xref: /llvm-project/clang/lib/Sema/SemaStmtAsm.cpp (revision 449af81f922cdb7a1f24b4c1e989f30848e1d762)
1 //===--- SemaStmtAsm.cpp - Semantic Analysis for Asm Statements -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements semantic analysis for inline asm statements.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/ExprCXX.h"
14 #include "clang/AST/RecordLayout.h"
15 #include "clang/AST/TypeLoc.h"
16 #include "clang/Basic/TargetInfo.h"
17 #include "clang/Lex/Preprocessor.h"
18 #include "clang/Sema/Initialization.h"
19 #include "clang/Sema/Lookup.h"
20 #include "clang/Sema/Scope.h"
21 #include "clang/Sema/ScopeInfo.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/StringExtras.h"
24 #include "llvm/ADT/StringSet.h"
25 #include "llvm/MC/MCParser/MCAsmParser.h"
26 #include <optional>
27 using namespace clang;
28 using namespace sema;
29 
30 /// Remove the upper-level LValueToRValue cast from an expression.
31 static void removeLValueToRValueCast(Expr *E) {
32   Expr *Parent = E;
33   Expr *ExprUnderCast = nullptr;
34   SmallVector<Expr *, 8> ParentsToUpdate;
35 
36   while (true) {
37     ParentsToUpdate.push_back(Parent);
38     if (auto *ParenE = dyn_cast<ParenExpr>(Parent)) {
39       Parent = ParenE->getSubExpr();
40       continue;
41     }
42 
43     Expr *Child = nullptr;
44     CastExpr *ParentCast = dyn_cast<CastExpr>(Parent);
45     if (ParentCast)
46       Child = ParentCast->getSubExpr();
47     else
48       return;
49 
50     if (auto *CastE = dyn_cast<CastExpr>(Child))
51       if (CastE->getCastKind() == CK_LValueToRValue) {
52         ExprUnderCast = CastE->getSubExpr();
53         // LValueToRValue cast inside GCCAsmStmt requires an explicit cast.
54         ParentCast->setSubExpr(ExprUnderCast);
55         break;
56       }
57     Parent = Child;
58   }
59 
60   // Update parent expressions to have same ValueType as the underlying.
61   assert(ExprUnderCast &&
62          "Should be reachable only if LValueToRValue cast was found!");
63   auto ValueKind = ExprUnderCast->getValueKind();
64   for (Expr *E : ParentsToUpdate)
65     E->setValueKind(ValueKind);
66 }
67 
68 /// Emit a warning about usage of "noop"-like casts for lvalues (GNU extension)
69 /// and fix the argument with removing LValueToRValue cast from the expression.
70 static void emitAndFixInvalidAsmCastLValue(const Expr *LVal, Expr *BadArgument,
71                                            Sema &S) {
72   S.Diag(LVal->getBeginLoc(), diag::warn_invalid_asm_cast_lvalue)
73       << BadArgument->getSourceRange();
74   removeLValueToRValueCast(BadArgument);
75 }
76 
77 /// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently
78 /// ignore "noop" casts in places where an lvalue is required by an inline asm.
79 /// We emulate this behavior when -fheinous-gnu-extensions is specified, but
80 /// provide a strong guidance to not use it.
81 ///
82 /// This method checks to see if the argument is an acceptable l-value and
83 /// returns false if it is a case we can handle.
84 static bool CheckAsmLValue(Expr *E, Sema &S) {
85   // Type dependent expressions will be checked during instantiation.
86   if (E->isTypeDependent())
87     return false;
88 
89   if (E->isLValue())
90     return false;  // Cool, this is an lvalue.
91 
92   // Okay, this is not an lvalue, but perhaps it is the result of a cast that we
93   // are supposed to allow.
94   const Expr *E2 = E->IgnoreParenNoopCasts(S.Context);
95   if (E != E2 && E2->isLValue()) {
96     emitAndFixInvalidAsmCastLValue(E2, E, S);
97     // Accept, even if we emitted an error diagnostic.
98     return false;
99   }
100 
101   // None of the above, just randomly invalid non-lvalue.
102   return true;
103 }
104 
105 /// isOperandMentioned - Return true if the specified operand # is mentioned
106 /// anywhere in the decomposed asm string.
107 static bool
108 isOperandMentioned(unsigned OpNo,
109                    ArrayRef<GCCAsmStmt::AsmStringPiece> AsmStrPieces) {
110   for (unsigned p = 0, e = AsmStrPieces.size(); p != e; ++p) {
111     const GCCAsmStmt::AsmStringPiece &Piece = AsmStrPieces[p];
112     if (!Piece.isOperand())
113       continue;
114 
115     // If this is a reference to the input and if the input was the smaller
116     // one, then we have to reject this asm.
