1 //===--- SemaModule.cpp - Semantic Analysis for Modules -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for modules (C++ modules syntax, 10 // Objective-C modules syntax, and Clang header modules). 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/AST/ASTConsumer.h" 15 #include "clang/Lex/HeaderSearch.h" 16 #include "clang/Lex/Preprocessor.h" 17 #include "clang/Sema/SemaInternal.h" 18 19 using namespace clang; 20 using namespace sema; 21 22 static void checkModuleImportContext(Sema &S, Module *M, 23 SourceLocation ImportLoc, DeclContext *DC, 24 bool FromInclude = false) { 25 SourceLocation ExternCLoc; 26 27 if (auto *LSD = dyn_cast<LinkageSpecDecl>(DC)) { 28 switch (LSD->getLanguage()) { 29 case LinkageSpecDecl::lang_c: 30 if (ExternCLoc.isInvalid()) 31 ExternCLoc = LSD->getBeginLoc(); 32 break; 33 case LinkageSpecDecl::lang_cxx: 34 break; 35 } 36 DC = LSD->getParent(); 37 } 38 39 while (isa<LinkageSpecDecl>(DC) || isa<ExportDecl>(DC)) 40 DC = DC->getParent(); 41 42 if (!isa<TranslationUnitDecl>(DC)) { 43 S.Diag(ImportLoc, (FromInclude && S.isModuleVisible(M)) 44 ? diag::ext_module_import_not_at_top_level_noop 45 : diag::err_module_import_not_at_top_level_fatal) 46 << M->getFullModuleName() << DC; 47 S.Diag(cast<Decl>(DC)->getBeginLoc(), 48 diag::note_module_import_not_at_top_level) 49 << DC; 50 } else if (!M->IsExternC && ExternCLoc.isValid()) { 51 S.Diag(ImportLoc, diag::ext_module_import_in_extern_c) 52 << M->getFullModuleName(); 53 S.Diag(ExternCLoc, diag::note_extern_c_begins_here); 54 } 55 } 56 57 // We represent the primary and partition names as 'Paths' which are sections 58 // of the hierarchical access path for a clang module. However for C++20 59 // the periods in a name are just another character, and we will need to 60 // flatten them into a string. 61 static std::string stringFromPath(ModuleIdPath Path) { 62 std::string Name; 63 if (Path.empty()) 64 return Name; 65 66 for (auto &Piece : Path) { 67 if (!Name.empty()) 68 Name += "."; 69 Name += Piece.first->getName(); 70 } 71 return Name; 72 } 73 74 Sema::DeclGroupPtrTy 75 Sema::ActOnGlobalModuleFragmentDecl(SourceLocation ModuleLoc) { 76 if (!ModuleScopes.empty() && 77 ModuleScopes.back().Module->Kind == Module::GlobalModuleFragment) { 78 // Under -std=c++2a -fmodules-ts, we can find an explicit 'module;' after 79 // already implicitly entering the global module fragment. That's OK. 80 assert(getLangOpts().CPlusPlusModules && getLangOpts().ModulesTS && 81 "unexpectedly encountered multiple global module fragment decls"); 82 ModuleScopes.back().BeginLoc = ModuleLoc; 83 return nullptr; 84 } 85 86 // We start in the global module; all those declarations are implicitly 87 // module-private (though they do not have module linkage). 88 Module *GlobalModule = 89 PushGlobalModuleFragment(ModuleLoc, /*IsImplicit=*/false); 90 91 // All declarations created from now on are owned by the global module. 92 auto *TU = Context.getTranslationUnitDecl(); 93 // [module.global.frag]p2 94 // A global-module-fragment specifies the contents of the global module 95 // fragment for a module unit. The global module fragment can be used to 96 // provide declarations that are attached to the global module and usable 97 // within the module unit. 98 // 99 // So the declations in the global module shouldn't be visible by default. 100 TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ReachableWhenImported); 101 TU->setLocalOwningModule(GlobalModule); 102 103 // FIXME: Consider creating an explicit representation of this declaration. 104 return nullptr; 105 } 106 107 void Sema::HandleStartOfHeaderUnit() { 108 assert(getLangOpts().CPlusPlusModules && 109 "Header units are only valid for C++20 modules"); 110 SourceLocation StartOfTU = 111 SourceMgr.getLocForStartOfFile(SourceMgr.getMainFileID()); 112 113 StringRef HUName = getLangOpts().CurrentModule; 114 if (HUName.empty()) { 115 HUName = SourceMgr.getFileEntryForID(SourceMgr.getMainFileID())->getName(); 116 const_cast<LangOptions &>(getLangOpts()).CurrentModule = HUName.str(); 117 } 118 119 // TODO: Make the C++20 header lookup independent. 120 // When the input is pre-processed source, we need a file ref to the original 121 // file for the header map. 122 auto F = SourceMgr.getFileManager().getFile(HUName); 123 // For the sake of error recovery (if someone has moved the original header 124 // after creating the pre-processed output) fall back to obtaining the file 125 // ref for the input file, which must be present. 