1 //===--- SemaModule.cpp - Semantic Analysis for Modules -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for modules (C++ modules syntax, 10 // Objective-C modules syntax, and Clang header modules). 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/AST/ASTConsumer.h" 15 #include "clang/AST/ASTMutationListener.h" 16 #include "clang/Lex/HeaderSearch.h" 17 #include "clang/Lex/Preprocessor.h" 18 #include "clang/Sema/SemaInternal.h" 19 #include "llvm/ADT/StringExtras.h" 20 21 using namespace clang; 22 using namespace sema; 23 24 static void checkModuleImportContext(Sema &S, Module *M, 25 SourceLocation ImportLoc, DeclContext *DC, 26 bool FromInclude = false) { 27 SourceLocation ExternCLoc; 28 29 if (auto *LSD = dyn_cast<LinkageSpecDecl>(DC)) { 30 switch (LSD->getLanguage()) { 31 case LinkageSpecLanguageIDs::C: 32 if (ExternCLoc.isInvalid()) 33 ExternCLoc = LSD->getBeginLoc(); 34 break; 35 case LinkageSpecLanguageIDs::CXX: 36 break; 37 } 38 DC = LSD->getParent(); 39 } 40 41 while (isa<LinkageSpecDecl>(DC) || isa<ExportDecl>(DC)) 42 DC = DC->getParent(); 43 44 if (!isa<TranslationUnitDecl>(DC)) { 45 S.Diag(ImportLoc, (FromInclude && S.isModuleVisible(M)) 46 ? diag::ext_module_import_not_at_top_level_noop 47 : diag::err_module_import_not_at_top_level_fatal) 48 << M->getFullModuleName() << DC; 49 S.Diag(cast<Decl>(DC)->getBeginLoc(), 50 diag::note_module_import_not_at_top_level) 51 << DC; 52 } else if (!M->IsExternC && ExternCLoc.isValid()) { 53 S.Diag(ImportLoc, diag::ext_module_import_in_extern_c) 54 << M->getFullModuleName(); 55 S.Diag(ExternCLoc, diag::note_extern_c_begins_here); 56 } 57 } 58 59 // We represent the primary and partition names as 'Paths' which are sections 60 // of the hierarchical access path for a clang module. However for C++20 61 // the periods in a name are just another character, and we will need to 62 // flatten them into a string. 63 static std::string stringFromPath(ModuleIdPath Path) { 64 std::string Name; 65 if (Path.empty()) 66 return Name; 67 68 for (auto &Piece : Path) { 69 if (!Name.empty()) 70 Name += "."; 71 Name += Piece.first->getName(); 72 } 73 return Name; 74 } 75 76 /// Helper function for makeTransitiveImportsVisible to decide whether 77 /// the \param Imported module unit is in the same module with the \param 78 /// CurrentModule. 79 /// \param FoundPrimaryModuleInterface is a helper parameter to record the 80 /// primary module interface unit corresponding to the module \param 81 /// CurrentModule. Since currently it is expensive to decide whether two module 82 /// units come from the same module by comparing the module name. 83 static bool 84 isImportingModuleUnitFromSameModule(ASTContext &Ctx, Module *Imported, 85 Module *CurrentModule, 86 Module *&FoundPrimaryModuleInterface) { 87 if (!Imported->isNamedModule()) 88 return false; 89 90 // The a partition unit we're importing must be in the same module of the 91 // current module. 92 if (Imported->isModulePartition()) 93 return true; 94 95 // If we found the primary module interface during the search process, we can 96 // return quickly to avoid expensive string comparison. 97 if (FoundPrimaryModuleInterface) 98 return Imported == FoundPrimaryModuleInterface; 99 100 if (!CurrentModule) 101 return false; 102 103 // Then the imported module must be a primary module interface unit. It 104 // is only allowed to import the primary module interface unit from the same 105 // module in the implementation unit and the implementation partition unit. 106 107 // Since we'll handle implementation unit above. We can only care 108 // about the implementation partition unit here. 109 if (!CurrentModule->isModulePartitionImplementation()) 110 return false; 111 112 if (Ctx.isInSameModule(Imported, CurrentModule)) { 113 assert(!FoundPrimaryModuleInterface || 114 FoundPrimaryModuleInterface == Imported); 115 FoundPrimaryModuleInterface = Imported; 116 return true; 117 } 118 119 return false; 120 } 121 122 /// [module.import]p7: 123 /// Additionally, when a module-import-declaration in a module unit of some 124 /// module M imports another module unit U of M, it also imports all 125 /// translation units imported by non-exported module-import-declarations in 126 /// the module unit purview of U. These rules can in turn lead to the 127 /// importation of yet more translation units. 128 static void 129 makeTransitiveImportsVisible(ASTContext &Ctx, VisibleModuleSet &VisibleModules, 130 Module *Imported, Module *CurrentModule, 131 SourceLocation ImportLoc, 132 bool IsImportingPrimaryModuleInterface = false) { 133 assert(Imported->isNamedModule() && 134 "'makeTransitiveImportsVisible()' is intended for standard C++ named " 135 "modules only."); 136 137 llvm::SmallVector<Module *, 4> Worklist; 138 Worklist.push_back(Imported); 139 140 Module *FoundPrimaryModuleInterface = 141 IsImportingPrimaryModuleInterface ? Imported : nullptr; 142 143 while (!Worklist.empty()) { 144 Module *Importing = Worklist.pop_back_val(); 145 146 if (VisibleModules.isVisible(Importing)) 147 continue; 148 149 // FIXME: The ImportLoc here is not meaningful. It may be problematic if we 150 // use the sourcelocation loaded from the visible modules. 