117     if (Piece.getOperandNo() == OpNo)
118       return true;
119   }
120   return false;
121 }
122 
123 static bool CheckNakedParmReference(Expr *E, Sema &S) {
124   FunctionDecl *Func = dyn_cast<FunctionDecl>(S.CurContext);
125   if (!Func)
126     return false;
127   if (!Func->hasAttr<NakedAttr>())
128     return false;
129 
130   SmallVector<Expr*, 4> WorkList;
131   WorkList.push_back(E);
132   while (WorkList.size()) {
133     Expr *E = WorkList.pop_back_val();
134     if (isa<CXXThisExpr>(E)) {
135       S.Diag(E->getBeginLoc(), diag::err_asm_naked_this_ref);
136       S.Diag(Func->getAttr<NakedAttr>()->getLocation(), diag::note_attribute);
137       return true;
138     }
139     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
140       if (isa<ParmVarDecl>(DRE->getDecl())) {
141         S.Diag(DRE->getBeginLoc(), diag::err_asm_naked_parm_ref);
142         S.Diag(Func->getAttr<NakedAttr>()->getLocation(), diag::note_attribute);
143         return true;
144       }
145     }
146     for (Stmt *Child : E->children()) {
147       if (Expr *E = dyn_cast_or_null<Expr>(Child))
148         WorkList.push_back(E);
149     }
150   }
151   return false;
152 }
153 
154 /// Returns true if given expression is not compatible with inline
155 /// assembly's memory constraint; false otherwise.
156 static bool checkExprMemoryConstraintCompat(Sema &S, Expr *E,
157                                             TargetInfo::ConstraintInfo &Info,
158                                             bool is_input_expr) {
159   enum {
160     ExprBitfield = 0,
161     ExprVectorElt,
162     ExprGlobalRegVar,
163     ExprSafeType
164   } EType = ExprSafeType;
165 
166   // Bitfields, vector elements and global register variables are not
167   // compatible.
168   if (E->refersToBitField())
169     EType = ExprBitfield;
170   else if (E->refersToVectorElement())
171     EType = ExprVectorElt;
172   else if (E->refersToGlobalRegisterVar())
173     EType = ExprGlobalRegVar;
174 
175   if (EType != ExprSafeType) {
176     S.Diag(E->getBeginLoc(), diag::err_asm_non_addr_value_in_memory_constraint)
177         << EType << is_input_expr << Info.getConstraintStr()
178         << E->getSourceRange();
179     return true;
180   }
181 
182   return false;
183 }
184 
185 // Extracting the register name from the Expression value,
186 // if there is no register name to extract, returns ""
187 static StringRef extractRegisterName(const Expr *Expression,
188                                      const TargetInfo &Target) {
189   Expression = Expression->IgnoreImpCasts();
190   if (const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(Expression)) {
191     // Handle cases where the expression is a variable
192     const VarDecl *Variable = dyn_cast<VarDecl>(AsmDeclRef->getDecl());
193     if (Variable && Variable->getStorageClass() == SC_Register) {
194       if (AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>())
195         if (Target.isValidGCCRegisterName(Attr->getLabel()))
196           return Target.getNormalizedGCCRegisterName(Attr->getLabel(), true);
197     }
198   }
199   return "";
200 }
201 
202 // Checks if there is a conflict between the input and output lists with the
203 // clobbers list. If there's a conflict, returns the location of the
204 // conflicted clobber, else returns nullptr
205 static SourceLocation
206 getClobberConflictLocation(MultiExprArg Exprs, StringLiteral **Constraints,
207                            StringLiteral **Clobbers, int NumClobbers,
208                            unsigned NumLabels,
209                            const TargetInfo &Target, ASTContext &Cont) {
210   llvm::StringSet<> InOutVars;
211   // Collect all the input and output registers from the extended asm
212   // statement in order to check for conflicts with the clobber list
213   for (unsigned int i = 0; i < Exprs.size() - NumLabels; ++i) {
214     StringRef Constraint = Constraints[i]->getString();
215     StringRef InOutReg = Target.getConstraintRegister(
216         Constraint, extractRegisterName(Exprs[i], Target));
217     if (InOutReg != "")
218       InOutVars.insert(InOutReg);
219   }
220   // Check for each item in the clobber list if it conflicts with the input
221   // or output
222   for (int i = 0; i < NumClobbers; ++i) {
223     StringRef Clobber = Clobbers[i]->getString();
224     // We only check registers, therefore we don't check cc and memory
225     // clobbers
226     if (Clobber == "cc" || Clobber == "memory" || Clobber == "unwind")
227       continue;
228     Clobber = Target.getNormalizedGCCRegisterName(Clobber, true);
229     // Go over the output's registers we collected
230     if (InOutVars.count(Clobber))
231       return Clobbers[i]->getBeginLoc();
232   }
233   return SourceLocation();
234 }
235 
236 StmtResult Sema::ActOnGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple,
237                                  bool IsVolatile, unsigned NumOutputs,
238                                  unsigned NumInputs, IdentifierInfo **Names,
239                                  MultiExprArg constraints, MultiExprArg Exprs,
240                                  Expr *asmString, MultiExprArg clobbers,
241                                  unsigned NumLabels,
242                                  SourceLocation RParenLoc) {
243   unsigned NumClobbers = clobbers.size();
244   StringLiteral **Constraints =
245     reinterpret_cast<StringLiteral**>(constraints.data());
246   StringLiteral *AsmString = cast<StringLiteral>(asmString);
247   StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.data());
248 
249   SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
250 
251   // The parser verifies that there is a string literal here.