126 if (!F) 127 F = SourceMgr.getFileEntryForID(SourceMgr.getMainFileID()); 128 assert(F && "failed to find the header unit source?"); 129 Module::Header H{HUName.str(), HUName.str(), *F}; 130 auto &Map = PP.getHeaderSearchInfo().getModuleMap(); 131 Module *Mod = Map.createHeaderUnit(StartOfTU, HUName, H); 132 assert(Mod && "module creation should not fail"); 133 ModuleScopes.push_back({}); // No GMF 134 ModuleScopes.back().BeginLoc = StartOfTU; 135 ModuleScopes.back().Module = Mod; 136 ModuleScopes.back().ModuleInterface = true; 137 ModuleScopes.back().IsPartition = false; 138 VisibleModules.setVisible(Mod, StartOfTU); 139 140 // From now on, we have an owning module for all declarations we see. 141 // All of these are implicitly exported. 142 auto *TU = Context.getTranslationUnitDecl(); 143 TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::Visible); 144 TU->setLocalOwningModule(Mod); 145 } 146 147 Sema::DeclGroupPtrTy 148 Sema::ActOnModuleDecl(SourceLocation StartLoc, SourceLocation ModuleLoc, 149 ModuleDeclKind MDK, ModuleIdPath Path, 150 ModuleIdPath Partition, ModuleImportState &ImportState) { 151 assert((getLangOpts().ModulesTS || getLangOpts().CPlusPlusModules) && 152 "should only have module decl in Modules TS or C++20"); 153 154 bool IsFirstDecl = ImportState == ModuleImportState::FirstDecl; 155 bool SeenGMF = ImportState == ModuleImportState::GlobalFragment; 156 // If any of the steps here fail, we count that as invalidating C++20 157 // module state; 158 ImportState = ModuleImportState::NotACXX20Module; 159 160 bool IsPartition = !Partition.empty(); 161 if (IsPartition) 162 switch (MDK) { 163 case ModuleDeclKind::Implementation: 164 MDK = ModuleDeclKind::PartitionImplementation; 165 break; 166 case ModuleDeclKind::Interface: 167 MDK = ModuleDeclKind::PartitionInterface; 168 break; 169 default: 170 llvm_unreachable("how did we get a partition type set?"); 171 } 172 173 // A (non-partition) module implementation unit requires that we are not 174 // compiling a module of any kind. A partition implementation emits an 175 // interface (and the AST for the implementation), which will subsequently 176 // be consumed to emit a binary. 177 // A module interface unit requires that we are not compiling a module map. 178 switch (getLangOpts().getCompilingModule()) { 179 case LangOptions::CMK_None: 180 // It's OK to compile a module interface as a normal translation unit. 181 break; 182 183 case LangOptions::CMK_ModuleInterface: 184 if (MDK != ModuleDeclKind::Implementation) 185 break; 186 187 // We were asked to compile a module interface unit but this is a module 188 // implementation unit. 189 Diag(ModuleLoc, diag::err_module_interface_implementation_mismatch) 190 << FixItHint::CreateInsertion(ModuleLoc, "export "); 191 MDK = ModuleDeclKind::Interface; 192 break; 193 194 case LangOptions::CMK_ModuleMap: 195 Diag(ModuleLoc, diag::err_module_decl_in_module_map_module); 196 return nullptr; 197 198 case LangOptions::CMK_HeaderModule: 199 case LangOptions::CMK_HeaderUnit: 200 Diag(ModuleLoc, diag::err_module_decl_in_header_module); 201 return nullptr; 202 } 203 204 assert(ModuleScopes.size() <= 1 && "expected to be at global module scope"); 205 206 // FIXME: Most of this work should be done by the preprocessor rather than 207 // here, in order to support macro import. 208 209 // Only one module-declaration is permitted per source file. 210 if (isCurrentModulePurview()) { 211 Diag(ModuleLoc, diag::err_module_redeclaration); 212 Diag(VisibleModules.getImportLoc(ModuleScopes.back().Module), 213 diag::note_prev_module_declaration); 214 return nullptr; 215 } 216 217 // Find the global module fragment we're adopting into this module, if any. 218 Module *GlobalModuleFragment = nullptr; 219 if (!ModuleScopes.empty() && 220 ModuleScopes.back().Module->Kind == Module::GlobalModuleFragment) 221 GlobalModuleFragment = ModuleScopes.back().Module; 222 223 assert((!getLangOpts().CPlusPlusModules || getLangOpts().ModulesTS || 224 SeenGMF == (bool)GlobalModuleFragment) && 225 "mismatched global module state"); 226 227 // In C++20, the module-declaration must be the first declaration if there 228 // is no global module fragment. 229 if (getLangOpts().CPlusPlusModules && !IsFirstDecl && !SeenGMF) { 230 Diag(ModuleLoc, diag::err_module_decl_not_at_start); 231 SourceLocation BeginLoc = 232 ModuleScopes.empty() 233 ? SourceMgr.getLocForStartOfFile(SourceMgr.getMainFileID()) 234 : ModuleScopes.back().BeginLoc; 235 if (BeginLoc.isValid()) { 236 Diag(BeginLoc, diag::note_global_module_introducer_missing) 237 << FixItHint::CreateInsertion(BeginLoc, "module;\n"); 238 } 239 } 240 241 // Flatten the dots in a module name. Unlike Clang's hierarchical module map 242 // modules, the dots here are just another character that can appear in a 243 // module name. 244 std::string ModuleName = stringFromPath(Path); 245 if (IsPartition) { 246 ModuleName += ":"; 247 ModuleName += stringFromPath(Partition); 248 } 249 // If a module name was explicitly specified on the command line, it must be 250 // correct. 