1 //===--- SemaTemplateInstantiateDecl.cpp - C++ Template Decl Instantiation ===/ 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 //===----------------------------------------------------------------------===/ 7 // 8 // This file implements C++ template instantiation for declarations. 9 // 10 //===----------------------------------------------------------------------===/ 11 12 #include "TreeTransform.h" 13 #include "clang/AST/ASTConsumer.h" 14 #include "clang/AST/ASTContext.h" 15 #include "clang/AST/ASTLambda.h" 16 #include "clang/AST/ASTMutationListener.h" 17 #include "clang/AST/DeclTemplate.h" 18 #include "clang/AST/DependentDiagnostic.h" 19 #include "clang/AST/Expr.h" 20 #include "clang/AST/ExprCXX.h" 21 #include "clang/AST/PrettyDeclStackTrace.h" 22 #include "clang/AST/TypeLoc.h" 23 #include "clang/Basic/SourceManager.h" 24 #include "clang/Basic/TargetInfo.h" 25 #include "clang/Sema/EnterExpressionEvaluationContext.h" 26 #include "clang/Sema/Initialization.h" 27 #include "clang/Sema/Lookup.h" 28 #include "clang/Sema/ScopeInfo.h" 29 #include "clang/Sema/SemaAMDGPU.h" 30 #include "clang/Sema/SemaCUDA.h" 31 #include "clang/Sema/SemaHLSL.h" 32 #include "clang/Sema/SemaObjC.h" 33 #include "clang/Sema/SemaOpenMP.h" 34 #include "clang/Sema/SemaSwift.h" 35 #include "clang/Sema/Template.h" 36 #include "clang/Sema/TemplateInstCallback.h" 37 #include "llvm/Support/TimeProfiler.h" 38 #include <optional> 39 40 using namespace clang; 41 42 static bool isDeclWithinFunction(const Decl *D) { 43 const DeclContext *DC = D->getDeclContext(); 44 if (DC->isFunctionOrMethod()) 45 return true; 46 47 if (DC->isRecord()) 48 return cast<CXXRecordDecl>(DC)->isLocalClass(); 49 50 return false; 51 } 52 53 template<typename DeclT> 54 static bool SubstQualifier(Sema &SemaRef, const DeclT *OldDecl, DeclT *NewDecl, 55 const MultiLevelTemplateArgumentList &TemplateArgs) { 56 if (!OldDecl->getQualifierLoc()) 57 return false; 58 59 assert((NewDecl->getFriendObjectKind() || 60 !OldDecl->getLexicalDeclContext()->isDependentContext()) && 61 "non-friend with qualified name defined in dependent context"); 62 Sema::ContextRAII SavedContext( 63 SemaRef, 64 const_cast<DeclContext *>(NewDecl->getFriendObjectKind() 65 ? NewDecl->getLexicalDeclContext() 66 : OldDecl->getLexicalDeclContext())); 67 68 NestedNameSpecifierLoc NewQualifierLoc 69 = SemaRef.SubstNestedNameSpecifierLoc(OldDecl->getQualifierLoc(), 70 TemplateArgs); 71 72 if (!NewQualifierLoc) 73 return true; 74 75 NewDecl->setQualifierInfo(NewQualifierLoc); 76 return false; 77 } 78 79 bool TemplateDeclInstantiator::SubstQualifier(const DeclaratorDecl *OldDecl, 80 DeclaratorDecl *NewDecl) { 81 return ::SubstQualifier(SemaRef, OldDecl, NewDecl, TemplateArgs); 82 } 83 84 bool TemplateDeclInstantiator::SubstQualifier(const TagDecl *OldDecl, 85 TagDecl *NewDecl) { 86 return ::SubstQualifier(SemaRef, OldDecl, NewDecl, TemplateArgs); 87 } 88 89 // Include attribute instantiation code. 90 #include "clang/Sema/AttrTemplateInstantiate.inc" 91 92 static void instantiateDependentAlignedAttr( 93 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 94 const AlignedAttr *Aligned, Decl *New, bool IsPackExpansion) { 95 if (Aligned->isAlignmentExpr()) { 96 // The alignment expression is a constant expression. 97 EnterExpressionEvaluationContext Unevaluated( 98 S, Sema::ExpressionEvaluationContext::ConstantEvaluated); 99 ExprResult Result = S.SubstExpr(Aligned->getAlignmentExpr(), TemplateArgs); 100 if (!Result.isInvalid()) 101 S.AddAlignedAttr(New, *Aligned, Result.getAs<Expr>(), IsPackExpansion); 102 } else { 103 if (TypeSourceInfo *Result = 104 S.SubstType(Aligned->getAlignmentType(), TemplateArgs, 105 Aligned->getLocation(), DeclarationName())) { 106 if (!S.CheckAlignasTypeArgument(Aligned->getSpelling(), Result, 107 Aligned->getLocation(), 108 Result->getTypeLoc().getSourceRange())) 109 S.AddAlignedAttr(New, *Aligned, Result, IsPackExpansion); 110 } 111 } 112 } 113 114 static void instantiateDependentAlignedAttr( 115 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 116 const AlignedAttr *Aligned, Decl *New) { 117 if (!Aligned->isPackExpansion()) { 118 instantiateDependentAlignedAttr(S, TemplateArgs, Aligned, New, false); 119 return; 120 } 121 122 SmallVector<UnexpandedParameterPack, 2> Unexpanded; 123 if (Aligned->isAlignmentExpr()) 124 S.collectUnexpandedParameterPacks(Aligned->getAlignmentExpr(), 125 Unexpanded); 126 else 127 S.collectUnexpandedParameterPacks(Aligned->getAlignmentType()->getTypeLoc(), 128 Unexpanded); 129 assert(!Unexpanded.empty() && "Pack expansion without parameter packs?"); 130 131 // Determine whether we can expand this attribute pack yet. 132 bool Expand = true, RetainExpansion = false; 133 std::optional<unsigned> NumExpansions; 134 // FIXME: Use the actual location of the ellipsis. 135 SourceLocation EllipsisLoc = Aligned->getLocation(); 136 if (S.CheckParameterPacksForExpansion(EllipsisLoc, Aligned->getRange(), 137 Unexpanded, TemplateArgs, Expand, 138 RetainExpansion, NumExpansions)) 139 return; 140 141 if (!Expand) { 142 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(S, -1); 143 instantiateDependentAlignedAttr(S, TemplateArgs, Aligned, New, true); 144 } else { 145 for (unsigned I = 0; I != *NumExpansions; ++I) { 146 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(S, I); 147 instantiateDependentAlignedAttr(S, TemplateArgs, Aligned, New, false); 148 } 149 } 150 } 151 152 static void instantiateDependentAssumeAlignedAttr( 153 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 154 const AssumeAlignedAttr *Aligned, Decl *New) { 155 // The alignment expression is a constant expression. 156 EnterExpressionEvaluationContext Unevaluated( 157 S, Sema::ExpressionEvaluationContext::ConstantEvaluated); 158 159 Expr *E, *OE = nullptr; 160 ExprResult Result = S.SubstExpr(Aligned->getAlignment(), TemplateArgs); 161 if (Result.isInvalid()) 162 return; 163 E = Result.getAs<Expr>(); 164 165 if (Aligned->getOffset()) { 166 Result = S.SubstExpr(Aligned->getOffset(), TemplateArgs); 167 if (Result.isInvalid()) 168 return; 169 OE = Result.getAs<Expr>(); 170 } 171 172 S.AddAssumeAlignedAttr(New, *Aligned, E, OE); 173 } 174 175 static void instantiateDependentAlignValueAttr( 176 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 177 const AlignValueAttr *Aligned, Decl *New) { 178 // The alignment expression is a constant expression. 179 EnterExpressionEvaluationContext Unevaluated( 180 S, Sema::ExpressionEvaluationContext::ConstantEvaluated); 181 ExprResult Result = S.SubstExpr(Aligned->getAlignment(), TemplateArgs); 182 if (!Result.isInvalid()) 183 S.AddAlignValueAttr(New, *Aligned, Result.getAs<Expr>()); 184 } 185 186 static void instantiateDependentAllocAlignAttr( 187 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 188 const AllocAlignAttr *Align, Decl *New) { 189 Expr *Param = IntegerLiteral::Create( 190 S.getASTContext(), 191 llvm::APInt(64, Align->getParamIndex().getSourceIndex()), 192 S.getASTContext().UnsignedLongLongTy, Align->getLocation()); 193 S.AddAllocAlignAttr(New, *Align, Param); 194 } 195 196 static void instantiateDependentAnnotationAttr( 197 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 198 const AnnotateAttr *Attr, Decl *New) { 199 EnterExpressionEvaluationContext Unevaluated( 200 S, Sema::ExpressionEvaluationContext::ConstantEvaluated); 201 202 // If the attribute has delayed arguments it will have to instantiate those 203 // and handle them as new arguments for the attribute. 204 bool HasDelayedArgs = Attr->delayedArgs_size(); 205 206 ArrayRef<Expr *> ArgsToInstantiate = 207 HasDelayedArgs 208 ? ArrayRef<Expr *>{Attr->delayedArgs_begin(), Attr->delayedArgs_end()} 209 : ArrayRef<Expr *>{Attr->args_begin(), Attr->args_end()}; 210 211 SmallVector<Expr *, 4> Args; 212 if (S.SubstExprs(ArgsToInstantiate, 213 /*IsCall=*/false, TemplateArgs, Args)) 214 return; 215 216 StringRef Str = Attr->getAnnotation(); 217 if (HasDelayedArgs) { 218 if (Args.size() < 1) { 219 S.Diag(Attr->getLoc(), diag::err_attribute_too_few_arguments) 220 << Attr << 1; 221 return; 222 } 223 224 if (!S.checkStringLiteralArgumentAttr(*Attr, Args[0], Str)) 225 return; 226 227 llvm::SmallVector<Expr *, 4> ActualArgs; 228 ActualArgs.insert(ActualArgs.begin(), Args.begin() + 1, Args.end()); 229 std::swap(Args, ActualArgs); 230 } 231 auto *AA = S.CreateAnnotationAttr(*Attr, Str, Args); 232 if (AA) { 233 New->addAttr(AA); 234 } 235 } 236 237 static Expr *instantiateDependentFunctionAttrCondition( 238 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 239 const Attr *A, Expr *OldCond, const Decl *Tmpl, FunctionDecl *New) { 240 Expr *Cond = nullptr; 241 { 242 Sema::ContextRAII SwitchContext(S, New); 243 EnterExpressionEvaluationContext Unevaluated( 244 S, Sema::ExpressionEvaluationContext::ConstantEvaluated); 245 ExprResult Result = S.SubstExpr(OldCond, TemplateArgs); 246 if (Result.isInvalid()) 247 return nullptr; 248 Cond = Result.getAs<Expr>(); 249 } 250 if (!Cond->isTypeDependent()) { 251 ExprResult Converted = S.PerformContextuallyConvertToBool(Cond); 252 if (Converted.isInvalid()) 253 return nullptr; 254 Cond = Converted.get(); 255 } 256 257 SmallVector<PartialDiagnosticAt, 8> Diags; 258 if (OldCond->isValueDependent() && !Cond->isValueDependent() && 259 !Expr::isPotentialConstantExprUnevaluated(Cond, New, Diags)) { 260 S.Diag(A->getLocation(), diag::err_attr_cond_never_constant_expr) << A; 261 for (const auto &P : Diags) 262 S.Diag(P.first, P.second); 263 return nullptr; 264 } 265 return Cond; 266 } 267 268 static void instantiateDependentEnableIfAttr( 269 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 270 const EnableIfAttr *EIA, const Decl *Tmpl, FunctionDecl *New) { 271 Expr *Cond = instantiateDependentFunctionAttrCondition( 272 S, TemplateArgs, EIA, EIA->getCond(), Tmpl, New); 273 274 if (Cond) 275 New->addAttr(new (S.getASTContext()) EnableIfAttr(S.getASTContext(), *EIA, 276 Cond, EIA->getMessage())); 277 } 278 279 static void instantiateDependentDiagnoseIfAttr( 280 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 281 const DiagnoseIfAttr *DIA, const Decl *Tmpl, FunctionDecl *New) { 282 Expr *Cond = instantiateDependentFunctionAttrCondition( 283 S, TemplateArgs, DIA, DIA->getCond(), Tmpl, New); 284 285 if (Cond) 286 New->addAttr(new (S.getASTContext()) DiagnoseIfAttr( 287 S.getASTContext(), *DIA, Cond, DIA->getMessage(), 288 DIA->getDefaultSeverity(), DIA->getWarningGroup(), 289 DIA->getArgDependent(), New)); 290 } 291 292 // Constructs and adds to New a new instance of CUDALaunchBoundsAttr using 293 // template A as the base and arguments from TemplateArgs. 294 static void instantiateDependentCUDALaunchBoundsAttr( 295 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 296 const CUDALaunchBoundsAttr &Attr, Decl *New) { 297 // The alignment expression is a constant expression. 298 EnterExpressionEvaluationContext Unevaluated( 299 S, Sema::ExpressionEvaluationContext::ConstantEvaluated); 300 301 ExprResult Result = S.SubstExpr(Attr.getMaxThreads(), TemplateArgs); 302 if (Result.isInvalid()) 303 return; 304 Expr *MaxThreads = Result.getAs<Expr>(); 305 306 Expr *MinBlocks = nullptr; 307 if (Attr.getMinBlocks()) { 308 Result = S.SubstExpr(Attr.getMinBlocks(), TemplateArgs); 309 if (Result.isInvalid()) 310 return; 311 MinBlocks = Result.getAs<Expr>(); 312 } 313 314 Expr *MaxBlocks = nullptr; 315 if (Attr.getMaxBlocks()) { 316 Result = S.SubstExpr(Attr.getMaxBlocks(), TemplateArgs); 317 if (Result.isInvalid()) 318 return; 319 MaxBlocks = Result.getAs<Expr>(); 320 } 321 322 S.AddLaunchBoundsAttr(New, Attr, MaxThreads, MinBlocks, MaxBlocks); 323 } 324 325 static void 326 instantiateDependentModeAttr(Sema &S, 327 const MultiLevelTemplateArgumentList &TemplateArgs, 328 const ModeAttr &Attr, Decl *New) { 329 S.AddModeAttr(New, Attr, Attr.getMode(), 330 /*InInstantiation=*/true); 331 } 332 333 /// Instantiation of 'declare simd' attribute and its arguments. 334 static void instantiateOMPDeclareSimdDeclAttr( 335 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 336 const OMPDeclareSimdDeclAttr &Attr, Decl *New) { 337 // Allow 'this' in clauses with varlist. 338 if (auto *FTD = dyn_cast<FunctionTemplateDecl>(New)) 339 New = FTD->getTemplatedDecl(); 340 auto *FD = cast<FunctionDecl>(New); 341 auto *ThisContext = dyn_cast_or_null<CXXRecordDecl>(FD->getDeclContext()); 342 SmallVector<Expr *, 4> Uniforms, Aligneds, Alignments, Linears, Steps; 343 SmallVector<unsigned, 4> LinModifiers; 344 345 auto SubstExpr = [&](Expr *E) -> ExprResult { 346 if (auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) 347 if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) { 348 Sema::ContextRAII SavedContext(S, FD); 349 LocalInstantiationScope Local(S); 350 if (FD->getNumParams() > PVD->getFunctionScopeIndex()) 351 Local.InstantiatedLocal( 352 PVD, FD->getParamDecl(PVD->getFunctionScopeIndex())); 353 return S.SubstExpr(E, TemplateArgs); 354 } 355 Sema::CXXThisScopeRAII ThisScope(S, ThisContext, Qualifiers(), 356 FD->isCXXInstanceMember()); 357 return S.SubstExpr(E, TemplateArgs); 358 }; 359 360 // Substitute a single OpenMP clause, which is a potentially-evaluated 361 // full-expression. 362 auto Subst = [&](Expr *E) -> ExprResult { 363 EnterExpressionEvaluationContext Evaluated( 364 S, Sema::ExpressionEvaluationContext::PotentiallyEvaluated); 365 ExprResult Res = SubstExpr(E); 366 if (Res.isInvalid()) 367 return Res; 368 return S.ActOnFinishFullExpr(Res.get(), false); 369 }; 370 371 ExprResult Simdlen; 372 if (auto *E = Attr.getSimdlen()) 373 Simdlen = Subst(E); 374 375 if (Attr.uniforms_size() > 0) { 376 for(auto *E : Attr.uniforms()) { 377 ExprResult Inst = Subst(E); 378 if (Inst.isInvalid()) 379 continue; 380 Uniforms.push_back(Inst.get()); 381 } 382 } 383 384 auto AI = Attr.alignments_begin(); 385 for (auto *E : Attr.aligneds()) { 386 ExprResult Inst = Subst(E); 387 if (Inst.isInvalid()) 388 continue; 389 Aligneds.push_back(Inst.get()); 390 Inst = ExprEmpty(); 391 if (*AI) 392 Inst = S.SubstExpr(*AI, TemplateArgs); 393 Alignments.push_back(Inst.get()); 394 ++AI; 395 } 396 397 auto SI = Attr.steps_begin(); 398 for (auto *E : Attr.linears()) { 399 ExprResult Inst = Subst(E); 400 if (Inst.isInvalid()) 401 continue; 402 Linears.push_back(Inst.get()); 403 Inst = ExprEmpty(); 404 if (*SI) 405 Inst = S.SubstExpr(*SI, TemplateArgs); 406 Steps.push_back(Inst.get()); 407 ++SI; 408 } 409 LinModifiers.append(Attr.modifiers_begin(), Attr.modifiers_end()); 410 (void)S.OpenMP().ActOnOpenMPDeclareSimdDirective( 411 S.ConvertDeclToDeclGroup(New), Attr.getBranchState(), Simdlen.get(), 412 Uniforms, Aligneds, Alignments, Linears, LinModifiers, Steps, 413 Attr.getRange()); 414 } 415 416 /// Instantiation of 'declare variant' attribute and its arguments. 417 static void instantiateOMPDeclareVariantAttr( 418 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 419 const OMPDeclareVariantAttr &Attr, Decl *New) { 420 // Allow 'this' in clauses with varlist. 421 if (auto *FTD = dyn_cast<FunctionTemplateDecl>(New)) 422 New = FTD->getTemplatedDecl(); 423 auto *FD = cast<FunctionDecl>(New); 424 auto *ThisContext = dyn_cast_or_null<CXXRecordDecl>(FD->getDeclContext()); 425 426 auto &&SubstExpr = [FD, ThisContext, &S, &TemplateArgs](Expr *E) { 427 if (auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) 428 if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) { 429 Sema::ContextRAII SavedContext(S, FD); 430 LocalInstantiationScope Local(S); 431 if (FD->getNumParams() > PVD->getFunctionScopeIndex()) 432 Local.InstantiatedLocal( 433 PVD, FD->getParamDecl(PVD->getFunctionScopeIndex())); 434 return S.SubstExpr(E, TemplateArgs); 435 } 436 Sema::CXXThisScopeRAII ThisScope(S, ThisContext, Qualifiers(), 437 FD->isCXXInstanceMember()); 438 return S.SubstExpr(E, TemplateArgs); 439 }; 440 441 // Substitute a single OpenMP clause, which is a potentially-evaluated 442 // full-expression. 443 auto &&Subst = [&SubstExpr, &S](Expr *E) { 444 EnterExpressionEvaluationContext Evaluated( 445 S, Sema::ExpressionEvaluationContext::PotentiallyEvaluated); 446 ExprResult Res = SubstExpr(E); 447 if (Res.isInvalid()) 448 return Res; 449 return S.ActOnFinishFullExpr(Res.get(), false); 450 }; 451 452 ExprResult VariantFuncRef; 453 if (Expr *E = Attr.getVariantFuncRef()) { 454 // Do not mark function as is used to prevent its emission if this is the 455 // only place where it is used. 456 EnterExpressionEvaluationContext Unevaluated( 457 S, Sema::ExpressionEvaluationContext::ConstantEvaluated); 458 VariantFuncRef = Subst(E); 459 } 460 461 // Copy the template version of the OMPTraitInfo and run substitute on all 462 // score and condition expressiosn. 463 OMPTraitInfo &TI = S.getASTContext().getNewOMPTraitInfo(); 464 TI = *Attr.getTraitInfos(); 465 466 // Try to substitute template parameters in score and condition expressions. 467 auto SubstScoreOrConditionExpr = [&S, Subst](Expr *&E, bool) { 468 if (E) { 469 EnterExpressionEvaluationContext Unevaluated( 470 S, Sema::ExpressionEvaluationContext::ConstantEvaluated); 471 ExprResult ER = Subst(E); 472 if (ER.isUsable()) 473 E = ER.get(); 474 else 475 return true; 476 } 477 return false; 478 }; 479 if (TI.anyScoreOrCondition(SubstScoreOrConditionExpr)) 480 return; 481 482 Expr *E = VariantFuncRef.get(); 483 484 // Check function/variant ref for `omp declare variant` but not for `omp 485 // begin declare variant` (which use implicit attributes). 486 std::optional<std::pair<FunctionDecl *, Expr *>> DeclVarData = 487 S.OpenMP().checkOpenMPDeclareVariantFunction( 488 S.ConvertDeclToDeclGroup(New), E, TI, Attr.appendArgs_size(), 489 Attr.getRange()); 490 491 if (!DeclVarData) 492 return; 493 494 E = DeclVarData->second; 495 FD = DeclVarData->first; 496 497 if (auto *VariantDRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) { 498 if (auto *VariantFD = dyn_cast<FunctionDecl>(VariantDRE->getDecl())) { 499 if (auto *VariantFTD = VariantFD->getDescribedFunctionTemplate()) { 500 if (!VariantFTD->isThisDeclarationADefinition()) 501 return; 502 Sema::TentativeAnalysisScope Trap(S); 503 const TemplateArgumentList *TAL = TemplateArgumentList::CreateCopy( 504 S.Context, TemplateArgs.getInnermost()); 505 506 auto *SubstFD = S.InstantiateFunctionDeclaration(VariantFTD, TAL, 507 New->getLocation()); 508 if (!SubstFD) 509 return; 510 QualType NewType = S.Context.mergeFunctionTypes( 511 SubstFD->getType(), FD->getType(), 512 /* OfBlockPointer */ false, 513 /* Unqualified */ false, /* AllowCXX */ true); 514 if (NewType.isNull()) 515 return; 516 S.InstantiateFunctionDefinition( 517 New->getLocation(), SubstFD, /* Recursive */ true, 518 /* DefinitionRequired */ false, /* AtEndOfTU */ false); 519 SubstFD->setInstantiationIsPending(!SubstFD->isDefined()); 520 E = DeclRefExpr::Create(S.Context, NestedNameSpecifierLoc(), 521 SourceLocation(), SubstFD, 522 /* RefersToEnclosingVariableOrCapture */ false, 523 /* NameLoc */ SubstFD->getLocation(), 524 SubstFD->getType(), ExprValueKind::VK_PRValue); 525 } 526 } 527 } 528 529 SmallVector<Expr *, 8> NothingExprs; 530 SmallVector<Expr *, 8> NeedDevicePtrExprs; 531 SmallVector<OMPInteropInfo, 4> AppendArgs; 532 533 for (Expr *E : Attr.adjustArgsNothing()) { 534 ExprResult ER = Subst(E); 535 if (ER.isInvalid()) 536 continue; 537 NothingExprs.push_back(ER.get()); 538 } 539 for (Expr *E : Attr.adjustArgsNeedDevicePtr()) { 540 ExprResult ER = Subst(E); 541 if (ER.isInvalid()) 542 continue; 543 NeedDevicePtrExprs.push_back(ER.get()); 544 } 545 for (OMPInteropInfo &II : Attr.appendArgs()) { 546 // When prefer_type is implemented for append_args handle them here too. 547 AppendArgs.emplace_back(II.IsTarget, II.IsTargetSync); 548 } 549 550 S.OpenMP().ActOnOpenMPDeclareVariantDirective( 551 FD, E, TI, NothingExprs, NeedDevicePtrExprs, AppendArgs, SourceLocation(), 552 SourceLocation(), Attr.getRange()); 553 } 554 555 static void instantiateDependentAMDGPUFlatWorkGroupSizeAttr( 556 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 557 const AMDGPUFlatWorkGroupSizeAttr &Attr, Decl *New) { 558 // Both min and max expression are constant expressions. 559 EnterExpressionEvaluationContext Unevaluated( 560 S, Sema::ExpressionEvaluationContext::ConstantEvaluated); 561 562 ExprResult Result = S.SubstExpr(Attr.getMin(), TemplateArgs); 563 if (Result.isInvalid()) 564 return; 565 Expr *MinExpr = Result.getAs<Expr>(); 566 567 Result = S.SubstExpr(Attr.getMax(), TemplateArgs); 568 if (Result.isInvalid()) 569 return; 570 Expr *MaxExpr = Result.getAs<Expr>(); 571 572 S.AMDGPU().addAMDGPUFlatWorkGroupSizeAttr(New, Attr, MinExpr, MaxExpr); 573 } 574 575 ExplicitSpecifier Sema::instantiateExplicitSpecifier( 576 const MultiLevelTemplateArgumentList &TemplateArgs, ExplicitSpecifier ES) { 577 if (!ES.getExpr()) 578 return ES; 579 Expr *OldCond = ES.getExpr(); 580 Expr *Cond = nullptr; 581 { 582 EnterExpressionEvaluationContext Unevaluated( 583 *this, Sema::ExpressionEvaluationContext::ConstantEvaluated); 584 ExprResult SubstResult = SubstExpr(OldCond, TemplateArgs); 585 if (SubstResult.isInvalid()) { 586 return ExplicitSpecifier::Invalid(); 587 } 588 Cond = SubstResult.get(); 589 } 590 ExplicitSpecifier Result(Cond, ES.getKind()); 591 if (!Cond->isTypeDependent()) 592 tryResolveExplicitSpecifier(Result); 593 return Result; 594 } 595 596 static void instantiateDependentAMDGPUWavesPerEUAttr( 597 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 598 const AMDGPUWavesPerEUAttr &Attr, Decl *New) { 599 // Both min and max expression are constant expressions. 600 EnterExpressionEvaluationContext Unevaluated( 601 S, Sema::ExpressionEvaluationContext::ConstantEvaluated); 602 603 ExprResult Result = S.SubstExpr(Attr.getMin(), TemplateArgs); 604 if (Result.isInvalid()) 605 return; 606 Expr *MinExpr = Result.getAs<Expr>(); 607 608 Expr *MaxExpr = nullptr; 609 if (auto Max = Attr.getMax()) { 610 Result = S.SubstExpr(Max, TemplateArgs); 611 if (Result.isInvalid()) 612 return; 613 MaxExpr = Result.getAs<Expr>(); 614 } 615 616 S.AMDGPU().addAMDGPUWavesPerEUAttr(New, Attr, MinExpr, MaxExpr); 617 } 618 619 static void instantiateDependentAMDGPUMaxNumWorkGroupsAttr( 620 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 621 const AMDGPUMaxNumWorkGroupsAttr &Attr, Decl *New) { 622 EnterExpressionEvaluationContext Unevaluated( 623 S, Sema::ExpressionEvaluationContext::ConstantEvaluated); 624 625 ExprResult ResultX = S.SubstExpr(Attr.getMaxNumWorkGroupsX(), TemplateArgs); 626 if (!ResultX.isUsable()) 627 return; 628 ExprResult ResultY = S.SubstExpr(Attr.getMaxNumWorkGroupsY(), TemplateArgs); 629 if (!ResultY.isUsable()) 630 return; 631 ExprResult ResultZ = S.SubstExpr(Attr.getMaxNumWorkGroupsZ(), TemplateArgs); 632 if (!ResultZ.isUsable()) 633 return; 634 635 Expr *XExpr = ResultX.getAs<Expr>(); 636 Expr *YExpr = ResultY.getAs<Expr>(); 637 Expr *ZExpr = ResultZ.getAs<Expr>(); 638 639 S.AMDGPU().addAMDGPUMaxNumWorkGroupsAttr(New, Attr, XExpr, YExpr, ZExpr); 640 } 641 642 // This doesn't take any template parameters, but we have a custom action that 643 // needs to happen when the kernel itself is instantiated. We need to run the 644 // ItaniumMangler to mark the names required to name this kernel. 645 static void instantiateDependentSYCLKernelAttr( 646 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 647 const SYCLKernelAttr &Attr, Decl *New) { 648 New->addAttr(Attr.clone(S.getASTContext())); 649 } 650 651 /// Determine whether the attribute A might be relevant to the declaration D. 652 /// If not, we can skip instantiating it. The attribute may or may not have 653 /// been instantiated yet. 654 static bool isRelevantAttr(Sema &S, const Decl *D, const Attr *A) { 655 // 'preferred_name' is only relevant to the matching specialization of the 656 // template. 657 if (const auto *PNA = dyn_cast<PreferredNameAttr>(A)) { 658 QualType T = PNA->getTypedefType(); 659 const auto *RD = cast<CXXRecordDecl>(D); 660 if (!T->isDependentType() && !RD->isDependentContext() && 661 !declaresSameEntity(T->getAsCXXRecordDecl(), RD)) 662 return false; 663 for (const auto *ExistingPNA : D->specific_attrs<PreferredNameAttr>()) 664 if (S.Context.hasSameType(ExistingPNA->getTypedefType(), 665 PNA->getTypedefType())) 666 return false; 667 return true; 668 } 669 670 if (const auto *BA = dyn_cast<BuiltinAttr>(A)) { 671 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 672 switch (BA->getID()) { 673 case Builtin::BIforward: 674 // Do not treat 'std::forward' as a builtin if it takes an rvalue reference 675 // type and returns an lvalue reference type. The library implementation 676 // will produce an error in this case; don't get in its way. 677 if (FD && FD->getNumParams() >= 1 && 678 FD->getParamDecl(0)->getType()->isRValueReferenceType() && 679 FD->getReturnType()->isLValueReferenceType()) { 680 return false; 681 } 682 [[fallthrough]]; 683 case Builtin::BImove: 684 case Builtin::BImove_if_noexcept: 685 // HACK: Super-old versions of libc++ (3.1 and earlier) provide 686 // std::forward and std::move overloads that sometimes return by value 687 // instead of by reference when building in C++98 mode. Don't treat such 688 // cases as builtins. 689 if (FD && !FD->getReturnType()->isReferenceType()) 690 return false; 691 break; 692 } 693 } 694 695 return true; 696 } 697 698 static void instantiateDependentHLSLParamModifierAttr( 699 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 700 const HLSLParamModifierAttr *Attr, Decl *New) { 701 ParmVarDecl *P = cast<ParmVarDecl>(New); 702 P->addAttr(Attr->clone(S.getASTContext())); 703 P->setType(S.HLSL().getInoutParameterType(P->getType())); 704 } 705 706 void Sema::InstantiateAttrsForDecl( 707 const MultiLevelTemplateArgumentList &TemplateArgs, const Decl *Tmpl, 708 Decl *New, LateInstantiatedAttrVec *LateAttrs, 709 LocalInstantiationScope *OuterMostScope) { 710 if (NamedDecl *ND = dyn_cast<NamedDecl>(New)) { 711 // FIXME: This function is called multiple times for the same template 712 // specialization. We should only instantiate attributes that were added 713 // since the previous instantiation. 714 for (const auto *TmplAttr : Tmpl->attrs()) { 715 if (!isRelevantAttr(*this, New, TmplAttr)) 716 continue; 717 718 // FIXME: If any of the special case versions from InstantiateAttrs become 719 // applicable to template declaration, we'll need to add them here. 720 CXXThisScopeRAII ThisScope( 721 *this, dyn_cast_or_null<CXXRecordDecl>(ND->getDeclContext()), 722 Qualifiers(), ND->isCXXInstanceMember()); 723 724 Attr *NewAttr = sema::instantiateTemplateAttributeForDecl( 725 TmplAttr, Context, *this, TemplateArgs); 726 if (NewAttr && isRelevantAttr(*this, New, NewAttr)) 727 New->addAttr(NewAttr); 728 } 729 } 730 } 731 732 static Sema::RetainOwnershipKind 733 attrToRetainOwnershipKind(const Attr *A) { 734 switch (A->getKind()) { 735 case clang::attr::CFConsumed: 736 return Sema::RetainOwnershipKind::CF; 737 case clang::attr::OSConsumed: 738 return Sema::RetainOwnershipKind::OS; 739 case clang::attr::NSConsumed: 740 return Sema::RetainOwnershipKind::NS; 741 default: 742 llvm_unreachable("Wrong argument supplied"); 743 } 744 } 745 746 void Sema::InstantiateAttrs(const MultiLevelTemplateArgumentList &TemplateArgs, 747 const Decl *Tmpl, Decl *New, 748 LateInstantiatedAttrVec *LateAttrs, 749 LocalInstantiationScope *OuterMostScope) { 750 for (const auto *TmplAttr : Tmpl->attrs()) { 751 if (!isRelevantAttr(*this, New, TmplAttr)) 752 continue; 753 754 // FIXME: This should be generalized to more than just the AlignedAttr. 755 const AlignedAttr *Aligned = dyn_cast<AlignedAttr>(TmplAttr); 756 if (Aligned && Aligned->isAlignmentDependent()) { 757 instantiateDependentAlignedAttr(*this, TemplateArgs, Aligned, New); 758 continue; 759 } 760 761 if (const auto *AssumeAligned = dyn_cast<AssumeAlignedAttr>(TmplAttr)) { 762 instantiateDependentAssumeAlignedAttr(*this, TemplateArgs, AssumeAligned, New); 763 continue; 764 } 765 766 if (const auto *AlignValue = dyn_cast<AlignValueAttr>(TmplAttr)) { 767 instantiateDependentAlignValueAttr(*this, TemplateArgs, AlignValue, New); 768 continue; 769 } 770 771 if (const auto *AllocAlign = dyn_cast<AllocAlignAttr>(TmplAttr)) { 772 instantiateDependentAllocAlignAttr(*this, TemplateArgs, AllocAlign, New); 773 continue; 774 } 775 776 if (const auto *Annotate = dyn_cast<AnnotateAttr>(TmplAttr)) { 777 instantiateDependentAnnotationAttr(*this, TemplateArgs, Annotate, New); 778 continue; 779 } 780 781 if (const auto *EnableIf = dyn_cast<EnableIfAttr>(TmplAttr)) { 782 instantiateDependentEnableIfAttr(*this, TemplateArgs, EnableIf, Tmpl, 783 cast<FunctionDecl>(New)); 784 continue; 785 } 786 787 if (const auto *DiagnoseIf = dyn_cast<DiagnoseIfAttr>(TmplAttr)) { 788 instantiateDependentDiagnoseIfAttr(*this, TemplateArgs, DiagnoseIf, Tmpl, 789 cast<FunctionDecl>(New)); 790 continue; 791 } 792 793 if (const auto *CUDALaunchBounds = 794 dyn_cast<CUDALaunchBoundsAttr>(TmplAttr)) { 795 instantiateDependentCUDALaunchBoundsAttr(*this, TemplateArgs, 796 *CUDALaunchBounds, New); 797 continue; 798 } 799 800 if (const auto *Mode = dyn_cast<ModeAttr>(TmplAttr)) { 801 instantiateDependentModeAttr(*this, TemplateArgs, *Mode, New); 802 continue; 803 } 804 805 if (const auto *OMPAttr = dyn_cast<OMPDeclareSimdDeclAttr>(TmplAttr)) { 806 instantiateOMPDeclareSimdDeclAttr(*this, TemplateArgs, *OMPAttr, New); 807 continue; 808 } 809 810 if (const auto *OMPAttr = dyn_cast<OMPDeclareVariantAttr>(TmplAttr)) { 811 instantiateOMPDeclareVariantAttr(*this, TemplateArgs, *OMPAttr, New); 812 continue; 813 } 814 815 if (const auto *AMDGPUFlatWorkGroupSize = 816 dyn_cast<AMDGPUFlatWorkGroupSizeAttr>(TmplAttr)) { 817 instantiateDependentAMDGPUFlatWorkGroupSizeAttr( 818 *this, TemplateArgs, *AMDGPUFlatWorkGroupSize, New); 819 } 820 821 if (const auto *AMDGPUFlatWorkGroupSize = 822 dyn_cast<AMDGPUWavesPerEUAttr>(TmplAttr)) { 823 instantiateDependentAMDGPUWavesPerEUAttr(*this, TemplateArgs, 824 *AMDGPUFlatWorkGroupSize, New); 825 } 826 827 if (const auto *AMDGPUMaxNumWorkGroups = 828 dyn_cast<AMDGPUMaxNumWorkGroupsAttr>(TmplAttr)) { 829 instantiateDependentAMDGPUMaxNumWorkGroupsAttr( 830 *this, TemplateArgs, *AMDGPUMaxNumWorkGroups, New); 831 } 832 833 if (const auto *ParamAttr = dyn_cast<HLSLParamModifierAttr>(TmplAttr)) { 834 instantiateDependentHLSLParamModifierAttr(*this, TemplateArgs, ParamAttr, 835 New); 836 continue; 837 } 838 839 // Existing DLL attribute on the instantiation takes precedence. 840 if (TmplAttr->getKind() == attr::DLLExport || 841 TmplAttr->getKind() == attr::DLLImport) { 842 if (New->hasAttr<DLLExportAttr>() || New->hasAttr<DLLImportAttr>()) { 843 continue; 844 } 845 } 846 847 if (const auto *ABIAttr = dyn_cast<ParameterABIAttr>(TmplAttr)) { 848 Swift().AddParameterABIAttr(New, *ABIAttr, ABIAttr->getABI()); 849 continue; 850 } 851 852 if (isa<NSConsumedAttr>(TmplAttr) || isa<OSConsumedAttr>(TmplAttr) || 853 isa<CFConsumedAttr>(TmplAttr)) { 854 ObjC().AddXConsumedAttr(New, *TmplAttr, 855 attrToRetainOwnershipKind(TmplAttr), 856 /*template instantiation=*/true); 857 continue; 858 } 859 860 if (auto *A = dyn_cast<PointerAttr>(TmplAttr)) { 861 if (!New->hasAttr<PointerAttr>()) 862 New->addAttr(A->clone(Context)); 863 continue; 864 } 865 866 if (auto *A = dyn_cast<OwnerAttr>(TmplAttr)) { 867 if (!New->hasAttr<OwnerAttr>()) 868 New->addAttr(A->clone(Context)); 869 continue; 870 } 871 872 if (auto *A = dyn_cast<SYCLKernelAttr>(TmplAttr)) { 873 instantiateDependentSYCLKernelAttr(*this, TemplateArgs, *A, New); 874 continue; 875 } 876 877 if (auto *A = dyn_cast<CUDAGridConstantAttr>(TmplAttr)) { 878 if (!New->hasAttr<CUDAGridConstantAttr>()) 879 New->addAttr(A->clone(Context)); 880 continue; 881 } 882 883 assert(!TmplAttr->isPackExpansion()); 884 if (TmplAttr->isLateParsed() && LateAttrs) { 885 // Late parsed attributes must be instantiated and attached after the 886 // enclosing class has been instantiated. See Sema::InstantiateClass. 887 LocalInstantiationScope *Saved = nullptr; 888 if (CurrentInstantiationScope) 889 Saved = CurrentInstantiationScope->cloneScopes(OuterMostScope); 890 LateAttrs->push_back(LateInstantiatedAttribute(TmplAttr, Saved, New)); 891 } else { 892 // Allow 'this' within late-parsed attributes. 