 982 983 if (const Stmt *S = End.asStmt()) 984 End = getEnclosingStmtLocation(S, C.getCurrLocationContext()); 985 986 if (*(Src->succ_begin() + 1) == Dst) 987 C.getActivePath().push_front( 988 std::make_shared<PathDiagnosticControlFlowPiece>( 989 Start, End, "Taking false branch")); 990 else 991 C.getActivePath().push_front( 992 std::make_shared<PathDiagnosticControlFlowPiece>( 993 Start, End, "Taking true branch")); 994 995 break; 996 } 997 } 998 } 999 1000 //===----------------------------------------------------------------------===// 1001 // Functions for determining if a loop was executed 0 times. 1002 //===----------------------------------------------------------------------===// 1003 1004 static bool isLoop(const Stmt *Term) { 1005 switch (Term->getStmtClass()) { 1006 case Stmt::ForStmtClass: 1007 case Stmt::WhileStmtClass: 1008 case Stmt::ObjCForCollectionStmtClass: 1009 case Stmt::CXXForRangeStmtClass: 1010 return true; 1011 default: 1012 // Note that we intentionally do not include do..while here. 1013 return false; 1014 } 1015 } 1016 1017 static bool isJumpToFalseBranch(const BlockEdge *BE) { 1018 const CFGBlock *Src = BE->getSrc(); 1019 assert(Src->succ_size() == 2); 1020 return (*(Src->succ_begin()+1) == BE->getDst()); 1021 } 1022 1023 static bool isContainedByStmt(const ParentMap &PM, const Stmt *S, 1024 const Stmt *SubS) { 1025 while (SubS) { 1026 if (SubS == S) 1027 return true; 1028 SubS = PM.getParent(SubS); 1029 } 1030 return false; 1031 } 1032 1033 static const Stmt *getStmtBeforeCond(const ParentMap &PM, const Stmt *Term, 1034 const ExplodedNode *N) { 1035 while (N) { 1036 Optional<StmtPoint> SP = N->getLocation().getAs<StmtPoint>(); 1037 if (SP) { 1038 const Stmt *S = SP->getStmt(); 1039 if (!isContainedByStmt(PM, Term, S)) 1040 return S; 1041 } 1042 N = N->getFirstPred(); 1043 } 1044 return nullptr; 1045 } 1046 1047 static bool isInLoopBody(const ParentMap &PM, const Stmt *S, const Stmt *Term) { 1048 const Stmt *LoopBody = nullptr; 1049 switch (Term->getStmtClass()) { 1050 case Stmt::CXXForRangeStmtClass: { 1051 const auto *FR = cast<CXXForRangeStmt>(Term); 1052 if (isContainedByStmt(PM, FR->getInc(), S)) 1053 return true; 1054 if (isContainedByStmt(PM, FR->getLoopVarStmt(), S)) 1055 return true; 1056 LoopBody = FR->getBody(); 1057 break; 1058 } 1059 case Stmt::ForStmtClass: { 1060 const auto *FS = cast<ForStmt>(Term); 1061 if (isContainedByStmt(PM, FS->getInc(), S)) 1062 return true; 1063 LoopBody = FS->getBody(); 1064 break; 1065 } 1066 case Stmt::ObjCForCollectionStmtClass: { 1067 const auto *FC = cast<ObjCForCollectionStmt>(Term); 1068 LoopBody = FC->getBody(); 1069 break; 1070 } 1071 case Stmt::WhileStmtClass: 1072 LoopBody = cast<WhileStmt>(Term)->getBody(); 1073 break; 1074 default: 1075 return false; 1076 } 1077 return isContainedByStmt(PM, LoopBody, S); 1078 } 1079 1080 /// Adds a sanitized control-flow diagnostic edge to a path. 1081 static void addEdgeToPath(PathPieces &path, 1082 PathDiagnosticLocation &PrevLoc, 1083 PathDiagnosticLocation NewLoc) { 1084 if (!NewLoc.isValid()) 1085 return; 1086 1087 SourceLocation NewLocL = NewLoc.asLocation(); 1088 if (NewLocL.isInvalid()) 1089 return; 1090 1091 if (!PrevLoc.isValid() || !PrevLoc.asLocation().isValid()) { 1092 PrevLoc = NewLoc; 1093 return; 1094 } 1095 1096 // Ignore self-edges, which occur when there are multiple nodes at the same 1097 // statement. 1098 if (NewLoc.asStmt() && NewLoc.asStmt() == PrevLoc.asStmt()) 1099 return; 1100 1101 path.push_front( 1102 std::make_shared<PathDiagnosticControlFlowPiece>(NewLoc, PrevLoc)); 1103 PrevLoc = NewLoc; 1104 } 1105 1106 /// A customized wrapper for CFGBlock::getTerminatorCondition() 1107 /// which returns the element for ObjCForCollectionStmts. 1108 static const Stmt *getTerminatorCondition(const CFGBlock *B) { 1109 const Stmt *S = B->getTerminatorCondition(); 1110 if (const auto *FS = dyn_cast_or_null<ObjCForCollectionStmt>(S)) 1111 return FS->getElement(); 1112 return S; 1113 } 1114 1115 constexpr llvm::StringLiteral StrEnteringLoop = "Entering loop body"; 1116 constexpr llvm::StringLiteral StrLoopBodyZero = "Loop body executed 0 times"; 1117 constexpr llvm::StringLiteral StrLoopRangeEmpty = 1118 "Loop body skipped when range is empty"; 1119 constexpr llvm::StringLiteral StrLoopCollectionEmpty = 1120 "Loop body skipped when collection is empty"; 1121 1122 static std::unique_ptr<FilesToLineNumsMap> 1123 findExecutedLines(const SourceManager &SM, const ExplodedNode *N); 1124 1125 void PathDiagnosticBuilder::generatePathDiagnosticsForNode( 1126 PathDiagnosticConstruct &C, PathDiagnosticLocation &PrevLoc) const { 1127 ProgramPoint P = C.getCurrentNode()->getLocation(); 1128 const SourceManager &SM = getSourceManager(); 1129 1130 // Have we encountered an entrance to a call? It may be 1131 // the case that we have not encountered a matching 1132 // call exit before this point. This means that the path 1133 // terminated within the call itself. 1134 if (auto CE = P.getAs<CallEnter>()) { 1135 1136 if (C.shouldAddPathEdges()) { 1137 // Add an edge to the start of the function. 1138 const StackFrameContext *CalleeLC = CE->getCalleeContext(); 1139 const Decl *D = CalleeLC->getDecl(); 1140 // Add the edge only when the callee has body. We jump to the beginning 1141 // of the *declaration*, however we expect it to be followed by the 1142 // body. This isn't the case for autosynthesized property accessors in 1143 // Objective-C. No need for a similar extra check for CallExit points 1144 // because the exit edge comes from a statement (i.e. return), 1145 // not from declaration. 1146 if (D->hasBody()) 1147 addEdgeToPath(C.getActivePath(), PrevLoc, 1148 PathDiagnosticLocation::createBegin(D, SM)); 1149 } 1150 1151 // Did we visit an entire call? 1152 bool VisitedEntireCall = C.PD->isWithinCall(); 1153 C.PD->popActivePath(); 1154 1155 PathDiagnosticCallPiece *Call; 1156 if (VisitedEntireCall) { 1157 Call = cast<PathDiagnosticCallPiece>(C.getActivePath().front().get()); 1158 } else { 1159 // The path terminated within a nested location context, create a new 1160 // call piece to encapsulate the rest of the path pieces. 1161 const Decl *Caller = CE->getLocationContext()->getDecl(); 1162 Call = PathDiagnosticCallPiece::construct(C.getActivePath(), Caller); 1163 assert(C.getActivePath().size() == 1 && 1164 C.getActivePath().front().get() == Call); 1165 1166 // Since we just transferred the path over to the call piece, reset the 1167 // mapping of the active path to the current location context. 1168 assert(C.isInLocCtxMap(&C.getActivePath()) && 1169 "When we ascend to a previously unvisited call, the active path's " 1170 "address shouldn't change, but rather should be compacted into " 1171 "a single CallEvent!"); 1172 C.updateLocCtxMap(&C.getActivePath(), C.getCurrLocationContext()); 1173 1174 // Record the location context mapping for the path within the call. 1175 assert(!C.isInLocCtxMap(&Call->path) && 1176 "When we ascend to a previously unvisited call, this must be the " 1177 "first time we encounter the caller context!"); 1178 C.updateLocCtxMap(&Call->path, CE->getCalleeContext()); 1179 } 1180 Call->setCallee(*CE, SM); 1181 1182 // Update the previous location in the active path. 1183 PrevLoc = Call->getLocation(); 1184 1185 if (!C.CallStack.empty()) { 1186 assert(C.CallStack.back().first == Call); 1187 C.CallStack.pop_back(); 1188 } 1189 return; 1190 } 1191 1192 assert(C.getCurrLocationContext() == C.getLocationContextForActivePath() && 1193 "The current position in the bug path is out of sync with the " 1194 "location context associated with the active path!"); 1195 1196 // Have we encountered an exit from a function call? 1197 if (Optional<CallExitEnd> CE = P.getAs<CallExitEnd>()) { 1198 1199 // We are descending into a call (backwards). Construct 1200 // a new call piece to contain the path pieces for that call. 1201 auto Call = PathDiagnosticCallPiece::construct(*CE, SM); 1202 // Record the mapping from call piece to LocationContext. 1203 assert(!C.isInLocCtxMap(&Call->path) && 1204 "We just entered a call, this must've been the first time we " 1205 "encounter its context!"); 1206 C.updateLocCtxMap(&Call->path, CE->getCalleeContext()); 1207 1208 if (C.shouldAddPathEdges()) { 1209 // Add the edge to the return site. 1210 addEdgeToPath(C.getActivePath(), PrevLoc, Call->callReturn); 1211 PrevLoc.invalidate(); 1212 } 1213 1214 auto *P = Call.get(); 1215 C.getActivePath().push_front(std::move(Call)); 1216 1217 // Make the contents of the call the active path for now. 1218 C.PD->pushActivePath(&P->path); 1219 C.CallStack.push_back(CallWithEntry(P, C.getCurrentNode())); 1220 return; 1221 } 1222 1223 if (auto PS = P.getAs<PostStmt>()) { 1224 if (!C.shouldAddPathEdges()) 1225 return; 1226 1227 // Add an edge. If this is an ObjCForCollectionStmt do 1228 // not add an edge here as it appears in the CFG both 1229 // as a terminator and as a terminator condition. 1230 if (!isa<ObjCForCollectionStmt>(PS->getStmt())) { 1231 PathDiagnosticLocation L = 1232 PathDiagnosticLocation(PS->getStmt(), SM, C.getCurrLocationContext()); 1233 addEdgeToPath(C.getActivePath(), PrevLoc, L); 1234 } 1235 1236 } else if (auto BE = P.getAs<BlockEdge>()) { 1237 1238 if (C.shouldAddControlNotes()) { 1239 generateMinimalDiagForBlockEdge(C, *BE); 1240 } 1241 1242 if (!C.shouldAddPathEdges()) { 1243 return; 1244 } 1245 1246 // Are we jumping to the head of a loop? Add a special diagnostic. 1247 if (const Stmt *Loop = BE->getSrc()->getLoopTarget()) { 1248 PathDiagnosticLocation L(Loop, SM, C.getCurrLocationContext()); 1249 const Stmt *Body = nullptr; 1250 1251 if (const auto *FS = dyn_cast<ForStmt>(Loop)) 1252 Body = FS->getBody(); 1253 else if (const auto *WS = dyn_cast<WhileStmt>(Loop)) 1254 Body = WS->getBody(); 1255 else if (const auto *OFS = dyn_cast<ObjCForCollectionStmt>(Loop)) { 1256 Body = OFS->getBody(); 1257 } else if (const auto *FRS = dyn_cast<CXXForRangeStmt>(Loop)) { 1258 Body = FRS->getBody(); 1259 } 1260 // do-while statements are explicitly excluded here 1261 1262 auto p = std::make_shared<PathDiagnosticEventPiece>( 1263 L, "Looping back to the head of the loop"); 1264 p->setPrunable(true); 1265 1266 addEdgeToPath(C.getActivePath(), PrevLoc, p->getLocation()); 1267 // We might've added a very similar control node already 1268 if (!C.shouldAddControlNotes()) { 1269 C.getActivePath().push_front(std::move(p)); 1270 } 1271 1272 if (const auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 1273 addEdgeToPath(C.getActivePath(), PrevLoc, 1274 PathDiagnosticLocation::createEndBrace(CS, SM)); 1275 } 1276 } 1277 1278 const CFGBlock *BSrc = BE->getSrc(); 1279 const ParentMap &PM = C.getParentMap(); 1280 1281 if (const Stmt *Term = BSrc->getTerminatorStmt()) { 1282 // Are we jumping past the loop body without ever executing the 1283 // loop (because the condition was false)? 