251 if (!getLangOpts().CurrentModule.empty() && 252 getLangOpts().CurrentModule != ModuleName) { 253 Diag(Path.front().second, diag::err_current_module_name_mismatch) 254 << SourceRange(Path.front().second, IsPartition 255 ? Partition.back().second 256 : Path.back().second) 257 << getLangOpts().CurrentModule; 258 return nullptr; 259 } 260 const_cast<LangOptions&>(getLangOpts()).CurrentModule = ModuleName; 261 262 auto &Map = PP.getHeaderSearchInfo().getModuleMap(); 263 Module *Mod; 264 265 switch (MDK) { 266 case ModuleDeclKind::Interface: 267 case ModuleDeclKind::PartitionInterface: { 268 // We can't have parsed or imported a definition of this module or parsed a 269 // module map defining it already. 270 if (auto *M = Map.findModule(ModuleName)) { 271 Diag(Path[0].second, diag::err_module_redefinition) << ModuleName; 272 if (M->DefinitionLoc.isValid()) 273 Diag(M->DefinitionLoc, diag::note_prev_module_definition); 274 else if (Optional<FileEntryRef> FE = M->getASTFile()) 275 Diag(M->DefinitionLoc, diag::note_prev_module_definition_from_ast_file) 276 << FE->getName(); 277 Mod = M; 278 break; 279 } 280 281 // Create a Module for the module that we're defining. 282 Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName, 283 GlobalModuleFragment); 284 if (MDK == ModuleDeclKind::PartitionInterface) 285 Mod->Kind = Module::ModulePartitionInterface; 286 assert(Mod && "module creation should not fail"); 287 break; 288 } 289 290 case ModuleDeclKind::Implementation: { 291 std::pair<IdentifierInfo *, SourceLocation> ModuleNameLoc( 292 PP.getIdentifierInfo(ModuleName), Path[0].second); 293 // C++20 A module-declaration that contains neither an export- 294 // keyword nor a module-partition implicitly imports the primary 295 // module interface unit of the module as if by a module-import- 296 // declaration. 297 Mod = getModuleLoader().loadModule(ModuleLoc, {ModuleNameLoc}, 298 Module::AllVisible, 299 /*IsInclusionDirective=*/false); 300 if (!Mod) { 301 Diag(ModuleLoc, diag::err_module_not_defined) << ModuleName; 302 // Create an empty module interface unit for error recovery. 303 Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName, 304 GlobalModuleFragment); 305 } 306 } break; 307 308 case ModuleDeclKind::PartitionImplementation: 309 // Create an interface, but note that it is an implementation 310 // unit. 311 Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName, 312 GlobalModuleFragment); 313 Mod->Kind = Module::ModulePartitionImplementation; 314 break; 315 } 316 317 if (!GlobalModuleFragment) { 318 ModuleScopes.push_back({}); 319 if (getLangOpts().ModulesLocalVisibility) 320 ModuleScopes.back().OuterVisibleModules = std::move(VisibleModules); 321 } else { 322 // We're done with the global module fragment now. 323 ActOnEndOfTranslationUnitFragment(TUFragmentKind::Global); 324 } 325 326 // Switch from the global module fragment (if any) to the named module. 327 ModuleScopes.back().BeginLoc = StartLoc; 328 ModuleScopes.back().Module = Mod; 329 ModuleScopes.back().ModuleInterface = MDK != ModuleDeclKind::Implementation; 330 ModuleScopes.back().IsPartition = IsPartition; 331 VisibleModules.setVisible(Mod, ModuleLoc); 332 333 // From now on, we have an owning module for all declarations we see. 334 // In C++20 modules, those declaration would be reachable when imported 335 // unless explicitily exported. 336 // Otherwise, those declarations are module-private unless explicitly 337 // exported. 338 auto *TU = Context.getTranslationUnitDecl(); 339 TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ReachableWhenImported); 340 TU->setLocalOwningModule(Mod); 341 342 // We are in the module purview, but before any other (non import) 343 // statements, so imports are allowed. 344 ImportState = ModuleImportState::ImportAllowed; 345 346 // For an implementation, We already made an implicit import (its interface). 347 // Make and return the import decl to be added to the current TU. 348 if (MDK == ModuleDeclKind::Implementation) { 349 // Make the import decl for the interface. 350 ImportDecl *Import = 351 ImportDecl::Create(Context, CurContext, ModuleLoc, Mod, Path[0].second); 352 // and return it to be added. 353 return ConvertDeclToDeclGroup(Import); 354 } 355 356 // FIXME: Create a ModuleDecl. 