252   assert(AsmString->isOrdinary());
253 
254   FunctionDecl *FD = dyn_cast<FunctionDecl>(getCurLexicalContext());
255   llvm::StringMap<bool> FeatureMap;
256   Context.getFunctionFeatureMap(FeatureMap, FD);
257 
258   for (unsigned i = 0; i != NumOutputs; i++) {
259     StringLiteral *Literal = Constraints[i];
260     assert(Literal->isOrdinary());
261 
262     StringRef OutputName;
263     if (Names[i])
264       OutputName = Names[i]->getName();
265 
266     TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName);
267     if (!Context.getTargetInfo().validateOutputConstraint(Info) &&
268         !(LangOpts.HIPStdPar && LangOpts.CUDAIsDevice)) {
269       targetDiag(Literal->getBeginLoc(),
270                  diag::err_asm_invalid_output_constraint)
271           << Info.getConstraintStr();
272       return new (Context)
273           GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs,
274                      NumInputs, Names, Constraints, Exprs.data(), AsmString,
275                      NumClobbers, Clobbers, NumLabels, RParenLoc);
276     }
277 
278     ExprResult ER = CheckPlaceholderExpr(Exprs[i]);
279     if (ER.isInvalid())
280       return StmtError();
281     Exprs[i] = ER.get();
282 
283     // Check that the output exprs are valid lvalues.
284     Expr *OutputExpr = Exprs[i];
285 
286     // Referring to parameters is not allowed in naked functions.
287     if (CheckNakedParmReference(OutputExpr, *this))
288       return StmtError();
289 
290     // Check that the output expression is compatible with memory constraint.
291     if (Info.allowsMemory() &&
292         checkExprMemoryConstraintCompat(*this, OutputExpr, Info, false))
293       return StmtError();
294 
295     // Disallow bit-precise integer types, since the backends tend to have
296     // difficulties with abnormal sizes.
297     if (OutputExpr->getType()->isBitIntType())
298       return StmtError(
299           Diag(OutputExpr->getBeginLoc(), diag::err_asm_invalid_type)
300           << OutputExpr->getType() << 0 /*Input*/
301           << OutputExpr->getSourceRange());
302 
303     OutputConstraintInfos.push_back(Info);
304 
305     // If this is dependent, just continue.
306     if (OutputExpr->isTypeDependent())
307       continue;
308 
309     Expr::isModifiableLvalueResult IsLV =
310         OutputExpr->isModifiableLvalue(Context, /*Loc=*/nullptr);
311     switch (IsLV) {
312     case Expr::MLV_Valid:
313       // Cool, this is an lvalue.
314       break;
315     case Expr::MLV_ArrayType:
316       // This is OK too.
317       break;
318     case Expr::MLV_LValueCast: {
319       const Expr *LVal = OutputExpr->IgnoreParenNoopCasts(Context);
320       emitAndFixInvalidAsmCastLValue(LVal, OutputExpr, *this);
321       // Accept, even if we emitted an error diagnostic.
322       break;
323     }
324     case Expr::MLV_IncompleteType:
325     case Expr::MLV_IncompleteVoidType:
326       if (RequireCompleteType(OutputExpr->getBeginLoc(), Exprs[i]->getType(),
327                               diag::err_dereference_incomplete_type))
328         return StmtError();
329       [[fallthrough]];
330     default:
331       return StmtError(Diag(OutputExpr->getBeginLoc(),
332                             diag::err_asm_invalid_lvalue_in_output)
333                        << OutputExpr->getSourceRange());
334     }
335 
336     unsigned Size = Context.getTypeSize(OutputExpr->getType());
337     if (!Context.getTargetInfo().validateOutputSize(
338             FeatureMap, Literal->getString(), Size)) {
339       targetDiag(OutputExpr->getBeginLoc(), diag::err_asm_invalid_output_size)
340           << Info.getConstraintStr();
341       return new (Context)
342           GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs,
343                      NumInputs, Names, Constraints, Exprs.data(), AsmString,
344                      NumClobbers, Clobbers, NumLabels, RParenLoc);
345     }
346   }
347 
348   SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
349 
350   for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
351     StringLiteral *Literal = Constraints[i];
352     assert(Literal->isOrdinary());
353 
354     StringRef InputName;
355     if (Names[i])
356       InputName = Names[i]->getName();
357 
358     TargetInfo::ConstraintInfo Info(Literal->getString(), InputName);
359     if (!Context.getTargetInfo().validateInputConstraint(OutputConstraintInfos,
360                                                          Info)) {
361       targetDiag(Literal->getBeginLoc(), diag::err_asm_invalid_input_constraint)
362           << Info.getConstraintStr();
363       return new (Context)
364           GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs,
365                      NumInputs, Names, Constraints, Exprs.data(), AsmString,
366                      NumClobbers, Clobbers, NumLabels, RParenLoc);
367     }
368 
369     ExprResult ER = CheckPlaceholderExpr(Exprs[i]);
370     if (ER.isInvalid())
371       return StmtError();
372     Exprs[i] = ER.get();
373 
374     Expr *InputExpr = Exprs[i];
375 
376     if (InputExpr->getType()->isMemberPointerType())
377       return StmtError(Diag(InputExpr->getBeginLoc(),
378                             diag::err_asm_pmf_through_constraint_not_permitted)
379                        << InputExpr->getSourceRange());
380 
381     // Referring to parameters is not allowed in naked functions.
382     if (CheckNakedParmReference(InputExpr, *this))
383       return StmtError();
384 
385     // Check that the input expression is compatible with memory constraint.
386     if (Info.allowsMemory() &&
387         checkExprMemoryConstraintCompat(*this, InputExpr, Info, true))
388       return StmtError();
389 
390     // Only allow void types for memory constraints.
