1 //===--- SemaModule.cpp - Semantic Analysis for Modules -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for modules (C++ modules syntax, 10 // Objective-C modules syntax, and Clang header modules). 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/AST/ASTConsumer.h" 15 #include "clang/Lex/HeaderSearch.h" 16 #include "clang/Lex/Preprocessor.h" 17 #include "clang/Sema/SemaInternal.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include <optional> 20 21 using namespace clang; 22 using namespace sema; 23 24 static void checkModuleImportContext(Sema &S, Module *M, 25 SourceLocation ImportLoc, DeclContext *DC, 26 bool FromInclude = false) { 27 SourceLocation ExternCLoc; 28 29 if (auto *LSD = dyn_cast<LinkageSpecDecl>(DC)) { 30 switch (LSD->getLanguage()) { 31 case LinkageSpecDecl::lang_c: 32 if (ExternCLoc.isInvalid()) 33 ExternCLoc = LSD->getBeginLoc(); 34 break; 35 case LinkageSpecDecl::lang_cxx: 36 break; 37 } 38 DC = LSD->getParent(); 39 } 40 41 while (isa<LinkageSpecDecl>(DC) || isa<ExportDecl>(DC)) 42 DC = DC->getParent(); 43 44 if (!isa<TranslationUnitDecl>(DC)) { 45 S.Diag(ImportLoc, (FromInclude && S.isModuleVisible(M)) 46 ? diag::ext_module_import_not_at_top_level_noop 47 : diag::err_module_import_not_at_top_level_fatal) 48 << M->getFullModuleName() << DC; 49 S.Diag(cast<Decl>(DC)->getBeginLoc(), 50 diag::note_module_import_not_at_top_level) 51 << DC; 52 } else if (!M->IsExternC && ExternCLoc.isValid()) { 53 S.Diag(ImportLoc, diag::ext_module_import_in_extern_c) 54 << M->getFullModuleName(); 55 S.Diag(ExternCLoc, diag::note_extern_c_begins_here); 56 } 57 } 58 59 // We represent the primary and partition names as 'Paths' which are sections 60 // of the hierarchical access path for a clang module. However for C++20 61 // the periods in a name are just another character, and we will need to 62 // flatten them into a string. 63 static std::string stringFromPath(ModuleIdPath Path) { 64 std::string Name; 65 if (Path.empty()) 66 return Name; 67 68 for (auto &Piece : Path) { 69 if (!Name.empty()) 70 Name += "."; 71 Name += Piece.first->getName(); 72 } 73 return Name; 74 } 75 76 Sema::DeclGroupPtrTy 77 Sema::ActOnGlobalModuleFragmentDecl(SourceLocation ModuleLoc) { 78 // We start in the global module; 79 Module *GlobalModule = 80 PushGlobalModuleFragment(ModuleLoc); 81 82 // All declarations created from now on are owned by the global module. 83 auto *TU = Context.getTranslationUnitDecl(); 84 // [module.global.frag]p2 85 // A global-module-fragment specifies the contents of the global module 86 // fragment for a module unit. The global module fragment can be used to 87 // provide declarations that are attached to the global module and usable 88 // within the module unit. 89 // 90 // So the declations in the global module shouldn't be visible by default. 91 TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ReachableWhenImported); 92 TU->setLocalOwningModule(GlobalModule); 93 94 // FIXME: Consider creating an explicit representation of this declaration. 95 return nullptr; 96 } 97 98 void Sema::HandleStartOfHeaderUnit() { 99 assert(getLangOpts().CPlusPlusModules && 100 "Header units are only valid for C++20 modules"); 101 SourceLocation StartOfTU = 102 SourceMgr.getLocForStartOfFile(SourceMgr.getMainFileID()); 103 104 StringRef HUName = getLangOpts().CurrentModule; 105 if (HUName.empty()) { 106 HUName = 107 SourceMgr.getFileEntryRefForID(SourceMgr.getMainFileID())->getName(); 108 const_cast<LangOptions &>(getLangOpts()).CurrentModule = HUName.str(); 109 } 110 111 // TODO: Make the C++20 header lookup independent. 112 // When the input is pre-processed source, we need a file ref to the original 113 // file for the header map. 114 auto F = SourceMgr.getFileManager().getOptionalFileRef(HUName); 115 // For the sake of error recovery (if someone has moved the original header 116 // after creating the pre-processed output) fall back to obtaining the file 117 // ref for the input file, which must be present. 118 if (!F) 119 F = SourceMgr.getFileEntryRefForID(SourceMgr.getMainFileID()); 120 assert(F && "failed to find the header unit source?"); 121 Module::Header H{HUName.str(), HUName.str(), *F}; 122 auto &Map = PP.getHeaderSearchInfo().getModuleMap(); 123 Module *Mod = Map.createHeaderUnit(StartOfTU, HUName, H); 124 assert(Mod && "module creation should not fail"); 125 ModuleScopes.push_back({}); // No GMF 126 ModuleScopes.back().BeginLoc = StartOfTU; 127 ModuleScopes.back().Module = Mod; 128 ModuleScopes.back().ModuleInterface = true; 129 VisibleModules.setVisible(Mod, StartOfTU); 130 131 // From now on, we have an owning module for all declarations we see. 132 // All of these are implicitly exported. 