1 //===--- SemaModule.cpp - Semantic Analysis for Modules -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for modules (C++ modules syntax, 10 // Objective-C modules syntax, and Clang header modules). 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/AST/ASTConsumer.h" 15 #include "clang/Lex/HeaderSearch.h" 16 #include "clang/Lex/Preprocessor.h" 17 #include "clang/Sema/SemaInternal.h" 18 19 using namespace clang; 20 using namespace sema; 21 22 static void checkModuleImportContext(Sema &S, Module *M, 23 SourceLocation ImportLoc, DeclContext *DC, 24 bool FromInclude = false) { 25 SourceLocation ExternCLoc; 26 27 if (auto *LSD = dyn_cast<LinkageSpecDecl>(DC)) { 28 switch (LSD->getLanguage()) { 29 case LinkageSpecDecl::lang_c: 30 if (ExternCLoc.isInvalid()) 31 ExternCLoc = LSD->getBeginLoc(); 32 break; 33 case LinkageSpecDecl::lang_cxx: 34 break; 35 } 36 DC = LSD->getParent(); 37 } 38 39 while (isa<LinkageSpecDecl>(DC) || isa<ExportDecl>(DC)) 40 DC = DC->getParent(); 41 42 if (!isa<TranslationUnitDecl>(DC)) { 43 S.Diag(ImportLoc, (FromInclude && S.isModuleVisible(M)) 44 ? diag::ext_module_import_not_at_top_level_noop 45 : diag::err_module_import_not_at_top_level_fatal) 46 << M->getFullModuleName() << DC; 47 S.Diag(cast<Decl>(DC)->getBeginLoc(), 48 diag::note_module_import_not_at_top_level) 49 << DC; 50 } else if (!M->IsExternC && ExternCLoc.isValid()) { 51 S.Diag(ImportLoc, diag::ext_module_import_in_extern_c) 52 << M->getFullModuleName(); 53 S.Diag(ExternCLoc, diag::note_extern_c_begins_here); 54 } 55 } 56 57 // We represent the primary and partition names as 'Paths' which are sections 58 // of the hierarchical access path for a clang module. However for C++20 59 // the periods in a name are just another character, and we will need to 60 // flatten them into a string. 61 static std::string stringFromPath(ModuleIdPath Path) { 62 std::string Name; 63 if (Path.empty()) 64 return Name; 65 66 for (auto &Piece : Path) { 67 if (!Name.empty()) 68 Name += "."; 69 Name += Piece.first->getName(); 70 } 71 return Name; 72 } 73 74 Sema::DeclGroupPtrTy 75 Sema::ActOnGlobalModuleFragmentDecl(SourceLocation ModuleLoc) { 76 if (!ModuleScopes.empty() && 77 ModuleScopes.back().Module->Kind == Module::GlobalModuleFragment) { 78 // Under -std=c++2a -fmodules-ts, we can find an explicit 'module;' after 79 // already implicitly entering the global module fragment. That's OK. 80 assert(getLangOpts().CPlusPlusModules && getLangOpts().ModulesTS && 81 "unexpectedly encountered multiple global module fragment decls"); 82 ModuleScopes.back().BeginLoc = ModuleLoc; 83 return nullptr; 84 } 85 86 // We start in the global module; all those declarations are implicitly 87 // module-private (though they do not have module linkage). 88 Module *GlobalModule = 89 PushGlobalModuleFragment(ModuleLoc, /*IsImplicit=*/false); 90 91 // All declarations created from now on are owned by the global module. 92 auto *TU = Context.getTranslationUnitDecl(); 93 TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::Visible); 94 TU->setLocalOwningModule(GlobalModule); 95 96 // FIXME: Consider creating an explicit representation of this declaration. 97 return nullptr; 98 } 99 100 void Sema::HandleStartOfHeaderUnit() { 101 assert(getLangOpts().CPlusPlusModules && 102 "Header units are only valid for C++20 modules"); 103 SourceLocation StartOfTU = 104 SourceMgr.getLocForStartOfFile(SourceMgr.getMainFileID()); 105 106 StringRef HUName = getLangOpts().CurrentModule; 107 if (HUName.empty()) { 108 HUName = SourceMgr.getFileEntryForID(SourceMgr.getMainFileID())->getName(); 109 const_cast<LangOptions &>(getLangOpts()).CurrentModule = HUName.str(); 110 } 111 112 // TODO: Make the C++20 header lookup independent. 113 // When the input is pre-processed source, we need a file ref to the original 114 // file for the header map. 115 auto F = SourceMgr.getFileManager().getFile(HUName); 116 // For the sake of error recovery (if someone has moved the original header 117 // after creating the pre-processed output) fall back to obtaining the file 118 // ref for the input file, which must be present. 119 if (!F) 120 F = SourceMgr.getFileEntryForID(SourceMgr.getMainFileID()); 121 assert(F && "failed to find the header unit source?"); 122 Module::Header H{HUName.str(), HUName.str(), *F}; 123 auto &Map = PP.getHeaderSearchInfo().getModuleMap(); 124 Module *Mod = Map.createHeaderUnit(StartOfTU, HUName, H); 125 assert(Mod && "module creation should not fail"); 126 ModuleScopes.push_back({}); // No GMF 127 ModuleScopes.back().BeginLoc = StartOfTU; 128 ModuleScopes.back().Module = Mod; 129 ModuleScopes.back().ModuleInterface = true; 130 ModuleScopes.back().IsPartition = false; 131 VisibleModules.setVisible(Mod, StartOfTU); 132 133 // From now on, we have an owning module for all declarations we see. 134 // All of these are implicitly exported. 