1 //===--- SemaModule.cpp - Semantic Analysis for Modules -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for modules (C++ modules syntax, 10 // Objective-C modules syntax, and Clang header modules). 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/AST/ASTConsumer.h" 15 #include "clang/Lex/HeaderSearch.h" 16 #include "clang/Lex/Preprocessor.h" 17 #include "clang/Sema/SemaInternal.h" 18 #include <optional> 19 20 using namespace clang; 21 using namespace sema; 22 23 static void checkModuleImportContext(Sema &S, Module *M, 24 SourceLocation ImportLoc, DeclContext *DC, 25 bool FromInclude = false) { 26 SourceLocation ExternCLoc; 27 28 if (auto *LSD = dyn_cast<LinkageSpecDecl>(DC)) { 29 switch (LSD->getLanguage()) { 30 case LinkageSpecDecl::lang_c: 31 if (ExternCLoc.isInvalid()) 32 ExternCLoc = LSD->getBeginLoc(); 33 break; 34 case LinkageSpecDecl::lang_cxx: 35 break; 36 } 37 DC = LSD->getParent(); 38 } 39 40 while (isa<LinkageSpecDecl>(DC) || isa<ExportDecl>(DC)) 41 DC = DC->getParent(); 42 43 if (!isa<TranslationUnitDecl>(DC)) { 44 S.Diag(ImportLoc, (FromInclude && S.isModuleVisible(M)) 45 ? diag::ext_module_import_not_at_top_level_noop 46 : diag::err_module_import_not_at_top_level_fatal) 47 << M->getFullModuleName() << DC; 48 S.Diag(cast<Decl>(DC)->getBeginLoc(), 49 diag::note_module_import_not_at_top_level) 50 << DC; 51 } else if (!M->IsExternC && ExternCLoc.isValid()) { 52 S.Diag(ImportLoc, diag::ext_module_import_in_extern_c) 53 << M->getFullModuleName(); 54 S.Diag(ExternCLoc, diag::note_extern_c_begins_here); 55 } 56 } 57 58 // We represent the primary and partition names as 'Paths' which are sections 59 // of the hierarchical access path for a clang module. However for C++20 60 // the periods in a name are just another character, and we will need to 61 // flatten them into a string. 62 static std::string stringFromPath(ModuleIdPath Path) { 63 std::string Name; 64 if (Path.empty()) 65 return Name; 66 67 for (auto &Piece : Path) { 68 if (!Name.empty()) 69 Name += "."; 70 Name += Piece.first->getName(); 71 } 72 return Name; 73 } 74 75 Sema::DeclGroupPtrTy 76 Sema::ActOnGlobalModuleFragmentDecl(SourceLocation ModuleLoc) { 77 // We start in the global module; 78 Module *GlobalModule = 79 PushGlobalModuleFragment(ModuleLoc); 80 81 // All declarations created from now on are owned by the global module. 82 auto *TU = Context.getTranslationUnitDecl(); 83 // [module.global.frag]p2 84 // A global-module-fragment specifies the contents of the global module 85 // fragment for a module unit. The global module fragment can be used to 86 // provide declarations that are attached to the global module and usable 87 // within the module unit. 88 // 89 // So the declations in the global module shouldn't be visible by default. 90 TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ReachableWhenImported); 91 TU->setLocalOwningModule(GlobalModule); 92 93 // FIXME: Consider creating an explicit representation of this declaration. 94 return nullptr; 95 } 96 97 void Sema::HandleStartOfHeaderUnit() { 98 assert(getLangOpts().CPlusPlusModules && 99 "Header units are only valid for C++20 modules"); 100 SourceLocation StartOfTU = 101 SourceMgr.getLocForStartOfFile(SourceMgr.getMainFileID()); 102 103 StringRef HUName = getLangOpts().CurrentModule; 104 if (HUName.empty()) { 105 HUName = SourceMgr.getFileEntryForID(SourceMgr.getMainFileID())->getName(); 106 const_cast<LangOptions &>(getLangOpts()).CurrentModule = HUName.str(); 107 } 108 109 // TODO: Make the C++20 header lookup independent. 110 // When the input is pre-processed source, we need a file ref to the original 111 // file for the header map. 112 auto F = SourceMgr.getFileManager().getOptionalFileRef(HUName); 113 // For the sake of error recovery (if someone has moved the original header 114 // after creating the pre-processed output) fall back to obtaining the file 115 // ref for the input file, which must be present. 116 if (!F) 117 F = SourceMgr.getFileEntryRefForID(SourceMgr.getMainFileID()); 118 assert(F && "failed to find the header unit source?"); 119 Module::Header H{HUName.str(), HUName.str(), *F}; 120 auto &Map = PP.getHeaderSearchInfo().getModuleMap(); 121 Module *Mod = Map.createHeaderUnit(StartOfTU, HUName, H); 122 assert(Mod && "module creation should not fail"); 123 ModuleScopes.push_back({}); // No GMF 124 ModuleScopes.back().BeginLoc = StartOfTU; 125 ModuleScopes.back().Module = Mod; 126 ModuleScopes.back().ModuleInterface = true; 127 VisibleModules.setVisible(Mod, StartOfTU); 128 129 // From now on, we have an owning module for all declarations we see. 130 // All of these are implicitly exported. 131 auto *TU = Context.getTranslationUnitDecl(); 132 TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::Visible); 133 TU->setLocalOwningModule(Mod); 134 } 135 136 /// Tests whether the given identifier is reserved as a module name and 137 /// diagnoses if it is. Returns true if a diagnostic is emitted and false 138 /// otherwise. 