151 VisibleModules.setVisible(Importing, ImportLoc); 152 153 if (isImportingModuleUnitFromSameModule(Ctx, Importing, CurrentModule, 154 FoundPrimaryModuleInterface)) 155 for (Module *TransImported : Importing->Imports) 156 if (!VisibleModules.isVisible(TransImported)) 157 Worklist.push_back(TransImported); 158 } 159 } 160 161 Sema::DeclGroupPtrTy 162 Sema::ActOnGlobalModuleFragmentDecl(SourceLocation ModuleLoc) { 163 // We start in the global module; 164 Module *GlobalModule = 165 PushGlobalModuleFragment(ModuleLoc); 166 167 // All declarations created from now on are owned by the global module. 168 auto *TU = Context.getTranslationUnitDecl(); 169 // [module.global.frag]p2 170 // A global-module-fragment specifies the contents of the global module 171 // fragment for a module unit. The global module fragment can be used to 172 // provide declarations that are attached to the global module and usable 173 // within the module unit. 174 // 175 // So the declations in the global module shouldn't be visible by default. 176 TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ReachableWhenImported); 177 TU->setLocalOwningModule(GlobalModule); 178 179 // FIXME: Consider creating an explicit representation of this declaration. 180 return nullptr; 181 } 182 183 void Sema::HandleStartOfHeaderUnit() { 184 assert(getLangOpts().CPlusPlusModules && 185 "Header units are only valid for C++20 modules"); 186 SourceLocation StartOfTU = 187 SourceMgr.getLocForStartOfFile(SourceMgr.getMainFileID()); 188 189 StringRef HUName = getLangOpts().CurrentModule; 190 if (HUName.empty()) { 191 HUName = 192 SourceMgr.getFileEntryRefForID(SourceMgr.getMainFileID())->getName(); 193 const_cast<LangOptions &>(getLangOpts()).CurrentModule = HUName.str(); 194 } 195 196 // TODO: Make the C++20 header lookup independent. 197 // When the input is pre-processed source, we need a file ref to the original 198 // file for the header map. 199 auto F = SourceMgr.getFileManager().getOptionalFileRef(HUName); 200 // For the sake of error recovery (if someone has moved the original header 201 // after creating the pre-processed output) fall back to obtaining the file 202 // ref for the input file, which must be present. 203 if (!F) 204 F = SourceMgr.getFileEntryRefForID(SourceMgr.getMainFileID()); 205 assert(F && "failed to find the header unit source?"); 206 Module::Header H{HUName.str(), HUName.str(), *F}; 207 auto &Map = PP.getHeaderSearchInfo().getModuleMap(); 208 Module *Mod = Map.createHeaderUnit(StartOfTU, HUName, H); 209 assert(Mod && "module creation should not fail"); 210 ModuleScopes.push_back({}); // No GMF 211 ModuleScopes.back().BeginLoc = StartOfTU; 212 ModuleScopes.back().Module = Mod; 213 VisibleModules.setVisible(Mod, StartOfTU); 214 215 // From now on, we have an owning module for all declarations we see. 216 // All of these are implicitly exported. 217 auto *TU = Context.getTranslationUnitDecl(); 218 TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::Visible); 219 TU->setLocalOwningModule(Mod); 220 } 221 222 /// Tests whether the given identifier is reserved as a module name and 223 /// diagnoses if it is. Returns true if a diagnostic is emitted and false 224 /// otherwise. 225 static bool DiagReservedModuleName(Sema &S, const IdentifierInfo *II, 226 SourceLocation Loc) { 227 enum { 228 Valid = -1, 229 Invalid = 0, 230 Reserved = 1, 231 } Reason = Valid; 232 233 if (II->isStr("module") || II->isStr("import")) 234 Reason = Invalid; 235 else if (II->isReserved(S.getLangOpts()) != 236 ReservedIdentifierStatus::NotReserved) 237 Reason = Reserved; 238 239 // If the identifier is reserved (not invalid) but is in a system header, 240 // we do not diagnose (because we expect system headers to use reserved 241 // identifiers). 242 if (Reason == Reserved && S.getSourceManager().isInSystemHeader(Loc)) 243 Reason = Valid; 244 245 switch (Reason) { 246 case Valid: 247 return false; 248 case Invalid: 249 return S.Diag(Loc, diag::err_invalid_module_name) << II; 250 case Reserved: 251 S.Diag(Loc, diag::warn_reserved_module_name) << II; 252 return false; 253 } 254 llvm_unreachable("fell off a fully covered switch"); 255 } 256 257 Sema::DeclGroupPtrTy 258 Sema::ActOnModuleDecl(SourceLocation StartLoc, SourceLocation ModuleLoc, 259 ModuleDeclKind MDK, ModuleIdPath Path, 260 ModuleIdPath Partition, ModuleImportState &ImportState) { 261 assert(getLangOpts().CPlusPlusModules && 262 "should only have module decl in standard C++ modules"); 263 264 bool IsFirstDecl = ImportState == ModuleImportState::FirstDecl; 265 bool SeenGMF = ImportState == ModuleImportState::GlobalFragment; 266 // If any of the steps here fail, we count that as invalidating C++20 267 // module state; 268 ImportState = ModuleImportState::NotACXX20Module; 269 270 bool IsPartition = !Partition.empty(); 271 if (IsPartition) 272 switch (MDK) { 273 case ModuleDeclKind::Implementation: 274 MDK = ModuleDeclKind::PartitionImplementation; 275 break; 276 case ModuleDeclKind::Interface: 277 MDK = ModuleDeclKind::PartitionInterface; 278 break; 279 default: 280 llvm_unreachable("how did we get a partition type set?"); 281 } 282 283 // A (non-partition) module implementation unit requires that we are not 284 // compiling a module of any kind. A partition implementation emits an 285 // interface (and the AST for the implementation), which will subsequently 286 // be consumed to emit a binary. 