135 auto *TU = Context.getTranslationUnitDecl(); 136 TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::Visible); 137 TU->setLocalOwningModule(Mod); 138 } 139 140 Sema::DeclGroupPtrTy 141 Sema::ActOnModuleDecl(SourceLocation StartLoc, SourceLocation ModuleLoc, 142 ModuleDeclKind MDK, ModuleIdPath Path, 143 ModuleIdPath Partition, ModuleImportState &ImportState) { 144 assert((getLangOpts().ModulesTS || getLangOpts().CPlusPlusModules) && 145 "should only have module decl in Modules TS or C++20"); 146 147 bool IsFirstDecl = ImportState == ModuleImportState::FirstDecl; 148 bool SeenGMF = ImportState == ModuleImportState::GlobalFragment; 149 // If any of the steps here fail, we count that as invalidating C++20 150 // module state; 151 ImportState = ModuleImportState::NotACXX20Module; 152 153 bool IsPartition = !Partition.empty(); 154 if (IsPartition) 155 switch (MDK) { 156 case ModuleDeclKind::Implementation: 157 MDK = ModuleDeclKind::PartitionImplementation; 158 break; 159 case ModuleDeclKind::Interface: 160 MDK = ModuleDeclKind::PartitionInterface; 161 break; 162 default: 163 llvm_unreachable("how did we get a partition type set?"); 164 } 165 166 // A (non-partition) module implementation unit requires that we are not 167 // compiling a module of any kind. A partition implementation emits an 168 // interface (and the AST for the implementation), which will subsequently 169 // be consumed to emit a binary. 170 // A module interface unit requires that we are not compiling a module map. 171 switch (getLangOpts().getCompilingModule()) { 172 case LangOptions::CMK_None: 173 // It's OK to compile a module interface as a normal translation unit. 174 break; 175 176 case LangOptions::CMK_ModuleInterface: 177 if (MDK != ModuleDeclKind::Implementation) 178 break; 179 180 // We were asked to compile a module interface unit but this is a module 181 // implementation unit. 182 Diag(ModuleLoc, diag::err_module_interface_implementation_mismatch) 183 << FixItHint::CreateInsertion(ModuleLoc, "export "); 184 MDK = ModuleDeclKind::Interface; 185 break; 186 187 case LangOptions::CMK_ModuleMap: 188 Diag(ModuleLoc, diag::err_module_decl_in_module_map_module); 189 return nullptr; 190 191 case LangOptions::CMK_HeaderModule: 192 case LangOptions::CMK_HeaderUnit: 193 Diag(ModuleLoc, diag::err_module_decl_in_header_module); 194 return nullptr; 195 } 196 197 assert(ModuleScopes.size() <= 1 && "expected to be at global module scope"); 198 199 // FIXME: Most of this work should be done by the preprocessor rather than 200 // here, in order to support macro import. 201 202 // Only one module-declaration is permitted per source file. 203 if (!ModuleScopes.empty() && 204 ModuleScopes.back().Module->isModulePurview()) { 205 Diag(ModuleLoc, diag::err_module_redeclaration); 206 Diag(VisibleModules.getImportLoc(ModuleScopes.back().Module), 207 diag::note_prev_module_declaration); 208 return nullptr; 209 } 210 211 // Find the global module fragment we're adopting into this module, if any. 212 Module *GlobalModuleFragment = nullptr; 213 if (!ModuleScopes.empty() && 214 ModuleScopes.back().Module->Kind == Module::GlobalModuleFragment) 215 GlobalModuleFragment = ModuleScopes.back().Module; 216 217 assert((!getLangOpts().CPlusPlusModules || getLangOpts().ModulesTS || 218 SeenGMF == (bool)GlobalModuleFragment) && 219 "mismatched global module state"); 220 221 // In C++20, the module-declaration must be the first declaration if there 222 // is no global module fragment. 223 if (getLangOpts().CPlusPlusModules && !IsFirstDecl && !SeenGMF) { 224 Diag(ModuleLoc, diag::err_module_decl_not_at_start); 225 SourceLocation BeginLoc = 226 ModuleScopes.empty() 227 ? SourceMgr.getLocForStartOfFile(SourceMgr.getMainFileID()) 228 : ModuleScopes.back().BeginLoc; 229 if (BeginLoc.isValid()) { 230 Diag(BeginLoc, diag::note_global_module_introducer_missing) 231 << FixItHint::CreateInsertion(BeginLoc, "module;\n"); 232 } 233 } 234 235 // Flatten the dots in a module name. Unlike Clang's hierarchical module map 236 // modules, the dots here are just another character that can appear in a 237 // module name. 238 std::string ModuleName = stringFromPath(Path); 239 if (IsPartition) { 240 ModuleName += ":"; 241 ModuleName += stringFromPath(Partition); 242 } 243 // If a module name was explicitly specified on the command line, it must be 244 // correct. 