1 //===--- SemaModule.cpp - Semantic Analysis for Modules -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for modules (C++ modules syntax, 10 // Objective-C modules syntax, and Clang header modules). 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/AST/ASTConsumer.h" 15 #include "clang/AST/ASTMutationListener.h" 16 #include "clang/Lex/HeaderSearch.h" 17 #include "clang/Lex/Preprocessor.h" 18 #include "clang/Sema/SemaInternal.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include <optional> 21 22 using namespace clang; 23 using namespace sema; 24 25 static void checkModuleImportContext(Sema &S, Module *M, 26 SourceLocation ImportLoc, DeclContext *DC, 27 bool FromInclude = false) { 28 SourceLocation ExternCLoc; 29 30 if (auto *LSD = dyn_cast<LinkageSpecDecl>(DC)) { 31 switch (LSD->getLanguage()) { 32 case LinkageSpecLanguageIDs::C: 33 if (ExternCLoc.isInvalid()) 34 ExternCLoc = LSD->getBeginLoc(); 35 break; 36 case LinkageSpecLanguageIDs::CXX: 37 break; 38 } 39 DC = LSD->getParent(); 40 } 41 42 while (isa<LinkageSpecDecl>(DC) || isa<ExportDecl>(DC)) 43 DC = DC->getParent(); 44 45 if (!isa<TranslationUnitDecl>(DC)) { 46 S.Diag(ImportLoc, (FromInclude && S.isModuleVisible(M)) 47 ? diag::ext_module_import_not_at_top_level_noop 48 : diag::err_module_import_not_at_top_level_fatal) 49 << M->getFullModuleName() << DC; 50 S.Diag(cast<Decl>(DC)->getBeginLoc(), 51 diag::note_module_import_not_at_top_level) 52 << DC; 53 } else if (!M->IsExternC && ExternCLoc.isValid()) { 54 S.Diag(ImportLoc, diag::ext_module_import_in_extern_c) 55 << M->getFullModuleName(); 56 S.Diag(ExternCLoc, diag::note_extern_c_begins_here); 57 } 58 } 59 60 // We represent the primary and partition names as 'Paths' which are sections 61 // of the hierarchical access path for a clang module. However for C++20 62 // the periods in a name are just another character, and we will need to 63 // flatten them into a string. 64 static std::string stringFromPath(ModuleIdPath Path) { 65 std::string Name; 66 if (Path.empty()) 67 return Name; 68 69 for (auto &Piece : Path) { 70 if (!Name.empty()) 71 Name += "."; 72 Name += Piece.first->getName(); 73 } 74 return Name; 75 } 76 77 /// Helper function for makeTransitiveImportsVisible to decide whether 78 /// the \param Imported module unit is in the same module with the \param 79 /// CurrentModule. 80 /// \param FoundPrimaryModuleInterface is a helper parameter to record the 81 /// primary module interface unit corresponding to the module \param 82 /// CurrentModule. Since currently it is expensive to decide whether two module 83 /// units come from the same module by comparing the module name. 84 static bool 85 isImportingModuleUnitFromSameModule(ASTContext &Ctx, Module *Imported, 86 Module *CurrentModule, 87 Module *&FoundPrimaryModuleInterface) { 88 if (!Imported->isNamedModule()) 89 return false; 90 91 // The a partition unit we're importing must be in the same module of the 92 // current module. 93 if (Imported->isModulePartition()) 94 return true; 95 96 // If we found the primary module interface during the search process, we can 97 // return quickly to avoid expensive string comparison. 98 if (FoundPrimaryModuleInterface) 99 return Imported == FoundPrimaryModuleInterface; 100 101 if (!CurrentModule) 102 return false; 103 104 // Then the imported module must be a primary module interface unit. It 105 // is only allowed to import the primary module interface unit from the same 106 // module in the implementation unit and the implementation partition unit. 107 108 // Since we'll handle implementation unit above. We can only care 109 // about the implementation partition unit here. 110 if (!CurrentModule->isModulePartitionImplementation()) 111 return false; 112 113 if (Ctx.isInSameModule(Imported, CurrentModule)) { 114 assert(!FoundPrimaryModuleInterface || 115 FoundPrimaryModuleInterface == Imported); 116 FoundPrimaryModuleInterface = Imported; 117 return true; 118 } 119 120 return false; 121 } 122 123 /// [module.import]p7: 124 /// Additionally, when a module-import-declaration in a module unit of some 125 /// module M imports another module unit U of M, it also imports all 126 /// translation units imported by non-exported module-import-declarations in 127 /// the module unit purview of U. These rules can in turn lead to the 128 /// importation of yet more translation units. 