1 //===--- SemaStmtAsm.cpp - Semantic Analysis for Asm Statements -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for inline asm statements. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/ExprCXX.h" 14 #include "clang/AST/RecordLayout.h" 15 #include "clang/AST/TypeLoc.h" 16 #include "clang/Basic/TargetInfo.h" 17 #include "clang/Lex/Preprocessor.h" 18 #include "clang/Sema/Initialization.h" 19 #include "clang/Sema/Lookup.h" 20 #include "clang/Sema/Scope.h" 21 #include "clang/Sema/ScopeInfo.h" 22 #include "llvm/ADT/ArrayRef.h" 23 #include "llvm/ADT/StringExtras.h" 24 #include "llvm/ADT/StringSet.h" 25 #include "llvm/MC/MCParser/MCAsmParser.h" 26 #include <optional> 27 using namespace clang; 28 using namespace sema; 29 30 /// Remove the upper-level LValueToRValue cast from an expression. 31 static void removeLValueToRValueCast(Expr *E) { 32 Expr *Parent = E; 33 Expr *ExprUnderCast = nullptr; 34 SmallVector<Expr *, 8> ParentsToUpdate; 35 36 while (true) { 37 ParentsToUpdate.push_back(Parent); 38 if (auto *ParenE = dyn_cast<ParenExpr>(Parent)) { 39 Parent = ParenE->getSubExpr(); 40 continue; 41 } 42 43 Expr *Child = nullptr; 44 CastExpr *ParentCast = dyn_cast<CastExpr>(Parent); 45 if (ParentCast) 46 Child = ParentCast->getSubExpr(); 47 else 48 return; 49 50 if (auto *CastE = dyn_cast<CastExpr>(Child)) 51 if (CastE->getCastKind() == CK_LValueToRValue) { 52 ExprUnderCast = CastE->getSubExpr(); 53 // LValueToRValue cast inside GCCAsmStmt requires an explicit cast. 54 ParentCast->setSubExpr(ExprUnderCast); 55 break; 56 } 57 Parent = Child; 58 } 59 60 // Update parent expressions to have same ValueType as the underlying. 61 assert(ExprUnderCast && 62 "Should be reachable only if LValueToRValue cast was found!"); 63 auto ValueKind = ExprUnderCast->getValueKind(); 64 for (Expr *E : ParentsToUpdate) 65 E->setValueKind(ValueKind); 66 } 67 68 /// Emit a warning about usage of "noop"-like casts for lvalues (GNU extension) 69 /// and fix the argument with removing LValueToRValue cast from the expression. 70 static void emitAndFixInvalidAsmCastLValue(const Expr *LVal, Expr *BadArgument, 71 Sema &S) { 72 S.Diag(LVal->getBeginLoc(), diag::warn_invalid_asm_cast_lvalue) 73 << BadArgument->getSourceRange(); 74 removeLValueToRValueCast(BadArgument); 75 } 76 77 /// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently 78 /// ignore "noop" casts in places where an lvalue is required by an inline asm. 79 /// We emulate this behavior when -fheinous-gnu-extensions is specified, but 80 /// provide a strong guidance to not use it. 81 /// 82 /// This method checks to see if the argument is an acceptable l-value and 83 /// returns false if it is a case we can handle. 84 static bool CheckAsmLValue(Expr *E, Sema &S) { 85 // Type dependent expressions will be checked during instantiation. 86 if (E->isTypeDependent()) 87 return false; 88 89 if (E->isLValue()) 90 return false; // Cool, this is an lvalue. 91 92 // Okay, this is not an lvalue, but perhaps it is the result of a cast that we 93 // are supposed to allow. 94 const Expr *E2 = E->IgnoreParenNoopCasts(S.Context); 95 if (E != E2 && E2->isLValue()) { 96 emitAndFixInvalidAsmCastLValue(E2, E, S); 97 // Accept, even if we emitted an error diagnostic. 98 return false; 99 } 100 101 // None of the above, just randomly invalid non-lvalue. 102 return true; 103 } 104 105 /// isOperandMentioned - Return true if the specified operand # is mentioned 106 /// anywhere in the decomposed asm string. 107 static bool 108 isOperandMentioned(unsigned OpNo, 109 ArrayRef<GCCAsmStmt::AsmStringPiece> AsmStrPieces) { 110 for (unsigned p = 0, e = AsmStrPieces.size(); p != e; ++p) { 111 const GCCAsmStmt::AsmStringPiece &Piece = AsmStrPieces[p]; 112 if (!Piece.isOperand()) 113 continue; 114 115 // If this is a reference to the input and if the input was the smaller 116 // one, then we have to reject this asm. 117 if (Piece.getOperandNo() == OpNo) 118 return true; 119 } 120 return false; 121 } 122 123 static bool CheckNakedParmReference(Expr *E, Sema &S) { 124 FunctionDecl *Func = dyn_cast<FunctionDecl>(S.CurContext); 125 if (!Func) 126 return false; 127 if (!Func->hasAttr<NakedAttr>()) 128 return false; 129 130 SmallVector<Expr*, 4> WorkList; 131 WorkList.push_back(E); 132 while (WorkList.size()) { 133 Expr *E = WorkList.pop_back_val(); 134 if (isa<CXXThisExpr>(E)) { 135 S.Diag(E->getBeginLoc(), diag::err_asm_naked_this_ref); 136 S.Diag(Func->getAttr<NakedAttr>()->getLocation(), diag::note_attribute); 137 return true; 138 } 139 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 140 if (isa<ParmVarDecl>(DRE->getDecl())) { 141 S.Diag(DRE->getBeginLoc(), diag::err_asm_naked_parm_ref); 142 S.Diag(Func->getAttr<NakedAttr>()->getLocation(), diag::note_attribute); 143 return true; 144 } 145 } 146 for (Stmt *Child : E->children()) { 147 if (Expr *E = dyn_cast_or_null<Expr>(Child)) 148 WorkList.push_back(E); 149 } 150 } 151 return false; 152 } 153 154 /// Returns true if given expression is not compatible with inline 155 /// assembly's memory constraint; false otherwise. 