1 //===--- SemaModule.cpp - Semantic Analysis for Modules -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for modules (C++ modules syntax, 10 // Objective-C modules syntax, and Clang header modules). 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/AST/ASTConsumer.h" 15 #include "clang/Lex/HeaderSearch.h" 16 #include "clang/Lex/Preprocessor.h" 17 #include "clang/Sema/SemaInternal.h" 18 #include <optional> 19 20 using namespace clang; 21 using namespace sema; 22 23 static void checkModuleImportContext(Sema &S, Module *M, 24 SourceLocation ImportLoc, DeclContext *DC, 25 bool FromInclude = false) { 26 SourceLocation ExternCLoc; 27 28 if (auto *LSD = dyn_cast<LinkageSpecDecl>(DC)) { 29 switch (LSD->getLanguage()) { 30 case LinkageSpecDecl::lang_c: 31 if (ExternCLoc.isInvalid()) 32 ExternCLoc = LSD->getBeginLoc(); 33 break; 34 case LinkageSpecDecl::lang_cxx: 35 break; 36 } 37 DC = LSD->getParent(); 38 } 39 40 while (isa<LinkageSpecDecl>(DC) || isa<ExportDecl>(DC)) 41 DC = DC->getParent(); 42 43 if (!isa<TranslationUnitDecl>(DC)) { 44 S.Diag(ImportLoc, (FromInclude && S.isModuleVisible(M)) 45 ? diag::ext_module_import_not_at_top_level_noop 46 : diag::err_module_import_not_at_top_level_fatal) 47 << M->getFullModuleName() << DC; 48 S.Diag(cast<Decl>(DC)->getBeginLoc(), 49 diag::note_module_import_not_at_top_level) 50 << DC; 51 } else if (!M->IsExternC && ExternCLoc.isValid()) { 52 S.Diag(ImportLoc, diag::ext_module_import_in_extern_c) 53 << M->getFullModuleName(); 54 S.Diag(ExternCLoc, diag::note_extern_c_begins_here); 55 } 56 } 57 58 // We represent the primary and partition names as 'Paths' which are sections 59 // of the hierarchical access path for a clang module. However for C++20 60 // the periods in a name are just another character, and we will need to 61 // flatten them into a string. 62 static std::string stringFromPath(ModuleIdPath Path) { 63 std::string Name; 64 if (Path.empty()) 65 return Name; 66 67 for (auto &Piece : Path) { 68 if (!Name.empty()) 69 Name += "."; 70 Name += Piece.first->getName(); 71 } 72 return Name; 73 } 74 75 Sema::DeclGroupPtrTy 76 Sema::ActOnGlobalModuleFragmentDecl(SourceLocation ModuleLoc) { 77 // We start in the global module; 78 Module *GlobalModule = 79 PushGlobalModuleFragment(ModuleLoc); 80 81 // All declarations created from now on are owned by the global module. 82 auto *TU = Context.getTranslationUnitDecl(); 83 // [module.global.frag]p2 84 // A global-module-fragment specifies the contents of the global module 85 // fragment for a module unit. The global module fragment can be used to 86 // provide declarations that are attached to the global module and usable 87 // within the module unit. 88 // 89 // So the declations in the global module shouldn't be visible by default. 90 TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ReachableWhenImported); 91 TU->setLocalOwningModule(GlobalModule); 92 93 // FIXME: Consider creating an explicit representation of this declaration. 94 return nullptr; 95 } 96 97 void Sema::HandleStartOfHeaderUnit() { 98 assert(getLangOpts().CPlusPlusModules && 99 "Header units are only valid for C++20 modules"); 100 SourceLocation StartOfTU = 101 SourceMgr.getLocForStartOfFile(SourceMgr.getMainFileID()); 102 103 StringRef HUName = getLangOpts().CurrentModule; 104 if (HUName.empty()) { 105 HUName = SourceMgr.getFileEntryForID(SourceMgr.getMainFileID())->getName(); 106 const_cast<LangOptions &>(getLangOpts()).CurrentModule = HUName.str(); 107 } 108 109 // TODO: Make the C++20 header lookup independent. 110 // When the input is pre-processed source, we need a file ref to the original 111 // file for the header map. 112 auto F = SourceMgr.getFileManager().getOptionalFileRef(HUName); 113 // For the sake of error recovery (if someone has moved the original header 114 // after creating the pre-processed output) fall back to obtaining the file 115 // ref for the input file, which must be present. 116 if (!F) 117 F = SourceMgr.getFileEntryRefForID(SourceMgr.getMainFileID()); 118 assert(F && "failed to find the header unit source?"); 119 Module::Header H{HUName.str(), HUName.str(), *F}; 120 auto &Map = PP.getHeaderSearchInfo().getModuleMap(); 121 Module *Mod = Map.createHeaderUnit(StartOfTU, HUName, H); 122 assert(Mod && "module creation should not fail"); 123 ModuleScopes.push_back({}); // No GMF 124 ModuleScopes.back().BeginLoc = StartOfTU; 125 ModuleScopes.back().Module = Mod; 126 ModuleScopes.back().ModuleInterface = true; 127 VisibleModules.setVisible(Mod, StartOfTU); 128 129 // From now on, we have an owning module for all declarations we see. 130 // All of these are implicitly exported. 131 auto *TU = Context.getTranslationUnitDecl(); 132 TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::Visible); 133 TU->setLocalOwningModule(Mod); 134 } 135 136 /// Tests whether the given identifier is reserved as a module name and 137 /// diagnoses if it is. Returns true if a diagnostic is emitted and false 138 /// otherwise. 