245 if (!getLangOpts().CurrentModule.empty() && 246 getLangOpts().CurrentModule != ModuleName) { 247 Diag(Path.front().second, diag::err_current_module_name_mismatch) 248 << SourceRange(Path.front().second, IsPartition 249 ? Partition.back().second 250 : Path.back().second) 251 << getLangOpts().CurrentModule; 252 return nullptr; 253 } 254 const_cast<LangOptions&>(getLangOpts()).CurrentModule = ModuleName; 255 256 auto &Map = PP.getHeaderSearchInfo().getModuleMap(); 257 Module *Mod; 258 259 switch (MDK) { 260 case ModuleDeclKind::Interface: 261 case ModuleDeclKind::PartitionInterface: { 262 // We can't have parsed or imported a definition of this module or parsed a 263 // module map defining it already. 264 if (auto *M = Map.findModule(ModuleName)) { 265 Diag(Path[0].second, diag::err_module_redefinition) << ModuleName; 266 if (M->DefinitionLoc.isValid()) 267 Diag(M->DefinitionLoc, diag::note_prev_module_definition); 268 else if (Optional<FileEntryRef> FE = M->getASTFile()) 269 Diag(M->DefinitionLoc, diag::note_prev_module_definition_from_ast_file) 270 << FE->getName(); 271 Mod = M; 272 break; 273 } 274 275 // Create a Module for the module that we're defining. 276 Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName, 277 GlobalModuleFragment); 278 if (MDK == ModuleDeclKind::PartitionInterface) 279 Mod->Kind = Module::ModulePartitionInterface; 280 assert(Mod && "module creation should not fail"); 281 break; 282 } 283 284 case ModuleDeclKind::Implementation: { 285 std::pair<IdentifierInfo *, SourceLocation> ModuleNameLoc( 286 PP.getIdentifierInfo(ModuleName), Path[0].second); 287 // C++20 A module-declaration that contains neither an export- 288 // keyword nor a module-partition implicitly imports the primary 289 // module interface unit of the module as if by a module-import- 290 // declaration. 291 Mod = getModuleLoader().loadModule(ModuleLoc, {ModuleNameLoc}, 292 Module::AllVisible, 293 /*IsInclusionDirective=*/false); 294 if (!Mod) { 295 Diag(ModuleLoc, diag::err_module_not_defined) << ModuleName; 296 // Create an empty module interface unit for error recovery. 297 Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName, 298 GlobalModuleFragment); 299 } 300 } break; 301 302 case ModuleDeclKind::PartitionImplementation: 303 // Create an interface, but note that it is an implementation 304 // unit. 305 Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName, 306 GlobalModuleFragment); 307 Mod->Kind = Module::ModulePartitionImplementation; 308 break; 309 } 310 311 if (!GlobalModuleFragment) { 312 ModuleScopes.push_back({}); 313 if (getLangOpts().ModulesLocalVisibility) 314 ModuleScopes.back().OuterVisibleModules = std::move(VisibleModules); 315 } else { 316 // We're done with the global module fragment now. 317 ActOnEndOfTranslationUnitFragment(TUFragmentKind::Global); 318 } 319 320 // Switch from the global module fragment (if any) to the named module. 321 ModuleScopes.back().BeginLoc = StartLoc; 322 ModuleScopes.back().Module = Mod; 323 ModuleScopes.back().ModuleInterface = MDK != ModuleDeclKind::Implementation; 324 ModuleScopes.back().IsPartition = IsPartition; 325 VisibleModules.setVisible(Mod, ModuleLoc); 326 327 // From now on, we have an owning module for all declarations we see. 328 // However, those declarations are module-private unless explicitly 329 // exported. 330 auto *TU = Context.getTranslationUnitDecl(); 331 TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ModulePrivate); 332 TU->setLocalOwningModule(Mod); 333 334 // We are in the module purview, but before any other (non import) 335 // statements, so imports are allowed. 336 ImportState = ModuleImportState::ImportAllowed; 337 338 // FIXME: Create a ModuleDecl. 