287 // A module interface unit requires that we are not compiling a module map. 288 switch (getLangOpts().getCompilingModule()) { 289 case LangOptions::CMK_None: 290 // It's OK to compile a module interface as a normal translation unit. 291 break; 292 293 case LangOptions::CMK_ModuleInterface: 294 if (MDK != ModuleDeclKind::Implementation) 295 break; 296 297 // We were asked to compile a module interface unit but this is a module 298 // implementation unit. 299 Diag(ModuleLoc, diag::err_module_interface_implementation_mismatch) 300 << FixItHint::CreateInsertion(ModuleLoc, "export "); 301 MDK = ModuleDeclKind::Interface; 302 break; 303 304 case LangOptions::CMK_ModuleMap: 305 Diag(ModuleLoc, diag::err_module_decl_in_module_map_module); 306 return nullptr; 307 308 case LangOptions::CMK_HeaderUnit: 309 Diag(ModuleLoc, diag::err_module_decl_in_header_unit); 310 return nullptr; 311 } 312 313 assert(ModuleScopes.size() <= 1 && "expected to be at global module scope"); 314 315 // FIXME: Most of this work should be done by the preprocessor rather than 316 // here, in order to support macro import. 317 318 // Only one module-declaration is permitted per source file. 319 if (isCurrentModulePurview()) { 320 Diag(ModuleLoc, diag::err_module_redeclaration); 321 Diag(VisibleModules.getImportLoc(ModuleScopes.back().Module), 322 diag::note_prev_module_declaration); 323 return nullptr; 324 } 325 326 assert((!getLangOpts().CPlusPlusModules || 327 SeenGMF == (bool)this->TheGlobalModuleFragment) && 328 "mismatched global module state"); 329 330 // In C++20, the module-declaration must be the first declaration if there 331 // is no global module fragment. 332 if (getLangOpts().CPlusPlusModules && !IsFirstDecl && !SeenGMF) { 333 Diag(ModuleLoc, diag::err_module_decl_not_at_start); 334 SourceLocation BeginLoc = 335 ModuleScopes.empty() 336 ? SourceMgr.getLocForStartOfFile(SourceMgr.getMainFileID()) 337 : ModuleScopes.back().BeginLoc; 338 if (BeginLoc.isValid()) { 339 Diag(BeginLoc, diag::note_global_module_introducer_missing) 340 << FixItHint::CreateInsertion(BeginLoc, "module;\n"); 341 } 342 } 343 344 // C++23 [module.unit]p1: ... The identifiers module and import shall not 345 // appear as identifiers in a module-name or module-partition. All 346 // module-names either beginning with an identifier consisting of std 347 // followed by zero or more digits or containing a reserved identifier 348 // ([lex.name]) are reserved and shall not be specified in a 349 // module-declaration; no diagnostic is required. 350 351 // Test the first part of the path to see if it's std[0-9]+ but allow the 352 // name in a system header. 353 StringRef FirstComponentName = Path[0].first->getName(); 354 if (!getSourceManager().isInSystemHeader(Path[0].second) && 355 (FirstComponentName == "std" || 356 (FirstComponentName.starts_with("std") && 357 llvm::all_of(FirstComponentName.drop_front(3), &llvm::isDigit)))) 358 Diag(Path[0].second, diag::warn_reserved_module_name) << Path[0].first; 359 360 // Then test all of the components in the path to see if any of them are 361 // using another kind of reserved or invalid identifier. 362 for (auto Part : Path) { 363 if (DiagReservedModuleName(*this, Part.first, Part.second)) 364 return nullptr; 365 } 366 367 // Flatten the dots in a module name. Unlike Clang's hierarchical module map 368 // modules, the dots here are just another character that can appear in a 369 // module name. 370 std::string ModuleName = stringFromPath(Path); 371 if (IsPartition) { 372 ModuleName += ":"; 373 ModuleName += stringFromPath(Partition); 374 } 375 // If a module name was explicitly specified on the command line, it must be 376 // correct. 377 if (!getLangOpts().CurrentModule.empty() && 378 getLangOpts().CurrentModule != ModuleName) { 379 Diag(Path.front().second, diag::err_current_module_name_mismatch) 380 << SourceRange(Path.front().second, IsPartition 381 ? Partition.back().second 382 : Path.back().second) 383 << getLangOpts().CurrentModule; 384 return nullptr; 385 } 386 const_cast<LangOptions&>(getLangOpts()).CurrentModule = ModuleName; 387 388 auto &Map = PP.getHeaderSearchInfo().getModuleMap(); 389 Module *Mod; // The module we are creating. 390 Module *Interface = nullptr; // The interface for an implementation. 391 switch (MDK) { 392 case ModuleDeclKind::Interface: 393 case ModuleDeclKind::PartitionInterface: { 394 // We can't have parsed or imported a definition of this module or parsed a 395 // module map defining it already. 396 if (auto *M = Map.findModule(ModuleName)) { 397 Diag(Path[0].second, diag::err_module_redefinition) << ModuleName; 398 if (M->DefinitionLoc.isValid()) 399 Diag(M->DefinitionLoc, diag::note_prev_module_definition); 400 else if (OptionalFileEntryRef FE = M->getASTFile()) 401 Diag(M->DefinitionLoc, diag::note_prev_module_definition_from_ast_file) 402 << FE->getName(); 403 Mod = M; 404 break; 405 } 406 407 // Create a Module for the module that we're defining. 408 Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName); 409 if (MDK == ModuleDeclKind::PartitionInterface) 410 Mod->Kind = Module::ModulePartitionInterface; 411 assert(Mod && "module creation should not fail"); 412 break; 413 } 414 415 case ModuleDeclKind::Implementation: { 416 // C++20 A module-declaration that contains neither an export- 417 // keyword nor a module-partition implicitly imports the primary 418 // module interface unit of the module as if by a module-import- 419 // declaration. 