1284 if (isLoop(Term)) { 1285 const Stmt *TermCond = getTerminatorCondition(BSrc); 1286 bool IsInLoopBody = isInLoopBody( 1287 PM, getStmtBeforeCond(PM, TermCond, C.getCurrentNode()), Term); 1288 1289 StringRef str; 1290 1291 if (isJumpToFalseBranch(&*BE)) { 1292 if (!IsInLoopBody) { 1293 if (isa<ObjCForCollectionStmt>(Term)) { 1294 str = StrLoopCollectionEmpty; 1295 } else if (isa<CXXForRangeStmt>(Term)) { 1296 str = StrLoopRangeEmpty; 1297 } else { 1298 str = StrLoopBodyZero; 1299 } 1300 } 1301 } else { 1302 str = StrEnteringLoop; 1303 } 1304 1305 if (!str.empty()) { 1306 PathDiagnosticLocation L(TermCond ? TermCond : Term, SM, 1307 C.getCurrLocationContext()); 1308 auto PE = std::make_shared<PathDiagnosticEventPiece>(L, str); 1309 PE->setPrunable(true); 1310 addEdgeToPath(C.getActivePath(), PrevLoc, PE->getLocation()); 1311 1312 // We might've added a very similar control node already 1313 if (!C.shouldAddControlNotes()) { 1314 C.getActivePath().push_front(std::move(PE)); 1315 } 1316 } 1317 } else if (isa<BreakStmt, ContinueStmt, GotoStmt>(Term)) { 1318 PathDiagnosticLocation L(Term, SM, C.getCurrLocationContext()); 1319 addEdgeToPath(C.getActivePath(), PrevLoc, L); 1320 } 1321 } 1322 } 1323 } 1324 1325 static std::unique_ptr<PathDiagnostic> 1326 generateDiagnosticForBasicReport(const BasicBugReport *R) { 1327 const BugType &BT = R->getBugType(); 1328 return std::make_unique<PathDiagnostic>( 1329 BT.getCheckerName(), R->getDeclWithIssue(), BT.getDescription(), 1330 R->getDescription(), R->getShortDescription(/*UseFallback=*/false), 1331 BT.getCategory(), R->getUniqueingLocation(), R->getUniqueingDecl(), 1332 std::make_unique<FilesToLineNumsMap>()); 1333 } 1334 1335 static std::unique_ptr<PathDiagnostic> 1336 generateEmptyDiagnosticForReport(const PathSensitiveBugReport *R, 1337 const SourceManager &SM) { 1338 const BugType &BT = R->getBugType(); 1339 return std::make_unique<PathDiagnostic>( 1340 BT.getCheckerName(), R->getDeclWithIssue(), BT.getDescription(), 1341 R->getDescription(), R->getShortDescription(/*UseFallback=*/false), 1342 BT.getCategory(), R->getUniqueingLocation(), R->getUniqueingDecl(), 1343 findExecutedLines(SM, R->getErrorNode())); 1344 } 1345 1346 static const Stmt *getStmtParent(const Stmt *S, const ParentMap &PM) { 1347 if (!S) 1348 return nullptr; 1349 1350 while (true) { 1351 S = PM.getParentIgnoreParens(S); 1352 1353 if (!S) 1354 break; 1355 1356 if (isa<FullExpr, CXXBindTemporaryExpr, SubstNonTypeTemplateParmExpr>(S)) 1357 continue; 1358 1359 break; 1360 } 1361 1362 return S; 1363 } 1364 1365 static bool isConditionForTerminator(const Stmt *S, const Stmt *Cond) { 1366 switch (S->getStmtClass()) { 1367 case Stmt::BinaryOperatorClass: { 1368 const auto *BO = cast<BinaryOperator>(S); 1369 if (!BO->isLogicalOp()) 1370 return false; 1371 return BO->getLHS() == Cond || BO->getRHS() == Cond; 1372 } 1373 case Stmt::IfStmtClass: 1374 return cast<IfStmt>(S)->getCond() == Cond; 1375 case Stmt::ForStmtClass: 1376 return cast<ForStmt>(S)->getCond() == Cond; 1377 case Stmt::WhileStmtClass: 1378 return cast<WhileStmt>(S)->getCond() == Cond; 1379 case Stmt::DoStmtClass: 1380 return cast<DoStmt>(S)->getCond() == Cond; 1381 case Stmt::ChooseExprClass: 1382 return cast<ChooseExpr>(S)->getCond() == Cond; 1383 case Stmt::IndirectGotoStmtClass: 1384 return cast<IndirectGotoStmt>(S)->getTarget() == Cond; 1385 case Stmt::SwitchStmtClass: 1386 return cast<SwitchStmt>(S)->getCond() == Cond; 1387 case Stmt::BinaryConditionalOperatorClass: 1388 return cast<BinaryConditionalOperator>(S)->getCond() == Cond; 1389 case Stmt::ConditionalOperatorClass: { 1390 const auto *CO = cast<ConditionalOperator>(S); 1391 return CO->getCond() == Cond || 1392 CO->getLHS() == Cond || 1393 CO->getRHS() == Cond; 1394 } 1395 case Stmt::ObjCForCollectionStmtClass: 1396 return cast<ObjCForCollectionStmt>(S)->getElement() == Cond; 1397 case Stmt::CXXForRangeStmtClass: { 1398 const auto *FRS = cast<CXXForRangeStmt>(S); 1399 return FRS->getCond() == Cond || FRS->getRangeInit() == Cond; 1400 } 1401 default: 1402 return false; 1403 } 1404 } 1405 1406 static bool isIncrementOrInitInForLoop(const Stmt *S, const Stmt *FL) { 1407 if (const auto *FS = dyn_cast<ForStmt>(FL)) 1408 return FS->getInc() == S || FS->getInit() == S; 1409 if (const auto *FRS = dyn_cast<CXXForRangeStmt>(FL)) 1410 return FRS->getInc() == S || FRS->getRangeStmt() == S || 1411 FRS->getLoopVarStmt() || FRS->getRangeInit() == S; 1412 return false; 1413 } 1414 1415 using OptimizedCallsSet = llvm::DenseSet<const PathDiagnosticCallPiece *>; 1416 1417 /// Adds synthetic edges from top-level statements to their subexpressions. 1418 /// 1419 /// This avoids a "swoosh" effect, where an edge from a top-level statement A 1420 /// points to a sub-expression B.1 that's not at the start of B. In these cases, 1421 /// we'd like to see an edge from A to B, then another one from B to B.1. 1422 static void addContextEdges(PathPieces &pieces, const LocationContext *LC) { 1423 const ParentMap &PM = LC->getParentMap(); 1424 PathPieces::iterator Prev = pieces.end(); 1425 for (PathPieces::iterator I = pieces.begin(), E = Prev; I != E; 1426 Prev = I, ++I) { 1427 auto *Piece = dyn_cast<PathDiagnosticControlFlowPiece>(I->get()); 1428 1429 if (!Piece) 1430 continue; 1431 1432 PathDiagnosticLocation SrcLoc = Piece->getStartLocation(); 1433 SmallVector<PathDiagnosticLocation, 4> SrcContexts; 1434 1435 PathDiagnosticLocation NextSrcContext = SrcLoc; 1436 const Stmt *InnerStmt = nullptr; 1437 while (NextSrcContext.isValid() && NextSrcContext.asStmt() != InnerStmt) { 1438 SrcContexts.push_back(NextSrcContext); 1439 InnerStmt = NextSrcContext.asStmt(); 1440 NextSrcContext = getEnclosingStmtLocation(InnerStmt, LC, 1441 /*allowNested=*/true); 1442 } 1443 1444 // Repeatedly split the edge as necessary. 1445 // This is important for nested logical expressions (||, &&, ?:) where we 1446 // want to show all the levels of context. 1447 while (true) { 1448 const Stmt *Dst = Piece->getEndLocation().getStmtOrNull(); 1449 1450 // We are looking at an edge. Is the destination within a larger 1451 // expression? 1452 PathDiagnosticLocation DstContext = 1453 getEnclosingStmtLocation(Dst, LC, /*allowNested=*/true); 1454 if (!DstContext.isValid() || DstContext.asStmt() == Dst) 1455 break; 1456 1457 // If the source is in the same context, we're already good. 1458 if (llvm::is_contained(SrcContexts, DstContext)) 1459 break; 1460 1461 // Update the subexpression node to point to the context edge. 1462 Piece->setStartLocation(DstContext); 1463 1464 // Try to extend the previous edge if it's at the same level as the source 1465 // context. 1466 if (Prev != E) { 1467 auto *PrevPiece = dyn_cast<PathDiagnosticControlFlowPiece>(Prev->get()); 1468 1469 if (PrevPiece) { 1470 if (const Stmt *PrevSrc = 1471 PrevPiece->getStartLocation().getStmtOrNull()) { 1472 const Stmt *PrevSrcParent = getStmtParent(PrevSrc, PM); 1473 if (PrevSrcParent == 1474 getStmtParent(DstContext.getStmtOrNull(), PM)) { 1475 PrevPiece->setEndLocation(DstContext); 1476 break; 1477 } 1478 } 1479 } 1480 } 1481 1482 // Otherwise, split the current edge into a context edge and a 1483 // subexpression edge. Note that the context statement may itself have 1484 // context. 1485 auto P = 1486 std::make_shared<PathDiagnosticControlFlowPiece>(SrcLoc, DstContext); 1487 Piece = P.get(); 1488 I = pieces.insert(I, std::move(P)); 1489 } 1490 } 1491 } 1492 1493 /// Move edges from a branch condition to a branch target 1494 /// when the condition is simple. 1495 /// 1496 /// This restructures some of the work of addContextEdges. That function 1497 /// creates edges this may destroy, but they work together to create a more 1498 /// aesthetically set of edges around branches. After the call to 1499 /// addContextEdges, we may have (1) an edge to the branch, (2) an edge from 1500 /// the branch to the branch condition, and (3) an edge from the branch 1501 /// condition to the branch target. We keep (1), but may wish to remove (2) 1502 /// and move the source of (3) to the branch if the branch condition is simple. 1503 static void simplifySimpleBranches(PathPieces &pieces) { 1504 for (PathPieces::iterator I = pieces.begin(), E = pieces.end(); I != E; ++I) { 1505 const auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get()); 1506 1507 if (!PieceI) 1508 continue; 1509 1510 const Stmt *s1Start = PieceI->getStartLocation().getStmtOrNull(); 1511 const Stmt *s1End = PieceI->getEndLocation().getStmtOrNull(); 1512 1513 if (!s1Start || !s1End) 1514 continue; 1515 1516 PathPieces::iterator NextI = I; ++NextI; 1517 if (NextI == E) 1518 break; 1519 1520 PathDiagnosticControlFlowPiece *PieceNextI = nullptr; 1521 1522 while (true) { 1523 if (NextI == E) 1524 break; 1525 1526 const auto *EV = dyn_cast<PathDiagnosticEventPiece>(NextI->get()); 1527 if (EV) { 1528 StringRef S = EV->getString(); 1529 if (S == StrEnteringLoop || S == StrLoopBodyZero || 1530 S == StrLoopCollectionEmpty || S == StrLoopRangeEmpty) { 1531 ++NextI; 1532 continue; 1533 } 1534 break; 1535 } 1536 1537 PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get()); 1538 break; 1539 } 1540 1541 if (!PieceNextI) 1542 continue; 1543 1544 const Stmt *s2Start = PieceNextI->getStartLocation().getStmtOrNull(); 1545 const Stmt *s2End = PieceNextI->getEndLocation().getStmtOrNull(); 1546 1547 if (!s2Start || !s2End || s1End != s2Start) 1548 continue; 1549 1550 // We only perform this transformation for specific branch kinds. 1551 // We don't want to do this for do..while, for example. 1552 if (!isa<ForStmt, WhileStmt, IfStmt, ObjCForCollectionStmt, 1553 CXXForRangeStmt>(s1Start)) 1554 continue; 1555 1556 // Is s1End the branch condition? 1557 if (!isConditionForTerminator(s1Start, s1End)) 1558 continue; 1559 1560 // Perform the hoisting by eliminating (2) and changing the start 1561 // location of (3). 1562 PieceNextI->setStartLocation(PieceI->getStartLocation()); 1563 I = pieces.erase(I); 1564 } 1565 } 1566 1567 /// Returns the number of bytes in the given (character-based) SourceRange. 1568 /// 1569 /// If the locations in the range are not on the same line, returns 1570 /// std::nullopt. 1571 /// 1572 /// Note that this does not do a precise user-visible character or column count. 