893 auto *ND = cast<NamedDecl>(New); 894 auto *ThisContext = dyn_cast_or_null<CXXRecordDecl>(ND->getDeclContext()); 895 CXXThisScopeRAII ThisScope(*this, ThisContext, Qualifiers(), 896 ND->isCXXInstanceMember()); 897 898 Attr *NewAttr = sema::instantiateTemplateAttribute(TmplAttr, Context, 899 *this, TemplateArgs); 900 if (NewAttr && isRelevantAttr(*this, New, TmplAttr)) 901 New->addAttr(NewAttr); 902 } 903 } 904 } 905 906 void Sema::updateAttrsForLateParsedTemplate(const Decl *Pattern, Decl *Inst) { 907 for (const auto *Attr : Pattern->attrs()) { 908 if (auto *A = dyn_cast<StrictFPAttr>(Attr)) { 909 if (!Inst->hasAttr<StrictFPAttr>()) 910 Inst->addAttr(A->clone(getASTContext())); 911 continue; 912 } 913 } 914 } 915 916 void Sema::InstantiateDefaultCtorDefaultArgs(CXXConstructorDecl *Ctor) { 917 assert(Context.getTargetInfo().getCXXABI().isMicrosoft() && 918 Ctor->isDefaultConstructor()); 919 unsigned NumParams = Ctor->getNumParams(); 920 if (NumParams == 0) 921 return; 922 DLLExportAttr *Attr = Ctor->getAttr<DLLExportAttr>(); 923 if (!Attr) 924 return; 925 for (unsigned I = 0; I != NumParams; ++I) { 926 (void)CheckCXXDefaultArgExpr(Attr->getLocation(), Ctor, 927 Ctor->getParamDecl(I)); 928 CleanupVarDeclMarking(); 929 } 930 } 931 932 /// Get the previous declaration of a declaration for the purposes of template 933 /// instantiation. If this finds a previous declaration, then the previous 934 /// declaration of the instantiation of D should be an instantiation of the 935 /// result of this function. 936 template<typename DeclT> 937 static DeclT *getPreviousDeclForInstantiation(DeclT *D) { 938 DeclT *Result = D->getPreviousDecl(); 939 940 // If the declaration is within a class, and the previous declaration was 941 // merged from a different definition of that class, then we don't have a 942 // previous declaration for the purpose of template instantiation. 943 if (Result && isa<CXXRecordDecl>(D->getDeclContext()) && 944 D->getLexicalDeclContext() != Result->getLexicalDeclContext()) 945 return nullptr; 946 947 return Result; 948 } 949 950 Decl * 951 TemplateDeclInstantiator::VisitTranslationUnitDecl(TranslationUnitDecl *D) { 952 llvm_unreachable("Translation units cannot be instantiated"); 953 } 954 955 Decl *TemplateDeclInstantiator::VisitHLSLBufferDecl(HLSLBufferDecl *Decl) { 956 llvm_unreachable("HLSL buffer declarations cannot be instantiated"); 957 } 958 959 Decl * 960 TemplateDeclInstantiator::VisitPragmaCommentDecl(PragmaCommentDecl *D) { 961 llvm_unreachable("pragma comment cannot be instantiated"); 962 } 963 964 Decl *TemplateDeclInstantiator::VisitPragmaDetectMismatchDecl( 965 PragmaDetectMismatchDecl *D) { 966 llvm_unreachable("pragma comment cannot be instantiated"); 967 } 968 969 Decl * 970 TemplateDeclInstantiator::VisitExternCContextDecl(ExternCContextDecl *D) { 971 llvm_unreachable("extern \"C\" context cannot be instantiated"); 972 } 973 974 Decl *TemplateDeclInstantiator::VisitMSGuidDecl(MSGuidDecl *D) { 975 llvm_unreachable("GUID declaration cannot be instantiated"); 976 } 977 978 Decl *TemplateDeclInstantiator::VisitUnnamedGlobalConstantDecl( 979 UnnamedGlobalConstantDecl *D) { 980 llvm_unreachable("UnnamedGlobalConstantDecl cannot be instantiated"); 981 } 982 983 Decl *TemplateDeclInstantiator::VisitTemplateParamObjectDecl( 984 TemplateParamObjectDecl *D) { 985 llvm_unreachable("template parameter objects cannot be instantiated"); 986 } 987 988 Decl * 989 TemplateDeclInstantiator::VisitLabelDecl(LabelDecl *D) { 990 LabelDecl *Inst = LabelDecl::Create(SemaRef.Context, Owner, D->getLocation(), 991 D->getIdentifier()); 992 SemaRef.InstantiateAttrs(TemplateArgs, D, Inst, LateAttrs, StartingScope); 993 Owner->addDecl(Inst); 994 return Inst; 995 } 996 997 Decl * 998 TemplateDeclInstantiator::VisitNamespaceDecl(NamespaceDecl *D) { 999 llvm_unreachable("Namespaces cannot be instantiated"); 1000 } 1001 1002 Decl * 1003 TemplateDeclInstantiator::VisitNamespaceAliasDecl(NamespaceAliasDecl *D) { 1004 NamespaceAliasDecl *Inst 1005 = NamespaceAliasDecl::Create(SemaRef.Context, Owner, 1006 D->getNamespaceLoc(), 1007 D->getAliasLoc(), 1008 D->getIdentifier(), 1009 D->getQualifierLoc(), 1010 D->getTargetNameLoc(), 1011 D->getNamespace()); 1012 Owner->addDecl(Inst); 1013 return Inst; 1014 } 1015 1016 Decl *TemplateDeclInstantiator::InstantiateTypedefNameDecl(TypedefNameDecl *D, 1017 bool IsTypeAlias) { 1018 bool Invalid = false; 1019 TypeSourceInfo *DI = D->getTypeSourceInfo(); 1020 if (DI->getType()->isInstantiationDependentType() || 1021 DI->getType()->isVariablyModifiedType()) { 1022 DI = SemaRef.SubstType(DI, TemplateArgs, 1023 D->getLocation(), D->getDeclName()); 1024 if (!DI) { 1025 Invalid = true; 1026 DI = SemaRef.Context.getTrivialTypeSourceInfo(SemaRef.Context.IntTy); 1027 } 1028 } else { 1029 SemaRef.MarkDeclarationsReferencedInType(D->getLocation(), DI->getType()); 1030 } 1031 1032 // HACK: 2012-10-23 g++ has a bug where it gets the value kind of ?: wrong. 1033 // libstdc++ relies upon this bug in its implementation of common_type. If we 1034 // happen to be processing that implementation, fake up the g++ ?: 1035 // semantics. See LWG issue 2141 for more information on the bug. The bugs 1036 // are fixed in g++ and libstdc++ 4.9.0 (2014-04-22). 1037 const DecltypeType *DT = DI->getType()->getAs<DecltypeType>(); 1038 CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D->getDeclContext()); 1039 if (DT && RD && isa<ConditionalOperator>(DT->getUnderlyingExpr()) && 1040 DT->isReferenceType() && 1041 RD->getEnclosingNamespaceContext() == SemaRef.getStdNamespace() && 1042 RD->getIdentifier() && RD->getIdentifier()->isStr("common_type") && 1043 D->getIdentifier() && D->getIdentifier()->isStr("type") && 1044 SemaRef.getSourceManager().isInSystemHeader(D->getBeginLoc())) 1045 // Fold it to the (non-reference) type which g++ would have produced. 1046 DI = SemaRef.Context.getTrivialTypeSourceInfo( 1047 DI->getType().getNonReferenceType()); 1048 1049 // Create the new typedef 1050 TypedefNameDecl *Typedef; 1051 if (IsTypeAlias) 1052 Typedef = TypeAliasDecl::Create(SemaRef.Context, Owner, D->getBeginLoc(), 1053 D->getLocation(), D->getIdentifier(), DI); 1054 else 1055 Typedef = TypedefDecl::Create(SemaRef.Context, Owner, D->getBeginLoc(), 1056 D->getLocation(), D->getIdentifier(), DI); 1057 if (Invalid) 1058 Typedef->setInvalidDecl(); 1059 1060 // If the old typedef was the name for linkage purposes of an anonymous 1061 // tag decl, re-establish that relationship for the new typedef. 1062 if (const TagType *oldTagType = D->getUnderlyingType()->getAs<TagType>()) { 1063 TagDecl *oldTag = oldTagType->getDecl(); 1064 if (oldTag->getTypedefNameForAnonDecl() == D && !Invalid) { 1065 TagDecl *newTag = DI->getType()->castAs<TagType>()->getDecl(); 1066 assert(!newTag->hasNameForLinkage()); 1067 newTag->setTypedefNameForAnonDecl(Typedef); 1068 } 1069 } 1070 1071 if (TypedefNameDecl *Prev = getPreviousDeclForInstantiation(D)) { 1072 NamedDecl *InstPrev = SemaRef.FindInstantiatedDecl(D->getLocation(), Prev, 1073 TemplateArgs); 1074 if (!InstPrev) 1075 return nullptr; 1076 1077 TypedefNameDecl *InstPrevTypedef = cast<TypedefNameDecl>(InstPrev); 1078 1079 // If the typedef types are not identical, reject them. 1080 SemaRef.isIncompatibleTypedef(InstPrevTypedef, Typedef); 1081 1082 Typedef->setPreviousDecl(InstPrevTypedef); 1083 } 1084 1085 SemaRef.InstantiateAttrs(TemplateArgs, D, Typedef); 1086 1087 if (D->getUnderlyingType()->getAs<DependentNameType>()) 1088 SemaRef.inferGslPointerAttribute(Typedef); 1089 1090 Typedef->setAccess(D->getAccess()); 1091 Typedef->setReferenced(D->isReferenced()); 1092 1093 return Typedef; 1094 } 1095 1096 Decl *TemplateDeclInstantiator::VisitTypedefDecl(TypedefDecl *D) { 1097 Decl *Typedef = InstantiateTypedefNameDecl(D, /*IsTypeAlias=*/false); 1098 if (Typedef) 1099 Owner->addDecl(Typedef); 1100 return Typedef; 1101 } 1102 1103 Decl *TemplateDeclInstantiator::VisitTypeAliasDecl(TypeAliasDecl *D) { 1104 Decl *Typedef = InstantiateTypedefNameDecl(D, /*IsTypeAlias=*/true); 1105 if (Typedef) 1106 Owner->addDecl(Typedef); 1107 return Typedef; 1108 } 1109 1110 Decl *TemplateDeclInstantiator::InstantiateTypeAliasTemplateDecl( 1111 TypeAliasTemplateDecl *D) { 1112 // Create a local instantiation scope for this type alias template, which 1113 // will contain the instantiations of the template parameters. 1114 LocalInstantiationScope Scope(SemaRef); 1115 1116 TemplateParameterList *TempParams = D->getTemplateParameters(); 1117 TemplateParameterList *InstParams = SubstTemplateParams(TempParams); 1118 if (!InstParams) 1119 return nullptr; 1120 1121 TypeAliasDecl *Pattern = D->getTemplatedDecl(); 1122 Sema::InstantiatingTemplate InstTemplate( 1123 SemaRef, D->getBeginLoc(), D, 1124 D->getTemplateDepth() >= TemplateArgs.getNumLevels() 1125 ? ArrayRef<TemplateArgument>() 1126 : (TemplateArgs.begin() + TemplateArgs.getNumLevels() - 1 - 1127 D->getTemplateDepth()) 1128 ->Args); 1129 if (InstTemplate.isInvalid()) 1130 return nullptr; 1131 1132 TypeAliasTemplateDecl *PrevAliasTemplate = nullptr; 1133 if (getPreviousDeclForInstantiation<TypedefNameDecl>(Pattern)) { 1134 DeclContext::lookup_result Found = Owner->lookup(Pattern->getDeclName()); 1135 if (!Found.empty()) { 1136 PrevAliasTemplate = dyn_cast<TypeAliasTemplateDecl>(Found.front()); 1137 } 1138 } 1139 1140 TypeAliasDecl *AliasInst = cast_or_null<TypeAliasDecl>( 1141 InstantiateTypedefNameDecl(Pattern, /*IsTypeAlias=*/true)); 1142 if (!AliasInst) 1143 return nullptr; 1144 1145 TypeAliasTemplateDecl *Inst 1146 = TypeAliasTemplateDecl::Create(SemaRef.Context, Owner, D->getLocation(), 1147 D->getDeclName(), InstParams, AliasInst); 1148 AliasInst->setDescribedAliasTemplate(Inst); 1149 if (PrevAliasTemplate) 1150 Inst->setPreviousDecl(PrevAliasTemplate); 1151 1152 Inst->setAccess(D->getAccess()); 1153 1154 if (!PrevAliasTemplate) 1155 Inst->setInstantiatedFromMemberTemplate(D); 1156 1157 return Inst; 1158 } 1159 1160 Decl * 1161 TemplateDeclInstantiator::VisitTypeAliasTemplateDecl(TypeAliasTemplateDecl *D) { 1162 Decl *Inst = InstantiateTypeAliasTemplateDecl(D); 1163 if (Inst) 1164 Owner->addDecl(Inst); 1165 1166 return Inst; 1167 } 1168 1169 Decl *TemplateDeclInstantiator::VisitBindingDecl(BindingDecl *D) { 1170 auto *NewBD = BindingDecl::Create(SemaRef.Context, Owner, D->getLocation(), 1171 D->getIdentifier(), D->getType()); 1172 NewBD->setReferenced(D->isReferenced()); 1173 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewBD); 1174 1175 return NewBD; 1176 } 1177 1178 Decl *TemplateDeclInstantiator::VisitDecompositionDecl(DecompositionDecl *D) { 1179 // Transform the bindings first. 1180 // The transformed DD will have all of the concrete BindingDecls. 1181 SmallVector<BindingDecl*, 16> NewBindings; 1182 ResolvedUnexpandedPackExpr *OldResolvedPack = nullptr; 1183 for (auto *OldBD : D->bindings()) { 1184 Expr *BindingExpr = OldBD->getBinding(); 1185 if (auto *RP = 1186 dyn_cast_if_present<ResolvedUnexpandedPackExpr>(BindingExpr)) { 1187 assert(!OldResolvedPack && "no more than one pack is allowed"); 1188 OldResolvedPack = RP; 1189 } 1190 NewBindings.push_back(cast<BindingDecl>(VisitBindingDecl(OldBD))); 1191 } 1192 ArrayRef<BindingDecl*> NewBindingArray = NewBindings; 1193 1194 auto *NewDD = cast_if_present<DecompositionDecl>( 1195 VisitVarDecl(D, /*InstantiatingVarTemplate=*/false, &NewBindingArray)); 1196 1197 if (!NewDD || NewDD->isInvalidDecl()) 1198 for (auto *NewBD : NewBindings) 1199 NewBD->setInvalidDecl(); 1200 1201 if (OldResolvedPack) { 1202 // Mark the holding vars (if any) in the pack as instantiated since 1203 // they are created implicitly. 1204 auto Bindings = NewDD->bindings(); 1205 auto BPack = llvm::find_if( 1206 Bindings, [](BindingDecl *D) -> bool { return D->isParameterPack(); }); 1207 auto *NewResolvedPack = 1208 cast<ResolvedUnexpandedPackExpr>((*BPack)->getBinding()); 1209 auto OldExprs = OldResolvedPack->getExprs(); 1210 auto NewExprs = NewResolvedPack->getExprs(); 1211 assert(OldExprs.size() == NewExprs.size()); 1212 for (unsigned I = 0; I < OldResolvedPack->getNumExprs(); I++) { 1213 DeclRefExpr *OldDRE = cast<DeclRefExpr>(OldExprs[I]); 1214 BindingDecl *OldNestedBD = cast<BindingDecl>(OldDRE->getDecl()); 1215 DeclRefExpr *NewDRE = cast<DeclRefExpr>(NewExprs[I]); 1216 BindingDecl *NewNestedBD = cast<BindingDecl>(NewDRE->getDecl()); 1217 SemaRef.CurrentInstantiationScope->InstantiatedLocal(OldNestedBD, 1218 NewNestedBD); 1219 } 1220 } 1221 1222 return NewDD; 1223 } 1224 1225 Decl *TemplateDeclInstantiator::VisitVarDecl(VarDecl *D) { 1226 return VisitVarDecl(D, /*InstantiatingVarTemplate=*/false); 1227 } 1228 1229 Decl *TemplateDeclInstantiator::VisitVarDecl(VarDecl *D, 1230 bool InstantiatingVarTemplate, 1231 ArrayRef<BindingDecl*> *Bindings) { 1232 1233 // Do substitution on the type of the declaration 1234 TypeSourceInfo *DI = SemaRef.SubstType( 1235 D->getTypeSourceInfo(), TemplateArgs, D->getTypeSpecStartLoc(), 1236 D->getDeclName(), /*AllowDeducedTST*/true); 1237 if (!DI) 1238 return nullptr; 1239 1240 if (DI->getType()->isFunctionType()) { 1241 SemaRef.Diag(D->getLocation(), diag::err_variable_instantiates_to_function) 1242 << D->isStaticDataMember() << DI->getType(); 1243 return nullptr; 1244 } 1245 1246 DeclContext *DC = Owner; 1247 if (D->isLocalExternDecl()) 1248 SemaRef.adjustContextForLocalExternDecl(DC); 1249 1250 // Build the instantiated declaration. 1251 VarDecl *Var; 1252 if (Bindings) 1253 Var = DecompositionDecl::Create(SemaRef.Context, DC, D->getInnerLocStart(), 1254 D->getLocation(), DI->getType(), DI, 1255 D->getStorageClass(), *Bindings); 1256 else 1257 Var = VarDecl::Create(SemaRef.Context, DC, D->getInnerLocStart(), 1258 D->getLocation(), D->getIdentifier(), DI->getType(), 1259 DI, D->getStorageClass()); 1260 1261 // In ARC, infer 'retaining' for variables of retainable type. 1262 if (SemaRef.getLangOpts().ObjCAutoRefCount && 1263 SemaRef.ObjC().inferObjCARCLifetime(Var)) 1264 Var->setInvalidDecl(); 1265 1266 if (SemaRef.getLangOpts().OpenCL) 1267 SemaRef.deduceOpenCLAddressSpace(Var); 1268 1269 // Substitute the nested name specifier, if any. 1270 if (SubstQualifier(D, Var)) 1271 return nullptr; 1272 1273 SemaRef.BuildVariableInstantiation(Var, D, TemplateArgs, LateAttrs, Owner, 1274 StartingScope, InstantiatingVarTemplate); 1275 if (D->isNRVOVariable() && !Var->isInvalidDecl()) { 1276 QualType RT; 1277 if (auto *F = dyn_cast<FunctionDecl>(DC)) 1278 RT = F->getReturnType(); 1279 else if (isa<BlockDecl>(DC)) 1280 RT = cast<FunctionType>(SemaRef.getCurBlock()->FunctionType) 1281 ->getReturnType(); 1282 else 1283 llvm_unreachable("Unknown context type"); 1284 1285 // This is the last chance we have of checking copy elision eligibility 1286 // for functions in dependent contexts. The sema actions for building 1287 // the return statement during template instantiation will have no effect 1288 // regarding copy elision, since NRVO propagation runs on the scope exit 1289 // actions, and these are not run on instantiation. 1290 // This might run through some VarDecls which were returned from non-taken 1291 // 'if constexpr' branches, and these will end up being constructed on the 1292 // return slot even if they will never be returned, as a sort of accidental 1293 // 'optimization'. Notably, functions with 'auto' return types won't have it 1294 // deduced by this point. Coupled with the limitation described 1295 // previously, this makes it very hard to support copy elision for these. 1296 Sema::NamedReturnInfo Info = SemaRef.getNamedReturnInfo(Var); 1297 bool NRVO = SemaRef.getCopyElisionCandidate(Info, RT) != nullptr; 1298 Var->setNRVOVariable(NRVO); 1299 } 1300 1301 Var->setImplicit(D->isImplicit()); 1302 1303 if (Var->isStaticLocal()) 1304 SemaRef.CheckStaticLocalForDllExport(Var); 1305 1306 if (Var->getTLSKind()) 1307 SemaRef.CheckThreadLocalForLargeAlignment(Var); 1308 1309 return Var; 1310 } 1311 1312 Decl *TemplateDeclInstantiator::VisitAccessSpecDecl(AccessSpecDecl *D) { 1313 AccessSpecDecl* AD 1314 = AccessSpecDecl::Create(SemaRef.Context, D->getAccess(), Owner, 1315 D->getAccessSpecifierLoc(), D->getColonLoc()); 1316 Owner->addHiddenDecl(AD); 1317 return AD; 1318 } 1319 1320 Decl *TemplateDeclInstantiator::VisitFieldDecl(FieldDecl *D) { 1321 bool Invalid = false; 1322 TypeSourceInfo *DI = D->getTypeSourceInfo(); 1323 if (DI->getType()->isInstantiationDependentType() || 1324 DI->getType()->isVariablyModifiedType()) { 1325 DI = SemaRef.SubstType(DI, TemplateArgs, 1326 D->getLocation(), D->getDeclName()); 1327 if (!DI) { 1328 DI = D->getTypeSourceInfo(); 1329 Invalid = true; 1330 } else if (DI->getType()->isFunctionType()) { 1331 // C++ [temp.arg.type]p3: 1332 // If a declaration acquires a function type through a type 1333 // dependent on a template-parameter and this causes a 1334 // declaration that does not use the syntactic form of a 1335 // function declarator to have function type, the program is 1336 // ill-formed. 1337 SemaRef.Diag(D->getLocation(), diag::err_field_instantiates_to_function) 1338 << DI->getType(); 1339 Invalid = true; 1340 } 1341 } else { 1342 SemaRef.MarkDeclarationsReferencedInType(D->getLocation(), DI->getType()); 1343 } 1344 1345 Expr *BitWidth = D->getBitWidth(); 1346 if (Invalid) 1347 BitWidth = nullptr; 1348 else if (BitWidth) { 1349 // The bit-width expression is a constant expression. 1350 EnterExpressionEvaluationContext Unevaluated( 1351 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); 1352 1353 ExprResult InstantiatedBitWidth 1354 = SemaRef.SubstExpr(BitWidth, TemplateArgs); 1355 if (InstantiatedBitWidth.isInvalid()) { 1356 Invalid = true; 1357 BitWidth = nullptr; 1358 } else 1359 BitWidth = InstantiatedBitWidth.getAs<Expr>(); 1360 } 1361 1362 FieldDecl *Field = SemaRef.CheckFieldDecl(D->getDeclName(), 1363 DI->getType(), DI, 1364 cast<RecordDecl>(Owner), 1365 D->getLocation(), 1366 D->isMutable(), 1367 BitWidth, 1368 D->getInClassInitStyle(), 1369 D->getInnerLocStart(), 1370 D->getAccess(), 1371 nullptr); 1372 if (!Field) { 1373 cast<Decl>(Owner)->setInvalidDecl(); 1374 return nullptr; 1375 } 1376 1377 SemaRef.InstantiateAttrs(TemplateArgs, D, Field, LateAttrs, StartingScope); 1378 1379 if (Field->hasAttrs()) 1380 SemaRef.CheckAlignasUnderalignment(Field); 1381 1382 if (Invalid) 1383 Field->setInvalidDecl(); 1384 1385 if (!Field->getDeclName() || Field->isPlaceholderVar(SemaRef.getLangOpts())) { 1386 // Keep track of where this decl came from. 1387 SemaRef.Context.setInstantiatedFromUnnamedFieldDecl(Field, D); 1388 } 1389 if (CXXRecordDecl *Parent= dyn_cast<CXXRecordDecl>(Field->getDeclContext())) { 1390 if (Parent->isAnonymousStructOrUnion() && 1391 Parent->getRedeclContext()->isFunctionOrMethod()) 1392 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Field); 1393 } 1394 1395 Field->setImplicit(D->isImplicit()); 1396 Field->setAccess(D->getAccess()); 1397 Owner->addDecl(Field); 1398 1399 return Field; 1400 } 1401 1402 Decl *TemplateDeclInstantiator::VisitMSPropertyDecl(MSPropertyDecl *D) { 1403 bool Invalid = false; 1404 TypeSourceInfo *DI = D->getTypeSourceInfo(); 1405 1406 if (DI->getType()->isVariablyModifiedType()) { 1407 SemaRef.Diag(D->getLocation(), diag::err_property_is_variably_modified) 1408 << D; 1409 Invalid = true; 1410 } else if (DI->getType()->isInstantiationDependentType()) { 1411 DI = SemaRef.SubstType(DI, TemplateArgs, 1412 D->getLocation(), D->getDeclName()); 1413 if (!DI) { 1414 DI = D->getTypeSourceInfo(); 1415 Invalid = true; 1416 } else if (DI->getType()->isFunctionType()) { 1417 // C++ [temp.arg.type]p3: 1418 // If a declaration acquires a function type through a type 1419 // dependent on a template-parameter and this causes a 1420 // declaration that does not use the syntactic form of a 1421 // function declarator to have function type, the program is 1422 // ill-formed. 1423 SemaRef.Diag(D->getLocation(), diag::err_field_instantiates_to_function) 1424 << DI->getType(); 1425 Invalid = true; 1426 } 1427 } else { 1428 SemaRef.MarkDeclarationsReferencedInType(D->getLocation(), DI->getType()); 1429 } 1430 1431 MSPropertyDecl *Property = MSPropertyDecl::Create( 1432 SemaRef.Context, Owner, D->getLocation(), D->getDeclName(), DI->getType(), 1433 DI, D->getBeginLoc(), D->getGetterId(), D->getSetterId()); 1434 1435 SemaRef.InstantiateAttrs(TemplateArgs, D, Property, LateAttrs, 1436 StartingScope); 1437 1438 if (Invalid) 1439 Property->setInvalidDecl(); 1440 1441 Property->setAccess(D->getAccess()); 1442 Owner->addDecl(Property); 1443 1444 return Property; 1445 } 1446 1447 Decl *TemplateDeclInstantiator::VisitIndirectFieldDecl(IndirectFieldDecl *D) { 1448 NamedDecl **NamedChain = 1449 new (SemaRef.Context)NamedDecl*[D->getChainingSize()]; 1450 1451 int i = 0; 1452 for (auto *PI : D->chain()) { 1453 NamedDecl *Next = SemaRef.FindInstantiatedDecl(D->getLocation(), PI, 1454 TemplateArgs); 1455 if (!Next) 1456 return nullptr; 1457 1458 NamedChain[i++] = Next; 1459 } 1460 1461 QualType T = cast<FieldDecl>(NamedChain[i-1])->getType(); 1462 IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create( 1463 SemaRef.Context, Owner, D->getLocation(), D->getIdentifier(), T, 1464 {NamedChain, D->getChainingSize()}); 1465 1466 for (const auto *Attr : D->attrs()) 1467 IndirectField->addAttr(Attr->clone(SemaRef.Context)); 1468 1469 IndirectField->setImplicit(D->isImplicit()); 1470 IndirectField->setAccess(D->getAccess()); 1471 Owner->addDecl(IndirectField); 1472 return IndirectField; 1473 } 1474 1475 Decl *TemplateDeclInstantiator::VisitFriendDecl(FriendDecl *D) { 1476 // Handle friend type expressions by simply substituting template 1477 // parameters into the pattern type and checking the result. 1478 if (TypeSourceInfo *Ty = D->getFriendType()) { 1479 TypeSourceInfo *InstTy; 1480 // If this is an unsupported friend, don't bother substituting template 1481 // arguments into it. The actual type referred to won't be used by any 1482 // parts of Clang, and may not be valid for instantiating. Just use the 1483 // same info for the instantiated friend. 1484 if (D->isUnsupportedFriend()) { 1485 InstTy = Ty; 1486 } else { 1487 if (D->isPackExpansion()) { 1488 SmallVector<UnexpandedParameterPack, 2> Unexpanded; 1489 SemaRef.collectUnexpandedParameterPacks(Ty->getTypeLoc(), Unexpanded); 1490 assert(!Unexpanded.empty() && "Pack expansion without packs"); 1491 1492 bool ShouldExpand = true; 1493 bool RetainExpansion = false; 1494 std::optional<unsigned> NumExpansions; 1495 if (SemaRef.CheckParameterPacksForExpansion( 1496 D->getEllipsisLoc(), D->getSourceRange(), Unexpanded, 1497 TemplateArgs, ShouldExpand, RetainExpansion, NumExpansions)) 1498 return nullptr; 1499 1500 assert(!RetainExpansion && 1501 "should never retain an expansion for a variadic friend decl"); 1502 1503 if (ShouldExpand) { 1504 SmallVector<FriendDecl *> Decls; 1505 for (unsigned I = 0; I != *NumExpansions; I++) { 1506 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I); 1507 TypeSourceInfo *TSI = SemaRef.SubstType( 1508 Ty, TemplateArgs, D->getEllipsisLoc(), DeclarationName()); 1509 if (!TSI) 1510 return nullptr; 1511 1512 auto FD = 1513 FriendDecl::Create(SemaRef.Context, Owner, D->getLocation(), 1514 TSI, D->getFriendLoc()); 1515 1516 FD->setAccess(AS_public); 1517 Owner->addDecl(FD); 1518 Decls.push_back(FD); 1519 } 1520 1521 // Just drop this node; we have no use for it anymore. 1522 return nullptr; 1523 } 1524 } 1525 1526 InstTy = SemaRef.SubstType(Ty, TemplateArgs, D->getLocation(), 1527 DeclarationName()); 1528 } 1529 if (!InstTy) 1530 return nullptr; 1531 1532 FriendDecl *FD = FriendDecl::Create( 1533 SemaRef.Context, Owner, D->getLocation(), InstTy, D->getFriendLoc()); 1534 FD->setAccess(AS_public); 1535 FD->setUnsupportedFriend(D->isUnsupportedFriend()); 1536 Owner->addDecl(FD); 1537 return FD; 1538 } 1539 1540 NamedDecl *ND = D->getFriendDecl(); 1541 assert(ND && "friend decl must be a decl or a type!"); 1542 1543 // All of the Visit implementations for the various potential friend 1544 // declarations have to be carefully written to work for friend 1545 // objects, with the most important detail being that the target 1546 // decl should almost certainly not be placed in Owner. 1547 Decl *NewND = Visit(ND); 1548 if (!NewND) return nullptr; 1549 1550 FriendDecl *FD = 1551 FriendDecl::Create(SemaRef.Context, Owner, D->getLocation(), 1552 cast<NamedDecl>(NewND), D->getFriendLoc()); 1553 FD->setAccess(AS_public); 1554 FD->setUnsupportedFriend(D->isUnsupportedFriend()); 1555 Owner->addDecl(FD); 1556 return FD; 1557 } 1558 1559 Decl *TemplateDeclInstantiator::VisitStaticAssertDecl(StaticAssertDecl *D) { 1560 Expr *AssertExpr = D->getAssertExpr(); 1561 1562 // The expression in a static assertion is a constant expression. 1563 EnterExpressionEvaluationContext Unevaluated( 1564 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); 1565 1566 ExprResult InstantiatedAssertExpr 1567 = SemaRef.SubstExpr(AssertExpr, TemplateArgs); 1568 if (InstantiatedAssertExpr.isInvalid()) 1569 return nullptr; 1570 1571 ExprResult InstantiatedMessageExpr = 1572 SemaRef.SubstExpr(D->getMessage(), TemplateArgs); 1573 if (InstantiatedMessageExpr.isInvalid()) 1574 return nullptr; 1575 1576 return SemaRef.BuildStaticAssertDeclaration( 1577 D->getLocation(), InstantiatedAssertExpr.get(), 1578 InstantiatedMessageExpr.get(), D->getRParenLoc(), D->isFailed()); 1579 } 1580 1581 Decl *TemplateDeclInstantiator::VisitEnumDecl(EnumDecl *D) { 1582 EnumDecl *PrevDecl = nullptr; 1583 if (EnumDecl *PatternPrev = getPreviousDeclForInstantiation(D)) { 1584 NamedDecl *Prev = SemaRef.FindInstantiatedDecl(D->getLocation(), 1585 PatternPrev, 1586 TemplateArgs); 1587 if (!Prev) return nullptr; 1588 PrevDecl = cast<EnumDecl>(Prev); 1589 } 1590 1591 EnumDecl *Enum = 1592 EnumDecl::Create(SemaRef.Context, Owner, D->getBeginLoc(), 1593 D->getLocation(), D->getIdentifier(), PrevDecl, 1594 D->isScoped(), D->isScopedUsingClassTag(), D->isFixed()); 1595 if (D->isFixed()) { 1596 if (TypeSourceInfo *TI = D->getIntegerTypeSourceInfo()) { 1597 // If we have type source information for the underlying type, it means it 1598 // has been explicitly set by the user. Perform substitution on it before 1599 // moving on. 1600 SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc(); 1601 TypeSourceInfo *NewTI = SemaRef.SubstType(TI, TemplateArgs, UnderlyingLoc, 1602 DeclarationName()); 1603 if (!NewTI || SemaRef.CheckEnumUnderlyingType(NewTI)) 1604 Enum->setIntegerType(SemaRef.Context.IntTy); 1605 else 1606 Enum->setIntegerTypeSourceInfo(NewTI); 1607 1608 // C++23 [conv.prom]p4 1609 // if integral promotion can be applied to its underlying type, a prvalue 1610 // of an unscoped enumeration type whose underlying type is fixed can also 1611 // be converted to a prvalue of the promoted underlying type. 1612 // 1613 // FIXME: that logic is already implemented in ActOnEnumBody, factor out 1614 // into (Re)BuildEnumBody. 1615 QualType UnderlyingType = Enum->getIntegerType(); 1616 Enum->setPromotionType( 1617 SemaRef.Context.isPromotableIntegerType(UnderlyingType) 1618 ? SemaRef.Context.getPromotedIntegerType(UnderlyingType) 1619 : UnderlyingType); 1620 } else { 1621 assert(!D->getIntegerType()->isDependentType() 1622 && "Dependent type without type source info"); 1623 Enum->setIntegerType(D->getIntegerType()); 1624 } 1625 } 1626 1627 SemaRef.InstantiateAttrs(TemplateArgs, D, Enum); 1628 1629 Enum->setInstantiationOfMemberEnum(D, TSK_ImplicitInstantiation); 1630 Enum->setAccess(D->getAccess()); 1631 // Forward the mangling number from the template to the instantiated decl. 1632 SemaRef.Context.setManglingNumber(Enum, SemaRef.Context.getManglingNumber(D)); 1633 // See if the old tag was defined along with a declarator. 1634 // If it did, mark the new tag as being associated with that declarator. 1635 if (DeclaratorDecl *DD = SemaRef.Context.getDeclaratorForUnnamedTagDecl(D)) 1636 SemaRef.Context.addDeclaratorForUnnamedTagDecl(Enum, DD); 1637 // See if the old tag was defined along with a typedef. 1638 // If it did, mark the new tag as being associated with that typedef. 1639 if (TypedefNameDecl *TND = SemaRef.Context.getTypedefNameForUnnamedTagDecl(D)) 1640 SemaRef.Context.addTypedefNameForUnnamedTagDecl(Enum, TND); 1641 if (SubstQualifier(D, Enum)) return nullptr; 1642 Owner->addDecl(Enum); 1643 1644 EnumDecl *Def = D->getDefinition(); 1645 if (Def && Def != D) { 1646 // If this is an out-of-line definition of an enum member template, check 1647 // that the underlying types match in the instantiation of both 1648 // declarations. 1649 if (TypeSourceInfo *TI = Def->getIntegerTypeSourceInfo()) { 1650 SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc(); 1651 QualType DefnUnderlying = 1652 SemaRef.SubstType(TI->getType(), TemplateArgs, 1653 UnderlyingLoc, DeclarationName()); 1654 SemaRef.CheckEnumRedeclaration(Def->getLocation(), Def->isScoped(), 1655 DefnUnderlying, /*IsFixed=*/true, Enum); 1656 } 1657 } 1658 1659 // C++11 [temp.inst]p1: The implicit instantiation of a class template 1660 // specialization causes the implicit instantiation of the declarations, but 1661 // not the definitions of scoped member enumerations. 1662 // 1663 // DR1484 clarifies that enumeration definitions inside a template 1664 // declaration aren't considered entities that can be separately instantiated 1665 // from the rest of the entity they are declared inside. 1666 if (isDeclWithinFunction(D) ? D == Def : Def && !Enum->isScoped()) { 1667 // Prevent redundant instantiation of the enumerator-definition if the 1668 // definition has already been instantiated due to a prior 1669 // opaque-enum-declaration. 1670 if (PrevDecl == nullptr) { 1671 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Enum); 1672 InstantiateEnumDefinition(Enum, Def); 1673 } 1674 } 1675 1676 return Enum; 1677 } 1678 1679 void TemplateDeclInstantiator::InstantiateEnumDefinition( 1680 EnumDecl *Enum, EnumDecl *Pattern) { 1681 Enum->startDefinition(); 1682 1683 // Update the location to refer to the definition. 1684 Enum->setLocation(Pattern->getLocation()); 1685 1686 SmallVector<Decl*, 4> Enumerators; 1687 1688 EnumConstantDecl *LastEnumConst = nullptr; 1689 for (auto *EC : Pattern->enumerators()) { 1690 // The specified value for the enumerator. 1691 ExprResult Value((Expr *)nullptr); 1692 if (Expr *UninstValue = EC->getInitExpr()) { 1693 // The enumerator's value expression is a constant expression. 1694 EnterExpressionEvaluationContext Unevaluated( 1695 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); 1696 1697 Value = SemaRef.SubstExpr(UninstValue, TemplateArgs); 1698 } 1699 1700 // Drop the initial value and continue. 1701 bool isInvalid = false; 1702 if (Value.isInvalid()) { 1703 Value = nullptr; 1704 isInvalid = true; 1705 } 1706 1707 EnumConstantDecl *EnumConst 1708 = SemaRef.CheckEnumConstant(Enum, LastEnumConst, 1709 EC->getLocation(), EC->getIdentifier(), 1710 Value.get()); 1711 1712 if (isInvalid) { 1713 if (EnumConst) 1714 EnumConst->setInvalidDecl(); 1715 Enum->setInvalidDecl(); 1716 } 1717 1718 if (EnumConst) { 1719 SemaRef.InstantiateAttrs(TemplateArgs, EC, EnumConst); 1720 1721 EnumConst->setAccess(Enum->getAccess()); 1722 Enum->addDecl(EnumConst); 1723 Enumerators.push_back(EnumConst); 1724 LastEnumConst = EnumConst; 1725 1726 if (Pattern->getDeclContext()->isFunctionOrMethod() && 1727 !Enum->isScoped()) { 1728 // If the enumeration is within a function or method, record the enum 1729 // constant as a local. 1730 SemaRef.CurrentInstantiationScope->InstantiatedLocal(EC, EnumConst); 1731 } 1732 } 1733 } 1734 1735 SemaRef.ActOnEnumBody(Enum->getLocation(), Enum->getBraceRange(), Enum, 1736 Enumerators, nullptr, ParsedAttributesView()); 1737 } 1738 1739 Decl *TemplateDeclInstantiator::VisitEnumConstantDecl(EnumConstantDecl *D) { 1740 llvm_unreachable("EnumConstantDecls can only occur within EnumDecls."); 1741 } 1742 1743 Decl * 1744 TemplateDeclInstantiator::VisitBuiltinTemplateDecl(BuiltinTemplateDecl *D) { 1745 llvm_unreachable("BuiltinTemplateDecls cannot be instantiated."); 1746 } 1747 1748 Decl *TemplateDeclInstantiator::VisitClassTemplateDecl(ClassTemplateDecl *D) { 1749 bool isFriend = (D->getFriendObjectKind() != Decl::FOK_None); 1750 1751 // Create a local instantiation scope for this class template, which 1752 // will contain the instantiations of the template parameters. 1753 LocalInstantiationScope Scope(SemaRef); 1754 TemplateParameterList *TempParams = D->getTemplateParameters(); 1755 TemplateParameterList *InstParams = SubstTemplateParams(TempParams); 1756 if (!InstParams) 1757 return nullptr; 1758 1759 CXXRecordDecl *Pattern = D->getTemplatedDecl(); 1760 1761 // Instantiate the qualifier. We have to do this first in case 1762 // we're a friend declaration, because if we are then we need to put 1763 // the new declaration in the appropriate context. 