139 static bool DiagReservedModuleName(Sema &S, const IdentifierInfo *II, 140 SourceLocation Loc) { 141 enum { 142 Valid = -1, 143 Invalid = 0, 144 Reserved = 1, 145 } Reason = Valid; 146 147 if (II->isStr("module") || II->isStr("import")) 148 Reason = Invalid; 149 else if (II->isReserved(S.getLangOpts()) != 150 ReservedIdentifierStatus::NotReserved) 151 Reason = Reserved; 152 153 // If the identifier is reserved (not invalid) but is in a system header, 154 // we do not diagnose (because we expect system headers to use reserved 155 // identifiers). 156 if (Reason == Reserved && S.getSourceManager().isInSystemHeader(Loc)) 157 Reason = Valid; 158 159 switch (Reason) { 160 case Valid: 161 return false; 162 case Invalid: 163 return S.Diag(Loc, diag::err_invalid_module_name) << II; 164 case Reserved: 165 S.Diag(Loc, diag::warn_reserved_module_name) << II; 166 return false; 167 } 168 llvm_unreachable("fell off a fully covered switch"); 169 } 170 171 Sema::DeclGroupPtrTy 172 Sema::ActOnModuleDecl(SourceLocation StartLoc, SourceLocation ModuleLoc, 173 ModuleDeclKind MDK, ModuleIdPath Path, 174 ModuleIdPath Partition, ModuleImportState &ImportState) { 175 assert(getLangOpts().CPlusPlusModules && 176 "should only have module decl in standard C++ modules"); 177 178 bool IsFirstDecl = ImportState == ModuleImportState::FirstDecl; 179 bool SeenGMF = ImportState == ModuleImportState::GlobalFragment; 180 // If any of the steps here fail, we count that as invalidating C++20 181 // module state; 182 ImportState = ModuleImportState::NotACXX20Module; 183 184 bool IsPartition = !Partition.empty(); 185 if (IsPartition) 186 switch (MDK) { 187 case ModuleDeclKind::Implementation: 188 MDK = ModuleDeclKind::PartitionImplementation; 189 break; 190 case ModuleDeclKind::Interface: 191 MDK = ModuleDeclKind::PartitionInterface; 192 break; 193 default: 194 llvm_unreachable("how did we get a partition type set?"); 195 } 196 197 // A (non-partition) module implementation unit requires that we are not 198 // compiling a module of any kind. A partition implementation emits an 199 // interface (and the AST for the implementation), which will subsequently 200 // be consumed to emit a binary. 201 // A module interface unit requires that we are not compiling a module map. 202 switch (getLangOpts().getCompilingModule()) { 203 case LangOptions::CMK_None: 204 // It's OK to compile a module interface as a normal translation unit. 205 break; 206 207 case LangOptions::CMK_ModuleInterface: 208 if (MDK != ModuleDeclKind::Implementation) 209 break; 210 211 // We were asked to compile a module interface unit but this is a module 212 // implementation unit. 213 Diag(ModuleLoc, diag::err_module_interface_implementation_mismatch) 214 << FixItHint::CreateInsertion(ModuleLoc, "export "); 215 MDK = ModuleDeclKind::Interface; 216 break; 217 218 case LangOptions::CMK_ModuleMap: 219 Diag(ModuleLoc, diag::err_module_decl_in_module_map_module); 220 return nullptr; 221 222 case LangOptions::CMK_HeaderUnit: 223 Diag(ModuleLoc, diag::err_module_decl_in_header_unit); 224 return nullptr; 225 } 226 227 assert(ModuleScopes.size() <= 1 && "expected to be at global module scope"); 228 229 // FIXME: Most of this work should be done by the preprocessor rather than 230 // here, in order to support macro import. 231 232 // Only one module-declaration is permitted per source file. 233 if (isCurrentModulePurview()) { 234 Diag(ModuleLoc, diag::err_module_redeclaration); 235 Diag(VisibleModules.getImportLoc(ModuleScopes.back().Module), 236 diag::note_prev_module_declaration); 237 return nullptr; 238 } 239 240 assert((!getLangOpts().CPlusPlusModules || 241 SeenGMF == (bool)this->TheGlobalModuleFragment) && 242 "mismatched global module state"); 243 244 // In C++20, the module-declaration must be the first declaration if there 245 // is no global module fragment. 246 if (getLangOpts().CPlusPlusModules && !IsFirstDecl && !SeenGMF) { 247 Diag(ModuleLoc, diag::err_module_decl_not_at_start); 248 SourceLocation BeginLoc = 249 ModuleScopes.empty() 250 ? SourceMgr.getLocForStartOfFile(SourceMgr.getMainFileID()) 251 : ModuleScopes.back().BeginLoc; 252 if (BeginLoc.isValid()) { 253 Diag(BeginLoc, diag::note_global_module_introducer_missing) 254 << FixItHint::CreateInsertion(BeginLoc, "module;\n"); 255 } 256 } 257 258 // C++23 [module.unit]p1: ... The identifiers module and import shall not 259 // appear as identifiers in a module-name or module-partition. All 260 // module-names either beginning with an identifier consisting of std 261 // followed by zero or more digits or containing a reserved identifier 262 // ([lex.name]) are reserved and shall not be specified in a 263 // module-declaration; no diagnostic is required. 264 265 // Test the first part of the path to see if it's std[0-9]+ but allow the 266 // name in a system header. 267 StringRef FirstComponentName = Path[0].first->getName(); 268 if (!getSourceManager().isInSystemHeader(Path[0].second) && 269 (FirstComponentName == "std" || 270 (FirstComponentName.startswith("std") && 271 llvm::all_of(FirstComponentName.drop_front(3), &llvm::isDigit)))) 272 Diag(Path[0].second, diag::warn_reserved_module_name) << Path[0].first; 273 274 // Then test all of the components in the path to see if any of them are 275 // using another kind of reserved or invalid identifier. 