357 return nullptr; 358 } 359 360 Sema::DeclGroupPtrTy 361 Sema::ActOnPrivateModuleFragmentDecl(SourceLocation ModuleLoc, 362 SourceLocation PrivateLoc) { 363 // C++20 [basic.link]/2: 364 // A private-module-fragment shall appear only in a primary module 365 // interface unit. 366 switch (ModuleScopes.empty() ? Module::GlobalModuleFragment 367 : ModuleScopes.back().Module->Kind) { 368 case Module::ModuleMapModule: 369 case Module::GlobalModuleFragment: 370 case Module::ModulePartitionImplementation: 371 case Module::ModulePartitionInterface: 372 case Module::ModuleHeaderUnit: 373 Diag(PrivateLoc, diag::err_private_module_fragment_not_module); 374 return nullptr; 375 376 case Module::PrivateModuleFragment: 377 Diag(PrivateLoc, diag::err_private_module_fragment_redefined); 378 Diag(ModuleScopes.back().BeginLoc, diag::note_previous_definition); 379 return nullptr; 380 381 case Module::ModuleInterfaceUnit: 382 break; 383 } 384 385 if (!ModuleScopes.back().ModuleInterface) { 386 Diag(PrivateLoc, diag::err_private_module_fragment_not_module_interface); 387 Diag(ModuleScopes.back().BeginLoc, 388 diag::note_not_module_interface_add_export) 389 << FixItHint::CreateInsertion(ModuleScopes.back().BeginLoc, "export "); 390 return nullptr; 391 } 392 393 // FIXME: Check this isn't a module interface partition. 394 // FIXME: Check that this translation unit does not import any partitions; 395 // such imports would violate [basic.link]/2's "shall be the only module unit" 396 // restriction. 397 398 // We've finished the public fragment of the translation unit. 399 ActOnEndOfTranslationUnitFragment(TUFragmentKind::Normal); 400 401 auto &Map = PP.getHeaderSearchInfo().getModuleMap(); 402 Module *PrivateModuleFragment = 403 Map.createPrivateModuleFragmentForInterfaceUnit( 404 ModuleScopes.back().Module, PrivateLoc); 405 assert(PrivateModuleFragment && "module creation should not fail"); 406 407 // Enter the scope of the private module fragment. 408 ModuleScopes.push_back({}); 409 ModuleScopes.back().BeginLoc = ModuleLoc; 410 ModuleScopes.back().Module = PrivateModuleFragment; 411 ModuleScopes.back().ModuleInterface = true; 412 VisibleModules.setVisible(PrivateModuleFragment, ModuleLoc); 413 414 // All declarations created from now on are scoped to the private module 415 // fragment (and are neither visible nor reachable in importers of the module 416 // interface). 417 auto *TU = Context.getTranslationUnitDecl(); 418 TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ModulePrivate); 419 TU->setLocalOwningModule(PrivateModuleFragment); 420 421 // FIXME: Consider creating an explicit representation of this declaration. 422 return nullptr; 423 } 424 425 DeclResult Sema::ActOnModuleImport(SourceLocation StartLoc, 426 SourceLocation ExportLoc, 427 SourceLocation ImportLoc, ModuleIdPath Path, 428 bool IsPartition) { 429 430 bool Cxx20Mode = getLangOpts().CPlusPlusModules || getLangOpts().ModulesTS; 431 assert((!IsPartition || Cxx20Mode) && "partition seen in non-C++20 code?"); 432 433 // For a C++20 module name, flatten into a single identifier with the source 434 // location of the first component. 435 std::pair<IdentifierInfo *, SourceLocation> ModuleNameLoc; 436 437 std::string ModuleName; 438 if (IsPartition) { 439 // We already checked that we are in a module purview in the parser. 440 assert(!ModuleScopes.empty() && "in a module purview, but no module?"); 441 Module *NamedMod = ModuleScopes.back().Module; 442 // If we are importing into a partition, find the owning named module, 443 // otherwise, the name of the importing named module. 444 ModuleName = NamedMod->getPrimaryModuleInterfaceName().str(); 445 ModuleName += ":"; 446 ModuleName += stringFromPath(Path); 447 ModuleNameLoc = {PP.getIdentifierInfo(ModuleName), Path[0].second}; 448 Path = ModuleIdPath(ModuleNameLoc); 449 } else if (Cxx20Mode) { 450 ModuleName = stringFromPath(Path); 451 ModuleNameLoc = {PP.getIdentifierInfo(ModuleName), Path[0].second}; 452 Path = ModuleIdPath(ModuleNameLoc); 453 } 454 455 // Diagnose self-import before attempting a load. 456 // [module.import]/9 457 // A module implementation unit of a module M that is not a module partition 458 // shall not contain a module-import-declaration nominating M. 459 // (for an implementation, the module interface is imported implicitly, 460 // but that's handled in the module decl code). 461 462 if (getLangOpts().CPlusPlusModules && isCurrentModulePurview() && 463 getCurrentModule()->Name == ModuleName) { 464 Diag(ImportLoc, diag::err_module_self_import_cxx20) 465 << ModuleName << !ModuleScopes.back().ModuleInterface; 466 return true; 467 } 468 469 Module *Mod = getModuleLoader().loadModule( 470 ImportLoc, Path, Module::AllVisible, /*IsInclusionDirective=*/false); 471 if (!Mod) 472 return true; 473 474 return ActOnModuleImport(StartLoc, ExportLoc, ImportLoc, Mod, Path); 475 } 476 477 /// Determine whether \p D is lexically within an export-declaration. 