156 static bool checkExprMemoryConstraintCompat(Sema &S, Expr *E, 157 TargetInfo::ConstraintInfo &Info, 158 bool is_input_expr) { 159 enum { 160 ExprBitfield = 0, 161 ExprVectorElt, 162 ExprGlobalRegVar, 163 ExprSafeType 164 } EType = ExprSafeType; 165 166 // Bitfields, vector elements and global register variables are not 167 // compatible. 168 if (E->refersToBitField()) 169 EType = ExprBitfield; 170 else if (E->refersToVectorElement()) 171 EType = ExprVectorElt; 172 else if (E->refersToGlobalRegisterVar()) 173 EType = ExprGlobalRegVar; 174 175 if (EType != ExprSafeType) { 176 S.Diag(E->getBeginLoc(), diag::err_asm_non_addr_value_in_memory_constraint) 177 << EType << is_input_expr << Info.getConstraintStr() 178 << E->getSourceRange(); 179 return true; 180 } 181 182 return false; 183 } 184 185 // Extracting the register name from the Expression value, 186 // if there is no register name to extract, returns "" 187 static StringRef extractRegisterName(const Expr *Expression, 188 const TargetInfo &Target) { 189 Expression = Expression->IgnoreImpCasts(); 190 if (const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(Expression)) { 191 // Handle cases where the expression is a variable 192 const VarDecl *Variable = dyn_cast<VarDecl>(AsmDeclRef->getDecl()); 193 if (Variable && Variable->getStorageClass() == SC_Register) { 194 if (AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>()) 195 if (Target.isValidGCCRegisterName(Attr->getLabel())) 196 return Target.getNormalizedGCCRegisterName(Attr->getLabel(), true); 197 } 198 } 199 return ""; 200 } 201 202 // Checks if there is a conflict between the input and output lists with the 203 // clobbers list. If there's a conflict, returns the location of the 204 // conflicted clobber, else returns nullptr 205 static SourceLocation 206 getClobberConflictLocation(MultiExprArg Exprs, StringLiteral **Constraints, 207 StringLiteral **Clobbers, int NumClobbers, 208 unsigned NumLabels, 209 const TargetInfo &Target, ASTContext &Cont) { 210 llvm::StringSet<> InOutVars; 211 // Collect all the input and output registers from the extended asm 212 // statement in order to check for conflicts with the clobber list 213 for (unsigned int i = 0; i < Exprs.size() - NumLabels; ++i) { 214 StringRef Constraint = Constraints[i]->getString(); 215 StringRef InOutReg = Target.getConstraintRegister( 216 Constraint, extractRegisterName(Exprs[i], Target)); 217 if (InOutReg != "") 218 InOutVars.insert(InOutReg); 219 } 220 // Check for each item in the clobber list if it conflicts with the input 221 // or output 222 for (int i = 0; i < NumClobbers; ++i) { 223 StringRef Clobber = Clobbers[i]->getString(); 224 // We only check registers, therefore we don't check cc and memory 225 // clobbers 226 if (Clobber == "cc" || Clobber == "memory" || Clobber == "unwind") 227 continue; 228 Clobber = Target.getNormalizedGCCRegisterName(Clobber, true); 229 // Go over the output's registers we collected 230 if (InOutVars.count(Clobber)) 231 return Clobbers[i]->getBeginLoc(); 232 } 233 return SourceLocation(); 234 } 235 236 StmtResult Sema::ActOnGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple, 237 bool IsVolatile, unsigned NumOutputs, 238 unsigned NumInputs, IdentifierInfo **Names, 239 MultiExprArg constraints, MultiExprArg Exprs, 240 Expr *asmString, MultiExprArg clobbers, 241 unsigned NumLabels, 242 SourceLocation RParenLoc) { 243 unsigned NumClobbers = clobbers.size(); 244 StringLiteral **Constraints = 245 reinterpret_cast<StringLiteral**>(constraints.data()); 246 StringLiteral *AsmString = cast<StringLiteral>(asmString); 247 StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.data()); 248 249 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; 250 251 // The parser verifies that there is a string literal here. 252 assert(AsmString->isOrdinary()); 253 254 FunctionDecl *FD = dyn_cast<FunctionDecl>(getCurLexicalContext()); 255 llvm::StringMap<bool> FeatureMap; 256 Context.getFunctionFeatureMap(FeatureMap, FD); 257 258 for (unsigned i = 0; i != NumOutputs; i++) { 259 StringLiteral *Literal = Constraints[i]; 260 assert(Literal->isOrdinary()); 261 262 StringRef OutputName; 263 if (Names[i]) 264 OutputName = Names[i]->getName(); 265 266 TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName); 267 if (!Context.getTargetInfo().validateOutputConstraint(Info) && 268 !