139 static bool DiagReservedModuleName(Sema &S, const IdentifierInfo *II, 140 SourceLocation Loc) { 141 enum { 142 Valid = -1, 143 Invalid = 0, 144 Reserved = 1, 145 } Reason = Valid; 146 147 if (II->isStr("module") || II->isStr("import")) 148 Reason = Invalid; 149 else if (II->isReserved(S.getLangOpts()) != 150 ReservedIdentifierStatus::NotReserved) 151 Reason = Reserved; 152 153 // If the identifier is reserved (not invalid) but is in a system header, 154 // we do not diagnose (because we expect system headers to use reserved 155 // identifiers). 156 if (Reason == Reserved && S.getSourceManager().isInSystemHeader(Loc)) 157 Reason = Valid; 158 159 switch (Reason) { 160 case Valid: 161 return false; 162 case Invalid: 163 return S.Diag(Loc, diag::err_invalid_module_name) << II; 164 case Reserved: 165 return S.Diag(Loc, diag::warn_reserved_module_name) << II; 166 } 167 llvm_unreachable("fell off a fully covered switch"); 168 } 169 170 Sema::DeclGroupPtrTy 171 Sema::ActOnModuleDecl(SourceLocation StartLoc, SourceLocation ModuleLoc, 172 ModuleDeclKind MDK, ModuleIdPath Path, 173 ModuleIdPath Partition, ModuleImportState &ImportState) { 174 assert(getLangOpts().CPlusPlusModules && 175 "should only have module decl in standard C++ modules"); 176 177 bool IsFirstDecl = ImportState == ModuleImportState::FirstDecl; 178 bool SeenGMF = ImportState == ModuleImportState::GlobalFragment; 179 // If any of the steps here fail, we count that as invalidating C++20 180 // module state; 181 ImportState = ModuleImportState::NotACXX20Module; 182 183 bool IsPartition = !Partition.empty(); 184 if (IsPartition) 185 switch (MDK) { 186 case ModuleDeclKind::Implementation: 187 MDK = ModuleDeclKind::PartitionImplementation; 188 break; 189 case ModuleDeclKind::Interface: 190 MDK = ModuleDeclKind::PartitionInterface; 191 break; 192 default: 193 llvm_unreachable("how did we get a partition type set?"); 194 } 195 196 // A (non-partition) module implementation unit requires that we are not 197 // compiling a module of any kind. A partition implementation emits an 198 // interface (and the AST for the implementation), which will subsequently 199 // be consumed to emit a binary. 200 // A module interface unit requires that we are not compiling a module map. 201 switch (getLangOpts().getCompilingModule()) { 202 case LangOptions::CMK_None: 203 // It's OK to compile a module interface as a normal translation unit. 204 break; 205 206 case LangOptions::CMK_ModuleInterface: 207 if (MDK != ModuleDeclKind::Implementation) 208 break; 209 210 // We were asked to compile a module interface unit but this is a module 211 // implementation unit. 212 Diag(ModuleLoc, diag::err_module_interface_implementation_mismatch) 213 << FixItHint::CreateInsertion(ModuleLoc, "export "); 214 MDK = ModuleDeclKind::Interface; 215 break; 216 217 case LangOptions::CMK_ModuleMap: 218 Diag(ModuleLoc, diag::err_module_decl_in_module_map_module); 219 return nullptr; 220 221 case LangOptions::CMK_HeaderUnit: 222 Diag(ModuleLoc, diag::err_module_decl_in_header_unit); 223 return nullptr; 224 } 225 226 assert(ModuleScopes.size() <= 1 && "expected to be at global module scope"); 227 228 // FIXME: Most of this work should be done by the preprocessor rather than 229 // here, in order to support macro import. 230 231 // Only one module-declaration is permitted per source file. 232 if (isCurrentModulePurview()) { 233 Diag(ModuleLoc, diag::err_module_redeclaration); 234 Diag(VisibleModules.getImportLoc(ModuleScopes.back().Module), 235 diag::note_prev_module_declaration); 236 return nullptr; 237 } 238 239 assert((!getLangOpts().CPlusPlusModules || 240 SeenGMF == (bool)this->TheGlobalModuleFragment) && 241 "mismatched global module state"); 242 243 // In C++20, the module-declaration must be the first declaration if there 244 // is no global module fragment. 245 if (getLangOpts().CPlusPlusModules && !IsFirstDecl && !SeenGMF) { 246 Diag(ModuleLoc, diag::err_module_decl_not_at_start); 247 SourceLocation BeginLoc = 248 ModuleScopes.empty() 249 ? SourceMgr.getLocForStartOfFile(SourceMgr.getMainFileID()) 250 : ModuleScopes.back().BeginLoc; 251 if (BeginLoc.isValid()) { 252 Diag(BeginLoc, diag::note_global_module_introducer_missing) 253 << FixItHint::CreateInsertion(BeginLoc, "module;\n"); 254 } 255 } 256 257 // C++2b [module.unit]p1: ... The identifiers module and import shall not 258 // appear as identifiers in a module-name or module-partition. All 259 // module-names either beginning with an identifier consisting of std 260 // followed by zero or more digits or containing a reserved identifier 261 // ([lex.name]) are reserved and shall not be specified in a 262 // module-declaration; no diagnostic is required. 263 264 // Test the first part of the path to see if it's std[0-9]+ but allow the 265 // name in a system header. 