276 for (auto Part : Path) { 277 if (DiagReservedModuleName(*this, Part.first, Part.second)) 278 return nullptr; 279 } 280 281 // Flatten the dots in a module name. Unlike Clang's hierarchical module map 282 // modules, the dots here are just another character that can appear in a 283 // module name. 284 std::string ModuleName = stringFromPath(Path); 285 if (IsPartition) { 286 ModuleName += ":"; 287 ModuleName += stringFromPath(Partition); 288 } 289 // If a module name was explicitly specified on the command line, it must be 290 // correct. 291 if (!getLangOpts().CurrentModule.empty() && 292 getLangOpts().CurrentModule != ModuleName) { 293 Diag(Path.front().second, diag::err_current_module_name_mismatch) 294 << SourceRange(Path.front().second, IsPartition 295 ? Partition.back().second 296 : Path.back().second) 297 << getLangOpts().CurrentModule; 298 return nullptr; 299 } 300 const_cast<LangOptions&>(getLangOpts()).CurrentModule = ModuleName; 301 302 auto &Map = PP.getHeaderSearchInfo().getModuleMap(); 303 Module *Mod; // The module we are creating. 304 Module *Interface = nullptr; // The interface for an implementation. 305 switch (MDK) { 306 case ModuleDeclKind::Interface: 307 case ModuleDeclKind::PartitionInterface: { 308 // We can't have parsed or imported a definition of this module or parsed a 309 // module map defining it already. 310 if (auto *M = Map.findModule(ModuleName)) { 311 Diag(Path[0].second, diag::err_module_redefinition) << ModuleName; 312 if (M->DefinitionLoc.isValid()) 313 Diag(M->DefinitionLoc, diag::note_prev_module_definition); 314 else if (OptionalFileEntryRef FE = M->getASTFile()) 315 Diag(M->DefinitionLoc, diag::note_prev_module_definition_from_ast_file) 316 << FE->getName(); 317 Mod = M; 318 break; 319 } 320 321 // Create a Module for the module that we're defining. 322 Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName); 323 if (MDK == ModuleDeclKind::PartitionInterface) 324 Mod->Kind = Module::ModulePartitionInterface; 325 assert(Mod && "module creation should not fail"); 326 break; 327 } 328 329 case ModuleDeclKind::Implementation: { 330 // C++20 A module-declaration that contains neither an export- 331 // keyword nor a module-partition implicitly imports the primary 332 // module interface unit of the module as if by a module-import- 333 // declaration. 334 std::pair<IdentifierInfo *, SourceLocation> ModuleNameLoc( 335 PP.getIdentifierInfo(ModuleName), Path[0].second); 336 337 // The module loader will assume we're trying to import the module that 338 // we're building if `LangOpts.CurrentModule` equals to 'ModuleName'. 339 // Change the value for `LangOpts.CurrentModule` temporarily to make the 340 // module loader work properly. 341 const_cast<LangOptions &>(getLangOpts()).CurrentModule = ""; 342 Interface = getModuleLoader().loadModule(ModuleLoc, {ModuleNameLoc}, 343 Module::AllVisible, 344 /*IsInclusionDirective=*/false); 345 const_cast<LangOptions&>(getLangOpts()).CurrentModule = ModuleName; 346 347 if (!Interface) { 348 Diag(ModuleLoc, diag::err_module_not_defined) << ModuleName; 349 // Create an empty module interface unit for error recovery. 350 Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName); 351 } else { 352 Mod = Map.createModuleForImplementationUnit(ModuleLoc, ModuleName); 353 } 354 } break; 355 356 case ModuleDeclKind::PartitionImplementation: 357 // Create an interface, but note that it is an implementation 358 // unit. 359 Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName); 360 Mod->Kind = Module::ModulePartitionImplementation; 361 break; 362 } 363 364 if (!this->TheGlobalModuleFragment) { 365 ModuleScopes.push_back({}); 366 if (getLangOpts().ModulesLocalVisibility) 367 ModuleScopes.back().OuterVisibleModules = std::move(VisibleModules); 368 } else { 369 // We're done with the global module fragment now. 370 ActOnEndOfTranslationUnitFragment(TUFragmentKind::Global); 371 } 372 373 // Switch from the global module fragment (if any) to the named module. 374 ModuleScopes.back().BeginLoc = StartLoc; 375 ModuleScopes.back().Module = Mod; 376 ModuleScopes.back().ModuleInterface = MDK != ModuleDeclKind::Implementation; 377 VisibleModules.setVisible(Mod, ModuleLoc); 378 379 // From now on, we have an owning module for all declarations we see. 380 // In C++20 modules, those declaration would be reachable when imported 381 // unless explicitily exported. 382 // Otherwise, those declarations are module-private unless explicitly 383 // exported. 384 auto *TU = Context.getTranslationUnitDecl(); 385 TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ReachableWhenImported); 386 TU->setLocalOwningModule(Mod); 387 388 // We are in the module purview, but before any other (non import) 389 // statements, so imports are allowed. 