1573 static Optional<size_t> getLengthOnSingleLine(const SourceManager &SM, 1574 SourceRange Range) { 1575 SourceRange ExpansionRange(SM.getExpansionLoc(Range.getBegin()), 1576 SM.getExpansionRange(Range.getEnd()).getEnd()); 1577 1578 FileID FID = SM.getFileID(ExpansionRange.getBegin()); 1579 if (FID != SM.getFileID(ExpansionRange.getEnd())) 1580 return std::nullopt; 1581 1582 Optional<MemoryBufferRef> Buffer = SM.getBufferOrNone(FID); 1583 if (!Buffer) 1584 return std::nullopt; 1585 1586 unsigned BeginOffset = SM.getFileOffset(ExpansionRange.getBegin()); 1587 unsigned EndOffset = SM.getFileOffset(ExpansionRange.getEnd()); 1588 StringRef Snippet = Buffer->getBuffer().slice(BeginOffset, EndOffset); 1589 1590 // We're searching the raw bytes of the buffer here, which might include 1591 // escaped newlines and such. That's okay; we're trying to decide whether the 1592 // SourceRange is covering a large or small amount of space in the user's 1593 // editor. 1594 if (Snippet.find_first_of("\r\n") != StringRef::npos) 1595 return std::nullopt; 1596 1597 // This isn't Unicode-aware, but it doesn't need to be. 1598 return Snippet.size(); 1599 } 1600 1601 /// \sa getLengthOnSingleLine(SourceManager, SourceRange) 1602 static Optional<size_t> getLengthOnSingleLine(const SourceManager &SM, 1603 const Stmt *S) { 1604 return getLengthOnSingleLine(SM, S->getSourceRange()); 1605 } 1606 1607 /// Eliminate two-edge cycles created by addContextEdges(). 1608 /// 1609 /// Once all the context edges are in place, there are plenty of cases where 1610 /// there's a single edge from a top-level statement to a subexpression, 1611 /// followed by a single path note, and then a reverse edge to get back out to 1612 /// the top level. If the statement is simple enough, the subexpression edges 1613 /// just add noise and make it harder to understand what's going on. 1614 /// 1615 /// This function only removes edges in pairs, because removing only one edge 1616 /// might leave other edges dangling. 1617 /// 1618 /// This will not remove edges in more complicated situations: 1619 /// - if there is more than one "hop" leading to or from a subexpression. 1620 /// - if there is an inlined call between the edges instead of a single event. 1621 /// - if the whole statement is large enough that having subexpression arrows 1622 /// might be helpful. 1623 static void removeContextCycles(PathPieces &Path, const SourceManager &SM) { 1624 for (PathPieces::iterator I = Path.begin(), E = Path.end(); I != E; ) { 1625 // Pattern match the current piece and its successor. 1626 const auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get()); 1627 1628 if (!PieceI) { 1629 ++I; 1630 continue; 1631 } 1632 1633 const Stmt *s1Start = PieceI->getStartLocation().getStmtOrNull(); 1634 const Stmt *s1End = PieceI->getEndLocation().getStmtOrNull(); 1635 1636 PathPieces::iterator NextI = I; ++NextI; 1637 if (NextI == E) 1638 break; 1639 1640 const auto *PieceNextI = 1641 dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get()); 1642 1643 if (!PieceNextI) { 1644 if (isa<PathDiagnosticEventPiece>(NextI->get())) { 1645 ++NextI; 1646 if (NextI == E) 1647 break; 1648 PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get()); 1649 } 1650 1651 if (!PieceNextI) { 1652 ++I; 1653 continue; 1654 } 1655 } 1656 1657 const Stmt *s2Start = PieceNextI->getStartLocation().getStmtOrNull(); 1658 const Stmt *s2End = PieceNextI->getEndLocation().getStmtOrNull(); 1659 1660 if (s1Start && s2Start && s1Start == s2End && s2Start == s1End) { 1661 const size_t MAX_SHORT_LINE_LENGTH = 80; 1662 Optional<size_t> s1Length = getLengthOnSingleLine(SM, s1Start); 1663 if (s1Length && *s1Length <= MAX_SHORT_LINE_LENGTH) { 1664 Optional<size_t> s2Length = getLengthOnSingleLine(SM, s2Start); 1665 if (s2Length && *s2Length <= MAX_SHORT_LINE_LENGTH) { 1666 Path.erase(I); 1667 I = Path.erase(NextI); 1668 continue; 1669 } 1670 } 1671 } 1672 1673 ++I; 1674 } 1675 } 1676 1677 /// Return true if X is contained by Y. 1678 static bool lexicalContains(const ParentMap &PM, const Stmt *X, const Stmt *Y) { 1679 while (X) { 1680 if (X == Y) 1681 return true; 1682 X = PM.getParent(X); 1683 } 1684 return false; 1685 } 1686 1687 // Remove short edges on the same line less than 3 columns in difference. 1688 static void removePunyEdges(PathPieces &path, const SourceManager &SM, 1689 const ParentMap &PM) { 1690 bool erased = false; 1691 1692 for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; 1693 erased ? I : ++I) { 1694 erased = false; 1695 1696 const auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get()); 1697 1698 if (!PieceI) 1699 continue; 1700 1701 const Stmt *start = PieceI->getStartLocation().getStmtOrNull(); 1702 const Stmt *end = PieceI->getEndLocation().getStmtOrNull(); 1703 1704 if (!start || !end) 1705 continue; 1706 1707 const Stmt *endParent = PM.getParent(end); 1708 if (!endParent) 1709 continue; 1710 1711 if (isConditionForTerminator(end, endParent)) 1712 continue; 1713 1714 SourceLocation FirstLoc = start->getBeginLoc(); 1715 SourceLocation SecondLoc = end->getBeginLoc(); 1716 1717 if (!SM.isWrittenInSameFile(FirstLoc, SecondLoc)) 1718 continue; 1719 if (SM.isBeforeInTranslationUnit(SecondLoc, FirstLoc)) 1720 std::swap(SecondLoc, FirstLoc); 1721 1722 SourceRange EdgeRange(FirstLoc, SecondLoc); 1723 Optional<size_t> ByteWidth = getLengthOnSingleLine(SM, EdgeRange); 1724 1725 // If the statements are on different lines, continue. 1726 if (!ByteWidth) 1727 continue; 1728 1729 const size_t MAX_PUNY_EDGE_LENGTH = 2; 1730 if (*ByteWidth <= MAX_PUNY_EDGE_LENGTH) { 1731 // FIXME: There are enough /bytes/ between the endpoints of the edge, but 1732 // there might not be enough /columns/. A proper user-visible column count 1733 // is probably too expensive, though. 1734 I = path.erase(I); 1735 erased = true; 1736 continue; 1737 } 1738 } 1739 } 1740 1741 static void removeIdenticalEvents(PathPieces &path) { 1742 for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; ++I) { 1743 const auto *PieceI = dyn_cast<PathDiagnosticEventPiece>(I->get()); 1744 1745 if (!PieceI) 1746 continue; 1747 1748 PathPieces::iterator NextI = I; ++NextI; 1749 if (NextI == E) 1750 return; 1751 1752 const auto *PieceNextI = dyn_cast<PathDiagnosticEventPiece>(NextI->get()); 1753 1754 if (!PieceNextI) 1755 continue; 1756 1757 // Erase the second piece if it has the same exact message text. 1758 if (PieceI->getString() == PieceNextI->getString()) { 1759 path.erase(NextI); 1760 } 1761 } 1762 } 1763 1764 static bool optimizeEdges(const PathDiagnosticConstruct &C, PathPieces &path, 1765 OptimizedCallsSet &OCS) { 1766 bool hasChanges = false; 1767 const LocationContext *LC = C.getLocationContextFor(&path); 1768 assert(LC); 1769 const ParentMap &PM = LC->getParentMap(); 1770 const SourceManager &SM = C.getSourceManager(); 1771 1772 for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; ) { 1773 // Optimize subpaths. 1774 if (auto *CallI = dyn_cast<PathDiagnosticCallPiece>(I->get())) { 1775 // Record the fact that a call has been optimized so we only do the 1776 // effort once. 1777 if (!OCS.count(CallI)) { 1778 while (optimizeEdges(C, CallI->path, OCS)) { 1779 } 1780 OCS.insert(CallI); 1781 } 1782 ++I; 1783 continue; 1784 } 1785 1786 // Pattern match the current piece and its successor. 1787 auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get()); 1788 1789 if (!PieceI) { 1790 ++I; 1791 continue; 1792 } 1793 1794 const Stmt *s1Start = PieceI->getStartLocation().getStmtOrNull(); 1795 const Stmt *s1End = PieceI->getEndLocation().getStmtOrNull(); 1796 const Stmt *level1 = getStmtParent(s1Start, PM); 1797 const Stmt *level2 = getStmtParent(s1End, PM); 1798 1799 PathPieces::iterator NextI = I; ++NextI; 1800 if (NextI == E) 1801 break; 1802 1803 const auto *PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get()); 1804 1805 if (!PieceNextI) { 1806 ++I; 1807 continue; 1808 } 1809 1810 const Stmt *s2Start = PieceNextI->getStartLocation().getStmtOrNull(); 1811 const Stmt *s2End = PieceNextI->getEndLocation().getStmtOrNull(); 1812 const Stmt *level3 = getStmtParent(s2Start, PM); 1813 const Stmt *level4 = getStmtParent(s2End, PM); 1814 1815 // Rule I. 1816 // 1817 // If we have two consecutive control edges whose end/begin locations 1818 // are at the same level (e.g. statements or top-level expressions within 1819 // a compound statement, or siblings share a single ancestor expression), 1820 // then merge them if they have no interesting intermediate event. 1821 // 1822 // For example: 1823 // 1824 // (1.1 -> 1.2) -> (1.2 -> 1.3) becomes (1.1 -> 1.3) because the common 1825 // parent is '1'. Here 'x.y.z' represents the hierarchy of statements. 1826 // 1827 // NOTE: this will be limited later in cases where we add barriers 1828 // to prevent this optimization. 1829 if (level1 && level1 == level2 && level1 == level3 && level1 == level4) { 1830 PieceI->setEndLocation(PieceNextI->getEndLocation()); 1831 path.erase(NextI); 1832 hasChanges = true; 1833 continue; 1834 } 1835 1836 // Rule II. 1837 // 1838 // Eliminate edges between subexpressions and parent expressions 1839 // when the subexpression is consumed. 1840 // 1841 // NOTE: this will be limited later in cases where we add barriers 1842 // to prevent this optimization. 1843 if (s1End && s1End == s2Start && level2) { 1844 bool removeEdge = false; 1845 // Remove edges into the increment or initialization of a 1846 // loop that have no interleaving event. This means that 1847 // they aren't interesting. 1848 if (isIncrementOrInitInForLoop(s1End, level2)) 1849 removeEdge = true; 1850 // Next only consider edges that are not anchored on 1851 // the condition of a terminator. This are intermediate edges 1852 // that we might want to trim. 1853 else if (!isConditionForTerminator(level2, s1End)) { 1854 // Trim edges on expressions that are consumed by 1855 // the parent expression. 1856 if (isa<Expr>(s1End) && PM.isConsumedExpr(cast<Expr>(s1End))) { 1857 removeEdge = true; 1858 } 1859 // Trim edges where a lexical containment doesn't exist. 1860 // For example: 1861 // 1862 // X -> Y -> Z 1863 // 1864 // If 'Z' lexically contains Y (it is an ancestor) and 1865 // 'X' does not lexically contain Y (it is a descendant OR 1866 // it has no lexical relationship at all) then trim. 1867 // 1868 // This can eliminate edges where we dive into a subexpression 1869 // and then pop back out, etc. 1870 else if (s1Start && s2End && 1871 lexicalContains(PM, s2Start, s2End) && 1872 !lexicalContains(PM, s1End, s1Start)) { 1873 removeEdge = true; 1874 } 1875 // Trim edges from a subexpression back to the top level if the 1876 // subexpression is on a different line. 1877 // 1878 // A.1 -> A -> B 1879 // becomes 1880 // A.1 -> B 1881 // 1882 // These edges just look ugly and don't usually add anything. 