133 auto *TU = Context.getTranslationUnitDecl(); 134 TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::Visible); 135 TU->setLocalOwningModule(Mod); 136 } 137 138 /// Tests whether the given identifier is reserved as a module name and 139 /// diagnoses if it is. Returns true if a diagnostic is emitted and false 140 /// otherwise. 141 static bool DiagReservedModuleName(Sema &S, const IdentifierInfo *II, 142 SourceLocation Loc) { 143 enum { 144 Valid = -1, 145 Invalid = 0, 146 Reserved = 1, 147 } Reason = Valid; 148 149 if (II->isStr("module") || II->isStr("import")) 150 Reason = Invalid; 151 else if (II->isReserved(S.getLangOpts()) != 152 ReservedIdentifierStatus::NotReserved) 153 Reason = Reserved; 154 155 // If the identifier is reserved (not invalid) but is in a system header, 156 // we do not diagnose (because we expect system headers to use reserved 157 // identifiers). 158 if (Reason == Reserved && S.getSourceManager().isInSystemHeader(Loc)) 159 Reason = Valid; 160 161 switch (Reason) { 162 case Valid: 163 return false; 164 case Invalid: 165 return S.Diag(Loc, diag::err_invalid_module_name) << II; 166 case Reserved: 167 S.Diag(Loc, diag::warn_reserved_module_name) << II; 168 return false; 169 } 170 llvm_unreachable("fell off a fully covered switch"); 171 } 172 173 Sema::DeclGroupPtrTy 174 Sema::ActOnModuleDecl(SourceLocation StartLoc, SourceLocation ModuleLoc, 175 ModuleDeclKind MDK, ModuleIdPath Path, 176 ModuleIdPath Partition, ModuleImportState &ImportState) { 177 assert(getLangOpts().CPlusPlusModules && 178 "should only have module decl in standard C++ modules"); 179 180 bool IsFirstDecl = ImportState == ModuleImportState::FirstDecl; 181 bool SeenGMF = ImportState == ModuleImportState::GlobalFragment; 182 // If any of the steps here fail, we count that as invalidating C++20 183 // module state; 184 ImportState = ModuleImportState::NotACXX20Module; 185 186 bool IsPartition = !Partition.empty(); 187 if (IsPartition) 188 switch (MDK) { 189 case ModuleDeclKind::Implementation: 190 MDK = ModuleDeclKind::PartitionImplementation; 191 break; 192 case ModuleDeclKind::Interface: 193 MDK = ModuleDeclKind::PartitionInterface; 194 break; 195 default: 196 llvm_unreachable("how did we get a partition type set?"); 197 } 198 199 // A (non-partition) module implementation unit requires that we are not 200 // compiling a module of any kind. A partition implementation emits an 201 // interface (and the AST for the implementation), which will subsequently 202 // be consumed to emit a binary. 203 // A module interface unit requires that we are not compiling a module map. 204 switch (getLangOpts().getCompilingModule()) { 205 case LangOptions::CMK_None: 206 // It's OK to compile a module interface as a normal translation unit. 207 break; 208 209 case LangOptions::CMK_ModuleInterface: 210 if (MDK != ModuleDeclKind::Implementation) 211 break; 212 213 // We were asked to compile a module interface unit but this is a module 214 // implementation unit. 215 Diag(ModuleLoc, diag::err_module_interface_implementation_mismatch) 216 << FixItHint::CreateInsertion(ModuleLoc, "export "); 217 MDK = ModuleDeclKind::Interface; 218 break; 219 220 case LangOptions::CMK_ModuleMap: 221 Diag(ModuleLoc, diag::err_module_decl_in_module_map_module); 222 return nullptr; 223 224 case LangOptions::CMK_HeaderUnit: 225 Diag(ModuleLoc, diag::err_module_decl_in_header_unit); 226 return nullptr; 227 } 228 229 assert(ModuleScopes.size() <= 1 && "expected to be at global module scope"); 230 231 // FIXME: Most of this work should be done by the preprocessor rather than 232 // here, in order to support macro import. 233 234 // Only one module-declaration is permitted per source file. 235 if (isCurrentModulePurview()) { 236 Diag(ModuleLoc, diag::err_module_redeclaration); 237 Diag(VisibleModules.getImportLoc(ModuleScopes.back().Module), 238 diag::note_prev_module_declaration); 239 return nullptr; 240 } 241 242 assert((!getLangOpts().CPlusPlusModules || 243 SeenGMF == (bool)this->TheGlobalModuleFragment) && 244 "mismatched global module state"); 245 246 // In C++20, the module-declaration must be the first declaration if there 247 // is no global module fragment. 248 if (getLangOpts().CPlusPlusModules && !IsFirstDecl && !SeenGMF) { 249 Diag(ModuleLoc, diag::err_module_decl_not_at_start); 250 SourceLocation BeginLoc = 251 ModuleScopes.empty() 252 ? SourceMgr.getLocForStartOfFile(SourceMgr.getMainFileID()) 253 : ModuleScopes.back().BeginLoc; 254 if (BeginLoc.isValid()) { 255 Diag(BeginLoc, diag::note_global_module_introducer_missing) 256 << FixItHint::CreateInsertion(BeginLoc, "module;\n"); 257 } 258 } 259 260 // C++23 [module.unit]p1: ... The identifiers module and import shall not 261 // appear as identifiers in a module-name or module-partition. All 262 // module-names either beginning with an identifier consisting of std 263 // followed by zero or more digits or containing a reserved identifier 264 // ([lex.name]) are reserved and shall not be specified in a 265 // module-declaration; no diagnostic is required. 