(LangOpts.HIPStdPar && LangOpts.CUDAIsDevice)) { 269 targetDiag(Literal->getBeginLoc(), 270 diag::err_asm_invalid_output_constraint) 271 << Info.getConstraintStr(); 272 return new (Context) 273 GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, 274 NumInputs, Names, Constraints, Exprs.data(), AsmString, 275 NumClobbers, Clobbers, NumLabels, RParenLoc); 276 } 277 278 ExprResult ER = CheckPlaceholderExpr(Exprs[i]); 279 if (ER.isInvalid()) 280 return StmtError(); 281 Exprs[i] = ER.get(); 282 283 // Check that the output exprs are valid lvalues. 284 Expr *OutputExpr = Exprs[i]; 285 286 // Referring to parameters is not allowed in naked functions. 287 if (CheckNakedParmReference(OutputExpr, *this)) 288 return StmtError(); 289 290 // Check that the output expression is compatible with memory constraint. 291 if (Info.allowsMemory() && 292 checkExprMemoryConstraintCompat(*this, OutputExpr, Info, false)) 293 return StmtError(); 294 295 // Disallow bit-precise integer types, since the backends tend to have 296 // difficulties with abnormal sizes. 297 if (OutputExpr->getType()->isBitIntType()) 298 return StmtError( 299 Diag(OutputExpr->getBeginLoc(), diag::err_asm_invalid_type) 300 << OutputExpr->getType() << 0 /*Input*/ 301 << OutputExpr->getSourceRange()); 302 303 OutputConstraintInfos.push_back(Info); 304 305 // If this is dependent, just continue. 306 if (OutputExpr->isTypeDependent()) 307 continue; 308 309 Expr::isModifiableLvalueResult IsLV = 310 OutputExpr->isModifiableLvalue(Context, /*Loc=*/nullptr); 311 switch (IsLV) { 312 case Expr::MLV_Valid: 313 // Cool, this is an lvalue. 314 break; 315 case Expr::MLV_ArrayType: 316 // This is OK too. 317 break; 318 case Expr::MLV_LValueCast: { 319 const Expr *LVal = OutputExpr->IgnoreParenNoopCasts(Context); 320 emitAndFixInvalidAsmCastLValue(LVal, OutputExpr, *this); 321 // Accept, even if we emitted an error diagnostic. 322 break; 323 } 324 case Expr::MLV_IncompleteType: 325 case Expr::MLV_IncompleteVoidType: 326 if (RequireCompleteType(OutputExpr->getBeginLoc(), Exprs[i]->getType(), 327 diag::err_dereference_incomplete_type)) 328 return StmtError(); 329 [[fallthrough]]; 330 default: 331 return StmtError(Diag(OutputExpr->getBeginLoc(), 332 diag::err_asm_invalid_lvalue_in_output) 333 << OutputExpr->getSourceRange()); 334 } 335 336 unsigned Size = Context.getTypeSize(OutputExpr->getType()); 337 if (!Context.getTargetInfo().validateOutputSize( 338 FeatureMap, Literal->getString(), Size)) { 339 targetDiag(OutputExpr->getBeginLoc(), diag::err_asm_invalid_output_size) 340 << Info.getConstraintStr(); 341 return new (Context) 342 GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, 343 NumInputs, Names, Constraints, Exprs.data(), AsmString, 344 NumClobbers, Clobbers, NumLabels, RParenLoc); 345 } 346 } 347 348 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; 349 350 for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) { 351 StringLiteral *Literal = Constraints[i]; 352 assert(Literal->isOrdinary()); 353 354 StringRef InputName; 355 if (Names[i]) 356 InputName = Names[i]->getName(); 357 358 TargetInfo::ConstraintInfo Info(Literal->getString(), InputName); 359 if (!Context.getTargetInfo().validateInputConstraint(OutputConstraintInfos, 360 Info)) { 361 targetDiag(Literal->getBeginLoc(), diag::err_asm_invalid_input_constraint) 362 << Info.getConstraintStr(); 363 return new (Context) 364 GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, 365 NumInputs, Names, Constraints, Exprs.data(), AsmString, 366 NumClobbers, Clobbers, NumLabels, RParenLoc); 367 } 368 369 ExprResult ER = CheckPlaceholderExpr(Exprs[i]); 370 if (ER.isInvalid()) 371 return StmtError(); 372 Exprs[i] = ER.get(); 373 374 Expr *InputExpr = Exprs[i]; 375 376 if (InputExpr->getType()->isMemberPointerType()) 377 return StmtError(Diag(InputExpr->getBeginLoc(), 378 diag::err_asm_pmf_through_constraint_not_permitted) 379 << InputExpr->getSourceRange()); 380 381 // Referring to parameters is not allowed in naked functions. 382 if (CheckNakedParmReference(InputExpr, *this)) 383 return StmtError(); 384 385 // Check that the input expression is compatible with memory constraint. 