420 std::pair<IdentifierInfo *, SourceLocation> ModuleNameLoc( 421 PP.getIdentifierInfo(ModuleName), Path[0].second); 422 423 // The module loader will assume we're trying to import the module that 424 // we're building if `LangOpts.CurrentModule` equals to 'ModuleName'. 425 // Change the value for `LangOpts.CurrentModule` temporarily to make the 426 // module loader work properly. 427 const_cast<LangOptions &>(getLangOpts()).CurrentModule = ""; 428 Interface = getModuleLoader().loadModule(ModuleLoc, {ModuleNameLoc}, 429 Module::AllVisible, 430 /*IsInclusionDirective=*/false); 431 const_cast<LangOptions&>(getLangOpts()).CurrentModule = ModuleName; 432 433 if (!Interface) { 434 Diag(ModuleLoc, diag::err_module_not_defined) << ModuleName; 435 // Create an empty module interface unit for error recovery. 436 Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName); 437 } else { 438 Mod = Map.createModuleForImplementationUnit(ModuleLoc, ModuleName); 439 } 440 } break; 441 442 case ModuleDeclKind::PartitionImplementation: 443 // Create an interface, but note that it is an implementation 444 // unit. 445 Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName); 446 Mod->Kind = Module::ModulePartitionImplementation; 447 break; 448 } 449 450 if (!this->TheGlobalModuleFragment) { 451 ModuleScopes.push_back({}); 452 if (getLangOpts().ModulesLocalVisibility) 453 ModuleScopes.back().OuterVisibleModules = std::move(VisibleModules); 454 } else { 455 // We're done with the global module fragment now. 456 ActOnEndOfTranslationUnitFragment(TUFragmentKind::Global); 457 } 458 459 // Switch from the global module fragment (if any) to the named module. 460 ModuleScopes.back().BeginLoc = StartLoc; 461 ModuleScopes.back().Module = Mod; 462 VisibleModules.setVisible(Mod, ModuleLoc); 463 464 // From now on, we have an owning module for all declarations we see. 465 // In C++20 modules, those declaration would be reachable when imported 466 // unless explicitily exported. 467 // Otherwise, those declarations are module-private unless explicitly 468 // exported. 469 auto *TU = Context.getTranslationUnitDecl(); 470 TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ReachableWhenImported); 471 TU->setLocalOwningModule(Mod); 472 473 // We are in the module purview, but before any other (non import) 474 // statements, so imports are allowed. 475 ImportState = ModuleImportState::ImportAllowed; 476 477 getASTContext().setCurrentNamedModule(Mod); 478 479 if (auto *Listener = getASTMutationListener()) 480 Listener->EnteringModulePurview(); 481 482 // We already potentially made an implicit import (in the case of a module 483 // implementation unit importing its interface). Make this module visible 484 // and return the import decl to be added to the current TU. 485 if (Interface) { 486 487 makeTransitiveImportsVisible(getASTContext(), VisibleModules, Interface, 488 Mod, ModuleLoc, 489 /*IsImportingPrimaryModuleInterface=*/true); 490 491 // Make the import decl for the interface in the impl module. 492 ImportDecl *Import = ImportDecl::Create(Context, CurContext, ModuleLoc, 493 Interface, Path[0].second); 494 CurContext->addDecl(Import); 495 496 // Sequence initialization of the imported module before that of the current 497 // module, if any. 498 Context.addModuleInitializer(ModuleScopes.back().Module, Import); 499 Mod->Imports.insert(Interface); // As if we imported it. 500 // Also save this as a shortcut to checking for decls in the interface 501 ThePrimaryInterface = Interface; 502 // If we made an implicit import of the module interface, then return the 503 // imported module decl. 504 return ConvertDeclToDeclGroup(Import); 505 } 506 507 return nullptr; 508 } 509 510 Sema::DeclGroupPtrTy 511 Sema::ActOnPrivateModuleFragmentDecl(SourceLocation ModuleLoc, 512 SourceLocation PrivateLoc) { 513 // C++20 [basic.link]/2: 514 // A private-module-fragment shall appear only in a primary module 515 // interface unit. 516 switch (ModuleScopes.empty() ? Module::ExplicitGlobalModuleFragment 517 : ModuleScopes.back().Module->Kind) { 518 case Module::ModuleMapModule: 519 case Module::ExplicitGlobalModuleFragment: 520 case Module::ImplicitGlobalModuleFragment: 521 case Module::ModulePartitionImplementation: 522 case Module::ModulePartitionInterface: 523 case Module::ModuleHeaderUnit: 524 Diag(PrivateLoc, diag::err_private_module_fragment_not_module); 525 return nullptr; 526 527 case Module::PrivateModuleFragment: 528 Diag(PrivateLoc, diag::err_private_module_fragment_redefined); 529 Diag(ModuleScopes.back().BeginLoc, diag::note_previous_definition); 530 return nullptr; 531 532 case Module::ModuleImplementationUnit: 533 Diag(PrivateLoc, diag::err_private_module_fragment_not_module_interface); 534 Diag(ModuleScopes.back().BeginLoc, 535 diag::note_not_module_interface_add_export) 536 << FixItHint::CreateInsertion(ModuleScopes.back().BeginLoc, "export "); 537 return nullptr; 538 539 case Module::ModuleInterfaceUnit: 540 break; 541 } 542 543 // FIXME: Check that this translation unit does not import any partitions; 544 // such imports would violate [basic.link]/2's "shall be the only module unit" 545 // restriction. 