129 static void 130 makeTransitiveImportsVisible(ASTContext &Ctx, VisibleModuleSet &VisibleModules, 131 Module *Imported, Module *CurrentModule, 132 SourceLocation ImportLoc, 133 bool IsImportingPrimaryModuleInterface = false) { 134 assert(Imported->isNamedModule() && 135 "'makeTransitiveImportsVisible()' is intended for standard C++ named " 136 "modules only."); 137 138 llvm::SmallVector<Module *, 4> Worklist; 139 Worklist.push_back(Imported); 140 141 Module *FoundPrimaryModuleInterface = 142 IsImportingPrimaryModuleInterface ? Imported : nullptr; 143 144 while (!Worklist.empty()) { 145 Module *Importing = Worklist.pop_back_val(); 146 147 if (VisibleModules.isVisible(Importing)) 148 continue; 149 150 // FIXME: The ImportLoc here is not meaningful. It may be problematic if we 151 // use the sourcelocation loaded from the visible modules. 152 VisibleModules.setVisible(Importing, ImportLoc); 153 154 if (isImportingModuleUnitFromSameModule(Ctx, Importing, CurrentModule, 155 FoundPrimaryModuleInterface)) 156 for (Module *TransImported : Importing->Imports) 157 if (!VisibleModules.isVisible(TransImported)) 158 Worklist.push_back(TransImported); 159 } 160 } 161 162 Sema::DeclGroupPtrTy 163 Sema::ActOnGlobalModuleFragmentDecl(SourceLocation ModuleLoc) { 164 // We start in the global module; 165 Module *GlobalModule = 166 PushGlobalModuleFragment(ModuleLoc); 167 168 // All declarations created from now on are owned by the global module. 169 auto *TU = Context.getTranslationUnitDecl(); 170 // [module.global.frag]p2 171 // A global-module-fragment specifies the contents of the global module 172 // fragment for a module unit. The global module fragment can be used to 173 // provide declarations that are attached to the global module and usable 174 // within the module unit. 175 // 176 // So the declations in the global module shouldn't be visible by default. 177 TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ReachableWhenImported); 178 TU->setLocalOwningModule(GlobalModule); 179 180 // FIXME: Consider creating an explicit representation of this declaration. 181 return nullptr; 182 } 183 184 void Sema::HandleStartOfHeaderUnit() { 185 assert(getLangOpts().CPlusPlusModules && 186 "Header units are only valid for C++20 modules"); 187 SourceLocation StartOfTU = 188 SourceMgr.getLocForStartOfFile(SourceMgr.getMainFileID()); 189 190 StringRef HUName = getLangOpts().CurrentModule; 191 if (HUName.empty()) { 192 HUName = 193 SourceMgr.getFileEntryRefForID(SourceMgr.getMainFileID())->getName(); 194 const_cast<LangOptions &>(getLangOpts()).CurrentModule = HUName.str(); 195 } 196 197 // TODO: Make the C++20 header lookup independent. 198 // When the input is pre-processed source, we need a file ref to the original 199 // file for the header map. 200 auto F = SourceMgr.getFileManager().getOptionalFileRef(HUName); 201 // For the sake of error recovery (if someone has moved the original header 202 // after creating the pre-processed output) fall back to obtaining the file 203 // ref for the input file, which must be present. 204 if (!F) 205 F = SourceMgr.getFileEntryRefForID(SourceMgr.getMainFileID()); 206 assert(F && "failed to find the header unit source?"); 207 Module::Header H{HUName.str(), HUName.str(), *F}; 208 auto &Map = PP.getHeaderSearchInfo().getModuleMap(); 209 Module *Mod = Map.createHeaderUnit(StartOfTU, HUName, H); 210 assert(Mod && "module creation should not fail"); 211 ModuleScopes.push_back({}); // No GMF 212 ModuleScopes.back().BeginLoc = StartOfTU; 213 ModuleScopes.back().Module = Mod; 214 VisibleModules.setVisible(Mod, StartOfTU); 215 216 // From now on, we have an owning module for all declarations we see. 217 // All of these are implicitly exported. 218 auto *TU = Context.getTranslationUnitDecl(); 219 TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::Visible); 220 TU->setLocalOwningModule(Mod); 221 } 222 223 /// Tests whether the given identifier is reserved as a module name and 224 /// diagnoses if it is. Returns true if a diagnostic is emitted and false 225 /// otherwise. 