266 StringRef FirstComponentName = Path[0].first->getName(); 267 if (!getSourceManager().isInSystemHeader(Path[0].second) && 268 (FirstComponentName == "std" || 269 (FirstComponentName.startswith("std") && 270 llvm::all_of(FirstComponentName.drop_front(3), &llvm::isDigit)))) { 271 Diag(Path[0].second, diag::warn_reserved_module_name) << Path[0].first; 272 return nullptr; 273 } 274 275 // Then test all of the components in the path to see if any of them are 276 // using another kind of reserved or invalid identifier. 277 for (auto Part : Path) { 278 if (DiagReservedModuleName(*this, Part.first, Part.second)) 279 return nullptr; 280 } 281 282 // Flatten the dots in a module name. Unlike Clang's hierarchical module map 283 // modules, the dots here are just another character that can appear in a 284 // module name. 285 std::string ModuleName = stringFromPath(Path); 286 if (IsPartition) { 287 ModuleName += ":"; 288 ModuleName += stringFromPath(Partition); 289 } 290 // If a module name was explicitly specified on the command line, it must be 291 // correct. 292 if (!getLangOpts().CurrentModule.empty() && 293 getLangOpts().CurrentModule != ModuleName) { 294 Diag(Path.front().second, diag::err_current_module_name_mismatch) 295 << SourceRange(Path.front().second, IsPartition 296 ? Partition.back().second 297 : Path.back().second) 298 << getLangOpts().CurrentModule; 299 return nullptr; 300 } 301 const_cast<LangOptions&>(getLangOpts()).CurrentModule = ModuleName; 302 303 auto &Map = PP.getHeaderSearchInfo().getModuleMap(); 304 Module *Mod; 305 306 switch (MDK) { 307 case ModuleDeclKind::Interface: 308 case ModuleDeclKind::PartitionInterface: { 309 // We can't have parsed or imported a definition of this module or parsed a 310 // module map defining it already. 311 if (auto *M = Map.findModule(ModuleName)) { 312 Diag(Path[0].second, diag::err_module_redefinition) << ModuleName; 313 if (M->DefinitionLoc.isValid()) 314 Diag(M->DefinitionLoc, diag::note_prev_module_definition); 315 else if (OptionalFileEntryRef FE = M->getASTFile()) 316 Diag(M->DefinitionLoc, diag::note_prev_module_definition_from_ast_file) 317 << FE->getName(); 318 Mod = M; 319 break; 320 } 321 322 // Create a Module for the module that we're defining. 323 Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName); 324 if (MDK == ModuleDeclKind::PartitionInterface) 325 Mod->Kind = Module::ModulePartitionInterface; 326 assert(Mod && "module creation should not fail"); 327 break; 328 } 329 330 case ModuleDeclKind::Implementation: { 331 // C++20 A module-declaration that contains neither an export- 332 // keyword nor a module-partition implicitly imports the primary 333 // module interface unit of the module as if by a module-import- 334 // declaration. 335 std::pair<IdentifierInfo *, SourceLocation> ModuleNameLoc( 336 PP.getIdentifierInfo(ModuleName), Path[0].second); 337 338 // The module loader will assume we're trying to import the module that 339 // we're building if `LangOpts.CurrentModule` equals to 'ModuleName'. 340 // Change the value for `LangOpts.CurrentModule` temporarily to make the 341 // module loader work properly. 342 const_cast<LangOptions&>(getLangOpts()).CurrentModule = ""; 343 Mod = getModuleLoader().loadModule(ModuleLoc, {ModuleNameLoc}, 344 Module::AllVisible, 345 /*IsInclusionDirective=*/false); 346 const_cast<LangOptions&>(getLangOpts()).CurrentModule = ModuleName; 347 348 if (!Mod) { 349 Diag(ModuleLoc, diag::err_module_not_defined) << ModuleName; 350 // Create an empty module interface unit for error recovery. 351 Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName); 352 } 353 354 } break; 355 356 case ModuleDeclKind::PartitionImplementation: 357 // Create an interface, but note that it is an implementation 358 // unit. 359 Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName); 360 Mod->Kind = Module::ModulePartitionImplementation; 361 break; 362 } 363 364 if (!this->TheGlobalModuleFragment) { 365 ModuleScopes.push_back({}); 366 if (getLangOpts().ModulesLocalVisibility) 367 ModuleScopes.back().OuterVisibleModules = std::move(VisibleModules); 368 } else { 369 // We're done with the global module fragment now. 370 ActOnEndOfTranslationUnitFragment(TUFragmentKind::Global); 371 } 372 373 // Switch from the global module fragment (if any) to the named module. 374 ModuleScopes.back().BeginLoc = StartLoc; 375 ModuleScopes.back().Module = Mod; 376 ModuleScopes.back().ModuleInterface = MDK != ModuleDeclKind::Implementation; 377 VisibleModules.setVisible(Mod, ModuleLoc); 378 379 // From now on, we have an owning module for all declarations we see. 380 // In C++20 modules, those declaration would be reachable when imported 381 // unless explicitily exported. 382 // Otherwise, those declarations are module-private unless explicitly 383 // exported. 384 auto *TU = Context.getTranslationUnitDecl(); 385 TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ReachableWhenImported); 386 TU->setLocalOwningModule(Mod); 387 388 // We are in the module purview, but before any other (non import) 389 // statements, so imports are allowed. 