546 547 // We've finished the public fragment of the translation unit. 548 ActOnEndOfTranslationUnitFragment(TUFragmentKind::Normal); 549 550 auto &Map = PP.getHeaderSearchInfo().getModuleMap(); 551 Module *PrivateModuleFragment = 552 Map.createPrivateModuleFragmentForInterfaceUnit( 553 ModuleScopes.back().Module, PrivateLoc); 554 assert(PrivateModuleFragment && "module creation should not fail"); 555 556 // Enter the scope of the private module fragment. 557 ModuleScopes.push_back({}); 558 ModuleScopes.back().BeginLoc = ModuleLoc; 559 ModuleScopes.back().Module = PrivateModuleFragment; 560 VisibleModules.setVisible(PrivateModuleFragment, ModuleLoc); 561 562 // All declarations created from now on are scoped to the private module 563 // fragment (and are neither visible nor reachable in importers of the module 564 // interface). 565 auto *TU = Context.getTranslationUnitDecl(); 566 TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ModulePrivate); 567 TU->setLocalOwningModule(PrivateModuleFragment); 568 569 // FIXME: Consider creating an explicit representation of this declaration. 570 return nullptr; 571 } 572 573 DeclResult Sema::ActOnModuleImport(SourceLocation StartLoc, 574 SourceLocation ExportLoc, 575 SourceLocation ImportLoc, ModuleIdPath Path, 576 bool IsPartition) { 577 assert((!IsPartition || getLangOpts().CPlusPlusModules) && 578 "partition seen in non-C++20 code?"); 579 580 // For a C++20 module name, flatten into a single identifier with the source 581 // location of the first component. 582 std::pair<IdentifierInfo *, SourceLocation> ModuleNameLoc; 583 584 std::string ModuleName; 585 if (IsPartition) { 586 // We already checked that we are in a module purview in the parser. 587 assert(!ModuleScopes.empty() && "in a module purview, but no module?"); 588 Module *NamedMod = ModuleScopes.back().Module; 589 // If we are importing into a partition, find the owning named module, 590 // otherwise, the name of the importing named module. 591 ModuleName = NamedMod->getPrimaryModuleInterfaceName().str(); 592 ModuleName += ":"; 593 ModuleName += stringFromPath(Path); 594 ModuleNameLoc = {PP.getIdentifierInfo(ModuleName), Path[0].second}; 595 Path = ModuleIdPath(ModuleNameLoc); 596 } else if (getLangOpts().CPlusPlusModules) { 597 ModuleName = stringFromPath(Path); 598 ModuleNameLoc = {PP.getIdentifierInfo(ModuleName), Path[0].second}; 599 Path = ModuleIdPath(ModuleNameLoc); 600 } 601 602 // Diagnose self-import before attempting a load. 603 // [module.import]/9 604 // A module implementation unit of a module M that is not a module partition 605 // shall not contain a module-import-declaration nominating M. 606 // (for an implementation, the module interface is imported implicitly, 607 // but that's handled in the module decl code). 608 609 if (getLangOpts().CPlusPlusModules && isCurrentModulePurview() && 610 getCurrentModule()->Name == ModuleName) { 611 Diag(ImportLoc, diag::err_module_self_import_cxx20) 612 << ModuleName << currentModuleIsImplementation(); 613 return true; 614 } 615 616 Module *Mod = getModuleLoader().loadModule( 617 ImportLoc, Path, Module::AllVisible, /*IsInclusionDirective=*/false); 618 if (!Mod) 619 return true; 620 621 if (!Mod->isInterfaceOrPartition() && !ModuleName.empty() && 622 !getLangOpts().ObjC) { 623 Diag(ImportLoc, diag::err_module_import_non_interface_nor_parition) 624 << ModuleName; 625 return true; 626 } 627 628 return ActOnModuleImport(StartLoc, ExportLoc, ImportLoc, Mod, Path); 629 } 630 631 /// Determine whether \p D is lexically within an export-declaration. 632 static const ExportDecl *getEnclosingExportDecl(const Decl *D) { 633 for (auto *DC = D->getLexicalDeclContext(); DC; DC = DC->getLexicalParent()) 634 if (auto *ED = dyn_cast<ExportDecl>(DC)) 635 return ED; 636 return nullptr; 637 } 638 639 DeclResult Sema::ActOnModuleImport(SourceLocation StartLoc, 640 SourceLocation ExportLoc, 641 SourceLocation ImportLoc, Module *Mod, 642 ModuleIdPath Path) { 643 if (Mod->isHeaderUnit()) 644 Diag(ImportLoc, diag::warn_experimental_header_unit); 645 646 if (Mod->isNamedModule()) 647 makeTransitiveImportsVisible(getASTContext(), VisibleModules, Mod, 648 getCurrentModule(), ImportLoc); 649 else 650 VisibleModules.setVisible(Mod, ImportLoc); 651 652 assert((!Mod->isModulePartitionImplementation() || getCurrentModule()) && 653 "We can only import a partition unit in a named module."); 654 if (Mod->isModulePartitionImplementation() && 655 getCurrentModule()->isModuleInterfaceUnit()) 656 Diag(ImportLoc, 657 diag::warn_import_implementation_partition_unit_in_interface_unit) 658 << Mod->Name; 659 660 checkModuleImportContext(*this, Mod, ImportLoc, CurContext); 661 662 // FIXME: we should support importing a submodule within a different submodule 663 // of the same top-level module. Until we do, make it an error rather than 664 // silently ignoring the import. 665 // FIXME: Should we warn on a redundant import of the current module? 666 if (Mod->isForBuilding(getLangOpts())) { 667 Diag(ImportLoc, getLangOpts().isCompilingModule() 668 ? diag::err_module_self_import 669 : diag::err_module_import_in_implementation) 670 << Mod->getFullModuleName() << getLangOpts().CurrentModule; 671 } 672 673 SmallVector<SourceLocation, 2> IdentifierLocs; 674 675 if (Path.empty()) { 676 // If this was a header import, pad out with dummy locations. 