1 //===--- SemaModule.cpp - Semantic Analysis for Modules -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for modules (C++ modules syntax, 10 // Objective-C modules syntax, and Clang header modules). 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/AST/ASTConsumer.h" 15 #include "clang/Lex/HeaderSearch.h" 16 #include "clang/Lex/Preprocessor.h" 17 #include "clang/Sema/SemaInternal.h" 18 #include <optional> 19 20 using namespace clang; 21 using namespace sema; 22 23 static void checkModuleImportContext(Sema &S, Module *M, 24 SourceLocation ImportLoc, DeclContext *DC, 25 bool FromInclude = false) { 26 SourceLocation ExternCLoc; 27 28 if (auto *LSD = dyn_cast<LinkageSpecDecl>(DC)) { 29 switch (LSD->getLanguage()) { 30 case LinkageSpecDecl::lang_c: 31 if (ExternCLoc.isInvalid()) 32 ExternCLoc = LSD->getBeginLoc(); 33 break; 34 case LinkageSpecDecl::lang_cxx: 35 break; 36 } 37 DC = LSD->getParent(); 38 } 39 40 while (isa<LinkageSpecDecl>(DC) || isa<ExportDecl>(DC)) 41 DC = DC->getParent(); 42 43 if (!isa<TranslationUnitDecl>(DC)) { 44 S.Diag(ImportLoc, (FromInclude && S.isModuleVisible(M)) 45 ? diag::ext_module_import_not_at_top_level_noop 46 : diag::err_module_import_not_at_top_level_fatal) 47 << M->getFullModuleName() << DC; 48 S.Diag(cast<Decl>(DC)->getBeginLoc(), 49 diag::note_module_import_not_at_top_level) 50 << DC; 51 } else if (!M->IsExternC && ExternCLoc.isValid()) { 52 S.Diag(ImportLoc, diag::ext_module_import_in_extern_c) 53 << M->getFullModuleName(); 54 S.Diag(ExternCLoc, diag::note_extern_c_begins_here); 55 } 56 } 57 58 // We represent the primary and partition names as 'Paths' which are sections 59 // of the hierarchical access path for a clang module. However for C++20 60 // the periods in a name are just another character, and we will need to 61 // flatten them into a string. 62 static std::string stringFromPath(ModuleIdPath Path) { 63 std::string Name; 64 if (Path.empty()) 65 return Name; 66 67 for (auto &Piece : Path) { 68 if (!Name.empty()) 69 Name += "."; 70 Name += Piece.first->getName(); 71 } 72 return Name; 73 } 74 75 Sema::DeclGroupPtrTy 76 Sema::ActOnGlobalModuleFragmentDecl(SourceLocation ModuleLoc) { 77 // We start in the global module; all those declarations are implicitly 78 // module-private (though they do not have module linkage). 79 Module *GlobalModule = 80 PushGlobalModuleFragment(ModuleLoc, /*IsImplicit=*/false); 81 82 // All declarations created from now on are owned by the global module. 83 auto *TU = Context.getTranslationUnitDecl(); 84 // [module.global.frag]p2 85 // A global-module-fragment specifies the contents of the global module 86 // fragment for a module unit. The global module fragment can be used to 87 // provide declarations that are attached to the global module and usable 88 // within the module unit. 89 // 90 // So the declations in the global module shouldn't be visible by default. 91 TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ReachableWhenImported); 92 TU->setLocalOwningModule(GlobalModule); 93 94 // FIXME: Consider creating an explicit representation of this declaration. 95 return nullptr; 96 } 97 98 void Sema::HandleStartOfHeaderUnit() { 99 assert(getLangOpts().CPlusPlusModules && 100 "Header units are only valid for C++20 modules"); 101 SourceLocation StartOfTU = 102 SourceMgr.getLocForStartOfFile(SourceMgr.getMainFileID()); 103 104 StringRef HUName = getLangOpts().CurrentModule; 105 if (HUName.empty()) { 106 HUName = SourceMgr.getFileEntryForID(SourceMgr.getMainFileID())->getName(); 107 const_cast<LangOptions &>(getLangOpts()).CurrentModule = HUName.str(); 108 } 109 110 // TODO: Make the C++20 header lookup independent. 111 // When the input is pre-processed source, we need a file ref to the original 112 // file for the header map. 113 auto F = SourceMgr.getFileManager().getOptionalFileRef(HUName); 114 // For the sake of error recovery (if someone has moved the original header 115 // after creating the pre-processed output) fall back to obtaining the file 116 // ref for the input file, which must be present. 117 if (!F) 118 F = SourceMgr.getFileEntryRefForID(SourceMgr.getMainFileID()); 119 assert(F && "failed to find the header unit source?"); 120 Module::Header H{HUName.str(), HUName.str(), *F}; 121 auto &Map = PP.getHeaderSearchInfo().getModuleMap(); 122 Module *Mod = Map.createHeaderUnit(StartOfTU, HUName, H); 123 assert(Mod && "module creation should not fail"); 124 ModuleScopes.push_back({}); // No GMF 125 ModuleScopes.back().BeginLoc = StartOfTU; 126 ModuleScopes.back().Module = Mod; 127 ModuleScopes.back().ModuleInterface = true; 128 VisibleModules.setVisible(Mod, StartOfTU); 129 130 // From now on, we have an owning module for all declarations we see. 131 // All of these are implicitly exported. 