339 return nullptr; 340 } 341 342 Sema::DeclGroupPtrTy 343 Sema::ActOnPrivateModuleFragmentDecl(SourceLocation ModuleLoc, 344 SourceLocation PrivateLoc) { 345 // C++20 [basic.link]/2: 346 // A private-module-fragment shall appear only in a primary module 347 // interface unit. 348 switch (ModuleScopes.empty() ? Module::GlobalModuleFragment 349 : ModuleScopes.back().Module->Kind) { 350 case Module::ModuleMapModule: 351 case Module::GlobalModuleFragment: 352 case Module::ModulePartitionImplementation: 353 case Module::ModulePartitionInterface: 354 case Module::ModuleHeaderUnit: 355 Diag(PrivateLoc, diag::err_private_module_fragment_not_module); 356 return nullptr; 357 358 case Module::PrivateModuleFragment: 359 Diag(PrivateLoc, diag::err_private_module_fragment_redefined); 360 Diag(ModuleScopes.back().BeginLoc, diag::note_previous_definition); 361 return nullptr; 362 363 case Module::ModuleInterfaceUnit: 364 break; 365 } 366 367 if (!ModuleScopes.back().ModuleInterface) { 368 Diag(PrivateLoc, diag::err_private_module_fragment_not_module_interface); 369 Diag(ModuleScopes.back().BeginLoc, 370 diag::note_not_module_interface_add_export) 371 << FixItHint::CreateInsertion(ModuleScopes.back().BeginLoc, "export "); 372 return nullptr; 373 } 374 375 // FIXME: Check this isn't a module interface partition. 376 // FIXME: Check that this translation unit does not import any partitions; 377 // such imports would violate [basic.link]/2's "shall be the only module unit" 378 // restriction. 379 380 // We've finished the public fragment of the translation unit. 381 ActOnEndOfTranslationUnitFragment(TUFragmentKind::Normal); 382 383 auto &Map = PP.getHeaderSearchInfo().getModuleMap(); 384 Module *PrivateModuleFragment = 385 Map.createPrivateModuleFragmentForInterfaceUnit( 386 ModuleScopes.back().Module, PrivateLoc); 387 assert(PrivateModuleFragment && "module creation should not fail"); 388 389 // Enter the scope of the private module fragment. 390 ModuleScopes.push_back({}); 391 ModuleScopes.back().BeginLoc = ModuleLoc; 392 ModuleScopes.back().Module = PrivateModuleFragment; 393 ModuleScopes.back().ModuleInterface = true; 394 VisibleModules.setVisible(PrivateModuleFragment, ModuleLoc); 395 396 // All declarations created from now on are scoped to the private module 397 // fragment (and are neither visible nor reachable in importers of the module 398 // interface). 399 auto *TU = Context.getTranslationUnitDecl(); 400 TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ModulePrivate); 401 TU->setLocalOwningModule(PrivateModuleFragment); 402 403 // FIXME: Consider creating an explicit representation of this declaration. 404 return nullptr; 405 } 406 407 DeclResult Sema::ActOnModuleImport(SourceLocation StartLoc, 408 SourceLocation ExportLoc, 409 SourceLocation ImportLoc, ModuleIdPath Path, 410 bool IsPartition) { 411 412 bool Cxx20Mode = getLangOpts().CPlusPlusModules || getLangOpts().ModulesTS; 413 assert((!IsPartition || Cxx20Mode) && "partition seen in non-C++20 code?"); 414 415 // For a C++20 module name, flatten into a single identifier with the source 416 // location of the first component. 417 std::pair<IdentifierInfo *, SourceLocation> ModuleNameLoc; 418 419 std::string ModuleName; 420 if (IsPartition) { 421 // We already checked that we are in a module purview in the parser. 422 assert(!ModuleScopes.empty() && "in a module purview, but no module?"); 423 Module *NamedMod = ModuleScopes.back().Module; 424 // If we are importing into a partition, find the owning named module, 425 // otherwise, the name of the importing named module. 426 ModuleName = NamedMod->getPrimaryModuleInterfaceName().str(); 427 ModuleName += ":"; 428 ModuleName += stringFromPath(Path); 429 ModuleNameLoc = {PP.getIdentifierInfo(ModuleName), Path[0].second}; 430 Path = ModuleIdPath(ModuleNameLoc); 431 } else if (Cxx20Mode) { 432 ModuleName = stringFromPath(Path); 433 ModuleNameLoc = {PP.getIdentifierInfo(ModuleName), Path[0].second}; 434 Path = ModuleIdPath(ModuleNameLoc); 435 } 436 437 // Diagnose self-import before attempting a load. 438 // [module.import]/9 439 // A module implementation unit of a module M that is not a module partition 440 // shall not contain a module-import-declaration nominating M. 441 // (for an implementation, the module interface is imported implicitly, 442 // but that's handled in the module decl code). 443 444 if (getLangOpts().CPlusPlusModules && isCurrentModulePurview() && 445 getCurrentModule()->Name == ModuleName) { 446 Diag(ImportLoc, diag::err_module_self_import_cxx20) 447 << ModuleName << !ModuleScopes.back().ModuleInterface; 448 return true; 449 } 450 451 Module *Mod = getModuleLoader().loadModule( 452 ImportLoc, Path, Module::AllVisible, /*IsInclusionDirective=*/false); 453 if (!Mod) 454 return true; 455 456 return ActOnModuleImport(StartLoc, ExportLoc, ImportLoc, Mod, Path); 457 } 458 459 /// Determine whether \p D is lexically within an export-declaration. 