677 // FIXME: Pass in and use the location of the header-name token in this 678 // case. 679 for (Module *ModCheck = Mod; ModCheck; ModCheck = ModCheck->Parent) 680 IdentifierLocs.push_back(SourceLocation()); 681 } else if (getLangOpts().CPlusPlusModules && !Mod->Parent) { 682 // A single identifier for the whole name. 683 IdentifierLocs.push_back(Path[0].second); 684 } else { 685 Module *ModCheck = Mod; 686 for (unsigned I = 0, N = Path.size(); I != N; ++I) { 687 // If we've run out of module parents, just drop the remaining 688 // identifiers. We need the length to be consistent. 689 if (!ModCheck) 690 break; 691 ModCheck = ModCheck->Parent; 692 693 IdentifierLocs.push_back(Path[I].second); 694 } 695 } 696 697 ImportDecl *Import = ImportDecl::Create(Context, CurContext, StartLoc, 698 Mod, IdentifierLocs); 699 CurContext->addDecl(Import); 700 701 // Sequence initialization of the imported module before that of the current 702 // module, if any. 703 if (!ModuleScopes.empty()) 704 Context.addModuleInitializer(ModuleScopes.back().Module, Import); 705 706 // A module (partition) implementation unit shall not be exported. 707 if (getLangOpts().CPlusPlusModules && ExportLoc.isValid() && 708 Mod->Kind == Module::ModuleKind::ModulePartitionImplementation) { 709 Diag(ExportLoc, diag::err_export_partition_impl) 710 << SourceRange(ExportLoc, Path.back().second); 711 } else if (!ModuleScopes.empty() && !currentModuleIsImplementation()) { 712 // Re-export the module if the imported module is exported. 713 // Note that we don't need to add re-exported module to Imports field 714 // since `Exports` implies the module is imported already. 715 if (ExportLoc.isValid() || getEnclosingExportDecl(Import)) 716 getCurrentModule()->Exports.emplace_back(Mod, false); 717 else 718 getCurrentModule()->Imports.insert(Mod); 719 } else if (ExportLoc.isValid()) { 720 // [module.interface]p1: 721 // An export-declaration shall inhabit a namespace scope and appear in the 722 // purview of a module interface unit. 723 Diag(ExportLoc, diag::err_export_not_in_module_interface); 724 } 725 726 return Import; 727 } 728 729 void Sema::ActOnAnnotModuleInclude(SourceLocation DirectiveLoc, Module *Mod) { 730 checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext, true); 731 BuildModuleInclude(DirectiveLoc, Mod); 732 } 733 734 void Sema::BuildModuleInclude(SourceLocation DirectiveLoc, Module *Mod) { 735 // Determine whether we're in the #include buffer for a module. The #includes 736 // in that buffer do not qualify as module imports; they're just an 737 // implementation detail of us building the module. 738 // 739 // FIXME: Should we even get ActOnAnnotModuleInclude calls for those? 740 bool IsInModuleIncludes = 741 TUKind == TU_ClangModule && 742 getSourceManager().isWrittenInMainFile(DirectiveLoc); 743 744 // If we are really importing a module (not just checking layering) due to an 745 // #include in the main file, synthesize an ImportDecl. 746 if (getLangOpts().Modules && !IsInModuleIncludes) { 747 TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl(); 748 ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU, 749 DirectiveLoc, Mod, 750 DirectiveLoc); 751 if (!ModuleScopes.empty()) 752 Context.addModuleInitializer(ModuleScopes.back().Module, ImportD); 753 TU->addDecl(ImportD); 754 Consumer.HandleImplicitImportDecl(ImportD); 755 } 756 757 getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, DirectiveLoc); 758 VisibleModules.setVisible(Mod, DirectiveLoc); 759 760 if (getLangOpts().isCompilingModule()) { 761 Module *ThisModule = PP.getHeaderSearchInfo().lookupModule( 762 getLangOpts().CurrentModule, DirectiveLoc, false, false); 763 (void)ThisModule; 764 assert(ThisModule && "was expecting a module if building one"); 765 } 766 } 767 768 void Sema::ActOnAnnotModuleBegin(SourceLocation DirectiveLoc, Module *Mod) { 769 checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext, true); 770 771 ModuleScopes.push_back({}); 772 ModuleScopes.back().Module = Mod; 773 if (getLangOpts().ModulesLocalVisibility) 774 ModuleScopes.back().OuterVisibleModules = std::move(VisibleModules); 775 776 VisibleModules.setVisible(Mod, DirectiveLoc); 777 778 // The enclosing context is now part of this module. 779 // FIXME: Consider creating a child DeclContext to hold the entities 780 // lexically within the module. 781 if (getLangOpts().trackLocalOwningModule()) { 782 for (auto *DC = CurContext; DC; DC = DC->getLexicalParent()) { 783 cast<Decl>(DC)->setModuleOwnershipKind( 784 getLangOpts().ModulesLocalVisibility 785 ? Decl::ModuleOwnershipKind::VisibleWhenImported 786 : Decl::ModuleOwnershipKind::Visible); 787 cast<Decl>(DC)->setLocalOwningModule(Mod); 788 } 789 } 790 } 791 792 void Sema::ActOnAnnotModuleEnd(SourceLocation EomLoc, Module *Mod) { 793 if (getLangOpts().ModulesLocalVisibility) { 794 VisibleModules = std::move(ModuleScopes.back().OuterVisibleModules); 795 // Leaving a module hides namespace names, so our visible namespace cache 796 // is now out of date. 797 VisibleNamespaceCache.clear(); 798 } 799 800 assert(!ModuleScopes.empty() && ModuleScopes.back().Module == Mod && 801 "left the wrong module scope"); 802 ModuleScopes.pop_back(); 803 804 // We got to the end of processing a local module. Create an 805 // ImportDecl as we would for an imported module. 