132 auto *TU = Context.getTranslationUnitDecl(); 133 TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::Visible); 134 TU->setLocalOwningModule(Mod); 135 } 136 137 /// Tests whether the given identifier is reserved as a module name and 138 /// diagnoses if it is. Returns true if a diagnostic is emitted and false 139 /// otherwise. 140 static bool DiagReservedModuleName(Sema &S, const IdentifierInfo *II, 141 SourceLocation Loc) { 142 enum { 143 Valid = -1, 144 Invalid = 0, 145 Reserved = 1, 146 } Reason = Valid; 147 148 if (II->isStr("module") || II->isStr("import")) 149 Reason = Invalid; 150 else if (II->isReserved(S.getLangOpts()) != 151 ReservedIdentifierStatus::NotReserved) 152 Reason = Reserved; 153 154 // If the identifier is reserved (not invalid) but is in a system header, 155 // we do not diagnose (because we expect system headers to use reserved 156 // identifiers). 157 if (Reason == Reserved && S.getSourceManager().isInSystemHeader(Loc)) 158 Reason = Valid; 159 160 if (Reason != Valid) { 161 S.Diag(Loc, diag::err_invalid_module_name) << II << (int)Reason; 162 return true; 163 } 164 return false; 165 } 166 167 Sema::DeclGroupPtrTy 168 Sema::ActOnModuleDecl(SourceLocation StartLoc, SourceLocation ModuleLoc, 169 ModuleDeclKind MDK, ModuleIdPath Path, 170 ModuleIdPath Partition, ModuleImportState &ImportState) { 171 assert(getLangOpts().CPlusPlusModules && 172 "should only have module decl in standard C++ modules"); 173 174 bool IsFirstDecl = ImportState == ModuleImportState::FirstDecl; 175 bool SeenGMF = ImportState == ModuleImportState::GlobalFragment; 176 // If any of the steps here fail, we count that as invalidating C++20 177 // module state; 178 ImportState = ModuleImportState::NotACXX20Module; 179 180 bool IsPartition = !Partition.empty(); 181 if (IsPartition) 182 switch (MDK) { 183 case ModuleDeclKind::Implementation: 184 MDK = ModuleDeclKind::PartitionImplementation; 185 break; 186 case ModuleDeclKind::Interface: 187 MDK = ModuleDeclKind::PartitionInterface; 188 break; 189 default: 190 llvm_unreachable("how did we get a partition type set?"); 191 } 192 193 // A (non-partition) module implementation unit requires that we are not 194 // compiling a module of any kind. A partition implementation emits an 195 // interface (and the AST for the implementation), which will subsequently 196 // be consumed to emit a binary. 197 // A module interface unit requires that we are not compiling a module map. 198 switch (getLangOpts().getCompilingModule()) { 199 case LangOptions::CMK_None: 200 // It's OK to compile a module interface as a normal translation unit. 201 break; 202 203 case LangOptions::CMK_ModuleInterface: 204 if (MDK != ModuleDeclKind::Implementation) 205 break; 206 207 // We were asked to compile a module interface unit but this is a module 208 // implementation unit. 209 Diag(ModuleLoc, diag::err_module_interface_implementation_mismatch) 210 << FixItHint::CreateInsertion(ModuleLoc, "export "); 211 MDK = ModuleDeclKind::Interface; 212 break; 213 214 case LangOptions::CMK_ModuleMap: 215 Diag(ModuleLoc, diag::err_module_decl_in_module_map_module); 216 return nullptr; 217 218 case LangOptions::CMK_HeaderUnit: 219 Diag(ModuleLoc, diag::err_module_decl_in_header_unit); 220 return nullptr; 221 } 222 223 assert(ModuleScopes.size() <= 1 && "expected to be at global module scope"); 224 225 // FIXME: Most of this work should be done by the preprocessor rather than 226 // here, in order to support macro import. 227 228 // Only one module-declaration is permitted per source file. 229 if (isCurrentModulePurview()) { 230 Diag(ModuleLoc, diag::err_module_redeclaration); 231 Diag(VisibleModules.getImportLoc(ModuleScopes.back().Module), 232 diag::note_prev_module_declaration); 233 return nullptr; 234 } 235 236 assert((!getLangOpts().CPlusPlusModules || 237 SeenGMF == (bool)this->GlobalModuleFragment) && 238 "mismatched global module state"); 239 240 // In C++20, the module-declaration must be the first declaration if there 241 // is no global module fragment. 242 if (getLangOpts().CPlusPlusModules && !IsFirstDecl && !SeenGMF) { 243 Diag(ModuleLoc, diag::err_module_decl_not_at_start); 244 SourceLocation BeginLoc = 245 ModuleScopes.empty() 246 ? SourceMgr.getLocForStartOfFile(SourceMgr.getMainFileID()) 247 : ModuleScopes.back().BeginLoc; 248 if (BeginLoc.isValid()) { 249 Diag(BeginLoc, diag::note_global_module_introducer_missing) 250 << FixItHint::CreateInsertion(BeginLoc, "module;\n"); 251 } 252 } 253 254 // C++2b [module.unit]p1: ... The identifiers module and import shall not 255 // appear as identifiers in a module-name or module-partition. All 256 // module-names either beginning with an identifier consisting of std 257 // followed by zero or more digits or containing a reserved identifier 258 // ([lex.name]) are reserved and shall not be specified in a 259 // module-declaration; no diagnostic is required. 