226 static bool DiagReservedModuleName(Sema &S, const IdentifierInfo *II, 227 SourceLocation Loc) { 228 enum { 229 Valid = -1, 230 Invalid = 0, 231 Reserved = 1, 232 } Reason = Valid; 233 234 if (II->isStr("module") || II->isStr("import")) 235 Reason = Invalid; 236 else if (II->isReserved(S.getLangOpts()) != 237 ReservedIdentifierStatus::NotReserved) 238 Reason = Reserved; 239 240 // If the identifier is reserved (not invalid) but is in a system header, 241 // we do not diagnose (because we expect system headers to use reserved 242 // identifiers). 243 if (Reason == Reserved && S.getSourceManager().isInSystemHeader(Loc)) 244 Reason = Valid; 245 246 switch (Reason) { 247 case Valid: 248 return false; 249 case Invalid: 250 return S.Diag(Loc, diag::err_invalid_module_name) << II; 251 case Reserved: 252 S.Diag(Loc, diag::warn_reserved_module_name) << II; 253 return false; 254 } 255 llvm_unreachable("fell off a fully covered switch"); 256 } 257 258 Sema::DeclGroupPtrTy 259 Sema::ActOnModuleDecl(SourceLocation StartLoc, SourceLocation ModuleLoc, 260 ModuleDeclKind MDK, ModuleIdPath Path, 261 ModuleIdPath Partition, ModuleImportState &ImportState) { 262 assert(getLangOpts().CPlusPlusModules && 263 "should only have module decl in standard C++ modules"); 264 265 bool IsFirstDecl = ImportState == ModuleImportState::FirstDecl; 266 bool SeenGMF = ImportState == ModuleImportState::GlobalFragment; 267 // If any of the steps here fail, we count that as invalidating C++20 268 // module state; 269 ImportState = ModuleImportState::NotACXX20Module; 270 271 bool IsPartition = !Partition.empty(); 272 if (IsPartition) 273 switch (MDK) { 274 case ModuleDeclKind::Implementation: 275 MDK = ModuleDeclKind::PartitionImplementation; 276 break; 277 case ModuleDeclKind::Interface: 278 MDK = ModuleDeclKind::PartitionInterface; 279 break; 280 default: 281 llvm_unreachable("how did we get a partition type set?"); 282 } 283 284 // A (non-partition) module implementation unit requires that we are not 285 // compiling a module of any kind. A partition implementation emits an 286 // interface (and the AST for the implementation), which will subsequently 287 // be consumed to emit a binary. 288 // A module interface unit requires that we are not compiling a module map. 289 switch (getLangOpts().getCompilingModule()) { 290 case LangOptions::CMK_None: 291 // It's OK to compile a module interface as a normal translation unit. 292 break; 293 294 case LangOptions::CMK_ModuleInterface: 295 if (MDK != ModuleDeclKind::Implementation) 296 break; 297 298 // We were asked to compile a module interface unit but this is a module 299 // implementation unit. 300 Diag(ModuleLoc, diag::err_module_interface_implementation_mismatch) 301 << FixItHint::CreateInsertion(ModuleLoc, "export "); 302 MDK = ModuleDeclKind::Interface; 303 break; 304 305 case LangOptions::CMK_ModuleMap: 306 Diag(ModuleLoc, diag::err_module_decl_in_module_map_module); 307 return nullptr; 308 309 case LangOptions::CMK_HeaderUnit: 310 Diag(ModuleLoc, diag::err_module_decl_in_header_unit); 311 return nullptr; 312 } 313 314 assert(ModuleScopes.size() <= 1 && "expected to be at global module scope"); 315 316 // FIXME: Most of this work should be done by the preprocessor rather than 317 // here, in order to support macro import. 318 319 // Only one module-declaration is permitted per source file. 320 if (isCurrentModulePurview()) { 321 Diag(ModuleLoc, diag::err_module_redeclaration); 322 Diag(VisibleModules.getImportLoc(ModuleScopes.back().Module), 323 diag::note_prev_module_declaration); 324 return nullptr; 325 } 326 327 assert((!getLangOpts().CPlusPlusModules || 328 SeenGMF == (bool)this->TheGlobalModuleFragment) && 329 "mismatched global module state"); 330 331 // In C++20, the module-declaration must be the first declaration if there 332 // is no global module fragment. 