386 if (Info.allowsMemory() && 387 checkExprMemoryConstraintCompat(*this, InputExpr, Info, true)) 388 return StmtError(); 389 390 // Only allow void types for memory constraints. 391 if (Info.allowsMemory() && !Info.allowsRegister()) { 392 if (CheckAsmLValue(InputExpr, *this)) 393 return StmtError(Diag(InputExpr->getBeginLoc(), 394 diag::err_asm_invalid_lvalue_in_input) 395 << Info.getConstraintStr() 396 << InputExpr->getSourceRange()); 397 } else { 398 ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]); 399 if (Result.isInvalid()) 400 return StmtError(); 401 402 InputExpr = Exprs[i] = Result.get(); 403 404 if (Info.requiresImmediateConstant() && !Info.allowsRegister()) { 405 if (!InputExpr->isValueDependent()) { 406 Expr::EvalResult EVResult; 407 if (InputExpr->EvaluateAsRValue(EVResult, Context, true)) { 408 // For compatibility with GCC, we also allow pointers that would be 409 // integral constant expressions if they were cast to int. 410 llvm::APSInt IntResult; 411 if (EVResult.Val.toIntegralConstant(IntResult, InputExpr->getType(), 412 Context)) 413 if (!Info.isValidAsmImmediate(IntResult)) 414 return StmtError( 415 Diag(InputExpr->getBeginLoc(), 416 diag::err_invalid_asm_value_for_constraint) 417 << toString(IntResult, 10) << Info.getConstraintStr() 418 << InputExpr->getSourceRange()); 419 } 420 } 421 } 422 } 423 424 if (Info.allowsRegister()) { 425 if (InputExpr->getType()->isVoidType()) { 426 return StmtError( 427 Diag(InputExpr->getBeginLoc(), diag::err_asm_invalid_type_in_input) 428 << InputExpr->getType() << Info.getConstraintStr() 429 << InputExpr->getSourceRange()); 430 } 431 } 432 433 if (InputExpr->getType()->isBitIntType()) 434 return StmtError( 435 Diag(InputExpr->getBeginLoc(), diag::err_asm_invalid_type) 436 << InputExpr->getType() << 1 /*Output*/ 437 << InputExpr->getSourceRange()); 438 439 InputConstraintInfos.push_back(Info); 440 441 const Type *Ty = Exprs[i]->getType().getTypePtr(); 442 if (Ty->isDependentType()) 443 continue; 444 445 if (!Ty->isVoidType() || !Info.allowsMemory()) 446 if (RequireCompleteType(InputExpr->getBeginLoc(), Exprs[i]->getType(), 447 diag::err_dereference_incomplete_type)) 448 return StmtError(); 449 450 unsigned Size = Context.getTypeSize(Ty); 451 if (!Context.getTargetInfo().validateInputSize(FeatureMap, 452 Literal->getString(), Size)) 453 return targetDiag(InputExpr->getBeginLoc(), 454 diag::err_asm_invalid_input_size) 455 << Info.getConstraintStr(); 456 } 457 458 std::optional<SourceLocation> UnwindClobberLoc; 459 460 // Check that the clobbers are valid. 461 for (unsigned i = 0; i != NumClobbers; i++) { 462 StringLiteral *Literal = Clobbers[i]; 463 assert(Literal->isOrdinary()); 464 465 StringRef Clobber = Literal->getString(); 466 467 if (!Context.getTargetInfo().isValidClobber(Clobber)) { 468 targetDiag(Literal->getBeginLoc(), diag::err_asm_unknown_register_name) 469 << Clobber; 470 return new (Context) 471 GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, 472 NumInputs, Names, Constraints, Exprs.data(), AsmString, 473 NumClobbers, Clobbers, NumLabels, RParenLoc); 474 } 475 476 if (Clobber == "unwind") { 477 UnwindClobberLoc = Literal->getBeginLoc(); 478 } 479 } 480 481 // Using unwind clobber and asm-goto together is not supported right now. 482 if (UnwindClobberLoc && NumLabels > 0) { 483 targetDiag(*UnwindClobberLoc, diag::err_asm_unwind_and_goto); 484 return new (Context) 485 GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, NumInputs, 486 Names, Constraints, Exprs.data(), AsmString, NumClobbers, 487 Clobbers, NumLabels, RParenLoc); 488 } 489 490 GCCAsmStmt *NS = 491 new (Context) GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, 492 NumInputs, Names, Constraints, Exprs.data(), 493 AsmString, NumClobbers, Clobbers, NumLabels, 494 RParenLoc); 495 // Validate the asm string, ensuring it makes sense given the operands we 496 // have. 497 SmallVector<GCCAsmStmt::AsmStringPiece, 8> Pieces; 498 unsigned DiagOffs; 499 if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) { 500 targetDiag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID) 501 << AsmString->getSourceRange(); 502 return NS; 503 } 504 505 // Validate constraints and modifiers. 506 for (unsigned i = 0, e = Pieces.size(); i != e; ++i) { 507 GCCAsmStmt::AsmStringPiece &Piece = Pieces[i]; 508 if (!Piece.isOperand()) continue; 509 510 // Look for the correct constraint index. 