806 FileID File = getSourceManager().getFileID(EomLoc); 807 SourceLocation DirectiveLoc; 808 if (EomLoc == getSourceManager().getLocForEndOfFile(File)) { 809 // We reached the end of a #included module header. Use the #include loc. 810 assert(File != getSourceManager().getMainFileID() && 811 "end of submodule in main source file"); 812 DirectiveLoc = getSourceManager().getIncludeLoc(File); 813 } else { 814 // We reached an EOM pragma. Use the pragma location. 815 DirectiveLoc = EomLoc; 816 } 817 BuildModuleInclude(DirectiveLoc, Mod); 818 819 // Any further declarations are in whatever module we returned to. 820 if (getLangOpts().trackLocalOwningModule()) { 821 // The parser guarantees that this is the same context that we entered 822 // the module within. 823 for (auto *DC = CurContext; DC; DC = DC->getLexicalParent()) { 824 cast<Decl>(DC)->setLocalOwningModule(getCurrentModule()); 825 if (!getCurrentModule()) 826 cast<Decl>(DC)->setModuleOwnershipKind( 827 Decl::ModuleOwnershipKind::Unowned); 828 } 829 } 830 } 831 832 void Sema::createImplicitModuleImportForErrorRecovery(SourceLocation Loc, 833 Module *Mod) { 834 // Bail if we're not allowed to implicitly import a module here. 835 if (isSFINAEContext() || !getLangOpts().ModulesErrorRecovery || 836 VisibleModules.isVisible(Mod)) 837 return; 838 839 // Create the implicit import declaration. 840 TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl(); 841 ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU, 842 Loc, Mod, Loc); 843 TU->addDecl(ImportD); 844 Consumer.HandleImplicitImportDecl(ImportD); 845 846 // Make the module visible. 847 getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, Loc); 848 VisibleModules.setVisible(Mod, Loc); 849 } 850 851 Decl *Sema::ActOnStartExportDecl(Scope *S, SourceLocation ExportLoc, 852 SourceLocation LBraceLoc) { 853 ExportDecl *D = ExportDecl::Create(Context, CurContext, ExportLoc); 854 855 // Set this temporarily so we know the export-declaration was braced. 856 D->setRBraceLoc(LBraceLoc); 857 858 CurContext->addDecl(D); 859 PushDeclContext(S, D); 860 861 // C++2a [module.interface]p1: 862 // An export-declaration shall appear only [...] in the purview of a module 863 // interface unit. An export-declaration shall not appear directly or 864 // indirectly within [...] a private-module-fragment. 865 if (!getLangOpts().HLSL) { 866 if (!isCurrentModulePurview()) { 867 Diag(ExportLoc, diag::err_export_not_in_module_interface) << 0; 868 D->setInvalidDecl(); 869 return D; 870 } else if (currentModuleIsImplementation()) { 871 Diag(ExportLoc, diag::err_export_not_in_module_interface) << 1; 872 Diag(ModuleScopes.back().BeginLoc, 873 diag::note_not_module_interface_add_export) 874 << FixItHint::CreateInsertion(ModuleScopes.back().BeginLoc, "export "); 875 D->setInvalidDecl(); 876 return D; 877 } else if (ModuleScopes.back().Module->Kind == 878 Module::PrivateModuleFragment) { 879 Diag(ExportLoc, diag::err_export_in_private_module_fragment); 880 Diag(ModuleScopes.back().BeginLoc, diag::note_private_module_fragment); 881 D->setInvalidDecl(); 882 return D; 883 } 884 } 885 886 for (const DeclContext *DC = CurContext; DC; DC = DC->getLexicalParent()) { 887 if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) { 888 // An export-declaration shall not appear directly or indirectly within 889 // an unnamed namespace [...] 890 if (ND->isAnonymousNamespace()) { 891 Diag(ExportLoc, diag::err_export_within_anonymous_namespace); 892 Diag(ND->getLocation(), diag::note_anonymous_namespace); 893 // Don't diagnose internal-linkage declarations in this region. 894 D->setInvalidDecl(); 895 return D; 896 } 897 898 // A declaration is exported if it is [...] a namespace-definition 899 // that contains an exported declaration. 900 // 901 // Defer exporting the namespace until after we leave it, in order to 902 // avoid marking all subsequent declarations in the namespace as exported. 903 if (!getLangOpts().HLSL && !DeferredExportedNamespaces.insert(ND).second) 904 break; 905 } 906 } 907 908 // [...] its declaration or declaration-seq shall not contain an 909 // export-declaration. 910 if (auto *ED = getEnclosingExportDecl(D)) { 911 Diag(ExportLoc, diag::err_export_within_export); 912 if (ED->hasBraces()) 913 Diag(ED->getLocation(), diag::note_export); 914 D->setInvalidDecl(); 915 return D; 916 } 917 918 if (!getLangOpts().HLSL) 919 D->setModuleOwnershipKind(Decl::ModuleOwnershipKind::VisibleWhenImported); 920 921 return D; 922 } 923 924 static bool checkExportedDecl(Sema &, Decl *, SourceLocation); 925 926 /// Check that it's valid to export all the declarations in \p DC. 927 static bool checkExportedDeclContext(Sema &S, DeclContext *DC, 928 SourceLocation BlockStart) { 929 bool AllUnnamed = true; 930 for (auto *D : DC->decls()) 931 AllUnnamed &= checkExportedDecl(S, D, BlockStart); 932 return AllUnnamed; 933 } 934 935 /// Check that it's valid to export \p D. 936 static bool checkExportedDecl(Sema &S, Decl *D, SourceLocation BlockStart) { 937 938 // HLSL: export declaration is valid only on functions 939 if (S.getLangOpts().HLSL) { 940 // Export-within-export was already diagnosed in ActOnStartExportDecl 941 if (!dyn_cast<FunctionDecl>(D) && !dyn_cast<ExportDecl>(D)) { 942 S.Diag(D->getBeginLoc(), diag::err_hlsl_export_not_on_function); 943 D->setInvalidDecl(); 944 return false; 945 } 946 } 947 948 // C++20 [module.interface]p3: 949 // [...] it shall not declare a name with internal linkage. 950 bool HasName = false; 951 if (auto *ND = dyn_cast<NamedDecl>(D)) { 952 // Don't diagnose anonymous union objects; we'll diagnose their members 953 // instead. 