1764 NestedNameSpecifierLoc QualifierLoc = Pattern->getQualifierLoc(); 1765 if (QualifierLoc) { 1766 QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, 1767 TemplateArgs); 1768 if (!QualifierLoc) 1769 return nullptr; 1770 } 1771 1772 CXXRecordDecl *PrevDecl = nullptr; 1773 ClassTemplateDecl *PrevClassTemplate = nullptr; 1774 1775 if (!isFriend && getPreviousDeclForInstantiation(Pattern)) { 1776 DeclContext::lookup_result Found = Owner->lookup(Pattern->getDeclName()); 1777 if (!Found.empty()) { 1778 PrevClassTemplate = dyn_cast<ClassTemplateDecl>(Found.front()); 1779 if (PrevClassTemplate) 1780 PrevDecl = PrevClassTemplate->getTemplatedDecl(); 1781 } 1782 } 1783 1784 // If this isn't a friend, then it's a member template, in which 1785 // case we just want to build the instantiation in the 1786 // specialization. If it is a friend, we want to build it in 1787 // the appropriate context. 1788 DeclContext *DC = Owner; 1789 if (isFriend) { 1790 if (QualifierLoc) { 1791 CXXScopeSpec SS; 1792 SS.Adopt(QualifierLoc); 1793 DC = SemaRef.computeDeclContext(SS); 1794 if (!DC) return nullptr; 1795 } else { 1796 DC = SemaRef.FindInstantiatedContext(Pattern->getLocation(), 1797 Pattern->getDeclContext(), 1798 TemplateArgs); 1799 } 1800 1801 // Look for a previous declaration of the template in the owning 1802 // context. 1803 LookupResult R(SemaRef, Pattern->getDeclName(), Pattern->getLocation(), 1804 Sema::LookupOrdinaryName, 1805 SemaRef.forRedeclarationInCurContext()); 1806 SemaRef.LookupQualifiedName(R, DC); 1807 1808 if (R.isSingleResult()) { 1809 PrevClassTemplate = R.getAsSingle<ClassTemplateDecl>(); 1810 if (PrevClassTemplate) 1811 PrevDecl = PrevClassTemplate->getTemplatedDecl(); 1812 } 1813 1814 if (!PrevClassTemplate && QualifierLoc) { 1815 SemaRef.Diag(Pattern->getLocation(), diag::err_not_tag_in_scope) 1816 << llvm::to_underlying(D->getTemplatedDecl()->getTagKind()) 1817 << Pattern->getDeclName() << DC << QualifierLoc.getSourceRange(); 1818 return nullptr; 1819 } 1820 } 1821 1822 CXXRecordDecl *RecordInst = CXXRecordDecl::Create( 1823 SemaRef.Context, Pattern->getTagKind(), DC, Pattern->getBeginLoc(), 1824 Pattern->getLocation(), Pattern->getIdentifier(), PrevDecl, 1825 /*DelayTypeCreation=*/true); 1826 if (QualifierLoc) 1827 RecordInst->setQualifierInfo(QualifierLoc); 1828 1829 SemaRef.InstantiateAttrsForDecl(TemplateArgs, Pattern, RecordInst, LateAttrs, 1830 StartingScope); 1831 1832 ClassTemplateDecl *Inst 1833 = ClassTemplateDecl::Create(SemaRef.Context, DC, D->getLocation(), 1834 D->getIdentifier(), InstParams, RecordInst); 1835 RecordInst->setDescribedClassTemplate(Inst); 1836 1837 if (isFriend) { 1838 assert(!Owner->isDependentContext()); 1839 Inst->setLexicalDeclContext(Owner); 1840 RecordInst->setLexicalDeclContext(Owner); 1841 Inst->setObjectOfFriendDecl(); 1842 1843 if (PrevClassTemplate) { 1844 Inst->setCommonPtr(PrevClassTemplate->getCommonPtr()); 1845 RecordInst->setTypeForDecl( 1846 PrevClassTemplate->getTemplatedDecl()->getTypeForDecl()); 1847 const ClassTemplateDecl *MostRecentPrevCT = 1848 PrevClassTemplate->getMostRecentDecl(); 1849 TemplateParameterList *PrevParams = 1850 MostRecentPrevCT->getTemplateParameters(); 1851 1852 // Make sure the parameter lists match. 1853 if (!SemaRef.TemplateParameterListsAreEqual( 1854 RecordInst, InstParams, MostRecentPrevCT->getTemplatedDecl(), 1855 PrevParams, true, Sema::TPL_TemplateMatch)) 1856 return nullptr; 1857 1858 // Do some additional validation, then merge default arguments 1859 // from the existing declarations. 1860 if (SemaRef.CheckTemplateParameterList(InstParams, PrevParams, 1861 Sema::TPC_ClassTemplate)) 1862 return nullptr; 1863 1864 Inst->setAccess(PrevClassTemplate->getAccess()); 1865 } else { 1866 Inst->setAccess(D->getAccess()); 1867 } 1868 1869 Inst->setObjectOfFriendDecl(); 1870 // TODO: do we want to track the instantiation progeny of this 1871 // friend target decl? 1872 } else { 1873 Inst->setAccess(D->getAccess()); 1874 if (!PrevClassTemplate) 1875 Inst->setInstantiatedFromMemberTemplate(D); 1876 } 1877 1878 Inst->setPreviousDecl(PrevClassTemplate); 1879 1880 // Trigger creation of the type for the instantiation. 1881 SemaRef.Context.getInjectedClassNameType( 1882 RecordInst, Inst->getInjectedClassNameSpecialization()); 1883 1884 // Finish handling of friends. 1885 if (isFriend) { 1886 DC->makeDeclVisibleInContext(Inst); 1887 return Inst; 1888 } 1889 1890 if (D->isOutOfLine()) { 1891 Inst->setLexicalDeclContext(D->getLexicalDeclContext()); 1892 RecordInst->setLexicalDeclContext(D->getLexicalDeclContext()); 1893 } 1894 1895 Owner->addDecl(Inst); 1896 1897 if (!PrevClassTemplate) { 1898 // Queue up any out-of-line partial specializations of this member 1899 // class template; the client will force their instantiation once 1900 // the enclosing class has been instantiated. 1901 SmallVector<ClassTemplatePartialSpecializationDecl *, 4> PartialSpecs; 1902 D->getPartialSpecializations(PartialSpecs); 1903 for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) 1904 if (PartialSpecs[I]->getFirstDecl()->isOutOfLine()) 1905 OutOfLinePartialSpecs.push_back(std::make_pair(Inst, PartialSpecs[I])); 1906 } 1907 1908 return Inst; 1909 } 1910 1911 Decl * 1912 TemplateDeclInstantiator::VisitClassTemplatePartialSpecializationDecl( 1913 ClassTemplatePartialSpecializationDecl *D) { 1914 ClassTemplateDecl *ClassTemplate = D->getSpecializedTemplate(); 1915 1916 // Lookup the already-instantiated declaration in the instantiation 1917 // of the class template and return that. 1918 DeclContext::lookup_result Found 1919 = Owner->lookup(ClassTemplate->getDeclName()); 1920 if (Found.empty()) 1921 return nullptr; 1922 1923 ClassTemplateDecl *InstClassTemplate 1924 = dyn_cast<ClassTemplateDecl>(Found.front()); 1925 if (!InstClassTemplate) 1926 return nullptr; 1927 1928 if (ClassTemplatePartialSpecializationDecl *Result 1929 = InstClassTemplate->findPartialSpecInstantiatedFromMember(D)) 1930 return Result; 1931 1932 return InstantiateClassTemplatePartialSpecialization(InstClassTemplate, D); 1933 } 1934 1935 Decl *TemplateDeclInstantiator::VisitVarTemplateDecl(VarTemplateDecl *D) { 1936 assert(D->getTemplatedDecl()->isStaticDataMember() && 1937 "Only static data member templates are allowed."); 1938 1939 // Create a local instantiation scope for this variable template, which 1940 // will contain the instantiations of the template parameters. 1941 LocalInstantiationScope Scope(SemaRef); 1942 TemplateParameterList *TempParams = D->getTemplateParameters(); 1943 TemplateParameterList *InstParams = SubstTemplateParams(TempParams); 1944 if (!InstParams) 1945 return nullptr; 1946 1947 VarDecl *Pattern = D->getTemplatedDecl(); 1948 VarTemplateDecl *PrevVarTemplate = nullptr; 1949 1950 if (getPreviousDeclForInstantiation(Pattern)) { 1951 DeclContext::lookup_result Found = Owner->lookup(Pattern->getDeclName()); 1952 if (!Found.empty()) 1953 PrevVarTemplate = dyn_cast<VarTemplateDecl>(Found.front()); 1954 } 1955 1956 VarDecl *VarInst = 1957 cast_or_null<VarDecl>(VisitVarDecl(Pattern, 1958 /*InstantiatingVarTemplate=*/true)); 1959 if (!VarInst) return nullptr; 1960 1961 DeclContext *DC = Owner; 1962 1963 VarTemplateDecl *Inst = VarTemplateDecl::Create( 1964 SemaRef.Context, DC, D->getLocation(), D->getIdentifier(), InstParams, 1965 VarInst); 1966 VarInst->setDescribedVarTemplate(Inst); 1967 Inst->setPreviousDecl(PrevVarTemplate); 1968 1969 Inst->setAccess(D->getAccess()); 1970 if (!PrevVarTemplate) 1971 Inst->setInstantiatedFromMemberTemplate(D); 1972 1973 if (D->isOutOfLine()) { 1974 Inst->setLexicalDeclContext(D->getLexicalDeclContext()); 1975 VarInst->setLexicalDeclContext(D->getLexicalDeclContext()); 1976 } 1977 1978 Owner->addDecl(Inst); 1979 1980 if (!PrevVarTemplate) { 1981 // Queue up any out-of-line partial specializations of this member 1982 // variable template; the client will force their instantiation once 1983 // the enclosing class has been instantiated. 1984 SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs; 1985 D->getPartialSpecializations(PartialSpecs); 1986 for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) 1987 if (PartialSpecs[I]->getFirstDecl()->isOutOfLine()) 1988 OutOfLineVarPartialSpecs.push_back( 1989 std::make_pair(Inst, PartialSpecs[I])); 1990 } 1991 1992 return Inst; 1993 } 1994 1995 Decl *TemplateDeclInstantiator::VisitVarTemplatePartialSpecializationDecl( 1996 VarTemplatePartialSpecializationDecl *D) { 1997 assert(D->isStaticDataMember() && 1998 "Only static data member templates are allowed."); 1999 2000 VarTemplateDecl *VarTemplate = D->getSpecializedTemplate(); 2001 2002 // Lookup the already-instantiated declaration and return that. 2003 DeclContext::lookup_result Found = Owner->lookup(VarTemplate->getDeclName()); 2004 assert(!Found.empty() && "Instantiation found nothing?"); 2005 2006 VarTemplateDecl *InstVarTemplate = dyn_cast<VarTemplateDecl>(Found.front()); 2007 assert(InstVarTemplate && "Instantiation did not find a variable template?"); 2008 2009 if (VarTemplatePartialSpecializationDecl *Result = 2010 InstVarTemplate->findPartialSpecInstantiatedFromMember(D)) 2011 return Result; 2012 2013 return InstantiateVarTemplatePartialSpecialization(InstVarTemplate, D); 2014 } 2015 2016 Decl * 2017 TemplateDeclInstantiator::VisitFunctionTemplateDecl(FunctionTemplateDecl *D) { 2018 // Create a local instantiation scope for this function template, which 2019 // will contain the instantiations of the template parameters and then get 2020 // merged with the local instantiation scope for the function template 2021 // itself. 2022 LocalInstantiationScope Scope(SemaRef); 2023 Sema::ConstraintEvalRAII<TemplateDeclInstantiator> RAII(*this); 2024 2025 TemplateParameterList *TempParams = D->getTemplateParameters(); 2026 TemplateParameterList *InstParams = SubstTemplateParams(TempParams); 2027 if (!InstParams) 2028 return nullptr; 2029 2030 FunctionDecl *Instantiated = nullptr; 2031 if (CXXMethodDecl *DMethod = dyn_cast<CXXMethodDecl>(D->getTemplatedDecl())) 2032 Instantiated = cast_or_null<FunctionDecl>(VisitCXXMethodDecl(DMethod, 2033 InstParams)); 2034 else 2035 Instantiated = cast_or_null<FunctionDecl>(VisitFunctionDecl( 2036 D->getTemplatedDecl(), 2037 InstParams)); 2038 2039 if (!Instantiated) 2040 return nullptr; 2041 2042 // Link the instantiated function template declaration to the function 2043 // template from which it was instantiated. 2044 FunctionTemplateDecl *InstTemplate 2045 = Instantiated->getDescribedFunctionTemplate(); 2046 InstTemplate->setAccess(D->getAccess()); 2047 assert(InstTemplate && 2048 "VisitFunctionDecl/CXXMethodDecl didn't create a template!"); 2049 2050 bool isFriend = (InstTemplate->getFriendObjectKind() != Decl::FOK_None); 2051 2052 // Link the instantiation back to the pattern *unless* this is a 2053 // non-definition friend declaration. 2054 if (!InstTemplate->getInstantiatedFromMemberTemplate() && 2055 !(isFriend && !D->getTemplatedDecl()->isThisDeclarationADefinition())) 2056 InstTemplate->setInstantiatedFromMemberTemplate(D); 2057 2058 // Make declarations visible in the appropriate context. 2059 if (!isFriend) { 2060 Owner->addDecl(InstTemplate); 2061 } else if (InstTemplate->getDeclContext()->isRecord() && 2062 !getPreviousDeclForInstantiation(D)) { 2063 SemaRef.CheckFriendAccess(InstTemplate); 2064 } 2065 2066 return InstTemplate; 2067 } 2068 2069 Decl *TemplateDeclInstantiator::VisitCXXRecordDecl(CXXRecordDecl *D) { 2070 CXXRecordDecl *PrevDecl = nullptr; 2071 if (CXXRecordDecl *PatternPrev = getPreviousDeclForInstantiation(D)) { 2072 NamedDecl *Prev = SemaRef.FindInstantiatedDecl(D->getLocation(), 2073 PatternPrev, 2074 TemplateArgs); 2075 if (!Prev) return nullptr; 2076 PrevDecl = cast<CXXRecordDecl>(Prev); 2077 } 2078 2079 CXXRecordDecl *Record = nullptr; 2080 bool IsInjectedClassName = D->isInjectedClassName(); 2081 if (D->isLambda()) 2082 Record = CXXRecordDecl::CreateLambda( 2083 SemaRef.Context, Owner, D->getLambdaTypeInfo(), D->getLocation(), 2084 D->getLambdaDependencyKind(), D->isGenericLambda(), 2085 D->getLambdaCaptureDefault()); 2086 else 2087 Record = CXXRecordDecl::Create(SemaRef.Context, D->getTagKind(), Owner, 2088 D->getBeginLoc(), D->getLocation(), 2089 D->getIdentifier(), PrevDecl, 2090 /*DelayTypeCreation=*/IsInjectedClassName); 2091 // Link the type of the injected-class-name to that of the outer class. 2092 if (IsInjectedClassName) 2093 (void)SemaRef.Context.getTypeDeclType(Record, cast<CXXRecordDecl>(Owner)); 2094 2095 // Substitute the nested name specifier, if any. 2096 if (SubstQualifier(D, Record)) 2097 return nullptr; 2098 2099 SemaRef.InstantiateAttrsForDecl(TemplateArgs, D, Record, LateAttrs, 2100 StartingScope); 2101 2102 Record->setImplicit(D->isImplicit()); 2103 // FIXME: Check against AS_none is an ugly hack to work around the issue that 2104 // the tag decls introduced by friend class declarations don't have an access 2105 // specifier. Remove once this area of the code gets sorted out. 2106 if (D->getAccess() != AS_none) 2107 Record->setAccess(D->getAccess()); 2108 if (!IsInjectedClassName) 2109 Record->setInstantiationOfMemberClass(D, TSK_ImplicitInstantiation); 2110 2111 // If the original function was part of a friend declaration, 2112 // inherit its namespace state. 2113 if (D->getFriendObjectKind()) 2114 Record->setObjectOfFriendDecl(); 2115 2116 // Make sure that anonymous structs and unions are recorded. 2117 if (D->isAnonymousStructOrUnion()) 2118 Record->setAnonymousStructOrUnion(true); 2119 2120 if (D->isLocalClass()) 2121 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Record); 2122 2123 // Forward the mangling number from the template to the instantiated decl. 2124 SemaRef.Context.setManglingNumber(Record, 2125 SemaRef.Context.getManglingNumber(D)); 2126 2127 // See if the old tag was defined along with a declarator. 2128 // If it did, mark the new tag as being associated with that declarator. 2129 if (DeclaratorDecl *DD = SemaRef.Context.getDeclaratorForUnnamedTagDecl(D)) 2130 SemaRef.Context.addDeclaratorForUnnamedTagDecl(Record, DD); 2131 2132 // See if the old tag was defined along with a typedef. 2133 // If it did, mark the new tag as being associated with that typedef. 2134 if (TypedefNameDecl *TND = SemaRef.Context.getTypedefNameForUnnamedTagDecl(D)) 2135 SemaRef.Context.addTypedefNameForUnnamedTagDecl(Record, TND); 2136 2137 Owner->addDecl(Record); 2138 2139 // DR1484 clarifies that the members of a local class are instantiated as part 2140 // of the instantiation of their enclosing entity. 2141 if (D->isCompleteDefinition() && D->isLocalClass()) { 2142 Sema::LocalEagerInstantiationScope LocalInstantiations(SemaRef); 2143 2144 SemaRef.InstantiateClass(D->getLocation(), Record, D, TemplateArgs, 2145 TSK_ImplicitInstantiation, 2146 /*Complain=*/true); 2147 2148 // For nested local classes, we will instantiate the members when we 2149 // reach the end of the outermost (non-nested) local class. 2150 if (!D->isCXXClassMember()) 2151 SemaRef.InstantiateClassMembers(D->getLocation(), Record, TemplateArgs, 2152 TSK_ImplicitInstantiation); 2153 2154 // This class may have local implicit instantiations that need to be 2155 // performed within this scope. 2156 LocalInstantiations.perform(); 2157 } 2158 2159 SemaRef.DiagnoseUnusedNestedTypedefs(Record); 2160 2161 if (IsInjectedClassName) 2162 assert(Record->isInjectedClassName() && "Broken injected-class-name"); 2163 2164 return Record; 2165 } 2166 2167 /// Adjust the given function type for an instantiation of the 2168 /// given declaration, to cope with modifications to the function's type that 2169 /// aren't reflected in the type-source information. 2170 /// 2171 /// \param D The declaration we're instantiating. 2172 /// \param TInfo The already-instantiated type. 2173 static QualType adjustFunctionTypeForInstantiation(ASTContext &Context, 2174 FunctionDecl *D, 2175 TypeSourceInfo *TInfo) { 2176 const FunctionProtoType *OrigFunc 2177 = D->getType()->castAs<FunctionProtoType>(); 2178 const FunctionProtoType *NewFunc 2179 = TInfo->getType()->castAs<FunctionProtoType>(); 2180 if (OrigFunc->getExtInfo() == NewFunc->getExtInfo()) 2181 return TInfo->getType(); 2182 2183 FunctionProtoType::ExtProtoInfo NewEPI = NewFunc->getExtProtoInfo(); 2184 NewEPI.ExtInfo = OrigFunc->getExtInfo(); 2185 return Context.getFunctionType(NewFunc->getReturnType(), 2186 NewFunc->getParamTypes(), NewEPI); 2187 } 2188 2189 /// Normal class members are of more specific types and therefore 2190 /// don't make it here. This function serves three purposes: 2191 /// 1) instantiating function templates 2192 /// 2) substituting friend and local function declarations 2193 /// 3) substituting deduction guide declarations for nested class templates 2194 Decl *TemplateDeclInstantiator::VisitFunctionDecl( 2195 FunctionDecl *D, TemplateParameterList *TemplateParams, 2196 RewriteKind FunctionRewriteKind) { 2197 // Check whether there is already a function template specialization for 2198 // this declaration. 2199 FunctionTemplateDecl *FunctionTemplate = D->getDescribedFunctionTemplate(); 2200 bool isFriend; 2201 if (FunctionTemplate) 2202 isFriend = (FunctionTemplate->getFriendObjectKind() != Decl::FOK_None); 2203 else 2204 isFriend = (D->getFriendObjectKind() != Decl::FOK_None); 2205 2206 // Friend function defined withing class template may stop being function 2207 // definition during AST merges from different modules, in this case decl 2208 // with function body should be used for instantiation. 2209 if (isFriend) { 2210 const FunctionDecl *Defn = nullptr; 2211 if (D->hasBody(Defn)) { 2212 D = const_cast<FunctionDecl *>(Defn); 2213 FunctionTemplate = Defn->getDescribedFunctionTemplate(); 2214 } 2215 } 2216 2217 if (FunctionTemplate && !TemplateParams) { 2218 ArrayRef<TemplateArgument> Innermost = TemplateArgs.getInnermost(); 2219 2220 void *InsertPos = nullptr; 2221 FunctionDecl *SpecFunc 2222 = FunctionTemplate->findSpecialization(Innermost, InsertPos); 2223 2224 // If we already have a function template specialization, return it. 2225 if (SpecFunc) 2226 return SpecFunc; 2227 } 2228 2229 bool MergeWithParentScope = (TemplateParams != nullptr) || 2230 Owner->isFunctionOrMethod() || 2231 !(isa<Decl>(Owner) && 2232 cast<Decl>(Owner)->isDefinedOutsideFunctionOrMethod()); 2233 LocalInstantiationScope Scope(SemaRef, MergeWithParentScope); 2234 2235 ExplicitSpecifier InstantiatedExplicitSpecifier; 2236 if (auto *DGuide = dyn_cast<CXXDeductionGuideDecl>(D)) { 2237 InstantiatedExplicitSpecifier = SemaRef.instantiateExplicitSpecifier( 2238 TemplateArgs, DGuide->getExplicitSpecifier()); 2239 if (InstantiatedExplicitSpecifier.isInvalid()) 2240 return nullptr; 2241 } 2242 2243 SmallVector<ParmVarDecl *, 4> Params; 2244 TypeSourceInfo *TInfo = SubstFunctionType(D, Params); 2245 if (!TInfo) 2246 return nullptr; 2247 QualType T = adjustFunctionTypeForInstantiation(SemaRef.Context, D, TInfo); 2248 2249 if (TemplateParams && TemplateParams->size()) { 2250 auto *LastParam = 2251 dyn_cast<TemplateTypeParmDecl>(TemplateParams->asArray().back()); 2252 if (LastParam && LastParam->isImplicit() && 2253 LastParam->hasTypeConstraint()) { 2254 // In abbreviated templates, the type-constraints of invented template 2255 // type parameters are instantiated with the function type, invalidating 2256 // the TemplateParameterList which relied on the template type parameter 2257 // not having a type constraint. Recreate the TemplateParameterList with 2258 // the updated parameter list. 2259 TemplateParams = TemplateParameterList::Create( 2260 SemaRef.Context, TemplateParams->getTemplateLoc(), 2261 TemplateParams->getLAngleLoc(), TemplateParams->asArray(), 2262 TemplateParams->getRAngleLoc(), TemplateParams->getRequiresClause()); 2263 } 2264 } 2265 2266 NestedNameSpecifierLoc QualifierLoc = D->getQualifierLoc(); 2267 if (QualifierLoc) { 2268 QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, 2269 TemplateArgs); 2270 if (!QualifierLoc) 2271 return nullptr; 2272 } 2273 2274 Expr *TrailingRequiresClause = D->getTrailingRequiresClause(); 2275 2276 // If we're instantiating a local function declaration, put the result 2277 // in the enclosing namespace; otherwise we need to find the instantiated 2278 // context. 2279 DeclContext *DC; 2280 if (D->isLocalExternDecl()) { 2281 DC = Owner; 2282 SemaRef.adjustContextForLocalExternDecl(DC); 2283 } else if (isFriend && QualifierLoc) { 2284 CXXScopeSpec SS; 2285 SS.Adopt(QualifierLoc); 2286 DC = SemaRef.computeDeclContext(SS); 2287 if (!DC) return nullptr; 2288 } else { 2289 DC = SemaRef.FindInstantiatedContext(D->getLocation(), D->getDeclContext(), 2290 TemplateArgs); 2291 } 2292 2293 DeclarationNameInfo NameInfo 2294 = SemaRef.SubstDeclarationNameInfo(D->getNameInfo(), TemplateArgs); 2295 2296 if (FunctionRewriteKind != RewriteKind::None) 2297 adjustForRewrite(FunctionRewriteKind, D, T, TInfo, NameInfo); 2298 2299 FunctionDecl *Function; 2300 if (auto *DGuide = dyn_cast<CXXDeductionGuideDecl>(D)) { 2301 Function = CXXDeductionGuideDecl::Create( 2302 SemaRef.Context, DC, D->getInnerLocStart(), 2303 InstantiatedExplicitSpecifier, NameInfo, T, TInfo, 2304 D->getSourceRange().getEnd(), DGuide->getCorrespondingConstructor(), 2305 DGuide->getDeductionCandidateKind(), TrailingRequiresClause, 2306 DGuide->getSourceDeductionGuide(), 2307 DGuide->getSourceDeductionGuideKind()); 2308 Function->setAccess(D->getAccess()); 2309 } else { 2310 Function = FunctionDecl::Create( 2311 SemaRef.Context, DC, D->getInnerLocStart(), NameInfo, T, TInfo, 2312 D->getCanonicalDecl()->getStorageClass(), D->UsesFPIntrin(), 2313 D->isInlineSpecified(), D->hasWrittenPrototype(), D->getConstexprKind(), 2314 TrailingRequiresClause); 2315 Function->setFriendConstraintRefersToEnclosingTemplate( 2316 D->FriendConstraintRefersToEnclosingTemplate()); 2317 Function->setRangeEnd(D->getSourceRange().getEnd()); 2318 } 2319 2320 if (D->isInlined()) 2321 Function->setImplicitlyInline(); 2322 2323 if (QualifierLoc) 2324 Function->setQualifierInfo(QualifierLoc); 2325 2326 if (D->isLocalExternDecl()) 2327 Function->setLocalExternDecl(); 2328 2329 DeclContext *LexicalDC = Owner; 2330 if (!isFriend && D->isOutOfLine() && !D->isLocalExternDecl()) { 2331 assert(D->getDeclContext()->isFileContext()); 2332 LexicalDC = D->getDeclContext(); 2333 } 2334 else if (D->isLocalExternDecl()) { 2335 LexicalDC = SemaRef.CurContext; 2336 } 2337 2338 Function->setLexicalDeclContext(LexicalDC); 2339 2340 // Attach the parameters 2341 for (unsigned P = 0; P < Params.size(); ++P) 2342 if (Params[P]) 2343 Params[P]->setOwningFunction(Function); 2344 Function->setParams(Params); 2345 2346 if (TrailingRequiresClause) 2347 Function->setTrailingRequiresClause(TrailingRequiresClause); 2348 2349 if (TemplateParams) { 2350 // Our resulting instantiation is actually a function template, since we 2351 // are substituting only the outer template parameters. For example, given 2352 // 2353 // template<typename T> 2354 // struct X { 2355 // template<typename U> friend void f(T, U); 2356 // }; 2357 // 2358 // X<int> x; 2359 // 2360 // We are instantiating the friend function template "f" within X<int>, 2361 // which means substituting int for T, but leaving "f" as a friend function 2362 // template. 2363 // Build the function template itself. 2364 FunctionTemplate = FunctionTemplateDecl::Create(SemaRef.Context, DC, 2365 Function->getLocation(), 2366 Function->getDeclName(), 2367 TemplateParams, Function); 2368 Function->setDescribedFunctionTemplate(FunctionTemplate); 2369 2370 FunctionTemplate->setLexicalDeclContext(LexicalDC); 2371 2372 if (isFriend && D->isThisDeclarationADefinition()) { 2373 FunctionTemplate->setInstantiatedFromMemberTemplate( 2374 D->getDescribedFunctionTemplate()); 2375 } 2376 } else if (FunctionTemplate && 2377 SemaRef.CodeSynthesisContexts.back().Kind != 2378 Sema::CodeSynthesisContext::BuildingDeductionGuides) { 2379 // Record this function template specialization. 2380 ArrayRef<TemplateArgument> Innermost = TemplateArgs.getInnermost(); 2381 Function->setFunctionTemplateSpecialization(FunctionTemplate, 2382 TemplateArgumentList::CreateCopy(SemaRef.Context, 2383 Innermost), 2384 /*InsertPos=*/nullptr); 2385 } else if (FunctionRewriteKind == RewriteKind::None) { 2386 if (isFriend && D->isThisDeclarationADefinition()) { 2387 // Do not connect the friend to the template unless it's actually a 2388 // definition. We don't want non-template functions to be marked as being 2389 // template instantiations. 2390 Function->setInstantiationOfMemberFunction(D, TSK_ImplicitInstantiation); 2391 } else if (!isFriend) { 2392 // If this is not a function template, and this is not a friend (that is, 2393 // this is a locally declared function), save the instantiation 2394 // relationship for the purposes of constraint instantiation. 2395 Function->setInstantiatedFromDecl(D); 2396 } 2397 } 2398 2399 if (isFriend) { 2400 Function->setObjectOfFriendDecl(); 2401 if (FunctionTemplateDecl *FT = Function->getDescribedFunctionTemplate()) 2402 FT->setObjectOfFriendDecl(); 2403 } 2404 2405 if (InitFunctionInstantiation(Function, D)) 2406 Function->setInvalidDecl(); 2407 2408 bool IsExplicitSpecialization = false; 2409 2410 LookupResult Previous( 2411 SemaRef, Function->getDeclName(), SourceLocation(), 2412 D->isLocalExternDecl() ? Sema::LookupRedeclarationWithLinkage 2413 : Sema::LookupOrdinaryName, 2414 D->isLocalExternDecl() ? RedeclarationKind::ForExternalRedeclaration 2415 : SemaRef.forRedeclarationInCurContext()); 2416 2417 if (DependentFunctionTemplateSpecializationInfo *DFTSI = 2418 D->getDependentSpecializationInfo()) { 2419 assert(isFriend && "dependent specialization info on " 2420 "non-member non-friend function?"); 2421 2422 // Instantiate the explicit template arguments. 2423 TemplateArgumentListInfo ExplicitArgs; 2424 if (const auto *ArgsWritten = DFTSI->TemplateArgumentsAsWritten) { 2425 ExplicitArgs.setLAngleLoc(ArgsWritten->getLAngleLoc()); 2426 ExplicitArgs.setRAngleLoc(ArgsWritten->getRAngleLoc()); 2427 if (SemaRef.SubstTemplateArguments(ArgsWritten->arguments(), TemplateArgs, 2428 ExplicitArgs)) 2429 return nullptr; 2430 } 2431 2432 // Map the candidates for the primary template to their instantiations. 2433 for (FunctionTemplateDecl *FTD : DFTSI->getCandidates()) { 2434 if (NamedDecl *ND = 2435 SemaRef.FindInstantiatedDecl(D->getLocation(), FTD, TemplateArgs)) 2436 Previous.addDecl(ND); 2437 else 2438 return nullptr; 2439 } 2440 2441 if (SemaRef.CheckFunctionTemplateSpecialization( 2442 Function, 2443 DFTSI->TemplateArgumentsAsWritten ? &ExplicitArgs : nullptr, 2444 Previous)) 2445 Function->setInvalidDecl(); 2446 2447 IsExplicitSpecialization = true; 2448 } else if (const ASTTemplateArgumentListInfo *ArgsWritten = 2449 D->getTemplateSpecializationArgsAsWritten()) { 2450 // The name of this function was written as a template-id. 2451 SemaRef.LookupQualifiedName(Previous, DC); 2452 2453 // Instantiate the explicit template arguments. 2454 TemplateArgumentListInfo ExplicitArgs(ArgsWritten->getLAngleLoc(), 2455 ArgsWritten->getRAngleLoc()); 2456 if (SemaRef.SubstTemplateArguments(ArgsWritten->arguments(), TemplateArgs, 2457 ExplicitArgs)) 2458 return nullptr; 2459 2460 if (SemaRef.CheckFunctionTemplateSpecialization(Function, 2461 &ExplicitArgs, 2462 Previous)) 2463 Function->setInvalidDecl(); 2464 2465 IsExplicitSpecialization = true; 2466 } else if (TemplateParams || !FunctionTemplate) { 2467 // Look only into the namespace where the friend would be declared to 2468 // find a previous declaration. This is the innermost enclosing namespace, 2469 // as described in ActOnFriendFunctionDecl. 2470 SemaRef.LookupQualifiedName(Previous, DC->getRedeclContext()); 2471 2472 // In C++, the previous declaration we find might be a tag type 2473 // (class or enum). In this case, the new declaration will hide the 2474 // tag type. Note that this does not apply if we're declaring a 2475 // typedef (C++ [dcl.typedef]p4). 2476 if (Previous.isSingleTagDecl()) 2477 Previous.clear(); 2478 2479 // Filter out previous declarations that don't match the scope. The only 2480 // effect this has is to remove declarations found in inline namespaces 2481 // for friend declarations with unqualified names. 2482 if (isFriend && !QualifierLoc) { 2483 SemaRef.FilterLookupForScope(Previous, DC, /*Scope=*/ nullptr, 2484 /*ConsiderLinkage=*/ true, 2485 QualifierLoc.hasQualifier()); 2486 } 2487 } 2488 2489 // Per [temp.inst], default arguments in function declarations at local scope 2490 // are instantiated along with the enclosing declaration. For example: 2491 // 2492 // template<typename T> 2493 // void ft() { 2494 // void f(int = []{ return T::value; }()); 2495 // } 2496 // template void ft<int>(); // error: type 'int' cannot be used prior 2497 // to '::' because it has no members 2498 // 2499 // The error is issued during instantiation of ft<int>() because substitution 2500 // into the default argument fails; the default argument is instantiated even 2501 // though it is never used. 2502 if (Function->isLocalExternDecl()) { 2503 for (ParmVarDecl *PVD : Function->parameters()) { 2504 if (!PVD->hasDefaultArg()) 2505 continue; 2506 if (SemaRef.SubstDefaultArgument(D->getInnerLocStart(), PVD, TemplateArgs)) { 2507 // If substitution fails, the default argument is set to a 2508 // RecoveryExpr that wraps the uninstantiated default argument so 2509 // that downstream diagnostics are omitted. 2510 Expr *UninstExpr = PVD->getUninstantiatedDefaultArg(); 2511 ExprResult ErrorResult = SemaRef.CreateRecoveryExpr( 2512 UninstExpr->getBeginLoc(), UninstExpr->getEndLoc(), 2513 { UninstExpr }, UninstExpr->getType()); 2514 if (ErrorResult.isUsable()) 2515 PVD->setDefaultArg(ErrorResult.get()); 2516 } 2517 } 2518 } 2519 2520 SemaRef.CheckFunctionDeclaration(/*Scope*/ nullptr, Function, Previous, 2521 IsExplicitSpecialization, 2522 Function->isThisDeclarationADefinition()); 2523 2524 // Check the template parameter list against the previous declaration. The 2525 // goal here is to pick up default arguments added since the friend was 2526 // declared; we know the template parameter lists match, since otherwise 2527 // we would not have picked this template as the previous declaration. 2528 if (isFriend && TemplateParams && FunctionTemplate->getPreviousDecl()) { 2529 SemaRef.CheckTemplateParameterList( 2530 TemplateParams, 2531 FunctionTemplate->getPreviousDecl()->getTemplateParameters(), 2532 Function->isThisDeclarationADefinition() 2533 ? Sema::TPC_FriendFunctionTemplateDefinition 2534 : Sema::TPC_FriendFunctionTemplate); 2535 } 2536 2537 // If we're introducing a friend definition after the first use, trigger 2538 // instantiation. 2539 // FIXME: If this is a friend function template definition, we should check 2540 // to see if any specializations have been used. 2541 if (isFriend && D->isThisDeclarationADefinition() && Function->isUsed(false)) { 2542 if (MemberSpecializationInfo *MSInfo = 2543 Function->getMemberSpecializationInfo()) { 2544 if (MSInfo->getPointOfInstantiation().isInvalid()) { 2545 SourceLocation Loc = D->getLocation(); // FIXME 2546 MSInfo->setPointOfInstantiation(Loc); 2547 SemaRef.PendingLocalImplicitInstantiations.push_back( 2548 std::make_pair(Function, Loc)); 2549 } 2550 } 2551 } 2552 2553 if (D->isExplicitlyDefaulted()) { 2554 if (SubstDefaultedFunction(Function, D)) 2555 return nullptr; 2556 } 2557 if (D->isDeleted()) 2558 SemaRef.SetDeclDeleted(Function, D->getLocation(), D->getDeletedMessage()); 2559 2560 NamedDecl *PrincipalDecl = 2561 (TemplateParams ? cast<NamedDecl>(FunctionTemplate) : Function); 2562 2563 // If this declaration lives in a different context from its lexical context, 2564 // add it to the corresponding lookup table. 2565 if (isFriend || 2566 (Function->isLocalExternDecl() && !Function->getPreviousDecl())) 2567 DC->makeDeclVisibleInContext(PrincipalDecl); 2568 2569 if (Function->isOverloadedOperator() && !DC->isRecord() && 2570 PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary)) 2571 PrincipalDecl->setNonMemberOperator(); 2572 2573 return Function; 2574 } 2575 2576 Decl *TemplateDeclInstantiator::VisitCXXMethodDecl( 2577 CXXMethodDecl *D, TemplateParameterList *TemplateParams, 2578 RewriteKind FunctionRewriteKind) { 2579 FunctionTemplateDecl *FunctionTemplate = D->getDescribedFunctionTemplate(); 2580 if (FunctionTemplate && !TemplateParams) { 2581 // We are creating a function template specialization from a function 2582 // template. Check whether there is already a function template 2583 // specialization for this particular set of template arguments. 