390 ImportState = ModuleImportState::ImportAllowed; 391 392 getASTContext().setCurrentNamedModule(Mod); 393 394 // We already potentially made an implicit import (in the case of a module 395 // implementation unit importing its interface). Make this module visible 396 // and return the import decl to be added to the current TU. 397 if (Interface) { 398 399 VisibleModules.setVisible(Interface, ModuleLoc); 400 401 // Make the import decl for the interface in the impl module. 402 ImportDecl *Import = ImportDecl::Create(Context, CurContext, ModuleLoc, 403 Interface, Path[0].second); 404 CurContext->addDecl(Import); 405 406 // Sequence initialization of the imported module before that of the current 407 // module, if any. 408 Context.addModuleInitializer(ModuleScopes.back().Module, Import); 409 Mod->Imports.insert(Interface); // As if we imported it. 410 // Also save this as a shortcut to checking for decls in the interface 411 ThePrimaryInterface = Interface; 412 // If we made an implicit import of the module interface, then return the 413 // imported module decl. 414 return ConvertDeclToDeclGroup(Import); 415 } 416 417 return nullptr; 418 } 419 420 Sema::DeclGroupPtrTy 421 Sema::ActOnPrivateModuleFragmentDecl(SourceLocation ModuleLoc, 422 SourceLocation PrivateLoc) { 423 // C++20 [basic.link]/2: 424 // A private-module-fragment shall appear only in a primary module 425 // interface unit. 426 switch (ModuleScopes.empty() ? Module::ExplicitGlobalModuleFragment 427 : ModuleScopes.back().Module->Kind) { 428 case Module::ModuleMapModule: 429 case Module::ExplicitGlobalModuleFragment: 430 case Module::ImplicitGlobalModuleFragment: 431 case Module::ModulePartitionImplementation: 432 case Module::ModulePartitionInterface: 433 case Module::ModuleHeaderUnit: 434 Diag(PrivateLoc, diag::err_private_module_fragment_not_module); 435 return nullptr; 436 437 case Module::PrivateModuleFragment: 438 Diag(PrivateLoc, diag::err_private_module_fragment_redefined); 439 Diag(ModuleScopes.back().BeginLoc, diag::note_previous_definition); 440 return nullptr; 441 442 case Module::ModuleImplementationUnit: 443 Diag(PrivateLoc, diag::err_private_module_fragment_not_module_interface); 444 Diag(ModuleScopes.back().BeginLoc, 445 diag::note_not_module_interface_add_export) 446 << FixItHint::CreateInsertion(ModuleScopes.back().BeginLoc, "export "); 447 return nullptr; 448 449 case Module::ModuleInterfaceUnit: 450 break; 451 } 452 453 // FIXME: Check that this translation unit does not import any partitions; 454 // such imports would violate [basic.link]/2's "shall be the only module unit" 455 // restriction. 456 457 // We've finished the public fragment of the translation unit. 458 ActOnEndOfTranslationUnitFragment(TUFragmentKind::Normal); 459 460 auto &Map = PP.getHeaderSearchInfo().getModuleMap(); 461 Module *PrivateModuleFragment = 462 Map.createPrivateModuleFragmentForInterfaceUnit( 463 ModuleScopes.back().Module, PrivateLoc); 464 assert(PrivateModuleFragment && "module creation should not fail"); 465 466 // Enter the scope of the private module fragment. 467 ModuleScopes.push_back({}); 468 ModuleScopes.back().BeginLoc = ModuleLoc; 469 ModuleScopes.back().Module = PrivateModuleFragment; 470 ModuleScopes.back().ModuleInterface = true; 471 VisibleModules.setVisible(PrivateModuleFragment, ModuleLoc); 472 473 // All declarations created from now on are scoped to the private module 474 // fragment (and are neither visible nor reachable in importers of the module 475 // interface). 476 auto *TU = Context.getTranslationUnitDecl(); 477 TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ModulePrivate); 478 TU->setLocalOwningModule(PrivateModuleFragment); 479 480 // FIXME: Consider creating an explicit representation of this declaration. 481 return nullptr; 482 } 483 484 DeclResult Sema::ActOnModuleImport(SourceLocation StartLoc, 485 SourceLocation ExportLoc, 486 SourceLocation ImportLoc, ModuleIdPath Path, 487 bool IsPartition) { 488 assert((!IsPartition || getLangOpts().CPlusPlusModules) && 489 "partition seen in non-C++20 code?"); 490 491 // For a C++20 module name, flatten into a single identifier with the source 492 // location of the first component. 493 std::pair<IdentifierInfo *, SourceLocation> ModuleNameLoc; 494 495 std::string ModuleName; 496 if (IsPartition) { 497 // We already checked that we are in a module purview in the parser. 498 assert(!ModuleScopes.empty() && "in a module purview, but no module?"); 499 Module *NamedMod = ModuleScopes.back().Module; 500 // If we are importing into a partition, find the owning named module, 501 // otherwise, the name of the importing named module. 502 ModuleName = NamedMod->getPrimaryModuleInterfaceName().str(); 503 ModuleName += ":"; 504 ModuleName += stringFromPath(Path); 505 ModuleNameLoc = {PP.getIdentifierInfo(ModuleName), Path[0].second}; 506 Path = ModuleIdPath(ModuleNameLoc); 507 } else if (getLangOpts().CPlusPlusModules) { 508 ModuleName = stringFromPath(Path); 509 ModuleNameLoc = {PP.getIdentifierInfo(ModuleName), Path[0].second}; 510 Path = ModuleIdPath(ModuleNameLoc); 511 } 512 513 // Diagnose self-import before attempting a load. 514 // [module.import]/9 515 // A module implementation unit of a module M that is not a module partition 516 // shall not contain a module-import-declaration nominating M. 517 // (for an implementation, the module interface is imported implicitly, 518 // but that's handled in the module decl code). 