390 ImportState = ModuleImportState::ImportAllowed; 391 392 // For an implementation, We already made an implicit import (its interface). 393 // Make and return the import decl to be added to the current TU. 394 if (MDK == ModuleDeclKind::Implementation) { 395 // Make the import decl for the interface. 396 ImportDecl *Import = 397 ImportDecl::Create(Context, CurContext, ModuleLoc, Mod, Path[0].second); 398 // and return it to be added. 399 return ConvertDeclToDeclGroup(Import); 400 } 401 402 getASTContext().setNamedModuleForCodeGen(Mod); 403 404 // FIXME: Create a ModuleDecl. 405 return nullptr; 406 } 407 408 Sema::DeclGroupPtrTy 409 Sema::ActOnPrivateModuleFragmentDecl(SourceLocation ModuleLoc, 410 SourceLocation PrivateLoc) { 411 // C++20 [basic.link]/2: 412 // A private-module-fragment shall appear only in a primary module 413 // interface unit. 414 switch (ModuleScopes.empty() ? Module::ExplicitGlobalModuleFragment 415 : ModuleScopes.back().Module->Kind) { 416 case Module::ModuleMapModule: 417 case Module::ExplicitGlobalModuleFragment: 418 case Module::ImplicitGlobalModuleFragment: 419 case Module::ModulePartitionImplementation: 420 case Module::ModulePartitionInterface: 421 case Module::ModuleHeaderUnit: 422 Diag(PrivateLoc, diag::err_private_module_fragment_not_module); 423 return nullptr; 424 425 case Module::PrivateModuleFragment: 426 Diag(PrivateLoc, diag::err_private_module_fragment_redefined); 427 Diag(ModuleScopes.back().BeginLoc, diag::note_previous_definition); 428 return nullptr; 429 430 case Module::ModuleInterfaceUnit: 431 break; 432 } 433 434 if (!ModuleScopes.back().ModuleInterface) { 435 Diag(PrivateLoc, diag::err_private_module_fragment_not_module_interface); 436 Diag(ModuleScopes.back().BeginLoc, 437 diag::note_not_module_interface_add_export) 438 << FixItHint::CreateInsertion(ModuleScopes.back().BeginLoc, "export "); 439 return nullptr; 440 } 441 442 // FIXME: Check this isn't a module interface partition. 443 // FIXME: Check that this translation unit does not import any partitions; 444 // such imports would violate [basic.link]/2's "shall be the only module unit" 445 // restriction. 446 447 // We've finished the public fragment of the translation unit. 448 ActOnEndOfTranslationUnitFragment(TUFragmentKind::Normal); 449 450 auto &Map = PP.getHeaderSearchInfo().getModuleMap(); 451 Module *PrivateModuleFragment = 452 Map.createPrivateModuleFragmentForInterfaceUnit( 453 ModuleScopes.back().Module, PrivateLoc); 454 assert(PrivateModuleFragment && "module creation should not fail"); 455 456 // Enter the scope of the private module fragment. 457 ModuleScopes.push_back({}); 458 ModuleScopes.back().BeginLoc = ModuleLoc; 459 ModuleScopes.back().Module = PrivateModuleFragment; 460 ModuleScopes.back().ModuleInterface = true; 461 VisibleModules.setVisible(PrivateModuleFragment, ModuleLoc); 462 463 // All declarations created from now on are scoped to the private module 464 // fragment (and are neither visible nor reachable in importers of the module 465 // interface). 466 auto *TU = Context.getTranslationUnitDecl(); 467 TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ModulePrivate); 468 TU->setLocalOwningModule(PrivateModuleFragment); 469 470 // FIXME: Consider creating an explicit representation of this declaration. 471 return nullptr; 472 } 473 474 DeclResult Sema::ActOnModuleImport(SourceLocation StartLoc, 475 SourceLocation ExportLoc, 476 SourceLocation ImportLoc, ModuleIdPath Path, 477 bool IsPartition) { 478 assert((!IsPartition || getLangOpts().CPlusPlusModules) && 479 "partition seen in non-C++20 code?"); 480 481 // For a C++20 module name, flatten into a single identifier with the source 482 // location of the first component. 483 std::pair<IdentifierInfo *, SourceLocation> ModuleNameLoc; 484 485 std::string ModuleName; 486 if (IsPartition) { 487 // We already checked that we are in a module purview in the parser. 488 assert(!ModuleScopes.empty() && "in a module purview, but no module?"); 489 Module *NamedMod = ModuleScopes.back().Module; 490 // If we are importing into a partition, find the owning named module, 491 // otherwise, the name of the importing named module. 492 ModuleName = NamedMod->getPrimaryModuleInterfaceName().str(); 493 ModuleName += ":"; 494 ModuleName += stringFromPath(Path); 495 ModuleNameLoc = {PP.getIdentifierInfo(ModuleName), Path[0].second}; 496 Path = ModuleIdPath(ModuleNameLoc); 497 } else if (getLangOpts().CPlusPlusModules) { 498 ModuleName = stringFromPath(Path); 499 ModuleNameLoc = {PP.getIdentifierInfo(ModuleName), Path[0].second}; 500 Path = ModuleIdPath(ModuleNameLoc); 501 } 502 503 // Diagnose self-import before attempting a load. 504 // [module.import]/9 505 // A module implementation unit of a module M that is not a module partition 506 // shall not contain a module-import-declaration nominating M. 507 // (for an implementation, the module interface is imported implicitly, 508 // but that's handled in the module decl code). 