2584 ArrayRef<TemplateArgument> Innermost = TemplateArgs.getInnermost(); 2585 2586 void *InsertPos = nullptr; 2587 FunctionDecl *SpecFunc 2588 = FunctionTemplate->findSpecialization(Innermost, InsertPos); 2589 2590 // If we already have a function template specialization, return it. 2591 if (SpecFunc) 2592 return SpecFunc; 2593 } 2594 2595 bool isFriend; 2596 if (FunctionTemplate) 2597 isFriend = (FunctionTemplate->getFriendObjectKind() != Decl::FOK_None); 2598 else 2599 isFriend = (D->getFriendObjectKind() != Decl::FOK_None); 2600 2601 bool MergeWithParentScope = (TemplateParams != nullptr) || 2602 !(isa<Decl>(Owner) && 2603 cast<Decl>(Owner)->isDefinedOutsideFunctionOrMethod()); 2604 LocalInstantiationScope Scope(SemaRef, MergeWithParentScope); 2605 2606 Sema::LambdaScopeForCallOperatorInstantiationRAII LambdaScope( 2607 SemaRef, const_cast<CXXMethodDecl *>(D), TemplateArgs, Scope); 2608 2609 // Instantiate enclosing template arguments for friends. 2610 SmallVector<TemplateParameterList *, 4> TempParamLists; 2611 unsigned NumTempParamLists = 0; 2612 if (isFriend && (NumTempParamLists = D->getNumTemplateParameterLists())) { 2613 TempParamLists.resize(NumTempParamLists); 2614 for (unsigned I = 0; I != NumTempParamLists; ++I) { 2615 TemplateParameterList *TempParams = D->getTemplateParameterList(I); 2616 TemplateParameterList *InstParams = SubstTemplateParams(TempParams); 2617 if (!InstParams) 2618 return nullptr; 2619 TempParamLists[I] = InstParams; 2620 } 2621 } 2622 2623 auto InstantiatedExplicitSpecifier = ExplicitSpecifier::getFromDecl(D); 2624 // deduction guides need this 2625 const bool CouldInstantiate = 2626 InstantiatedExplicitSpecifier.getExpr() == nullptr || 2627 !InstantiatedExplicitSpecifier.getExpr()->isValueDependent(); 2628 2629 // Delay the instantiation of the explicit-specifier until after the 2630 // constraints are checked during template argument deduction. 2631 if (CouldInstantiate || 2632 SemaRef.CodeSynthesisContexts.back().Kind != 2633 Sema::CodeSynthesisContext::DeducedTemplateArgumentSubstitution) { 2634 InstantiatedExplicitSpecifier = SemaRef.instantiateExplicitSpecifier( 2635 TemplateArgs, InstantiatedExplicitSpecifier); 2636 2637 if (InstantiatedExplicitSpecifier.isInvalid()) 2638 return nullptr; 2639 } else { 2640 InstantiatedExplicitSpecifier.setKind(ExplicitSpecKind::Unresolved); 2641 } 2642 2643 // Implicit destructors/constructors created for local classes in 2644 // DeclareImplicit* (see SemaDeclCXX.cpp) might not have an associated TSI. 2645 // Unfortunately there isn't enough context in those functions to 2646 // conditionally populate the TSI without breaking non-template related use 2647 // cases. Populate TSIs prior to calling SubstFunctionType to make sure we get 2648 // a proper transformation. 2649 if (isLambdaMethod(D) && !D->getTypeSourceInfo() && 2650 isa<CXXConstructorDecl, CXXDestructorDecl>(D)) { 2651 TypeSourceInfo *TSI = 2652 SemaRef.Context.getTrivialTypeSourceInfo(D->getType()); 2653 D->setTypeSourceInfo(TSI); 2654 } 2655 2656 SmallVector<ParmVarDecl *, 4> Params; 2657 TypeSourceInfo *TInfo = SubstFunctionType(D, Params); 2658 if (!TInfo) 2659 return nullptr; 2660 QualType T = adjustFunctionTypeForInstantiation(SemaRef.Context, D, TInfo); 2661 2662 if (TemplateParams && TemplateParams->size()) { 2663 auto *LastParam = 2664 dyn_cast<TemplateTypeParmDecl>(TemplateParams->asArray().back()); 2665 if (LastParam && LastParam->isImplicit() && 2666 LastParam->hasTypeConstraint()) { 2667 // In abbreviated templates, the type-constraints of invented template 2668 // type parameters are instantiated with the function type, invalidating 2669 // the TemplateParameterList which relied on the template type parameter 2670 // not having a type constraint. Recreate the TemplateParameterList with 2671 // the updated parameter list. 2672 TemplateParams = TemplateParameterList::Create( 2673 SemaRef.Context, TemplateParams->getTemplateLoc(), 2674 TemplateParams->getLAngleLoc(), TemplateParams->asArray(), 2675 TemplateParams->getRAngleLoc(), TemplateParams->getRequiresClause()); 2676 } 2677 } 2678 2679 NestedNameSpecifierLoc QualifierLoc = D->getQualifierLoc(); 2680 if (QualifierLoc) { 2681 QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, 2682 TemplateArgs); 2683 if (!QualifierLoc) 2684 return nullptr; 2685 } 2686 2687 DeclContext *DC = Owner; 2688 if (isFriend) { 2689 if (QualifierLoc) { 2690 CXXScopeSpec SS; 2691 SS.Adopt(QualifierLoc); 2692 DC = SemaRef.computeDeclContext(SS); 2693 2694 if (DC && SemaRef.RequireCompleteDeclContext(SS, DC)) 2695 return nullptr; 2696 } else { 2697 DC = SemaRef.FindInstantiatedContext(D->getLocation(), 2698 D->getDeclContext(), 2699 TemplateArgs); 2700 } 2701 if (!DC) return nullptr; 2702 } 2703 2704 CXXRecordDecl *Record = cast<CXXRecordDecl>(DC); 2705 Expr *TrailingRequiresClause = D->getTrailingRequiresClause(); 2706 2707 DeclarationNameInfo NameInfo 2708 = SemaRef.SubstDeclarationNameInfo(D->getNameInfo(), TemplateArgs); 2709 2710 if (FunctionRewriteKind != RewriteKind::None) 2711 adjustForRewrite(FunctionRewriteKind, D, T, TInfo, NameInfo); 2712 2713 // Build the instantiated method declaration. 2714 CXXMethodDecl *Method = nullptr; 2715 2716 SourceLocation StartLoc = D->getInnerLocStart(); 2717 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) { 2718 Method = CXXConstructorDecl::Create( 2719 SemaRef.Context, Record, StartLoc, NameInfo, T, TInfo, 2720 InstantiatedExplicitSpecifier, Constructor->UsesFPIntrin(), 2721 Constructor->isInlineSpecified(), false, 2722 Constructor->getConstexprKind(), InheritedConstructor(), 2723 TrailingRequiresClause); 2724 Method->setRangeEnd(Constructor->getEndLoc()); 2725 } else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(D)) { 2726 Method = CXXDestructorDecl::Create( 2727 SemaRef.Context, Record, StartLoc, NameInfo, T, TInfo, 2728 Destructor->UsesFPIntrin(), Destructor->isInlineSpecified(), false, 2729 Destructor->getConstexprKind(), TrailingRequiresClause); 2730 Method->setIneligibleOrNotSelected(true); 2731 Method->setRangeEnd(Destructor->getEndLoc()); 2732 Method->setDeclName(SemaRef.Context.DeclarationNames.getCXXDestructorName( 2733 SemaRef.Context.getCanonicalType( 2734 SemaRef.Context.getTypeDeclType(Record)))); 2735 } else if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(D)) { 2736 Method = CXXConversionDecl::Create( 2737 SemaRef.Context, Record, StartLoc, NameInfo, T, TInfo, 2738 Conversion->UsesFPIntrin(), Conversion->isInlineSpecified(), 2739 InstantiatedExplicitSpecifier, Conversion->getConstexprKind(), 2740 Conversion->getEndLoc(), TrailingRequiresClause); 2741 } else { 2742 StorageClass SC = D->isStatic() ? SC_Static : SC_None; 2743 Method = CXXMethodDecl::Create( 2744 SemaRef.Context, Record, StartLoc, NameInfo, T, TInfo, SC, 2745 D->UsesFPIntrin(), D->isInlineSpecified(), D->getConstexprKind(), 2746 D->getEndLoc(), TrailingRequiresClause); 2747 } 2748 2749 if (D->isInlined()) 2750 Method->setImplicitlyInline(); 2751 2752 if (QualifierLoc) 2753 Method->setQualifierInfo(QualifierLoc); 2754 2755 if (TemplateParams) { 2756 // Our resulting instantiation is actually a function template, since we 2757 // are substituting only the outer template parameters. For example, given 2758 // 2759 // template<typename T> 2760 // struct X { 2761 // template<typename U> void f(T, U); 2762 // }; 2763 // 2764 // X<int> x; 2765 // 2766 // We are instantiating the member template "f" within X<int>, which means 2767 // substituting int for T, but leaving "f" as a member function template. 2768 // Build the function template itself. 2769 FunctionTemplate = FunctionTemplateDecl::Create(SemaRef.Context, Record, 2770 Method->getLocation(), 2771 Method->getDeclName(), 2772 TemplateParams, Method); 2773 if (isFriend) { 2774 FunctionTemplate->setLexicalDeclContext(Owner); 2775 FunctionTemplate->setObjectOfFriendDecl(); 2776 } else if (D->isOutOfLine()) 2777 FunctionTemplate->setLexicalDeclContext(D->getLexicalDeclContext()); 2778 Method->setDescribedFunctionTemplate(FunctionTemplate); 2779 } else if (FunctionTemplate) { 2780 // Record this function template specialization. 2781 ArrayRef<TemplateArgument> Innermost = TemplateArgs.getInnermost(); 2782 Method->setFunctionTemplateSpecialization(FunctionTemplate, 2783 TemplateArgumentList::CreateCopy(SemaRef.Context, 2784 Innermost), 2785 /*InsertPos=*/nullptr); 2786 } else if (!isFriend && FunctionRewriteKind == RewriteKind::None) { 2787 // Record that this is an instantiation of a member function. 2788 Method->setInstantiationOfMemberFunction(D, TSK_ImplicitInstantiation); 2789 } 2790 2791 // If we are instantiating a member function defined 2792 // out-of-line, the instantiation will have the same lexical 2793 // context (which will be a namespace scope) as the template. 2794 if (isFriend) { 2795 if (NumTempParamLists) 2796 Method->setTemplateParameterListsInfo( 2797 SemaRef.Context, 2798 llvm::ArrayRef(TempParamLists.data(), NumTempParamLists)); 2799 2800 Method->setLexicalDeclContext(Owner); 2801 Method->setObjectOfFriendDecl(); 2802 } else if (D->isOutOfLine()) 2803 Method->setLexicalDeclContext(D->getLexicalDeclContext()); 2804 2805 // Attach the parameters 2806 for (unsigned P = 0; P < Params.size(); ++P) 2807 Params[P]->setOwningFunction(Method); 2808 Method->setParams(Params); 2809 2810 if (InitMethodInstantiation(Method, D)) 2811 Method->setInvalidDecl(); 2812 2813 LookupResult Previous(SemaRef, NameInfo, Sema::LookupOrdinaryName, 2814 RedeclarationKind::ForExternalRedeclaration); 2815 2816 bool IsExplicitSpecialization = false; 2817 2818 // If the name of this function was written as a template-id, instantiate 2819 // the explicit template arguments. 2820 if (DependentFunctionTemplateSpecializationInfo *DFTSI = 2821 D->getDependentSpecializationInfo()) { 2822 // Instantiate the explicit template arguments. 2823 TemplateArgumentListInfo ExplicitArgs; 2824 if (const auto *ArgsWritten = DFTSI->TemplateArgumentsAsWritten) { 2825 ExplicitArgs.setLAngleLoc(ArgsWritten->getLAngleLoc()); 2826 ExplicitArgs.setRAngleLoc(ArgsWritten->getRAngleLoc()); 2827 if (SemaRef.SubstTemplateArguments(ArgsWritten->arguments(), TemplateArgs, 2828 ExplicitArgs)) 2829 return nullptr; 2830 } 2831 2832 // Map the candidates for the primary template to their instantiations. 2833 for (FunctionTemplateDecl *FTD : DFTSI->getCandidates()) { 2834 if (NamedDecl *ND = 2835 SemaRef.FindInstantiatedDecl(D->getLocation(), FTD, TemplateArgs)) 2836 Previous.addDecl(ND); 2837 else 2838 return nullptr; 2839 } 2840 2841 if (SemaRef.CheckFunctionTemplateSpecialization( 2842 Method, DFTSI->TemplateArgumentsAsWritten ? &ExplicitArgs : nullptr, 2843 Previous)) 2844 Method->setInvalidDecl(); 2845 2846 IsExplicitSpecialization = true; 2847 } else if (const ASTTemplateArgumentListInfo *ArgsWritten = 2848 D->getTemplateSpecializationArgsAsWritten()) { 2849 SemaRef.LookupQualifiedName(Previous, DC); 2850 2851 TemplateArgumentListInfo ExplicitArgs(ArgsWritten->getLAngleLoc(), 2852 ArgsWritten->getRAngleLoc()); 2853 2854 if (SemaRef.SubstTemplateArguments(ArgsWritten->arguments(), TemplateArgs, 2855 ExplicitArgs)) 2856 return nullptr; 2857 2858 if (SemaRef.CheckFunctionTemplateSpecialization(Method, 2859 &ExplicitArgs, 2860 Previous)) 2861 Method->setInvalidDecl(); 2862 2863 IsExplicitSpecialization = true; 2864 } else if (!FunctionTemplate || TemplateParams || isFriend) { 2865 SemaRef.LookupQualifiedName(Previous, Record); 2866 2867 // In C++, the previous declaration we find might be a tag type 2868 // (class or enum). In this case, the new declaration will hide the 2869 // tag type. Note that this does not apply if we're declaring a 2870 // typedef (C++ [dcl.typedef]p4). 2871 if (Previous.isSingleTagDecl()) 2872 Previous.clear(); 2873 } 2874 2875 // Per [temp.inst], default arguments in member functions of local classes 2876 // are instantiated along with the member function declaration. For example: 2877 // 2878 // template<typename T> 2879 // void ft() { 2880 // struct lc { 2881 // int operator()(int p = []{ return T::value; }()); 2882 // }; 2883 // } 2884 // template void ft<int>(); // error: type 'int' cannot be used prior 2885 // to '::'because it has no members 2886 // 2887 // The error is issued during instantiation of ft<int>()::lc::operator() 2888 // because substitution into the default argument fails; the default argument 2889 // is instantiated even though it is never used. 2890 if (D->isInLocalScopeForInstantiation()) { 2891 for (unsigned P = 0; P < Params.size(); ++P) { 2892 if (!Params[P]->hasDefaultArg()) 2893 continue; 2894 if (SemaRef.SubstDefaultArgument(StartLoc, Params[P], TemplateArgs)) { 2895 // If substitution fails, the default argument is set to a 2896 // RecoveryExpr that wraps the uninstantiated default argument so 2897 // that downstream diagnostics are omitted. 2898 Expr *UninstExpr = Params[P]->getUninstantiatedDefaultArg(); 2899 ExprResult ErrorResult = SemaRef.CreateRecoveryExpr( 2900 UninstExpr->getBeginLoc(), UninstExpr->getEndLoc(), 2901 { UninstExpr }, UninstExpr->getType()); 2902 if (ErrorResult.isUsable()) 2903 Params[P]->setDefaultArg(ErrorResult.get()); 2904 } 2905 } 2906 } 2907 2908 SemaRef.CheckFunctionDeclaration(nullptr, Method, Previous, 2909 IsExplicitSpecialization, 2910 Method->isThisDeclarationADefinition()); 2911 2912 if (D->isPureVirtual()) 2913 SemaRef.CheckPureMethod(Method, SourceRange()); 2914 2915 // Propagate access. For a non-friend declaration, the access is 2916 // whatever we're propagating from. For a friend, it should be the 2917 // previous declaration we just found. 2918 if (isFriend && Method->getPreviousDecl()) 2919 Method->setAccess(Method->getPreviousDecl()->getAccess()); 2920 else 2921 Method->setAccess(D->getAccess()); 2922 if (FunctionTemplate) 2923 FunctionTemplate->setAccess(Method->getAccess()); 2924 2925 SemaRef.CheckOverrideControl(Method); 2926 2927 // If a function is defined as defaulted or deleted, mark it as such now. 2928 if (D->isExplicitlyDefaulted()) { 2929 if (SubstDefaultedFunction(Method, D)) 2930 return nullptr; 2931 } 2932 if (D->isDeletedAsWritten()) 2933 SemaRef.SetDeclDeleted(Method, Method->getLocation(), 2934 D->getDeletedMessage()); 2935 2936 // If this is an explicit specialization, mark the implicitly-instantiated 2937 // template specialization as being an explicit specialization too. 2938 // FIXME: Is this necessary? 2939 if (IsExplicitSpecialization && !isFriend) 2940 SemaRef.CompleteMemberSpecialization(Method, Previous); 2941 2942 // If the method is a special member function, we need to mark it as 2943 // ineligible so that Owner->addDecl() won't mark the class as non trivial. 2944 // At the end of the class instantiation, we calculate eligibility again and 2945 // then we adjust trivility if needed. 2946 // We need this check to happen only after the method parameters are set, 2947 // because being e.g. a copy constructor depends on the instantiated 2948 // arguments. 2949 if (auto *Constructor = dyn_cast<CXXConstructorDecl>(Method)) { 2950 if (Constructor->isDefaultConstructor() || 2951 Constructor->isCopyOrMoveConstructor()) 2952 Method->setIneligibleOrNotSelected(true); 2953 } else if (Method->isCopyAssignmentOperator() || 2954 Method->isMoveAssignmentOperator()) { 2955 Method->setIneligibleOrNotSelected(true); 2956 } 2957 2958 // If there's a function template, let our caller handle it. 2959 if (FunctionTemplate) { 2960 // do nothing 2961 2962 // Don't hide a (potentially) valid declaration with an invalid one. 2963 } else if (Method->isInvalidDecl() && !Previous.empty()) { 2964 // do nothing 2965 2966 // Otherwise, check access to friends and make them visible. 2967 } else if (isFriend) { 2968 // We only need to re-check access for methods which we didn't 2969 // manage to match during parsing. 2970 if (!D->getPreviousDecl()) 2971 SemaRef.CheckFriendAccess(Method); 2972 2973 Record->makeDeclVisibleInContext(Method); 2974 2975 // Otherwise, add the declaration. We don't need to do this for 2976 // class-scope specializations because we'll have matched them with 2977 // the appropriate template. 2978 } else { 2979 Owner->addDecl(Method); 2980 } 2981 2982 // PR17480: Honor the used attribute to instantiate member function 2983 // definitions 2984 if (Method->hasAttr<UsedAttr>()) { 2985 if (const auto *A = dyn_cast<CXXRecordDecl>(Owner)) { 2986 SourceLocation Loc; 2987 if (const MemberSpecializationInfo *MSInfo = 2988 A->getMemberSpecializationInfo()) 2989 Loc = MSInfo->getPointOfInstantiation(); 2990 else if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(A)) 2991 Loc = Spec->getPointOfInstantiation(); 2992 SemaRef.MarkFunctionReferenced(Loc, Method); 2993 } 2994 } 2995 2996 return Method; 2997 } 2998 2999 Decl *TemplateDeclInstantiator::VisitCXXConstructorDecl(CXXConstructorDecl *D) { 3000 return VisitCXXMethodDecl(D); 3001 } 3002 3003 Decl *TemplateDeclInstantiator::VisitCXXDestructorDecl(CXXDestructorDecl *D) { 3004 return VisitCXXMethodDecl(D); 3005 } 3006 3007 Decl *TemplateDeclInstantiator::VisitCXXConversionDecl(CXXConversionDecl *D) { 3008 return VisitCXXMethodDecl(D); 3009 } 3010 3011 Decl *TemplateDeclInstantiator::VisitParmVarDecl(ParmVarDecl *D) { 3012 return SemaRef.SubstParmVarDecl(D, TemplateArgs, /*indexAdjustment*/ 0, 3013 std::nullopt, 3014 /*ExpectParameterPack=*/false); 3015 } 3016 3017 Decl *TemplateDeclInstantiator::VisitTemplateTypeParmDecl( 3018 TemplateTypeParmDecl *D) { 3019 assert(D->getTypeForDecl()->isTemplateTypeParmType()); 3020 3021 std::optional<unsigned> NumExpanded; 3022 3023 if (const TypeConstraint *TC = D->getTypeConstraint()) { 3024 if (D->isPackExpansion() && !D->isExpandedParameterPack()) { 3025 assert(TC->getTemplateArgsAsWritten() && 3026 "type parameter can only be an expansion when explicit arguments " 3027 "are specified"); 3028 // The template type parameter pack's type is a pack expansion of types. 3029 // Determine whether we need to expand this parameter pack into separate 3030 // types. 3031 SmallVector<UnexpandedParameterPack, 2> Unexpanded; 3032 for (auto &ArgLoc : TC->getTemplateArgsAsWritten()->arguments()) 3033 SemaRef.collectUnexpandedParameterPacks(ArgLoc, Unexpanded); 3034 3035 // Determine whether the set of unexpanded parameter packs can and should 3036 // be expanded. 3037 bool Expand = true; 3038 bool RetainExpansion = false; 3039 if (SemaRef.CheckParameterPacksForExpansion( 3040 cast<CXXFoldExpr>(TC->getImmediatelyDeclaredConstraint()) 3041 ->getEllipsisLoc(), 3042 SourceRange(TC->getConceptNameLoc(), 3043 TC->hasExplicitTemplateArgs() ? 3044 TC->getTemplateArgsAsWritten()->getRAngleLoc() : 3045 TC->getConceptNameInfo().getEndLoc()), 3046 Unexpanded, TemplateArgs, Expand, RetainExpansion, NumExpanded)) 3047 return nullptr; 3048 } 3049 } 3050 3051 TemplateTypeParmDecl *Inst = TemplateTypeParmDecl::Create( 3052 SemaRef.Context, Owner, D->getBeginLoc(), D->getLocation(), 3053 D->getDepth() - TemplateArgs.getNumSubstitutedLevels(), D->getIndex(), 3054 D->getIdentifier(), D->wasDeclaredWithTypename(), D->isParameterPack(), 3055 D->hasTypeConstraint(), NumExpanded); 3056 3057 Inst->setAccess(AS_public); 3058 Inst->setImplicit(D->isImplicit()); 3059 if (auto *TC = D->getTypeConstraint()) { 3060 if (!D->isImplicit()) { 3061 // Invented template parameter type constraints will be instantiated 3062 // with the corresponding auto-typed parameter as it might reference 3063 // other parameters. 3064 if (SemaRef.SubstTypeConstraint(Inst, TC, TemplateArgs, 3065 EvaluateConstraints)) 3066 return nullptr; 3067 } 3068 } 3069 if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited()) { 3070 TemplateArgumentLoc Output; 3071 if (!SemaRef.SubstTemplateArgument(D->getDefaultArgument(), TemplateArgs, 3072 Output)) 3073 Inst->setDefaultArgument(SemaRef.getASTContext(), Output); 3074 } 3075 3076 // Introduce this template parameter's instantiation into the instantiation 3077 // scope. 3078 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Inst); 3079 3080 return Inst; 3081 } 3082 3083 Decl *TemplateDeclInstantiator::VisitNonTypeTemplateParmDecl( 3084 NonTypeTemplateParmDecl *D) { 3085 // Substitute into the type of the non-type template parameter. 3086 TypeLoc TL = D->getTypeSourceInfo()->getTypeLoc(); 3087 SmallVector<TypeSourceInfo *, 4> ExpandedParameterPackTypesAsWritten; 3088 SmallVector<QualType, 4> ExpandedParameterPackTypes; 3089 bool IsExpandedParameterPack = false; 3090 TypeSourceInfo *DI; 3091 QualType T; 3092 bool Invalid = false; 3093 3094 if (D->isExpandedParameterPack()) { 3095 // The non-type template parameter pack is an already-expanded pack 3096 // expansion of types. Substitute into each of the expanded types. 3097 ExpandedParameterPackTypes.reserve(D->getNumExpansionTypes()); 3098 ExpandedParameterPackTypesAsWritten.reserve(D->getNumExpansionTypes()); 3099 for (unsigned I = 0, N = D->getNumExpansionTypes(); I != N; ++I) { 3100 TypeSourceInfo *NewDI = 3101 SemaRef.SubstType(D->getExpansionTypeSourceInfo(I), TemplateArgs, 3102 D->getLocation(), D->getDeclName()); 3103 if (!NewDI) 3104 return nullptr; 3105 3106 QualType NewT = 3107 SemaRef.CheckNonTypeTemplateParameterType(NewDI, D->getLocation()); 3108 if (NewT.isNull()) 3109 return nullptr; 3110 3111 ExpandedParameterPackTypesAsWritten.push_back(NewDI); 3112 ExpandedParameterPackTypes.push_back(NewT); 3113 } 3114 3115 IsExpandedParameterPack = true; 3116 DI = D->getTypeSourceInfo(); 3117 T = DI->getType(); 3118 } else if (D->isPackExpansion()) { 3119 // The non-type template parameter pack's type is a pack expansion of types. 3120 // Determine whether we need to expand this parameter pack into separate 3121 // types. 3122 PackExpansionTypeLoc Expansion = TL.castAs<PackExpansionTypeLoc>(); 3123 TypeLoc Pattern = Expansion.getPatternLoc(); 3124 SmallVector<UnexpandedParameterPack, 2> Unexpanded; 3125 SemaRef.collectUnexpandedParameterPacks(Pattern, Unexpanded); 3126 3127 // Determine whether the set of unexpanded parameter packs can and should 3128 // be expanded. 3129 bool Expand = true; 3130 bool RetainExpansion = false; 3131 std::optional<unsigned> OrigNumExpansions = 3132 Expansion.getTypePtr()->getNumExpansions(); 3133 std::optional<unsigned> NumExpansions = OrigNumExpansions; 3134 if (SemaRef.CheckParameterPacksForExpansion(Expansion.getEllipsisLoc(), 3135 Pattern.getSourceRange(), 3136 Unexpanded, 3137 TemplateArgs, 3138 Expand, RetainExpansion, 3139 NumExpansions)) 3140 return nullptr; 3141 3142 if (Expand) { 3143 for (unsigned I = 0; I != *NumExpansions; ++I) { 3144 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I); 3145 TypeSourceInfo *NewDI = SemaRef.SubstType(Pattern, TemplateArgs, 3146 D->getLocation(), 3147 D->getDeclName()); 3148 if (!NewDI) 3149 return nullptr; 3150 3151 QualType NewT = 3152 SemaRef.CheckNonTypeTemplateParameterType(NewDI, D->getLocation()); 3153 if (NewT.isNull()) 3154 return nullptr; 3155 3156 ExpandedParameterPackTypesAsWritten.push_back(NewDI); 3157 ExpandedParameterPackTypes.push_back(NewT); 3158 } 3159 3160 // Note that we have an expanded parameter pack. The "type" of this 3161 // expanded parameter pack is the original expansion type, but callers 3162 // will end up using the expanded parameter pack types for type-checking. 3163 IsExpandedParameterPack = true; 3164 DI = D->getTypeSourceInfo(); 3165 T = DI->getType(); 3166 } else { 3167 // We cannot fully expand the pack expansion now, so substitute into the 3168 // pattern and create a new pack expansion type. 3169 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, -1); 3170 TypeSourceInfo *NewPattern = SemaRef.SubstType(Pattern, TemplateArgs, 3171 D->getLocation(), 3172 D->getDeclName()); 3173 if (!NewPattern) 3174 return nullptr; 3175 3176 SemaRef.CheckNonTypeTemplateParameterType(NewPattern, D->getLocation()); 3177 DI = SemaRef.CheckPackExpansion(NewPattern, Expansion.getEllipsisLoc(), 3178 NumExpansions); 3179 if (!DI) 3180 return nullptr; 3181 3182 T = DI->getType(); 3183 } 3184 } else { 3185 // Simple case: substitution into a parameter that is not a parameter pack. 3186 DI = SemaRef.SubstType(D->getTypeSourceInfo(), TemplateArgs, 3187 D->getLocation(), D->getDeclName()); 3188 if (!DI) 3189 return nullptr; 3190 3191 // Check that this type is acceptable for a non-type template parameter. 3192 T = SemaRef.CheckNonTypeTemplateParameterType(DI, D->getLocation()); 3193 if (T.isNull()) { 3194 T = SemaRef.Context.IntTy; 3195 Invalid = true; 3196 } 3197 } 3198 3199 NonTypeTemplateParmDecl *Param; 3200 if (IsExpandedParameterPack) 3201 Param = NonTypeTemplateParmDecl::Create( 3202 SemaRef.Context, Owner, D->getInnerLocStart(), D->getLocation(), 3203 D->getDepth() - TemplateArgs.getNumSubstitutedLevels(), 3204 D->getPosition(), D->getIdentifier(), T, DI, ExpandedParameterPackTypes, 3205 ExpandedParameterPackTypesAsWritten); 3206 else 3207 Param = NonTypeTemplateParmDecl::Create( 3208 SemaRef.Context, Owner, D->getInnerLocStart(), D->getLocation(), 3209 D->getDepth() - TemplateArgs.getNumSubstitutedLevels(), 3210 D->getPosition(), D->getIdentifier(), T, D->isParameterPack(), DI); 3211 3212 if (AutoTypeLoc AutoLoc = DI->getTypeLoc().getContainedAutoTypeLoc()) 3213 if (AutoLoc.isConstrained()) { 3214 SourceLocation EllipsisLoc; 3215 if (IsExpandedParameterPack) 3216 EllipsisLoc = 3217 DI->getTypeLoc().getAs<PackExpansionTypeLoc>().getEllipsisLoc(); 3218 else if (auto *Constraint = dyn_cast_if_present<CXXFoldExpr>( 3219 D->getPlaceholderTypeConstraint())) 3220 EllipsisLoc = Constraint->getEllipsisLoc(); 3221 // Note: We attach the uninstantiated constriant here, so that it can be 3222 // instantiated relative to the top level, like all our other 3223 // constraints. 3224 if (SemaRef.AttachTypeConstraint(AutoLoc, /*NewConstrainedParm=*/Param, 3225 /*OrigConstrainedParm=*/D, EllipsisLoc)) 3226 Invalid = true; 3227 } 3228 3229 Param->setAccess(AS_public); 3230 Param->setImplicit(D->isImplicit()); 3231 if (Invalid) 3232 Param->setInvalidDecl(); 3233 3234 if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited()) { 3235 EnterExpressionEvaluationContext ConstantEvaluated( 3236 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); 3237 TemplateArgumentLoc Result; 3238 if (!SemaRef.SubstTemplateArgument(D->getDefaultArgument(), TemplateArgs, 3239 Result)) 3240 Param->setDefaultArgument(SemaRef.Context, Result); 3241 } 3242 3243 // Introduce this template parameter's instantiation into the instantiation 3244 // scope. 3245 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Param); 3246 return Param; 3247 } 3248 3249 static void collectUnexpandedParameterPacks( 3250 Sema &S, 3251 TemplateParameterList *Params, 3252 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded) { 3253 for (const auto &P : *Params) { 3254 if (P->isTemplateParameterPack()) 3255 continue; 3256 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) 3257 S.collectUnexpandedParameterPacks(NTTP->getTypeSourceInfo()->getTypeLoc(), 3258 Unexpanded); 3259 if (TemplateTemplateParmDecl *TTP = dyn_cast<TemplateTemplateParmDecl>(P)) 3260 collectUnexpandedParameterPacks(S, TTP->getTemplateParameters(), 3261 Unexpanded); 3262 } 3263 } 3264 3265 Decl * 3266 TemplateDeclInstantiator::VisitTemplateTemplateParmDecl( 3267 TemplateTemplateParmDecl *D) { 3268 // Instantiate the template parameter list of the template template parameter. 3269 TemplateParameterList *TempParams = D->getTemplateParameters(); 3270 TemplateParameterList *InstParams; 3271 SmallVector<TemplateParameterList*, 8> ExpandedParams; 3272 3273 bool IsExpandedParameterPack = false; 3274 3275 if (D->isExpandedParameterPack()) { 3276 // The template template parameter pack is an already-expanded pack 3277 // expansion of template parameters. Substitute into each of the expanded 3278 // parameters. 3279 ExpandedParams.reserve(D->getNumExpansionTemplateParameters()); 3280 for (unsigned I = 0, N = D->getNumExpansionTemplateParameters(); 3281 I != N; ++I) { 3282 LocalInstantiationScope Scope(SemaRef); 3283 TemplateParameterList *Expansion = 3284 SubstTemplateParams(D->getExpansionTemplateParameters(I)); 3285 if (!Expansion) 3286 return nullptr; 3287 ExpandedParams.push_back(Expansion); 3288 } 3289 3290 IsExpandedParameterPack = true; 3291 InstParams = TempParams; 3292 } else if (D->isPackExpansion()) { 3293 // The template template parameter pack expands to a pack of template 3294 // template parameters. Determine whether we need to expand this parameter 3295 // pack into separate parameters. 3296 SmallVector<UnexpandedParameterPack, 2> Unexpanded; 3297 collectUnexpandedParameterPacks(SemaRef, D->getTemplateParameters(), 3298 Unexpanded); 3299 3300 // Determine whether the set of unexpanded parameter packs can and should 3301 // be expanded. 3302 bool Expand = true; 3303 bool RetainExpansion = false; 3304 std::optional<unsigned> NumExpansions; 3305 if (SemaRef.CheckParameterPacksForExpansion(D->getLocation(), 3306 TempParams->getSourceRange(), 3307 Unexpanded, 3308 TemplateArgs, 3309 Expand, RetainExpansion, 3310 NumExpansions)) 3311 return nullptr; 3312 3313 if (Expand) { 3314 for (unsigned I = 0; I != *NumExpansions; ++I) { 3315 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I); 3316 LocalInstantiationScope Scope(SemaRef); 3317 TemplateParameterList *Expansion = SubstTemplateParams(TempParams); 3318 if (!Expansion) 3319 return nullptr; 3320 ExpandedParams.push_back(Expansion); 3321 } 3322 3323 // Note that we have an expanded parameter pack. The "type" of this 3324 // expanded parameter pack is the original expansion type, but callers 3325 // will end up using the expanded parameter pack types for type-checking. 3326 IsExpandedParameterPack = true; 3327 InstParams = TempParams; 3328 } else { 3329 // We cannot fully expand the pack expansion now, so just substitute 3330 // into the pattern. 3331 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, -1); 3332 3333 LocalInstantiationScope Scope(SemaRef); 3334 InstParams = SubstTemplateParams(TempParams); 3335 if (!InstParams) 3336 return nullptr; 3337 } 3338 } else { 3339 // Perform the actual substitution of template parameters within a new, 3340 // local instantiation scope. 3341 LocalInstantiationScope Scope(SemaRef); 3342 InstParams = SubstTemplateParams(TempParams); 3343 if (!InstParams) 3344 return nullptr; 3345 } 3346 3347 // Build the template template parameter. 3348 TemplateTemplateParmDecl *Param; 3349 if (IsExpandedParameterPack) 3350 Param = TemplateTemplateParmDecl::Create( 3351 SemaRef.Context, Owner, D->getLocation(), 3352 D->getDepth() - TemplateArgs.getNumSubstitutedLevels(), 3353 D->getPosition(), D->getIdentifier(), D->wasDeclaredWithTypename(), 3354 InstParams, ExpandedParams); 3355 else 3356 Param = TemplateTemplateParmDecl::Create( 3357 SemaRef.Context, Owner, D->getLocation(), 3358 D->getDepth() - TemplateArgs.getNumSubstitutedLevels(), 3359 D->getPosition(), D->isParameterPack(), D->getIdentifier(), 3360 D->wasDeclaredWithTypename(), InstParams); 3361 if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited()) { 3362 NestedNameSpecifierLoc QualifierLoc = 3363 D->getDefaultArgument().getTemplateQualifierLoc(); 3364 QualifierLoc = 3365 SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgs); 3366 TemplateName TName = SemaRef.SubstTemplateName( 3367 QualifierLoc, D->getDefaultArgument().getArgument().getAsTemplate(), 3368 D->getDefaultArgument().getTemplateNameLoc(), TemplateArgs); 3369 if (!TName.isNull()) 3370 Param->setDefaultArgument( 3371 SemaRef.Context, 3372 TemplateArgumentLoc(SemaRef.Context, TemplateArgument(TName), 3373 D->getDefaultArgument().getTemplateQualifierLoc(), 3374 D->getDefaultArgument().getTemplateNameLoc())); 3375 } 3376 Param->setAccess(AS_public); 3377 Param->setImplicit(D->isImplicit()); 3378 3379 // Introduce this template parameter's instantiation into the instantiation 3380 // scope. 3381 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Param); 3382 3383 return Param; 3384 } 3385 3386 Decl *TemplateDeclInstantiator::VisitUsingDirectiveDecl(UsingDirectiveDecl *D) { 3387 // Using directives are never dependent (and never contain any types or 3388 // expressions), so they require no explicit instantiation work. 3389 3390 UsingDirectiveDecl *Inst 3391 = UsingDirectiveDecl::Create(SemaRef.Context, Owner, D->getLocation(), 3392 D->getNamespaceKeyLocation(), 3393 D->getQualifierLoc(), 3394 D->getIdentLocation(), 3395 D->getNominatedNamespace(), 3396 D->getCommonAncestor()); 3397 3398 // Add the using directive to its declaration context 3399 // only if this is not a function or method. 