954 HasName = (bool)ND->getDeclName(); 955 if (HasName && ND->getFormalLinkage() == Linkage::Internal) { 956 S.Diag(ND->getLocation(), diag::err_export_internal) << ND; 957 if (BlockStart.isValid()) 958 S.Diag(BlockStart, diag::note_export); 959 return false; 960 } 961 } 962 963 // C++2a [module.interface]p5: 964 // all entities to which all of the using-declarators ultimately refer 965 // shall have been introduced with a name having external linkage 966 if (auto *USD = dyn_cast<UsingShadowDecl>(D)) { 967 NamedDecl *Target = USD->getUnderlyingDecl(); 968 Linkage Lk = Target->getFormalLinkage(); 969 if (Lk == Linkage::Internal || Lk == Linkage::Module) { 970 S.Diag(USD->getLocation(), diag::err_export_using_internal) 971 << (Lk == Linkage::Internal ? 0 : 1) << Target; 972 S.Diag(Target->getLocation(), diag::note_using_decl_target); 973 if (BlockStart.isValid()) 974 S.Diag(BlockStart, diag::note_export); 975 return false; 976 } 977 } 978 979 // Recurse into namespace-scope DeclContexts. (Only namespace-scope 980 // declarations are exported). 981 if (auto *DC = dyn_cast<DeclContext>(D)) { 982 if (!isa<NamespaceDecl>(D)) 983 return true; 984 985 if (auto *ND = dyn_cast<NamedDecl>(D)) { 986 if (!ND->getDeclName()) { 987 S.Diag(ND->getLocation(), diag::err_export_anon_ns_internal); 988 if (BlockStart.isValid()) 989 S.Diag(BlockStart, diag::note_export); 990 return false; 991 } else if (!DC->decls().empty() && 992 DC->getRedeclContext()->isFileContext()) { 993 return checkExportedDeclContext(S, DC, BlockStart); 994 } 995 } 996 } 997 return true; 998 } 999 1000 Decl *Sema::ActOnFinishExportDecl(Scope *S, Decl *D, SourceLocation RBraceLoc) { 1001 auto *ED = cast<ExportDecl>(D); 1002 if (RBraceLoc.isValid()) 1003 ED->setRBraceLoc(RBraceLoc); 1004 1005 PopDeclContext(); 1006 1007 if (!D->isInvalidDecl()) { 1008 SourceLocation BlockStart = 1009 ED->hasBraces() ? ED->getBeginLoc() : SourceLocation(); 1010 for (auto *Child : ED->decls()) { 1011 checkExportedDecl(*this, Child, BlockStart); 1012 if (auto *FD = dyn_cast<FunctionDecl>(Child)) { 1013 // [dcl.inline]/7 1014 // If an inline function or variable that is attached to a named module 1015 // is declared in a definition domain, it shall be defined in that 1016 // domain. 1017 // So, if the current declaration does not have a definition, we must 1018 // check at the end of the TU (or when the PMF starts) to see that we 1019 // have a definition at that point. 1020 if (FD->isInlineSpecified() && !FD->isDefined()) 1021 PendingInlineFuncDecls.insert(FD); 1022 } 1023 } 1024 } 1025 1026 // Anything exported from a module should never be considered unused. 1027 for (auto *Exported : ED->decls()) 1028 Exported->markUsed(getASTContext()); 1029 1030 return D; 1031 } 1032 1033 Module *Sema::PushGlobalModuleFragment(SourceLocation BeginLoc) { 1034 // We shouldn't create new global module fragment if there is already 1035 // one. 1036 if (!TheGlobalModuleFragment) { 1037 ModuleMap &Map = PP.getHeaderSearchInfo().getModuleMap(); 1038 TheGlobalModuleFragment = Map.createGlobalModuleFragmentForModuleUnit( 1039 BeginLoc, getCurrentModule()); 1040 } 1041 1042 assert(TheGlobalModuleFragment && "module creation should not fail"); 1043 1044 // Enter the scope of the global module. 1045 ModuleScopes.push_back({BeginLoc, TheGlobalModuleFragment, 1046 /*OuterVisibleModules=*/{}}); 1047 VisibleModules.setVisible(TheGlobalModuleFragment, BeginLoc); 1048 1049 return TheGlobalModuleFragment; 1050 } 1051 1052 void Sema::PopGlobalModuleFragment() { 1053 assert(!ModuleScopes.empty() && 1054 getCurrentModule()->isExplicitGlobalModule() && 1055 "left the wrong module scope, which is not global module fragment"); 1056 ModuleScopes.pop_back(); 1057 } 1058 1059 Module *Sema::PushImplicitGlobalModuleFragment(SourceLocation BeginLoc) { 1060 if (!TheImplicitGlobalModuleFragment) { 1061 ModuleMap &Map = PP.getHeaderSearchInfo().getModuleMap(); 1062 TheImplicitGlobalModuleFragment = 1063 Map.createImplicitGlobalModuleFragmentForModuleUnit(BeginLoc, 1064 getCurrentModule()); 1065 } 1066 assert(TheImplicitGlobalModuleFragment && "module creation should not fail"); 1067 1068 // Enter the scope of the global module. 1069 ModuleScopes.push_back({BeginLoc, TheImplicitGlobalModuleFragment, 1070 /*OuterVisibleModules=*/{}}); 1071 VisibleModules.setVisible(TheImplicitGlobalModuleFragment, BeginLoc); 1072 return TheImplicitGlobalModuleFragment; 1073 } 1074 1075 void Sema::PopImplicitGlobalModuleFragment() { 1076 assert(!ModuleScopes.empty() && 1077 getCurrentModule()->isImplicitGlobalModule() && 1078 "left the wrong module scope, which is not global module fragment"); 1079 ModuleScopes.pop_back(); 1080 } 1081 1082 bool Sema::isCurrentModulePurview() const { 1083 if (!getCurrentModule()) 1084 return false; 1085 1086 /// Does this Module scope describe part of the purview of a standard named 1087 /// C++ module? 1088 switch (getCurrentModule()->Kind) { 1089 case Module::ModuleInterfaceUnit: 1090 case Module::ModuleImplementationUnit: 1091 case Module::ModulePartitionInterface: 1092 case Module::ModulePartitionImplementation: 1093 case Module::PrivateModuleFragment: 1094 case Module::ImplicitGlobalModuleFragment: 1095 return true; 1096 default: 1097 return false; 1098 } 1099 } 1100