1883 else if (s1Start && s2End && 1884 lexicalContains(PM, s1Start, s1End)) { 1885 SourceRange EdgeRange(PieceI->getEndLocation().asLocation(), 1886 PieceI->getStartLocation().asLocation()); 1887 if (!getLengthOnSingleLine(SM, EdgeRange)) 1888 removeEdge = true; 1889 } 1890 } 1891 1892 if (removeEdge) { 1893 PieceI->setEndLocation(PieceNextI->getEndLocation()); 1894 path.erase(NextI); 1895 hasChanges = true; 1896 continue; 1897 } 1898 } 1899 1900 // Optimize edges for ObjC fast-enumeration loops. 1901 // 1902 // (X -> collection) -> (collection -> element) 1903 // 1904 // becomes: 1905 // 1906 // (X -> element) 1907 if (s1End == s2Start) { 1908 const auto *FS = dyn_cast_or_null<ObjCForCollectionStmt>(level3); 1909 if (FS && FS->getCollection()->IgnoreParens() == s2Start && 1910 s2End == FS->getElement()) { 1911 PieceI->setEndLocation(PieceNextI->getEndLocation()); 1912 path.erase(NextI); 1913 hasChanges = true; 1914 continue; 1915 } 1916 } 1917 1918 // No changes at this index? Move to the next one. 1919 ++I; 1920 } 1921 1922 if (!hasChanges) { 1923 // Adjust edges into subexpressions to make them more uniform 1924 // and aesthetically pleasing. 1925 addContextEdges(path, LC); 1926 // Remove "cyclical" edges that include one or more context edges. 1927 removeContextCycles(path, SM); 1928 // Hoist edges originating from branch conditions to branches 1929 // for simple branches. 1930 simplifySimpleBranches(path); 1931 // Remove any puny edges left over after primary optimization pass. 1932 removePunyEdges(path, SM, PM); 1933 // Remove identical events. 1934 removeIdenticalEvents(path); 1935 } 1936 1937 return hasChanges; 1938 } 1939 1940 /// Drop the very first edge in a path, which should be a function entry edge. 1941 /// 1942 /// If the first edge is not a function entry edge (say, because the first 1943 /// statement had an invalid source location), this function does nothing. 1944 // FIXME: We should just generate invalid edges anyway and have the optimizer 1945 // deal with them. 1946 static void dropFunctionEntryEdge(const PathDiagnosticConstruct &C, 1947 PathPieces &Path) { 1948 const auto *FirstEdge = 1949 dyn_cast<PathDiagnosticControlFlowPiece>(Path.front().get()); 1950 if (!FirstEdge) 1951 return; 1952 1953 const Decl *D = C.getLocationContextFor(&Path)->getDecl(); 1954 PathDiagnosticLocation EntryLoc = 1955 PathDiagnosticLocation::createBegin(D, C.getSourceManager()); 1956 if (FirstEdge->getStartLocation() != EntryLoc) 1957 return; 1958 1959 Path.pop_front(); 1960 } 1961 1962 /// Populate executes lines with lines containing at least one diagnostics. 1963 static void updateExecutedLinesWithDiagnosticPieces(PathDiagnostic &PD) { 1964 1965 PathPieces path = PD.path.flatten(/*ShouldFlattenMacros=*/true); 1966 FilesToLineNumsMap &ExecutedLines = PD.getExecutedLines(); 1967 1968 for (const auto &P : path) { 1969 FullSourceLoc Loc = P->getLocation().asLocation().getExpansionLoc(); 1970 FileID FID = Loc.getFileID(); 1971 unsigned LineNo = Loc.getLineNumber(); 1972 assert(FID.isValid()); 1973 ExecutedLines[FID].insert(LineNo); 1974 } 1975 } 1976 1977 PathDiagnosticConstruct::PathDiagnosticConstruct( 1978 const PathDiagnosticConsumer *PDC, const ExplodedNode *ErrorNode, 1979 const PathSensitiveBugReport *R) 1980 : Consumer(PDC), CurrentNode(ErrorNode), 1981 SM(CurrentNode->getCodeDecl().getASTContext().getSourceManager()), 1982 PD(generateEmptyDiagnosticForReport(R, getSourceManager())) { 1983 LCM[&PD->getActivePath()] = ErrorNode->getLocationContext(); 1984 } 1985 1986 PathDiagnosticBuilder::PathDiagnosticBuilder( 1987 BugReporterContext BRC, std::unique_ptr<ExplodedGraph> BugPath, 1988 PathSensitiveBugReport *r, const ExplodedNode *ErrorNode, 1989 std::unique_ptr<VisitorsDiagnosticsTy> VisitorsDiagnostics) 1990 : BugReporterContext(BRC), BugPath(std::move(BugPath)), R(r), 1991 ErrorNode(ErrorNode), 1992 VisitorsDiagnostics(std::move(VisitorsDiagnostics)) {} 1993 1994 std::unique_ptr<PathDiagnostic> 1995 PathDiagnosticBuilder::generate(const PathDiagnosticConsumer *PDC) const { 1996 PathDiagnosticConstruct Construct(PDC, ErrorNode, R); 1997 1998 const SourceManager &SM = getSourceManager(); 1999 const AnalyzerOptions &Opts = getAnalyzerOptions(); 2000 2001 if (!PDC->shouldGenerateDiagnostics()) 2002 return generateEmptyDiagnosticForReport(R, getSourceManager()); 2003 2004 // Construct the final (warning) event for the bug report. 2005 auto EndNotes = VisitorsDiagnostics->find(ErrorNode); 2006 PathDiagnosticPieceRef LastPiece; 2007 if (EndNotes != VisitorsDiagnostics->end()) { 2008 assert(!EndNotes->second.empty()); 2009 LastPiece = EndNotes->second[0]; 2010 } else { 2011 LastPiece = BugReporterVisitor::getDefaultEndPath(*this, ErrorNode, 2012 *getBugReport()); 2013 } 2014 Construct.PD->setEndOfPath(LastPiece); 2015 2016 PathDiagnosticLocation PrevLoc = Construct.PD->getLocation(); 2017 // From the error node to the root, ascend the bug path and construct the bug 2018 // report. 2019 while (Construct.ascendToPrevNode()) { 2020 generatePathDiagnosticsForNode(Construct, PrevLoc); 2021 2022 auto VisitorNotes = VisitorsDiagnostics->find(Construct.getCurrentNode()); 2023 if (VisitorNotes == VisitorsDiagnostics->end()) 2024 continue; 2025 2026 // This is a workaround due to inability to put shared PathDiagnosticPiece 2027 // into a FoldingSet. 2028 std::set<llvm::FoldingSetNodeID> DeduplicationSet; 2029 2030 // Add pieces from custom visitors. 2031 for (const PathDiagnosticPieceRef &Note : VisitorNotes->second) { 2032 llvm::FoldingSetNodeID ID; 2033 Note->Profile(ID); 2034 if (!DeduplicationSet.insert(ID).second) 2035 continue; 2036 2037 if (PDC->shouldAddPathEdges()) 2038 addEdgeToPath(Construct.getActivePath(), PrevLoc, Note->getLocation()); 2039 updateStackPiecesWithMessage(Note, Construct.CallStack); 2040 Construct.getActivePath().push_front(Note); 2041 } 2042 } 2043 2044 if (PDC->shouldAddPathEdges()) { 2045 // Add an edge to the start of the function. 2046 // We'll prune it out later, but it helps make diagnostics more uniform. 2047 const StackFrameContext *CalleeLC = 2048 Construct.getLocationContextForActivePath()->getStackFrame(); 2049 const Decl *D = CalleeLC->getDecl(); 2050 addEdgeToPath(Construct.getActivePath(), PrevLoc, 2051 PathDiagnosticLocation::createBegin(D, SM)); 2052 } 2053 2054 2055 // Finally, prune the diagnostic path of uninteresting stuff. 2056 if (!Construct.PD->path.empty()) { 2057 if (R->shouldPrunePath() && Opts.ShouldPrunePaths) { 2058 bool stillHasNotes = 2059 removeUnneededCalls(Construct, Construct.getMutablePieces(), R); 2060 assert(stillHasNotes); 2061 (void)stillHasNotes; 2062 } 2063 2064 // Remove pop-up notes if needed. 2065 if (!Opts.ShouldAddPopUpNotes) 2066 removePopUpNotes(Construct.getMutablePieces()); 2067 2068 // Redirect all call pieces to have valid locations. 2069 adjustCallLocations(Construct.getMutablePieces()); 2070 removePiecesWithInvalidLocations(Construct.getMutablePieces()); 2071 2072 if (PDC->shouldAddPathEdges()) { 2073 2074 // Reduce the number of edges from a very conservative set 2075 // to an aesthetically pleasing subset that conveys the 2076 // necessary information. 2077 OptimizedCallsSet OCS; 2078 while (optimizeEdges(Construct, Construct.getMutablePieces(), OCS)) { 2079 } 2080 2081 // Drop the very first function-entry edge. It's not really necessary 2082 // for top-level functions. 2083 dropFunctionEntryEdge(Construct, Construct.getMutablePieces()); 2084 } 2085 2086 // Remove messages that are basically the same, and edges that may not 2087 // make sense. 2088 // We have to do this after edge optimization in the Extensive mode. 2089 removeRedundantMsgs(Construct.getMutablePieces()); 2090 removeEdgesToDefaultInitializers(Construct.getMutablePieces()); 2091 } 2092 2093 if (Opts.ShouldDisplayMacroExpansions) 2094 CompactMacroExpandedPieces(Construct.getMutablePieces(), SM); 2095 2096 return std::move(Construct.PD); 2097 } 2098 2099 //===----------------------------------------------------------------------===// 2100 // Methods for BugType and subclasses. 2101 //===----------------------------------------------------------------------===// 2102 2103 void BugType::anchor() {} 2104 2105 void BuiltinBug::anchor() {} 2106 2107 //===----------------------------------------------------------------------===// 2108 // Methods for BugReport and subclasses. 2109 //===----------------------------------------------------------------------===// 2110 2111 LLVM_ATTRIBUTE_USED static bool 2112 isDependency(const CheckerRegistryData &Registry, StringRef CheckerName) { 2113 for (const std::pair<StringRef, StringRef> &Pair : Registry.Dependencies) { 2114 if (Pair.second == CheckerName) 2115 return true; 2116 } 2117 return false; 2118 } 2119 2120 LLVM_ATTRIBUTE_USED static bool isHidden(const CheckerRegistryData &Registry, 2121 StringRef CheckerName) { 2122 for (const CheckerInfo &Checker : Registry.Checkers) { 2123 if (Checker.FullName == CheckerName) 2124 return Checker.IsHidden; 2125 } 2126 llvm_unreachable( 2127 "Checker name not found in CheckerRegistry -- did you retrieve it " 2128 "correctly from CheckerManager::getCurrentCheckerName?"); 2129 } 2130 2131 PathSensitiveBugReport::PathSensitiveBugReport( 2132 const BugType &bt, StringRef shortDesc, StringRef desc, 2133 const ExplodedNode *errorNode, PathDiagnosticLocation LocationToUnique, 2134 const Decl *DeclToUnique) 2135 : BugReport(Kind::PathSensitive, bt, shortDesc, desc), ErrorNode(errorNode), 2136 ErrorNodeRange(getStmt() ? getStmt()->getSourceRange() : SourceRange()), 2137 UniqueingLocation(LocationToUnique), UniqueingDecl(DeclToUnique) { 2138 assert(!isDependency(ErrorNode->getState() 2139 ->getAnalysisManager() 2140 .getCheckerManager() 2141 ->getCheckerRegistryData(), 2142 bt.getCheckerName()) && 2143 "Some checkers depend on this one! We don't allow dependency " 2144 "checkers to emit warnings, because checkers should depend on " 2145 "*modeling*, not *diagnostics*."); 2146 2147 assert( 2148 (bt.getCheckerName().startswith("debug") || 2149 !isHidden(ErrorNode->getState() 2150 ->getAnalysisManager() 2151 .getCheckerManager() 2152 ->getCheckerRegistryData(), 2153 bt.getCheckerName())) && 2154 "Hidden checkers musn't emit diagnostics as they are by definition " 2155 "non-user facing!"); 2156 } 2157 