266 267 // Test the first part of the path to see if it's std[0-9]+ but allow the 268 // name in a system header. 269 StringRef FirstComponentName = Path[0].first->getName(); 270 if (!getSourceManager().isInSystemHeader(Path[0].second) && 271 (FirstComponentName == "std" || 272 (FirstComponentName.startswith("std") && 273 llvm::all_of(FirstComponentName.drop_front(3), &llvm::isDigit)))) 274 Diag(Path[0].second, diag::warn_reserved_module_name) << Path[0].first; 275 276 // Then test all of the components in the path to see if any of them are 277 // using another kind of reserved or invalid identifier. 278 for (auto Part : Path) { 279 if (DiagReservedModuleName(*this, Part.first, Part.second)) 280 return nullptr; 281 } 282 283 // Flatten the dots in a module name. Unlike Clang's hierarchical module map 284 // modules, the dots here are just another character that can appear in a 285 // module name. 286 std::string ModuleName = stringFromPath(Path); 287 if (IsPartition) { 288 ModuleName += ":"; 289 ModuleName += stringFromPath(Partition); 290 } 291 // If a module name was explicitly specified on the command line, it must be 292 // correct. 293 if (!getLangOpts().CurrentModule.empty() && 294 getLangOpts().CurrentModule != ModuleName) { 295 Diag(Path.front().second, diag::err_current_module_name_mismatch) 296 << SourceRange(Path.front().second, IsPartition 297 ? Partition.back().second 298 : Path.back().second) 299 << getLangOpts().CurrentModule; 300 return nullptr; 301 } 302 const_cast<LangOptions&>(getLangOpts()).CurrentModule = ModuleName; 303 304 auto &Map = PP.getHeaderSearchInfo().getModuleMap(); 305 Module *Mod; // The module we are creating. 306 Module *Interface = nullptr; // The interface for an implementation. 307 switch (MDK) { 308 case ModuleDeclKind::Interface: 309 case ModuleDeclKind::PartitionInterface: { 310 // We can't have parsed or imported a definition of this module or parsed a 311 // module map defining it already. 312 if (auto *M = Map.findModule(ModuleName)) { 313 Diag(Path[0].second, diag::err_module_redefinition) << ModuleName; 314 if (M->DefinitionLoc.isValid()) 315 Diag(M->DefinitionLoc, diag::note_prev_module_definition); 316 else if (OptionalFileEntryRef FE = M->getASTFile()) 317 Diag(M->DefinitionLoc, diag::note_prev_module_definition_from_ast_file) 318 << FE->getName(); 319 Mod = M; 320 break; 321 } 322 323 // Create a Module for the module that we're defining. 324 Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName); 325 if (MDK == ModuleDeclKind::PartitionInterface) 326 Mod->Kind = Module::ModulePartitionInterface; 327 assert(Mod && "module creation should not fail"); 328 break; 329 } 330 331 case ModuleDeclKind::Implementation: { 332 // C++20 A module-declaration that contains neither an export- 333 // keyword nor a module-partition implicitly imports the primary 334 // module interface unit of the module as if by a module-import- 335 // declaration. 336 std::pair<IdentifierInfo *, SourceLocation> ModuleNameLoc( 337 PP.getIdentifierInfo(ModuleName), Path[0].second); 338 339 // The module loader will assume we're trying to import the module that 340 // we're building if `LangOpts.CurrentModule` equals to 'ModuleName'. 341 // Change the value for `LangOpts.CurrentModule` temporarily to make the 342 // module loader work properly. 343 const_cast<LangOptions &>(getLangOpts()).CurrentModule = ""; 344 Interface = getModuleLoader().loadModule(ModuleLoc, {ModuleNameLoc}, 345 Module::AllVisible, 346 /*IsInclusionDirective=*/false); 347 const_cast<LangOptions&>(getLangOpts()).CurrentModule = ModuleName; 348 349 if (!Interface) { 350 Diag(ModuleLoc, diag::err_module_not_defined) << ModuleName; 351 // Create an empty module interface unit for error recovery. 352 Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName); 353 } else { 354 Mod = Map.createModuleForImplementationUnit(ModuleLoc, ModuleName); 355 } 356 } break; 357 358 case ModuleDeclKind::PartitionImplementation: 359 // Create an interface, but note that it is an implementation 360 // unit. 361 Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName); 362 Mod->Kind = Module::ModulePartitionImplementation; 363 break; 364 } 365 366 if (!this->TheGlobalModuleFragment) { 367 ModuleScopes.push_back({}); 368 if (getLangOpts().ModulesLocalVisibility) 369 ModuleScopes.back().OuterVisibleModules = std::move(VisibleModules); 370 } else { 371 // We're done with the global module fragment now. 372 ActOnEndOfTranslationUnitFragment(TUFragmentKind::Global); 373 } 374 375 // Switch from the global module fragment (if any) to the named module. 