391     if (Info.allowsMemory() && !Info.allowsRegister()) {
392       if (CheckAsmLValue(InputExpr, *this))
393         return StmtError(Diag(InputExpr->getBeginLoc(),
394                               diag::err_asm_invalid_lvalue_in_input)
395                          << Info.getConstraintStr()
396                          << InputExpr->getSourceRange());
397     } else {
398       ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]);
399       if (Result.isInvalid())
400         return StmtError();
401 
402       InputExpr = Exprs[i] = Result.get();
403 
404       if (Info.requiresImmediateConstant() && !Info.allowsRegister()) {
405         if (!InputExpr->isValueDependent()) {
406           Expr::EvalResult EVResult;
407           if (InputExpr->EvaluateAsRValue(EVResult, Context, true)) {
408             // For compatibility with GCC, we also allow pointers that would be
409             // integral constant expressions if they were cast to int.
410             llvm::APSInt IntResult;
411             if (EVResult.Val.toIntegralConstant(IntResult, InputExpr->getType(),
412                                                 Context))
413               if (!Info.isValidAsmImmediate(IntResult))
414                 return StmtError(
415                     Diag(InputExpr->getBeginLoc(),
416                          diag::err_invalid_asm_value_for_constraint)
417                     << toString(IntResult, 10) << Info.getConstraintStr()
418                     << InputExpr->getSourceRange());
419           }
420         }
421       }
422     }
423 
424     if (Info.allowsRegister()) {
425       if (InputExpr->getType()->isVoidType()) {
426         return StmtError(
427             Diag(InputExpr->getBeginLoc(), diag::err_asm_invalid_type_in_input)
428             << InputExpr->getType() << Info.getConstraintStr()
429             << InputExpr->getSourceRange());
430       }
431     }
432 
433     if (InputExpr->getType()->isBitIntType())
434       return StmtError(
435           Diag(InputExpr->getBeginLoc(), diag::err_asm_invalid_type)
436           << InputExpr->getType() << 1 /*Output*/
437           << InputExpr->getSourceRange());
438 
439     InputConstraintInfos.push_back(Info);
440 
441     const Type *Ty = Exprs[i]->getType().getTypePtr();
442     if (Ty->isDependentType())
443       continue;
444 
445     if (!Ty->isVoidType() || !Info.allowsMemory())
446       if (RequireCompleteType(InputExpr->getBeginLoc(), Exprs[i]->getType(),
447                               diag::err_dereference_incomplete_type))
448         return StmtError();
449 
450     unsigned Size = Context.getTypeSize(Ty);
451     if (!Context.getTargetInfo().validateInputSize(FeatureMap,
452                                                    Literal->getString(), Size))
453       return targetDiag(InputExpr->getBeginLoc(),
454                         diag::err_asm_invalid_input_size)
455              << Info.getConstraintStr();
456   }
457 
458   std::optional<SourceLocation> UnwindClobberLoc;
459 
460   // Check that the clobbers are valid.
461   for (unsigned i = 0; i != NumClobbers; i++) {
462     StringLiteral *Literal = Clobbers[i];
463     assert(Literal->isOrdinary());
464 
465     StringRef Clobber = Literal->getString();
466 
467     if (!Context.getTargetInfo().isValidClobber(Clobber)) {
468       targetDiag(Literal->getBeginLoc(), diag::err_asm_unknown_register_name)
469           << Clobber;
470       return new (Context)
471           GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs,
472                      NumInputs, Names, Constraints, Exprs.data(), AsmString,
473                      NumClobbers, Clobbers, NumLabels, RParenLoc);
474     }
475 
476     if (Clobber == "unwind") {
477       UnwindClobberLoc = Literal->getBeginLoc();
478     }
479   }
480 
481   // Using unwind clobber and asm-goto together is not supported right now.
482   if (UnwindClobberLoc && NumLabels > 0) {
483     targetDiag(*UnwindClobberLoc, diag::err_asm_unwind_and_goto);
484     return new (Context)
485         GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, NumInputs,
486                    Names, Constraints, Exprs.data(), AsmString, NumClobbers,
487                    Clobbers, NumLabels, RParenLoc);
488   }
489 
490   GCCAsmStmt *NS =
491     new (Context) GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs,
492                              NumInputs, Names, Constraints, Exprs.data(),
493                              AsmString, NumClobbers, Clobbers, NumLabels,
494                              RParenLoc);
495   // Validate the asm string, ensuring it makes sense given the operands we
496   // have.
497   SmallVector<GCCAsmStmt::AsmStringPiece, 8> Pieces;
498   unsigned DiagOffs;
499   if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
500     targetDiag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
501         << AsmString->getSourceRange();
502     return NS;
503   }
504 
505   // Validate constraints and modifiers.
506   for (unsigned i = 0, e = Pieces.size(); i != e; ++i) {
507     GCCAsmStmt::AsmStringPiece &Piece = Pieces[i];
508     if (!Piece.isOperand()) continue;
509 
510     // Look for the correct constraint index.
511     unsigned ConstraintIdx = Piece.getOperandNo();
512     unsigned NumOperands = NS->getNumOutputs() + NS->getNumInputs();
513     // Labels are the last in the Exprs list.
514     if (NS->isAsmGoto() && ConstraintIdx >= NumOperands)
515       continue;
516     // Look for the (ConstraintIdx - NumOperands + 1)th constraint with
517     // modifier '+'.