511 unsigned ConstraintIdx = Piece.getOperandNo(); 512 unsigned NumOperands = NS->getNumOutputs() + NS->getNumInputs(); 513 // Labels are the last in the Exprs list. 514 if (NS->isAsmGoto() && ConstraintIdx >= NumOperands) 515 continue; 516 // Look for the (ConstraintIdx - NumOperands + 1)th constraint with 517 // modifier '+'. 518 if (ConstraintIdx >= NumOperands) { 519 unsigned I = 0, E = NS->getNumOutputs(); 520 521 for (unsigned Cnt = ConstraintIdx - NumOperands; I != E; ++I) 522 if (OutputConstraintInfos[I].isReadWrite() && Cnt-- == 0) { 523 ConstraintIdx = I; 524 break; 525 } 526 527 assert(I != E && "Invalid operand number should have been caught in " 528 " AnalyzeAsmString"); 529 } 530 531 // Now that we have the right indexes go ahead and check. 532 StringLiteral *Literal = Constraints[ConstraintIdx]; 533 const Type *Ty = Exprs[ConstraintIdx]->getType().getTypePtr(); 534 if (Ty->isDependentType() || Ty->isIncompleteType()) 535 continue; 536 537 unsigned Size = Context.getTypeSize(Ty); 538 std::string SuggestedModifier; 539 if (!Context.getTargetInfo().validateConstraintModifier( 540 Literal->getString(), Piece.getModifier(), Size, 541 SuggestedModifier)) { 542 targetDiag(Exprs[ConstraintIdx]->getBeginLoc(), 543 diag::warn_asm_mismatched_size_modifier); 544 545 if (!SuggestedModifier.empty()) { 546 auto B = targetDiag(Piece.getRange().getBegin(), 547 diag::note_asm_missing_constraint_modifier) 548 << SuggestedModifier; 549 SuggestedModifier = "%" + SuggestedModifier + Piece.getString(); 550 B << FixItHint::CreateReplacement(Piece.getRange(), SuggestedModifier); 551 } 552 } 553 } 554 555 // Validate tied input operands for type mismatches. 556 unsigned NumAlternatives = ~0U; 557 for (unsigned i = 0, e = OutputConstraintInfos.size(); i != e; ++i) { 558 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; 559 StringRef ConstraintStr = Info.getConstraintStr(); 560 unsigned AltCount = ConstraintStr.count(',') + 1; 561 if (NumAlternatives == ~0U) { 562 NumAlternatives = AltCount; 563 } else if (NumAlternatives != AltCount) { 564 targetDiag(NS->getOutputExpr(i)->getBeginLoc(), 565 diag::err_asm_unexpected_constraint_alternatives) 566 << NumAlternatives << AltCount; 567 return NS; 568 } 569 } 570 SmallVector<size_t, 4> InputMatchedToOutput(OutputConstraintInfos.size(), 571 ~0U); 572 for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) { 573 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; 574 StringRef ConstraintStr = Info.getConstraintStr(); 575 unsigned AltCount = ConstraintStr.count(',') + 1; 576 if (NumAlternatives == ~0U) { 577 NumAlternatives = AltCount; 578 } else if (NumAlternatives != AltCount) { 579 targetDiag(NS->getInputExpr(i)->getBeginLoc(), 580 diag::err_asm_unexpected_constraint_alternatives) 581 << NumAlternatives << AltCount; 582 return NS; 583 } 584 585 // If this is a tied constraint, verify that the output and input have 586 // either exactly the same type, or that they are int/ptr operands with the 587 // same size (int/long, int*/long, are ok etc). 588 if (!Info.hasTiedOperand()) continue; 589 590 unsigned TiedTo = Info.getTiedOperand(); 591 unsigned InputOpNo = i+NumOutputs; 592 Expr *OutputExpr = Exprs[TiedTo]; 593 Expr *InputExpr = Exprs[InputOpNo]; 594 595 // Make sure no more than one input constraint matches each output. 596 assert(TiedTo < InputMatchedToOutput.size() && "TiedTo value out of range"); 597 if (InputMatchedToOutput[TiedTo] != ~0U) { 598 targetDiag(NS->getInputExpr(i)->getBeginLoc(), 599 diag::err_asm_input_duplicate_match) 600 << TiedTo; 601 targetDiag(NS->getInputExpr(InputMatchedToOutput[TiedTo])->getBeginLoc(), 602 diag::note_asm_input_duplicate_first) 603 << TiedTo; 604 return NS; 605 } 606 InputMatchedToOutput[TiedTo] = i; 607 608 if (OutputExpr->isTypeDependent() || InputExpr->isTypeDependent()) 609 continue; 610 611 QualType InTy = InputExpr->getType(); 612 QualType OutTy = OutputExpr->getType(); 613 if (Context.hasSameType(InTy, OutTy)) 614 continue; // All types can be tied to themselves. 615 616 // Decide if the input and output are in the same domain (integer/ptr or 617 // floating point. 