333 if (getLangOpts().CPlusPlusModules && !IsFirstDecl && !SeenGMF) { 334 Diag(ModuleLoc, diag::err_module_decl_not_at_start); 335 SourceLocation BeginLoc = 336 ModuleScopes.empty() 337 ? SourceMgr.getLocForStartOfFile(SourceMgr.getMainFileID()) 338 : ModuleScopes.back().BeginLoc; 339 if (BeginLoc.isValid()) { 340 Diag(BeginLoc, diag::note_global_module_introducer_missing) 341 << FixItHint::CreateInsertion(BeginLoc, "module;\n"); 342 } 343 } 344 345 // C++23 [module.unit]p1: ... The identifiers module and import shall not 346 // appear as identifiers in a module-name or module-partition. All 347 // module-names either beginning with an identifier consisting of std 348 // followed by zero or more digits or containing a reserved identifier 349 // ([lex.name]) are reserved and shall not be specified in a 350 // module-declaration; no diagnostic is required. 351 352 // Test the first part of the path to see if it's std[0-9]+ but allow the 353 // name in a system header. 354 StringRef FirstComponentName = Path[0].first->getName(); 355 if (!getSourceManager().isInSystemHeader(Path[0].second) && 356 (FirstComponentName == "std" || 357 (FirstComponentName.starts_with("std") && 358 llvm::all_of(FirstComponentName.drop_front(3), &llvm::isDigit)))) 359 Diag(Path[0].second, diag::warn_reserved_module_name) << Path[0].first; 360 361 // Then test all of the components in the path to see if any of them are 362 // using another kind of reserved or invalid identifier. 363 for (auto Part : Path) { 364 if (DiagReservedModuleName(*this, Part.first, Part.second)) 365 return nullptr; 366 } 367 368 // Flatten the dots in a module name. Unlike Clang's hierarchical module map 369 // modules, the dots here are just another character that can appear in a 370 // module name. 371 std::string ModuleName = stringFromPath(Path); 372 if (IsPartition) { 373 ModuleName += ":"; 374 ModuleName += stringFromPath(Partition); 375 } 376 // If a module name was explicitly specified on the command line, it must be 377 // correct. 378 if (!getLangOpts().CurrentModule.empty() && 379 getLangOpts().CurrentModule != ModuleName) { 380 Diag(Path.front().second, diag::err_current_module_name_mismatch) 381 << SourceRange(Path.front().second, IsPartition 382 ? Partition.back().second 383 : Path.back().second) 384 << getLangOpts().CurrentModule; 385 return nullptr; 386 } 387 const_cast<LangOptions&>(getLangOpts()).CurrentModule = ModuleName; 388 389 auto &Map = PP.getHeaderSearchInfo().getModuleMap(); 390 Module *Mod; // The module we are creating. 391 Module *Interface = nullptr; // The interface for an implementation. 392 switch (MDK) { 393 case ModuleDeclKind::Interface: 394 case ModuleDeclKind::PartitionInterface: { 395 // We can't have parsed or imported a definition of this module or parsed a 396 // module map defining it already. 397 if (auto *M = Map.findModule(ModuleName)) { 398 Diag(Path[0].second, diag::err_module_redefinition) << ModuleName; 399 if (M->DefinitionLoc.isValid()) 400 Diag(M->DefinitionLoc, diag::note_prev_module_definition); 401 else if (OptionalFileEntryRef FE = M->getASTFile()) 402 Diag(M->DefinitionLoc, diag::note_prev_module_definition_from_ast_file) 403 << FE->getName(); 404 Mod = M; 405 break; 406 } 407 408 // Create a Module for the module that we're defining. 409 Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName); 410 if (MDK == ModuleDeclKind::PartitionInterface) 411 Mod->Kind = Module::ModulePartitionInterface; 412 assert(Mod && "module creation should not fail"); 413 break; 414 } 415 416 case ModuleDeclKind::Implementation: { 417 // C++20 A module-declaration that contains neither an export- 418 // keyword nor a module-partition implicitly imports the primary 419 // module interface unit of the module as if by a module-import- 420 // declaration. 421 std::pair<IdentifierInfo *, SourceLocation> ModuleNameLoc( 422 PP.getIdentifierInfo(ModuleName), Path[0].second); 423 424 // The module loader will assume we're trying to import the module that 425 // we're building if `LangOpts.CurrentModule` equals to 'ModuleName'. 426 // Change the value for `LangOpts.CurrentModule` temporarily to make the 427 // module loader work properly. 428 const_cast<LangOptions &>(getLangOpts()).CurrentModule = ""; 429 Interface = getModuleLoader().loadModule(ModuleLoc, {ModuleNameLoc}, 430 Module::AllVisible, 431 /*IsInclusionDirective=*/false); 432 const_cast<LangOptions&>(getLangOpts()).CurrentModule = ModuleName; 433 434 if (!Interface) { 435 Diag(ModuleLoc, diag::err_module_not_defined) << ModuleName; 436 // Create an empty module interface unit for error recovery. 