2158 void PathSensitiveBugReport::addVisitor( 2159 std::unique_ptr<BugReporterVisitor> visitor) { 2160 if (!visitor) 2161 return; 2162 2163 llvm::FoldingSetNodeID ID; 2164 visitor->Profile(ID); 2165 2166 void *InsertPos = nullptr; 2167 if (CallbacksSet.FindNodeOrInsertPos(ID, InsertPos)) { 2168 return; 2169 } 2170 2171 Callbacks.push_back(std::move(visitor)); 2172 } 2173 2174 void PathSensitiveBugReport::clearVisitors() { 2175 Callbacks.clear(); 2176 } 2177 2178 const Decl *PathSensitiveBugReport::getDeclWithIssue() const { 2179 const ExplodedNode *N = getErrorNode(); 2180 if (!N) 2181 return nullptr; 2182 2183 const LocationContext *LC = N->getLocationContext(); 2184 return LC->getStackFrame()->getDecl(); 2185 } 2186 2187 void BasicBugReport::Profile(llvm::FoldingSetNodeID& hash) const { 2188 hash.AddInteger(static_cast<int>(getKind())); 2189 hash.AddPointer(&BT); 2190 hash.AddString(Description); 2191 assert(Location.isValid()); 2192 Location.Profile(hash); 2193 2194 for (SourceRange range : Ranges) { 2195 if (!range.isValid()) 2196 continue; 2197 hash.Add(range.getBegin()); 2198 hash.Add(range.getEnd()); 2199 } 2200 } 2201 2202 void PathSensitiveBugReport::Profile(llvm::FoldingSetNodeID &hash) const { 2203 hash.AddInteger(static_cast<int>(getKind())); 2204 hash.AddPointer(&BT); 2205 hash.AddString(Description); 2206 PathDiagnosticLocation UL = getUniqueingLocation(); 2207 if (UL.isValid()) { 2208 UL.Profile(hash); 2209 } else { 2210 // TODO: The statement may be null if the report was emitted before any 2211 // statements were executed. In particular, some checkers by design 2212 // occasionally emit their reports in empty functions (that have no 2213 // statements in their body). Do we profile correctly in this case? 2214 hash.AddPointer(ErrorNode->getCurrentOrPreviousStmtForDiagnostics()); 2215 } 2216 2217 for (SourceRange range : Ranges) { 2218 if (!range.isValid()) 2219 continue; 2220 hash.Add(range.getBegin()); 2221 hash.Add(range.getEnd()); 2222 } 2223 } 2224 2225 template <class T> 2226 static void insertToInterestingnessMap( 2227 llvm::DenseMap<T, bugreporter::TrackingKind> &InterestingnessMap, T Val, 2228 bugreporter::TrackingKind TKind) { 2229 auto Result = InterestingnessMap.insert({Val, TKind}); 2230 2231 if (Result.second) 2232 return; 2233 2234 // Even if this symbol/region was already marked as interesting as a 2235 // condition, if we later mark it as interesting again but with 2236 // thorough tracking, overwrite it. Entities marked with thorough 2237 // interestiness are the most important (or most interesting, if you will), 2238 // and we wouldn't like to downplay their importance. 2239 2240 switch (TKind) { 2241 case bugreporter::TrackingKind::Thorough: 2242 Result.first->getSecond() = bugreporter::TrackingKind::Thorough; 2243 return; 2244 case bugreporter::TrackingKind::Condition: 2245 return; 2246 } 2247 2248 llvm_unreachable( 2249 "BugReport::markInteresting currently can only handle 2 different " 2250 "tracking kinds! Please define what tracking kind should this entitiy" 2251 "have, if it was already marked as interesting with a different kind!"); 2252 } 2253 2254 void PathSensitiveBugReport::markInteresting(SymbolRef sym, 2255 bugreporter::TrackingKind TKind) { 2256 if (!sym) 2257 return; 2258 2259 insertToInterestingnessMap(InterestingSymbols, sym, TKind); 2260 2261 // FIXME: No tests exist for this code and it is questionable: 2262 // How to handle multiple metadata for the same region? 2263 if (const auto *meta = dyn_cast<SymbolMetadata>(sym)) 2264 markInteresting(meta->getRegion(), TKind); 2265 } 2266 2267 void PathSensitiveBugReport::markNotInteresting(SymbolRef sym) { 2268 if (!sym) 2269 return; 2270 InterestingSymbols.erase(sym); 2271 2272 // The metadata part of markInteresting is not reversed here. 2273 // Just making the same region not interesting is incorrect 2274 // in specific cases. 2275 if (const auto *meta = dyn_cast<SymbolMetadata>(sym)) 2276 markNotInteresting(meta->getRegion()); 2277 } 2278 2279 void PathSensitiveBugReport::markInteresting(const MemRegion *R, 2280 bugreporter::TrackingKind TKind) { 2281 if (!R) 2282 return; 2283 2284 R = R->getBaseRegion(); 2285 insertToInterestingnessMap(InterestingRegions, R, TKind); 2286 2287 if (const auto *SR = dyn_cast<SymbolicRegion>(R)) 2288 markInteresting(SR->getSymbol(), TKind); 2289 } 2290 2291 void PathSensitiveBugReport::markNotInteresting(const MemRegion *R) { 2292 if (!R) 2293 return; 2294 2295 R = R->getBaseRegion(); 2296 InterestingRegions.erase(R); 2297 2298 if (const auto *SR = dyn_cast<SymbolicRegion>(R)) 2299 markNotInteresting(SR->getSymbol()); 2300 } 2301 2302 void PathSensitiveBugReport::markInteresting(SVal V, 2303 bugreporter::TrackingKind TKind) { 2304 markInteresting(V.getAsRegion(), TKind); 2305 markInteresting(V.getAsSymbol(), TKind); 2306 } 2307 2308 void PathSensitiveBugReport::markInteresting(const LocationContext *LC) { 2309 if (!LC) 2310 return; 2311 InterestingLocationContexts.insert(LC); 2312 } 2313 2314 Optional<bugreporter::TrackingKind> 2315 PathSensitiveBugReport::getInterestingnessKind(SVal V) const { 2316 auto RKind = getInterestingnessKind(V.getAsRegion()); 2317 auto SKind = getInterestingnessKind(V.getAsSymbol()); 2318 if (!RKind) 2319 return SKind; 2320 if (!SKind) 2321 return RKind; 2322 2323 // If either is marked with throrough tracking, return that, we wouldn't like 2324 // to downplay a note's importance by 'only' mentioning it as a condition. 2325 switch(*RKind) { 2326 case bugreporter::TrackingKind::Thorough: 2327 return RKind; 2328 case bugreporter::TrackingKind::Condition: 2329 return SKind; 2330 } 2331 2332 llvm_unreachable( 2333 "BugReport::getInterestingnessKind currently can only handle 2 different " 2334 "tracking kinds! Please define what tracking kind should we return here " 2335 "when the kind of getAsRegion() and getAsSymbol() is different!"); 2336 return std::nullopt; 2337 } 2338 2339 Optional<bugreporter::TrackingKind> 2340 PathSensitiveBugReport::getInterestingnessKind(SymbolRef sym) const { 2341 if (!sym) 2342 return std::nullopt; 2343 // We don't currently consider metadata symbols to be interesting 2344 // even if we know their region is interesting. Is that correct behavior? 2345 auto It = InterestingSymbols.find(sym); 2346 if (It == InterestingSymbols.end()) 2347 return std::nullopt; 2348 return It->getSecond(); 2349 } 2350 2351 Optional<bugreporter::TrackingKind> 2352 PathSensitiveBugReport::getInterestingnessKind(const MemRegion *R) const { 2353 if (!R) 2354 return std::nullopt; 2355 2356 R = R->getBaseRegion(); 2357 auto It = InterestingRegions.find(R); 2358 if (It != InterestingRegions.end()) 2359 return It->getSecond(); 2360 2361 if (const auto *SR = dyn_cast<SymbolicRegion>(R)) 2362 return getInterestingnessKind(SR->getSymbol()); 2363 return std::nullopt; 2364 } 2365 2366 bool PathSensitiveBugReport::isInteresting(SVal V) const { 2367 return getInterestingnessKind(V).has_value(); 2368 } 2369 2370 bool PathSensitiveBugReport::isInteresting(SymbolRef sym) const { 2371 return getInterestingnessKind(sym).has_value(); 2372 } 2373 2374 bool PathSensitiveBugReport::isInteresting(const MemRegion *R) const { 2375 return getInterestingnessKind(R).has_value(); 2376 } 2377 2378 bool PathSensitiveBugReport::isInteresting(const LocationContext *LC) const { 2379 if (!LC) 2380 return false; 2381 return InterestingLocationContexts.count(LC); 2382 } 2383 2384 const Stmt *PathSensitiveBugReport::getStmt() const { 2385 if (!ErrorNode) 2386 return nullptr; 2387 2388 ProgramPoint ProgP = ErrorNode->getLocation(); 2389 const Stmt *S = nullptr; 2390 2391 if (Optional<BlockEntrance> BE = ProgP.getAs<BlockEntrance>()) { 2392 CFGBlock &Exit = ProgP.getLocationContext()->getCFG()->getExit(); 2393 if (BE->getBlock() == &Exit) 2394 S = ErrorNode->getPreviousStmtForDiagnostics(); 2395 } 2396 if (!S) 2397 S = ErrorNode->getStmtForDiagnostics(); 2398 2399 return S; 2400 } 2401 2402 ArrayRef<SourceRange> 2403 PathSensitiveBugReport::getRanges() const { 2404 // If no custom ranges, add the range of the statement corresponding to 2405 // the error node. 2406 if (Ranges.empty() && isa_and_nonnull<Expr>(getStmt())) 2407 return ErrorNodeRange; 2408 2409 return Ranges; 2410 } 2411 2412 PathDiagnosticLocation 2413 PathSensitiveBugReport::getLocation() const { 2414 assert(ErrorNode && "Cannot create a location with a null node."); 2415 const Stmt *S = ErrorNode->getStmtForDiagnostics(); 2416 ProgramPoint P = ErrorNode->getLocation(); 2417 const LocationContext *LC = P.getLocationContext(); 2418 SourceManager &SM = 2419 ErrorNode->getState()->getStateManager().getContext().getSourceManager(); 2420 2421 if (!S) { 2422 // If this is an implicit call, return the implicit call point location. 2423 if (Optional<PreImplicitCall> PIE = P.getAs<PreImplicitCall>()) 2424 return PathDiagnosticLocation(PIE->getLocation(), SM); 2425 if (auto FE = P.getAs<FunctionExitPoint>()) { 2426 if (const ReturnStmt *RS = FE->getStmt()) 2427 return PathDiagnosticLocation::createBegin(RS, SM, LC); 2428 } 2429 S = ErrorNode->getNextStmtForDiagnostics(); 2430 } 2431 2432 if (S) { 2433 // For member expressions, return the location of the '.' or '->'. 2434 if (const auto *ME = dyn_cast<MemberExpr>(S)) 2435 return PathDiagnosticLocation::createMemberLoc(ME, SM); 2436 2437 // For binary operators, return the location of the operator. 2438 if (const auto *B = dyn_cast<BinaryOperator>(S)) 2439 return PathDiagnosticLocation::createOperatorLoc(B, SM); 2440 2441 if (P.getAs<PostStmtPurgeDeadSymbols>()) 2442 return PathDiagnosticLocation::createEnd(S, SM, LC); 2443 2444 if (S->getBeginLoc().isValid()) 2445 return PathDiagnosticLocation(S, SM, LC); 2446 2447 return PathDiagnosticLocation( 2448 PathDiagnosticLocation::getValidSourceLocation(S, LC), SM); 2449 } 2450 2451 return PathDiagnosticLocation::createDeclEnd(ErrorNode->getLocationContext(), 2452 SM); 2453 } 2454 2455 //===----------------------------------------------------------------------===// 2456 // Methods for BugReporter and subclasses. 2457 //===----------------------------------------------------------------------===// 2458 2459 const ExplodedGraph &PathSensitiveBugReporter::getGraph() const { 2460 return Eng.getGraph(); 2461 } 2462 2463 ProgramStateManager &PathSensitiveBugReporter::getStateManager() const { 2464 return Eng.getStateManager(); 2465 } 2466 2467 BugReporter::BugReporter(BugReporterData &d) : D(d) {} 2468 BugReporter::~BugReporter() { 2469 // Make sure reports are flushed. 