518     if (ConstraintIdx >= NumOperands) {
519       unsigned I = 0, E = NS->getNumOutputs();
520 
521       for (unsigned Cnt = ConstraintIdx - NumOperands; I != E; ++I)
522         if (OutputConstraintInfos[I].isReadWrite() && Cnt-- == 0) {
523           ConstraintIdx = I;
524           break;
525         }
526 
527       assert(I != E && "Invalid operand number should have been caught in "
528                        " AnalyzeAsmString");
529     }
530 
531     // Now that we have the right indexes go ahead and check.
532     StringLiteral *Literal = Constraints[ConstraintIdx];
533     const Type *Ty = Exprs[ConstraintIdx]->getType().getTypePtr();
534     if (Ty->isDependentType() || Ty->isIncompleteType())
535       continue;
536 
537     unsigned Size = Context.getTypeSize(Ty);
538     std::string SuggestedModifier;
539     if (!Context.getTargetInfo().validateConstraintModifier(
540             Literal->getString(), Piece.getModifier(), Size,
541             SuggestedModifier)) {
542       targetDiag(Exprs[ConstraintIdx]->getBeginLoc(),
543                  diag::warn_asm_mismatched_size_modifier);
544 
545       if (!SuggestedModifier.empty()) {
546         auto B = targetDiag(Piece.getRange().getBegin(),
547                             diag::note_asm_missing_constraint_modifier)
548                  << SuggestedModifier;
549         SuggestedModifier = "%" + SuggestedModifier + Piece.getString();
550         B << FixItHint::CreateReplacement(Piece.getRange(), SuggestedModifier);
551       }
552     }
553   }
554 
555   // Validate tied input operands for type mismatches.
556   unsigned NumAlternatives = ~0U;
557   for (unsigned i = 0, e = OutputConstraintInfos.size(); i != e; ++i) {
558     TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
559     StringRef ConstraintStr = Info.getConstraintStr();
560     unsigned AltCount = ConstraintStr.count(',') + 1;
561     if (NumAlternatives == ~0U) {
562       NumAlternatives = AltCount;
563     } else if (NumAlternatives != AltCount) {
564       targetDiag(NS->getOutputExpr(i)->getBeginLoc(),
565                  diag::err_asm_unexpected_constraint_alternatives)
566           << NumAlternatives << AltCount;
567       return NS;
568     }
569   }
570   SmallVector<size_t, 4> InputMatchedToOutput(OutputConstraintInfos.size(),
571                                               ~0U);
572   for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
573     TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
574     StringRef ConstraintStr = Info.getConstraintStr();
575     unsigned AltCount = ConstraintStr.count(',') + 1;
576     if (NumAlternatives == ~0U) {
577       NumAlternatives = AltCount;
578     } else if (NumAlternatives != AltCount) {
579       targetDiag(NS->getInputExpr(i)->getBeginLoc(),
580                  diag::err_asm_unexpected_constraint_alternatives)
581           << NumAlternatives << AltCount;
582       return NS;
583     }
584 
585     // If this is a tied constraint, verify that the output and input have
586     // either exactly the same type, or that they are int/ptr operands with the
587     // same size (int/long, int*/long, are ok etc).
588     if (!Info.hasTiedOperand()) continue;
589 
590     unsigned TiedTo = Info.getTiedOperand();
591     unsigned InputOpNo = i+NumOutputs;
592     Expr *OutputExpr = Exprs[TiedTo];
593     Expr *InputExpr = Exprs[InputOpNo];
594 
595     // Make sure no more than one input constraint matches each output.
596     assert(TiedTo < InputMatchedToOutput.size() && "TiedTo value out of range");
597     if (InputMatchedToOutput[TiedTo] != ~0U) {
598       targetDiag(NS->getInputExpr(i)->getBeginLoc(),
599                  diag::err_asm_input_duplicate_match)
600           << TiedTo;
601       targetDiag(NS->getInputExpr(InputMatchedToOutput[TiedTo])->getBeginLoc(),
602                  diag::note_asm_input_duplicate_first)
603           << TiedTo;
604       return NS;
605     }
606     InputMatchedToOutput[TiedTo] = i;
607 
608     if (OutputExpr->isTypeDependent() || InputExpr->isTypeDependent())
609       continue;
610 
611     QualType InTy = InputExpr->getType();
612     QualType OutTy = OutputExpr->getType();
613     if (Context.hasSameType(InTy, OutTy))
614       continue;  // All types can be tied to themselves.
615 
616     // Decide if the input and output are in the same domain (integer/ptr or
617     // floating point.
618     enum AsmDomain {
619       AD_Int, AD_FP, AD_Other
620     } InputDomain, OutputDomain;
621 
622     if (InTy->isIntegerType() || InTy->isPointerType())
623       InputDomain = AD_Int;
624     else if (InTy->isRealFloatingType())
625       InputDomain = AD_FP;
626     else
627       InputDomain = AD_Other;
628 
629     if (OutTy->isIntegerType() || OutTy->isPointerType())
630       OutputDomain = AD_Int;
631     else if (OutTy->isRealFloatingType())
632       OutputDomain = AD_FP;
633     else
634       OutputDomain = AD_Other;
635 
636     // They are ok if they are the same size and in the same domain.  This
637     // allows tying things like:
638     //   void* to int*
639     //   void* to int            if they are the same size.
640     //   double to long double   if they are the same size.