3400 if (!Owner->isFunctionOrMethod()) 3401 Owner->addDecl(Inst); 3402 3403 return Inst; 3404 } 3405 3406 Decl *TemplateDeclInstantiator::VisitBaseUsingDecls(BaseUsingDecl *D, 3407 BaseUsingDecl *Inst, 3408 LookupResult *Lookup) { 3409 3410 bool isFunctionScope = Owner->isFunctionOrMethod(); 3411 3412 for (auto *Shadow : D->shadows()) { 3413 // FIXME: UsingShadowDecl doesn't preserve its immediate target, so 3414 // reconstruct it in the case where it matters. Hm, can we extract it from 3415 // the DeclSpec when parsing and save it in the UsingDecl itself? 3416 NamedDecl *OldTarget = Shadow->getTargetDecl(); 3417 if (auto *CUSD = dyn_cast<ConstructorUsingShadowDecl>(Shadow)) 3418 if (auto *BaseShadow = CUSD->getNominatedBaseClassShadowDecl()) 3419 OldTarget = BaseShadow; 3420 3421 NamedDecl *InstTarget = nullptr; 3422 if (auto *EmptyD = 3423 dyn_cast<UnresolvedUsingIfExistsDecl>(Shadow->getTargetDecl())) { 3424 InstTarget = UnresolvedUsingIfExistsDecl::Create( 3425 SemaRef.Context, Owner, EmptyD->getLocation(), EmptyD->getDeclName()); 3426 } else { 3427 InstTarget = cast_or_null<NamedDecl>(SemaRef.FindInstantiatedDecl( 3428 Shadow->getLocation(), OldTarget, TemplateArgs)); 3429 } 3430 if (!InstTarget) 3431 return nullptr; 3432 3433 UsingShadowDecl *PrevDecl = nullptr; 3434 if (Lookup && 3435 SemaRef.CheckUsingShadowDecl(Inst, InstTarget, *Lookup, PrevDecl)) 3436 continue; 3437 3438 if (UsingShadowDecl *OldPrev = getPreviousDeclForInstantiation(Shadow)) 3439 PrevDecl = cast_or_null<UsingShadowDecl>(SemaRef.FindInstantiatedDecl( 3440 Shadow->getLocation(), OldPrev, TemplateArgs)); 3441 3442 UsingShadowDecl *InstShadow = SemaRef.BuildUsingShadowDecl( 3443 /*Scope*/ nullptr, Inst, InstTarget, PrevDecl); 3444 SemaRef.Context.setInstantiatedFromUsingShadowDecl(InstShadow, Shadow); 3445 3446 if (isFunctionScope) 3447 SemaRef.CurrentInstantiationScope->InstantiatedLocal(Shadow, InstShadow); 3448 } 3449 3450 return Inst; 3451 } 3452 3453 Decl *TemplateDeclInstantiator::VisitUsingDecl(UsingDecl *D) { 3454 3455 // The nested name specifier may be dependent, for example 3456 // template <typename T> struct t { 3457 // struct s1 { T f1(); }; 3458 // struct s2 : s1 { using s1::f1; }; 3459 // }; 3460 // template struct t<int>; 3461 // Here, in using s1::f1, s1 refers to t<T>::s1; 3462 // we need to substitute for t<int>::s1. 3463 NestedNameSpecifierLoc QualifierLoc 3464 = SemaRef.SubstNestedNameSpecifierLoc(D->getQualifierLoc(), 3465 TemplateArgs); 3466 if (!QualifierLoc) 3467 return nullptr; 3468 3469 // For an inheriting constructor declaration, the name of the using 3470 // declaration is the name of a constructor in this class, not in the 3471 // base class. 3472 DeclarationNameInfo NameInfo = D->getNameInfo(); 3473 if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) 3474 if (auto *RD = dyn_cast<CXXRecordDecl>(SemaRef.CurContext)) 3475 NameInfo.setName(SemaRef.Context.DeclarationNames.getCXXConstructorName( 3476 SemaRef.Context.getCanonicalType(SemaRef.Context.getRecordType(RD)))); 3477 3478 // We only need to do redeclaration lookups if we're in a class scope (in 3479 // fact, it's not really even possible in non-class scopes). 3480 bool CheckRedeclaration = Owner->isRecord(); 3481 LookupResult Prev(SemaRef, NameInfo, Sema::LookupUsingDeclName, 3482 RedeclarationKind::ForVisibleRedeclaration); 3483 3484 UsingDecl *NewUD = UsingDecl::Create(SemaRef.Context, Owner, 3485 D->getUsingLoc(), 3486 QualifierLoc, 3487 NameInfo, 3488 D->hasTypename()); 3489 3490 CXXScopeSpec SS; 3491 SS.Adopt(QualifierLoc); 3492 if (CheckRedeclaration) { 3493 Prev.setHideTags(false); 3494 SemaRef.LookupQualifiedName(Prev, Owner); 3495 3496 // Check for invalid redeclarations. 3497 if (SemaRef.CheckUsingDeclRedeclaration(D->getUsingLoc(), 3498 D->hasTypename(), SS, 3499 D->getLocation(), Prev)) 3500 NewUD->setInvalidDecl(); 3501 } 3502 3503 if (!NewUD->isInvalidDecl() && 3504 SemaRef.CheckUsingDeclQualifier(D->getUsingLoc(), D->hasTypename(), SS, 3505 NameInfo, D->getLocation(), nullptr, D)) 3506 NewUD->setInvalidDecl(); 3507 3508 SemaRef.Context.setInstantiatedFromUsingDecl(NewUD, D); 3509 NewUD->setAccess(D->getAccess()); 3510 Owner->addDecl(NewUD); 3511 3512 // Don't process the shadow decls for an invalid decl. 3513 if (NewUD->isInvalidDecl()) 3514 return NewUD; 3515 3516 // If the using scope was dependent, or we had dependent bases, we need to 3517 // recheck the inheritance 3518 if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) 3519 SemaRef.CheckInheritingConstructorUsingDecl(NewUD); 3520 3521 return VisitBaseUsingDecls(D, NewUD, CheckRedeclaration ? &Prev : nullptr); 3522 } 3523 3524 Decl *TemplateDeclInstantiator::VisitUsingEnumDecl(UsingEnumDecl *D) { 3525 // Cannot be a dependent type, but still could be an instantiation 3526 EnumDecl *EnumD = cast_or_null<EnumDecl>(SemaRef.FindInstantiatedDecl( 3527 D->getLocation(), D->getEnumDecl(), TemplateArgs)); 3528 3529 if (SemaRef.RequireCompleteEnumDecl(EnumD, EnumD->getLocation())) 3530 return nullptr; 3531 3532 TypeSourceInfo *TSI = SemaRef.SubstType(D->getEnumType(), TemplateArgs, 3533 D->getLocation(), D->getDeclName()); 3534 3535 if (!TSI) 3536 return nullptr; 3537 3538 UsingEnumDecl *NewUD = 3539 UsingEnumDecl::Create(SemaRef.Context, Owner, D->getUsingLoc(), 3540 D->getEnumLoc(), D->getLocation(), TSI); 3541 3542 SemaRef.Context.setInstantiatedFromUsingEnumDecl(NewUD, D); 3543 NewUD->setAccess(D->getAccess()); 3544 Owner->addDecl(NewUD); 3545 3546 // Don't process the shadow decls for an invalid decl. 3547 if (NewUD->isInvalidDecl()) 3548 return NewUD; 3549 3550 // We don't have to recheck for duplication of the UsingEnumDecl itself, as it 3551 // cannot be dependent, and will therefore have been checked during template 3552 // definition. 3553 3554 return VisitBaseUsingDecls(D, NewUD, nullptr); 3555 } 3556 3557 Decl *TemplateDeclInstantiator::VisitUsingShadowDecl(UsingShadowDecl *D) { 3558 // Ignore these; we handle them in bulk when processing the UsingDecl. 3559 return nullptr; 3560 } 3561 3562 Decl *TemplateDeclInstantiator::VisitConstructorUsingShadowDecl( 3563 ConstructorUsingShadowDecl *D) { 3564 // Ignore these; we handle them in bulk when processing the UsingDecl. 3565 return nullptr; 3566 } 3567 3568 template <typename T> 3569 Decl *TemplateDeclInstantiator::instantiateUnresolvedUsingDecl( 3570 T *D, bool InstantiatingPackElement) { 3571 // If this is a pack expansion, expand it now. 3572 if (D->isPackExpansion() && !InstantiatingPackElement) { 3573 SmallVector<UnexpandedParameterPack, 2> Unexpanded; 3574 SemaRef.collectUnexpandedParameterPacks(D->getQualifierLoc(), Unexpanded); 3575 SemaRef.collectUnexpandedParameterPacks(D->getNameInfo(), Unexpanded); 3576 3577 // Determine whether the set of unexpanded parameter packs can and should 3578 // be expanded. 3579 bool Expand = true; 3580 bool RetainExpansion = false; 3581 std::optional<unsigned> NumExpansions; 3582 if (SemaRef.CheckParameterPacksForExpansion( 3583 D->getEllipsisLoc(), D->getSourceRange(), Unexpanded, TemplateArgs, 3584 Expand, RetainExpansion, NumExpansions)) 3585 return nullptr; 3586 3587 // This declaration cannot appear within a function template signature, 3588 // so we can't have a partial argument list for a parameter pack. 3589 assert(!RetainExpansion && 3590 "should never need to retain an expansion for UsingPackDecl"); 3591 3592 if (!Expand) { 3593 // We cannot fully expand the pack expansion now, so substitute into the 3594 // pattern and create a new pack expansion. 3595 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, -1); 3596 return instantiateUnresolvedUsingDecl(D, true); 3597 } 3598 3599 // Within a function, we don't have any normal way to check for conflicts 3600 // between shadow declarations from different using declarations in the 3601 // same pack expansion, but this is always ill-formed because all expansions 3602 // must produce (conflicting) enumerators. 3603 // 3604 // Sadly we can't just reject this in the template definition because it 3605 // could be valid if the pack is empty or has exactly one expansion. 3606 if (D->getDeclContext()->isFunctionOrMethod() && *NumExpansions > 1) { 3607 SemaRef.Diag(D->getEllipsisLoc(), 3608 diag::err_using_decl_redeclaration_expansion); 3609 return nullptr; 3610 } 3611 3612 // Instantiate the slices of this pack and build a UsingPackDecl. 3613 SmallVector<NamedDecl*, 8> Expansions; 3614 for (unsigned I = 0; I != *NumExpansions; ++I) { 3615 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I); 3616 Decl *Slice = instantiateUnresolvedUsingDecl(D, true); 3617 if (!Slice) 3618 return nullptr; 3619 // Note that we can still get unresolved using declarations here, if we 3620 // had arguments for all packs but the pattern also contained other 3621 // template arguments (this only happens during partial substitution, eg 3622 // into the body of a generic lambda in a function template). 3623 Expansions.push_back(cast<NamedDecl>(Slice)); 3624 } 3625 3626 auto *NewD = SemaRef.BuildUsingPackDecl(D, Expansions); 3627 if (isDeclWithinFunction(D)) 3628 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewD); 3629 return NewD; 3630 } 3631 3632 UnresolvedUsingTypenameDecl *TD = dyn_cast<UnresolvedUsingTypenameDecl>(D); 3633 SourceLocation TypenameLoc = TD ? TD->getTypenameLoc() : SourceLocation(); 3634 3635 NestedNameSpecifierLoc QualifierLoc 3636 = SemaRef.SubstNestedNameSpecifierLoc(D->getQualifierLoc(), 3637 TemplateArgs); 3638 if (!QualifierLoc) 3639 return nullptr; 3640 3641 CXXScopeSpec SS; 3642 SS.Adopt(QualifierLoc); 3643 3644 DeclarationNameInfo NameInfo 3645 = SemaRef.SubstDeclarationNameInfo(D->getNameInfo(), TemplateArgs); 3646 3647 // Produce a pack expansion only if we're not instantiating a particular 3648 // slice of a pack expansion. 3649 bool InstantiatingSlice = D->getEllipsisLoc().isValid() && 3650 SemaRef.ArgumentPackSubstitutionIndex != -1; 3651 SourceLocation EllipsisLoc = 3652 InstantiatingSlice ? SourceLocation() : D->getEllipsisLoc(); 3653 3654 bool IsUsingIfExists = D->template hasAttr<UsingIfExistsAttr>(); 3655 NamedDecl *UD = SemaRef.BuildUsingDeclaration( 3656 /*Scope*/ nullptr, D->getAccess(), D->getUsingLoc(), 3657 /*HasTypename*/ TD, TypenameLoc, SS, NameInfo, EllipsisLoc, 3658 ParsedAttributesView(), 3659 /*IsInstantiation*/ true, IsUsingIfExists); 3660 if (UD) { 3661 SemaRef.InstantiateAttrs(TemplateArgs, D, UD); 3662 SemaRef.Context.setInstantiatedFromUsingDecl(UD, D); 3663 } 3664 3665 return UD; 3666 } 3667 3668 Decl *TemplateDeclInstantiator::VisitUnresolvedUsingTypenameDecl( 3669 UnresolvedUsingTypenameDecl *D) { 3670 return instantiateUnresolvedUsingDecl(D); 3671 } 3672 3673 Decl *TemplateDeclInstantiator::VisitUnresolvedUsingValueDecl( 3674 UnresolvedUsingValueDecl *D) { 3675 return instantiateUnresolvedUsingDecl(D); 3676 } 3677 3678 Decl *TemplateDeclInstantiator::VisitUnresolvedUsingIfExistsDecl( 3679 UnresolvedUsingIfExistsDecl *D) { 3680 llvm_unreachable("referring to unresolved decl out of UsingShadowDecl"); 3681 } 3682 3683 Decl *TemplateDeclInstantiator::VisitUsingPackDecl(UsingPackDecl *D) { 3684 SmallVector<NamedDecl*, 8> Expansions; 3685 for (auto *UD : D->expansions()) { 3686 if (NamedDecl *NewUD = 3687 SemaRef.FindInstantiatedDecl(D->getLocation(), UD, TemplateArgs)) 3688 Expansions.push_back(NewUD); 3689 else 3690 return nullptr; 3691 } 3692 3693 auto *NewD = SemaRef.BuildUsingPackDecl(D, Expansions); 3694 if (isDeclWithinFunction(D)) 3695 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewD); 3696 return NewD; 3697 } 3698 3699 Decl *TemplateDeclInstantiator::VisitOMPThreadPrivateDecl( 3700 OMPThreadPrivateDecl *D) { 3701 SmallVector<Expr *, 5> Vars; 3702 for (auto *I : D->varlist()) { 3703 Expr *Var = SemaRef.SubstExpr(I, TemplateArgs).get(); 3704 assert(isa<DeclRefExpr>(Var) && "threadprivate arg is not a DeclRefExpr"); 3705 Vars.push_back(Var); 3706 } 3707 3708 OMPThreadPrivateDecl *TD = 3709 SemaRef.OpenMP().CheckOMPThreadPrivateDecl(D->getLocation(), Vars); 3710 3711 TD->setAccess(AS_public); 3712 Owner->addDecl(TD); 3713 3714 return TD; 3715 } 3716 3717 Decl *TemplateDeclInstantiator::VisitOMPAllocateDecl(OMPAllocateDecl *D) { 3718 SmallVector<Expr *, 5> Vars; 3719 for (auto *I : D->varlist()) { 3720 Expr *Var = SemaRef.SubstExpr(I, TemplateArgs).get(); 3721 assert(isa<DeclRefExpr>(Var) && "allocate arg is not a DeclRefExpr"); 3722 Vars.push_back(Var); 3723 } 3724 SmallVector<OMPClause *, 4> Clauses; 3725 // Copy map clauses from the original mapper. 3726 for (OMPClause *C : D->clauselists()) { 3727 OMPClause *IC = nullptr; 3728 if (auto *AC = dyn_cast<OMPAllocatorClause>(C)) { 3729 ExprResult NewE = SemaRef.SubstExpr(AC->getAllocator(), TemplateArgs); 3730 if (!NewE.isUsable()) 3731 continue; 3732 IC = SemaRef.OpenMP().ActOnOpenMPAllocatorClause( 3733 NewE.get(), AC->getBeginLoc(), AC->getLParenLoc(), AC->getEndLoc()); 3734 } else if (auto *AC = dyn_cast<OMPAlignClause>(C)) { 3735 ExprResult NewE = SemaRef.SubstExpr(AC->getAlignment(), TemplateArgs); 3736 if (!NewE.isUsable()) 3737 continue; 3738 IC = SemaRef.OpenMP().ActOnOpenMPAlignClause( 3739 NewE.get(), AC->getBeginLoc(), AC->getLParenLoc(), AC->getEndLoc()); 3740 // If align clause value ends up being invalid, this can end up null. 3741 if (!IC) 3742 continue; 3743 } 3744 Clauses.push_back(IC); 3745 } 3746 3747 Sema::DeclGroupPtrTy Res = SemaRef.OpenMP().ActOnOpenMPAllocateDirective( 3748 D->getLocation(), Vars, Clauses, Owner); 3749 if (Res.get().isNull()) 3750 return nullptr; 3751 return Res.get().getSingleDecl(); 3752 } 3753 3754 Decl *TemplateDeclInstantiator::VisitOMPRequiresDecl(OMPRequiresDecl *D) { 3755 llvm_unreachable( 3756 "Requires directive cannot be instantiated within a dependent context"); 3757 } 3758 3759 Decl *TemplateDeclInstantiator::VisitOMPDeclareReductionDecl( 3760 OMPDeclareReductionDecl *D) { 3761 // Instantiate type and check if it is allowed. 3762 const bool RequiresInstantiation = 3763 D->getType()->isDependentType() || 3764 D->getType()->isInstantiationDependentType() || 3765 D->getType()->containsUnexpandedParameterPack(); 3766 QualType SubstReductionType; 3767 if (RequiresInstantiation) { 3768 SubstReductionType = SemaRef.OpenMP().ActOnOpenMPDeclareReductionType( 3769 D->getLocation(), 3770 ParsedType::make(SemaRef.SubstType( 3771 D->getType(), TemplateArgs, D->getLocation(), DeclarationName()))); 3772 } else { 3773 SubstReductionType = D->getType(); 3774 } 3775 if (SubstReductionType.isNull()) 3776 return nullptr; 3777 Expr *Combiner = D->getCombiner(); 3778 Expr *Init = D->getInitializer(); 3779 bool IsCorrect = true; 3780 // Create instantiated copy. 3781 std::pair<QualType, SourceLocation> ReductionTypes[] = { 3782 std::make_pair(SubstReductionType, D->getLocation())}; 3783 auto *PrevDeclInScope = D->getPrevDeclInScope(); 3784 if (PrevDeclInScope && !PrevDeclInScope->isInvalidDecl()) { 3785 PrevDeclInScope = cast<OMPDeclareReductionDecl>( 3786 cast<Decl *>(*SemaRef.CurrentInstantiationScope->findInstantiationOf( 3787 PrevDeclInScope))); 3788 } 3789 auto DRD = SemaRef.OpenMP().ActOnOpenMPDeclareReductionDirectiveStart( 3790 /*S=*/nullptr, Owner, D->getDeclName(), ReductionTypes, D->getAccess(), 3791 PrevDeclInScope); 3792 auto *NewDRD = cast<OMPDeclareReductionDecl>(DRD.get().getSingleDecl()); 3793 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewDRD); 3794 Expr *SubstCombiner = nullptr; 3795 Expr *SubstInitializer = nullptr; 3796 // Combiners instantiation sequence. 3797 if (Combiner) { 3798 SemaRef.OpenMP().ActOnOpenMPDeclareReductionCombinerStart( 3799 /*S=*/nullptr, NewDRD); 3800 SemaRef.CurrentInstantiationScope->InstantiatedLocal( 3801 cast<DeclRefExpr>(D->getCombinerIn())->getDecl(), 3802 cast<DeclRefExpr>(NewDRD->getCombinerIn())->getDecl()); 3803 SemaRef.CurrentInstantiationScope->InstantiatedLocal( 3804 cast<DeclRefExpr>(D->getCombinerOut())->getDecl(), 3805 cast<DeclRefExpr>(NewDRD->getCombinerOut())->getDecl()); 3806 auto *ThisContext = dyn_cast_or_null<CXXRecordDecl>(Owner); 3807 Sema::CXXThisScopeRAII ThisScope(SemaRef, ThisContext, Qualifiers(), 3808 ThisContext); 3809 SubstCombiner = SemaRef.SubstExpr(Combiner, TemplateArgs).get(); 3810 SemaRef.OpenMP().ActOnOpenMPDeclareReductionCombinerEnd(NewDRD, 3811 SubstCombiner); 3812 } 3813 // Initializers instantiation sequence. 3814 if (Init) { 3815 VarDecl *OmpPrivParm = 3816 SemaRef.OpenMP().ActOnOpenMPDeclareReductionInitializerStart( 3817 /*S=*/nullptr, NewDRD); 3818 SemaRef.CurrentInstantiationScope->InstantiatedLocal( 3819 cast<DeclRefExpr>(D->getInitOrig())->getDecl(), 3820 cast<DeclRefExpr>(NewDRD->getInitOrig())->getDecl()); 3821 SemaRef.CurrentInstantiationScope->InstantiatedLocal( 3822 cast<DeclRefExpr>(D->getInitPriv())->getDecl(), 3823 cast<DeclRefExpr>(NewDRD->getInitPriv())->getDecl()); 3824 if (D->getInitializerKind() == OMPDeclareReductionInitKind::Call) { 3825 SubstInitializer = SemaRef.SubstExpr(Init, TemplateArgs).get(); 3826 } else { 3827 auto *OldPrivParm = 3828 cast<VarDecl>(cast<DeclRefExpr>(D->getInitPriv())->getDecl()); 3829 IsCorrect = IsCorrect && OldPrivParm->hasInit(); 3830 if (IsCorrect) 3831 SemaRef.InstantiateVariableInitializer(OmpPrivParm, OldPrivParm, 3832 TemplateArgs); 3833 } 3834 SemaRef.OpenMP().ActOnOpenMPDeclareReductionInitializerEnd( 3835 NewDRD, SubstInitializer, OmpPrivParm); 3836 } 3837 IsCorrect = IsCorrect && SubstCombiner && 3838 (!Init || 3839 (D->getInitializerKind() == OMPDeclareReductionInitKind::Call && 3840 SubstInitializer) || 3841 (D->getInitializerKind() != OMPDeclareReductionInitKind::Call && 3842 !SubstInitializer)); 3843 3844 (void)SemaRef.OpenMP().ActOnOpenMPDeclareReductionDirectiveEnd( 3845 /*S=*/nullptr, DRD, IsCorrect && !D->isInvalidDecl()); 3846 3847 return NewDRD; 3848 } 3849 3850 Decl * 3851 TemplateDeclInstantiator::VisitOMPDeclareMapperDecl(OMPDeclareMapperDecl *D) { 3852 // Instantiate type and check if it is allowed. 3853 const bool RequiresInstantiation = 3854 D->getType()->isDependentType() || 3855 D->getType()->isInstantiationDependentType() || 3856 D->getType()->containsUnexpandedParameterPack(); 3857 QualType SubstMapperTy; 3858 DeclarationName VN = D->getVarName(); 3859 if (RequiresInstantiation) { 3860 SubstMapperTy = SemaRef.OpenMP().ActOnOpenMPDeclareMapperType( 3861 D->getLocation(), 3862 ParsedType::make(SemaRef.SubstType(D->getType(), TemplateArgs, 3863 D->getLocation(), VN))); 3864 } else { 3865 SubstMapperTy = D->getType(); 3866 } 3867 if (SubstMapperTy.isNull()) 3868 return nullptr; 3869 // Create an instantiated copy of mapper. 3870 auto *PrevDeclInScope = D->getPrevDeclInScope(); 3871 if (PrevDeclInScope && !PrevDeclInScope->isInvalidDecl()) { 3872 PrevDeclInScope = cast<OMPDeclareMapperDecl>( 3873 cast<Decl *>(*SemaRef.CurrentInstantiationScope->findInstantiationOf( 3874 PrevDeclInScope))); 3875 } 3876 bool IsCorrect = true; 3877 SmallVector<OMPClause *, 6> Clauses; 3878 // Instantiate the mapper variable. 3879 DeclarationNameInfo DirName; 3880 SemaRef.OpenMP().StartOpenMPDSABlock(llvm::omp::OMPD_declare_mapper, DirName, 3881 /*S=*/nullptr, 3882 (*D->clauselist_begin())->getBeginLoc()); 3883 ExprResult MapperVarRef = 3884 SemaRef.OpenMP().ActOnOpenMPDeclareMapperDirectiveVarDecl( 3885 /*S=*/nullptr, SubstMapperTy, D->getLocation(), VN); 3886 SemaRef.CurrentInstantiationScope->InstantiatedLocal( 3887 cast<DeclRefExpr>(D->getMapperVarRef())->getDecl(), 3888 cast<DeclRefExpr>(MapperVarRef.get())->getDecl()); 3889 auto *ThisContext = dyn_cast_or_null<CXXRecordDecl>(Owner); 3890 Sema::CXXThisScopeRAII ThisScope(SemaRef, ThisContext, Qualifiers(), 3891 ThisContext); 3892 // Instantiate map clauses. 3893 for (OMPClause *C : D->clauselists()) { 3894 auto *OldC = cast<OMPMapClause>(C); 3895 SmallVector<Expr *, 4> NewVars; 3896 for (Expr *OE : OldC->varlist()) { 3897 Expr *NE = SemaRef.SubstExpr(OE, TemplateArgs).get(); 3898 if (!NE) { 3899 IsCorrect = false; 3900 break; 3901 } 3902 NewVars.push_back(NE); 3903 } 3904 if (!IsCorrect) 3905 break; 3906 NestedNameSpecifierLoc NewQualifierLoc = 3907 SemaRef.SubstNestedNameSpecifierLoc(OldC->getMapperQualifierLoc(), 3908 TemplateArgs); 3909 CXXScopeSpec SS; 3910 SS.Adopt(NewQualifierLoc); 3911 DeclarationNameInfo NewNameInfo = 3912 SemaRef.SubstDeclarationNameInfo(OldC->getMapperIdInfo(), TemplateArgs); 3913 OMPVarListLocTy Locs(OldC->getBeginLoc(), OldC->getLParenLoc(), 3914 OldC->getEndLoc()); 3915 OMPClause *NewC = SemaRef.OpenMP().ActOnOpenMPMapClause( 3916 OldC->getIteratorModifier(), OldC->getMapTypeModifiers(), 3917 OldC->getMapTypeModifiersLoc(), SS, NewNameInfo, OldC->getMapType(), 3918 OldC->isImplicitMapType(), OldC->getMapLoc(), OldC->getColonLoc(), 3919 NewVars, Locs); 3920 Clauses.push_back(NewC); 3921 } 3922 SemaRef.OpenMP().EndOpenMPDSABlock(nullptr); 3923 if (!IsCorrect) 3924 return nullptr; 3925 Sema::DeclGroupPtrTy DG = SemaRef.OpenMP().ActOnOpenMPDeclareMapperDirective( 3926 /*S=*/nullptr, Owner, D->getDeclName(), SubstMapperTy, D->getLocation(), 3927 VN, D->getAccess(), MapperVarRef.get(), Clauses, PrevDeclInScope); 3928 Decl *NewDMD = DG.get().getSingleDecl(); 3929 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewDMD); 3930 return NewDMD; 3931 } 3932 3933 Decl *TemplateDeclInstantiator::VisitOMPCapturedExprDecl( 3934 OMPCapturedExprDecl * /*D*/) { 3935 llvm_unreachable("Should not be met in templates"); 3936 } 3937 3938 Decl *TemplateDeclInstantiator::VisitFunctionDecl(FunctionDecl *D) { 3939 return VisitFunctionDecl(D, nullptr); 3940 } 3941 3942 Decl * 3943 TemplateDeclInstantiator::VisitCXXDeductionGuideDecl(CXXDeductionGuideDecl *D) { 3944 Decl *Inst = VisitFunctionDecl(D, nullptr); 3945 if (Inst && !D->getDescribedFunctionTemplate()) 3946 Owner->addDecl(Inst); 3947 return Inst; 3948 } 3949 3950 Decl *TemplateDeclInstantiator::VisitCXXMethodDecl(CXXMethodDecl *D) { 3951 return VisitCXXMethodDecl(D, nullptr); 3952 } 3953 3954 Decl *TemplateDeclInstantiator::VisitRecordDecl(RecordDecl *D) { 3955 llvm_unreachable("There are only CXXRecordDecls in C++"); 3956 } 3957 3958 Decl * 3959 TemplateDeclInstantiator::VisitClassTemplateSpecializationDecl( 3960 ClassTemplateSpecializationDecl *D) { 3961 // As a MS extension, we permit class-scope explicit specialization 3962 // of member class templates. 3963 ClassTemplateDecl *ClassTemplate = D->getSpecializedTemplate(); 3964 assert(ClassTemplate->getDeclContext()->isRecord() && 3965 D->getTemplateSpecializationKind() == TSK_ExplicitSpecialization && 3966 "can only instantiate an explicit specialization " 3967 "for a member class template"); 3968 3969 // Lookup the already-instantiated declaration in the instantiation 3970 // of the class template. 3971 ClassTemplateDecl *InstClassTemplate = 3972 cast_or_null<ClassTemplateDecl>(SemaRef.FindInstantiatedDecl( 3973 D->getLocation(), ClassTemplate, TemplateArgs)); 3974 if (!InstClassTemplate) 3975 return nullptr; 3976 3977 // Substitute into the template arguments of the class template explicit 3978 // specialization. 3979 TemplateArgumentListInfo InstTemplateArgs; 3980 if (const ASTTemplateArgumentListInfo *TemplateArgsInfo = 3981 D->getTemplateArgsAsWritten()) { 3982 InstTemplateArgs.setLAngleLoc(TemplateArgsInfo->getLAngleLoc()); 3983 InstTemplateArgs.setRAngleLoc(TemplateArgsInfo->getRAngleLoc()); 3984 3985 if (SemaRef.SubstTemplateArguments(TemplateArgsInfo->arguments(), 3986 TemplateArgs, InstTemplateArgs)) 3987 return nullptr; 3988 } 3989 3990 // Check that the template argument list is well-formed for this 3991 // class template. 3992 Sema::CheckTemplateArgumentInfo CTAI; 3993 if (SemaRef.CheckTemplateArgumentList( 3994 InstClassTemplate, D->getLocation(), InstTemplateArgs, 3995 /*DefaultArgs=*/{}, /*PartialTemplateArgs=*/false, CTAI, 3996 /*UpdateArgsWithConversions=*/true)) 3997 return nullptr; 3998 3999 // Figure out where to insert this class template explicit specialization 4000 // in the member template's set of class template explicit specializations. 4001 void *InsertPos = nullptr; 4002 ClassTemplateSpecializationDecl *PrevDecl = 4003 InstClassTemplate->findSpecialization(CTAI.CanonicalConverted, InsertPos); 4004 4005 // Check whether we've already seen a conflicting instantiation of this 4006 // declaration (for instance, if there was a prior implicit instantiation). 4007 bool Ignored; 4008 if (PrevDecl && 4009 SemaRef.CheckSpecializationInstantiationRedecl(D->getLocation(), 4010 D->getSpecializationKind(), 4011 PrevDecl, 4012 PrevDecl->getSpecializationKind(), 4013 PrevDecl->getPointOfInstantiation(), 4014 Ignored)) 4015 return nullptr; 4016 4017 // If PrevDecl was a definition and D is also a definition, diagnose. 4018 // This happens in cases like: 4019 // 4020 // template<typename T, typename U> 4021 // struct Outer { 4022 // template<typename X> struct Inner; 4023 // template<> struct Inner<T> {}; 4024 // template<> struct Inner<U> {}; 4025 // }; 4026 // 4027 // Outer<int, int> outer; // error: the explicit specializations of Inner 4028 // // have the same signature. 4029 if (PrevDecl && PrevDecl->getDefinition() && 4030 D->isThisDeclarationADefinition()) { 4031 SemaRef.Diag(D->getLocation(), diag::err_redefinition) << PrevDecl; 4032 SemaRef.Diag(PrevDecl->getDefinition()->getLocation(), 4033 diag::note_previous_definition); 4034 return nullptr; 4035 } 4036 4037 // Create the class template partial specialization declaration. 4038 ClassTemplateSpecializationDecl *InstD = 4039 ClassTemplateSpecializationDecl::Create( 4040 SemaRef.Context, D->getTagKind(), Owner, D->getBeginLoc(), 4041 D->getLocation(), InstClassTemplate, CTAI.CanonicalConverted, 4042 PrevDecl); 4043 InstD->setTemplateArgsAsWritten(InstTemplateArgs); 4044 4045 // Add this partial specialization to the set of class template partial 4046 // specializations. 4047 if (!PrevDecl) 4048 InstClassTemplate->AddSpecialization(InstD, InsertPos); 4049 4050 // Substitute the nested name specifier, if any. 4051 if (SubstQualifier(D, InstD)) 4052 return nullptr; 4053 4054 InstD->setAccess(D->getAccess()); 4055 InstD->setInstantiationOfMemberClass(D, TSK_ImplicitInstantiation); 4056 InstD->setSpecializationKind(D->getSpecializationKind()); 4057 InstD->setExternKeywordLoc(D->getExternKeywordLoc()); 4058 InstD->setTemplateKeywordLoc(D->getTemplateKeywordLoc()); 4059 4060 Owner->addDecl(InstD); 4061 4062 // Instantiate the members of the class-scope explicit specialization eagerly. 4063 // We don't have support for lazy instantiation of an explicit specialization 4064 // yet, and MSVC eagerly instantiates in this case. 4065 // FIXME: This is wrong in standard C++. 4066 if (D->isThisDeclarationADefinition() && 4067 SemaRef.InstantiateClass(D->getLocation(), InstD, D, TemplateArgs, 4068 TSK_ImplicitInstantiation, 4069 /*Complain=*/true)) 4070 return nullptr; 4071 4072 return InstD; 4073 } 4074 4075 Decl *TemplateDeclInstantiator::VisitVarTemplateSpecializationDecl( 4076 VarTemplateSpecializationDecl *D) { 4077 4078 TemplateArgumentListInfo VarTemplateArgsInfo; 4079 VarTemplateDecl *VarTemplate = D->getSpecializedTemplate(); 4080 assert(VarTemplate && 4081 "A template specialization without specialized template?"); 4082 4083 VarTemplateDecl *InstVarTemplate = 4084 cast_or_null<VarTemplateDecl>(SemaRef.FindInstantiatedDecl( 4085 D->getLocation(), VarTemplate, TemplateArgs)); 4086 if (!InstVarTemplate) 4087 return nullptr; 4088 4089 // Substitute the current template arguments. 4090 if (const ASTTemplateArgumentListInfo *TemplateArgsInfo = 4091 D->getTemplateArgsAsWritten()) { 4092 VarTemplateArgsInfo.setLAngleLoc(TemplateArgsInfo->getLAngleLoc()); 4093 VarTemplateArgsInfo.setRAngleLoc(TemplateArgsInfo->getRAngleLoc()); 4094 4095 if (SemaRef.SubstTemplateArguments(TemplateArgsInfo->arguments(), 4096 TemplateArgs, VarTemplateArgsInfo)) 4097 return nullptr; 4098 } 4099 4100 // Check that the template argument list is well-formed for this template. 4101 Sema::CheckTemplateArgumentInfo CTAI; 4102 if (SemaRef.CheckTemplateArgumentList( 4103 InstVarTemplate, D->getLocation(), VarTemplateArgsInfo, 4104 /*DefaultArgs=*/{}, /*PartialTemplateArgs=*/false, CTAI, 4105 /*UpdateArgsWithConversions=*/true)) 4106 return nullptr; 4107 4108 // Check whether we've already seen a declaration of this specialization. 4109 void *InsertPos = nullptr; 4110 VarTemplateSpecializationDecl *PrevDecl = 4111 InstVarTemplate->findSpecialization(CTAI.CanonicalConverted, InsertPos); 4112 4113 // Check whether we've already seen a conflicting instantiation of this 4114 // declaration (for instance, if there was a prior implicit instantiation). 4115 bool Ignored; 4116 if (PrevDecl && SemaRef.CheckSpecializationInstantiationRedecl( 4117 D->getLocation(), D->getSpecializationKind(), PrevDecl, 4118 PrevDecl->getSpecializationKind(), 4119 PrevDecl->getPointOfInstantiation(), Ignored)) 4120 return nullptr; 4121 4122 return VisitVarTemplateSpecializationDecl(InstVarTemplate, D, 4123 VarTemplateArgsInfo, 4124 CTAI.CanonicalConverted, PrevDecl); 4125 } 4126 4127 Decl *TemplateDeclInstantiator::VisitVarTemplateSpecializationDecl( 4128 VarTemplateDecl *VarTemplate, VarDecl *D, 4129 const TemplateArgumentListInfo &TemplateArgsInfo, 4130 ArrayRef<TemplateArgument> Converted, 4131 VarTemplateSpecializationDecl *PrevDecl) { 4132 4133 // Do substitution on the type of the declaration 4134 TypeSourceInfo *DI = 4135 SemaRef.SubstType(D->getTypeSourceInfo(), TemplateArgs, 4136 D->getTypeSpecStartLoc(), D->getDeclName()); 4137 if (!DI) 4138 return nullptr; 4139 4140 if (DI->getType()->isFunctionType()) { 4141 SemaRef.Diag(D->getLocation(), diag::err_variable_instantiates_to_function) 4142 << D->isStaticDataMember() << DI->getType(); 4143 return nullptr; 4144 } 4145 4146 // Build the instantiated declaration 4147 VarTemplateSpecializationDecl *Var = VarTemplateSpecializationDecl::Create( 4148 SemaRef.Context, Owner, D->getInnerLocStart(), D->getLocation(), 4149 VarTemplate, DI->getType(), DI, D->getStorageClass(), Converted); 4150 Var->setTemplateArgsAsWritten(TemplateArgsInfo); 4151 if (!PrevDecl) { 4152 void *InsertPos = nullptr; 4153 VarTemplate->findSpecialization(Converted, InsertPos); 4154 VarTemplate->AddSpecialization(Var, InsertPos); 4155 } 4156 4157 if (SemaRef.getLangOpts().OpenCL) 4158 SemaRef.deduceOpenCLAddressSpace(Var); 4159 4160 // Substitute the nested name specifier, if any. 4161 if (SubstQualifier(D, Var)) 4162 return nullptr; 4163 4164 SemaRef.BuildVariableInstantiation(Var, D, TemplateArgs, LateAttrs, Owner, 4165 StartingScope, false, PrevDecl); 4166 4167 return Var; 4168 } 4169 4170 Decl *TemplateDeclInstantiator::VisitObjCAtDefsFieldDecl(ObjCAtDefsFieldDecl *D) { 4171 llvm_unreachable("@defs is not supported in Objective-C++"); 4172 } 4173 4174 Decl *TemplateDeclInstantiator::VisitFriendTemplateDecl(FriendTemplateDecl *D) { 4175 // FIXME: We need to be able to instantiate FriendTemplateDecls. 