618 enum AsmDomain { 619 AD_Int, AD_FP, AD_Other 620 } InputDomain, OutputDomain; 621 622 if (InTy->isIntegerType() || InTy->isPointerType()) 623 InputDomain = AD_Int; 624 else if (InTy->isRealFloatingType()) 625 InputDomain = AD_FP; 626 else 627 InputDomain = AD_Other; 628 629 if (OutTy->isIntegerType() || OutTy->isPointerType()) 630 OutputDomain = AD_Int; 631 else if (OutTy->isRealFloatingType()) 632 OutputDomain = AD_FP; 633 else 634 OutputDomain = AD_Other; 635 636 // They are ok if they are the same size and in the same domain. This 637 // allows tying things like: 638 // void* to int* 639 // void* to int if they are the same size. 640 // double to long double if they are the same size. 641 // 642 uint64_t OutSize = Context.getTypeSize(OutTy); 643 uint64_t InSize = Context.getTypeSize(InTy); 644 if (OutSize == InSize && InputDomain == OutputDomain && 645 InputDomain != AD_Other) 646 continue; 647 648 // If the smaller input/output operand is not mentioned in the asm string, 649 // then we can promote the smaller one to a larger input and the asm string 650 // won't notice. 651 bool SmallerValueMentioned = false; 652 653 // If this is a reference to the input and if the input was the smaller 654 // one, then we have to reject this asm. 655 if (isOperandMentioned(InputOpNo, Pieces)) { 656 // This is a use in the asm string of the smaller operand. Since we 657 // codegen this by promoting to a wider value, the asm will get printed 658 // "wrong". 659 SmallerValueMentioned |= InSize < OutSize; 660 } 661 if (isOperandMentioned(TiedTo, Pieces)) { 662 // If this is a reference to the output, and if the output is the larger 663 // value, then it's ok because we'll promote the input to the larger type. 664 SmallerValueMentioned |= OutSize < InSize; 665 } 666 667 // If the input is an integer register while the output is floating point, 668 // or vice-versa, there is no way they can work together. 669 bool FPTiedToInt = (InputDomain == AD_FP) ^ (OutputDomain == AD_FP); 670 671 // If the smaller value wasn't mentioned in the asm string, and if the 672 // output was a register, just extend the shorter one to the size of the 673 // larger one. 674 if (!SmallerValueMentioned && !FPTiedToInt && InputDomain != AD_Other && 675 OutputConstraintInfos[TiedTo].allowsRegister()) { 676 677 // FIXME: GCC supports the OutSize to be 128 at maximum. Currently codegen 678 // crash when the size larger than the register size. So we limit it here. 679 if (OutTy->isStructureType() && 680 Context.getIntTypeForBitwidth(OutSize, /*Signed*/ false).isNull()) { 681 targetDiag(OutputExpr->getExprLoc(), diag::err_store_value_to_reg); 682 return NS; 683 } 684 685 continue; 686 } 687 688 // Either both of the operands were mentioned or the smaller one was 689 // mentioned. One more special case that we'll allow: if the tied input is 690 // integer, unmentioned, and is a constant, then we'll allow truncating it 691 // down to the size of the destination. 692 if (InputDomain == AD_Int && OutputDomain == AD_Int && 693 !isOperandMentioned(InputOpNo, Pieces) && 694 InputExpr->isEvaluatable(Context)) { 695 CastKind castKind = 696 (OutTy->isBooleanType() ? CK_IntegralToBoolean : CK_IntegralCast); 697 InputExpr = ImpCastExprToType(InputExpr, OutTy, castKind).get(); 698 Exprs[InputOpNo] = InputExpr; 699 NS->setInputExpr(i, InputExpr); 700 continue; 701 } 702 703 targetDiag(InputExpr->getBeginLoc(), diag::err_asm_tying_incompatible_types) 704 << InTy << OutTy << OutputExpr->getSourceRange() 705 << InputExpr->getSourceRange(); 706 return NS; 707 } 708 709 // Check for conflicts between clobber list and input or output lists 710 SourceLocation ConstraintLoc = 711 getClobberConflictLocation(Exprs, Constraints, Clobbers, NumClobbers, 712 NumLabels, 713 Context.getTargetInfo(), Context); 714 if (ConstraintLoc.isValid()) 715 targetDiag(ConstraintLoc, diag::error_inoutput_conflict_with_clobber); 716 717 // Check for duplicate asm operand name between input, output and label lists. 718 typedef std::pair<StringRef , Expr *> NamedOperand; 719 SmallVector<NamedOperand, 4> NamedOperandList; 720 for (unsigned i = 0, e = NumOutputs + NumInputs + NumLabels; i != e; ++i) 721 if (Names[i]) 722 NamedOperandList.emplace_back( 723 std::make_pair(Names[i]->getName(), Exprs[i])); 724 // Sort NamedOperandList. 725 llvm::stable_sort(NamedOperandList, llvm::less_first()); 726 // Find adjacent duplicate operand. 