509 510 if (getLangOpts().CPlusPlusModules && isCurrentModulePurview() && 511 getCurrentModule()->Name == ModuleName) { 512 Diag(ImportLoc, diag::err_module_self_import_cxx20) 513 << ModuleName << !ModuleScopes.back().ModuleInterface; 514 return true; 515 } 516 517 Module *Mod = getModuleLoader().loadModule( 518 ImportLoc, Path, Module::AllVisible, /*IsInclusionDirective=*/false); 519 if (!Mod) 520 return true; 521 522 return ActOnModuleImport(StartLoc, ExportLoc, ImportLoc, Mod, Path); 523 } 524 525 /// Determine whether \p D is lexically within an export-declaration. 526 static const ExportDecl *getEnclosingExportDecl(const Decl *D) { 527 for (auto *DC = D->getLexicalDeclContext(); DC; DC = DC->getLexicalParent()) 528 if (auto *ED = dyn_cast<ExportDecl>(DC)) 529 return ED; 530 return nullptr; 531 } 532 533 DeclResult Sema::ActOnModuleImport(SourceLocation StartLoc, 534 SourceLocation ExportLoc, 535 SourceLocation ImportLoc, Module *Mod, 536 ModuleIdPath Path) { 537 VisibleModules.setVisible(Mod, ImportLoc); 538 539 checkModuleImportContext(*this, Mod, ImportLoc, CurContext); 540 541 // FIXME: we should support importing a submodule within a different submodule 542 // of the same top-level module. Until we do, make it an error rather than 543 // silently ignoring the import. 544 // FIXME: Should we warn on a redundant import of the current module? 545 if (Mod->isForBuilding(getLangOpts())) { 546 Diag(ImportLoc, getLangOpts().isCompilingModule() 547 ? diag::err_module_self_import 548 : diag::err_module_import_in_implementation) 549 << Mod->getFullModuleName() << getLangOpts().CurrentModule; 550 } 551 552 SmallVector<SourceLocation, 2> IdentifierLocs; 553 554 if (Path.empty()) { 555 // If this was a header import, pad out with dummy locations. 556 // FIXME: Pass in and use the location of the header-name token in this 557 // case. 558 for (Module *ModCheck = Mod; ModCheck; ModCheck = ModCheck->Parent) 559 IdentifierLocs.push_back(SourceLocation()); 560 } else if (getLangOpts().CPlusPlusModules && !Mod->Parent) { 561 // A single identifier for the whole name. 562 IdentifierLocs.push_back(Path[0].second); 563 } else { 564 Module *ModCheck = Mod; 565 for (unsigned I = 0, N = Path.size(); I != N; ++I) { 566 // If we've run out of module parents, just drop the remaining 567 // identifiers. We need the length to be consistent. 568 if (!ModCheck) 569 break; 570 ModCheck = ModCheck->Parent; 571 572 IdentifierLocs.push_back(Path[I].second); 573 } 574 } 575 576 ImportDecl *Import = ImportDecl::Create(Context, CurContext, StartLoc, 577 Mod, IdentifierLocs); 578 CurContext->addDecl(Import); 579 580 // Sequence initialization of the imported module before that of the current 581 // module, if any. 582 if (!ModuleScopes.empty()) 583 Context.addModuleInitializer(ModuleScopes.back().Module, Import); 584 585 // A module (partition) implementation unit shall not be exported. 586 if (getLangOpts().CPlusPlusModules && ExportLoc.isValid() && 587 Mod->Kind == Module::ModuleKind::ModulePartitionImplementation) { 588 Diag(ExportLoc, diag::err_export_partition_impl) 589 << SourceRange(ExportLoc, Path.back().second); 590 } else if (!ModuleScopes.empty() && 591 (ModuleScopes.back().ModuleInterface || 592 (getLangOpts().CPlusPlusModules && 593 ModuleScopes.back().Module->isGlobalModule()))) { 594 // Re-export the module if the imported module is exported. 595 // Note that we don't need to add re-exported module to Imports field 596 // since `Exports` implies the module is imported already. 597 if (ExportLoc.isValid() || getEnclosingExportDecl(Import)) 598 getCurrentModule()->Exports.emplace_back(Mod, false); 599 else 600 getCurrentModule()->Imports.insert(Mod); 601 } else if (ExportLoc.isValid()) { 602 // [module.interface]p1: 603 // An export-declaration shall inhabit a namespace scope and appear in the 604 // purview of a module interface unit. 605 Diag(ExportLoc, diag::err_export_not_in_module_interface); 606 } 607 608 return Import; 609 } 610 611 void Sema::ActOnModuleInclude(SourceLocation DirectiveLoc, Module *Mod) { 612 checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext, true); 613 BuildModuleInclude(DirectiveLoc, Mod); 614 } 615 616 void Sema::BuildModuleInclude(SourceLocation DirectiveLoc, Module *Mod) { 617 // Determine whether we're in the #include buffer for a module. The #includes 618 // in that buffer do not qualify as module imports; they're just an 619 // implementation detail of us building the module. 620 // 621 // FIXME: Should we even get ActOnModuleInclude calls for those? 