2470 assert(StrBugTypes.empty() && 2471 "Destroying BugReporter before diagnostics are emitted!"); 2472 2473 // Free the bug reports we are tracking. 2474 for (const auto I : EQClassesVector) 2475 delete I; 2476 } 2477 2478 void BugReporter::FlushReports() { 2479 // We need to flush reports in deterministic order to ensure the order 2480 // of the reports is consistent between runs. 2481 for (const auto EQ : EQClassesVector) 2482 FlushReport(*EQ); 2483 2484 // BugReporter owns and deletes only BugTypes created implicitly through 2485 // EmitBasicReport. 2486 // FIXME: There are leaks from checkers that assume that the BugTypes they 2487 // create will be destroyed by the BugReporter. 2488 StrBugTypes.clear(); 2489 } 2490 2491 //===----------------------------------------------------------------------===// 2492 // PathDiagnostics generation. 2493 //===----------------------------------------------------------------------===// 2494 2495 namespace { 2496 2497 /// A wrapper around an ExplodedGraph that contains a single path from the root 2498 /// to the error node. 2499 class BugPathInfo { 2500 public: 2501 std::unique_ptr<ExplodedGraph> BugPath; 2502 PathSensitiveBugReport *Report; 2503 const ExplodedNode *ErrorNode; 2504 }; 2505 2506 /// A wrapper around an ExplodedGraph whose leafs are all error nodes. Can 2507 /// conveniently retrieve bug paths from a single error node to the root. 2508 class BugPathGetter { 2509 std::unique_ptr<ExplodedGraph> TrimmedGraph; 2510 2511 using PriorityMapTy = llvm::DenseMap<const ExplodedNode *, unsigned>; 2512 2513 /// Assign each node with its distance from the root. 2514 PriorityMapTy PriorityMap; 2515 2516 /// Since the getErrorNode() or BugReport refers to the original ExplodedGraph, 2517 /// we need to pair it to the error node of the constructed trimmed graph. 2518 using ReportNewNodePair = 2519 std::pair<PathSensitiveBugReport *, const ExplodedNode *>; 2520 SmallVector<ReportNewNodePair, 32> ReportNodes; 2521 2522 BugPathInfo CurrentBugPath; 2523 2524 /// A helper class for sorting ExplodedNodes by priority. 2525 template <bool Descending> 2526 class PriorityCompare { 2527 const PriorityMapTy &PriorityMap; 2528 2529 public: 2530 PriorityCompare(const PriorityMapTy &M) : PriorityMap(M) {} 2531 2532 bool operator()(const ExplodedNode *LHS, const ExplodedNode *RHS) const { 2533 PriorityMapTy::const_iterator LI = PriorityMap.find(LHS); 2534 PriorityMapTy::const_iterator RI = PriorityMap.find(RHS); 2535 PriorityMapTy::const_iterator E = PriorityMap.end(); 2536 2537 if (LI == E) 2538 return Descending; 2539 if (RI == E) 2540 return !Descending; 2541 2542 return Descending ? LI->second > RI->second 2543 : LI->second < RI->second; 2544 } 2545 2546 bool operator()(const ReportNewNodePair &LHS, 2547 const ReportNewNodePair &RHS) const { 2548 return (*this)(LHS.second, RHS.second); 2549 } 2550 }; 2551 2552 public: 2553 BugPathGetter(const ExplodedGraph *OriginalGraph, 2554 ArrayRef<PathSensitiveBugReport *> &bugReports); 2555 2556 BugPathInfo *getNextBugPath(); 2557 }; 2558 2559 } // namespace 2560 2561 BugPathGetter::BugPathGetter(const ExplodedGraph *OriginalGraph, 2562 ArrayRef<PathSensitiveBugReport *> &bugReports) { 2563 SmallVector<const ExplodedNode *, 32> Nodes; 2564 for (const auto I : bugReports) { 2565 assert(I->isValid() && 2566 "We only allow BugReporterVisitors and BugReporter itself to " 2567 "invalidate reports!"); 2568 Nodes.emplace_back(I->getErrorNode()); 2569 } 2570 2571 // The trimmed graph is created in the body of the constructor to ensure 2572 // that the DenseMaps have been initialized already. 2573 InterExplodedGraphMap ForwardMap; 2574 TrimmedGraph = OriginalGraph->trim(Nodes, &ForwardMap); 2575 2576 // Find the (first) error node in the trimmed graph. We just need to consult 2577 // the node map which maps from nodes in the original graph to nodes 2578 // in the new graph. 2579 llvm::SmallPtrSet<const ExplodedNode *, 32> RemainingNodes; 2580 2581 for (PathSensitiveBugReport *Report : bugReports) { 2582 const ExplodedNode *NewNode = ForwardMap.lookup(Report->getErrorNode()); 2583 assert(NewNode && 2584 "Failed to construct a trimmed graph that contains this error " 2585 "node!"); 2586 ReportNodes.emplace_back(Report, NewNode); 2587 RemainingNodes.insert(NewNode); 2588 } 2589 2590 assert(!RemainingNodes.empty() && "No error node found in the trimmed graph"); 2591 2592 // Perform a forward BFS to find all the shortest paths. 2593 std::queue<const ExplodedNode *> WS; 2594 2595 assert(TrimmedGraph->num_roots() == 1); 2596 WS.push(*TrimmedGraph->roots_begin()); 2597 unsigned Priority = 0; 2598 2599 while (!WS.empty()) { 2600 const ExplodedNode *Node = WS.front(); 2601 WS.pop(); 2602 2603 PriorityMapTy::iterator PriorityEntry; 2604 bool IsNew; 2605 std::tie(PriorityEntry, IsNew) = PriorityMap.insert({Node, Priority}); 2606 ++Priority; 2607 2608 if (!IsNew) { 2609 assert(PriorityEntry->second <= Priority); 2610 continue; 2611 } 2612 2613 if (RemainingNodes.erase(Node)) 2614 if (RemainingNodes.empty()) 2615 break; 2616 2617 for (const ExplodedNode *Succ : Node->succs()) 2618 WS.push(Succ); 2619 } 2620 2621 // Sort the error paths from longest to shortest. 2622 llvm::sort(ReportNodes, PriorityCompare<true>(PriorityMap)); 2623 } 2624 2625 BugPathInfo *BugPathGetter::getNextBugPath() { 2626 if (ReportNodes.empty()) 2627 return nullptr; 2628 2629 const ExplodedNode *OrigN; 2630 std::tie(CurrentBugPath.Report, OrigN) = ReportNodes.pop_back_val(); 2631 assert(PriorityMap.find(OrigN) != PriorityMap.end() && 2632 "error node not accessible from root"); 2633 2634 // Create a new graph with a single path. This is the graph that will be 2635 // returned to the caller. 2636 auto GNew = std::make_unique<ExplodedGraph>(); 2637 2638 // Now walk from the error node up the BFS path, always taking the 2639 // predeccessor with the lowest number. 2640 ExplodedNode *Succ = nullptr; 2641 while (true) { 2642 // Create the equivalent node in the new graph with the same state 2643 // and location. 2644 ExplodedNode *NewN = GNew->createUncachedNode( 2645 OrigN->getLocation(), OrigN->getState(), 2646 OrigN->getID(), OrigN->isSink()); 2647 2648 // Link up the new node with the previous node. 2649 if (Succ) 2650 Succ->addPredecessor(NewN, *GNew); 2651 else 2652 CurrentBugPath.ErrorNode = NewN; 2653 2654 Succ = NewN; 2655 2656 // Are we at the final node? 2657 if (OrigN->pred_empty()) { 2658 GNew->addRoot(NewN); 2659 break; 2660 } 2661 2662 // Find the next predeccessor node. We choose the node that is marked 2663 // with the lowest BFS number. 2664 OrigN = *std::min_element(OrigN->pred_begin(), OrigN->pred_end(), 2665 PriorityCompare<false>(PriorityMap)); 2666 } 2667 2668 CurrentBugPath.BugPath = std::move(GNew); 2669 2670 return &CurrentBugPath; 2671 } 2672 2673 /// CompactMacroExpandedPieces - This function postprocesses a PathDiagnostic 2674 /// object and collapses PathDiagosticPieces that are expanded by macros. 2675 static void CompactMacroExpandedPieces(PathPieces &path, 2676 const SourceManager& SM) { 2677 using MacroStackTy = std::vector< 2678 std::pair<std::shared_ptr<PathDiagnosticMacroPiece>, SourceLocation>>; 2679 2680 using PiecesTy = std::vector<PathDiagnosticPieceRef>; 2681 2682 MacroStackTy MacroStack; 2683 PiecesTy Pieces; 2684 2685 for (PathPieces::const_iterator I = path.begin(), E = path.end(); 2686 I != E; ++I) { 2687 const auto &piece = *I; 2688 2689 // Recursively compact calls. 2690 if (auto *call = dyn_cast<PathDiagnosticCallPiece>(&*piece)) { 2691 CompactMacroExpandedPieces(call->path, SM); 2692 } 2693 2694 // Get the location of the PathDiagnosticPiece. 2695 const FullSourceLoc Loc = piece->getLocation().asLocation(); 2696 2697 // Determine the instantiation location, which is the location we group 2698 // related PathDiagnosticPieces. 2699 SourceLocation InstantiationLoc = Loc.isMacroID() ? 2700 SM.getExpansionLoc(Loc) : 2701 SourceLocation(); 2702 2703 if (Loc.isFileID()) { 2704 MacroStack.clear(); 2705 Pieces.push_back(piece); 2706 continue; 2707 } 2708 2709 assert(Loc.isMacroID()); 2710 2711 // Is the PathDiagnosticPiece within the same macro group? 2712 if (!MacroStack.empty() && InstantiationLoc == MacroStack.back().second) { 2713 MacroStack.back().first->subPieces.push_back(piece); 2714 continue; 2715 } 2716 2717 // We aren't in the same group. Are we descending into a new macro 2718 // or are part of an old one? 2719 std::shared_ptr<PathDiagnosticMacroPiece> MacroGroup; 2720 2721 SourceLocation ParentInstantiationLoc = InstantiationLoc.isMacroID() ? 2722 SM.getExpansionLoc(Loc) : 2723 SourceLocation(); 2724 2725 // Walk the entire macro stack. 2726 while (!MacroStack.empty()) { 2727 if (InstantiationLoc == MacroStack.back().second) { 2728 MacroGroup = MacroStack.back().first; 2729 break; 2730 } 2731 2732 if (ParentInstantiationLoc == MacroStack.back().second) { 2733 MacroGroup = MacroStack.back().first; 2734 break; 2735 } 2736 2737 MacroStack.pop_back(); 2738 } 2739 2740 if (!MacroGroup || ParentInstantiationLoc == MacroStack.back().second) { 2741 // Create a new macro group and add it to the stack. 2742 auto NewGroup = std::make_shared<PathDiagnosticMacroPiece>( 2743 PathDiagnosticLocation::createSingleLocation(piece->getLocation())); 2744 2745 if (MacroGroup) 2746 MacroGroup->subPieces.push_back(NewGroup); 2747 else { 2748 assert(InstantiationLoc.isFileID()); 2749 Pieces.push_back(NewGroup); 2750 } 2751 2752 MacroGroup = NewGroup; 2753 MacroStack.push_back(std::make_pair(MacroGroup, InstantiationLoc)); 2754 } 2755 2756 // Finally, add the PathDiagnosticPiece to the group. 2757 MacroGroup->subPieces.push_back(piece); 2758 } 2759 2760 // Now take the pieces and construct a new PathDiagnostic. 2761 path.clear(); 2762 2763 path.insert(path.end(), Pieces.begin(), Pieces.end()); 2764 } 2765 2766 /// Generate notes from all visitors. 2767 /// Notes associated with @c ErrorNode are generated using 2768 /// @c getEndPath, and the rest are generated with @c VisitNode. 2769 static std::unique_ptr<VisitorsDiagnosticsTy> 2770 generateVisitorsDiagnostics(PathSensitiveBugReport *R, 2771 const ExplodedNode *ErrorNode, 2772 BugReporterContext &BRC) { 2773 std::unique_ptr<VisitorsDiagnosticsTy> Notes = 2774 std::make_unique<VisitorsDiagnosticsTy>(); 2775 PathSensitiveBugReport::VisitorList visitors; 2776 2777 // Run visitors on all nodes starting from the node *before* the last one. 2778 // The last node is reserved for notes generated with @c getEndPath. 