641     //
642     uint64_t OutSize = Context.getTypeSize(OutTy);
643     uint64_t InSize = Context.getTypeSize(InTy);
644     if (OutSize == InSize && InputDomain == OutputDomain &&
645         InputDomain != AD_Other)
646       continue;
647 
648     // If the smaller input/output operand is not mentioned in the asm string,
649     // then we can promote the smaller one to a larger input and the asm string
650     // won't notice.
651     bool SmallerValueMentioned = false;
652 
653     // If this is a reference to the input and if the input was the smaller
654     // one, then we have to reject this asm.
655     if (isOperandMentioned(InputOpNo, Pieces)) {
656       // This is a use in the asm string of the smaller operand.  Since we
657       // codegen this by promoting to a wider value, the asm will get printed
658       // "wrong".
659       SmallerValueMentioned |= InSize < OutSize;
660     }
661     if (isOperandMentioned(TiedTo, Pieces)) {
662       // If this is a reference to the output, and if the output is the larger
663       // value, then it's ok because we'll promote the input to the larger type.
664       SmallerValueMentioned |= OutSize < InSize;
665     }
666 
667     // If the input is an integer register while the output is floating point,
668     // or vice-versa, there is no way they can work together.
669     bool FPTiedToInt = (InputDomain == AD_FP) ^ (OutputDomain == AD_FP);
670 
671     // If the smaller value wasn't mentioned in the asm string, and if the
672     // output was a register, just extend the shorter one to the size of the
673     // larger one.
674     if (!SmallerValueMentioned && !FPTiedToInt && InputDomain != AD_Other &&
675         OutputConstraintInfos[TiedTo].allowsRegister()) {
676 
677       // FIXME: GCC supports the OutSize to be 128 at maximum. Currently codegen
678       // crash when the size larger than the register size. So we limit it here.
679       if (OutTy->isStructureType() &&
680           Context.getIntTypeForBitwidth(OutSize, /*Signed*/ false).isNull()) {
681         targetDiag(OutputExpr->getExprLoc(), diag::err_store_value_to_reg);
682         return NS;
683       }
684 
685       continue;
686     }
687 
688     // Either both of the operands were mentioned or the smaller one was
689     // mentioned.  One more special case that we'll allow: if the tied input is
690     // integer, unmentioned, and is a constant, then we'll allow truncating it
691     // down to the size of the destination.
692     if (InputDomain == AD_Int && OutputDomain == AD_Int &&
693         !isOperandMentioned(InputOpNo, Pieces) &&
694         InputExpr->isEvaluatable(Context)) {
695       CastKind castKind =
696         (OutTy->isBooleanType() ? CK_IntegralToBoolean : CK_IntegralCast);
697       InputExpr = ImpCastExprToType(InputExpr, OutTy, castKind).get();
698       Exprs[InputOpNo] = InputExpr;
699       NS->setInputExpr(i, InputExpr);
700       continue;
701     }
702 
703     targetDiag(InputExpr->getBeginLoc(), diag::err_asm_tying_incompatible_types)
704         << InTy << OutTy << OutputExpr->getSourceRange()
705         << InputExpr->getSourceRange();
706     return NS;
707   }
708 
709   // Check for conflicts between clobber list and input or output lists
710   SourceLocation ConstraintLoc =
711       getClobberConflictLocation(Exprs, Constraints, Clobbers, NumClobbers,
712                                  NumLabels,
713                                  Context.getTargetInfo(), Context);
714   if (ConstraintLoc.isValid())
715     targetDiag(ConstraintLoc, diag::error_inoutput_conflict_with_clobber);
716 
717   // Check for duplicate asm operand name between input, output and label lists.
718   typedef std::pair<StringRef , Expr *> NamedOperand;
719   SmallVector<NamedOperand, 4> NamedOperandList;
720   for (unsigned i = 0, e = NumOutputs + NumInputs + NumLabels; i != e; ++i)
721     if (Names[i])
722       NamedOperandList.emplace_back(
723           std::make_pair(Names[i]->getName(), Exprs[i]));
724   // Sort NamedOperandList.
725   llvm::stable_sort(NamedOperandList, llvm::less_first());
726   // Find adjacent duplicate operand.