376 ModuleScopes.back().BeginLoc = StartLoc; 377 ModuleScopes.back().Module = Mod; 378 ModuleScopes.back().ModuleInterface = MDK != ModuleDeclKind::Implementation; 379 VisibleModules.setVisible(Mod, ModuleLoc); 380 381 // From now on, we have an owning module for all declarations we see. 382 // In C++20 modules, those declaration would be reachable when imported 383 // unless explicitily exported. 384 // Otherwise, those declarations are module-private unless explicitly 385 // exported. 386 auto *TU = Context.getTranslationUnitDecl(); 387 TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ReachableWhenImported); 388 TU->setLocalOwningModule(Mod); 389 390 // We are in the module purview, but before any other (non import) 391 // statements, so imports are allowed. 392 ImportState = ModuleImportState::ImportAllowed; 393 394 getASTContext().setCurrentNamedModule(Mod); 395 396 // We already potentially made an implicit import (in the case of a module 397 // implementation unit importing its interface). Make this module visible 398 // and return the import decl to be added to the current TU. 399 if (Interface) { 400 401 VisibleModules.setVisible(Interface, ModuleLoc); 402 VisibleModules.makeTransitiveImportsVisible(Interface, ModuleLoc); 403 404 // Make the import decl for the interface in the impl module. 405 ImportDecl *Import = ImportDecl::Create(Context, CurContext, ModuleLoc, 406 Interface, Path[0].second); 407 CurContext->addDecl(Import); 408 409 // Sequence initialization of the imported module before that of the current 410 // module, if any. 411 Context.addModuleInitializer(ModuleScopes.back().Module, Import); 412 Mod->Imports.insert(Interface); // As if we imported it. 413 // Also save this as a shortcut to checking for decls in the interface 414 ThePrimaryInterface = Interface; 415 // If we made an implicit import of the module interface, then return the 416 // imported module decl. 417 return ConvertDeclToDeclGroup(Import); 418 } 419 420 return nullptr; 421 } 422 423 Sema::DeclGroupPtrTy 424 Sema::ActOnPrivateModuleFragmentDecl(SourceLocation ModuleLoc, 425 SourceLocation PrivateLoc) { 426 // C++20 [basic.link]/2: 427 // A private-module-fragment shall appear only in a primary module 428 // interface unit. 429 switch (ModuleScopes.empty() ? Module::ExplicitGlobalModuleFragment 430 : ModuleScopes.back().Module->Kind) { 431 case Module::ModuleMapModule: 432 case Module::ExplicitGlobalModuleFragment: 433 case Module::ImplicitGlobalModuleFragment: 434 case Module::ModulePartitionImplementation: 435 case Module::ModulePartitionInterface: 436 case Module::ModuleHeaderUnit: 437 Diag(PrivateLoc, diag::err_private_module_fragment_not_module); 438 return nullptr; 439 440 case Module::PrivateModuleFragment: 441 Diag(PrivateLoc, diag::err_private_module_fragment_redefined); 442 Diag(ModuleScopes.back().BeginLoc, diag::note_previous_definition); 443 return nullptr; 444 445 case Module::ModuleImplementationUnit: 446 Diag(PrivateLoc, diag::err_private_module_fragment_not_module_interface); 447 Diag(ModuleScopes.back().BeginLoc, 448 diag::note_not_module_interface_add_export) 449 << FixItHint::CreateInsertion(ModuleScopes.back().BeginLoc, "export "); 450 return nullptr; 451 452 case Module::ModuleInterfaceUnit: 453 break; 454 } 455 456 // FIXME: Check that this translation unit does not import any partitions; 457 // such imports would violate [basic.link]/2's "shall be the only module unit" 458 // restriction. 459 460 // We've finished the public fragment of the translation unit. 461 ActOnEndOfTranslationUnitFragment(TUFragmentKind::Normal); 462 463 auto &Map = PP.getHeaderSearchInfo().getModuleMap(); 464 Module *PrivateModuleFragment = 465 Map.createPrivateModuleFragmentForInterfaceUnit( 466 ModuleScopes.back().Module, PrivateLoc); 467 assert(PrivateModuleFragment && "module creation should not fail"); 468 469 // Enter the scope of the private module fragment. 470 ModuleScopes.push_back({}); 471 ModuleScopes.back().BeginLoc = ModuleLoc; 472 ModuleScopes.back().Module = PrivateModuleFragment; 473 ModuleScopes.back().ModuleInterface = true; 474 VisibleModules.setVisible(PrivateModuleFragment, ModuleLoc); 475 476 // All declarations created from now on are scoped to the private module 477 // fragment (and are neither visible nor reachable in importers of the module 478 // interface). 479 auto *TU = Context.getTranslationUnitDecl(); 480 TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ModulePrivate); 481 TU->setLocalOwningModule(PrivateModuleFragment); 482 483 // FIXME: Consider creating an explicit representation of this declaration. 