622 bool IsInModuleIncludes = 623 TUKind == TU_Module && 624 getSourceManager().isWrittenInMainFile(DirectiveLoc); 625 626 bool ShouldAddImport = !IsInModuleIncludes; 627 628 // If this module import was due to an inclusion directive, create an 629 // implicit import declaration to capture it in the AST. 630 if (ShouldAddImport) { 631 TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl(); 632 ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU, 633 DirectiveLoc, Mod, 634 DirectiveLoc); 635 if (!ModuleScopes.empty()) 636 Context.addModuleInitializer(ModuleScopes.back().Module, ImportD); 637 TU->addDecl(ImportD); 638 Consumer.HandleImplicitImportDecl(ImportD); 639 } 640 641 getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, DirectiveLoc); 642 VisibleModules.setVisible(Mod, DirectiveLoc); 643 644 if (getLangOpts().isCompilingModule()) { 645 Module *ThisModule = PP.getHeaderSearchInfo().lookupModule( 646 getLangOpts().CurrentModule, DirectiveLoc, false, false); 647 (void)ThisModule; 648 assert(ThisModule && "was expecting a module if building one"); 649 } 650 } 651 652 void Sema::ActOnModuleBegin(SourceLocation DirectiveLoc, Module *Mod) { 653 checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext, true); 654 655 ModuleScopes.push_back({}); 656 ModuleScopes.back().Module = Mod; 657 if (getLangOpts().ModulesLocalVisibility) 658 ModuleScopes.back().OuterVisibleModules = std::move(VisibleModules); 659 660 VisibleModules.setVisible(Mod, DirectiveLoc); 661 662 // The enclosing context is now part of this module. 663 // FIXME: Consider creating a child DeclContext to hold the entities 664 // lexically within the module. 665 if (getLangOpts().trackLocalOwningModule()) { 666 for (auto *DC = CurContext; DC; DC = DC->getLexicalParent()) { 667 cast<Decl>(DC)->setModuleOwnershipKind( 668 getLangOpts().ModulesLocalVisibility 669 ? Decl::ModuleOwnershipKind::VisibleWhenImported 670 : Decl::ModuleOwnershipKind::Visible); 671 cast<Decl>(DC)->setLocalOwningModule(Mod); 672 } 673 } 674 } 675 676 void Sema::ActOnModuleEnd(SourceLocation EomLoc, Module *Mod) { 677 if (getLangOpts().ModulesLocalVisibility) { 678 VisibleModules = std::move(ModuleScopes.back().OuterVisibleModules); 679 // Leaving a module hides namespace names, so our visible namespace cache 680 // is now out of date. 681 VisibleNamespaceCache.clear(); 682 } 683 684 assert(!ModuleScopes.empty() && ModuleScopes.back().Module == Mod && 685 "left the wrong module scope"); 686 ModuleScopes.pop_back(); 687 688 // We got to the end of processing a local module. Create an 689 // ImportDecl as we would for an imported module. 690 FileID File = getSourceManager().getFileID(EomLoc); 691 SourceLocation DirectiveLoc; 692 if (EomLoc == getSourceManager().getLocForEndOfFile(File)) { 693 // We reached the end of a #included module header. Use the #include loc. 694 assert(File != getSourceManager().getMainFileID() && 695 "end of submodule in main source file"); 696 DirectiveLoc = getSourceManager().getIncludeLoc(File); 697 } else { 698 // We reached an EOM pragma. Use the pragma location. 699 DirectiveLoc = EomLoc; 700 } 701 BuildModuleInclude(DirectiveLoc, Mod); 702 703 // Any further declarations are in whatever module we returned to. 704 if (getLangOpts().trackLocalOwningModule()) { 705 // The parser guarantees that this is the same context that we entered 706 // the module within. 707 for (auto *DC = CurContext; DC; DC = DC->getLexicalParent()) { 708 cast<Decl>(DC)->setLocalOwningModule(getCurrentModule()); 709 if (!getCurrentModule()) 710 cast<Decl>(DC)->setModuleOwnershipKind( 711 Decl::ModuleOwnershipKind::Unowned); 712 } 713 } 714 } 715 716 void Sema::createImplicitModuleImportForErrorRecovery(SourceLocation Loc, 717 Module *Mod) { 718 // Bail if we're not allowed to implicitly import a module here. 719 if (isSFINAEContext() || !getLangOpts().ModulesErrorRecovery || 720 VisibleModules.isVisible(Mod)) 721 return; 722 723 // Create the implicit import declaration. 724 TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl(); 725 ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU, 726 Loc, Mod, Loc); 727 TU->addDecl(ImportD); 728 Consumer.HandleImplicitImportDecl(ImportD); 729 730 // Make the module visible. 731 getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, Loc); 732 VisibleModules.setVisible(Mod, Loc); 733 } 734 735 /// We have parsed the start of an export declaration, including the '{' 736 /// (if present). 737 Decl *Sema::ActOnStartExportDecl(Scope *S, SourceLocation ExportLoc, 738 SourceLocation LBraceLoc) { 739 ExportDecl *D = ExportDecl::Create(Context, CurContext, ExportLoc); 740 741 // Set this temporarily so we know the export-declaration was braced. 742 D->setRBraceLoc(LBraceLoc); 743 744 CurContext->addDecl(D); 745 PushDeclContext(S, D); 746 747 // C++2a [module.interface]p1: 748 // An export-declaration shall appear only [...] in the purview of a module 749 // interface unit. An export-declaration shall not appear directly or 750 // indirectly within [...] a private-module-fragment. 