460 static const ExportDecl *getEnclosingExportDecl(const Decl *D) { 461 for (auto *DC = D->getLexicalDeclContext(); DC; DC = DC->getLexicalParent()) 462 if (auto *ED = dyn_cast<ExportDecl>(DC)) 463 return ED; 464 return nullptr; 465 } 466 467 DeclResult Sema::ActOnModuleImport(SourceLocation StartLoc, 468 SourceLocation ExportLoc, 469 SourceLocation ImportLoc, Module *Mod, 470 ModuleIdPath Path) { 471 VisibleModules.setVisible(Mod, ImportLoc); 472 473 checkModuleImportContext(*this, Mod, ImportLoc, CurContext); 474 475 // FIXME: we should support importing a submodule within a different submodule 476 // of the same top-level module. Until we do, make it an error rather than 477 // silently ignoring the import. 478 // FIXME: Should we warn on a redundant import of the current module? 479 if (Mod->getTopLevelModuleName() == getLangOpts().CurrentModule && 480 (getLangOpts().isCompilingModule() || !getLangOpts().ModulesTS)) { 481 Diag(ImportLoc, getLangOpts().isCompilingModule() 482 ? diag::err_module_self_import 483 : diag::err_module_import_in_implementation) 484 << Mod->getFullModuleName() << getLangOpts().CurrentModule; 485 } 486 487 SmallVector<SourceLocation, 2> IdentifierLocs; 488 489 if (Path.empty()) { 490 // If this was a header import, pad out with dummy locations. 491 // FIXME: Pass in and use the location of the header-name token in this 492 // case. 493 for (Module *ModCheck = Mod; ModCheck; ModCheck = ModCheck->Parent) 494 IdentifierLocs.push_back(SourceLocation()); 495 } else if (getLangOpts().CPlusPlusModules && !Mod->Parent) { 496 // A single identifier for the whole name. 497 IdentifierLocs.push_back(Path[0].second); 498 } else { 499 Module *ModCheck = Mod; 500 for (unsigned I = 0, N = Path.size(); I != N; ++I) { 501 // If we've run out of module parents, just drop the remaining 502 // identifiers. We need the length to be consistent. 503 if (!ModCheck) 504 break; 505 ModCheck = ModCheck->Parent; 506 507 IdentifierLocs.push_back(Path[I].second); 508 } 509 } 510 511 ImportDecl *Import = ImportDecl::Create(Context, CurContext, StartLoc, 512 Mod, IdentifierLocs); 513 CurContext->addDecl(Import); 514 515 // Sequence initialization of the imported module before that of the current 516 // module, if any. 517 if (!ModuleScopes.empty()) 518 Context.addModuleInitializer(ModuleScopes.back().Module, Import); 519 520 // A module (partition) implementation unit shall not be exported. 521 if (getLangOpts().CPlusPlusModules && ExportLoc.isValid() && 522 Mod->Kind == Module::ModuleKind::ModulePartitionImplementation) { 523 Diag(ExportLoc, diag::err_export_partition_impl) 524 << SourceRange(ExportLoc, Path.back().second); 525 } else if (!ModuleScopes.empty() && 526 (ModuleScopes.back().ModuleInterface || 527 (getLangOpts().CPlusPlusModules && 528 ModuleScopes.back().Module->isGlobalModule()))) { 529 assert((!ModuleScopes.back().Module->isGlobalModule() || 530 Mod->Kind == Module::ModuleKind::ModuleHeaderUnit) && 531 "should only be importing a header unit into the GMF"); 532 // Re-export the module if the imported module is exported. 533 // Note that we don't need to add re-exported module to Imports field 534 // since `Exports` implies the module is imported already. 535 if (ExportLoc.isValid() || getEnclosingExportDecl(Import)) 536 getCurrentModule()->Exports.emplace_back(Mod, false); 537 else 538 getCurrentModule()->Imports.insert(Mod); 539 } else if (ExportLoc.isValid()) { 540 // [module.interface]p1: 541 // An export-declaration shall inhabit a namespace scope and appear in the 542 // purview of a module interface unit. 543 Diag(ExportLoc, diag::err_export_not_in_module_interface) 544 << (!ModuleScopes.empty() && 545 !ModuleScopes.back().ImplicitGlobalModuleFragment); 546 } else if (getLangOpts().isCompilingModule()) { 547 Module *ThisModule = PP.getHeaderSearchInfo().lookupModule( 548 getLangOpts().CurrentModule, ExportLoc, false, false); 549 (void)ThisModule; 550 assert(ThisModule && "was expecting a module if building one"); 551 } 552 553 // In some cases we need to know if an entity was present in a directly- 554 // imported module (as opposed to a transitive import). This avoids 555 // searching both Imports and Exports. 556 DirectModuleImports.insert(Mod); 557 558 return Import; 559 } 560 561 void Sema::ActOnModuleInclude(SourceLocation DirectiveLoc, Module *Mod) { 562 checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext, true); 563 BuildModuleInclude(DirectiveLoc, Mod); 564 } 565 566 void Sema::BuildModuleInclude(SourceLocation DirectiveLoc, Module *Mod) { 567 // Determine whether we're in the #include buffer for a module. The #includes 568 // in that buffer do not qualify as module imports; they're just an 569 // implementation detail of us building the module. 