2779 const ExplodedNode *NextNode = ErrorNode->getFirstPred(); 2780 while (NextNode) { 2781 2782 // At each iteration, move all visitors from report to visitor list. This is 2783 // important, because the Profile() functions of the visitors make sure that 2784 // a visitor isn't added multiple times for the same node, but it's fine 2785 // to add the a visitor with Profile() for different nodes (e.g. tracking 2786 // a region at different points of the symbolic execution). 2787 for (std::unique_ptr<BugReporterVisitor> &Visitor : R->visitors()) 2788 visitors.push_back(std::move(Visitor)); 2789 2790 R->clearVisitors(); 2791 2792 const ExplodedNode *Pred = NextNode->getFirstPred(); 2793 if (!Pred) { 2794 PathDiagnosticPieceRef LastPiece; 2795 for (auto &V : visitors) { 2796 V->finalizeVisitor(BRC, ErrorNode, *R); 2797 2798 if (auto Piece = V->getEndPath(BRC, ErrorNode, *R)) { 2799 assert(!LastPiece && 2800 "There can only be one final piece in a diagnostic."); 2801 assert(Piece->getKind() == PathDiagnosticPiece::Kind::Event && 2802 "The final piece must contain a message!"); 2803 LastPiece = std::move(Piece); 2804 (*Notes)[ErrorNode].push_back(LastPiece); 2805 } 2806 } 2807 break; 2808 } 2809 2810 for (auto &V : visitors) { 2811 auto P = V->VisitNode(NextNode, BRC, *R); 2812 if (P) 2813 (*Notes)[NextNode].push_back(std::move(P)); 2814 } 2815 2816 if (!R->isValid()) 2817 break; 2818 2819 NextNode = Pred; 2820 } 2821 2822 return Notes; 2823 } 2824 2825 Optional<PathDiagnosticBuilder> PathDiagnosticBuilder::findValidReport( 2826 ArrayRef<PathSensitiveBugReport *> &bugReports, 2827 PathSensitiveBugReporter &Reporter) { 2828 2829 BugPathGetter BugGraph(&Reporter.getGraph(), bugReports); 2830 2831 while (BugPathInfo *BugPath = BugGraph.getNextBugPath()) { 2832 // Find the BugReport with the original location. 2833 PathSensitiveBugReport *R = BugPath->Report; 2834 assert(R && "No original report found for sliced graph."); 2835 assert(R->isValid() && "Report selected by trimmed graph marked invalid."); 2836 const ExplodedNode *ErrorNode = BugPath->ErrorNode; 2837 2838 // Register refutation visitors first, if they mark the bug invalid no 2839 // further analysis is required 2840 R->addVisitor<LikelyFalsePositiveSuppressionBRVisitor>(); 2841 2842 // Register additional node visitors. 2843 R->addVisitor<NilReceiverBRVisitor>(); 2844 R->addVisitor<ConditionBRVisitor>(); 2845 R->addVisitor<TagVisitor>(); 2846 2847 BugReporterContext BRC(Reporter); 2848 2849 // Run all visitors on a given graph, once. 2850 std::unique_ptr<VisitorsDiagnosticsTy> visitorNotes = 2851 generateVisitorsDiagnostics(R, ErrorNode, BRC); 2852 2853 if (R->isValid()) { 2854 if (Reporter.getAnalyzerOptions().ShouldCrosscheckWithZ3) { 2855 // If crosscheck is enabled, remove all visitors, add the refutation 2856 // visitor and check again 2857 R->clearVisitors(); 2858 R->addVisitor<FalsePositiveRefutationBRVisitor>(); 2859 2860 // We don't overwrite the notes inserted by other visitors because the 2861 // refutation manager does not add any new note to the path 2862 generateVisitorsDiagnostics(R, BugPath->ErrorNode, BRC); 2863 } 2864 2865 // Check if the bug is still valid 2866 if (R->isValid()) 2867 return PathDiagnosticBuilder( 2868 std::move(BRC), std::move(BugPath->BugPath), BugPath->Report, 2869 BugPath->ErrorNode, std::move(visitorNotes)); 2870 } 2871 } 2872 2873 return {}; 2874 } 2875 2876 std::unique_ptr<DiagnosticForConsumerMapTy> 2877 PathSensitiveBugReporter::generatePathDiagnostics( 2878 ArrayRef<PathDiagnosticConsumer *> consumers, 2879 ArrayRef<PathSensitiveBugReport *> &bugReports) { 2880 assert(!bugReports.empty()); 2881 2882 auto Out = std::make_unique<DiagnosticForConsumerMapTy>(); 2883 2884 Optional<PathDiagnosticBuilder> PDB = 2885 PathDiagnosticBuilder::findValidReport(bugReports, *this); 2886 2887 if (PDB) { 2888 for (PathDiagnosticConsumer *PC : consumers) { 2889 if (std::unique_ptr<PathDiagnostic> PD = PDB->generate(PC)) { 2890 (*Out)[PC] = std::move(PD); 2891 } 2892 } 2893 } 2894 2895 return Out; 2896 } 2897 2898 void BugReporter::emitReport(std::unique_ptr<BugReport> R) { 2899 bool ValidSourceLoc = R->getLocation().isValid(); 2900 assert(ValidSourceLoc); 2901 // If we mess up in a release build, we'd still prefer to just drop the bug 2902 // instead of trying to go on. 2903 if (!ValidSourceLoc) 2904 return; 2905 2906 // Compute the bug report's hash to determine its equivalence class. 2907 llvm::FoldingSetNodeID ID; 2908 R->Profile(ID); 2909 2910 // Lookup the equivance class. If there isn't one, create it. 2911 void *InsertPos; 2912 BugReportEquivClass* EQ = EQClasses.FindNodeOrInsertPos(ID, InsertPos); 2913 2914 if (!EQ) { 2915 EQ = new BugReportEquivClass(std::move(R)); 2916 EQClasses.InsertNode(EQ, InsertPos); 2917 EQClassesVector.push_back(EQ); 2918 } else 2919 EQ->AddReport(std::move(R)); 2920 } 2921 2922 void PathSensitiveBugReporter::emitReport(std::unique_ptr<BugReport> R) { 2923 if (auto PR = dyn_cast<PathSensitiveBugReport>(R.get())) 2924 if (const ExplodedNode *E = PR->getErrorNode()) { 2925 // An error node must either be a sink or have a tag, otherwise 2926 // it could get reclaimed before the path diagnostic is created. 2927 assert((E->isSink() || E->getLocation().getTag()) && 2928 "Error node must either be a sink or have a tag"); 2929 2930 const AnalysisDeclContext *DeclCtx = 2931 E->getLocationContext()->getAnalysisDeclContext(); 2932 // The source of autosynthesized body can be handcrafted AST or a model 2933 // file. The locations from handcrafted ASTs have no valid source 2934 // locations and have to be discarded. Locations from model files should 2935 // be preserved for processing and reporting. 2936 if (DeclCtx->isBodyAutosynthesized() && 2937 !DeclCtx->isBodyAutosynthesizedFromModelFile()) 2938 return; 2939 } 2940 2941 BugReporter::emitReport(std::move(R)); 2942 } 2943 2944 //===----------------------------------------------------------------------===// 2945 // Emitting reports in equivalence classes. 2946 //===----------------------------------------------------------------------===// 2947 2948 namespace { 2949 2950 struct FRIEC_WLItem { 2951 const ExplodedNode *N; 2952 ExplodedNode::const_succ_iterator I, E; 2953 2954 FRIEC_WLItem(const ExplodedNode *n) 2955 : N(n), I(N->succ_begin()), E(N->succ_end()) {} 2956 }; 2957 2958 } // namespace 2959 2960 BugReport *PathSensitiveBugReporter::findReportInEquivalenceClass( 2961 BugReportEquivClass &EQ, SmallVectorImpl<BugReport *> &bugReports) { 2962 // If we don't need to suppress any of the nodes because they are 2963 // post-dominated by a sink, simply add all the nodes in the equivalence class 2964 // to 'Nodes'. Any of the reports will serve as a "representative" report. 2965 assert(EQ.getReports().size() > 0); 2966 const BugType& BT = EQ.getReports()[0]->getBugType(); 2967 if (!BT.isSuppressOnSink()) { 2968 BugReport *R = EQ.getReports()[0].get(); 2969 for (auto &J : EQ.getReports()) { 2970 if (auto *PR = dyn_cast<PathSensitiveBugReport>(J.get())) { 2971 R = PR; 2972 bugReports.push_back(PR); 2973 } 2974 } 2975 return R; 2976 } 2977 2978 // For bug reports that should be suppressed when all paths are post-dominated 2979 // by a sink node, iterate through the reports in the equivalence class 2980 // until we find one that isn't post-dominated (if one exists). We use a 2981 // DFS traversal of the ExplodedGraph to find a non-sink node. We could write 2982 // this as a recursive function, but we don't want to risk blowing out the 2983 // stack for very long paths. 2984 BugReport *exampleReport = nullptr; 2985 2986 for (const auto &I: EQ.getReports()) { 2987 auto *R = dyn_cast<PathSensitiveBugReport>(I.get()); 2988 if (!R) 2989 continue; 2990 2991 const ExplodedNode *errorNode = R->getErrorNode(); 2992 if (errorNode->isSink()) { 2993 llvm_unreachable( 2994 "BugType::isSuppressSink() should not be 'true' for sink end nodes"); 2995 } 2996 // No successors? By definition this nodes isn't post-dominated by a sink. 2997 if (errorNode->succ_empty()) { 2998 bugReports.push_back(R); 2999 if (!exampleReport) 3000 exampleReport = R; 3001 continue; 3002 } 3003 3004 // See if we are in a no-return CFG block. If so, treat this similarly 3005 // to being post-dominated by a sink. This works better when the analysis 3006 // is incomplete and we have never reached the no-return function call(s) 3007 // that we'd inevitably bump into on this path. 3008 if (const CFGBlock *ErrorB = errorNode->getCFGBlock()) 3009 if (ErrorB->isInevitablySinking()) 3010 continue; 3011 3012 // At this point we know that 'N' is not a sink and it has at least one 3013 // successor. Use a DFS worklist to find a non-sink end-of-path node. 3014 using WLItem = FRIEC_WLItem; 3015 using DFSWorkList = SmallVector<WLItem, 10>; 3016 3017 llvm::DenseMap<const ExplodedNode *, unsigned> Visited; 3018 3019 DFSWorkList WL; 3020 WL.push_back(errorNode); 3021 Visited[errorNode] = 1; 3022 3023 while (!WL.empty()) { 3024 WLItem &WI = WL.back(); 3025 assert(!WI.N->succ_empty()); 3026 3027 for (; WI.I != WI.E; ++WI.I) { 3028 const ExplodedNode *Succ = *WI.I; 3029 // End-of-path node? 3030 if (Succ->succ_empty()) { 3031 // If we found an end-of-path node that is not a sink. 3032 if (!Succ->isSink()) { 3033 bugReports.push_back(R); 3034 if (!exampleReport) 3035 exampleReport = R; 3036 WL.clear(); 3037 break; 3038 } 3039 // Found a sink? Continue on to the next successor. 3040 continue; 3041 } 3042 // Mark the successor as visited. If it hasn't been explored, 3043 // enqueue it to the DFS worklist. 3044 unsigned &mark = Visited[Succ]; 3045 if (!mark) { 3046 mark = 1; 3047 WL.push_back(Succ); 3048 break; 3049 } 3050 } 3051 3052 // The worklist may have been cleared at this point. First 3053 // check if it is empty before checking the last item. 3054 if (!WL.empty() && &WL.back() == &WI) 3055 WL.pop_back(); 3056 } 3057 } 3058 3059 // ExampleReport will be NULL if all the nodes in the equivalence class 3060 // were post-dominated by sinks. 3061 return exampleReport; 3062 } 3063 3064 void BugReporter::FlushReport(BugReportEquivClass& EQ) { 3065 SmallVector<BugReport*, 10> bugReports; 3066 BugReport *report = findReportInEquivalenceClass(EQ, bugReports); 3067 if (!report) 3068 return; 3069 3070 // See whether we need to silence the checker/package. 3071 for (const std::string &CheckerOrPackage : 3072 getAnalyzerOptions().SilencedCheckersAndPackages) { 3073 if (report->getBugType().getCheckerName().startswith( 3074 CheckerOrPackage)) 3075 return; 3076 } 3077 3078 ArrayRef<PathDiagnosticConsumer*> Consumers = getPathDiagnosticConsumers(); 3079 std::unique_ptr<DiagnosticForConsumerMapTy> Diagnostics = 3080 generateDiagnosticForConsumerMap(report, Consumers, bugReports); 3081 3082 for (auto &P : *Diagnostics) { 3083 PathDiagnosticConsumer *Consumer = P.first; 3084 std::unique_ptr<PathDiagnostic> &PD = P.second; 3085 3086 // If the path is empty, generate a single step path with the location 3087 // of the issue. 