260 261 // Test the first part of the path to see if it's std[0-9]+ but allow the 262 // name in a system header. 263 StringRef FirstComponentName = Path[0].first->getName(); 264 if (!getSourceManager().isInSystemHeader(Path[0].second) && 265 (FirstComponentName == "std" || 266 (FirstComponentName.startswith("std") && 267 llvm::all_of(FirstComponentName.drop_front(3), &llvm::isDigit)))) { 268 Diag(Path[0].second, diag::err_invalid_module_name) 269 << Path[0].first << /*reserved*/ 1; 270 return nullptr; 271 } 272 273 // Then test all of the components in the path to see if any of them are 274 // using another kind of reserved or invalid identifier. 275 for (auto Part : Path) { 276 if (DiagReservedModuleName(*this, Part.first, Part.second)) 277 return nullptr; 278 } 279 280 // Flatten the dots in a module name. Unlike Clang's hierarchical module map 281 // modules, the dots here are just another character that can appear in a 282 // module name. 283 std::string ModuleName = stringFromPath(Path); 284 if (IsPartition) { 285 ModuleName += ":"; 286 ModuleName += stringFromPath(Partition); 287 } 288 // If a module name was explicitly specified on the command line, it must be 289 // correct. 290 if (!getLangOpts().CurrentModule.empty() && 291 getLangOpts().CurrentModule != ModuleName) { 292 Diag(Path.front().second, diag::err_current_module_name_mismatch) 293 << SourceRange(Path.front().second, IsPartition 294 ? Partition.back().second 295 : Path.back().second) 296 << getLangOpts().CurrentModule; 297 return nullptr; 298 } 299 const_cast<LangOptions&>(getLangOpts()).CurrentModule = ModuleName; 300 301 auto &Map = PP.getHeaderSearchInfo().getModuleMap(); 302 Module *Mod; 303 304 switch (MDK) { 305 case ModuleDeclKind::Interface: 306 case ModuleDeclKind::PartitionInterface: { 307 // We can't have parsed or imported a definition of this module or parsed a 308 // module map defining it already. 309 if (auto *M = Map.findModule(ModuleName)) { 310 Diag(Path[0].second, diag::err_module_redefinition) << ModuleName; 311 if (M->DefinitionLoc.isValid()) 312 Diag(M->DefinitionLoc, diag::note_prev_module_definition); 313 else if (OptionalFileEntryRef FE = M->getASTFile()) 314 Diag(M->DefinitionLoc, diag::note_prev_module_definition_from_ast_file) 315 << FE->getName(); 316 Mod = M; 317 break; 318 } 319 320 // Create a Module for the module that we're defining. 321 Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName); 322 if (MDK == ModuleDeclKind::PartitionInterface) 323 Mod->Kind = Module::ModulePartitionInterface; 324 assert(Mod && "module creation should not fail"); 325 break; 326 } 327 328 case ModuleDeclKind::Implementation: { 329 // C++20 A module-declaration that contains neither an export- 330 // keyword nor a module-partition implicitly imports the primary 331 // module interface unit of the module as if by a module-import- 332 // declaration. 333 std::pair<IdentifierInfo *, SourceLocation> ModuleNameLoc( 334 PP.getIdentifierInfo(ModuleName), Path[0].second); 335 336 // The module loader will assume we're trying to import the module that 337 // we're building if `LangOpts.CurrentModule` equals to 'ModuleName'. 338 // Change the value for `LangOpts.CurrentModule` temporarily to make the 339 // module loader work properly. 340 const_cast<LangOptions&>(getLangOpts()).CurrentModule = ""; 341 Mod = getModuleLoader().loadModule(ModuleLoc, {ModuleNameLoc}, 342 Module::AllVisible, 343 /*IsInclusionDirective=*/false); 344 const_cast<LangOptions&>(getLangOpts()).CurrentModule = ModuleName; 345 346 if (!Mod) { 347 Diag(ModuleLoc, diag::err_module_not_defined) << ModuleName; 348 // Create an empty module interface unit for error recovery. 349 Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName); 350 } 351 352 } break; 353 354 case ModuleDeclKind::PartitionImplementation: 355 // Create an interface, but note that it is an implementation 356 // unit. 357 Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName); 358 Mod->Kind = Module::ModulePartitionImplementation; 359 break; 360 } 361 362 if (!this->GlobalModuleFragment) { 363 ModuleScopes.push_back({}); 364 if (getLangOpts().ModulesLocalVisibility) 365 ModuleScopes.back().OuterVisibleModules = std::move(VisibleModules); 366 } else { 367 // We're done with the global module fragment now. 368 ActOnEndOfTranslationUnitFragment(TUFragmentKind::Global); 369 } 370 371 // Switch from the global module fragment (if any) to the named module. 372 ModuleScopes.back().BeginLoc = StartLoc; 373 ModuleScopes.back().Module = Mod; 374 ModuleScopes.back().ModuleInterface = MDK != ModuleDeclKind::Implementation; 375 VisibleModules.setVisible(Mod, ModuleLoc); 376 377 // From now on, we have an owning module for all declarations we see. 378 // In C++20 modules, those declaration would be reachable when imported 379 // unless explicitily exported. 