484 return nullptr; 485 } 486 487 DeclResult Sema::ActOnModuleImport(SourceLocation StartLoc, 488 SourceLocation ExportLoc, 489 SourceLocation ImportLoc, ModuleIdPath Path, 490 bool IsPartition) { 491 assert((!IsPartition || getLangOpts().CPlusPlusModules) && 492 "partition seen in non-C++20 code?"); 493 494 // For a C++20 module name, flatten into a single identifier with the source 495 // location of the first component. 496 std::pair<IdentifierInfo *, SourceLocation> ModuleNameLoc; 497 498 std::string ModuleName; 499 if (IsPartition) { 500 // We already checked that we are in a module purview in the parser. 501 assert(!ModuleScopes.empty() && "in a module purview, but no module?"); 502 Module *NamedMod = ModuleScopes.back().Module; 503 // If we are importing into a partition, find the owning named module, 504 // otherwise, the name of the importing named module. 505 ModuleName = NamedMod->getPrimaryModuleInterfaceName().str(); 506 ModuleName += ":"; 507 ModuleName += stringFromPath(Path); 508 ModuleNameLoc = {PP.getIdentifierInfo(ModuleName), Path[0].second}; 509 Path = ModuleIdPath(ModuleNameLoc); 510 } else if (getLangOpts().CPlusPlusModules) { 511 ModuleName = stringFromPath(Path); 512 ModuleNameLoc = {PP.getIdentifierInfo(ModuleName), Path[0].second}; 513 Path = ModuleIdPath(ModuleNameLoc); 514 } 515 516 // Diagnose self-import before attempting a load. 517 // [module.import]/9 518 // A module implementation unit of a module M that is not a module partition 519 // shall not contain a module-import-declaration nominating M. 520 // (for an implementation, the module interface is imported implicitly, 521 // but that's handled in the module decl code). 522 523 if (getLangOpts().CPlusPlusModules && isCurrentModulePurview() && 524 getCurrentModule()->Name == ModuleName) { 525 Diag(ImportLoc, diag::err_module_self_import_cxx20) 526 << ModuleName << !ModuleScopes.back().ModuleInterface; 527 return true; 528 } 529 530 Module *Mod = getModuleLoader().loadModule( 531 ImportLoc, Path, Module::AllVisible, /*IsInclusionDirective=*/false); 532 if (!Mod) 533 return true; 534 535 if (!Mod->isInterfaceOrPartition() && !ModuleName.empty()) { 536 Diag(ImportLoc, diag::err_module_import_non_interface_nor_parition) 537 << ModuleName; 538 return true; 539 } 540 541 return ActOnModuleImport(StartLoc, ExportLoc, ImportLoc, Mod, Path); 542 } 543 544 /// Determine whether \p D is lexically within an export-declaration. 545 static const ExportDecl *getEnclosingExportDecl(const Decl *D) { 546 for (auto *DC = D->getLexicalDeclContext(); DC; DC = DC->getLexicalParent()) 547 if (auto *ED = dyn_cast<ExportDecl>(DC)) 548 return ED; 549 return nullptr; 550 } 551 552 DeclResult Sema::ActOnModuleImport(SourceLocation StartLoc, 553 SourceLocation ExportLoc, 554 SourceLocation ImportLoc, Module *Mod, 555 ModuleIdPath Path) { 556 if (Mod->isHeaderUnit()) 557 Diag(ImportLoc, diag::warn_experimental_header_unit); 558 559 VisibleModules.setVisible(Mod, ImportLoc); 560 561 checkModuleImportContext(*this, Mod, ImportLoc, CurContext); 562 563 // FIXME: we should support importing a submodule within a different submodule 564 // of the same top-level module. Until we do, make it an error rather than 565 // silently ignoring the import. 566 // FIXME: Should we warn on a redundant import of the current module? 567 if (Mod->isForBuilding(getLangOpts())) { 568 Diag(ImportLoc, getLangOpts().isCompilingModule() 569 ? diag::err_module_self_import 570 : diag::err_module_import_in_implementation) 571 << Mod->getFullModuleName() << getLangOpts().CurrentModule; 572 } 573 574 SmallVector<SourceLocation, 2> IdentifierLocs; 575 576 if (Path.empty()) { 577 // If this was a header import, pad out with dummy locations. 578 // FIXME: Pass in and use the location of the header-name token in this 579 // case. 580 for (Module *ModCheck = Mod; ModCheck; ModCheck = ModCheck->Parent) 581 IdentifierLocs.push_back(SourceLocation()); 582 } else if (getLangOpts().CPlusPlusModules && !Mod->Parent) { 583 // A single identifier for the whole name. 584 IdentifierLocs.push_back(Path[0].second); 585 } else { 586 Module *ModCheck = Mod; 587 for (unsigned I = 0, N = Path.size(); I != N; ++I) { 588 // If we've run out of module parents, just drop the remaining 589 // identifiers. We need the length to be consistent. 590 if (!ModCheck) 591 break; 592 ModCheck = ModCheck->Parent; 593 594 IdentifierLocs.push_back(Path[I].second); 595 } 596 } 597 598 ImportDecl *Import = ImportDecl::Create(Context, CurContext, StartLoc, 599 Mod, IdentifierLocs); 600 CurContext->addDecl(Import); 601 602 // Sequence initialization of the imported module before that of the current 603 // module, if any. 604 if (!ModuleScopes.empty()) 605 Context.addModuleInitializer(ModuleScopes.back().Module, Import); 606 607 // A module (partition) implementation unit shall not be exported. 