3088 if (PD->path.empty()) { 3089 PathDiagnosticLocation L = report->getLocation(); 3090 auto piece = std::make_unique<PathDiagnosticEventPiece>( 3091 L, report->getDescription()); 3092 for (SourceRange Range : report->getRanges()) 3093 piece->addRange(Range); 3094 PD->setEndOfPath(std::move(piece)); 3095 } 3096 3097 PathPieces &Pieces = PD->getMutablePieces(); 3098 if (getAnalyzerOptions().ShouldDisplayNotesAsEvents) { 3099 // For path diagnostic consumers that don't support extra notes, 3100 // we may optionally convert those to path notes. 3101 for (const auto &I : llvm::reverse(report->getNotes())) { 3102 PathDiagnosticNotePiece *Piece = I.get(); 3103 auto ConvertedPiece = std::make_shared<PathDiagnosticEventPiece>( 3104 Piece->getLocation(), Piece->getString()); 3105 for (const auto &R: Piece->getRanges()) 3106 ConvertedPiece->addRange(R); 3107 3108 Pieces.push_front(std::move(ConvertedPiece)); 3109 } 3110 } else { 3111 for (const auto &I : llvm::reverse(report->getNotes())) 3112 Pieces.push_front(I); 3113 } 3114 3115 for (const auto &I : report->getFixits()) 3116 Pieces.back()->addFixit(I); 3117 3118 updateExecutedLinesWithDiagnosticPieces(*PD); 3119 Consumer->HandlePathDiagnostic(std::move(PD)); 3120 } 3121 } 3122 3123 /// Insert all lines participating in the function signature \p Signature 3124 /// into \p ExecutedLines. 3125 static void populateExecutedLinesWithFunctionSignature( 3126 const Decl *Signature, const SourceManager &SM, 3127 FilesToLineNumsMap &ExecutedLines) { 3128 SourceRange SignatureSourceRange; 3129 const Stmt* Body = Signature->getBody(); 3130 if (const auto FD = dyn_cast<FunctionDecl>(Signature)) { 3131 SignatureSourceRange = FD->getSourceRange(); 3132 } else if (const auto OD = dyn_cast<ObjCMethodDecl>(Signature)) { 3133 SignatureSourceRange = OD->getSourceRange(); 3134 } else { 3135 return; 3136 } 3137 SourceLocation Start = SignatureSourceRange.getBegin(); 3138 SourceLocation End = Body ? Body->getSourceRange().getBegin() 3139 : SignatureSourceRange.getEnd(); 3140 if (!Start.isValid() || !End.isValid()) 3141 return; 3142 unsigned StartLine = SM.getExpansionLineNumber(Start); 3143 unsigned EndLine = SM.getExpansionLineNumber(End); 3144 3145 FileID FID = SM.getFileID(SM.getExpansionLoc(Start)); 3146 for (unsigned Line = StartLine; Line <= EndLine; Line++) 3147 ExecutedLines[FID].insert(Line); 3148 } 3149 3150 static void populateExecutedLinesWithStmt( 3151 const Stmt *S, const SourceManager &SM, 3152 FilesToLineNumsMap &ExecutedLines) { 3153 SourceLocation Loc = S->getSourceRange().getBegin(); 3154 if (!Loc.isValid()) 3155 return; 3156 SourceLocation ExpansionLoc = SM.getExpansionLoc(Loc); 3157 FileID FID = SM.getFileID(ExpansionLoc); 3158 unsigned LineNo = SM.getExpansionLineNumber(ExpansionLoc); 3159 ExecutedLines[FID].insert(LineNo); 3160 } 3161 3162 /// \return all executed lines including function signatures on the path 3163 /// starting from \p N. 3164 static std::unique_ptr<FilesToLineNumsMap> 3165 findExecutedLines(const SourceManager &SM, const ExplodedNode *N) { 3166 auto ExecutedLines = std::make_unique<FilesToLineNumsMap>(); 3167 3168 while (N) { 3169 if (N->getFirstPred() == nullptr) { 3170 // First node: show signature of the entrance point. 3171 const Decl *D = N->getLocationContext()->getDecl(); 3172 populateExecutedLinesWithFunctionSignature(D, SM, *ExecutedLines); 3173 } else if (auto CE = N->getLocationAs<CallEnter>()) { 3174 // Inlined function: show signature. 3175 const Decl* D = CE->getCalleeContext()->getDecl(); 3176 populateExecutedLinesWithFunctionSignature(D, SM, *ExecutedLines); 3177 } else if (const Stmt *S = N->getStmtForDiagnostics()) { 3178 populateExecutedLinesWithStmt(S, SM, *ExecutedLines); 3179 3180 // Show extra context for some parent kinds. 3181 const Stmt *P = N->getParentMap().getParent(S); 3182 3183 // The path exploration can die before the node with the associated 3184 // return statement is generated, but we do want to show the whole 3185 // return. 3186 if (const auto *RS = dyn_cast_or_null<ReturnStmt>(P)) { 3187 populateExecutedLinesWithStmt(RS, SM, *ExecutedLines); 3188 P = N->getParentMap().getParent(RS); 3189 } 3190 3191 if (isa_and_nonnull<SwitchCase, LabelStmt>(P)) 3192 populateExecutedLinesWithStmt(P, SM, *ExecutedLines); 3193 } 3194 3195 N = N->getFirstPred(); 3196 } 3197 return ExecutedLines; 3198 } 3199 3200 std::unique_ptr<DiagnosticForConsumerMapTy> 3201 BugReporter::generateDiagnosticForConsumerMap( 3202 BugReport *exampleReport, ArrayRef<PathDiagnosticConsumer *> consumers, 3203 ArrayRef<BugReport *> bugReports) { 3204 auto *basicReport = cast<BasicBugReport>(exampleReport); 3205 auto Out = std::make_unique<DiagnosticForConsumerMapTy>(); 3206 for (auto *Consumer : consumers) 3207 (*Out)[Consumer] = generateDiagnosticForBasicReport(basicReport); 3208 return Out; 3209 } 3210 3211 static PathDiagnosticCallPiece * 3212 getFirstStackedCallToHeaderFile(PathDiagnosticCallPiece *CP, 3213 const SourceManager &SMgr) { 3214 SourceLocation CallLoc = CP->callEnter.asLocation(); 3215 3216 // If the call is within a macro, don't do anything (for now). 3217 if (CallLoc.isMacroID()) 3218 return nullptr; 3219 3220 assert(AnalysisManager::isInCodeFile(CallLoc, SMgr) && 3221 "The call piece should not be in a header file."); 3222 3223 // Check if CP represents a path through a function outside of the main file. 3224 if (!AnalysisManager::isInCodeFile(CP->callEnterWithin.asLocation(), SMgr)) 3225 return CP; 3226 3227 const PathPieces &Path = CP->path; 3228 if (Path.empty()) 3229 return nullptr; 3230 3231 // Check if the last piece in the callee path is a call to a function outside 3232 // of the main file. 3233 if (auto *CPInner = dyn_cast<PathDiagnosticCallPiece>(Path.back().get())) 3234 return getFirstStackedCallToHeaderFile(CPInner, SMgr); 3235 3236 // Otherwise, the last piece is in the main file. 3237 return nullptr; 3238 } 3239 3240 static void resetDiagnosticLocationToMainFile(PathDiagnostic &PD) { 3241 if (PD.path.empty()) 3242 return; 3243 3244 PathDiagnosticPiece *LastP = PD.path.back().get(); 3245 assert(LastP); 3246 const SourceManager &SMgr = LastP->getLocation().getManager(); 3247 3248 // We only need to check if the report ends inside headers, if the last piece 3249 // is a call piece. 3250 if (auto *CP = dyn_cast<PathDiagnosticCallPiece>(LastP)) { 3251 CP = getFirstStackedCallToHeaderFile(CP, SMgr); 3252 if (CP) { 3253 // Mark the piece. 3254 CP->setAsLastInMainSourceFile(); 3255 3256 // Update the path diagnostic message. 3257 const auto *ND = dyn_cast<NamedDecl>(CP->getCallee()); 3258 if (ND) { 3259 SmallString<200> buf; 3260 llvm::raw_svector_ostream os(buf); 3261 os << " (within a call to '" << ND->getDeclName() << "')"; 3262 PD.appendToDesc(os.str()); 3263 } 3264 3265 // Reset the report containing declaration and location. 3266 PD.setDeclWithIssue(CP->getCaller()); 3267 PD.setLocation(CP->getLocation()); 3268 3269 return; 3270 } 3271 } 3272 } 3273 3274 3275 3276 std::unique_ptr<DiagnosticForConsumerMapTy> 3277 PathSensitiveBugReporter::generateDiagnosticForConsumerMap( 3278 BugReport *exampleReport, ArrayRef<PathDiagnosticConsumer *> consumers, 3279 ArrayRef<BugReport *> bugReports) { 3280 std::vector<BasicBugReport *> BasicBugReports; 3281 std::vector<PathSensitiveBugReport *> PathSensitiveBugReports; 3282 if (isa<BasicBugReport>(exampleReport)) 3283 return BugReporter::generateDiagnosticForConsumerMap(exampleReport, 3284 consumers, bugReports); 3285 3286 // Generate the full path sensitive diagnostic, using the generation scheme 3287 // specified by the PathDiagnosticConsumer. Note that we have to generate 3288 // path diagnostics even for consumers which do not support paths, because 3289 // the BugReporterVisitors may mark this bug as a false positive. 3290 assert(!bugReports.empty()); 3291 MaxBugClassSize.updateMax(bugReports.size()); 3292 3293 // Avoid copying the whole array because there may be a lot of reports. 3294 ArrayRef<PathSensitiveBugReport *> convertedArrayOfReports( 3295 reinterpret_cast<PathSensitiveBugReport *const *>(&*bugReports.begin()), 3296 reinterpret_cast<PathSensitiveBugReport *const *>(&*bugReports.end())); 3297 std::unique_ptr<DiagnosticForConsumerMapTy> Out = generatePathDiagnostics( 3298 consumers, convertedArrayOfReports); 3299 3300 if (Out->empty()) 3301 return Out; 3302 3303 MaxValidBugClassSize.updateMax(bugReports.size()); 3304 3305 // Examine the report and see if the last piece is in a header. Reset the 3306 // report location to the last piece in the main source file. 3307 const AnalyzerOptions &Opts = getAnalyzerOptions(); 3308 for (auto const &P : *Out) 3309 if (Opts.ShouldReportIssuesInMainSourceFile && !Opts.AnalyzeAll) 3310 resetDiagnosticLocationToMainFile(*P.second); 3311 3312 return Out; 3313 } 3314 3315 void BugReporter::EmitBasicReport(const Decl *DeclWithIssue, 3316 const CheckerBase *Checker, StringRef Name, 3317 StringRef Category, StringRef Str, 3318 PathDiagnosticLocation Loc, 3319 ArrayRef<SourceRange> Ranges, 3320 ArrayRef<FixItHint> Fixits) { 3321 EmitBasicReport(DeclWithIssue, Checker->getCheckerName(), Name, Category, Str, 3322 Loc, Ranges, Fixits); 3323 } 3324 3325 void BugReporter::EmitBasicReport(const Decl *DeclWithIssue, 3326 CheckerNameRef CheckName, 3327 StringRef name, StringRef category, 3328 StringRef str, PathDiagnosticLocation Loc, 3329 ArrayRef<SourceRange> Ranges, 3330 ArrayRef<FixItHint> Fixits) { 3331 // 'BT' is owned by BugReporter. 3332 BugType *BT = getBugTypeForName(CheckName, name, category); 3333 auto R = std::make_unique<BasicBugReport>(*BT, str, Loc); 3334 R->setDeclWithIssue(DeclWithIssue); 3335 for (const auto &SR : Ranges) 3336 R->addRange(SR); 3337 for (const auto &FH : Fixits) 3338 R->addFixItHint(FH); 3339 emitReport(std::move(R)); 3340 } 3341 3342 BugType *BugReporter::getBugTypeForName(CheckerNameRef CheckName, 3343 StringRef name, StringRef category) { 3344 SmallString<136> fullDesc; 3345 llvm::raw_svector_ostream(fullDesc) << CheckName.getName() << ":" << name 3346 << ":" << category; 3347 std::unique_ptr<BugType> &BT = StrBugTypes[fullDesc]; 3348 if (!BT) 3349 BT = std::make_unique<BugType>(CheckName, name, category); 3350 return BT.get(); 3351 } 3352