4176 unsigned DiagID = SemaRef.getDiagnostics().getCustomDiagID( 4177 DiagnosticsEngine::Error, 4178 "cannot instantiate %0 yet"); 4179 SemaRef.Diag(D->getLocation(), DiagID) 4180 << D->getDeclKindName(); 4181 4182 return nullptr; 4183 } 4184 4185 Decl *TemplateDeclInstantiator::VisitConceptDecl(ConceptDecl *D) { 4186 llvm_unreachable("Concept definitions cannot reside inside a template"); 4187 } 4188 4189 Decl *TemplateDeclInstantiator::VisitImplicitConceptSpecializationDecl( 4190 ImplicitConceptSpecializationDecl *D) { 4191 llvm_unreachable("Concept specializations cannot reside inside a template"); 4192 } 4193 4194 Decl * 4195 TemplateDeclInstantiator::VisitRequiresExprBodyDecl(RequiresExprBodyDecl *D) { 4196 return RequiresExprBodyDecl::Create(SemaRef.Context, D->getDeclContext(), 4197 D->getBeginLoc()); 4198 } 4199 4200 Decl *TemplateDeclInstantiator::VisitDecl(Decl *D) { 4201 llvm_unreachable("Unexpected decl"); 4202 } 4203 4204 Decl *Sema::SubstDecl(Decl *D, DeclContext *Owner, 4205 const MultiLevelTemplateArgumentList &TemplateArgs) { 4206 TemplateDeclInstantiator Instantiator(*this, Owner, TemplateArgs); 4207 if (D->isInvalidDecl()) 4208 return nullptr; 4209 4210 Decl *SubstD; 4211 runWithSufficientStackSpace(D->getLocation(), [&] { 4212 SubstD = Instantiator.Visit(D); 4213 }); 4214 return SubstD; 4215 } 4216 4217 void TemplateDeclInstantiator::adjustForRewrite(RewriteKind RK, 4218 FunctionDecl *Orig, QualType &T, 4219 TypeSourceInfo *&TInfo, 4220 DeclarationNameInfo &NameInfo) { 4221 assert(RK == RewriteKind::RewriteSpaceshipAsEqualEqual); 4222 4223 // C++2a [class.compare.default]p3: 4224 // the return type is replaced with bool 4225 auto *FPT = T->castAs<FunctionProtoType>(); 4226 T = SemaRef.Context.getFunctionType( 4227 SemaRef.Context.BoolTy, FPT->getParamTypes(), FPT->getExtProtoInfo()); 4228 4229 // Update the return type in the source info too. The most straightforward 4230 // way is to create new TypeSourceInfo for the new type. Use the location of 4231 // the '= default' as the location of the new type. 4232 // 4233 // FIXME: Set the correct return type when we initially transform the type, 4234 // rather than delaying it to now. 4235 TypeSourceInfo *NewTInfo = 4236 SemaRef.Context.getTrivialTypeSourceInfo(T, Orig->getEndLoc()); 4237 auto OldLoc = TInfo->getTypeLoc().getAsAdjusted<FunctionProtoTypeLoc>(); 4238 assert(OldLoc && "type of function is not a function type?"); 4239 auto NewLoc = NewTInfo->getTypeLoc().castAs<FunctionProtoTypeLoc>(); 4240 for (unsigned I = 0, N = OldLoc.getNumParams(); I != N; ++I) 4241 NewLoc.setParam(I, OldLoc.getParam(I)); 4242 TInfo = NewTInfo; 4243 4244 // and the declarator-id is replaced with operator== 4245 NameInfo.setName( 4246 SemaRef.Context.DeclarationNames.getCXXOperatorName(OO_EqualEqual)); 4247 } 4248 4249 FunctionDecl *Sema::SubstSpaceshipAsEqualEqual(CXXRecordDecl *RD, 4250 FunctionDecl *Spaceship) { 4251 if (Spaceship->isInvalidDecl()) 4252 return nullptr; 4253 4254 // C++2a [class.compare.default]p3: 4255 // an == operator function is declared implicitly [...] with the same 4256 // access and function-definition and in the same class scope as the 4257 // three-way comparison operator function 4258 MultiLevelTemplateArgumentList NoTemplateArgs; 4259 NoTemplateArgs.setKind(TemplateSubstitutionKind::Rewrite); 4260 NoTemplateArgs.addOuterRetainedLevels(RD->getTemplateDepth()); 4261 TemplateDeclInstantiator Instantiator(*this, RD, NoTemplateArgs); 4262 Decl *R; 4263 if (auto *MD = dyn_cast<CXXMethodDecl>(Spaceship)) { 4264 R = Instantiator.VisitCXXMethodDecl( 4265 MD, /*TemplateParams=*/nullptr, 4266 TemplateDeclInstantiator::RewriteKind::RewriteSpaceshipAsEqualEqual); 4267 } else { 4268 assert(Spaceship->getFriendObjectKind() && 4269 "defaulted spaceship is neither a member nor a friend"); 4270 4271 R = Instantiator.VisitFunctionDecl( 4272 Spaceship, /*TemplateParams=*/nullptr, 4273 TemplateDeclInstantiator::RewriteKind::RewriteSpaceshipAsEqualEqual); 4274 if (!R) 4275 return nullptr; 4276 4277 FriendDecl *FD = 4278 FriendDecl::Create(Context, RD, Spaceship->getLocation(), 4279 cast<NamedDecl>(R), Spaceship->getBeginLoc()); 4280 FD->setAccess(AS_public); 4281 RD->addDecl(FD); 4282 } 4283 return cast_or_null<FunctionDecl>(R); 4284 } 4285 4286 /// Instantiates a nested template parameter list in the current 4287 /// instantiation context. 4288 /// 4289 /// \param L The parameter list to instantiate 4290 /// 4291 /// \returns NULL if there was an error 4292 TemplateParameterList * 4293 TemplateDeclInstantiator::SubstTemplateParams(TemplateParameterList *L) { 4294 // Get errors for all the parameters before bailing out. 4295 bool Invalid = false; 4296 4297 unsigned N = L->size(); 4298 typedef SmallVector<NamedDecl *, 8> ParamVector; 4299 ParamVector Params; 4300 Params.reserve(N); 4301 for (auto &P : *L) { 4302 NamedDecl *D = cast_or_null<NamedDecl>(Visit(P)); 4303 Params.push_back(D); 4304 Invalid = Invalid || !D || D->isInvalidDecl(); 4305 } 4306 4307 // Clean up if we had an error. 4308 if (Invalid) 4309 return nullptr; 4310 4311 Expr *InstRequiresClause = L->getRequiresClause(); 4312 4313 TemplateParameterList *InstL 4314 = TemplateParameterList::Create(SemaRef.Context, L->getTemplateLoc(), 4315 L->getLAngleLoc(), Params, 4316 L->getRAngleLoc(), InstRequiresClause); 4317 return InstL; 4318 } 4319 4320 TemplateParameterList * 4321 Sema::SubstTemplateParams(TemplateParameterList *Params, DeclContext *Owner, 4322 const MultiLevelTemplateArgumentList &TemplateArgs, 4323 bool EvaluateConstraints) { 4324 TemplateDeclInstantiator Instantiator(*this, Owner, TemplateArgs); 4325 Instantiator.setEvaluateConstraints(EvaluateConstraints); 4326 return Instantiator.SubstTemplateParams(Params); 4327 } 4328 4329 /// Instantiate the declaration of a class template partial 4330 /// specialization. 4331 /// 4332 /// \param ClassTemplate the (instantiated) class template that is partially 4333 // specialized by the instantiation of \p PartialSpec. 4334 /// 4335 /// \param PartialSpec the (uninstantiated) class template partial 4336 /// specialization that we are instantiating. 4337 /// 4338 /// \returns The instantiated partial specialization, if successful; otherwise, 4339 /// NULL to indicate an error. 4340 ClassTemplatePartialSpecializationDecl * 4341 TemplateDeclInstantiator::InstantiateClassTemplatePartialSpecialization( 4342 ClassTemplateDecl *ClassTemplate, 4343 ClassTemplatePartialSpecializationDecl *PartialSpec) { 4344 // Create a local instantiation scope for this class template partial 4345 // specialization, which will contain the instantiations of the template 4346 // parameters. 4347 LocalInstantiationScope Scope(SemaRef); 4348 4349 // Substitute into the template parameters of the class template partial 4350 // specialization. 4351 TemplateParameterList *TempParams = PartialSpec->getTemplateParameters(); 4352 TemplateParameterList *InstParams = SubstTemplateParams(TempParams); 4353 if (!InstParams) 4354 return nullptr; 4355 4356 // Substitute into the template arguments of the class template partial 4357 // specialization. 4358 const ASTTemplateArgumentListInfo *TemplArgInfo 4359 = PartialSpec->getTemplateArgsAsWritten(); 4360 TemplateArgumentListInfo InstTemplateArgs(TemplArgInfo->LAngleLoc, 4361 TemplArgInfo->RAngleLoc); 4362 if (SemaRef.SubstTemplateArguments(TemplArgInfo->arguments(), TemplateArgs, 4363 InstTemplateArgs)) 4364 return nullptr; 4365 4366 // Check that the template argument list is well-formed for this 4367 // class template. 4368 Sema::CheckTemplateArgumentInfo CTAI; 4369 if (SemaRef.CheckTemplateArgumentList( 4370 ClassTemplate, PartialSpec->getLocation(), InstTemplateArgs, 4371 /*DefaultArgs=*/{}, 4372 /*PartialTemplateArgs=*/false, CTAI)) 4373 return nullptr; 4374 4375 // Check these arguments are valid for a template partial specialization. 4376 if (SemaRef.CheckTemplatePartialSpecializationArgs( 4377 PartialSpec->getLocation(), ClassTemplate, InstTemplateArgs.size(), 4378 CTAI.CanonicalConverted)) 4379 return nullptr; 4380 4381 // Figure out where to insert this class template partial specialization 4382 // in the member template's set of class template partial specializations. 4383 void *InsertPos = nullptr; 4384 ClassTemplateSpecializationDecl *PrevDecl = 4385 ClassTemplate->findPartialSpecialization(CTAI.CanonicalConverted, 4386 InstParams, InsertPos); 4387 4388 // Build the canonical type that describes the converted template 4389 // arguments of the class template partial specialization. 4390 QualType CanonType = SemaRef.Context.getTemplateSpecializationType( 4391 TemplateName(ClassTemplate), CTAI.CanonicalConverted); 4392 4393 // Create the class template partial specialization declaration. 4394 ClassTemplatePartialSpecializationDecl *InstPartialSpec = 4395 ClassTemplatePartialSpecializationDecl::Create( 4396 SemaRef.Context, PartialSpec->getTagKind(), Owner, 4397 PartialSpec->getBeginLoc(), PartialSpec->getLocation(), InstParams, 4398 ClassTemplate, CTAI.CanonicalConverted, CanonType, 4399 /*PrevDecl=*/nullptr); 4400 4401 InstPartialSpec->setTemplateArgsAsWritten(InstTemplateArgs); 4402 4403 // Substitute the nested name specifier, if any. 4404 if (SubstQualifier(PartialSpec, InstPartialSpec)) 4405 return nullptr; 4406 4407 InstPartialSpec->setInstantiatedFromMember(PartialSpec); 4408 4409 if (PrevDecl) { 4410 // We've already seen a partial specialization with the same template 4411 // parameters and template arguments. This can happen, for example, when 4412 // substituting the outer template arguments ends up causing two 4413 // class template partial specializations of a member class template 4414 // to have identical forms, e.g., 4415 // 4416 // template<typename T, typename U> 4417 // struct Outer { 4418 // template<typename X, typename Y> struct Inner; 4419 // template<typename Y> struct Inner<T, Y>; 4420 // template<typename Y> struct Inner<U, Y>; 4421 // }; 4422 // 4423 // Outer<int, int> outer; // error: the partial specializations of Inner 4424 // // have the same signature. 4425 SemaRef.Diag(InstPartialSpec->getLocation(), 4426 diag::err_partial_spec_redeclared) 4427 << InstPartialSpec; 4428 SemaRef.Diag(PrevDecl->getLocation(), diag::note_prev_partial_spec_here) 4429 << SemaRef.Context.getTypeDeclType(PrevDecl); 4430 return nullptr; 4431 } 4432 4433 // Check the completed partial specialization. 4434 SemaRef.CheckTemplatePartialSpecialization(InstPartialSpec); 4435 4436 // Add this partial specialization to the set of class template partial 4437 // specializations. 4438 ClassTemplate->AddPartialSpecialization(InstPartialSpec, 4439 /*InsertPos=*/nullptr); 4440 return InstPartialSpec; 4441 } 4442 4443 /// Instantiate the declaration of a variable template partial 4444 /// specialization. 4445 /// 4446 /// \param VarTemplate the (instantiated) variable template that is partially 4447 /// specialized by the instantiation of \p PartialSpec. 4448 /// 4449 /// \param PartialSpec the (uninstantiated) variable template partial 4450 /// specialization that we are instantiating. 4451 /// 4452 /// \returns The instantiated partial specialization, if successful; otherwise, 4453 /// NULL to indicate an error. 4454 VarTemplatePartialSpecializationDecl * 4455 TemplateDeclInstantiator::InstantiateVarTemplatePartialSpecialization( 4456 VarTemplateDecl *VarTemplate, 4457 VarTemplatePartialSpecializationDecl *PartialSpec) { 4458 // Create a local instantiation scope for this variable template partial 4459 // specialization, which will contain the instantiations of the template 4460 // parameters. 4461 LocalInstantiationScope Scope(SemaRef); 4462 4463 // Substitute into the template parameters of the variable template partial 4464 // specialization. 4465 TemplateParameterList *TempParams = PartialSpec->getTemplateParameters(); 4466 TemplateParameterList *InstParams = SubstTemplateParams(TempParams); 4467 if (!InstParams) 4468 return nullptr; 4469 4470 // Substitute into the template arguments of the variable template partial 4471 // specialization. 4472 const ASTTemplateArgumentListInfo *TemplArgInfo 4473 = PartialSpec->getTemplateArgsAsWritten(); 4474 TemplateArgumentListInfo InstTemplateArgs(TemplArgInfo->LAngleLoc, 4475 TemplArgInfo->RAngleLoc); 4476 if (SemaRef.SubstTemplateArguments(TemplArgInfo->arguments(), TemplateArgs, 4477 InstTemplateArgs)) 4478 return nullptr; 4479 4480 // Check that the template argument list is well-formed for this 4481 // class template. 4482 Sema::CheckTemplateArgumentInfo CTAI; 4483 if (SemaRef.CheckTemplateArgumentList(VarTemplate, PartialSpec->getLocation(), 4484 InstTemplateArgs, /*DefaultArgs=*/{}, 4485 /*PartialTemplateArgs=*/false, CTAI)) 4486 return nullptr; 4487 4488 // Check these arguments are valid for a template partial specialization. 4489 if (SemaRef.CheckTemplatePartialSpecializationArgs( 4490 PartialSpec->getLocation(), VarTemplate, InstTemplateArgs.size(), 4491 CTAI.CanonicalConverted)) 4492 return nullptr; 4493 4494 // Figure out where to insert this variable template partial specialization 4495 // in the member template's set of variable template partial specializations. 4496 void *InsertPos = nullptr; 4497 VarTemplateSpecializationDecl *PrevDecl = 4498 VarTemplate->findPartialSpecialization(CTAI.CanonicalConverted, 4499 InstParams, InsertPos); 4500 4501 // Do substitution on the type of the declaration 4502 TypeSourceInfo *DI = SemaRef.SubstType( 4503 PartialSpec->getTypeSourceInfo(), TemplateArgs, 4504 PartialSpec->getTypeSpecStartLoc(), PartialSpec->getDeclName()); 4505 if (!DI) 4506 return nullptr; 4507 4508 if (DI->getType()->isFunctionType()) { 4509 SemaRef.Diag(PartialSpec->getLocation(), 4510 diag::err_variable_instantiates_to_function) 4511 << PartialSpec->isStaticDataMember() << DI->getType(); 4512 return nullptr; 4513 } 4514 4515 // Create the variable template partial specialization declaration. 4516 VarTemplatePartialSpecializationDecl *InstPartialSpec = 4517 VarTemplatePartialSpecializationDecl::Create( 4518 SemaRef.Context, Owner, PartialSpec->getInnerLocStart(), 4519 PartialSpec->getLocation(), InstParams, VarTemplate, DI->getType(), 4520 DI, PartialSpec->getStorageClass(), CTAI.CanonicalConverted); 4521 4522 InstPartialSpec->setTemplateArgsAsWritten(InstTemplateArgs); 4523 4524 // Substitute the nested name specifier, if any. 4525 if (SubstQualifier(PartialSpec, InstPartialSpec)) 4526 return nullptr; 4527 4528 InstPartialSpec->setInstantiatedFromMember(PartialSpec); 4529 4530 if (PrevDecl) { 4531 // We've already seen a partial specialization with the same template 4532 // parameters and template arguments. This can happen, for example, when 4533 // substituting the outer template arguments ends up causing two 4534 // variable template partial specializations of a member variable template 4535 // to have identical forms, e.g., 4536 // 4537 // template<typename T, typename U> 4538 // struct Outer { 4539 // template<typename X, typename Y> pair<X,Y> p; 4540 // template<typename Y> pair<T, Y> p; 4541 // template<typename Y> pair<U, Y> p; 4542 // }; 4543 // 4544 // Outer<int, int> outer; // error: the partial specializations of Inner 4545 // // have the same signature. 4546 SemaRef.Diag(PartialSpec->getLocation(), 4547 diag::err_var_partial_spec_redeclared) 4548 << InstPartialSpec; 4549 SemaRef.Diag(PrevDecl->getLocation(), 4550 diag::note_var_prev_partial_spec_here); 4551 return nullptr; 4552 } 4553 // Check the completed partial specialization. 4554 SemaRef.CheckTemplatePartialSpecialization(InstPartialSpec); 4555 4556 // Add this partial specialization to the set of variable template partial 4557 // specializations. The instantiation of the initializer is not necessary. 4558 VarTemplate->AddPartialSpecialization(InstPartialSpec, /*InsertPos=*/nullptr); 4559 4560 SemaRef.BuildVariableInstantiation(InstPartialSpec, PartialSpec, TemplateArgs, 4561 LateAttrs, Owner, StartingScope); 4562 4563 return InstPartialSpec; 4564 } 4565 4566 TypeSourceInfo* 4567 TemplateDeclInstantiator::SubstFunctionType(FunctionDecl *D, 4568 SmallVectorImpl<ParmVarDecl *> &Params) { 4569 TypeSourceInfo *OldTInfo = D->getTypeSourceInfo(); 4570 assert(OldTInfo && "substituting function without type source info"); 4571 assert(Params.empty() && "parameter vector is non-empty at start"); 4572 4573 CXXRecordDecl *ThisContext = nullptr; 4574 Qualifiers ThisTypeQuals; 4575 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 4576 ThisContext = cast<CXXRecordDecl>(Owner); 4577 ThisTypeQuals = Method->getFunctionObjectParameterType().getQualifiers(); 4578 } 4579 4580 TypeSourceInfo *NewTInfo = SemaRef.SubstFunctionDeclType( 4581 OldTInfo, TemplateArgs, D->getTypeSpecStartLoc(), D->getDeclName(), 4582 ThisContext, ThisTypeQuals, EvaluateConstraints); 4583 if (!NewTInfo) 4584 return nullptr; 4585 4586 TypeLoc OldTL = OldTInfo->getTypeLoc().IgnoreParens(); 4587 if (FunctionProtoTypeLoc OldProtoLoc = OldTL.getAs<FunctionProtoTypeLoc>()) { 4588 if (NewTInfo != OldTInfo) { 4589 // Get parameters from the new type info. 4590 TypeLoc NewTL = NewTInfo->getTypeLoc().IgnoreParens(); 4591 FunctionProtoTypeLoc NewProtoLoc = NewTL.castAs<FunctionProtoTypeLoc>(); 4592 unsigned NewIdx = 0; 4593 for (unsigned OldIdx = 0, NumOldParams = OldProtoLoc.getNumParams(); 4594 OldIdx != NumOldParams; ++OldIdx) { 4595 ParmVarDecl *OldParam = OldProtoLoc.getParam(OldIdx); 4596 if (!OldParam) 4597 return nullptr; 4598 4599 LocalInstantiationScope *Scope = SemaRef.CurrentInstantiationScope; 4600 4601 std::optional<unsigned> NumArgumentsInExpansion; 4602 if (OldParam->isParameterPack()) 4603 NumArgumentsInExpansion = 4604 SemaRef.getNumArgumentsInExpansion(OldParam->getType(), 4605 TemplateArgs); 4606 if (!NumArgumentsInExpansion) { 4607 // Simple case: normal parameter, or a parameter pack that's 4608 // instantiated to a (still-dependent) parameter pack. 4609 ParmVarDecl *NewParam = NewProtoLoc.getParam(NewIdx++); 4610 Params.push_back(NewParam); 4611 Scope->InstantiatedLocal(OldParam, NewParam); 4612 } else { 4613 // Parameter pack expansion: make the instantiation an argument pack. 4614 Scope->MakeInstantiatedLocalArgPack(OldParam); 4615 for (unsigned I = 0; I != *NumArgumentsInExpansion; ++I) { 4616 ParmVarDecl *NewParam = NewProtoLoc.getParam(NewIdx++); 4617 Params.push_back(NewParam); 4618 Scope->InstantiatedLocalPackArg(OldParam, NewParam); 4619 } 4620 } 4621 } 4622 } else { 4623 // The function type itself was not dependent and therefore no 4624 // substitution occurred. However, we still need to instantiate 4625 // the function parameters themselves. 4626 const FunctionProtoType *OldProto = 4627 cast<FunctionProtoType>(OldProtoLoc.getType()); 4628 for (unsigned i = 0, i_end = OldProtoLoc.getNumParams(); i != i_end; 4629 ++i) { 4630 ParmVarDecl *OldParam = OldProtoLoc.getParam(i); 4631 if (!OldParam) { 4632 Params.push_back(SemaRef.BuildParmVarDeclForTypedef( 4633 D, D->getLocation(), OldProto->getParamType(i))); 4634 continue; 4635 } 4636 4637 ParmVarDecl *Parm = 4638 cast_or_null<ParmVarDecl>(VisitParmVarDecl(OldParam)); 4639 if (!Parm) 4640 return nullptr; 4641 Params.push_back(Parm); 4642 } 4643 } 4644 } else { 4645 // If the type of this function, after ignoring parentheses, is not 4646 // *directly* a function type, then we're instantiating a function that 4647 // was declared via a typedef or with attributes, e.g., 4648 // 4649 // typedef int functype(int, int); 4650 // functype func; 4651 // int __cdecl meth(int, int); 4652 // 4653 // In this case, we'll just go instantiate the ParmVarDecls that we 4654 // synthesized in the method declaration. 4655 SmallVector<QualType, 4> ParamTypes; 4656 Sema::ExtParameterInfoBuilder ExtParamInfos; 4657 if (SemaRef.SubstParmTypes(D->getLocation(), D->parameters(), nullptr, 4658 TemplateArgs, ParamTypes, &Params, 4659 ExtParamInfos)) 4660 return nullptr; 4661 } 4662 4663 return NewTInfo; 4664 } 4665 4666 void Sema::addInstantiatedLocalVarsToScope(FunctionDecl *Function, 4667 const FunctionDecl *PatternDecl, 4668 LocalInstantiationScope &Scope) { 4669 LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(getFunctionScopes().back()); 4670 4671 for (auto *decl : PatternDecl->decls()) { 4672 if (!isa<VarDecl>(decl) || isa<ParmVarDecl>(decl)) 4673 continue; 4674 4675 VarDecl *VD = cast<VarDecl>(decl); 4676 IdentifierInfo *II = VD->getIdentifier(); 4677 4678 auto it = llvm::find_if(Function->decls(), [&](Decl *inst) { 4679 VarDecl *InstVD = dyn_cast<VarDecl>(inst); 4680 return InstVD && InstVD->isLocalVarDecl() && 4681 InstVD->getIdentifier() == II; 4682 }); 4683 4684 if (it == Function->decls().end()) 4685 continue; 4686 4687 Scope.InstantiatedLocal(VD, *it); 4688 LSI->addCapture(cast<VarDecl>(*it), /*isBlock=*/false, /*isByref=*/false, 4689 /*isNested=*/false, VD->getLocation(), SourceLocation(), 4690 VD->getType(), /*Invalid=*/false); 4691 } 4692 } 4693 4694 bool Sema::addInstantiatedParametersToScope( 4695 FunctionDecl *Function, const FunctionDecl *PatternDecl, 4696 LocalInstantiationScope &Scope, 4697 const MultiLevelTemplateArgumentList &TemplateArgs) { 4698 unsigned FParamIdx = 0; 4699 for (unsigned I = 0, N = PatternDecl->getNumParams(); I != N; ++I) { 4700 const ParmVarDecl *PatternParam = PatternDecl->getParamDecl(I); 4701 if (!PatternParam->isParameterPack()) { 4702 // Simple case: not a parameter pack. 4703 assert(FParamIdx < Function->getNumParams()); 4704 ParmVarDecl *FunctionParam = Function->getParamDecl(FParamIdx); 4705 FunctionParam->setDeclName(PatternParam->getDeclName()); 4706 // If the parameter's type is not dependent, update it to match the type 4707 // in the pattern. They can differ in top-level cv-qualifiers, and we want 4708 // the pattern's type here. If the type is dependent, they can't differ, 4709 // per core issue 1668. Substitute into the type from the pattern, in case 4710 // it's instantiation-dependent. 4711 // FIXME: Updating the type to work around this is at best fragile. 4712 if (!PatternDecl->getType()->isDependentType()) { 4713 QualType T = SubstType(PatternParam->getType(), TemplateArgs, 4714 FunctionParam->getLocation(), 4715 FunctionParam->getDeclName()); 4716 if (T.isNull()) 4717 return true; 4718 FunctionParam->setType(T); 4719 } 4720 4721 Scope.InstantiatedLocal(PatternParam, FunctionParam); 4722 ++FParamIdx; 4723 continue; 4724 } 4725 4726 // Expand the parameter pack. 4727 Scope.MakeInstantiatedLocalArgPack(PatternParam); 4728 std::optional<unsigned> NumArgumentsInExpansion = 4729 getNumArgumentsInExpansion(PatternParam->getType(), TemplateArgs); 4730 if (NumArgumentsInExpansion) { 4731 QualType PatternType = 4732 PatternParam->getType()->castAs<PackExpansionType>()->getPattern(); 4733 for (unsigned Arg = 0; Arg < *NumArgumentsInExpansion; ++Arg) { 4734 ParmVarDecl *FunctionParam = Function->getParamDecl(FParamIdx); 4735 FunctionParam->setDeclName(PatternParam->getDeclName()); 4736 if (!PatternDecl->getType()->isDependentType()) { 4737 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(*this, Arg); 4738 QualType T = 4739 SubstType(PatternType, TemplateArgs, FunctionParam->getLocation(), 4740 FunctionParam->getDeclName()); 4741 if (T.isNull()) 4742 return true; 4743 FunctionParam->setType(T); 4744 } 4745 4746 Scope.InstantiatedLocalPackArg(PatternParam, FunctionParam); 4747 ++FParamIdx; 4748 } 4749 } 4750 } 4751 4752 return false; 4753 } 4754 4755 bool Sema::InstantiateDefaultArgument(SourceLocation CallLoc, FunctionDecl *FD, 4756 ParmVarDecl *Param) { 4757 assert(Param->hasUninstantiatedDefaultArg()); 4758 4759 // FIXME: We don't track member specialization info for non-defining 4760 // friend declarations, so we will not be able to later find the function 4761 // pattern. As a workaround, don't instantiate the default argument in this 4762 // case. This is correct per the standard and only an issue for recovery 4763 // purposes. [dcl.fct.default]p4: 4764 // if a friend declaration D specifies a default argument expression, 4765 // that declaration shall be a definition. 4766 if (FD->getFriendObjectKind() != Decl::FOK_None && 4767 !FD->getTemplateInstantiationPattern()) 4768 return true; 4769 4770 // Instantiate the expression. 4771 // 4772 // FIXME: Pass in a correct Pattern argument, otherwise 4773 // getTemplateInstantiationArgs uses the lexical context of FD, e.g. 4774 // 4775 // template<typename T> 4776 // struct A { 4777 // static int FooImpl(); 4778 // 4779 // template<typename Tp> 4780 // // bug: default argument A<T>::FooImpl() is evaluated with 2-level 4781 // // template argument list [[T], [Tp]], should be [[Tp]]. 4782 // friend A<Tp> Foo(int a); 4783 // }; 4784 // 4785 // template<typename T> 4786 // A<T> Foo(int a = A<T>::FooImpl()); 4787 MultiLevelTemplateArgumentList TemplateArgs = getTemplateInstantiationArgs( 4788 FD, FD->getLexicalDeclContext(), 4789 /*Final=*/false, /*Innermost=*/std::nullopt, 4790 /*RelativeToPrimary=*/true, /*Pattern=*/nullptr, 4791 /*ForConstraintInstantiation=*/false, /*SkipForSpecialization=*/false, 4792 /*ForDefaultArgumentSubstitution=*/true); 4793 4794 if (SubstDefaultArgument(CallLoc, Param, TemplateArgs, /*ForCallExpr*/ true)) 4795 return true; 4796 4797 if (ASTMutationListener *L = getASTMutationListener()) 4798 L->DefaultArgumentInstantiated(Param); 4799 4800 return false; 4801 } 4802 4803 void Sema::InstantiateExceptionSpec(SourceLocation PointOfInstantiation, 4804 FunctionDecl *Decl) { 4805 const FunctionProtoType *Proto = Decl->getType()->castAs<FunctionProtoType>(); 4806 if (Proto->getExceptionSpecType() != EST_Uninstantiated) 4807 return; 4808 4809 InstantiatingTemplate Inst(*this, PointOfInstantiation, Decl, 4810 InstantiatingTemplate::ExceptionSpecification()); 4811 if (Inst.isInvalid()) { 4812 // We hit the instantiation depth limit. Clear the exception specification 4813 // so that our callers don't have to cope with EST_Uninstantiated. 4814 UpdateExceptionSpec(Decl, EST_None); 4815 return; 4816 } 4817 if (Inst.isAlreadyInstantiating()) { 4818 // This exception specification indirectly depends on itself. Reject. 4819 // FIXME: Corresponding rule in the standard? 4820 Diag(PointOfInstantiation, diag::err_exception_spec_cycle) << Decl; 4821 UpdateExceptionSpec(Decl, EST_None); 4822 return; 4823 } 4824 4825 // Enter the scope of this instantiation. We don't use 4826 // PushDeclContext because we don't have a scope. 4827 Sema::ContextRAII savedContext(*this, Decl); 4828 LocalInstantiationScope Scope(*this); 4829 4830 MultiLevelTemplateArgumentList TemplateArgs = 4831 getTemplateInstantiationArgs(Decl, Decl->getLexicalDeclContext(), 4832 /*Final=*/false, /*Innermost=*/std::nullopt, 4833 /*RelativeToPrimary*/ true); 4834 4835 // FIXME: We can't use getTemplateInstantiationPattern(false) in general 4836 // here, because for a non-defining friend declaration in a class template, 4837 // we don't store enough information to map back to the friend declaration in 4838 // the template. 4839 FunctionDecl *Template = Proto->getExceptionSpecTemplate(); 4840 if (addInstantiatedParametersToScope(Decl, Template, Scope, TemplateArgs)) { 4841 UpdateExceptionSpec(Decl, EST_None); 4842 return; 4843 } 4844 4845 // The noexcept specification could reference any lambda captures. Ensure 4846 // those are added to the LocalInstantiationScope. 4847 LambdaScopeForCallOperatorInstantiationRAII PushLambdaCaptures( 4848 *this, Decl, TemplateArgs, Scope, 4849 /*ShouldAddDeclsFromParentScope=*/false); 4850 4851 SubstExceptionSpec(Decl, Template->getType()->castAs<FunctionProtoType>(), 4852 TemplateArgs); 4853 } 4854 4855 /// Initializes the common fields of an instantiation function 4856 /// declaration (New) from the corresponding fields of its template (Tmpl). 4857 /// 4858 /// \returns true if there was an error 4859 bool 4860 TemplateDeclInstantiator::InitFunctionInstantiation(FunctionDecl *New, 4861 FunctionDecl *Tmpl) { 4862 New->setImplicit(Tmpl->isImplicit()); 4863 4864 // Forward the mangling number from the template to the instantiated decl. 4865 SemaRef.Context.setManglingNumber(New, 4866 SemaRef.Context.getManglingNumber(Tmpl)); 4867 4868 // If we are performing substituting explicitly-specified template arguments 4869 // or deduced template arguments into a function template and we reach this 4870 // point, we are now past the point where SFINAE applies and have committed 4871 // to keeping the new function template specialization. We therefore 4872 // convert the active template instantiation for the function template 4873 // into a template instantiation for this specific function template 4874 // specialization, which is not a SFINAE context, so that we diagnose any 4875 // further errors in the declaration itself. 4876 // 4877 // FIXME: This is a hack. 4878 typedef Sema::CodeSynthesisContext ActiveInstType; 4879 ActiveInstType &ActiveInst = SemaRef.CodeSynthesisContexts.back(); 4880 if (ActiveInst.Kind == ActiveInstType::ExplicitTemplateArgumentSubstitution || 4881 ActiveInst.Kind == ActiveInstType::DeducedTemplateArgumentSubstitution) { 4882 if (isa<FunctionTemplateDecl>(ActiveInst.Entity)) { 4883 SemaRef.InstantiatingSpecializations.erase( 4884 {ActiveInst.Entity->getCanonicalDecl(), ActiveInst.Kind}); 4885 atTemplateEnd(SemaRef.TemplateInstCallbacks, SemaRef, ActiveInst); 4886 ActiveInst.Kind = ActiveInstType::TemplateInstantiation; 4887 ActiveInst.Entity = New; 4888 atTemplateBegin(SemaRef.TemplateInstCallbacks, SemaRef, ActiveInst); 4889 } 4890 } 4891 4892 const FunctionProtoType *Proto = Tmpl->getType()->getAs<FunctionProtoType>(); 4893 assert(Proto && "Function template without prototype?"); 4894 4895 if (Proto->hasExceptionSpec() || Proto->getNoReturnAttr()) { 4896 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo(); 4897 4898 // DR1330: In C++11, defer instantiation of a non-trivial 4899 // exception specification. 4900 // DR1484: Local classes and their members are instantiated along with the 4901 // containing function. 4902 if (SemaRef.getLangOpts().CPlusPlus11 && 4903 EPI.ExceptionSpec.Type != EST_None && 4904 EPI.ExceptionSpec.Type != EST_DynamicNone && 4905 EPI.ExceptionSpec.Type != EST_BasicNoexcept && 4906 !Tmpl->isInLocalScopeForInstantiation()) { 4907 FunctionDecl *ExceptionSpecTemplate = Tmpl; 4908 if (EPI.ExceptionSpec.Type == EST_Uninstantiated) 4909 ExceptionSpecTemplate = EPI.ExceptionSpec.SourceTemplate; 4910 ExceptionSpecificationType NewEST = EST_Uninstantiated; 4911 if (EPI.ExceptionSpec.Type == EST_Unevaluated) 4912 NewEST = EST_Unevaluated; 4913 4914 // Mark the function has having an uninstantiated exception specification. 4915 const FunctionProtoType *NewProto 4916 = New->getType()->getAs<FunctionProtoType>(); 4917 assert(NewProto && "Template instantiation without function prototype?"); 4918 EPI = NewProto->getExtProtoInfo(); 4919 EPI.ExceptionSpec.Type = NewEST; 4920 EPI.ExceptionSpec.SourceDecl = New; 4921 EPI.ExceptionSpec.SourceTemplate = ExceptionSpecTemplate; 4922 New->setType(SemaRef.Context.getFunctionType( 4923 NewProto->getReturnType(), NewProto->getParamTypes(), EPI)); 4924 } else { 4925 Sema::ContextRAII SwitchContext(SemaRef, New); 4926 SemaRef.SubstExceptionSpec(New, Proto, TemplateArgs); 4927 } 4928 } 4929 4930 // Get the definition. Leaves the variable unchanged if undefined. 4931 const FunctionDecl *Definition = Tmpl; 4932 Tmpl->isDefined(Definition); 4933 4934 SemaRef.InstantiateAttrs(TemplateArgs, Definition, New, 4935 LateAttrs, StartingScope); 4936 4937 return false; 4938 } 4939 4940 /// Initializes common fields of an instantiated method 4941 /// declaration (New) from the corresponding fields of its template 4942 /// (Tmpl). 4943 /// 4944 /// \returns true if there was an error 4945 bool 4946 TemplateDeclInstantiator::InitMethodInstantiation(CXXMethodDecl *New, 4947 CXXMethodDecl *Tmpl) { 4948 if (InitFunctionInstantiation(New, Tmpl)) 4949 return true; 4950 4951 if (isa<CXXDestructorDecl>(New) && SemaRef.getLangOpts().CPlusPlus11) 4952 SemaRef.AdjustDestructorExceptionSpec(cast<CXXDestructorDecl>(New)); 4953 4954 New->setAccess(Tmpl->getAccess()); 4955 if (Tmpl->isVirtualAsWritten()) 4956 New->setVirtualAsWritten(true); 4957 4958 // FIXME: New needs a pointer to Tmpl 4959 return false; 4960 } 4961 4962 bool TemplateDeclInstantiator::SubstDefaultedFunction(FunctionDecl *New, 4963 FunctionDecl *Tmpl) { 4964 // Transfer across any unqualified lookups. 4965 if (auto *DFI = Tmpl->getDefalutedOrDeletedInfo()) { 4966 SmallVector<DeclAccessPair, 32> Lookups; 4967 Lookups.reserve(DFI->getUnqualifiedLookups().size()); 4968 bool AnyChanged = false; 4969 for (DeclAccessPair DA : DFI->getUnqualifiedLookups()) { 4970 NamedDecl *D = SemaRef.FindInstantiatedDecl(New->getLocation(), 4971 DA.getDecl(), TemplateArgs); 4972 if (!D) 4973 return true; 4974 AnyChanged |= (D != DA.getDecl()); 4975 Lookups.push_back(DeclAccessPair::make(D, DA.getAccess())); 4976 } 4977 4978 // It's unlikely that substitution will change any declarations. Don't 4979 // store an unnecessary copy in that case. 4980 New->setDefaultedOrDeletedInfo( 4981 AnyChanged ? FunctionDecl::DefaultedOrDeletedFunctionInfo::Create( 4982 SemaRef.Context, Lookups) 4983 : DFI); 4984 } 4985 4986 SemaRef.SetDeclDefaulted(New, Tmpl->getLocation()); 4987 return false; 4988 } 4989 4990 FunctionDecl *Sema::InstantiateFunctionDeclaration( 4991 FunctionTemplateDecl *FTD, const TemplateArgumentList *Args, 4992 SourceLocation Loc, CodeSynthesisContext::SynthesisKind CSC) { 4993 FunctionDecl *FD = FTD->getTemplatedDecl(); 4994 4995 sema::TemplateDeductionInfo Info(Loc); 4996 InstantiatingTemplate Inst(*this, Loc, FTD, Args->asArray(), CSC, Info); 4997 if (Inst.isInvalid()) 4998 return nullptr; 4999 5000 ContextRAII SavedContext(*this, FD); 5001 MultiLevelTemplateArgumentList MArgs(FTD, Args->asArray(), 5002 /*Final=*/false); 5003 5004 return cast_or_null<FunctionDecl>(SubstDecl(FD, FD->getParent(), MArgs)); 5005 } 5006 5007 void Sema::InstantiateFunctionDefinition(SourceLocation PointOfInstantiation, 5008 FunctionDecl *Function, 5009 bool Recursive, 5010 bool DefinitionRequired, 5011 bool AtEndOfTU) { 5012 if (Function->isInvalidDecl() || isa<CXXDeductionGuideDecl>(Function)) 5013 return; 5014 5015 // Never instantiate an explicit specialization except if it is a class scope 5016 // explicit specialization. 