727   SmallVector<NamedOperand, 4>::iterator Found =
728       std::adjacent_find(begin(NamedOperandList), end(NamedOperandList),
729                          [](const NamedOperand &LHS, const NamedOperand &RHS) {
730                            return LHS.first == RHS.first;
731                          });
732   if (Found != NamedOperandList.end()) {
733     Diag((Found + 1)->second->getBeginLoc(),
734          diag::error_duplicate_asm_operand_name)
735         << (Found + 1)->first;
736     Diag(Found->second->getBeginLoc(), diag::note_duplicate_asm_operand_name)
737         << Found->first;
738     return StmtError();
739   }
740   if (NS->isAsmGoto())
741     setFunctionHasBranchIntoScope();
742 
743   CleanupVarDeclMarking();
744   DiscardCleanupsInEvaluationContext();
745   return NS;
746 }
747 
748 void Sema::FillInlineAsmIdentifierInfo(Expr *Res,
749                                        llvm::InlineAsmIdentifierInfo &Info) {
750   QualType T = Res->getType();
751   Expr::EvalResult Eval;
752   if (T->isFunctionType() || T->isDependentType())
753     return Info.setLabel(Res);
754   if (Res->isPRValue()) {
755     bool IsEnum = isa<clang::EnumType>(T);
756     if (DeclRefExpr *DRE = dyn_cast<clang::DeclRefExpr>(Res))
757       if (DRE->getDecl()->getKind() == Decl::EnumConstant)
758         IsEnum = true;
759     if (IsEnum && Res->EvaluateAsRValue(Eval, Context))
760       return Info.setEnum(Eval.Val.getInt().getSExtValue());
761 
762     return Info.setLabel(Res);
763   }
764   unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
765   unsigned Type = Size;
766   if (const auto *ATy = Context.getAsArrayType(T))
767     Type = Context.getTypeSizeInChars(ATy->getElementType()).getQuantity();
768   bool IsGlobalLV = false;
769   if (Res->EvaluateAsLValue(Eval, Context))
770     IsGlobalLV = Eval.isGlobalLValue();
771   Info.setVar(Res, IsGlobalLV, Size, Type);
772 }
773 
774 ExprResult Sema::LookupInlineAsmIdentifier(CXXScopeSpec &SS,
775                                            SourceLocation TemplateKWLoc,
776                                            UnqualifiedId &Id,
777                                            bool IsUnevaluatedContext) {
778 
779   if (IsUnevaluatedContext)
780     PushExpressionEvaluationContext(
781         ExpressionEvaluationContext::UnevaluatedAbstract,
782         ReuseLambdaContextDecl);
783 
784   ExprResult Result = ActOnIdExpression(getCurScope(), SS, TemplateKWLoc, Id,
785                                         /*trailing lparen*/ false,
786                                         /*is & operand*/ false,
787                                         /*CorrectionCandidateCallback=*/nullptr,
788                                         /*IsInlineAsmIdentifier=*/ true);
789 
790   if (IsUnevaluatedContext)
791     PopExpressionEvaluationContext();
792 
793   if (!Result.isUsable()) return Result;
794 
795   Result = CheckPlaceholderExpr(Result.get());
796   if (!Result.isUsable()) return Result;
797 
798   // Referring to parameters is not allowed in naked functions.
799   if (CheckNakedParmReference(Result.get(), *this))
800     return ExprError();
801 
802   QualType T = Result.get()->getType();
803 
804   if (T->isDependentType()) {
805     return Result;
806   }
807 
808   // Any sort of function type is fine.
809   if (T->isFunctionType()) {
810     return Result;
811   }
812 
813   // Otherwise, it needs to be a complete type.
814   if (RequireCompleteExprType(Result.get(), diag::err_asm_incomplete_type)) {
815     return ExprError();
816   }
817 
818   return Result;
819 }
820 
821 bool Sema::LookupInlineAsmField(StringRef Base, StringRef Member,
822                                 unsigned &Offset, SourceLocation AsmLoc) {
823   Offset = 0;
824   SmallVector<StringRef, 2> Members;
825   Member.split(Members, ".");
826 
827   NamedDecl *FoundDecl = nullptr;
828 
829   // MS InlineAsm uses 'this' as a base
830   if (getLangOpts().CPlusPlus && Base == "this") {
831     if (const Type *PT = getCurrentThisType().getTypePtrOrNull())
832       FoundDecl = PT->getPointeeType()->getAsTagDecl();
833   } else {
834     LookupResult BaseResult(*this, &Context.Idents.get(Base), SourceLocation(),
835                             LookupOrdinaryName);
836     if (LookupName(BaseResult, getCurScope()) && BaseResult.isSingleResult())
837       FoundDecl = BaseResult.getFoundDecl();
838   }
839 
840   if (!FoundDecl)
841     return true;
842 
843   for (StringRef NextMember : Members) {
844     const RecordType *RT = nullptr;
845     if (VarDecl *VD = dyn_cast<VarDecl>(FoundDecl))
846       RT = VD->getType()->getAs<RecordType>();
847     else if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(FoundDecl)) {
848       MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);
849       // MS InlineAsm often uses struct pointer aliases as a base
850       QualType QT = TD->getUnderlyingType();
851       if (const auto *PT = QT->getAs<PointerType>())
852         QT = PT->getPointeeType();
853       RT = QT->getAs<RecordType>();
854     } else if (TypeDecl *TD = dyn_cast<TypeDecl>(FoundDecl))
855       RT = TD->getTypeForDecl()->getAs<RecordType>();
856     else if (FieldDecl *TD = dyn_cast<FieldDecl>(FoundDecl))
857       RT = TD->getType()->getAs<RecordType>();
858     if (!RT)
859       return true;
860 
861     if (RequireCompleteType(AsmLoc, QualType(RT, 0),
862                             diag::err_asm_incomplete_type))
863       return true;
864 
865     LookupResult FieldResult(*this, &Context.Idents.get(NextMember),
866                              SourceLocation(), LookupMemberName);
867 
868     if (!LookupQualifiedName(FieldResult, RT->getDecl()))
869       return true;
870 
871     if (!FieldResult.isSingleResult())
872       return true;
873     FoundDecl = FieldResult.getFoundDecl();
874 
875     // FIXME: Handle IndirectFieldDecl?