519 520 if (getLangOpts().CPlusPlusModules && isCurrentModulePurview() && 521 getCurrentModule()->Name == ModuleName) { 522 Diag(ImportLoc, diag::err_module_self_import_cxx20) 523 << ModuleName << !ModuleScopes.back().ModuleInterface; 524 return true; 525 } 526 527 Module *Mod = getModuleLoader().loadModule( 528 ImportLoc, Path, Module::AllVisible, /*IsInclusionDirective=*/false); 529 if (!Mod) 530 return true; 531 532 return ActOnModuleImport(StartLoc, ExportLoc, ImportLoc, Mod, Path); 533 } 534 535 /// Determine whether \p D is lexically within an export-declaration. 536 static const ExportDecl *getEnclosingExportDecl(const Decl *D) { 537 for (auto *DC = D->getLexicalDeclContext(); DC; DC = DC->getLexicalParent()) 538 if (auto *ED = dyn_cast<ExportDecl>(DC)) 539 return ED; 540 return nullptr; 541 } 542 543 DeclResult Sema::ActOnModuleImport(SourceLocation StartLoc, 544 SourceLocation ExportLoc, 545 SourceLocation ImportLoc, Module *Mod, 546 ModuleIdPath Path) { 547 if (Mod->isHeaderUnit()) 548 Diag(ImportLoc, diag::warn_experimental_header_unit); 549 550 VisibleModules.setVisible(Mod, ImportLoc); 551 552 checkModuleImportContext(*this, Mod, ImportLoc, CurContext); 553 554 // FIXME: we should support importing a submodule within a different submodule 555 // of the same top-level module. Until we do, make it an error rather than 556 // silently ignoring the import. 557 // FIXME: Should we warn on a redundant import of the current module? 558 if (Mod->isForBuilding(getLangOpts())) { 559 Diag(ImportLoc, getLangOpts().isCompilingModule() 560 ? diag::err_module_self_import 561 : diag::err_module_import_in_implementation) 562 << Mod->getFullModuleName() << getLangOpts().CurrentModule; 563 } 564 565 SmallVector<SourceLocation, 2> IdentifierLocs; 566 567 if (Path.empty()) { 568 // If this was a header import, pad out with dummy locations. 569 // FIXME: Pass in and use the location of the header-name token in this 570 // case. 571 for (Module *ModCheck = Mod; ModCheck; ModCheck = ModCheck->Parent) 572 IdentifierLocs.push_back(SourceLocation()); 573 } else if (getLangOpts().CPlusPlusModules && !Mod->Parent) { 574 // A single identifier for the whole name. 575 IdentifierLocs.push_back(Path[0].second); 576 } else { 577 Module *ModCheck = Mod; 578 for (unsigned I = 0, N = Path.size(); I != N; ++I) { 579 // If we've run out of module parents, just drop the remaining 580 // identifiers. We need the length to be consistent. 581 if (!ModCheck) 582 break; 583 ModCheck = ModCheck->Parent; 584 585 IdentifierLocs.push_back(Path[I].second); 586 } 587 } 588 589 ImportDecl *Import = ImportDecl::Create(Context, CurContext, StartLoc, 590 Mod, IdentifierLocs); 591 CurContext->addDecl(Import); 592 593 // Sequence initialization of the imported module before that of the current 594 // module, if any. 595 if (!ModuleScopes.empty()) 596 Context.addModuleInitializer(ModuleScopes.back().Module, Import); 597 598 // A module (partition) implementation unit shall not be exported. 599 if (getLangOpts().CPlusPlusModules && ExportLoc.isValid() && 600 Mod->Kind == Module::ModuleKind::ModulePartitionImplementation) { 601 Diag(ExportLoc, diag::err_export_partition_impl) 602 << SourceRange(ExportLoc, Path.back().second); 603 } else if (!ModuleScopes.empty() && 604 (ModuleScopes.back().ModuleInterface || 605 (getLangOpts().CPlusPlusModules && 606 ModuleScopes.back().Module->isGlobalModule()))) { 607 // Re-export the module if the imported module is exported. 608 // Note that we don't need to add re-exported module to Imports field 609 // since `Exports` implies the module is imported already. 610 if (ExportLoc.isValid() || getEnclosingExportDecl(Import)) 611 getCurrentModule()->Exports.emplace_back(Mod, false); 612 else 613 getCurrentModule()->Imports.insert(Mod); 614 } else if (ExportLoc.isValid()) { 615 // [module.interface]p1: 616 // An export-declaration shall inhabit a namespace scope and appear in the 617 // purview of a module interface unit. 618 Diag(ExportLoc, diag::err_export_not_in_module_interface); 619 } 620 621 return Import; 622 } 623 624 void Sema::ActOnModuleInclude(SourceLocation DirectiveLoc, Module *Mod) { 625 checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext, true); 626 BuildModuleInclude(DirectiveLoc, Mod); 627 } 628 629 void Sema::BuildModuleInclude(SourceLocation DirectiveLoc, Module *Mod) { 630 // Determine whether we're in the #include buffer for a module. The #includes 631 // in that buffer do not qualify as module imports; they're just an 632 // implementation detail of us building the module. 633 // 634 // FIXME: Should we even get ActOnModuleInclude calls for those? 