608 if (getLangOpts().CPlusPlusModules && ExportLoc.isValid() && 609 Mod->Kind == Module::ModuleKind::ModulePartitionImplementation) { 610 Diag(ExportLoc, diag::err_export_partition_impl) 611 << SourceRange(ExportLoc, Path.back().second); 612 } else if (!ModuleScopes.empty() && 613 (ModuleScopes.back().ModuleInterface || 614 (getLangOpts().CPlusPlusModules && 615 ModuleScopes.back().Module->isGlobalModule()))) { 616 // Re-export the module if the imported module is exported. 617 // Note that we don't need to add re-exported module to Imports field 618 // since `Exports` implies the module is imported already. 619 if (ExportLoc.isValid() || getEnclosingExportDecl(Import)) 620 getCurrentModule()->Exports.emplace_back(Mod, false); 621 else 622 getCurrentModule()->Imports.insert(Mod); 623 } else if (ExportLoc.isValid()) { 624 // [module.interface]p1: 625 // An export-declaration shall inhabit a namespace scope and appear in the 626 // purview of a module interface unit. 627 Diag(ExportLoc, diag::err_export_not_in_module_interface); 628 } 629 630 return Import; 631 } 632 633 void Sema::ActOnModuleInclude(SourceLocation DirectiveLoc, Module *Mod) { 634 checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext, true); 635 BuildModuleInclude(DirectiveLoc, Mod); 636 } 637 638 void Sema::BuildModuleInclude(SourceLocation DirectiveLoc, Module *Mod) { 639 // Determine whether we're in the #include buffer for a module. The #includes 640 // in that buffer do not qualify as module imports; they're just an 641 // implementation detail of us building the module. 642 // 643 // FIXME: Should we even get ActOnModuleInclude calls for those? 644 bool IsInModuleIncludes = 645 TUKind == TU_Module && 646 getSourceManager().isWrittenInMainFile(DirectiveLoc); 647 648 // If we are really importing a module (not just checking layering) due to an 649 // #include in the main file, synthesize an ImportDecl. 650 if (getLangOpts().Modules && !IsInModuleIncludes) { 651 TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl(); 652 ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU, 653 DirectiveLoc, Mod, 654 DirectiveLoc); 655 if (!ModuleScopes.empty()) 656 Context.addModuleInitializer(ModuleScopes.back().Module, ImportD); 657 TU->addDecl(ImportD); 658 Consumer.HandleImplicitImportDecl(ImportD); 659 } 660 661 getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, DirectiveLoc); 662 VisibleModules.setVisible(Mod, DirectiveLoc); 663 664 if (getLangOpts().isCompilingModule()) { 665 Module *ThisModule = PP.getHeaderSearchInfo().lookupModule( 666 getLangOpts().CurrentModule, DirectiveLoc, false, false); 667 (void)ThisModule; 668 assert(ThisModule && "was expecting a module if building one"); 669 } 670 } 671 672 void Sema::ActOnModuleBegin(SourceLocation DirectiveLoc, Module *Mod) { 673 checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext, true); 674 675 ModuleScopes.push_back({}); 676 ModuleScopes.back().Module = Mod; 677 if (getLangOpts().ModulesLocalVisibility) 678 ModuleScopes.back().OuterVisibleModules = std::move(VisibleModules); 679 680 VisibleModules.setVisible(Mod, DirectiveLoc); 681 682 // The enclosing context is now part of this module. 683 // FIXME: Consider creating a child DeclContext to hold the entities 684 // lexically within the module. 685 if (getLangOpts().trackLocalOwningModule()) { 686 for (auto *DC = CurContext; DC; DC = DC->getLexicalParent()) { 687 cast<Decl>(DC)->setModuleOwnershipKind( 688 getLangOpts().ModulesLocalVisibility 689 ? Decl::ModuleOwnershipKind::VisibleWhenImported 690 : Decl::ModuleOwnershipKind::Visible); 691 cast<Decl>(DC)->setLocalOwningModule(Mod); 692 } 693 } 694 } 695 696 void Sema::ActOnModuleEnd(SourceLocation EomLoc, Module *Mod) { 697 if (getLangOpts().ModulesLocalVisibility) { 698 VisibleModules = std::move(ModuleScopes.back().OuterVisibleModules); 699 // Leaving a module hides namespace names, so our visible namespace cache 700 // is now out of date. 701 VisibleNamespaceCache.clear(); 702 } 703 704 assert(!ModuleScopes.empty() && ModuleScopes.back().Module == Mod && 705 "left the wrong module scope"); 706 ModuleScopes.pop_back(); 707 708 // We got to the end of processing a local module. Create an 709 // ImportDecl as we would for an imported module. 710 FileID File = getSourceManager().getFileID(EomLoc); 711 SourceLocation DirectiveLoc; 712 if (EomLoc == getSourceManager().getLocForEndOfFile(File)) { 713 // We reached the end of a #included module header. Use the #include loc. 714 assert(File != getSourceManager().getMainFileID() && 715 "end of submodule in main source file"); 716 DirectiveLoc = getSourceManager().getIncludeLoc(File); 717 } else { 718 // We reached an EOM pragma. Use the pragma location. 