380 // Otherwise, those declarations are module-private unless explicitly 381 // exported. 382 auto *TU = Context.getTranslationUnitDecl(); 383 TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ReachableWhenImported); 384 TU->setLocalOwningModule(Mod); 385 386 // We are in the module purview, but before any other (non import) 387 // statements, so imports are allowed. 388 ImportState = ModuleImportState::ImportAllowed; 389 390 // For an implementation, We already made an implicit import (its interface). 391 // Make and return the import decl to be added to the current TU. 392 if (MDK == ModuleDeclKind::Implementation) { 393 // Make the import decl for the interface. 394 ImportDecl *Import = 395 ImportDecl::Create(Context, CurContext, ModuleLoc, Mod, Path[0].second); 396 // and return it to be added. 397 return ConvertDeclToDeclGroup(Import); 398 } 399 400 getASTContext().setNamedModuleForCodeGen(Mod); 401 402 // FIXME: Create a ModuleDecl. 403 return nullptr; 404 } 405 406 Sema::DeclGroupPtrTy 407 Sema::ActOnPrivateModuleFragmentDecl(SourceLocation ModuleLoc, 408 SourceLocation PrivateLoc) { 409 // C++20 [basic.link]/2: 410 // A private-module-fragment shall appear only in a primary module 411 // interface unit. 412 switch (ModuleScopes.empty() ? Module::GlobalModuleFragment 413 : ModuleScopes.back().Module->Kind) { 414 case Module::ModuleMapModule: 415 case Module::GlobalModuleFragment: 416 case Module::ModulePartitionImplementation: 417 case Module::ModulePartitionInterface: 418 case Module::ModuleHeaderUnit: 419 Diag(PrivateLoc, diag::err_private_module_fragment_not_module); 420 return nullptr; 421 422 case Module::PrivateModuleFragment: 423 Diag(PrivateLoc, diag::err_private_module_fragment_redefined); 424 Diag(ModuleScopes.back().BeginLoc, diag::note_previous_definition); 425 return nullptr; 426 427 case Module::ModuleInterfaceUnit: 428 break; 429 } 430 431 if (!ModuleScopes.back().ModuleInterface) { 432 Diag(PrivateLoc, diag::err_private_module_fragment_not_module_interface); 433 Diag(ModuleScopes.back().BeginLoc, 434 diag::note_not_module_interface_add_export) 435 << FixItHint::CreateInsertion(ModuleScopes.back().BeginLoc, "export "); 436 return nullptr; 437 } 438 439 // FIXME: Check this isn't a module interface partition. 440 // FIXME: Check that this translation unit does not import any partitions; 441 // such imports would violate [basic.link]/2's "shall be the only module unit" 442 // restriction. 443 444 // We've finished the public fragment of the translation unit. 445 ActOnEndOfTranslationUnitFragment(TUFragmentKind::Normal); 446 447 auto &Map = PP.getHeaderSearchInfo().getModuleMap(); 448 Module *PrivateModuleFragment = 449 Map.createPrivateModuleFragmentForInterfaceUnit( 450 ModuleScopes.back().Module, PrivateLoc); 451 assert(PrivateModuleFragment && "module creation should not fail"); 452 453 // Enter the scope of the private module fragment. 454 ModuleScopes.push_back({}); 455 ModuleScopes.back().BeginLoc = ModuleLoc; 456 ModuleScopes.back().Module = PrivateModuleFragment; 457 ModuleScopes.back().ModuleInterface = true; 458 VisibleModules.setVisible(PrivateModuleFragment, ModuleLoc); 459 460 // All declarations created from now on are scoped to the private module 461 // fragment (and are neither visible nor reachable in importers of the module 462 // interface). 463 auto *TU = Context.getTranslationUnitDecl(); 464 TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ModulePrivate); 465 TU->setLocalOwningModule(PrivateModuleFragment); 466 467 // FIXME: Consider creating an explicit representation of this declaration. 468 return nullptr; 469 } 470 471 DeclResult Sema::ActOnModuleImport(SourceLocation StartLoc, 472 SourceLocation ExportLoc, 473 SourceLocation ImportLoc, ModuleIdPath Path, 474 bool IsPartition) { 475 assert((!IsPartition || getLangOpts().CPlusPlusModules) && 476 "partition seen in non-C++20 code?"); 477 478 // For a C++20 module name, flatten into a single identifier with the source 479 // location of the first component. 480 std::pair<IdentifierInfo *, SourceLocation> ModuleNameLoc; 481 482 std::string ModuleName; 483 if (IsPartition) { 484 // We already checked that we are in a module purview in the parser. 485 assert(!ModuleScopes.empty() && "in a module purview, but no module?"); 486 Module *NamedMod = ModuleScopes.back().Module; 487 // If we are importing into a partition, find the owning named module, 488 // otherwise, the name of the importing named module. 