478 static const ExportDecl *getEnclosingExportDecl(const Decl *D) { 479 for (auto *DC = D->getLexicalDeclContext(); DC; DC = DC->getLexicalParent()) 480 if (auto *ED = dyn_cast<ExportDecl>(DC)) 481 return ED; 482 return nullptr; 483 } 484 485 DeclResult Sema::ActOnModuleImport(SourceLocation StartLoc, 486 SourceLocation ExportLoc, 487 SourceLocation ImportLoc, Module *Mod, 488 ModuleIdPath Path) { 489 VisibleModules.setVisible(Mod, ImportLoc); 490 491 checkModuleImportContext(*this, Mod, ImportLoc, CurContext); 492 493 // FIXME: we should support importing a submodule within a different submodule 494 // of the same top-level module. Until we do, make it an error rather than 495 // silently ignoring the import. 496 // FIXME: Should we warn on a redundant import of the current module? 497 if (Mod->getTopLevelModuleName() == getLangOpts().CurrentModule && 498 (getLangOpts().isCompilingModule() || !getLangOpts().ModulesTS)) { 499 Diag(ImportLoc, getLangOpts().isCompilingModule() 500 ? diag::err_module_self_import 501 : diag::err_module_import_in_implementation) 502 << Mod->getFullModuleName() << getLangOpts().CurrentModule; 503 } 504 505 SmallVector<SourceLocation, 2> IdentifierLocs; 506 507 if (Path.empty()) { 508 // If this was a header import, pad out with dummy locations. 509 // FIXME: Pass in and use the location of the header-name token in this 510 // case. 511 for (Module *ModCheck = Mod; ModCheck; ModCheck = ModCheck->Parent) 512 IdentifierLocs.push_back(SourceLocation()); 513 } else if (getLangOpts().CPlusPlusModules && !Mod->Parent) { 514 // A single identifier for the whole name. 515 IdentifierLocs.push_back(Path[0].second); 516 } else { 517 Module *ModCheck = Mod; 518 for (unsigned I = 0, N = Path.size(); I != N; ++I) { 519 // If we've run out of module parents, just drop the remaining 520 // identifiers. We need the length to be consistent. 521 if (!ModCheck) 522 break; 523 ModCheck = ModCheck->Parent; 524 525 IdentifierLocs.push_back(Path[I].second); 526 } 527 } 528 529 ImportDecl *Import = ImportDecl::Create(Context, CurContext, StartLoc, 530 Mod, IdentifierLocs); 531 CurContext->addDecl(Import); 532 533 // Sequence initialization of the imported module before that of the current 534 // module, if any. 535 if (!ModuleScopes.empty()) 536 Context.addModuleInitializer(ModuleScopes.back().Module, Import); 537 538 // A module (partition) implementation unit shall not be exported. 539 if (getLangOpts().CPlusPlusModules && ExportLoc.isValid() && 540 Mod->Kind == Module::ModuleKind::ModulePartitionImplementation) { 541 Diag(ExportLoc, diag::err_export_partition_impl) 542 << SourceRange(ExportLoc, Path.back().second); 543 } else if (!ModuleScopes.empty() && 544 (ModuleScopes.back().ModuleInterface || 545 (getLangOpts().CPlusPlusModules && 546 ModuleScopes.back().Module->isGlobalModule()))) { 547 assert((!ModuleScopes.back().Module->isGlobalModule() || 548 Mod->Kind == Module::ModuleKind::ModuleHeaderUnit) && 549 "should only be importing a header unit into the GMF"); 550 // Re-export the module if the imported module is exported. 551 // Note that we don't need to add re-exported module to Imports field 552 // since `Exports` implies the module is imported already. 553 if (ExportLoc.isValid() || getEnclosingExportDecl(Import)) 554 getCurrentModule()->Exports.emplace_back(Mod, false); 555 else 556 getCurrentModule()->Imports.insert(Mod); 557 } else if (ExportLoc.isValid()) { 558 // [module.interface]p1: 559 // An export-declaration shall inhabit a namespace scope and appear in the 560 // purview of a module interface unit. 561 Diag(ExportLoc, diag::err_export_not_in_module_interface) 562 << (!ModuleScopes.empty() && 563 !ModuleScopes.back().ImplicitGlobalModuleFragment); 564 } else if (getLangOpts().isCompilingModule()) { 565 Module *ThisModule = PP.getHeaderSearchInfo().lookupModule( 566 getLangOpts().CurrentModule, ExportLoc, false, false); 567 (void)ThisModule; 568 assert(ThisModule && "was expecting a module if building one"); 569 } 570 571 // In some cases we need to know if an entity was present in a directly- 572 // imported module (as opposed to a transitive import). This avoids 573 // searching both Imports and Exports. 574 DirectModuleImports.insert(Mod); 575 576 return Import; 577 } 578 579 void Sema::ActOnModuleInclude(SourceLocation DirectiveLoc, Module *Mod) { 580 checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext, true); 581 BuildModuleInclude(DirectiveLoc, Mod); 582 } 583 584 void Sema::BuildModuleInclude(SourceLocation DirectiveLoc, Module *Mod) { 585 // Determine whether we're in the #include buffer for a module. The #includes 586 // in that buffer do not qualify as module imports; they're just an 587 // implementation detail of us building the module. 588 // 589 // FIXME: Should we even get ActOnModuleInclude calls for those? 