727 SmallVector<NamedOperand, 4>::iterator Found = 728 std::adjacent_find(begin(NamedOperandList), end(NamedOperandList), 729 [](const NamedOperand &LHS, const NamedOperand &RHS) { 730 return LHS.first == RHS.first; 731 }); 732 if (Found != NamedOperandList.end()) { 733 Diag((Found + 1)->second->getBeginLoc(), 734 diag::error_duplicate_asm_operand_name) 735 << (Found + 1)->first; 736 Diag(Found->second->getBeginLoc(), diag::note_duplicate_asm_operand_name) 737 << Found->first; 738 return StmtError(); 739 } 740 if (NS->isAsmGoto()) 741 setFunctionHasBranchIntoScope(); 742 743 CleanupVarDeclMarking(); 744 DiscardCleanupsInEvaluationContext(); 745 return NS; 746 } 747 748 void Sema::FillInlineAsmIdentifierInfo(Expr *Res, 749 llvm::InlineAsmIdentifierInfo &Info) { 750 QualType T = Res->getType(); 751 Expr::EvalResult Eval; 752 if (T->isFunctionType() || T->isDependentType()) 753 return Info.setLabel(Res); 754 if (Res->isPRValue()) { 755 bool IsEnum = isa<clang::EnumType>(T); 756 if (DeclRefExpr *DRE = dyn_cast<clang::DeclRefExpr>(Res)) 757 if (DRE->getDecl()->getKind() == Decl::EnumConstant) 758 IsEnum = true; 759 if (IsEnum && Res->EvaluateAsRValue(Eval, Context)) 760 return Info.setEnum(Eval.Val.getInt().getSExtValue()); 761 762 return Info.setLabel(Res); 763 } 764 unsigned Size = Context.getTypeSizeInChars(T).getQuantity(); 765 unsigned Type = Size; 766 if (const auto *ATy = Context.getAsArrayType(T)) 767 Type = Context.getTypeSizeInChars(ATy->getElementType()).getQuantity(); 768 bool IsGlobalLV = false; 769 if (Res->EvaluateAsLValue(Eval, Context)) 770 IsGlobalLV = Eval.isGlobalLValue(); 771 Info.setVar(Res, IsGlobalLV, Size, Type); 772 } 773 774 ExprResult Sema::LookupInlineAsmIdentifier(CXXScopeSpec &SS, 775 SourceLocation TemplateKWLoc, 776 UnqualifiedId &Id, 777 bool IsUnevaluatedContext) { 778 779 if (IsUnevaluatedContext) 780 PushExpressionEvaluationContext( 781 ExpressionEvaluationContext::UnevaluatedAbstract, 782 ReuseLambdaContextDecl); 783 784 ExprResult Result = ActOnIdExpression(getCurScope(), SS, TemplateKWLoc, Id, 785 /*trailing lparen*/ false, 786 /*is & operand*/ false, 787 /*CorrectionCandidateCallback=*/nullptr, 788 /*IsInlineAsmIdentifier=*/ true); 789 790 if (IsUnevaluatedContext) 791 PopExpressionEvaluationContext(); 792 793 if (!Result.isUsable()) return Result; 794 795 Result = CheckPlaceholderExpr(Result.get()); 796 if (!Result.isUsable()) return Result; 797 798 // Referring to parameters is not allowed in naked functions. 799 if (CheckNakedParmReference(Result.get(), *this)) 800 return ExprError(); 801 802 QualType T = Result.get()->getType(); 803 804 if (T->isDependentType()) { 805 return Result; 806 } 807 808 // Any sort of function type is fine. 809 if (T->isFunctionType()) { 810 return Result; 811 } 812 813 // Otherwise, it needs to be a complete type. 814 if (RequireCompleteExprType(Result.get(), diag::err_asm_incomplete_type)) { 815 return ExprError(); 816 } 817 818 return Result; 819 } 820 821 bool Sema::LookupInlineAsmField(StringRef Base, StringRef Member, 822 unsigned &Offset, SourceLocation AsmLoc) { 823 Offset = 0; 824 SmallVector<StringRef, 2> Members; 825 Member.split(Members, "."); 826 827 NamedDecl *FoundDecl = nullptr; 828 829 // MS InlineAsm uses 'this' as a base 830 if (getLangOpts().CPlusPlus && Base == "this") { 831 if (const Type *PT = getCurrentThisType().getTypePtrOrNull()) 832 FoundDecl = PT->getPointeeType()->getAsTagDecl(); 833 } else { 834 LookupResult BaseResult(*this, &Context.Idents.get(Base), SourceLocation(), 835 LookupOrdinaryName); 836 if (LookupName(BaseResult, getCurScope()) && BaseResult.isSingleResult()) 837 FoundDecl = BaseResult.getFoundDecl(); 838 } 839 840 if (!FoundDecl) 841 return true; 842 843 for (StringRef NextMember : Members) { 844 const RecordType *RT = nullptr; 845 if (VarDecl *VD = dyn_cast<VarDecl>(FoundDecl)) 846 RT = VD->getType()->getAs<RecordType>(); 847 else if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(FoundDecl)) { 848 MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false); 849 // MS InlineAsm often uses struct pointer aliases as a base 850 QualType QT = TD->getUnderlyingType(); 851 if (const auto *PT = QT->getAs<PointerType>()) 852 QT = PT->getPointeeType(); 853 RT = QT->getAs<RecordType>(); 854 } else if (TypeDecl *TD = dyn_cast<TypeDecl>(FoundDecl)) 855 RT = TD->getTypeForDecl()->getAs<RecordType>(); 856 else if (FieldDecl *TD = dyn_cast<FieldDecl>(FoundDecl)) 857 RT = TD->getType()->getAs<RecordType>(); 858 if (!RT) 859 return true; 860 861 if (RequireCompleteType(AsmLoc, QualType(RT, 0), 862 diag::err_asm_incomplete_type)) 863 return true; 864 865 LookupResult FieldResult(*this, &Context.Idents.get(NextMember), 866 SourceLocation(), LookupMemberName); 867 868 if (!LookupQualifiedName(FieldResult, RT->getDecl())) 869 return true; 870 871 if (!FieldResult.isSingleResult()) 872 return true; 873 FoundDecl = FieldResult.getFoundDecl(); 874 875 // FIXME: Handle IndirectFieldDecl? 