635 bool IsInModuleIncludes = 636 TUKind == TU_Module && 637 getSourceManager().isWrittenInMainFile(DirectiveLoc); 638 639 bool ShouldAddImport = !IsInModuleIncludes; 640 641 // If this module import was due to an inclusion directive, create an 642 // implicit import declaration to capture it in the AST. 643 if (ShouldAddImport) { 644 TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl(); 645 ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU, 646 DirectiveLoc, Mod, 647 DirectiveLoc); 648 if (!ModuleScopes.empty()) 649 Context.addModuleInitializer(ModuleScopes.back().Module, ImportD); 650 TU->addDecl(ImportD); 651 Consumer.HandleImplicitImportDecl(ImportD); 652 } 653 654 getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, DirectiveLoc); 655 VisibleModules.setVisible(Mod, DirectiveLoc); 656 657 if (getLangOpts().isCompilingModule()) { 658 Module *ThisModule = PP.getHeaderSearchInfo().lookupModule( 659 getLangOpts().CurrentModule, DirectiveLoc, false, false); 660 (void)ThisModule; 661 assert(ThisModule && "was expecting a module if building one"); 662 } 663 } 664 665 void Sema::ActOnModuleBegin(SourceLocation DirectiveLoc, Module *Mod) { 666 checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext, true); 667 668 ModuleScopes.push_back({}); 669 ModuleScopes.back().Module = Mod; 670 if (getLangOpts().ModulesLocalVisibility) 671 ModuleScopes.back().OuterVisibleModules = std::move(VisibleModules); 672 673 VisibleModules.setVisible(Mod, DirectiveLoc); 674 675 // The enclosing context is now part of this module. 676 // FIXME: Consider creating a child DeclContext to hold the entities 677 // lexically within the module. 678 if (getLangOpts().trackLocalOwningModule()) { 679 for (auto *DC = CurContext; DC; DC = DC->getLexicalParent()) { 680 cast<Decl>(DC)->setModuleOwnershipKind( 681 getLangOpts().ModulesLocalVisibility 682 ? Decl::ModuleOwnershipKind::VisibleWhenImported 683 : Decl::ModuleOwnershipKind::Visible); 684 cast<Decl>(DC)->setLocalOwningModule(Mod); 685 } 686 } 687 } 688 689 void Sema::ActOnModuleEnd(SourceLocation EomLoc, Module *Mod) { 690 if (getLangOpts().ModulesLocalVisibility) { 691 VisibleModules = std::move(ModuleScopes.back().OuterVisibleModules); 692 // Leaving a module hides namespace names, so our visible namespace cache 693 // is now out of date. 694 VisibleNamespaceCache.clear(); 695 } 696 697 assert(!ModuleScopes.empty() && ModuleScopes.back().Module == Mod && 698 "left the wrong module scope"); 699 ModuleScopes.pop_back(); 700 701 // We got to the end of processing a local module. Create an 702 // ImportDecl as we would for an imported module. 703 FileID File = getSourceManager().getFileID(EomLoc); 704 SourceLocation DirectiveLoc; 705 if (EomLoc == getSourceManager().getLocForEndOfFile(File)) { 706 // We reached the end of a #included module header. Use the #include loc. 707 assert(File != getSourceManager().getMainFileID() && 708 "end of submodule in main source file"); 709 DirectiveLoc = getSourceManager().getIncludeLoc(File); 710 } else { 711 // We reached an EOM pragma. Use the pragma location. 712 DirectiveLoc = EomLoc; 713 } 714 BuildModuleInclude(DirectiveLoc, Mod); 715 716 // Any further declarations are in whatever module we returned to. 717 if (getLangOpts().trackLocalOwningModule()) { 718 // The parser guarantees that this is the same context that we entered 719 // the module within. 720 for (auto *DC = CurContext; DC; DC = DC->getLexicalParent()) { 721 cast<Decl>(DC)->setLocalOwningModule(getCurrentModule()); 722 if (!getCurrentModule()) 723 cast<Decl>(DC)->setModuleOwnershipKind( 724 Decl::ModuleOwnershipKind::Unowned); 725 } 726 } 727 } 728 729 void Sema::createImplicitModuleImportForErrorRecovery(SourceLocation Loc, 730 Module *Mod) { 731 // Bail if we're not allowed to implicitly import a module here. 732 if (isSFINAEContext() || !getLangOpts().ModulesErrorRecovery || 733 VisibleModules.isVisible(Mod)) 734 return; 735 736 // Create the implicit import declaration. 737 TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl(); 738 ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU, 739 Loc, Mod, Loc); 740 TU->addDecl(ImportD); 741 Consumer.HandleImplicitImportDecl(ImportD); 742 743 // Make the module visible. 744 getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, Loc); 745 VisibleModules.setVisible(Mod, Loc); 746 } 747 748 /// We have parsed the start of an export declaration, including the '{' 749 /// (if present). 750 Decl *Sema::ActOnStartExportDecl(Scope *S, SourceLocation ExportLoc, 751 SourceLocation LBraceLoc) { 752 ExportDecl *D = ExportDecl::Create(Context, CurContext, ExportLoc); 753 754 // Set this temporarily so we know the export-declaration was braced. 755 D->setRBraceLoc(LBraceLoc); 756 757 CurContext->addDecl(D); 758 PushDeclContext(S, D); 759 760 // C++2a [module.interface]p1: 761 // An export-declaration shall appear only [...] in the purview of a module 762 // interface unit. An export-declaration shall not appear directly or 763 // indirectly within [...] a private-module-fragment. 