590 bool IsInModuleIncludes = 591 TUKind == TU_Module && 592 getSourceManager().isWrittenInMainFile(DirectiveLoc); 593 594 bool ShouldAddImport = !IsInModuleIncludes; 595 596 // If this module import was due to an inclusion directive, create an 597 // implicit import declaration to capture it in the AST. 598 if (ShouldAddImport) { 599 TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl(); 600 ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU, 601 DirectiveLoc, Mod, 602 DirectiveLoc); 603 if (!ModuleScopes.empty()) 604 Context.addModuleInitializer(ModuleScopes.back().Module, ImportD); 605 TU->addDecl(ImportD); 606 Consumer.HandleImplicitImportDecl(ImportD); 607 } 608 609 getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, DirectiveLoc); 610 VisibleModules.setVisible(Mod, DirectiveLoc); 611 612 if (getLangOpts().isCompilingModule()) { 613 Module *ThisModule = PP.getHeaderSearchInfo().lookupModule( 614 getLangOpts().CurrentModule, DirectiveLoc, false, false); 615 (void)ThisModule; 616 assert(ThisModule && "was expecting a module if building one"); 617 } 618 } 619 620 void Sema::ActOnModuleBegin(SourceLocation DirectiveLoc, Module *Mod) { 621 checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext, true); 622 623 ModuleScopes.push_back({}); 624 ModuleScopes.back().Module = Mod; 625 if (getLangOpts().ModulesLocalVisibility) 626 ModuleScopes.back().OuterVisibleModules = std::move(VisibleModules); 627 628 VisibleModules.setVisible(Mod, DirectiveLoc); 629 630 // The enclosing context is now part of this module. 631 // FIXME: Consider creating a child DeclContext to hold the entities 632 // lexically within the module. 633 if (getLangOpts().trackLocalOwningModule()) { 634 for (auto *DC = CurContext; DC; DC = DC->getLexicalParent()) { 635 cast<Decl>(DC)->setModuleOwnershipKind( 636 getLangOpts().ModulesLocalVisibility 637 ? Decl::ModuleOwnershipKind::VisibleWhenImported 638 : Decl::ModuleOwnershipKind::Visible); 639 cast<Decl>(DC)->setLocalOwningModule(Mod); 640 } 641 } 642 } 643 644 void Sema::ActOnModuleEnd(SourceLocation EomLoc, Module *Mod) { 645 if (getLangOpts().ModulesLocalVisibility) { 646 VisibleModules = std::move(ModuleScopes.back().OuterVisibleModules); 647 // Leaving a module hides namespace names, so our visible namespace cache 648 // is now out of date. 649 VisibleNamespaceCache.clear(); 650 } 651 652 assert(!ModuleScopes.empty() && ModuleScopes.back().Module == Mod && 653 "left the wrong module scope"); 654 ModuleScopes.pop_back(); 655 656 // We got to the end of processing a local module. Create an 657 // ImportDecl as we would for an imported module. 658 FileID File = getSourceManager().getFileID(EomLoc); 659 SourceLocation DirectiveLoc; 660 if (EomLoc == getSourceManager().getLocForEndOfFile(File)) { 661 // We reached the end of a #included module header. Use the #include loc. 662 assert(File != getSourceManager().getMainFileID() && 663 "end of submodule in main source file"); 664 DirectiveLoc = getSourceManager().getIncludeLoc(File); 665 } else { 666 // We reached an EOM pragma. Use the pragma location. 667 DirectiveLoc = EomLoc; 668 } 669 BuildModuleInclude(DirectiveLoc, Mod); 670 671 // Any further declarations are in whatever module we returned to. 672 if (getLangOpts().trackLocalOwningModule()) { 673 // The parser guarantees that this is the same context that we entered 674 // the module within. 675 for (auto *DC = CurContext; DC; DC = DC->getLexicalParent()) { 676 cast<Decl>(DC)->setLocalOwningModule(getCurrentModule()); 677 if (!getCurrentModule()) 678 cast<Decl>(DC)->setModuleOwnershipKind( 679 Decl::ModuleOwnershipKind::Unowned); 680 } 681 } 682 } 683 684 void Sema::createImplicitModuleImportForErrorRecovery(SourceLocation Loc, 685 Module *Mod) { 686 // Bail if we're not allowed to implicitly import a module here. 687 if (isSFINAEContext() || !getLangOpts().ModulesErrorRecovery || 688 VisibleModules.isVisible(Mod)) 689 return; 690 691 // Create the implicit import declaration. 692 TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl(); 693 ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU, 694 Loc, Mod, Loc); 695 TU->addDecl(ImportD); 696 Consumer.HandleImplicitImportDecl(ImportD); 697 698 // Make the module visible. 699 getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, Loc); 700 VisibleModules.setVisible(Mod, Loc); 701 } 702 703 /// We have parsed the start of an export declaration, including the '{' 704 /// (if present). 705 Decl *Sema::ActOnStartExportDecl(Scope *S, SourceLocation ExportLoc, 706 SourceLocation LBraceLoc) { 707 ExportDecl *D = ExportDecl::Create(Context, CurContext, ExportLoc); 708 709 // Set this temporarily so we know the export-declaration was braced. 