876 FieldDecl *FD = dyn_cast<FieldDecl>(FoundDecl); 877 if (!FD) 878 return true; 879 880 const ASTRecordLayout &RL = Context.getASTRecordLayout(RT->getDecl()); 881 unsigned i = FD->getFieldIndex(); 882 CharUnits Result = Context.toCharUnitsFromBits(RL.getFieldOffset(i)); 883 Offset += (unsigned)Result.getQuantity(); 884 } 885 886 return false; 887 } 888 889 ExprResult 890 Sema::LookupInlineAsmVarDeclField(Expr *E, StringRef Member, 891 SourceLocation AsmLoc) { 892 893 QualType T = E->getType(); 894 if (T->isDependentType()) { 895 DeclarationNameInfo NameInfo; 896 NameInfo.setLoc(AsmLoc); 897 NameInfo.setName(&Context.Idents.get(Member)); 898 return CXXDependentScopeMemberExpr::Create( 899 Context, E, T, /*IsArrow=*/false, AsmLoc, NestedNameSpecifierLoc(), 900 SourceLocation(), 901 /*FirstQualifierFoundInScope=*/nullptr, NameInfo, /*TemplateArgs=*/nullptr); 902 } 903 904 const RecordType *RT = T->getAs<RecordType>(); 905 // FIXME: Diagnose this as field access into a scalar type. 906 if (!RT) 907 return ExprResult(); 908 909 LookupResult FieldResult(*this, &Context.Idents.get(Member), AsmLoc, 910 LookupMemberName); 911 912 if (!LookupQualifiedName(FieldResult, RT->getDecl())) 913 return ExprResult(); 914 915 // Only normal and indirect field results will work. 916 ValueDecl *FD = dyn_cast<FieldDecl>(FieldResult.getFoundDecl()); 917 if (!FD) 918 FD = dyn_cast<IndirectFieldDecl>(FieldResult.getFoundDecl()); 919 if (!FD) 920 return ExprResult(); 921 922 // Make an Expr to thread through OpDecl. 923 ExprResult Result = BuildMemberReferenceExpr( 924 E, E->getType(), AsmLoc, /*IsArrow=*/false, CXXScopeSpec(), 925 SourceLocation(), nullptr, FieldResult, nullptr, nullptr); 926 927 return Result; 928 } 929 930 StmtResult Sema::ActOnMSAsmStmt(SourceLocation AsmLoc, SourceLocation LBraceLoc, 931 ArrayRef<Token> AsmToks, 932 StringRef AsmString, 933 unsigned NumOutputs, unsigned NumInputs, 934 ArrayRef<StringRef> Constraints, 935 ArrayRef<StringRef> Clobbers, 936 ArrayRef<Expr*> Exprs, 937 SourceLocation EndLoc) { 938 bool IsSimple = (NumOutputs != 0 || NumInputs != 0); 939 setFunctionHasBranchProtectedScope(); 940 941 bool InvalidOperand = false; 942 for (uint64_t I = 0; I < NumOutputs + NumInputs; ++I) { 943 Expr *E = Exprs[I]; 944 if (E->getType()->isBitIntType()) { 945 InvalidOperand = true; 946 Diag(E->getBeginLoc(), diag::err_asm_invalid_type) 947 << E->getType() << (I < NumOutputs) 948 << E->getSourceRange(); 949 } else if (E->refersToBitField()) { 950 InvalidOperand = true; 951 FieldDecl *BitField = E->getSourceBitField(); 952 Diag(E->getBeginLoc(), diag::err_ms_asm_bitfield_unsupported) 953 << E->getSourceRange(); 954 Diag(BitField->getLocation(), diag::note_bitfield_decl); 955 } 956 } 957 if (InvalidOperand) 958 return StmtError(); 959 960 MSAsmStmt *NS = 961 new (Context) MSAsmStmt(Context, AsmLoc, LBraceLoc, IsSimple, 962 /*IsVolatile*/ true, AsmToks, NumOutputs, NumInputs, 963 Constraints, Exprs, AsmString, 964 Clobbers, EndLoc); 965 return NS; 966 } 967 968 LabelDecl *Sema::GetOrCreateMSAsmLabel(StringRef ExternalLabelName, 969 SourceLocation Location, 970 bool AlwaysCreate) { 971 LabelDecl* Label = LookupOrCreateLabel(PP.getIdentifierInfo(ExternalLabelName), 972 Location); 973 974 if (Label->isMSAsmLabel()) { 975 // If we have previously created this label implicitly, mark it as used. 976 Label->markUsed(Context); 977 } else { 978 // Otherwise, insert it, but only resolve it if we have seen the label itself. 979 std::string InternalName; 980 llvm::raw_string_ostream OS(InternalName); 981 // Create an internal name for the label. The name should not be a valid 982 // mangled name, and should be unique. We use a dot to make the name an 983 // invalid mangled name. We use LLVM's inline asm ${:uid} escape so that a 984 // unique label is generated each time this blob is emitted, even after 985 // inlining or LTO. 986 OS << "__MSASMLABEL_.${:uid}__"; 987 for (char C : ExternalLabelName) { 988 OS << C; 989 // We escape '$' in asm strings by replacing it with "$$" 990 if (C == '$') 991 OS << '$'; 992 } 993 Label->setMSAsmLabel(OS.str()); 994 } 995 if (AlwaysCreate) { 996 // The label might have been created implicitly from a previously encountered 997 // goto statement. So, for both newly created and looked up labels, we mark 998 // them as resolved. 999 Label->setMSAsmLabelResolved(); 1000 } 1001 // Adjust their location for being able to generate accurate diagnostics. 1002 Label->setLocation(Location); 1003 1004 return Label; 1005 } 1006