876     FieldDecl *FD = dyn_cast<FieldDecl>(FoundDecl);
877     if (!FD)
878       return true;
879 
880     const ASTRecordLayout &RL = Context.getASTRecordLayout(RT->getDecl());
881     unsigned i = FD->getFieldIndex();
882     CharUnits Result = Context.toCharUnitsFromBits(RL.getFieldOffset(i));
883     Offset += (unsigned)Result.getQuantity();
884   }
885 
886   return false;
887 }
888 
889 ExprResult
890 Sema::LookupInlineAsmVarDeclField(Expr *E, StringRef Member,
891                                   SourceLocation AsmLoc) {
892 
893   QualType T = E->getType();
894   if (T->isDependentType()) {
895     DeclarationNameInfo NameInfo;
896     NameInfo.setLoc(AsmLoc);
897     NameInfo.setName(&Context.Idents.get(Member));
898     return CXXDependentScopeMemberExpr::Create(
899         Context, E, T, /*IsArrow=*/false, AsmLoc, NestedNameSpecifierLoc(),
900         SourceLocation(),
901         /*FirstQualifierFoundInScope=*/nullptr, NameInfo, /*TemplateArgs=*/nullptr);
902   }
903 
904   const RecordType *RT = T->getAs<RecordType>();
905   // FIXME: Diagnose this as field access into a scalar type.
906   if (!RT)
907     return ExprResult();
908 
909   LookupResult FieldResult(*this, &Context.Idents.get(Member), AsmLoc,
910                            LookupMemberName);
911 
912   if (!LookupQualifiedName(FieldResult, RT->getDecl()))
913     return ExprResult();
914 
915   // Only normal and indirect field results will work.
916   ValueDecl *FD = dyn_cast<FieldDecl>(FieldResult.getFoundDecl());
917   if (!FD)
918     FD = dyn_cast<IndirectFieldDecl>(FieldResult.getFoundDecl());
919   if (!FD)
920     return ExprResult();
921 
922   // Make an Expr to thread through OpDecl.
923   ExprResult Result = BuildMemberReferenceExpr(
924       E, E->getType(), AsmLoc, /*IsArrow=*/false, CXXScopeSpec(),
925       SourceLocation(), nullptr, FieldResult, nullptr, nullptr);
926 
927   return Result;
928 }
929 
930 StmtResult Sema::ActOnMSAsmStmt(SourceLocation AsmLoc, SourceLocation LBraceLoc,
931                                 ArrayRef<Token> AsmToks,
932                                 StringRef AsmString,
933                                 unsigned NumOutputs, unsigned NumInputs,
934                                 ArrayRef<StringRef> Constraints,
935                                 ArrayRef<StringRef> Clobbers,
936                                 ArrayRef<Expr*> Exprs,
937                                 SourceLocation EndLoc) {
938   bool IsSimple = (NumOutputs != 0 || NumInputs != 0);
939   setFunctionHasBranchProtectedScope();
940 
941   bool InvalidOperand = false;
942   for (uint64_t I = 0; I < NumOutputs + NumInputs; ++I) {
943     Expr *E = Exprs[I];
944     if (E->getType()->isBitIntType()) {
945       InvalidOperand = true;
946       Diag(E->getBeginLoc(), diag::err_asm_invalid_type)
947           << E->getType() << (I < NumOutputs)
948           << E->getSourceRange();
949     } else if (E->refersToBitField()) {
950       InvalidOperand = true;
951       FieldDecl *BitField = E->getSourceBitField();
952       Diag(E->getBeginLoc(), diag::err_ms_asm_bitfield_unsupported)
953           << E->getSourceRange();
954       Diag(BitField->getLocation(), diag::note_bitfield_decl);
955     }
956   }
957   if (InvalidOperand)
958     return StmtError();
959 
960   MSAsmStmt *NS =
961     new (Context) MSAsmStmt(Context, AsmLoc, LBraceLoc, IsSimple,
962                             /*IsVolatile*/ true, AsmToks, NumOutputs, NumInputs,
963                             Constraints, Exprs, AsmString,
964                             Clobbers, EndLoc);
965   return NS;
966 }
967 
968 LabelDecl *Sema::GetOrCreateMSAsmLabel(StringRef ExternalLabelName,
969                                        SourceLocation Location,
970                                        bool AlwaysCreate) {
971   LabelDecl* Label = LookupOrCreateLabel(PP.getIdentifierInfo(ExternalLabelName),
972                                          Location);
973 
974   if (Label->isMSAsmLabel()) {
975     // If we have previously created this label implicitly, mark it as used.
976     Label->markUsed(Context);
977   } else {
978     // Otherwise, insert it, but only resolve it if we have seen the label itself.
979     std::string InternalName;
980     llvm::raw_string_ostream OS(InternalName);
981     // Create an internal name for the label.  The name should not be a valid
982     // mangled name, and should be unique.  We use a dot to make the name an
983     // invalid mangled name. We use LLVM's inline asm ${:uid} escape so that a
984     // unique label is generated each time this blob is emitted, even after
985     // inlining or LTO.
986     OS << "__MSASMLABEL_.${:uid}__";
987     for (char C : ExternalLabelName) {
988       OS << C;
989       // We escape '$' in asm strings by replacing it with "$$"
990       if (C == '$')
991         OS << '$';
992     }
993     Label->setMSAsmLabel(OS.str());
994   }
995   if (AlwaysCreate) {
996     // The label might have been created implicitly from a previously encountered
997     // goto statement.  So, for both newly created and looked up labels, we mark
998     // them as resolved.
999     Label->setMSAsmLabelResolved();
1000   }
1001   // Adjust their location for being able to generate accurate diagnostics.
1002   Label->setLocation(Location);
1003 
1004   return Label;
1005 }
1006