764 if (!isCurrentModulePurview()) { 765 Diag(ExportLoc, diag::err_export_not_in_module_interface) << 0; 766 D->setInvalidDecl(); 767 return D; 768 } else if (!ModuleScopes.back().ModuleInterface) { 769 Diag(ExportLoc, diag::err_export_not_in_module_interface) << 1; 770 Diag(ModuleScopes.back().BeginLoc, 771 diag::note_not_module_interface_add_export) 772 << FixItHint::CreateInsertion(ModuleScopes.back().BeginLoc, "export "); 773 D->setInvalidDecl(); 774 return D; 775 } else if (ModuleScopes.back().Module->Kind == 776 Module::PrivateModuleFragment) { 777 Diag(ExportLoc, diag::err_export_in_private_module_fragment); 778 Diag(ModuleScopes.back().BeginLoc, diag::note_private_module_fragment); 779 D->setInvalidDecl(); 780 return D; 781 } 782 783 for (const DeclContext *DC = CurContext; DC; DC = DC->getLexicalParent()) { 784 if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) { 785 // An export-declaration shall not appear directly or indirectly within 786 // an unnamed namespace [...] 787 if (ND->isAnonymousNamespace()) { 788 Diag(ExportLoc, diag::err_export_within_anonymous_namespace); 789 Diag(ND->getLocation(), diag::note_anonymous_namespace); 790 // Don't diagnose internal-linkage declarations in this region. 791 D->setInvalidDecl(); 792 return D; 793 } 794 795 // A declaration is exported if it is [...] a namespace-definition 796 // that contains an exported declaration. 797 // 798 // Defer exporting the namespace until after we leave it, in order to 799 // avoid marking all subsequent declarations in the namespace as exported. 800 if (!DeferredExportedNamespaces.insert(ND).second) 801 break; 802 } 803 } 804 805 // [...] its declaration or declaration-seq shall not contain an 806 // export-declaration. 807 if (auto *ED = getEnclosingExportDecl(D)) { 808 Diag(ExportLoc, diag::err_export_within_export); 809 if (ED->hasBraces()) 810 Diag(ED->getLocation(), diag::note_export); 811 D->setInvalidDecl(); 812 return D; 813 } 814 815 D->setModuleOwnershipKind(Decl::ModuleOwnershipKind::VisibleWhenImported); 816 return D; 817 } 818 819 static bool checkExportedDeclContext(Sema &S, DeclContext *DC, 820 SourceLocation BlockStart); 821 822 namespace { 823 enum class UnnamedDeclKind { 824 Empty, 825 StaticAssert, 826 Asm, 827 UsingDirective, 828 Namespace, 829 Context 830 }; 831 } 832 833 static std::optional<UnnamedDeclKind> getUnnamedDeclKind(Decl *D) { 834 if (isa<EmptyDecl>(D)) 835 return UnnamedDeclKind::Empty; 836 if (isa<StaticAssertDecl>(D)) 837 return UnnamedDeclKind::StaticAssert; 838 if (isa<FileScopeAsmDecl>(D)) 839 return UnnamedDeclKind::Asm; 840 if (isa<UsingDirectiveDecl>(D)) 841 return UnnamedDeclKind::UsingDirective; 842 // Everything else either introduces one or more names or is ill-formed. 843 return std::nullopt; 844 } 845 846 unsigned getUnnamedDeclDiag(UnnamedDeclKind UDK, bool InBlock) { 847 switch (UDK) { 848 case UnnamedDeclKind::Empty: 849 case UnnamedDeclKind::StaticAssert: 850 // Allow empty-declarations and static_asserts in an export block as an 851 // extension. 852 return InBlock ? diag::ext_export_no_name_block : diag::err_export_no_name; 853 854 case UnnamedDeclKind::UsingDirective: 855 // Allow exporting using-directives as an extension. 856 return diag::ext_export_using_directive; 857 858 case UnnamedDeclKind::Namespace: 859 // Anonymous namespace with no content. 860 return diag::introduces_no_names; 861 862 case UnnamedDeclKind::Context: 863 // Allow exporting DeclContexts that transitively contain no declarations 864 // as an extension. 865 return diag::ext_export_no_names; 866 867 case UnnamedDeclKind::Asm: 868 return diag::err_export_no_name; 869 } 870 llvm_unreachable("unknown kind"); 871 } 872 873 static void diagExportedUnnamedDecl(Sema &S, UnnamedDeclKind UDK, Decl *D, 874 SourceLocation BlockStart) { 875 S.Diag(D->getLocation(), getUnnamedDeclDiag(UDK, BlockStart.isValid())) 876 << (unsigned)UDK; 877 if (BlockStart.isValid()) 878 S.Diag(BlockStart, diag::note_export); 879 } 880 881 /// Check that it's valid to export \p D. 882 static bool checkExportedDecl(Sema &S, Decl *D, SourceLocation BlockStart) { 883 // C++2a [module.interface]p3: 884 // An exported declaration shall declare at least one name 885 if (auto UDK = getUnnamedDeclKind(D)) 886 diagExportedUnnamedDecl(S, *UDK, D, BlockStart); 887 888 // [...] shall not declare a name with internal linkage. 889 bool HasName = false; 890 if (auto *ND = dyn_cast<NamedDecl>(D)) { 891 // Don't diagnose anonymous union objects; we'll diagnose their members 892 // instead. 893 HasName = (bool)ND->getDeclName(); 894 if (HasName && ND->getFormalLinkage() == InternalLinkage) { 895 S.Diag(ND->getLocation(), diag::err_export_internal) << ND; 896 if (BlockStart.isValid()) 897 S.Diag(BlockStart, diag::note_export); 898 } 899 } 900 901 // C++2a [module.interface]p5: 902 // all entities to which all of the using-declarators ultimately refer 903 // shall have been introduced with a name having external linkage 904 if (auto *USD = dyn_cast<UsingShadowDecl>(D)) { 905 NamedDecl *Target = USD->getUnderlyingDecl(); 906 Linkage Lk = Target->getFormalLinkage(); 907 if (Lk == InternalLinkage || Lk == ModuleLinkage) { 908 S.Diag(USD->getLocation(), diag::err_export_using_internal) 909 << (Lk == InternalLinkage ? 