570 // 571 // FIXME: Should we even get ActOnModuleInclude calls for those? 572 bool IsInModuleIncludes = 573 TUKind == TU_Module && 574 getSourceManager().isWrittenInMainFile(DirectiveLoc); 575 576 bool ShouldAddImport = !IsInModuleIncludes; 577 578 // If this module import was due to an inclusion directive, create an 579 // implicit import declaration to capture it in the AST. 580 if (ShouldAddImport) { 581 TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl(); 582 ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU, 583 DirectiveLoc, Mod, 584 DirectiveLoc); 585 if (!ModuleScopes.empty()) 586 Context.addModuleInitializer(ModuleScopes.back().Module, ImportD); 587 TU->addDecl(ImportD); 588 Consumer.HandleImplicitImportDecl(ImportD); 589 } 590 591 getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, DirectiveLoc); 592 VisibleModules.setVisible(Mod, DirectiveLoc); 593 594 if (getLangOpts().isCompilingModule()) { 595 Module *ThisModule = PP.getHeaderSearchInfo().lookupModule( 596 getLangOpts().CurrentModule, DirectiveLoc, false, false); 597 (void)ThisModule; 598 assert(ThisModule && "was expecting a module if building one"); 599 } 600 } 601 602 void Sema::ActOnModuleBegin(SourceLocation DirectiveLoc, Module *Mod) { 603 checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext, true); 604 605 ModuleScopes.push_back({}); 606 ModuleScopes.back().Module = Mod; 607 if (getLangOpts().ModulesLocalVisibility) 608 ModuleScopes.back().OuterVisibleModules = std::move(VisibleModules); 609 610 VisibleModules.setVisible(Mod, DirectiveLoc); 611 612 // The enclosing context is now part of this module. 613 // FIXME: Consider creating a child DeclContext to hold the entities 614 // lexically within the module. 615 if (getLangOpts().trackLocalOwningModule()) { 616 for (auto *DC = CurContext; DC; DC = DC->getLexicalParent()) { 617 cast<Decl>(DC)->setModuleOwnershipKind( 618 getLangOpts().ModulesLocalVisibility 619 ? Decl::ModuleOwnershipKind::VisibleWhenImported 620 : Decl::ModuleOwnershipKind::Visible); 621 cast<Decl>(DC)->setLocalOwningModule(Mod); 622 } 623 } 624 } 625 626 void Sema::ActOnModuleEnd(SourceLocation EomLoc, Module *Mod) { 627 if (getLangOpts().ModulesLocalVisibility) { 628 VisibleModules = std::move(ModuleScopes.back().OuterVisibleModules); 629 // Leaving a module hides namespace names, so our visible namespace cache 630 // is now out of date. 631 VisibleNamespaceCache.clear(); 632 } 633 634 assert(!ModuleScopes.empty() && ModuleScopes.back().Module == Mod && 635 "left the wrong module scope"); 636 ModuleScopes.pop_back(); 637 638 // We got to the end of processing a local module. Create an 639 // ImportDecl as we would for an imported module. 640 FileID File = getSourceManager().getFileID(EomLoc); 641 SourceLocation DirectiveLoc; 642 if (EomLoc == getSourceManager().getLocForEndOfFile(File)) { 643 // We reached the end of a #included module header. Use the #include loc. 644 assert(File != getSourceManager().getMainFileID() && 645 "end of submodule in main source file"); 646 DirectiveLoc = getSourceManager().getIncludeLoc(File); 647 } else { 648 // We reached an EOM pragma. Use the pragma location. 649 DirectiveLoc = EomLoc; 650 } 651 BuildModuleInclude(DirectiveLoc, Mod); 652 653 // Any further declarations are in whatever module we returned to. 654 if (getLangOpts().trackLocalOwningModule()) { 655 // The parser guarantees that this is the same context that we entered 656 // the module within. 657 for (auto *DC = CurContext; DC; DC = DC->getLexicalParent()) { 658 cast<Decl>(DC)->setLocalOwningModule(getCurrentModule()); 659 if (!getCurrentModule()) 660 cast<Decl>(DC)->setModuleOwnershipKind( 661 Decl::ModuleOwnershipKind::Unowned); 662 } 663 } 664 } 665 666 void Sema::createImplicitModuleImportForErrorRecovery(SourceLocation Loc, 667 Module *Mod) { 668 // Bail if we're not allowed to implicitly import a module here. 669 if (isSFINAEContext() || !getLangOpts().ModulesErrorRecovery || 670 VisibleModules.isVisible(Mod)) 671 return; 672 673 // Create the implicit import declaration. 674 TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl(); 675 ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU, 676 Loc, Mod, Loc); 677 TU->addDecl(ImportD); 678 Consumer.HandleImplicitImportDecl(ImportD); 679 680 // Make the module visible. 