5017 TemplateSpecializationKind TSK = 5018 Function->getTemplateSpecializationKindForInstantiation(); 5019 if (TSK == TSK_ExplicitSpecialization) 5020 return; 5021 5022 // Never implicitly instantiate a builtin; we don't actually need a function 5023 // body. 5024 if (Function->getBuiltinID() && TSK == TSK_ImplicitInstantiation && 5025 !DefinitionRequired) 5026 return; 5027 5028 // Don't instantiate a definition if we already have one. 5029 const FunctionDecl *ExistingDefn = nullptr; 5030 if (Function->isDefined(ExistingDefn, 5031 /*CheckForPendingFriendDefinition=*/true)) { 5032 if (ExistingDefn->isThisDeclarationADefinition()) 5033 return; 5034 5035 // If we're asked to instantiate a function whose body comes from an 5036 // instantiated friend declaration, attach the instantiated body to the 5037 // corresponding declaration of the function. 5038 assert(ExistingDefn->isThisDeclarationInstantiatedFromAFriendDefinition()); 5039 Function = const_cast<FunctionDecl*>(ExistingDefn); 5040 } 5041 5042 // Find the function body that we'll be substituting. 5043 const FunctionDecl *PatternDecl = Function->getTemplateInstantiationPattern(); 5044 assert(PatternDecl && "instantiating a non-template"); 5045 5046 const FunctionDecl *PatternDef = PatternDecl->getDefinition(); 5047 Stmt *Pattern = nullptr; 5048 if (PatternDef) { 5049 Pattern = PatternDef->getBody(PatternDef); 5050 PatternDecl = PatternDef; 5051 if (PatternDef->willHaveBody()) 5052 PatternDef = nullptr; 5053 } 5054 5055 // FIXME: We need to track the instantiation stack in order to know which 5056 // definitions should be visible within this instantiation. 5057 if (DiagnoseUninstantiableTemplate(PointOfInstantiation, Function, 5058 Function->getInstantiatedFromMemberFunction(), 5059 PatternDecl, PatternDef, TSK, 5060 /*Complain*/DefinitionRequired)) { 5061 if (DefinitionRequired) 5062 Function->setInvalidDecl(); 5063 else if (TSK == TSK_ExplicitInstantiationDefinition || 5064 (Function->isConstexpr() && !Recursive)) { 5065 // Try again at the end of the translation unit (at which point a 5066 // definition will be required). 5067 assert(!Recursive); 5068 Function->setInstantiationIsPending(true); 5069 PendingInstantiations.push_back( 5070 std::make_pair(Function, PointOfInstantiation)); 5071 5072 if (llvm::isTimeTraceVerbose()) { 5073 llvm::timeTraceAddInstantEvent("DeferInstantiation", [&] { 5074 std::string Name; 5075 llvm::raw_string_ostream OS(Name); 5076 Function->getNameForDiagnostic(OS, getPrintingPolicy(), 5077 /*Qualified=*/true); 5078 return Name; 5079 }); 5080 } 5081 } else if (TSK == TSK_ImplicitInstantiation) { 5082 if (AtEndOfTU && !getDiagnostics().hasErrorOccurred() && 5083 !getSourceManager().isInSystemHeader(PatternDecl->getBeginLoc())) { 5084 Diag(PointOfInstantiation, diag::warn_func_template_missing) 5085 << Function; 5086 Diag(PatternDecl->getLocation(), diag::note_forward_template_decl); 5087 if (getLangOpts().CPlusPlus11) 5088 Diag(PointOfInstantiation, diag::note_inst_declaration_hint) 5089 << Function; 5090 } 5091 } 5092 5093 return; 5094 } 5095 5096 // Postpone late parsed template instantiations. 5097 if (PatternDecl->isLateTemplateParsed() && 5098 !LateTemplateParser) { 5099 Function->setInstantiationIsPending(true); 5100 LateParsedInstantiations.push_back( 5101 std::make_pair(Function, PointOfInstantiation)); 5102 return; 5103 } 5104 5105 llvm::TimeTraceScope TimeScope("InstantiateFunction", [&]() { 5106 llvm::TimeTraceMetadata M; 5107 llvm::raw_string_ostream OS(M.Detail); 5108 Function->getNameForDiagnostic(OS, getPrintingPolicy(), 5109 /*Qualified=*/true); 5110 if (llvm::isTimeTraceVerbose()) { 5111 auto Loc = SourceMgr.getExpansionLoc(Function->getLocation()); 5112 M.File = SourceMgr.getFilename(Loc); 5113 M.Line = SourceMgr.getExpansionLineNumber(Loc); 5114 } 5115 return M; 5116 }); 5117 5118 // If we're performing recursive template instantiation, create our own 5119 // queue of pending implicit instantiations that we will instantiate later, 5120 // while we're still within our own instantiation context. 5121 // This has to happen before LateTemplateParser below is called, so that 5122 // it marks vtables used in late parsed templates as used. 5123 GlobalEagerInstantiationScope GlobalInstantiations(*this, 5124 /*Enabled=*/Recursive); 5125 LocalEagerInstantiationScope LocalInstantiations(*this); 5126 5127 // Call the LateTemplateParser callback if there is a need to late parse 5128 // a templated function definition. 5129 if (!Pattern && PatternDecl->isLateTemplateParsed() && 5130 LateTemplateParser) { 5131 // FIXME: Optimize to allow individual templates to be deserialized. 5132 if (PatternDecl->isFromASTFile()) 5133 ExternalSource->ReadLateParsedTemplates(LateParsedTemplateMap); 5134 5135 auto LPTIter = LateParsedTemplateMap.find(PatternDecl); 5136 assert(LPTIter != LateParsedTemplateMap.end() && 5137 "missing LateParsedTemplate"); 5138 LateTemplateParser(OpaqueParser, *LPTIter->second); 5139 Pattern = PatternDecl->getBody(PatternDecl); 5140 updateAttrsForLateParsedTemplate(PatternDecl, Function); 5141 } 5142 5143 // Note, we should never try to instantiate a deleted function template. 5144 assert((Pattern || PatternDecl->isDefaulted() || 5145 PatternDecl->hasSkippedBody()) && 5146 "unexpected kind of function template definition"); 5147 5148 // C++1y [temp.explicit]p10: 5149 // Except for inline functions, declarations with types deduced from their 5150 // initializer or return value, and class template specializations, other 5151 // explicit instantiation declarations have the effect of suppressing the 5152 // implicit instantiation of the entity to which they refer. 5153 if (TSK == TSK_ExplicitInstantiationDeclaration && 5154 !PatternDecl->isInlined() && 5155 !PatternDecl->getReturnType()->getContainedAutoType()) 5156 return; 5157 5158 if (PatternDecl->isInlined()) { 5159 // Function, and all later redeclarations of it (from imported modules, 5160 // for instance), are now implicitly inline. 5161 for (auto *D = Function->getMostRecentDecl(); /**/; 5162 D = D->getPreviousDecl()) { 5163 D->setImplicitlyInline(); 5164 if (D == Function) 5165 break; 5166 } 5167 } 5168 5169 InstantiatingTemplate Inst(*this, PointOfInstantiation, Function); 5170 if (Inst.isInvalid() || Inst.isAlreadyInstantiating()) 5171 return; 5172 PrettyDeclStackTraceEntry CrashInfo(Context, Function, SourceLocation(), 5173 "instantiating function definition"); 5174 5175 // The instantiation is visible here, even if it was first declared in an 5176 // unimported module. 5177 Function->setVisibleDespiteOwningModule(); 5178 5179 // Copy the source locations from the pattern. 5180 Function->setLocation(PatternDecl->getLocation()); 5181 Function->setInnerLocStart(PatternDecl->getInnerLocStart()); 5182 Function->setRangeEnd(PatternDecl->getEndLoc()); 5183 Function->setDeclarationNameLoc(PatternDecl->getNameInfo().getInfo()); 5184 5185 EnterExpressionEvaluationContext EvalContext( 5186 *this, Sema::ExpressionEvaluationContext::PotentiallyEvaluated); 5187 5188 Qualifiers ThisTypeQuals; 5189 CXXRecordDecl *ThisContext = nullptr; 5190 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) { 5191 ThisContext = Method->getParent(); 5192 ThisTypeQuals = Method->getMethodQualifiers(); 5193 } 5194 CXXThisScopeRAII ThisScope(*this, ThisContext, ThisTypeQuals); 5195 5196 // Introduce a new scope where local variable instantiations will be 5197 // recorded, unless we're actually a member function within a local 5198 // class, in which case we need to merge our results with the parent 5199 // scope (of the enclosing function). The exception is instantiating 5200 // a function template specialization, since the template to be 5201 // instantiated already has references to locals properly substituted. 5202 bool MergeWithParentScope = false; 5203 if (CXXRecordDecl *Rec = dyn_cast<CXXRecordDecl>(Function->getDeclContext())) 5204 MergeWithParentScope = 5205 Rec->isLocalClass() && !Function->isFunctionTemplateSpecialization(); 5206 5207 LocalInstantiationScope Scope(*this, MergeWithParentScope); 5208 auto RebuildTypeSourceInfoForDefaultSpecialMembers = [&]() { 5209 // Special members might get their TypeSourceInfo set up w.r.t the 5210 // PatternDecl context, in which case parameters could still be pointing 5211 // back to the original class, make sure arguments are bound to the 5212 // instantiated record instead. 5213 assert(PatternDecl->isDefaulted() && 5214 "Special member needs to be defaulted"); 5215 auto PatternSM = getDefaultedFunctionKind(PatternDecl).asSpecialMember(); 5216 if (!(PatternSM == CXXSpecialMemberKind::CopyConstructor || 5217 PatternSM == CXXSpecialMemberKind::CopyAssignment || 5218 PatternSM == CXXSpecialMemberKind::MoveConstructor || 5219 PatternSM == CXXSpecialMemberKind::MoveAssignment)) 5220 return; 5221 5222 auto *NewRec = dyn_cast<CXXRecordDecl>(Function->getDeclContext()); 5223 const auto *PatternRec = 5224 dyn_cast<CXXRecordDecl>(PatternDecl->getDeclContext()); 5225 if (!NewRec || !PatternRec) 5226 return; 5227 if (!PatternRec->isLambda()) 5228 return; 5229 5230 struct SpecialMemberTypeInfoRebuilder 5231 : TreeTransform<SpecialMemberTypeInfoRebuilder> { 5232 using Base = TreeTransform<SpecialMemberTypeInfoRebuilder>; 5233 const CXXRecordDecl *OldDecl; 5234 CXXRecordDecl *NewDecl; 5235 5236 SpecialMemberTypeInfoRebuilder(Sema &SemaRef, const CXXRecordDecl *O, 5237 CXXRecordDecl *N) 5238 : TreeTransform(SemaRef), OldDecl(O), NewDecl(N) {} 5239 5240 bool TransformExceptionSpec(SourceLocation Loc, 5241 FunctionProtoType::ExceptionSpecInfo &ESI, 5242 SmallVectorImpl<QualType> &Exceptions, 5243 bool &Changed) { 5244 return false; 5245 } 5246 5247 QualType TransformRecordType(TypeLocBuilder &TLB, RecordTypeLoc TL) { 5248 const RecordType *T = TL.getTypePtr(); 5249 RecordDecl *Record = cast_or_null<RecordDecl>( 5250 getDerived().TransformDecl(TL.getNameLoc(), T->getDecl())); 5251 if (Record != OldDecl) 5252 return Base::TransformRecordType(TLB, TL); 5253 5254 QualType Result = getDerived().RebuildRecordType(NewDecl); 5255 if (Result.isNull()) 5256 return QualType(); 5257 5258 RecordTypeLoc NewTL = TLB.push<RecordTypeLoc>(Result); 5259 NewTL.setNameLoc(TL.getNameLoc()); 5260 return Result; 5261 } 5262 } IR{*this, PatternRec, NewRec}; 5263 5264 TypeSourceInfo *NewSI = IR.TransformType(Function->getTypeSourceInfo()); 5265 assert(NewSI && "Type Transform failed?"); 5266 Function->setType(NewSI->getType()); 5267 Function->setTypeSourceInfo(NewSI); 5268 5269 ParmVarDecl *Parm = Function->getParamDecl(0); 5270 TypeSourceInfo *NewParmSI = IR.TransformType(Parm->getTypeSourceInfo()); 5271 assert(NewParmSI && "Type transformation failed."); 5272 Parm->setType(NewParmSI->getType()); 5273 Parm->setTypeSourceInfo(NewParmSI); 5274 }; 5275 5276 if (PatternDecl->isDefaulted()) { 5277 RebuildTypeSourceInfoForDefaultSpecialMembers(); 5278 SetDeclDefaulted(Function, PatternDecl->getLocation()); 5279 } else { 5280 NamedDecl *ND = Function; 5281 DeclContext *DC = ND->getLexicalDeclContext(); 5282 std::optional<ArrayRef<TemplateArgument>> Innermost; 5283 if (auto *Primary = Function->getPrimaryTemplate(); 5284 Primary && 5285 !isGenericLambdaCallOperatorOrStaticInvokerSpecialization(Function) && 5286 Function->getTemplateSpecializationKind() != 5287 TSK_ExplicitSpecialization) { 5288 auto It = llvm::find_if(Primary->redecls(), 5289 [](const RedeclarableTemplateDecl *RTD) { 5290 return cast<FunctionTemplateDecl>(RTD) 5291 ->isCompatibleWithDefinition(); 5292 }); 5293 assert(It != Primary->redecls().end() && 5294 "Should't get here without a definition"); 5295 DC = (*It)->getLexicalDeclContext(); 5296 Innermost.emplace(Function->getTemplateSpecializationArgs()->asArray()); 5297 } 5298 MultiLevelTemplateArgumentList TemplateArgs = getTemplateInstantiationArgs( 5299 Function, DC, /*Final=*/false, Innermost, false, PatternDecl); 5300 5301 // Substitute into the qualifier; we can get a substitution failure here 5302 // through evil use of alias templates. 5303 // FIXME: Is CurContext correct for this? Should we go to the (instantiation 5304 // of the) lexical context of the pattern? 5305 SubstQualifier(*this, PatternDecl, Function, TemplateArgs); 5306 5307 ActOnStartOfFunctionDef(nullptr, Function); 5308 5309 // Enter the scope of this instantiation. We don't use 5310 // PushDeclContext because we don't have a scope. 5311 Sema::ContextRAII savedContext(*this, Function); 5312 5313 FPFeaturesStateRAII SavedFPFeatures(*this); 5314 CurFPFeatures = FPOptions(getLangOpts()); 5315 FpPragmaStack.CurrentValue = FPOptionsOverride(); 5316 5317 if (addInstantiatedParametersToScope(Function, PatternDecl, Scope, 5318 TemplateArgs)) 5319 return; 5320 5321 StmtResult Body; 5322 if (PatternDecl->hasSkippedBody()) { 5323 ActOnSkippedFunctionBody(Function); 5324 Body = nullptr; 5325 } else { 5326 if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Function)) { 5327 // If this is a constructor, instantiate the member initializers. 5328 InstantiateMemInitializers(Ctor, cast<CXXConstructorDecl>(PatternDecl), 5329 TemplateArgs); 5330 5331 // If this is an MS ABI dllexport default constructor, instantiate any 5332 // default arguments. 5333 if (Context.getTargetInfo().getCXXABI().isMicrosoft() && 5334 Ctor->isDefaultConstructor()) { 5335 InstantiateDefaultCtorDefaultArgs(Ctor); 5336 } 5337 } 5338 5339 // Instantiate the function body. 5340 Body = SubstStmt(Pattern, TemplateArgs); 5341 5342 if (Body.isInvalid()) 5343 Function->setInvalidDecl(); 5344 } 5345 // FIXME: finishing the function body while in an expression evaluation 5346 // context seems wrong. Investigate more. 5347 ActOnFinishFunctionBody(Function, Body.get(), /*IsInstantiation=*/true); 5348 5349 PerformDependentDiagnostics(PatternDecl, TemplateArgs); 5350 5351 if (auto *Listener = getASTMutationListener()) 5352 Listener->FunctionDefinitionInstantiated(Function); 5353 5354 savedContext.pop(); 5355 } 5356 5357 DeclGroupRef DG(Function); 5358 Consumer.HandleTopLevelDecl(DG); 5359 5360 // This class may have local implicit instantiations that need to be 5361 // instantiation within this scope. 5362 LocalInstantiations.perform(); 5363 Scope.Exit(); 5364 GlobalInstantiations.perform(); 5365 } 5366 5367 VarTemplateSpecializationDecl *Sema::BuildVarTemplateInstantiation( 5368 VarTemplateDecl *VarTemplate, VarDecl *FromVar, 5369 const TemplateArgumentList *PartialSpecArgs, 5370 const TemplateArgumentListInfo &TemplateArgsInfo, 5371 SmallVectorImpl<TemplateArgument> &Converted, 5372 SourceLocation PointOfInstantiation, LateInstantiatedAttrVec *LateAttrs, 5373 LocalInstantiationScope *StartingScope) { 5374 if (FromVar->isInvalidDecl()) 5375 return nullptr; 5376 5377 InstantiatingTemplate Inst(*this, PointOfInstantiation, FromVar); 5378 if (Inst.isInvalid()) 5379 return nullptr; 5380 5381 // Instantiate the first declaration of the variable template: for a partial 5382 // specialization of a static data member template, the first declaration may 5383 // or may not be the declaration in the class; if it's in the class, we want 5384 // to instantiate a member in the class (a declaration), and if it's outside, 5385 // we want to instantiate a definition. 5386 // 5387 // If we're instantiating an explicitly-specialized member template or member 5388 // partial specialization, don't do this. The member specialization completely 5389 // replaces the original declaration in this case. 5390 bool IsMemberSpec = false; 5391 MultiLevelTemplateArgumentList MultiLevelList; 5392 if (auto *PartialSpec = 5393 dyn_cast<VarTemplatePartialSpecializationDecl>(FromVar)) { 5394 assert(PartialSpecArgs); 5395 IsMemberSpec = PartialSpec->isMemberSpecialization(); 5396 MultiLevelList.addOuterTemplateArguments( 5397 PartialSpec, PartialSpecArgs->asArray(), /*Final=*/false); 5398 } else { 5399 assert(VarTemplate == FromVar->getDescribedVarTemplate()); 5400 IsMemberSpec = VarTemplate->isMemberSpecialization(); 5401 MultiLevelList.addOuterTemplateArguments(VarTemplate, Converted, 5402 /*Final=*/false); 5403 } 5404 if (!IsMemberSpec) 5405 FromVar = FromVar->getFirstDecl(); 5406 5407 TemplateDeclInstantiator Instantiator(*this, FromVar->getDeclContext(), 5408 MultiLevelList); 5409 5410 // TODO: Set LateAttrs and StartingScope ... 5411 5412 return cast_or_null<VarTemplateSpecializationDecl>( 5413 Instantiator.VisitVarTemplateSpecializationDecl( 5414 VarTemplate, FromVar, TemplateArgsInfo, Converted)); 5415 } 5416 5417 VarTemplateSpecializationDecl *Sema::CompleteVarTemplateSpecializationDecl( 5418 VarTemplateSpecializationDecl *VarSpec, VarDecl *PatternDecl, 5419 const MultiLevelTemplateArgumentList &TemplateArgs) { 5420 assert(PatternDecl->isThisDeclarationADefinition() && 5421 "don't have a definition to instantiate from"); 5422 5423 // Do substitution on the type of the declaration 5424 TypeSourceInfo *DI = 5425 SubstType(PatternDecl->getTypeSourceInfo(), TemplateArgs, 5426 PatternDecl->getTypeSpecStartLoc(), PatternDecl->getDeclName()); 5427 if (!DI) 5428 return nullptr; 5429 5430 // Update the type of this variable template specialization. 5431 VarSpec->setType(DI->getType()); 5432 5433 // Convert the declaration into a definition now. 5434 VarSpec->setCompleteDefinition(); 5435 5436 // Instantiate the initializer. 5437 InstantiateVariableInitializer(VarSpec, PatternDecl, TemplateArgs); 5438 5439 if (getLangOpts().OpenCL) 5440 deduceOpenCLAddressSpace(VarSpec); 5441 5442 return VarSpec; 5443 } 5444 5445 void Sema::BuildVariableInstantiation( 5446 VarDecl *NewVar, VarDecl *OldVar, 5447 const MultiLevelTemplateArgumentList &TemplateArgs, 5448 LateInstantiatedAttrVec *LateAttrs, DeclContext *Owner, 5449 LocalInstantiationScope *StartingScope, 5450 bool InstantiatingVarTemplate, 5451 VarTemplateSpecializationDecl *PrevDeclForVarTemplateSpecialization) { 5452 // Instantiating a partial specialization to produce a partial 5453 // specialization. 5454 bool InstantiatingVarTemplatePartialSpec = 5455 isa<VarTemplatePartialSpecializationDecl>(OldVar) && 5456 isa<VarTemplatePartialSpecializationDecl>(NewVar); 5457 // Instantiating from a variable template (or partial specialization) to 5458 // produce a variable template specialization. 5459 bool InstantiatingSpecFromTemplate = 5460 isa<VarTemplateSpecializationDecl>(NewVar) && 5461 (OldVar->getDescribedVarTemplate() || 5462 isa<VarTemplatePartialSpecializationDecl>(OldVar)); 5463 5464 // If we are instantiating a local extern declaration, the 5465 // instantiation belongs lexically to the containing function. 5466 // If we are instantiating a static data member defined 5467 // out-of-line, the instantiation will have the same lexical 5468 // context (which will be a namespace scope) as the template. 5469 if (OldVar->isLocalExternDecl()) { 5470 NewVar->setLocalExternDecl(); 5471 NewVar->setLexicalDeclContext(Owner); 5472 } else if (OldVar->isOutOfLine()) 5473 NewVar->setLexicalDeclContext(OldVar->getLexicalDeclContext()); 5474 NewVar->setTSCSpec(OldVar->getTSCSpec()); 5475 NewVar->setInitStyle(OldVar->getInitStyle()); 5476 NewVar->setCXXForRangeDecl(OldVar->isCXXForRangeDecl()); 5477 NewVar->setObjCForDecl(OldVar->isObjCForDecl()); 5478 NewVar->setConstexpr(OldVar->isConstexpr()); 5479 NewVar->setInitCapture(OldVar->isInitCapture()); 5480 NewVar->setPreviousDeclInSameBlockScope( 5481 OldVar->isPreviousDeclInSameBlockScope()); 5482 NewVar->setAccess(OldVar->getAccess()); 5483 5484 if (!OldVar->isStaticDataMember()) { 5485 if (OldVar->isUsed(false)) 5486 NewVar->setIsUsed(); 5487 NewVar->setReferenced(OldVar->isReferenced()); 5488 } 5489 5490 InstantiateAttrs(TemplateArgs, OldVar, NewVar, LateAttrs, StartingScope); 5491 5492 LookupResult Previous( 5493 *this, NewVar->getDeclName(), NewVar->getLocation(), 5494 NewVar->isLocalExternDecl() ? Sema::LookupRedeclarationWithLinkage 5495 : Sema::LookupOrdinaryName, 5496 NewVar->isLocalExternDecl() ? RedeclarationKind::ForExternalRedeclaration 5497 : forRedeclarationInCurContext()); 5498 5499 if (NewVar->isLocalExternDecl() && OldVar->getPreviousDecl() && 5500 (!OldVar->getPreviousDecl()->getDeclContext()->isDependentContext() || 5501 OldVar->getPreviousDecl()->getDeclContext()==OldVar->getDeclContext())) { 5502 // We have a previous declaration. Use that one, so we merge with the 5503 // right type. 5504 if (NamedDecl *NewPrev = FindInstantiatedDecl( 5505 NewVar->getLocation(), OldVar->getPreviousDecl(), TemplateArgs)) 5506 Previous.addDecl(NewPrev); 5507 } else if (!isa<VarTemplateSpecializationDecl>(NewVar) && 5508 OldVar->hasLinkage()) { 5509 LookupQualifiedName(Previous, NewVar->getDeclContext(), false); 5510 } else if (PrevDeclForVarTemplateSpecialization) { 5511 Previous.addDecl(PrevDeclForVarTemplateSpecialization); 5512 } 5513 CheckVariableDeclaration(NewVar, Previous); 5514 5515 if (!InstantiatingVarTemplate) { 5516 NewVar->getLexicalDeclContext()->addHiddenDecl(NewVar); 5517 if (!NewVar->isLocalExternDecl() || !NewVar->getPreviousDecl()) 5518 NewVar->getDeclContext()->makeDeclVisibleInContext(NewVar); 5519 } 5520 5521 if (!OldVar->isOutOfLine()) { 5522 if (NewVar->getDeclContext()->isFunctionOrMethod()) 5523 CurrentInstantiationScope->InstantiatedLocal(OldVar, NewVar); 5524 } 5525 5526 // Link instantiations of static data members back to the template from 5527 // which they were instantiated. 5528 // 5529 // Don't do this when instantiating a template (we link the template itself 5530 // back in that case) nor when instantiating a static data member template 5531 // (that's not a member specialization). 5532 if (NewVar->isStaticDataMember() && !InstantiatingVarTemplate && 5533 !InstantiatingSpecFromTemplate) 5534 NewVar->setInstantiationOfStaticDataMember(OldVar, 5535 TSK_ImplicitInstantiation); 5536 5537 // If the pattern is an (in-class) explicit specialization, then the result 5538 // is also an explicit specialization. 5539 if (VarTemplateSpecializationDecl *OldVTSD = 5540 dyn_cast<VarTemplateSpecializationDecl>(OldVar)) { 5541 if (OldVTSD->getSpecializationKind() == TSK_ExplicitSpecialization && 5542 !isa<VarTemplatePartialSpecializationDecl>(OldVTSD)) 5543 cast<VarTemplateSpecializationDecl>(NewVar)->setSpecializationKind( 5544 TSK_ExplicitSpecialization); 5545 } 5546 5547 // Forward the mangling number from the template to the instantiated decl. 5548 Context.setManglingNumber(NewVar, Context.getManglingNumber(OldVar)); 5549 Context.setStaticLocalNumber(NewVar, Context.getStaticLocalNumber(OldVar)); 5550 5551 // Figure out whether to eagerly instantiate the initializer. 5552 if (InstantiatingVarTemplate || InstantiatingVarTemplatePartialSpec) { 5553 // We're producing a template. Don't instantiate the initializer yet. 5554 } else if (NewVar->getType()->isUndeducedType()) { 5555 // We need the type to complete the declaration of the variable. 5556 InstantiateVariableInitializer(NewVar, OldVar, TemplateArgs); 5557 } else if (InstantiatingSpecFromTemplate || 5558 (OldVar->isInline() && OldVar->isThisDeclarationADefinition() && 5559 !NewVar->isThisDeclarationADefinition())) { 5560 // Delay instantiation of the initializer for variable template 5561 // specializations or inline static data members until a definition of the 5562 // variable is needed. 5563 } else { 5564 InstantiateVariableInitializer(NewVar, OldVar, TemplateArgs); 5565 } 5566 5567 // Diagnose unused local variables with dependent types, where the diagnostic 5568 // will have been deferred. 5569 if (!NewVar->isInvalidDecl() && 5570 NewVar->getDeclContext()->isFunctionOrMethod() && 5571 OldVar->getType()->isDependentType()) 5572 DiagnoseUnusedDecl(NewVar); 5573 } 5574 5575 void Sema::InstantiateVariableInitializer( 5576 VarDecl *Var, VarDecl *OldVar, 5577 const MultiLevelTemplateArgumentList &TemplateArgs) { 5578 if (ASTMutationListener *L = getASTContext().getASTMutationListener()) 5579 L->VariableDefinitionInstantiated(Var); 5580 5581 // We propagate the 'inline' flag with the initializer, because it 5582 // would otherwise imply that the variable is a definition for a 5583 // non-static data member. 5584 if (OldVar->isInlineSpecified()) 5585 Var->setInlineSpecified(); 5586 else if (OldVar->isInline()) 5587 Var->setImplicitlyInline(); 5588 5589 if (OldVar->getInit()) { 5590 EnterExpressionEvaluationContext Evaluated( 5591 *this, Sema::ExpressionEvaluationContext::PotentiallyEvaluated, Var); 5592 5593 currentEvaluationContext().InLifetimeExtendingContext = 5594 parentEvaluationContext().InLifetimeExtendingContext; 5595 currentEvaluationContext().RebuildDefaultArgOrDefaultInit = 5596 parentEvaluationContext().RebuildDefaultArgOrDefaultInit; 5597 // Instantiate the initializer. 5598 ExprResult Init; 5599 5600 { 5601 ContextRAII SwitchContext(*this, Var->getDeclContext()); 5602 Init = SubstInitializer(OldVar->getInit(), TemplateArgs, 5603 OldVar->getInitStyle() == VarDecl::CallInit); 5604 } 5605 5606 if (!Init.isInvalid()) { 5607 Expr *InitExpr = Init.get(); 5608 5609 if (Var->hasAttr<DLLImportAttr>() && 5610 (!InitExpr || 5611 !InitExpr->isConstantInitializer(getASTContext(), false))) { 5612 // Do not dynamically initialize dllimport variables. 5613 } else if (InitExpr) { 5614 bool DirectInit = OldVar->isDirectInit(); 5615 AddInitializerToDecl(Var, InitExpr, DirectInit); 5616 } else 5617 ActOnUninitializedDecl(Var); 5618 } else { 5619 // FIXME: Not too happy about invalidating the declaration 5620 // because of a bogus initializer. 5621 Var->setInvalidDecl(); 5622 } 5623 } else { 5624 // `inline` variables are a definition and declaration all in one; we won't 5625 // pick up an initializer from anywhere else. 5626 if (Var->isStaticDataMember() && !Var->isInline()) { 5627 if (!Var->isOutOfLine()) 5628 return; 5629 5630 // If the declaration inside the class had an initializer, don't add 5631 // another one to the out-of-line definition. 5632 if (OldVar->getFirstDecl()->hasInit()) 5633 return; 5634 } 5635 5636 // We'll add an initializer to a for-range declaration later. 5637 if (Var->isCXXForRangeDecl() || Var->isObjCForDecl()) 5638 return; 5639 5640 ActOnUninitializedDecl(Var); 5641 } 5642 5643 if (getLangOpts().CUDA) 5644 CUDA().checkAllowedInitializer(Var); 5645 } 5646 5647 void Sema::InstantiateVariableDefinition(SourceLocation PointOfInstantiation, 5648 VarDecl *Var, bool Recursive, 5649 bool DefinitionRequired, bool AtEndOfTU) { 5650 if (Var->isInvalidDecl()) 5651 return; 5652 5653 // Never instantiate an explicitly-specialized entity. 5654 TemplateSpecializationKind TSK = 5655 Var->getTemplateSpecializationKindForInstantiation(); 5656 if (TSK == TSK_ExplicitSpecialization) 5657 return; 5658 5659 // Find the pattern and the arguments to substitute into it. 5660 VarDecl *PatternDecl = Var->getTemplateInstantiationPattern(); 5661 assert(PatternDecl && "no pattern for templated variable"); 5662 MultiLevelTemplateArgumentList TemplateArgs = 5663 getTemplateInstantiationArgs(Var); 5664 5665 VarTemplateSpecializationDecl *VarSpec = 5666 dyn_cast<VarTemplateSpecializationDecl>(Var); 5667 if (VarSpec) { 5668 // If this is a static data member template, there might be an 5669 // uninstantiated initializer on the declaration. If so, instantiate 5670 // it now. 5671 // 5672 // FIXME: This largely duplicates what we would do below. The difference 5673 // is that along this path we may instantiate an initializer from an 5674 // in-class declaration of the template and instantiate the definition 5675 // from a separate out-of-class definition. 5676 if (PatternDecl->isStaticDataMember() && 5677 (PatternDecl = PatternDecl->getFirstDecl())->hasInit() && 5678 !Var->hasInit()) { 5679 // FIXME: Factor out the duplicated instantiation context setup/tear down 5680 // code here. 5681 InstantiatingTemplate Inst(*this, PointOfInstantiation, Var); 5682 if (Inst.isInvalid() || Inst.isAlreadyInstantiating()) 5683 return; 5684 PrettyDeclStackTraceEntry CrashInfo(Context, Var, SourceLocation(), 5685 "instantiating variable initializer"); 5686 5687 // The instantiation is visible here, even if it was first declared in an 5688 // unimported module. 5689 Var->setVisibleDespiteOwningModule(); 5690 5691 // If we're performing recursive template instantiation, create our own 5692 // queue of pending implicit instantiations that we will instantiate 5693 // later, while we're still within our own instantiation context. 5694 GlobalEagerInstantiationScope GlobalInstantiations(*this, 5695 /*Enabled=*/Recursive); 5696 LocalInstantiationScope Local(*this); 5697 LocalEagerInstantiationScope LocalInstantiations(*this); 5698 5699 // Enter the scope of this instantiation. We don't use 5700 // PushDeclContext because we don't have a scope. 5701 ContextRAII PreviousContext(*this, Var->getDeclContext()); 5702 InstantiateVariableInitializer(Var, PatternDecl, TemplateArgs); 5703 PreviousContext.pop(); 5704 5705 // This variable may have local implicit instantiations that need to be 5706 // instantiated within this scope. 5707 LocalInstantiations.perform(); 5708 Local.Exit(); 5709 GlobalInstantiations.perform(); 5710 } 5711 } else { 5712 assert(Var->isStaticDataMember() && PatternDecl->isStaticDataMember() && 5713 "not a static data member?"); 5714 } 5715 5716 VarDecl *Def = PatternDecl->getDefinition(getASTContext()); 5717 5718 // If we don't have a definition of the variable template, we won't perform 5719 // any instantiation. Rather, we rely on the user to instantiate this 5720 // definition (or provide a specialization for it) in another translation 5721 // unit. 5722 if (!Def && !DefinitionRequired) { 5723 if (TSK == TSK_ExplicitInstantiationDefinition) { 5724 PendingInstantiations.push_back( 5725 std::make_pair(Var, PointOfInstantiation)); 5726 } else if (TSK == TSK_ImplicitInstantiation) { 5727 // Warn about missing definition at the end of translation unit. 5728 if (AtEndOfTU && !getDiagnostics().hasErrorOccurred() && 5729 !getSourceManager().isInSystemHeader(PatternDecl->getBeginLoc())) { 5730 Diag(PointOfInstantiation, diag::warn_var_template_missing) 5731 << Var; 5732 Diag(PatternDecl->getLocation(), diag::note_forward_template_decl); 5733 if (getLangOpts().CPlusPlus11) 5734 Diag(PointOfInstantiation, diag::note_inst_declaration_hint) << Var; 5735 } 5736 return; 5737 } 5738 } 5739 5740 // FIXME: We need to track the instantiation stack in order to know which 5741 // definitions should be visible within this instantiation. 5742 // FIXME: Produce diagnostics when Var->getInstantiatedFromStaticDataMember(). 5743 if (DiagnoseUninstantiableTemplate(PointOfInstantiation, Var, 5744 /*InstantiatedFromMember*/false, 5745 PatternDecl, Def, TSK, 5746 /*Complain*/DefinitionRequired)) 5747 return; 5748 5749 // C++11 [temp.explicit]p10: 5750 // Except for inline functions, const variables of literal types, variables 5751 // of reference types, [...] explicit instantiation declarations 5752 // have the effect of suppressing the implicit instantiation of the entity 5753 // to which they refer. 5754 // 5755 // FIXME: That's not exactly the same as "might be usable in constant 5756 // expressions", which only allows constexpr variables and const integral 5757 // types, not arbitrary const literal types. 5758 if (TSK == TSK_ExplicitInstantiationDeclaration && 5759 !Var->mightBeUsableInConstantExpressions(getASTContext())) 5760 return; 5761 5762 // Make sure to pass the instantiated variable to the consumer at the end. 5763 struct PassToConsumerRAII { 5764 ASTConsumer &Consumer; 5765 VarDecl *Var; 5766 5767 PassToConsumerRAII(ASTConsumer &Consumer, VarDecl *Var) 5768 : Consumer(Consumer), Var(Var) { } 5769 5770 ~PassToConsumerRAII() { 5771 Consumer.HandleCXXStaticMemberVarInstantiation(Var); 5772 } 5773 } PassToConsumerRAII(Consumer, Var); 5774 5775 // If we already have a definition, we're done. 5776 if (VarDecl *Def = Var->getDefinition()) { 5777 // We may be explicitly instantiating something we've already implicitly 5778 // instantiated. 5779 Def->setTemplateSpecializationKind(Var->getTemplateSpecializationKind(), 5780 PointOfInstantiation); 5781 return; 5782 } 5783 5784 InstantiatingTemplate Inst(*this, PointOfInstantiation, Var); 5785 if (Inst.isInvalid() || Inst.isAlreadyInstantiating()) 5786 return; 5787 PrettyDeclStackTraceEntry CrashInfo(Context, Var, SourceLocation(), 5788 "instantiating variable definition"); 5789 5790 // If we're performing recursive template instantiation, create our own 5791 // queue of pending implicit instantiations that we will instantiate later, 5792 // while we're still within our own instantiation context. 