0 : 1) << Target; 910 S.Diag(Target->getLocation(), diag::note_using_decl_target); 911 if (BlockStart.isValid()) 912 S.Diag(BlockStart, diag::note_export); 913 } 914 } 915 916 // Recurse into namespace-scope DeclContexts. (Only namespace-scope 917 // declarations are exported.). 918 if (auto *DC = dyn_cast<DeclContext>(D)) { 919 if (isa<NamespaceDecl>(D) && DC->decls().empty()) { 920 if (!HasName) 921 // We don't allow an empty anonymous namespace (we don't allow decls 922 // in them either, but that's handled in the recursion). 923 diagExportedUnnamedDecl(S, UnnamedDeclKind::Namespace, D, BlockStart); 924 // We allow an empty named namespace decl. 925 } else if (DC->getRedeclContext()->isFileContext() && !isa<EnumDecl>(D)) 926 return checkExportedDeclContext(S, DC, BlockStart); 927 } 928 return false; 929 } 930 931 /// Check that it's valid to export all the declarations in \p DC. 932 static bool checkExportedDeclContext(Sema &S, DeclContext *DC, 933 SourceLocation BlockStart) { 934 bool AllUnnamed = true; 935 for (auto *D : DC->decls()) 936 AllUnnamed &= checkExportedDecl(S, D, BlockStart); 937 return AllUnnamed; 938 } 939 940 /// Complete the definition of an export declaration. 941 Decl *Sema::ActOnFinishExportDecl(Scope *S, Decl *D, SourceLocation RBraceLoc) { 942 auto *ED = cast<ExportDecl>(D); 943 if (RBraceLoc.isValid()) 944 ED->setRBraceLoc(RBraceLoc); 945 946 PopDeclContext(); 947 948 if (!D->isInvalidDecl()) { 949 SourceLocation BlockStart = 950 ED->hasBraces() ? ED->getBeginLoc() : SourceLocation(); 951 for (auto *Child : ED->decls()) { 952 if (checkExportedDecl(*this, Child, BlockStart)) { 953 // If a top-level child is a linkage-spec declaration, it might contain 954 // no declarations (transitively), in which case it's ill-formed. 955 diagExportedUnnamedDecl(*this, UnnamedDeclKind::Context, Child, 956 BlockStart); 957 } 958 if (auto *FD = dyn_cast<FunctionDecl>(Child)) { 959 // [dcl.inline]/7 960 // If an inline function or variable that is attached to a named module 961 // is declared in a definition domain, it shall be defined in that 962 // domain. 963 // So, if the current declaration does not have a definition, we must 964 // check at the end of the TU (or when the PMF starts) to see that we 965 // have a definition at that point. 966 if (FD->isInlineSpecified() && !FD->isDefined()) 967 PendingInlineFuncDecls.insert(FD); 968 } 969 } 970 } 971 972 return D; 973 } 974 975 Module *Sema::PushGlobalModuleFragment(SourceLocation BeginLoc) { 976 // We shouldn't create new global module fragment if there is already 977 // one. 978 if (!TheGlobalModuleFragment) { 979 ModuleMap &Map = PP.getHeaderSearchInfo().getModuleMap(); 980 TheGlobalModuleFragment = Map.createGlobalModuleFragmentForModuleUnit( 981 BeginLoc, getCurrentModule()); 982 } 983 984 assert(TheGlobalModuleFragment && "module creation should not fail"); 985 986 // Enter the scope of the global module. 987 ModuleScopes.push_back({BeginLoc, TheGlobalModuleFragment, 988 /*ModuleInterface=*/false, 989 /*OuterVisibleModules=*/{}}); 990 VisibleModules.setVisible(TheGlobalModuleFragment, BeginLoc); 991 992 return TheGlobalModuleFragment; 993 } 994 995 void Sema::PopGlobalModuleFragment() { 996 assert(!ModuleScopes.empty() && 997 getCurrentModule()->isExplicitGlobalModule() && 998 "left the wrong module scope, which is not global module fragment"); 999 ModuleScopes.pop_back(); 1000 } 1001 1002 Module *Sema::PushImplicitGlobalModuleFragment(SourceLocation BeginLoc, 1003 bool IsExported) { 1004 Module **M = IsExported ? &TheExportedImplicitGlobalModuleFragment 1005 : &TheImplicitGlobalModuleFragment; 1006 if (!*M) { 1007 ModuleMap &Map = PP.getHeaderSearchInfo().getModuleMap(); 1008 *M = Map.createImplicitGlobalModuleFragmentForModuleUnit( 1009 BeginLoc, IsExported, getCurrentModule()); 1010 } 1011 assert(*M && "module creation should not fail"); 1012 1013 // Enter the scope of the global module. 1014 ModuleScopes.push_back({BeginLoc, *M, 1015 /*ModuleInterface=*/false, 1016 /*OuterVisibleModules=*/{}}); 1017 VisibleModules.setVisible(*M, BeginLoc); 1018 return *M; 1019 } 1020 1021 void Sema::PopImplicitGlobalModuleFragment() { 1022 assert(!ModuleScopes.empty() && 1023 getCurrentModule()->isImplicitGlobalModule() && 1024 "left the wrong module scope, which is not global module fragment"); 1025 ModuleScopes.pop_back(); 1026 } 1027 1028 bool Sema::isModuleUnitOfCurrentTU(const Module *M) const { 1029 assert(M); 1030 1031 Module *CurrentModuleUnit = getCurrentModule(); 1032 1033 // If we are not in a module currently, M must not be the module unit of 1034 // current TU. 1035 if (!CurrentModuleUnit) 1036 return false; 1037 1038 return M->isSubModuleOf(CurrentModuleUnit->getTopLevelModule()); 1039 } 1040