681 getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, Loc); 682 VisibleModules.setVisible(Mod, Loc); 683 } 684 685 /// We have parsed the start of an export declaration, including the '{' 686 /// (if present). 687 Decl *Sema::ActOnStartExportDecl(Scope *S, SourceLocation ExportLoc, 688 SourceLocation LBraceLoc) { 689 ExportDecl *D = ExportDecl::Create(Context, CurContext, ExportLoc); 690 691 // Set this temporarily so we know the export-declaration was braced. 692 D->setRBraceLoc(LBraceLoc); 693 694 CurContext->addDecl(D); 695 PushDeclContext(S, D); 696 697 // C++2a [module.interface]p1: 698 // An export-declaration shall appear only [...] in the purview of a module 699 // interface unit. An export-declaration shall not appear directly or 700 // indirectly within [...] a private-module-fragment. 701 if (ModuleScopes.empty() || !ModuleScopes.back().Module->isModulePurview()) { 702 Diag(ExportLoc, diag::err_export_not_in_module_interface) << 0; 703 D->setInvalidDecl(); 704 return D; 705 } else if (!ModuleScopes.back().ModuleInterface) { 706 Diag(ExportLoc, diag::err_export_not_in_module_interface) << 1; 707 Diag(ModuleScopes.back().BeginLoc, 708 diag::note_not_module_interface_add_export) 709 << FixItHint::CreateInsertion(ModuleScopes.back().BeginLoc, "export "); 710 D->setInvalidDecl(); 711 return D; 712 } else if (ModuleScopes.back().Module->Kind == 713 Module::PrivateModuleFragment) { 714 Diag(ExportLoc, diag::err_export_in_private_module_fragment); 715 Diag(ModuleScopes.back().BeginLoc, diag::note_private_module_fragment); 716 D->setInvalidDecl(); 717 return D; 718 } 719 720 for (const DeclContext *DC = CurContext; DC; DC = DC->getLexicalParent()) { 721 if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) { 722 // An export-declaration shall not appear directly or indirectly within 723 // an unnamed namespace [...] 724 if (ND->isAnonymousNamespace()) { 725 Diag(ExportLoc, diag::err_export_within_anonymous_namespace); 726 Diag(ND->getLocation(), diag::note_anonymous_namespace); 727 // Don't diagnose internal-linkage declarations in this region. 728 D->setInvalidDecl(); 729 return D; 730 } 731 732 // A declaration is exported if it is [...] a namespace-definition 733 // that contains an exported declaration. 734 // 735 // Defer exporting the namespace until after we leave it, in order to 736 // avoid marking all subsequent declarations in the namespace as exported. 737 if (!DeferredExportedNamespaces.insert(ND).second) 738 break; 739 } 740 } 741 742 // [...] its declaration or declaration-seq shall not contain an 743 // export-declaration. 744 if (auto *ED = getEnclosingExportDecl(D)) { 745 Diag(ExportLoc, diag::err_export_within_export); 746 if (ED->hasBraces()) 747 Diag(ED->getLocation(), diag::note_export); 748 D->setInvalidDecl(); 749 return D; 750 } 751 752 D->setModuleOwnershipKind(Decl::ModuleOwnershipKind::VisibleWhenImported); 753 return D; 754 } 755 756 static bool checkExportedDeclContext(Sema &S, DeclContext *DC, 757 SourceLocation BlockStart); 758 759 namespace { 760 enum class UnnamedDeclKind { 761 Empty, 762 StaticAssert, 763 Asm, 764 UsingDirective, 765 Namespace, 766 Context 767 }; 768 } 769 770 static llvm::Optional<UnnamedDeclKind> getUnnamedDeclKind(Decl *D) { 771 if (isa<EmptyDecl>(D)) 772 return UnnamedDeclKind::Empty; 773 if (isa<StaticAssertDecl>(D)) 774 return UnnamedDeclKind::StaticAssert; 775 if (isa<FileScopeAsmDecl>(D)) 776 return UnnamedDeclKind::Asm; 777 if (isa<UsingDirectiveDecl>(D)) 778 return UnnamedDeclKind::UsingDirective; 779 // Everything else either introduces one or more names or is ill-formed. 780 return llvm::None; 781 } 782 783 unsigned getUnnamedDeclDiag(UnnamedDeclKind UDK, bool InBlock) { 784 switch (UDK) { 785 case UnnamedDeclKind::Empty: 786 case UnnamedDeclKind::StaticAssert: 787 // Allow empty-declarations and static_asserts in an export block as an 788 // extension. 789 return InBlock ? diag::ext_export_no_name_block : diag::err_export_no_name; 790 791 case UnnamedDeclKind::UsingDirective: 792 // Allow exporting using-directives as an extension. 793 return diag::ext_export_using_directive; 794 795 case UnnamedDeclKind::Namespace: 796 // Anonymous namespace with no content. 797 return diag::introduces_no_names; 798 799 case UnnamedDeclKind::Context: 800 // Allow exporting DeclContexts that transitively contain no declarations 801 // as an extension. 