489 ModuleName = NamedMod->getPrimaryModuleInterfaceName().str(); 490 ModuleName += ":"; 491 ModuleName += stringFromPath(Path); 492 ModuleNameLoc = {PP.getIdentifierInfo(ModuleName), Path[0].second}; 493 Path = ModuleIdPath(ModuleNameLoc); 494 } else if (getLangOpts().CPlusPlusModules) { 495 ModuleName = stringFromPath(Path); 496 ModuleNameLoc = {PP.getIdentifierInfo(ModuleName), Path[0].second}; 497 Path = ModuleIdPath(ModuleNameLoc); 498 } 499 500 // Diagnose self-import before attempting a load. 501 // [module.import]/9 502 // A module implementation unit of a module M that is not a module partition 503 // shall not contain a module-import-declaration nominating M. 504 // (for an implementation, the module interface is imported implicitly, 505 // but that's handled in the module decl code). 506 507 if (getLangOpts().CPlusPlusModules && isCurrentModulePurview() && 508 getCurrentModule()->Name == ModuleName) { 509 Diag(ImportLoc, diag::err_module_self_import_cxx20) 510 << ModuleName << !ModuleScopes.back().ModuleInterface; 511 return true; 512 } 513 514 Module *Mod = getModuleLoader().loadModule( 515 ImportLoc, Path, Module::AllVisible, /*IsInclusionDirective=*/false); 516 if (!Mod) 517 return true; 518 519 return ActOnModuleImport(StartLoc, ExportLoc, ImportLoc, Mod, Path); 520 } 521 522 /// Determine whether \p D is lexically within an export-declaration. 523 static const ExportDecl *getEnclosingExportDecl(const Decl *D) { 524 for (auto *DC = D->getLexicalDeclContext(); DC; DC = DC->getLexicalParent()) 525 if (auto *ED = dyn_cast<ExportDecl>(DC)) 526 return ED; 527 return nullptr; 528 } 529 530 DeclResult Sema::ActOnModuleImport(SourceLocation StartLoc, 531 SourceLocation ExportLoc, 532 SourceLocation ImportLoc, Module *Mod, 533 ModuleIdPath Path) { 534 VisibleModules.setVisible(Mod, ImportLoc); 535 536 checkModuleImportContext(*this, Mod, ImportLoc, CurContext); 537 538 // FIXME: we should support importing a submodule within a different submodule 539 // of the same top-level module. Until we do, make it an error rather than 540 // silently ignoring the import. 541 // FIXME: Should we warn on a redundant import of the current module? 542 if (Mod->isForBuilding(getLangOpts())) { 543 Diag(ImportLoc, getLangOpts().isCompilingModule() 544 ? diag::err_module_self_import 545 : diag::err_module_import_in_implementation) 546 << Mod->getFullModuleName() << getLangOpts().CurrentModule; 547 } 548 549 SmallVector<SourceLocation, 2> IdentifierLocs; 550 551 if (Path.empty()) { 552 // If this was a header import, pad out with dummy locations. 553 // FIXME: Pass in and use the location of the header-name token in this 554 // case. 555 for (Module *ModCheck = Mod; ModCheck; ModCheck = ModCheck->Parent) 556 IdentifierLocs.push_back(SourceLocation()); 557 } else if (getLangOpts().CPlusPlusModules && !Mod->Parent) { 558 // A single identifier for the whole name. 559 IdentifierLocs.push_back(Path[0].second); 560 } else { 561 Module *ModCheck = Mod; 562 for (unsigned I = 0, N = Path.size(); I != N; ++I) { 563 // If we've run out of module parents, just drop the remaining 564 // identifiers. We need the length to be consistent. 565 if (!ModCheck) 566 break; 567 ModCheck = ModCheck->Parent; 568 569 IdentifierLocs.push_back(Path[I].second); 570 } 571 } 572 573 ImportDecl *Import = ImportDecl::Create(Context, CurContext, StartLoc, 574 Mod, IdentifierLocs); 575 CurContext->addDecl(Import); 576 577 // Sequence initialization of the imported module before that of the current 578 // module, if any. 579 if (!ModuleScopes.empty()) 580 Context.addModuleInitializer(ModuleScopes.back().Module, Import); 581 582 // A module (partition) implementation unit shall not be exported. 583 if (getLangOpts().CPlusPlusModules && ExportLoc.isValid() && 584 Mod->Kind == Module::ModuleKind::ModulePartitionImplementation) { 585 Diag(ExportLoc, diag::err_export_partition_impl) 586 << SourceRange(ExportLoc, Path.back().second); 587 } else if (!ModuleScopes.empty() && 588 (ModuleScopes.back().ModuleInterface || 589 (getLangOpts().CPlusPlusModules && 590 ModuleScopes.back().Module->isGlobalModule()))) { 591 // Re-export the module if the imported module is exported. 592 // Note that we don't need to add re-exported module to Imports field 593 // since `Exports` implies the module is imported already. 594 if (ExportLoc.isValid() || getEnclosingExportDecl(Import)) 595 getCurrentModule()->Exports.emplace_back(Mod, false); 596 else 597 getCurrentModule()->Imports.insert(Mod); 598 } else if (ExportLoc.isValid()) { 599 // [module.interface]p1: 600 // An export-declaration shall inhabit a namespace scope and appear in the 601 // purview of a module interface unit. 602 Diag(ExportLoc, diag::err_export_not_in_module_interface); 603 } 604 605 // In some cases we need to know if an entity was present in a directly- 606 // imported module (as opposed to a transitive import). This avoids 607 // searching both Imports and Exports. 