751 if (!isCurrentModulePurview()) { 752 Diag(ExportLoc, diag::err_export_not_in_module_interface) << 0; 753 D->setInvalidDecl(); 754 return D; 755 } else if (!ModuleScopes.back().ModuleInterface) { 756 Diag(ExportLoc, diag::err_export_not_in_module_interface) << 1; 757 Diag(ModuleScopes.back().BeginLoc, 758 diag::note_not_module_interface_add_export) 759 << FixItHint::CreateInsertion(ModuleScopes.back().BeginLoc, "export "); 760 D->setInvalidDecl(); 761 return D; 762 } else if (ModuleScopes.back().Module->Kind == 763 Module::PrivateModuleFragment) { 764 Diag(ExportLoc, diag::err_export_in_private_module_fragment); 765 Diag(ModuleScopes.back().BeginLoc, diag::note_private_module_fragment); 766 D->setInvalidDecl(); 767 return D; 768 } 769 770 for (const DeclContext *DC = CurContext; DC; DC = DC->getLexicalParent()) { 771 if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) { 772 // An export-declaration shall not appear directly or indirectly within 773 // an unnamed namespace [...] 774 if (ND->isAnonymousNamespace()) { 775 Diag(ExportLoc, diag::err_export_within_anonymous_namespace); 776 Diag(ND->getLocation(), diag::note_anonymous_namespace); 777 // Don't diagnose internal-linkage declarations in this region. 778 D->setInvalidDecl(); 779 return D; 780 } 781 782 // A declaration is exported if it is [...] a namespace-definition 783 // that contains an exported declaration. 784 // 785 // Defer exporting the namespace until after we leave it, in order to 786 // avoid marking all subsequent declarations in the namespace as exported. 787 if (!DeferredExportedNamespaces.insert(ND).second) 788 break; 789 } 790 } 791 792 // [...] its declaration or declaration-seq shall not contain an 793 // export-declaration. 794 if (auto *ED = getEnclosingExportDecl(D)) { 795 Diag(ExportLoc, diag::err_export_within_export); 796 if (ED->hasBraces()) 797 Diag(ED->getLocation(), diag::note_export); 798 D->setInvalidDecl(); 799 return D; 800 } 801 802 D->setModuleOwnershipKind(Decl::ModuleOwnershipKind::VisibleWhenImported); 803 return D; 804 } 805 806 static bool checkExportedDeclContext(Sema &S, DeclContext *DC, 807 SourceLocation BlockStart); 808 809 namespace { 810 enum class UnnamedDeclKind { 811 Empty, 812 StaticAssert, 813 Asm, 814 UsingDirective, 815 Namespace, 816 Context 817 }; 818 } 819 820 static std::optional<UnnamedDeclKind> getUnnamedDeclKind(Decl *D) { 821 if (isa<EmptyDecl>(D)) 822 return UnnamedDeclKind::Empty; 823 if (isa<StaticAssertDecl>(D)) 824 return UnnamedDeclKind::StaticAssert; 825 if (isa<FileScopeAsmDecl>(D)) 826 return UnnamedDeclKind::Asm; 827 if (isa<UsingDirectiveDecl>(D)) 828 return UnnamedDeclKind::UsingDirective; 829 // Everything else either introduces one or more names or is ill-formed. 830 return std::nullopt; 831 } 832 833 unsigned getUnnamedDeclDiag(UnnamedDeclKind UDK, bool InBlock) { 834 switch (UDK) { 835 case UnnamedDeclKind::Empty: 836 case UnnamedDeclKind::StaticAssert: 837 // Allow empty-declarations and static_asserts in an export block as an 838 // extension. 839 return InBlock ? diag::ext_export_no_name_block : diag::err_export_no_name; 840 841 case UnnamedDeclKind::UsingDirective: 842 // Allow exporting using-directives as an extension. 843 return diag::ext_export_using_directive; 844 845 case UnnamedDeclKind::Namespace: 846 // Anonymous namespace with no content. 847 return diag::introduces_no_names; 848 849 case UnnamedDeclKind::Context: 850 // Allow exporting DeclContexts that transitively contain no declarations 851 // as an extension. 852 return diag::ext_export_no_names; 853 854 case UnnamedDeclKind::Asm: 855 return diag::err_export_no_name; 856 } 857 llvm_unreachable("unknown kind"); 858 } 859 860 static void diagExportedUnnamedDecl(Sema &S, UnnamedDeclKind UDK, Decl *D, 861 SourceLocation BlockStart) { 862 S.Diag(D->getLocation(), getUnnamedDeclDiag(UDK, BlockStart.isValid())) 863 << (unsigned)UDK; 864 if (BlockStart.isValid()) 865 S.Diag(BlockStart, diag::note_export); 866 } 867 868 /// Check that it's valid to export \p D. 869 static bool checkExportedDecl(Sema &S, Decl *D, SourceLocation BlockStart) { 870 // C++2a [module.interface]p3: 871 // An exported declaration shall declare at least one name 872 if (auto UDK = getUnnamedDeclKind(D)) 873 diagExportedUnnamedDecl(S, *UDK, D, BlockStart); 874 875 // [...] shall not declare a name with internal linkage. 876 bool HasName = false; 877 if (auto *ND = dyn_cast<NamedDecl>(D)) { 878 // Don't diagnose anonymous union objects; we'll diagnose their members 879 // instead. 880 HasName = (bool)ND->getDeclName(); 881 if (HasName && ND->getFormalLinkage() == InternalLinkage) { 882 S.Diag(ND->getLocation(), diag::err_export_internal) << ND; 883 if (BlockStart.isValid()) 884 S.Diag(BlockStart, diag::note_export); 885 } 886 } 887 888 // C++2a [module.interface]p5: 889 // all entities to which all of the using-declarators ultimately refer 890 // shall have been introduced with a name having external linkage 891 if (auto *USD = dyn_cast<UsingShadowDecl>(D)) { 892 NamedDecl *Target = USD->getUnderlyingDecl(); 893 Linkage Lk = Target->getFormalLinkage(); 894 if (Lk == InternalLinkage || Lk == ModuleLinkage) { 895 S.Diag(USD->getLocation(), diag::err_export_using_internal) 896 << (Lk == InternalLinkage ? 