802 return diag::ext_export_no_names; 803 804 case UnnamedDeclKind::Asm: 805 return diag::err_export_no_name; 806 } 807 llvm_unreachable("unknown kind"); 808 } 809 810 static void diagExportedUnnamedDecl(Sema &S, UnnamedDeclKind UDK, Decl *D, 811 SourceLocation BlockStart) { 812 S.Diag(D->getLocation(), getUnnamedDeclDiag(UDK, BlockStart.isValid())) 813 << (unsigned)UDK; 814 if (BlockStart.isValid()) 815 S.Diag(BlockStart, diag::note_export); 816 } 817 818 /// Check that it's valid to export \p D. 819 static bool checkExportedDecl(Sema &S, Decl *D, SourceLocation BlockStart) { 820 // C++2a [module.interface]p3: 821 // An exported declaration shall declare at least one name 822 if (auto UDK = getUnnamedDeclKind(D)) 823 diagExportedUnnamedDecl(S, *UDK, D, BlockStart); 824 825 // [...] shall not declare a name with internal linkage. 826 bool HasName = false; 827 if (auto *ND = dyn_cast<NamedDecl>(D)) { 828 // Don't diagnose anonymous union objects; we'll diagnose their members 829 // instead. 830 HasName = (bool)ND->getDeclName(); 831 if (HasName && ND->getFormalLinkage() == InternalLinkage) { 832 S.Diag(ND->getLocation(), diag::err_export_internal) << ND; 833 if (BlockStart.isValid()) 834 S.Diag(BlockStart, diag::note_export); 835 } 836 } 837 838 // C++2a [module.interface]p5: 839 // all entities to which all of the using-declarators ultimately refer 840 // shall have been introduced with a name having external linkage 841 if (auto *USD = dyn_cast<UsingShadowDecl>(D)) { 842 NamedDecl *Target = USD->getUnderlyingDecl(); 843 Linkage Lk = Target->getFormalLinkage(); 844 if (Lk == InternalLinkage || Lk == ModuleLinkage) { 845 S.Diag(USD->getLocation(), diag::err_export_using_internal) 846 << (Lk == InternalLinkage ? 0 : 1) << Target; 847 S.Diag(Target->getLocation(), diag::note_using_decl_target); 848 if (BlockStart.isValid()) 849 S.Diag(BlockStart, diag::note_export); 850 } 851 } 852 853 // Recurse into namespace-scope DeclContexts. (Only namespace-scope 854 // declarations are exported.). 855 if (auto *DC = dyn_cast<DeclContext>(D)) { 856 if (isa<NamespaceDecl>(D) && DC->decls().empty()) { 857 if (!HasName) 858 // We don't allow an empty anonymous namespace (we don't allow decls 859 // in them either, but that's handled in the recursion). 860 diagExportedUnnamedDecl(S, UnnamedDeclKind::Namespace, D, BlockStart); 861 else 862 ; // We allow an empty named namespace decl. 863 } else if (DC->getRedeclContext()->isFileContext() && !isa<EnumDecl>(D)) 864 return checkExportedDeclContext(S, DC, BlockStart); 865 } 866 return false; 867 } 868 869 /// Check that it's valid to export all the declarations in \p DC. 870 static bool checkExportedDeclContext(Sema &S, DeclContext *DC, 871 SourceLocation BlockStart) { 872 bool AllUnnamed = true; 873 for (auto *D : DC->decls()) 874 AllUnnamed &= checkExportedDecl(S, D, BlockStart); 875 return AllUnnamed; 876 } 877 878 /// Complete the definition of an export declaration. 879 Decl *Sema::ActOnFinishExportDecl(Scope *S, Decl *D, SourceLocation RBraceLoc) { 880 auto *ED = cast<ExportDecl>(D); 881 if (RBraceLoc.isValid()) 882 ED->setRBraceLoc(RBraceLoc); 883 884 PopDeclContext(); 885 886 if (!D->isInvalidDecl()) { 887 SourceLocation BlockStart = 888 ED->hasBraces() ? ED->getBeginLoc() : SourceLocation(); 889 for (auto *Child : ED->decls()) { 890 if (checkExportedDecl(*this, Child, BlockStart)) { 891 // If a top-level child is a linkage-spec declaration, it might contain 892 // no declarations (transitively), in which case it's ill-formed. 893 diagExportedUnnamedDecl(*this, UnnamedDeclKind::Context, Child, 894 BlockStart); 895 } 896 } 897 } 898 899 return D; 900 } 901 902 Module *Sema::PushGlobalModuleFragment(SourceLocation BeginLoc, 903 bool IsImplicit) { 904 // We shouldn't create new global module fragment if there is already 905 // one. 906 if (!GlobalModuleFragment) { 907 ModuleMap &Map = PP.getHeaderSearchInfo().getModuleMap(); 908 GlobalModuleFragment = Map.createGlobalModuleFragmentForModuleUnit( 909 BeginLoc, getCurrentModule()); 910 } 911 912 assert(GlobalModuleFragment && "module creation should not fail"); 913 914 // Enter the scope of the global module. 915 ModuleScopes.push_back({BeginLoc, GlobalModuleFragment, 916 /*ModuleInterface=*/false, 917 /*IsPartition=*/false, 918 /*ImplicitGlobalModuleFragment=*/IsImplicit, 919 /*OuterVisibleModules=*/{}}); 920 VisibleModules.setVisible(GlobalModuleFragment, BeginLoc); 921 922 return GlobalModuleFragment; 923 } 924 925 void Sema::PopGlobalModuleFragment() { 926 assert(!ModuleScopes.empty() && getCurrentModule()->isGlobalModule() && 927 "left the wrong module scope, which is not global module fragment"); 928 ModuleScopes.pop_back(); 929 } 930