608 DirectModuleImports.insert(Mod); 609 610 return Import; 611 } 612 613 void Sema::ActOnModuleInclude(SourceLocation DirectiveLoc, Module *Mod) { 614 checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext, true); 615 BuildModuleInclude(DirectiveLoc, Mod); 616 } 617 618 void Sema::BuildModuleInclude(SourceLocation DirectiveLoc, Module *Mod) { 619 // Determine whether we're in the #include buffer for a module. The #includes 620 // in that buffer do not qualify as module imports; they're just an 621 // implementation detail of us building the module. 622 // 623 // FIXME: Should we even get ActOnModuleInclude calls for those? 624 bool IsInModuleIncludes = 625 TUKind == TU_Module && 626 getSourceManager().isWrittenInMainFile(DirectiveLoc); 627 628 bool ShouldAddImport = !IsInModuleIncludes; 629 630 // If this module import was due to an inclusion directive, create an 631 // implicit import declaration to capture it in the AST. 632 if (ShouldAddImport) { 633 TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl(); 634 ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU, 635 DirectiveLoc, Mod, 636 DirectiveLoc); 637 if (!ModuleScopes.empty()) 638 Context.addModuleInitializer(ModuleScopes.back().Module, ImportD); 639 TU->addDecl(ImportD); 640 Consumer.HandleImplicitImportDecl(ImportD); 641 } 642 643 getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, DirectiveLoc); 644 VisibleModules.setVisible(Mod, DirectiveLoc); 645 646 if (getLangOpts().isCompilingModule()) { 647 Module *ThisModule = PP.getHeaderSearchInfo().lookupModule( 648 getLangOpts().CurrentModule, DirectiveLoc, false, false); 649 (void)ThisModule; 650 assert(ThisModule && "was expecting a module if building one"); 651 } 652 } 653 654 void Sema::ActOnModuleBegin(SourceLocation DirectiveLoc, Module *Mod) { 655 checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext, true); 656 657 ModuleScopes.push_back({}); 658 ModuleScopes.back().Module = Mod; 659 if (getLangOpts().ModulesLocalVisibility) 660 ModuleScopes.back().OuterVisibleModules = std::move(VisibleModules); 661 662 VisibleModules.setVisible(Mod, DirectiveLoc); 663 664 // The enclosing context is now part of this module. 665 // FIXME: Consider creating a child DeclContext to hold the entities 666 // lexically within the module. 667 if (getLangOpts().trackLocalOwningModule()) { 668 for (auto *DC = CurContext; DC; DC = DC->getLexicalParent()) { 669 cast<Decl>(DC)->setModuleOwnershipKind( 670 getLangOpts().ModulesLocalVisibility 671 ? Decl::ModuleOwnershipKind::VisibleWhenImported 672 : Decl::ModuleOwnershipKind::Visible); 673 cast<Decl>(DC)->setLocalOwningModule(Mod); 674 } 675 } 676 } 677 678 void Sema::ActOnModuleEnd(SourceLocation EomLoc, Module *Mod) { 679 if (getLangOpts().ModulesLocalVisibility) { 680 VisibleModules = std::move(ModuleScopes.back().OuterVisibleModules); 681 // Leaving a module hides namespace names, so our visible namespace cache 682 // is now out of date. 683 VisibleNamespaceCache.clear(); 684 } 685 686 assert(!ModuleScopes.empty() && ModuleScopes.back().Module == Mod && 687 "left the wrong module scope"); 688 ModuleScopes.pop_back(); 689 690 // We got to the end of processing a local module. Create an 691 // ImportDecl as we would for an imported module. 692 FileID File = getSourceManager().getFileID(EomLoc); 693 SourceLocation DirectiveLoc; 694 if (EomLoc == getSourceManager().getLocForEndOfFile(File)) { 695 // We reached the end of a #included module header. Use the #include loc. 696 assert(File != getSourceManager().getMainFileID() && 697 "end of submodule in main source file"); 698 DirectiveLoc = getSourceManager().getIncludeLoc(File); 699 } else { 700 // We reached an EOM pragma. Use the pragma location. 701 DirectiveLoc = EomLoc; 702 } 703 BuildModuleInclude(DirectiveLoc, Mod); 704 705 // Any further declarations are in whatever module we returned to. 706 if (getLangOpts().trackLocalOwningModule()) { 707 // The parser guarantees that this is the same context that we entered 708 // the module within. 709 for (auto *DC = CurContext; DC; DC = DC->getLexicalParent()) { 710 cast<Decl>(DC)->setLocalOwningModule(getCurrentModule()); 711 if (!getCurrentModule()) 712 cast<Decl>(DC)->setModuleOwnershipKind( 713 Decl::ModuleOwnershipKind::Unowned); 714 } 715 } 716 } 717 718 void Sema::createImplicitModuleImportForErrorRecovery(SourceLocation Loc, 719 Module *Mod) { 720 // Bail if we're not allowed to implicitly import a module here. 721 if (isSFINAEContext() || !getLangOpts().ModulesErrorRecovery || 722 VisibleModules.isVisible(Mod)) 723 return; 724 725 // Create the implicit import declaration. 726 TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl(); 727 ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU, 728 Loc, Mod, Loc); 729 TU->addDecl(ImportD); 730 Consumer.HandleImplicitImportDecl(ImportD); 731 732 // Make the module visible. 733 getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, Loc); 734 VisibleModules.setVisible(Mod, Loc); 735 } 736 737 /// We have parsed the start of an export declaration, including the '{' 738 /// (if present). 