710 D->setRBraceLoc(LBraceLoc); 711 712 CurContext->addDecl(D); 713 PushDeclContext(S, D); 714 715 // C++2a [module.interface]p1: 716 // An export-declaration shall appear only [...] in the purview of a module 717 // interface unit. An export-declaration shall not appear directly or 718 // indirectly within [...] a private-module-fragment. 719 if (!isCurrentModulePurview()) { 720 Diag(ExportLoc, diag::err_export_not_in_module_interface) << 0; 721 D->setInvalidDecl(); 722 return D; 723 } else if (!ModuleScopes.back().ModuleInterface) { 724 Diag(ExportLoc, diag::err_export_not_in_module_interface) << 1; 725 Diag(ModuleScopes.back().BeginLoc, 726 diag::note_not_module_interface_add_export) 727 << FixItHint::CreateInsertion(ModuleScopes.back().BeginLoc, "export "); 728 D->setInvalidDecl(); 729 return D; 730 } else if (ModuleScopes.back().Module->Kind == 731 Module::PrivateModuleFragment) { 732 Diag(ExportLoc, diag::err_export_in_private_module_fragment); 733 Diag(ModuleScopes.back().BeginLoc, diag::note_private_module_fragment); 734 D->setInvalidDecl(); 735 return D; 736 } 737 738 for (const DeclContext *DC = CurContext; DC; DC = DC->getLexicalParent()) { 739 if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) { 740 // An export-declaration shall not appear directly or indirectly within 741 // an unnamed namespace [...] 742 if (ND->isAnonymousNamespace()) { 743 Diag(ExportLoc, diag::err_export_within_anonymous_namespace); 744 Diag(ND->getLocation(), diag::note_anonymous_namespace); 745 // Don't diagnose internal-linkage declarations in this region. 746 D->setInvalidDecl(); 747 return D; 748 } 749 750 // A declaration is exported if it is [...] a namespace-definition 751 // that contains an exported declaration. 752 // 753 // Defer exporting the namespace until after we leave it, in order to 754 // avoid marking all subsequent declarations in the namespace as exported. 755 if (!DeferredExportedNamespaces.insert(ND).second) 756 break; 757 } 758 } 759 760 // [...] its declaration or declaration-seq shall not contain an 761 // export-declaration. 762 if (auto *ED = getEnclosingExportDecl(D)) { 763 Diag(ExportLoc, diag::err_export_within_export); 764 if (ED->hasBraces()) 765 Diag(ED->getLocation(), diag::note_export); 766 D->setInvalidDecl(); 767 return D; 768 } 769 770 D->setModuleOwnershipKind(Decl::ModuleOwnershipKind::VisibleWhenImported); 771 return D; 772 } 773 774 static bool checkExportedDeclContext(Sema &S, DeclContext *DC, 775 SourceLocation BlockStart); 776 777 namespace { 778 enum class UnnamedDeclKind { 779 Empty, 780 StaticAssert, 781 Asm, 782 UsingDirective, 783 Namespace, 784 Context 785 }; 786 } 787 788 static llvm::Optional<UnnamedDeclKind> getUnnamedDeclKind(Decl *D) { 789 if (isa<EmptyDecl>(D)) 790 return UnnamedDeclKind::Empty; 791 if (isa<StaticAssertDecl>(D)) 792 return UnnamedDeclKind::StaticAssert; 793 if (isa<FileScopeAsmDecl>(D)) 794 return UnnamedDeclKind::Asm; 795 if (isa<UsingDirectiveDecl>(D)) 796 return UnnamedDeclKind::UsingDirective; 797 // Everything else either introduces one or more names or is ill-formed. 798 return llvm::None; 799 } 800 801 unsigned getUnnamedDeclDiag(UnnamedDeclKind UDK, bool InBlock) { 802 switch (UDK) { 803 case UnnamedDeclKind::Empty: 804 case UnnamedDeclKind::StaticAssert: 805 // Allow empty-declarations and static_asserts in an export block as an 806 // extension. 807 return InBlock ? diag::ext_export_no_name_block : diag::err_export_no_name; 808 809 case UnnamedDeclKind::UsingDirective: 810 // Allow exporting using-directives as an extension. 811 return diag::ext_export_using_directive; 812 813 case UnnamedDeclKind::Namespace: 814 // Anonymous namespace with no content. 815 return diag::introduces_no_names; 816 817 case UnnamedDeclKind::Context: 818 // Allow exporting DeclContexts that transitively contain no declarations 819 // as an extension. 820 return diag::ext_export_no_names; 821 822 case UnnamedDeclKind::Asm: 823 return diag::err_export_no_name; 824 } 825 llvm_unreachable("unknown kind"); 826 } 827 828 static void diagExportedUnnamedDecl(Sema &S, UnnamedDeclKind UDK, Decl *D, 829 SourceLocation BlockStart) { 830 S.Diag(D->getLocation(), getUnnamedDeclDiag(UDK, BlockStart.isValid())) 831 << (unsigned)UDK; 832 if (BlockStart.isValid()) 833 S.Diag(BlockStart, diag::note_export); 834 } 835 836 /// Check that it's valid to export \p D. 837 static bool checkExportedDecl(Sema &S, Decl *D, SourceLocation BlockStart) { 838 // C++2a [module.interface]p3: 839 // An exported declaration shall declare at least one name 840 if (auto UDK = getUnnamedDeclKind(D)) 841 diagExportedUnnamedDecl(S, *UDK, D, BlockStart); 842 843 // [...] shall not declare a name with internal linkage. 