719 DirectiveLoc = EomLoc; 720 } 721 BuildModuleInclude(DirectiveLoc, Mod); 722 723 // Any further declarations are in whatever module we returned to. 724 if (getLangOpts().trackLocalOwningModule()) { 725 // The parser guarantees that this is the same context that we entered 726 // the module within. 727 for (auto *DC = CurContext; DC; DC = DC->getLexicalParent()) { 728 cast<Decl>(DC)->setLocalOwningModule(getCurrentModule()); 729 if (!getCurrentModule()) 730 cast<Decl>(DC)->setModuleOwnershipKind( 731 Decl::ModuleOwnershipKind::Unowned); 732 } 733 } 734 } 735 736 void Sema::createImplicitModuleImportForErrorRecovery(SourceLocation Loc, 737 Module *Mod) { 738 // Bail if we're not allowed to implicitly import a module here. 739 if (isSFINAEContext() || !getLangOpts().ModulesErrorRecovery || 740 VisibleModules.isVisible(Mod)) 741 return; 742 743 // Create the implicit import declaration. 744 TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl(); 745 ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU, 746 Loc, Mod, Loc); 747 TU->addDecl(ImportD); 748 Consumer.HandleImplicitImportDecl(ImportD); 749 750 // Make the module visible. 751 getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, Loc); 752 VisibleModules.setVisible(Mod, Loc); 753 } 754 755 /// We have parsed the start of an export declaration, including the '{' 756 /// (if present). 757 Decl *Sema::ActOnStartExportDecl(Scope *S, SourceLocation ExportLoc, 758 SourceLocation LBraceLoc) { 759 ExportDecl *D = ExportDecl::Create(Context, CurContext, ExportLoc); 760 761 // Set this temporarily so we know the export-declaration was braced. 762 D->setRBraceLoc(LBraceLoc); 763 764 CurContext->addDecl(D); 765 PushDeclContext(S, D); 766 767 // C++2a [module.interface]p1: 768 // An export-declaration shall appear only [...] in the purview of a module 769 // interface unit. An export-declaration shall not appear directly or 770 // indirectly within [...] a private-module-fragment. 771 if (!isCurrentModulePurview()) { 772 Diag(ExportLoc, diag::err_export_not_in_module_interface) << 0; 773 D->setInvalidDecl(); 774 return D; 775 } else if (!ModuleScopes.back().ModuleInterface) { 776 Diag(ExportLoc, diag::err_export_not_in_module_interface) << 1; 777 Diag(ModuleScopes.back().BeginLoc, 778 diag::note_not_module_interface_add_export) 779 << FixItHint::CreateInsertion(ModuleScopes.back().BeginLoc, "export "); 780 D->setInvalidDecl(); 781 return D; 782 } else if (ModuleScopes.back().Module->Kind == 783 Module::PrivateModuleFragment) { 784 Diag(ExportLoc, diag::err_export_in_private_module_fragment); 785 Diag(ModuleScopes.back().BeginLoc, diag::note_private_module_fragment); 786 D->setInvalidDecl(); 787 return D; 788 } 789 790 for (const DeclContext *DC = CurContext; DC; DC = DC->getLexicalParent()) { 791 if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) { 792 // An export-declaration shall not appear directly or indirectly within 793 // an unnamed namespace [...] 794 if (ND->isAnonymousNamespace()) { 795 Diag(ExportLoc, diag::err_export_within_anonymous_namespace); 796 Diag(ND->getLocation(), diag::note_anonymous_namespace); 797 // Don't diagnose internal-linkage declarations in this region. 798 D->setInvalidDecl(); 799 return D; 800 } 801 802 // A declaration is exported if it is [...] a namespace-definition 803 // that contains an exported declaration. 804 // 805 // Defer exporting the namespace until after we leave it, in order to 806 // avoid marking all subsequent declarations in the namespace as exported. 807 if (!DeferredExportedNamespaces.insert(ND).second) 808 break; 809 } 810 } 811 812 // [...] its declaration or declaration-seq shall not contain an 813 // export-declaration. 814 if (auto *ED = getEnclosingExportDecl(D)) { 815 Diag(ExportLoc, diag::err_export_within_export); 816 if (ED->hasBraces()) 817 Diag(ED->getLocation(), diag::note_export); 818 D->setInvalidDecl(); 819 return D; 820 } 821 822 D->setModuleOwnershipKind(Decl::ModuleOwnershipKind::VisibleWhenImported); 823 return D; 824 } 825 826 static bool checkExportedDecl(Sema &, Decl *, SourceLocation); 827 828 /// Check that it's valid to export all the declarations in \p DC. 829 static bool checkExportedDeclContext(Sema &S, DeclContext *DC, 830 SourceLocation BlockStart) { 831 bool AllUnnamed = true; 832 for (auto *D : DC->decls()) 833 AllUnnamed &= checkExportedDecl(S, D, BlockStart); 834 return AllUnnamed; 835 } 836 837 /// Check that it's valid to export \p D. 838 static bool checkExportedDecl(Sema &S, Decl *D, SourceLocation BlockStart) { 839 840 // C++20 [module.interface]p3: 841 // [...] it shall not declare a name with internal linkage. 