739 Decl *Sema::ActOnStartExportDecl(Scope *S, SourceLocation ExportLoc, 740 SourceLocation LBraceLoc) { 741 ExportDecl *D = ExportDecl::Create(Context, CurContext, ExportLoc); 742 743 // Set this temporarily so we know the export-declaration was braced. 744 D->setRBraceLoc(LBraceLoc); 745 746 CurContext->addDecl(D); 747 PushDeclContext(S, D); 748 749 // C++2a [module.interface]p1: 750 // An export-declaration shall appear only [...] in the purview of a module 751 // interface unit. An export-declaration shall not appear directly or 752 // indirectly within [...] a private-module-fragment. 753 if (!isCurrentModulePurview()) { 754 Diag(ExportLoc, diag::err_export_not_in_module_interface) << 0; 755 D->setInvalidDecl(); 756 return D; 757 } else if (!ModuleScopes.back().ModuleInterface) { 758 Diag(ExportLoc, diag::err_export_not_in_module_interface) << 1; 759 Diag(ModuleScopes.back().BeginLoc, 760 diag::note_not_module_interface_add_export) 761 << FixItHint::CreateInsertion(ModuleScopes.back().BeginLoc, "export "); 762 D->setInvalidDecl(); 763 return D; 764 } else if (ModuleScopes.back().Module->Kind == 765 Module::PrivateModuleFragment) { 766 Diag(ExportLoc, diag::err_export_in_private_module_fragment); 767 Diag(ModuleScopes.back().BeginLoc, diag::note_private_module_fragment); 768 D->setInvalidDecl(); 769 return D; 770 } 771 772 for (const DeclContext *DC = CurContext; DC; DC = DC->getLexicalParent()) { 773 if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) { 774 // An export-declaration shall not appear directly or indirectly within 775 // an unnamed namespace [...] 776 if (ND->isAnonymousNamespace()) { 777 Diag(ExportLoc, diag::err_export_within_anonymous_namespace); 778 Diag(ND->getLocation(), diag::note_anonymous_namespace); 779 // Don't diagnose internal-linkage declarations in this region. 780 D->setInvalidDecl(); 781 return D; 782 } 783 784 // A declaration is exported if it is [...] a namespace-definition 785 // that contains an exported declaration. 786 // 787 // Defer exporting the namespace until after we leave it, in order to 788 // avoid marking all subsequent declarations in the namespace as exported. 789 if (!DeferredExportedNamespaces.insert(ND).second) 790 break; 791 } 792 } 793 794 // [...] its declaration or declaration-seq shall not contain an 795 // export-declaration. 796 if (auto *ED = getEnclosingExportDecl(D)) { 797 Diag(ExportLoc, diag::err_export_within_export); 798 if (ED->hasBraces()) 799 Diag(ED->getLocation(), diag::note_export); 800 D->setInvalidDecl(); 801 return D; 802 } 803 804 D->setModuleOwnershipKind(Decl::ModuleOwnershipKind::VisibleWhenImported); 805 return D; 806 } 807 808 static bool checkExportedDeclContext(Sema &S, DeclContext *DC, 809 SourceLocation BlockStart); 810 811 namespace { 812 enum class UnnamedDeclKind { 813 Empty, 814 StaticAssert, 815 Asm, 816 UsingDirective, 817 Namespace, 818 Context 819 }; 820 } 821 822 static std::optional<UnnamedDeclKind> getUnnamedDeclKind(Decl *D) { 823 if (isa<EmptyDecl>(D)) 824 return UnnamedDeclKind::Empty; 825 if (isa<StaticAssertDecl>(D)) 826 return UnnamedDeclKind::StaticAssert; 827 if (isa<FileScopeAsmDecl>(D)) 828 return UnnamedDeclKind::Asm; 829 if (isa<UsingDirectiveDecl>(D)) 830 return UnnamedDeclKind::UsingDirective; 831 // Everything else either introduces one or more names or is ill-formed. 832 return std::nullopt; 833 } 834 835 unsigned getUnnamedDeclDiag(UnnamedDeclKind UDK, bool InBlock) { 836 switch (UDK) { 837 case UnnamedDeclKind::Empty: 838 case UnnamedDeclKind::StaticAssert: 839 // Allow empty-declarations and static_asserts in an export block as an 840 // extension. 841 return InBlock ? diag::ext_export_no_name_block : diag::err_export_no_name; 842 843 case UnnamedDeclKind::UsingDirective: 844 // Allow exporting using-directives as an extension. 845 return diag::ext_export_using_directive; 846 847 case UnnamedDeclKind::Namespace: 848 // Anonymous namespace with no content. 849 return diag::introduces_no_names; 850 851 case UnnamedDeclKind::Context: 852 // Allow exporting DeclContexts that transitively contain no declarations 853 // as an extension. 854 return diag::ext_export_no_names; 855 856 case UnnamedDeclKind::Asm: 857 return diag::err_export_no_name; 858 } 859 llvm_unreachable("unknown kind"); 860 } 861 862 static void diagExportedUnnamedDecl(Sema &S, UnnamedDeclKind UDK, Decl *D, 863 SourceLocation BlockStart) { 864 S.Diag(D->getLocation(), getUnnamedDeclDiag(UDK, BlockStart.isValid())) 865 << (unsigned)UDK; 866 if (BlockStart.isValid()) 867 S.Diag(BlockStart, diag::note_export); 868 } 869 870 /// Check that it's valid to export \p D. 871 static bool checkExportedDecl(Sema &S, Decl *D, SourceLocation BlockStart) { 872 // C++2a [module.interface]p3: 873 // An exported declaration shall declare at least one name 874 if (auto UDK = getUnnamedDeclKind(D)) 875 diagExportedUnnamedDecl(S, *UDK, D, BlockStart); 876 877 // [...] shall not declare a name with internal linkage. 