844 bool HasName = false; 845 if (auto *ND = dyn_cast<NamedDecl>(D)) { 846 // Don't diagnose anonymous union objects; we'll diagnose their members 847 // instead. 848 HasName = (bool)ND->getDeclName(); 849 if (HasName && ND->getFormalLinkage() == InternalLinkage) { 850 S.Diag(ND->getLocation(), diag::err_export_internal) << ND; 851 if (BlockStart.isValid()) 852 S.Diag(BlockStart, diag::note_export); 853 } 854 } 855 856 // C++2a [module.interface]p5: 857 // all entities to which all of the using-declarators ultimately refer 858 // shall have been introduced with a name having external linkage 859 if (auto *USD = dyn_cast<UsingShadowDecl>(D)) { 860 NamedDecl *Target = USD->getUnderlyingDecl(); 861 Linkage Lk = Target->getFormalLinkage(); 862 if (Lk == InternalLinkage || Lk == ModuleLinkage) { 863 S.Diag(USD->getLocation(), diag::err_export_using_internal) 864 << (Lk == InternalLinkage ? 0 : 1) << Target; 865 S.Diag(Target->getLocation(), diag::note_using_decl_target); 866 if (BlockStart.isValid()) 867 S.Diag(BlockStart, diag::note_export); 868 } 869 } 870 871 // Recurse into namespace-scope DeclContexts. (Only namespace-scope 872 // declarations are exported.). 873 if (auto *DC = dyn_cast<DeclContext>(D)) { 874 if (isa<NamespaceDecl>(D) && DC->decls().empty()) { 875 if (!HasName) 876 // We don't allow an empty anonymous namespace (we don't allow decls 877 // in them either, but that's handled in the recursion). 878 diagExportedUnnamedDecl(S, UnnamedDeclKind::Namespace, D, BlockStart); 879 // We allow an empty named namespace decl. 880 } else if (DC->getRedeclContext()->isFileContext() && !isa<EnumDecl>(D)) 881 return checkExportedDeclContext(S, DC, BlockStart); 882 } 883 return false; 884 } 885 886 /// Check that it's valid to export all the declarations in \p DC. 887 static bool checkExportedDeclContext(Sema &S, DeclContext *DC, 888 SourceLocation BlockStart) { 889 bool AllUnnamed = true; 890 for (auto *D : DC->decls()) 891 AllUnnamed &= checkExportedDecl(S, D, BlockStart); 892 return AllUnnamed; 893 } 894 895 /// Complete the definition of an export declaration. 896 Decl *Sema::ActOnFinishExportDecl(Scope *S, Decl *D, SourceLocation RBraceLoc) { 897 auto *ED = cast<ExportDecl>(D); 898 if (RBraceLoc.isValid()) 899 ED->setRBraceLoc(RBraceLoc); 900 901 PopDeclContext(); 902 903 if (!D->isInvalidDecl()) { 904 SourceLocation BlockStart = 905 ED->hasBraces() ? ED->getBeginLoc() : SourceLocation(); 906 for (auto *Child : ED->decls()) { 907 if (checkExportedDecl(*this, Child, BlockStart)) { 908 // If a top-level child is a linkage-spec declaration, it might contain 909 // no declarations (transitively), in which case it's ill-formed. 910 diagExportedUnnamedDecl(*this, UnnamedDeclKind::Context, Child, 911 BlockStart); 912 } 913 if (auto *FD = dyn_cast<FunctionDecl>(Child)) { 914 // [dcl.inline]/7 915 // If an inline function or variable that is attached to a named module 916 // is declared in a definition domain, it shall be defined in that 917 // domain. 918 // So, if the current declaration does not have a definition, we must 919 // check at the end of the TU (or when the PMF starts) to see that we 920 // have a definition at that point. 921 if (FD->isInlineSpecified() && !FD->isDefined()) 922 PendingInlineFuncDecls.insert(FD); 923 } 924 } 925 } 926 927 return D; 928 } 929 930 Module *Sema::PushGlobalModuleFragment(SourceLocation BeginLoc, 931 bool IsImplicit) { 932 // We shouldn't create new global module fragment if there is already 933 // one. 934 if (!GlobalModuleFragment) { 935 ModuleMap &Map = PP.getHeaderSearchInfo().getModuleMap(); 936 GlobalModuleFragment = Map.createGlobalModuleFragmentForModuleUnit( 937 BeginLoc, getCurrentModule()); 938 } 939 940 assert(GlobalModuleFragment && "module creation should not fail"); 941 942 // Enter the scope of the global module. 943 ModuleScopes.push_back({BeginLoc, GlobalModuleFragment, 944 /*ModuleInterface=*/false, 945 /*IsPartition=*/false, 946 /*ImplicitGlobalModuleFragment=*/IsImplicit, 947 /*OuterVisibleModules=*/{}}); 948 VisibleModules.setVisible(GlobalModuleFragment, BeginLoc); 949 950 return GlobalModuleFragment; 951 } 952 953 void Sema::PopGlobalModuleFragment() { 954 assert(!ModuleScopes.empty() && getCurrentModule()->isGlobalModule() && 955 "left the wrong module scope, which is not global module fragment"); 956 ModuleScopes.pop_back(); 957 } 958 959 bool Sema::isModuleUnitOfCurrentTU(const Module *M) const { 960 assert(M); 961 962 Module *CurrentModuleUnit = getCurrentModule(); 963 964 // If we are not in a module currently, M must not be the module unit of 965 // current TU. 966 if (!CurrentModuleUnit) 967 return false; 968 969 return M->isSubModuleOf(CurrentModuleUnit->getTopLevelModule()); 970 } 971