842 bool HasName = false; 843 if (auto *ND = dyn_cast<NamedDecl>(D)) { 844 // Don't diagnose anonymous union objects; we'll diagnose their members 845 // instead. 846 HasName = (bool)ND->getDeclName(); 847 if (HasName && ND->getFormalLinkage() == InternalLinkage) { 848 S.Diag(ND->getLocation(), diag::err_export_internal) << ND; 849 if (BlockStart.isValid()) 850 S.Diag(BlockStart, diag::note_export); 851 return false; 852 } 853 } 854 855 // C++2a [module.interface]p5: 856 // all entities to which all of the using-declarators ultimately refer 857 // shall have been introduced with a name having external linkage 858 if (auto *USD = dyn_cast<UsingShadowDecl>(D)) { 859 NamedDecl *Target = USD->getUnderlyingDecl(); 860 Linkage Lk = Target->getFormalLinkage(); 861 if (Lk == InternalLinkage || Lk == ModuleLinkage) { 862 S.Diag(USD->getLocation(), diag::err_export_using_internal) 863 << (Lk == InternalLinkage ? 0 : 1) << Target; 864 S.Diag(Target->getLocation(), diag::note_using_decl_target); 865 if (BlockStart.isValid()) 866 S.Diag(BlockStart, diag::note_export); 867 return false; 868 } 869 } 870 871 // Recurse into namespace-scope DeclContexts. (Only namespace-scope 872 // declarations are exported). 873 if (auto *DC = dyn_cast<DeclContext>(D)) { 874 if (!isa<NamespaceDecl>(D)) 875 return true; 876 877 if (auto *ND = dyn_cast<NamedDecl>(D)) { 878 if (!ND->getDeclName()) { 879 S.Diag(ND->getLocation(), diag::err_export_anon_ns_internal); 880 if (BlockStart.isValid()) 881 S.Diag(BlockStart, diag::note_export); 882 return false; 883 } else if (!DC->decls().empty() && 884 DC->getRedeclContext()->isFileContext()) { 885 return checkExportedDeclContext(S, DC, BlockStart); 886 } 887 } 888 } 889 return true; 890 } 891 892 /// Complete the definition of an export declaration. 893 Decl *Sema::ActOnFinishExportDecl(Scope *S, Decl *D, SourceLocation RBraceLoc) { 894 auto *ED = cast<ExportDecl>(D); 895 if (RBraceLoc.isValid()) 896 ED->setRBraceLoc(RBraceLoc); 897 898 PopDeclContext(); 899 900 if (!D->isInvalidDecl()) { 901 SourceLocation BlockStart = 902 ED->hasBraces() ? ED->getBeginLoc() : SourceLocation(); 903 for (auto *Child : ED->decls()) { 904 checkExportedDecl(*this, Child, BlockStart); 905 if (auto *FD = dyn_cast<FunctionDecl>(Child)) { 906 // [dcl.inline]/7 907 // If an inline function or variable that is attached to a named module 908 // is declared in a definition domain, it shall be defined in that 909 // domain. 910 // So, if the current declaration does not have a definition, we must 911 // check at the end of the TU (or when the PMF starts) to see that we 912 // have a definition at that point. 913 if (FD->isInlineSpecified() && !FD->isDefined()) 914 PendingInlineFuncDecls.insert(FD); 915 } 916 } 917 } 918 919 return D; 920 } 921 922 Module *Sema::PushGlobalModuleFragment(SourceLocation BeginLoc) { 923 // We shouldn't create new global module fragment if there is already 924 // one. 925 if (!TheGlobalModuleFragment) { 926 ModuleMap &Map = PP.getHeaderSearchInfo().getModuleMap(); 927 TheGlobalModuleFragment = Map.createGlobalModuleFragmentForModuleUnit( 928 BeginLoc, getCurrentModule()); 929 } 930 931 assert(TheGlobalModuleFragment && "module creation should not fail"); 932 933 // Enter the scope of the global module. 934 ModuleScopes.push_back({BeginLoc, TheGlobalModuleFragment, 935 /*ModuleInterface=*/false, 936 /*OuterVisibleModules=*/{}}); 937 VisibleModules.setVisible(TheGlobalModuleFragment, BeginLoc); 938 939 return TheGlobalModuleFragment; 940 } 941 942 void Sema::PopGlobalModuleFragment() { 943 assert(!ModuleScopes.empty() && 944 getCurrentModule()->isExplicitGlobalModule() && 945 "left the wrong module scope, which is not global module fragment"); 946 ModuleScopes.pop_back(); 947 } 948 949 Module *Sema::PushImplicitGlobalModuleFragment(SourceLocation BeginLoc, 950 bool IsExported) { 951 Module **M = IsExported ? &TheExportedImplicitGlobalModuleFragment 952 : &TheImplicitGlobalModuleFragment; 953 if (!*M) { 954 ModuleMap &Map = PP.getHeaderSearchInfo().getModuleMap(); 955 *M = Map.createImplicitGlobalModuleFragmentForModuleUnit( 956 BeginLoc, IsExported, getCurrentModule()); 957 } 958 assert(*M && "module creation should not fail"); 959 960 // Enter the scope of the global module. 961 ModuleScopes.push_back({BeginLoc, *M, 962 /*ModuleInterface=*/false, 963 /*OuterVisibleModules=*/{}}); 964 VisibleModules.setVisible(*M, BeginLoc); 965 return *M; 966 } 967 968 void Sema::PopImplicitGlobalModuleFragment() { 969 assert(!ModuleScopes.empty() && 970 getCurrentModule()->isImplicitGlobalModule() && 971 "left the wrong module scope, which is not global module fragment"); 972 ModuleScopes.pop_back(); 973 } 974