878 bool HasName = false; 879 if (auto *ND = dyn_cast<NamedDecl>(D)) { 880 // Don't diagnose anonymous union objects; we'll diagnose their members 881 // instead. 882 HasName = (bool)ND->getDeclName(); 883 if (HasName && ND->getFormalLinkage() == InternalLinkage) { 884 S.Diag(ND->getLocation(), diag::err_export_internal) << ND; 885 if (BlockStart.isValid()) 886 S.Diag(BlockStart, diag::note_export); 887 } 888 } 889 890 // C++2a [module.interface]p5: 891 // all entities to which all of the using-declarators ultimately refer 892 // shall have been introduced with a name having external linkage 893 if (auto *USD = dyn_cast<UsingShadowDecl>(D)) { 894 NamedDecl *Target = USD->getUnderlyingDecl(); 895 Linkage Lk = Target->getFormalLinkage(); 896 if (Lk == InternalLinkage || Lk == ModuleLinkage) { 897 S.Diag(USD->getLocation(), diag::err_export_using_internal) 898 << (Lk == InternalLinkage ? 0 : 1) << Target; 899 S.Diag(Target->getLocation(), diag::note_using_decl_target); 900 if (BlockStart.isValid()) 901 S.Diag(BlockStart, diag::note_export); 902 } 903 } 904 905 // Recurse into namespace-scope DeclContexts. (Only namespace-scope 906 // declarations are exported.). 907 if (auto *DC = dyn_cast<DeclContext>(D)) { 908 if (isa<NamespaceDecl>(D) && DC->decls().empty()) { 909 if (!HasName) 910 // We don't allow an empty anonymous namespace (we don't allow decls 911 // in them either, but that's handled in the recursion). 912 diagExportedUnnamedDecl(S, UnnamedDeclKind::Namespace, D, BlockStart); 913 // We allow an empty named namespace decl. 914 } else if (DC->getRedeclContext()->isFileContext() && !isa<EnumDecl>(D)) 915 return checkExportedDeclContext(S, DC, BlockStart); 916 } 917 return false; 918 } 919 920 /// Check that it's valid to export all the declarations in \p DC. 921 static bool checkExportedDeclContext(Sema &S, DeclContext *DC, 922 SourceLocation BlockStart) { 923 bool AllUnnamed = true; 924 for (auto *D : DC->decls()) 925 AllUnnamed &= checkExportedDecl(S, D, BlockStart); 926 return AllUnnamed; 927 } 928 929 /// Complete the definition of an export declaration. 930 Decl *Sema::ActOnFinishExportDecl(Scope *S, Decl *D, SourceLocation RBraceLoc) { 931 auto *ED = cast<ExportDecl>(D); 932 if (RBraceLoc.isValid()) 933 ED->setRBraceLoc(RBraceLoc); 934 935 PopDeclContext(); 936 937 if (!D->isInvalidDecl()) { 938 SourceLocation BlockStart = 939 ED->hasBraces() ? ED->getBeginLoc() : SourceLocation(); 940 for (auto *Child : ED->decls()) { 941 if (checkExportedDecl(*this, Child, BlockStart)) { 942 // If a top-level child is a linkage-spec declaration, it might contain 943 // no declarations (transitively), in which case it's ill-formed. 944 diagExportedUnnamedDecl(*this, UnnamedDeclKind::Context, Child, 945 BlockStart); 946 } 947 if (auto *FD = dyn_cast<FunctionDecl>(Child)) { 948 // [dcl.inline]/7 949 // If an inline function or variable that is attached to a named module 950 // is declared in a definition domain, it shall be defined in that 951 // domain. 952 // So, if the current declaration does not have a definition, we must 953 // check at the end of the TU (or when the PMF starts) to see that we 954 // have a definition at that point. 955 if (FD->isInlineSpecified() && !FD->isDefined()) 956 PendingInlineFuncDecls.insert(FD); 957 } 958 } 959 } 960 961 return D; 962 } 963 964 Module *Sema::PushGlobalModuleFragment(SourceLocation BeginLoc, 965 bool IsImplicit) { 966 // We shouldn't create new global module fragment if there is already 967 // one. 968 if (!GlobalModuleFragment) { 969 ModuleMap &Map = PP.getHeaderSearchInfo().getModuleMap(); 970 GlobalModuleFragment = Map.createGlobalModuleFragmentForModuleUnit( 971 BeginLoc, getCurrentModule()); 972 } 973 974 assert(GlobalModuleFragment && "module creation should not fail"); 975 976 // Enter the scope of the global module. 977 ModuleScopes.push_back({BeginLoc, GlobalModuleFragment, 978 /*ModuleInterface=*/false, 979 /*OuterVisibleModules=*/{}}); 980 VisibleModules.setVisible(GlobalModuleFragment, BeginLoc); 981 982 return GlobalModuleFragment; 983 } 984 985 void Sema::PopGlobalModuleFragment() { 986 assert(!ModuleScopes.empty() && getCurrentModule()->isGlobalModule() && 987 "left the wrong module scope, which is not global module fragment"); 988 ModuleScopes.pop_back(); 989 } 990 991 bool Sema::isModuleUnitOfCurrentTU(const Module *M) const { 992 assert(M); 993 994 Module *CurrentModuleUnit = getCurrentModule(); 995 996 // If we are not in a module currently, M must not be the module unit of 997 // current TU. 998 if (!CurrentModuleUnit) 999 return false; 1000 1001 return M->isSubModuleOf(CurrentModuleUnit->getTopLevelModule()); 1002 } 1003