0 : 1) << Target; 897 S.Diag(Target->getLocation(), diag::note_using_decl_target); 898 if (BlockStart.isValid()) 899 S.Diag(BlockStart, diag::note_export); 900 } 901 } 902 903 // Recurse into namespace-scope DeclContexts. (Only namespace-scope 904 // declarations are exported.). 905 if (auto *DC = dyn_cast<DeclContext>(D)) { 906 if (isa<NamespaceDecl>(D) && DC->decls().empty()) { 907 if (!HasName) 908 // We don't allow an empty anonymous namespace (we don't allow decls 909 // in them either, but that's handled in the recursion). 910 diagExportedUnnamedDecl(S, UnnamedDeclKind::Namespace, D, BlockStart); 911 // We allow an empty named namespace decl. 912 } else if (DC->getRedeclContext()->isFileContext() && !isa<EnumDecl>(D)) 913 return checkExportedDeclContext(S, DC, BlockStart); 914 } 915 return false; 916 } 917 918 /// Check that it's valid to export all the declarations in \p DC. 919 static bool checkExportedDeclContext(Sema &S, DeclContext *DC, 920 SourceLocation BlockStart) { 921 bool AllUnnamed = true; 922 for (auto *D : DC->decls()) 923 AllUnnamed &= checkExportedDecl(S, D, BlockStart); 924 return AllUnnamed; 925 } 926 927 /// Complete the definition of an export declaration. 928 Decl *Sema::ActOnFinishExportDecl(Scope *S, Decl *D, SourceLocation RBraceLoc) { 929 auto *ED = cast<ExportDecl>(D); 930 if (RBraceLoc.isValid()) 931 ED->setRBraceLoc(RBraceLoc); 932 933 PopDeclContext(); 934 935 if (!D->isInvalidDecl()) { 936 SourceLocation BlockStart = 937 ED->hasBraces() ? ED->getBeginLoc() : SourceLocation(); 938 for (auto *Child : ED->decls()) { 939 if (checkExportedDecl(*this, Child, BlockStart)) { 940 // If a top-level child is a linkage-spec declaration, it might contain 941 // no declarations (transitively), in which case it's ill-formed. 942 diagExportedUnnamedDecl(*this, UnnamedDeclKind::Context, Child, 943 BlockStart); 944 } 945 if (auto *FD = dyn_cast<FunctionDecl>(Child)) { 946 // [dcl.inline]/7 947 // If an inline function or variable that is attached to a named module 948 // is declared in a definition domain, it shall be defined in that 949 // domain. 950 // So, if the current declaration does not have a definition, we must 951 // check at the end of the TU (or when the PMF starts) to see that we 952 // have a definition at that point. 953 if (FD->isInlineSpecified() && !FD->isDefined()) 954 PendingInlineFuncDecls.insert(FD); 955 } 956 } 957 } 958 959 return D; 960 } 961 962 Module *Sema::PushGlobalModuleFragment(SourceLocation BeginLoc) { 963 // We shouldn't create new global module fragment if there is already 964 // one. 965 if (!TheGlobalModuleFragment) { 966 ModuleMap &Map = PP.getHeaderSearchInfo().getModuleMap(); 967 TheGlobalModuleFragment = Map.createGlobalModuleFragmentForModuleUnit( 968 BeginLoc, getCurrentModule()); 969 } 970 971 assert(TheGlobalModuleFragment && "module creation should not fail"); 972 973 // Enter the scope of the global module. 974 ModuleScopes.push_back({BeginLoc, TheGlobalModuleFragment, 975 /*ModuleInterface=*/false, 976 /*OuterVisibleModules=*/{}}); 977 VisibleModules.setVisible(TheGlobalModuleFragment, BeginLoc); 978 979 return TheGlobalModuleFragment; 980 } 981 982 void Sema::PopGlobalModuleFragment() { 983 assert(!ModuleScopes.empty() && 984 getCurrentModule()->isExplicitGlobalModule() && 985 "left the wrong module scope, which is not global module fragment"); 986 ModuleScopes.pop_back(); 987 } 988 989 Module *Sema::PushImplicitGlobalModuleFragment(SourceLocation BeginLoc, 990 bool IsExported) { 991 Module **M = IsExported ? &TheExportedImplicitGlobalModuleFragment 992 : &TheImplicitGlobalModuleFragment; 993 if (!*M) { 994 ModuleMap &Map = PP.getHeaderSearchInfo().getModuleMap(); 995 *M = Map.createImplicitGlobalModuleFragmentForModuleUnit( 996 BeginLoc, IsExported, getCurrentModule()); 997 } 998 assert(*M && "module creation should not fail"); 999 1000 // Enter the scope of the global module. 1001 ModuleScopes.push_back({BeginLoc, *M, 1002 /*ModuleInterface=*/false, 1003 /*OuterVisibleModules=*/{}}); 1004 VisibleModules.setVisible(*M, BeginLoc); 1005 return *M; 1006 } 1007 1008 void Sema::PopImplicitGlobalModuleFragment() { 1009 assert(!ModuleScopes.empty() && 1010 getCurrentModule()->isImplicitGlobalModule() && 1011 "left the wrong module scope, which is not global module fragment"); 1012 ModuleScopes.pop_back(); 1013 } 1014 1015 bool Sema::isModuleUnitOfCurrentTU(const Module *M) const { 1016 assert(M); 1017 1018 Module *CurrentModuleUnit = getCurrentModule(); 1019 1020 // If we are not in a module currently, M must not be the module unit of 1021 // current TU. 1022 if (!CurrentModuleUnit) 1023 return false; 1024 1025 return M->isSubModuleOf(CurrentModuleUnit->getTopLevelModule()); 1026 } 1027