5793 GlobalEagerInstantiationScope GlobalInstantiations(*this, 5794 /*Enabled=*/Recursive); 5795 5796 // Enter the scope of this instantiation. We don't use 5797 // PushDeclContext because we don't have a scope. 5798 ContextRAII PreviousContext(*this, Var->getDeclContext()); 5799 LocalInstantiationScope Local(*this); 5800 5801 LocalEagerInstantiationScope LocalInstantiations(*this); 5802 5803 VarDecl *OldVar = Var; 5804 if (Def->isStaticDataMember() && !Def->isOutOfLine()) { 5805 // We're instantiating an inline static data member whose definition was 5806 // provided inside the class. 5807 InstantiateVariableInitializer(Var, Def, TemplateArgs); 5808 } else if (!VarSpec) { 5809 Var = cast_or_null<VarDecl>(SubstDecl(Def, Var->getDeclContext(), 5810 TemplateArgs)); 5811 } else if (Var->isStaticDataMember() && 5812 Var->getLexicalDeclContext()->isRecord()) { 5813 // We need to instantiate the definition of a static data member template, 5814 // and all we have is the in-class declaration of it. Instantiate a separate 5815 // declaration of the definition. 5816 TemplateDeclInstantiator Instantiator(*this, Var->getDeclContext(), 5817 TemplateArgs); 5818 5819 TemplateArgumentListInfo TemplateArgInfo; 5820 if (const ASTTemplateArgumentListInfo *ArgInfo = 5821 VarSpec->getTemplateArgsAsWritten()) { 5822 TemplateArgInfo.setLAngleLoc(ArgInfo->getLAngleLoc()); 5823 TemplateArgInfo.setRAngleLoc(ArgInfo->getRAngleLoc()); 5824 for (const TemplateArgumentLoc &Arg : ArgInfo->arguments()) 5825 TemplateArgInfo.addArgument(Arg); 5826 } 5827 5828 Var = cast_or_null<VarDecl>(Instantiator.VisitVarTemplateSpecializationDecl( 5829 VarSpec->getSpecializedTemplate(), Def, TemplateArgInfo, 5830 VarSpec->getTemplateArgs().asArray(), VarSpec)); 5831 if (Var) { 5832 llvm::PointerUnion<VarTemplateDecl *, 5833 VarTemplatePartialSpecializationDecl *> PatternPtr = 5834 VarSpec->getSpecializedTemplateOrPartial(); 5835 if (VarTemplatePartialSpecializationDecl *Partial = 5836 PatternPtr.dyn_cast<VarTemplatePartialSpecializationDecl *>()) 5837 cast<VarTemplateSpecializationDecl>(Var)->setInstantiationOf( 5838 Partial, &VarSpec->getTemplateInstantiationArgs()); 5839 5840 // Attach the initializer. 5841 InstantiateVariableInitializer(Var, Def, TemplateArgs); 5842 } 5843 } else 5844 // Complete the existing variable's definition with an appropriately 5845 // substituted type and initializer. 5846 Var = CompleteVarTemplateSpecializationDecl(VarSpec, Def, TemplateArgs); 5847 5848 PreviousContext.pop(); 5849 5850 if (Var) { 5851 PassToConsumerRAII.Var = Var; 5852 Var->setTemplateSpecializationKind(OldVar->getTemplateSpecializationKind(), 5853 OldVar->getPointOfInstantiation()); 5854 } 5855 5856 // This variable may have local implicit instantiations that need to be 5857 // instantiated within this scope. 5858 LocalInstantiations.perform(); 5859 Local.Exit(); 5860 GlobalInstantiations.perform(); 5861 } 5862 5863 void 5864 Sema::InstantiateMemInitializers(CXXConstructorDecl *New, 5865 const CXXConstructorDecl *Tmpl, 5866 const MultiLevelTemplateArgumentList &TemplateArgs) { 5867 5868 SmallVector<CXXCtorInitializer*, 4> NewInits; 5869 bool AnyErrors = Tmpl->isInvalidDecl(); 5870 5871 // Instantiate all the initializers. 5872 for (const auto *Init : Tmpl->inits()) { 5873 // Only instantiate written initializers, let Sema re-construct implicit 5874 // ones. 5875 if (!Init->isWritten()) 5876 continue; 5877 5878 SourceLocation EllipsisLoc; 5879 5880 if (Init->isPackExpansion()) { 5881 // This is a pack expansion. We should expand it now. 5882 TypeLoc BaseTL = Init->getTypeSourceInfo()->getTypeLoc(); 5883 SmallVector<UnexpandedParameterPack, 4> Unexpanded; 5884 collectUnexpandedParameterPacks(BaseTL, Unexpanded); 5885 collectUnexpandedParameterPacks(Init->getInit(), Unexpanded); 5886 bool ShouldExpand = false; 5887 bool RetainExpansion = false; 5888 std::optional<unsigned> NumExpansions; 5889 if (CheckParameterPacksForExpansion(Init->getEllipsisLoc(), 5890 BaseTL.getSourceRange(), 5891 Unexpanded, 5892 TemplateArgs, ShouldExpand, 5893 RetainExpansion, 5894 NumExpansions)) { 5895 AnyErrors = true; 5896 New->setInvalidDecl(); 5897 continue; 5898 } 5899 assert(ShouldExpand && "Partial instantiation of base initializer?"); 5900 5901 // Loop over all of the arguments in the argument pack(s), 5902 for (unsigned I = 0; I != *NumExpansions; ++I) { 5903 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(*this, I); 5904 5905 // Instantiate the initializer. 5906 ExprResult TempInit = SubstInitializer(Init->getInit(), TemplateArgs, 5907 /*CXXDirectInit=*/true); 5908 if (TempInit.isInvalid()) { 5909 AnyErrors = true; 5910 break; 5911 } 5912 5913 // Instantiate the base type. 5914 TypeSourceInfo *BaseTInfo = SubstType(Init->getTypeSourceInfo(), 5915 TemplateArgs, 5916 Init->getSourceLocation(), 5917 New->getDeclName()); 5918 if (!BaseTInfo) { 5919 AnyErrors = true; 5920 break; 5921 } 5922 5923 // Build the initializer. 5924 MemInitResult NewInit = BuildBaseInitializer(BaseTInfo->getType(), 5925 BaseTInfo, TempInit.get(), 5926 New->getParent(), 5927 SourceLocation()); 5928 if (NewInit.isInvalid()) { 5929 AnyErrors = true; 5930 break; 5931 } 5932 5933 NewInits.push_back(NewInit.get()); 5934 } 5935 5936 continue; 5937 } 5938 5939 // Instantiate the initializer. 5940 ExprResult TempInit = SubstInitializer(Init->getInit(), TemplateArgs, 5941 /*CXXDirectInit=*/true); 5942 if (TempInit.isInvalid()) { 5943 AnyErrors = true; 5944 continue; 5945 } 5946 5947 MemInitResult NewInit; 5948 if (Init->isDelegatingInitializer() || Init->isBaseInitializer()) { 5949 TypeSourceInfo *TInfo = SubstType(Init->getTypeSourceInfo(), 5950 TemplateArgs, 5951 Init->getSourceLocation(), 5952 New->getDeclName()); 5953 if (!TInfo) { 5954 AnyErrors = true; 5955 New->setInvalidDecl(); 5956 continue; 5957 } 5958 5959 if (Init->isBaseInitializer()) 5960 NewInit = BuildBaseInitializer(TInfo->getType(), TInfo, TempInit.get(), 5961 New->getParent(), EllipsisLoc); 5962 else 5963 NewInit = BuildDelegatingInitializer(TInfo, TempInit.get(), 5964 cast<CXXRecordDecl>(CurContext->getParent())); 5965 } else if (Init->isMemberInitializer()) { 5966 FieldDecl *Member = cast_or_null<FieldDecl>(FindInstantiatedDecl( 5967 Init->getMemberLocation(), 5968 Init->getMember(), 5969 TemplateArgs)); 5970 if (!Member) { 5971 AnyErrors = true; 5972 New->setInvalidDecl(); 5973 continue; 5974 } 5975 5976 NewInit = BuildMemberInitializer(Member, TempInit.get(), 5977 Init->getSourceLocation()); 5978 } else if (Init->isIndirectMemberInitializer()) { 5979 IndirectFieldDecl *IndirectMember = 5980 cast_or_null<IndirectFieldDecl>(FindInstantiatedDecl( 5981 Init->getMemberLocation(), 5982 Init->getIndirectMember(), TemplateArgs)); 5983 5984 if (!IndirectMember) { 5985 AnyErrors = true; 5986 New->setInvalidDecl(); 5987 continue; 5988 } 5989 5990 NewInit = BuildMemberInitializer(IndirectMember, TempInit.get(), 5991 Init->getSourceLocation()); 5992 } 5993 5994 if (NewInit.isInvalid()) { 5995 AnyErrors = true; 5996 New->setInvalidDecl(); 5997 } else { 5998 NewInits.push_back(NewInit.get()); 5999 } 6000 } 6001 6002 // Assign all the initializers to the new constructor. 6003 ActOnMemInitializers(New, 6004 /*FIXME: ColonLoc */ 6005 SourceLocation(), 6006 NewInits, 6007 AnyErrors); 6008 } 6009 6010 // TODO: this could be templated if the various decl types used the 6011 // same method name. 6012 static bool isInstantiationOf(ClassTemplateDecl *Pattern, 6013 ClassTemplateDecl *Instance) { 6014 Pattern = Pattern->getCanonicalDecl(); 6015 6016 do { 6017 Instance = Instance->getCanonicalDecl(); 6018 if (Pattern == Instance) return true; 6019 Instance = Instance->getInstantiatedFromMemberTemplate(); 6020 } while (Instance); 6021 6022 return false; 6023 } 6024 6025 static bool isInstantiationOf(FunctionTemplateDecl *Pattern, 6026 FunctionTemplateDecl *Instance) { 6027 Pattern = Pattern->getCanonicalDecl(); 6028 6029 do { 6030 Instance = Instance->getCanonicalDecl(); 6031 if (Pattern == Instance) return true; 6032 Instance = Instance->getInstantiatedFromMemberTemplate(); 6033 } while (Instance); 6034 6035 return false; 6036 } 6037 6038 static bool 6039 isInstantiationOf(ClassTemplatePartialSpecializationDecl *Pattern, 6040 ClassTemplatePartialSpecializationDecl *Instance) { 6041 Pattern 6042 = cast<ClassTemplatePartialSpecializationDecl>(Pattern->getCanonicalDecl()); 6043 do { 6044 Instance = cast<ClassTemplatePartialSpecializationDecl>( 6045 Instance->getCanonicalDecl()); 6046 if (Pattern == Instance) 6047 return true; 6048 Instance = Instance->getInstantiatedFromMember(); 6049 } while (Instance); 6050 6051 return false; 6052 } 6053 6054 static bool isInstantiationOf(CXXRecordDecl *Pattern, 6055 CXXRecordDecl *Instance) { 6056 Pattern = Pattern->getCanonicalDecl(); 6057 6058 do { 6059 Instance = Instance->getCanonicalDecl(); 6060 if (Pattern == Instance) return true; 6061 Instance = Instance->getInstantiatedFromMemberClass(); 6062 } while (Instance); 6063 6064 return false; 6065 } 6066 6067 static bool isInstantiationOf(FunctionDecl *Pattern, 6068 FunctionDecl *Instance) { 6069 Pattern = Pattern->getCanonicalDecl(); 6070 6071 do { 6072 Instance = Instance->getCanonicalDecl(); 6073 if (Pattern == Instance) return true; 6074 Instance = Instance->getInstantiatedFromMemberFunction(); 6075 } while (Instance); 6076 6077 return false; 6078 } 6079 6080 static bool isInstantiationOf(EnumDecl *Pattern, 6081 EnumDecl *Instance) { 6082 Pattern = Pattern->getCanonicalDecl(); 6083 6084 do { 6085 Instance = Instance->getCanonicalDecl(); 6086 if (Pattern == Instance) return true; 6087 Instance = Instance->getInstantiatedFromMemberEnum(); 6088 } while (Instance); 6089 6090 return false; 6091 } 6092 6093 static bool isInstantiationOf(UsingShadowDecl *Pattern, 6094 UsingShadowDecl *Instance, 6095 ASTContext &C) { 6096 return declaresSameEntity(C.getInstantiatedFromUsingShadowDecl(Instance), 6097 Pattern); 6098 } 6099 6100 static bool isInstantiationOf(UsingDecl *Pattern, UsingDecl *Instance, 6101 ASTContext &C) { 6102 return declaresSameEntity(C.getInstantiatedFromUsingDecl(Instance), Pattern); 6103 } 6104 6105 template<typename T> 6106 static bool isInstantiationOfUnresolvedUsingDecl(T *Pattern, Decl *Other, 6107 ASTContext &Ctx) { 6108 // An unresolved using declaration can instantiate to an unresolved using 6109 // declaration, or to a using declaration or a using declaration pack. 6110 // 6111 // Multiple declarations can claim to be instantiated from an unresolved 6112 // using declaration if it's a pack expansion. We want the UsingPackDecl 6113 // in that case, not the individual UsingDecls within the pack. 6114 bool OtherIsPackExpansion; 6115 NamedDecl *OtherFrom; 6116 if (auto *OtherUUD = dyn_cast<T>(Other)) { 6117 OtherIsPackExpansion = OtherUUD->isPackExpansion(); 6118 OtherFrom = Ctx.getInstantiatedFromUsingDecl(OtherUUD); 6119 } else if (auto *OtherUPD = dyn_cast<UsingPackDecl>(Other)) { 6120 OtherIsPackExpansion = true; 6121 OtherFrom = OtherUPD->getInstantiatedFromUsingDecl(); 6122 } else if (auto *OtherUD = dyn_cast<UsingDecl>(Other)) { 6123 OtherIsPackExpansion = false; 6124 OtherFrom = Ctx.getInstantiatedFromUsingDecl(OtherUD); 6125 } else { 6126 return false; 6127 } 6128 return Pattern->isPackExpansion() == OtherIsPackExpansion && 6129 declaresSameEntity(OtherFrom, Pattern); 6130 } 6131 6132 static bool isInstantiationOfStaticDataMember(VarDecl *Pattern, 6133 VarDecl *Instance) { 6134 assert(Instance->isStaticDataMember()); 6135 6136 Pattern = Pattern->getCanonicalDecl(); 6137 6138 do { 6139 Instance = Instance->getCanonicalDecl(); 6140 if (Pattern == Instance) return true; 6141 Instance = Instance->getInstantiatedFromStaticDataMember(); 6142 } while (Instance); 6143 6144 return false; 6145 } 6146 6147 // Other is the prospective instantiation 6148 // D is the prospective pattern 6149 static bool isInstantiationOf(ASTContext &Ctx, NamedDecl *D, Decl *Other) { 6150 if (auto *UUD = dyn_cast<UnresolvedUsingTypenameDecl>(D)) 6151 return isInstantiationOfUnresolvedUsingDecl(UUD, Other, Ctx); 6152 6153 if (auto *UUD = dyn_cast<UnresolvedUsingValueDecl>(D)) 6154 return isInstantiationOfUnresolvedUsingDecl(UUD, Other, Ctx); 6155 6156 if (D->getKind() != Other->getKind()) 6157 return false; 6158 6159 if (auto *Record = dyn_cast<CXXRecordDecl>(Other)) 6160 return isInstantiationOf(cast<CXXRecordDecl>(D), Record); 6161 6162 if (auto *Function = dyn_cast<FunctionDecl>(Other)) 6163 return isInstantiationOf(cast<FunctionDecl>(D), Function); 6164 6165 if (auto *Enum = dyn_cast<EnumDecl>(Other)) 6166 return isInstantiationOf(cast<EnumDecl>(D), Enum); 6167 6168 if (auto *Var = dyn_cast<VarDecl>(Other)) 6169 if (Var->isStaticDataMember()) 6170 return isInstantiationOfStaticDataMember(cast<VarDecl>(D), Var); 6171 6172 if (auto *Temp = dyn_cast<ClassTemplateDecl>(Other)) 6173 return isInstantiationOf(cast<ClassTemplateDecl>(D), Temp); 6174 6175 if (auto *Temp = dyn_cast<FunctionTemplateDecl>(Other)) 6176 return isInstantiationOf(cast<FunctionTemplateDecl>(D), Temp); 6177 6178 if (auto *PartialSpec = 6179 dyn_cast<ClassTemplatePartialSpecializationDecl>(Other)) 6180 return isInstantiationOf(cast<ClassTemplatePartialSpecializationDecl>(D), 6181 PartialSpec); 6182 6183 if (auto *Field = dyn_cast<FieldDecl>(Other)) { 6184 if (!Field->getDeclName()) { 6185 // This is an unnamed field. 6186 return declaresSameEntity(Ctx.getInstantiatedFromUnnamedFieldDecl(Field), 6187 cast<FieldDecl>(D)); 6188 } 6189 } 6190 6191 if (auto *Using = dyn_cast<UsingDecl>(Other)) 6192 return isInstantiationOf(cast<UsingDecl>(D), Using, Ctx); 6193 6194 if (auto *Shadow = dyn_cast<UsingShadowDecl>(Other)) 6195 return isInstantiationOf(cast<UsingShadowDecl>(D), Shadow, Ctx); 6196 6197 return D->getDeclName() && 6198 D->getDeclName() == cast<NamedDecl>(Other)->getDeclName(); 6199 } 6200 6201 template<typename ForwardIterator> 6202 static NamedDecl *findInstantiationOf(ASTContext &Ctx, 6203 NamedDecl *D, 6204 ForwardIterator first, 6205 ForwardIterator last) { 6206 for (; first != last; ++first) 6207 if (isInstantiationOf(Ctx, D, *first)) 6208 return cast<NamedDecl>(*first); 6209 6210 return nullptr; 6211 } 6212 6213 DeclContext *Sema::FindInstantiatedContext(SourceLocation Loc, DeclContext* DC, 6214 const MultiLevelTemplateArgumentList &TemplateArgs) { 6215 if (NamedDecl *D = dyn_cast<NamedDecl>(DC)) { 6216 Decl* ID = FindInstantiatedDecl(Loc, D, TemplateArgs, true); 6217 return cast_or_null<DeclContext>(ID); 6218 } else return DC; 6219 } 6220 6221 /// Determine whether the given context is dependent on template parameters at 6222 /// level \p Level or below. 6223 /// 6224 /// Sometimes we only substitute an inner set of template arguments and leave 6225 /// the outer templates alone. In such cases, contexts dependent only on the 6226 /// outer levels are not effectively dependent. 6227 static bool isDependentContextAtLevel(DeclContext *DC, unsigned Level) { 6228 if (!DC->isDependentContext()) 6229 return false; 6230 if (!Level) 6231 return true; 6232 return cast<Decl>(DC)->getTemplateDepth() > Level; 6233 } 6234 6235 NamedDecl *Sema::FindInstantiatedDecl(SourceLocation Loc, NamedDecl *D, 6236 const MultiLevelTemplateArgumentList &TemplateArgs, 6237 bool FindingInstantiatedContext) { 6238 DeclContext *ParentDC = D->getDeclContext(); 6239 // Determine whether our parent context depends on any of the template 6240 // arguments we're currently substituting. 6241 bool ParentDependsOnArgs = isDependentContextAtLevel( 6242 ParentDC, TemplateArgs.getNumRetainedOuterLevels()); 6243 // FIXME: Parameters of pointer to functions (y below) that are themselves 6244 // parameters (p below) can have their ParentDC set to the translation-unit 6245 // - thus we can not consistently check if the ParentDC of such a parameter 6246 // is Dependent or/and a FunctionOrMethod. 6247 // For e.g. this code, during Template argument deduction tries to 6248 // find an instantiated decl for (T y) when the ParentDC for y is 6249 // the translation unit. 6250 // e.g. template <class T> void Foo(auto (*p)(T y) -> decltype(y())) {} 6251 // float baz(float(*)()) { return 0.0; } 6252 // Foo(baz); 6253 // The better fix here is perhaps to ensure that a ParmVarDecl, by the time 6254 // it gets here, always has a FunctionOrMethod as its ParentDC?? 6255 // For now: 6256 // - as long as we have a ParmVarDecl whose parent is non-dependent and 6257 // whose type is not instantiation dependent, do nothing to the decl 6258 // - otherwise find its instantiated decl. 6259 if (isa<ParmVarDecl>(D) && !ParentDependsOnArgs && 6260 !cast<ParmVarDecl>(D)->getType()->isInstantiationDependentType()) 6261 return D; 6262 if (isa<ParmVarDecl>(D) || isa<NonTypeTemplateParmDecl>(D) || 6263 isa<TemplateTypeParmDecl>(D) || isa<TemplateTemplateParmDecl>(D) || 6264 (ParentDependsOnArgs && (ParentDC->isFunctionOrMethod() || 6265 isa<OMPDeclareReductionDecl>(ParentDC) || 6266 isa<OMPDeclareMapperDecl>(ParentDC))) || 6267 (isa<CXXRecordDecl>(D) && cast<CXXRecordDecl>(D)->isLambda() && 6268 cast<CXXRecordDecl>(D)->getTemplateDepth() > 6269 TemplateArgs.getNumRetainedOuterLevels())) { 6270 // D is a local of some kind. Look into the map of local 6271 // declarations to their instantiations. 6272 if (CurrentInstantiationScope) { 6273 if (auto Found = CurrentInstantiationScope->findInstantiationOf(D)) { 6274 if (Decl *FD = Found->dyn_cast<Decl *>()) { 6275 if (auto *BD = dyn_cast<BindingDecl>(FD); 6276 BD && BD->isParameterPack() && 6277 ArgumentPackSubstitutionIndex != -1) { 6278 auto *DRE = cast<DeclRefExpr>( 6279 BD->getBindingPackExprs()[ArgumentPackSubstitutionIndex]); 6280 return cast<NamedDecl>(DRE->getDecl()); 6281 } 6282 return cast<NamedDecl>(FD); 6283 } 6284 6285 int PackIdx = ArgumentPackSubstitutionIndex; 6286 assert(PackIdx != -1 && 6287 "found declaration pack but not pack expanding"); 6288 typedef LocalInstantiationScope::DeclArgumentPack DeclArgumentPack; 6289 return cast<NamedDecl>((*cast<DeclArgumentPack *>(*Found))[PackIdx]); 6290 } 6291 } 6292 6293 // If we're performing a partial substitution during template argument 6294 // deduction, we may not have values for template parameters yet. They 6295 // just map to themselves. 6296 if (isa<NonTypeTemplateParmDecl>(D) || isa<TemplateTypeParmDecl>(D) || 6297 isa<TemplateTemplateParmDecl>(D)) 6298 return D; 6299 6300 if (D->isInvalidDecl()) 6301 return nullptr; 6302 6303 // Normally this function only searches for already instantiated declaration 6304 // however we have to make an exclusion for local types used before 6305 // definition as in the code: 6306 // 6307 // template<typename T> void f1() { 6308 // void g1(struct x1); 6309 // struct x1 {}; 6310 // } 6311 // 6312 // In this case instantiation of the type of 'g1' requires definition of 6313 // 'x1', which is defined later. Error recovery may produce an enum used 6314 // before definition. In these cases we need to instantiate relevant 6315 // declarations here. 6316 bool NeedInstantiate = false; 6317 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) 6318 NeedInstantiate = RD->isLocalClass(); 6319 else if (isa<TypedefNameDecl>(D) && 6320 isa<CXXDeductionGuideDecl>(D->getDeclContext())) 6321 NeedInstantiate = true; 6322 else 6323 NeedInstantiate = isa<EnumDecl>(D); 6324 if (NeedInstantiate) { 6325 Decl *Inst = SubstDecl(D, CurContext, TemplateArgs); 6326 CurrentInstantiationScope->InstantiatedLocal(D, Inst); 6327 return cast<TypeDecl>(Inst); 6328 } 6329 6330 // If we didn't find the decl, then we must have a label decl that hasn't 6331 // been found yet. Lazily instantiate it and return it now. 6332 assert(isa<LabelDecl>(D)); 6333 6334 Decl *Inst = SubstDecl(D, CurContext, TemplateArgs); 6335 assert(Inst && "Failed to instantiate label??"); 6336 6337 CurrentInstantiationScope->InstantiatedLocal(D, Inst); 6338 return cast<LabelDecl>(Inst); 6339 } 6340 6341 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 6342 if (!Record->isDependentContext()) 6343 return D; 6344 6345 // Determine whether this record is the "templated" declaration describing 6346 // a class template or class template specialization. 6347 ClassTemplateDecl *ClassTemplate = Record->getDescribedClassTemplate(); 6348 if (ClassTemplate) 6349 ClassTemplate = ClassTemplate->getCanonicalDecl(); 6350 else if (ClassTemplateSpecializationDecl *Spec = 6351 dyn_cast<ClassTemplateSpecializationDecl>(Record)) 6352 ClassTemplate = Spec->getSpecializedTemplate()->getCanonicalDecl(); 6353 6354 // Walk the current context to find either the record or an instantiation of 6355 // it. 6356 DeclContext *DC = CurContext; 6357 while (!DC->isFileContext()) { 6358 // If we're performing substitution while we're inside the template 6359 // definition, we'll find our own context. We're done. 6360 if (DC->Equals(Record)) 6361 return Record; 6362 6363 if (CXXRecordDecl *InstRecord = dyn_cast<CXXRecordDecl>(DC)) { 6364 // Check whether we're in the process of instantiating a class template 6365 // specialization of the template we're mapping. 6366 if (ClassTemplateSpecializationDecl *InstSpec 6367 = dyn_cast<ClassTemplateSpecializationDecl>(InstRecord)){ 6368 ClassTemplateDecl *SpecTemplate = InstSpec->getSpecializedTemplate(); 6369 if (ClassTemplate && isInstantiationOf(ClassTemplate, SpecTemplate)) 6370 return InstRecord; 6371 } 6372 6373 // Check whether we're in the process of instantiating a member class. 6374 if (isInstantiationOf(Record, InstRecord)) 6375 return InstRecord; 6376 } 6377 6378 // Move to the outer template scope. 6379 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DC)) { 6380 if (FD->getFriendObjectKind() && 6381 FD->getNonTransparentDeclContext()->isFileContext()) { 6382 DC = FD->getLexicalDeclContext(); 6383 continue; 6384 } 6385 // An implicit deduction guide acts as if it's within the class template 6386 // specialization described by its name and first N template params. 6387 auto *Guide = dyn_cast<CXXDeductionGuideDecl>(FD); 6388 if (Guide && Guide->isImplicit()) { 6389 TemplateDecl *TD = Guide->getDeducedTemplate(); 6390 // Convert the arguments to an "as-written" list. 6391 TemplateArgumentListInfo Args(Loc, Loc); 6392 for (TemplateArgument Arg : TemplateArgs.getInnermost().take_front( 6393 TD->getTemplateParameters()->size())) { 6394 ArrayRef<TemplateArgument> Unpacked(Arg); 6395 if (Arg.getKind() == TemplateArgument::Pack) 6396 Unpacked = Arg.pack_elements(); 6397 for (TemplateArgument UnpackedArg : Unpacked) 6398 Args.addArgument( 6399 getTrivialTemplateArgumentLoc(UnpackedArg, QualType(), Loc)); 6400 } 6401 QualType T = CheckTemplateIdType(TemplateName(TD), Loc, Args); 6402 // We may get a non-null type with errors, in which case 6403 // `getAsCXXRecordDecl` will return `nullptr`. For instance, this 6404 // happens when one of the template arguments is an invalid 6405 // expression. We return early to avoid triggering the assertion 6406 // about the `CodeSynthesisContext`. 6407 if (T.isNull() || T->containsErrors()) 6408 return nullptr; 6409 CXXRecordDecl *SubstRecord = T->getAsCXXRecordDecl(); 6410 6411 if (!SubstRecord) { 6412 // T can be a dependent TemplateSpecializationType when performing a 6413 // substitution for building a deduction guide or for template 6414 // argument deduction in the process of rebuilding immediate 6415 // expressions. (Because the default argument that involves a lambda 6416 // is untransformed and thus could be dependent at this point.) 6417 assert(SemaRef.RebuildingImmediateInvocation || 6418 CodeSynthesisContexts.back().Kind == 6419 CodeSynthesisContext::BuildingDeductionGuides); 6420 // Return a nullptr as a sentinel value, we handle it properly in 6421 // the TemplateInstantiator::TransformInjectedClassNameType 6422 // override, which we transform it to a TemplateSpecializationType. 6423 return nullptr; 6424 } 6425 // Check that this template-id names the primary template and not a 6426 // partial or explicit specialization. (In the latter cases, it's 6427 // meaningless to attempt to find an instantiation of D within the 6428 // specialization.) 6429 // FIXME: The standard doesn't say what should happen here. 6430 if (FindingInstantiatedContext && 6431 usesPartialOrExplicitSpecialization( 6432 Loc, cast<ClassTemplateSpecializationDecl>(SubstRecord))) { 6433 Diag(Loc, diag::err_specialization_not_primary_template) 6434 << T << (SubstRecord->getTemplateSpecializationKind() == 6435 TSK_ExplicitSpecialization); 6436 return nullptr; 6437 } 6438 DC = SubstRecord; 6439 continue; 6440 } 6441 } 6442 6443 DC = DC->getParent(); 6444 } 6445 6446 // Fall through to deal with other dependent record types (e.g., 6447 // anonymous unions in class templates). 6448 } 6449 6450 if (!ParentDependsOnArgs) 6451 return D; 6452 6453 ParentDC = FindInstantiatedContext(Loc, ParentDC, TemplateArgs); 6454 if (!ParentDC) 6455 return nullptr; 6456 6457 if (ParentDC != D->getDeclContext()) { 6458 // We performed some kind of instantiation in the parent context, 6459 // so now we need to look into the instantiated parent context to 6460 // find the instantiation of the declaration D. 6461 6462 // If our context used to be dependent, we may need to instantiate 6463 // it before performing lookup into that context. 6464 bool IsBeingInstantiated = false; 6465 if (CXXRecordDecl *Spec = dyn_cast<CXXRecordDecl>(ParentDC)) { 6466 if (!Spec->isDependentContext()) { 6467 QualType T = Context.getTypeDeclType(Spec); 6468 const RecordType *Tag = T->getAs<RecordType>(); 6469 assert(Tag && "type of non-dependent record is not a RecordType"); 6470 if (Tag->isBeingDefined()) 6471 IsBeingInstantiated = true; 6472 if (!Tag->isBeingDefined() && 6473 RequireCompleteType(Loc, T, diag::err_incomplete_type)) 6474 return nullptr; 6475 6476 ParentDC = Tag->getDecl(); 6477 } 6478 } 6479 6480 NamedDecl *Result = nullptr; 6481 // FIXME: If the name is a dependent name, this lookup won't necessarily 6482 // find it. Does that ever matter? 6483 if (auto Name = D->getDeclName()) { 6484 DeclarationNameInfo NameInfo(Name, D->getLocation()); 6485 DeclarationNameInfo NewNameInfo = 6486 SubstDeclarationNameInfo(NameInfo, TemplateArgs); 6487 Name = NewNameInfo.getName(); 6488 if (!Name) 6489 return nullptr; 6490 DeclContext::lookup_result Found = ParentDC->lookup(Name); 6491 6492 Result = findInstantiationOf(Context, D, Found.begin(), Found.end()); 6493 } else { 6494 // Since we don't have a name for the entity we're looking for, 6495 // our only option is to walk through all of the declarations to 6496 // find that name. This will occur in a few cases: 6497 // 6498 // - anonymous struct/union within a template 6499 // - unnamed class/struct/union/enum within a template 6500 // 6501 // FIXME: Find a better way to find these instantiations! 6502 Result = findInstantiationOf(Context, D, 6503 ParentDC->decls_begin(), 6504 ParentDC->decls_end()); 6505 } 6506 6507 if (!Result) { 6508 if (isa<UsingShadowDecl>(D)) { 6509 // UsingShadowDecls can instantiate to nothing because of using hiding. 6510 } else if (hasUncompilableErrorOccurred()) { 6511 // We've already complained about some ill-formed code, so most likely 6512 // this declaration failed to instantiate. There's no point in 6513 // complaining further, since this is normal in invalid code. 6514 // FIXME: Use more fine-grained 'invalid' tracking for this. 6515 } else if (IsBeingInstantiated) { 6516 // The class in which this member exists is currently being 6517 // instantiated, and we haven't gotten around to instantiating this 6518 // member yet. This can happen when the code uses forward declarations 6519 // of member classes, and introduces ordering dependencies via 6520 // template instantiation. 6521 Diag(Loc, diag::err_member_not_yet_instantiated) 6522 << D->getDeclName() 6523 << Context.getTypeDeclType(cast<CXXRecordDecl>(ParentDC)); 6524 Diag(D->getLocation(), diag::note_non_instantiated_member_here); 6525 } else if (EnumConstantDecl *ED = dyn_cast<EnumConstantDecl>(D)) { 6526 // This enumeration constant was found when the template was defined, 6527 // but can't be found in the instantiation. This can happen if an 6528 // unscoped enumeration member is explicitly specialized. 6529 EnumDecl *Enum = cast<EnumDecl>(ED->getLexicalDeclContext()); 6530 EnumDecl *Spec = cast<EnumDecl>(FindInstantiatedDecl(Loc, Enum, 6531 TemplateArgs)); 6532 assert(Spec->getTemplateSpecializationKind() == 6533 TSK_ExplicitSpecialization); 6534 Diag(Loc, diag::err_enumerator_does_not_exist) 6535 << D->getDeclName() 6536 << Context.getTypeDeclType(cast<TypeDecl>(Spec->getDeclContext())); 6537 Diag(Spec->getLocation(), diag::note_enum_specialized_here) 6538 << Context.getTypeDeclType(Spec); 6539 } else { 6540 // We should have found something, but didn't. 6541 llvm_unreachable("Unable to find instantiation of declaration!"); 6542 } 6543 } 6544 6545 D = Result; 6546 } 6547 6548 return D; 6549 } 6550 6551 void Sema::PerformPendingInstantiations(bool LocalOnly) { 6552 std::deque<PendingImplicitInstantiation> delayedPCHInstantiations; 6553 while (!PendingLocalImplicitInstantiations.empty() || 6554 (!LocalOnly && !PendingInstantiations.empty())) { 6555 PendingImplicitInstantiation Inst; 6556 6557 if (PendingLocalImplicitInstantiations.empty()) { 6558 Inst = PendingInstantiations.front(); 6559 PendingInstantiations.pop_front(); 6560 } else { 6561 Inst = PendingLocalImplicitInstantiations.front(); 6562 PendingLocalImplicitInstantiations.pop_front(); 6563 } 6564 6565 // Instantiate function definitions 6566 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Inst.first)) { 6567 bool DefinitionRequired = Function->getTemplateSpecializationKind() == 6568 TSK_ExplicitInstantiationDefinition; 6569 if (Function->isMultiVersion()) { 6570 getASTContext().forEachMultiversionedFunctionVersion( 6571 Function, [this, Inst, DefinitionRequired](FunctionDecl *CurFD) { 6572 InstantiateFunctionDefinition(/*FIXME:*/ Inst.second, CurFD, true, 6573 DefinitionRequired, true); 6574 if (CurFD->isDefined()) 6575 CurFD->setInstantiationIsPending(false); 6576 }); 6577 } else { 6578 InstantiateFunctionDefinition(/*FIXME:*/ Inst.second, Function, true, 6579 DefinitionRequired, true); 6580 if (Function->isDefined()) 6581 Function->setInstantiationIsPending(false); 6582 } 6583 // Definition of a PCH-ed template declaration may be available only in the TU. 6584 if (!LocalOnly && LangOpts.PCHInstantiateTemplates && 6585 TUKind == TU_Prefix && Function->instantiationIsPending()) 6586 delayedPCHInstantiations.push_back(Inst); 6587 continue; 6588 } 6589 6590 // Instantiate variable definitions 6591 VarDecl *Var = cast<VarDecl>(Inst.first); 6592 6593 assert((Var->isStaticDataMember() || 6594 isa<VarTemplateSpecializationDecl>(Var)) && 6595 "Not a static data member, nor a variable template" 6596 " specialization?"); 6597 6598 // Don't try to instantiate declarations if the most recent redeclaration 6599 // is invalid. 6600 if (Var->getMostRecentDecl()->isInvalidDecl()) 6601 continue; 6602 6603 // Check if the most recent declaration has changed the specialization kind 6604 // and removed the need for implicit instantiation. 6605 switch (Var->getMostRecentDecl() 6606 ->getTemplateSpecializationKindForInstantiation()) { 6607 case TSK_Undeclared: 6608 llvm_unreachable("Cannot instantitiate an undeclared specialization."); 6609 case TSK_ExplicitInstantiationDeclaration: 6610 case TSK_ExplicitSpecialization: 6611 continue; // No longer need to instantiate this type. 6612 case TSK_ExplicitInstantiationDefinition: 6613 // We only need an instantiation if the pending instantiation *is* the 6614 // explicit instantiation. 6615 if (Var != Var->getMostRecentDecl()) 6616 continue; 6617 break; 6618 case TSK_ImplicitInstantiation: 6619 break; 6620 } 6621 6622 PrettyDeclStackTraceEntry CrashInfo(Context, Var, SourceLocation(), 6623 "instantiating variable definition"); 6624 bool DefinitionRequired = Var->getTemplateSpecializationKind() == 6625 TSK_ExplicitInstantiationDefinition; 6626 6627 // Instantiate static data member definitions or variable template 6628 // specializations. 6629 InstantiateVariableDefinition(/*FIXME:*/ Inst.second, Var, true, 6630 DefinitionRequired, true); 6631 } 6632 6633 if (!LocalOnly && LangOpts.PCHInstantiateTemplates) 6634 PendingInstantiations.swap(delayedPCHInstantiations); 6635 } 6636 6637 void Sema::PerformDependentDiagnostics(const DeclContext *Pattern, 6638 const MultiLevelTemplateArgumentList &TemplateArgs) { 6639 for (auto *DD : Pattern->ddiags()) { 6640 switch (DD->getKind()) { 6641 case DependentDiagnostic::Access: 6642 HandleDependentAccessCheck(*DD, TemplateArgs); 6643 break; 6644 } 6645 } 6646 } 6647