437 Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName); 438 } else { 439 Mod = Map.createModuleForImplementationUnit(ModuleLoc, ModuleName); 440 } 441 } break; 442 443 case ModuleDeclKind::PartitionImplementation: 444 // Create an interface, but note that it is an implementation 445 // unit. 446 Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName); 447 Mod->Kind = Module::ModulePartitionImplementation; 448 break; 449 } 450 451 if (!this->TheGlobalModuleFragment) { 452 ModuleScopes.push_back({}); 453 if (getLangOpts().ModulesLocalVisibility) 454 ModuleScopes.back().OuterVisibleModules = std::move(VisibleModules); 455 } else { 456 // We're done with the global module fragment now. 457 ActOnEndOfTranslationUnitFragment(TUFragmentKind::Global); 458 } 459 460 // Switch from the global module fragment (if any) to the named module. 461 ModuleScopes.back().BeginLoc = StartLoc; 462 ModuleScopes.back().Module = Mod; 463 VisibleModules.setVisible(Mod, ModuleLoc); 464 465 // From now on, we have an owning module for all declarations we see. 466 // In C++20 modules, those declaration would be reachable when imported 467 // unless explicitily exported. 468 // Otherwise, those declarations are module-private unless explicitly 469 // exported. 470 auto *TU = Context.getTranslationUnitDecl(); 471 TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ReachableWhenImported); 472 TU->setLocalOwningModule(Mod); 473 474 // We are in the module purview, but before any other (non import) 475 // statements, so imports are allowed. 476 ImportState = ModuleImportState::ImportAllowed; 477 478 getASTContext().setCurrentNamedModule(Mod); 479 480 if (auto *Listener = getASTMutationListener()) 481 Listener->EnteringModulePurview(); 482 483 // We already potentially made an implicit import (in the case of a module 484 // implementation unit importing its interface). Make this module visible 485 // and return the import decl to be added to the current TU. 486 if (Interface) { 487 488 makeTransitiveImportsVisible(getASTContext(), VisibleModules, Interface, 489 Mod, ModuleLoc, 490 /*IsImportingPrimaryModuleInterface=*/true); 491 492 // Make the import decl for the interface in the impl module. 493 ImportDecl *Import = ImportDecl::Create(Context, CurContext, ModuleLoc, 494 Interface, Path[0].second); 495 CurContext->addDecl(Import); 496 497 // Sequence initialization of the imported module before that of the current 498 // module, if any. 499 Context.addModuleInitializer(ModuleScopes.back().Module, Import); 500 Mod->Imports.insert(Interface); // As if we imported it. 501 // Also save this as a shortcut to checking for decls in the interface 502 ThePrimaryInterface = Interface; 503 // If we made an implicit import of the module interface, then return the 504 // imported module decl. 505 return ConvertDeclToDeclGroup(Import); 506 } 507 508 return nullptr; 509 } 510 511 Sema::DeclGroupPtrTy 512 Sema::ActOnPrivateModuleFragmentDecl(SourceLocation ModuleLoc, 513 SourceLocation PrivateLoc) { 514 // C++20 [basic.link]/2: 515 // A private-module-fragment shall appear only in a primary module 516 // interface unit. 517 switch (ModuleScopes.empty() ? Module::ExplicitGlobalModuleFragment 518 : ModuleScopes.back().Module->Kind) { 519 case Module::ModuleMapModule: 520 case Module::ExplicitGlobalModuleFragment: 521 case Module::ImplicitGlobalModuleFragment: 522 case Module::ModulePartitionImplementation: 523 case Module::ModulePartitionInterface: 524 case Module::ModuleHeaderUnit: 525 Diag(PrivateLoc, diag::err_private_module_fragment_not_module); 526 return nullptr; 527 528 case Module::PrivateModuleFragment: 529 Diag(PrivateLoc, diag::err_private_module_fragment_redefined); 530 Diag(ModuleScopes.back().BeginLoc, diag::note_previous_definition); 531 return nullptr; 532 533 case Module::ModuleImplementationUnit: 534 Diag(PrivateLoc, diag::err_private_module_fragment_not_module_interface); 535 Diag(ModuleScopes.back().BeginLoc, 536 diag::note_not_module_interface_add_export) 537 << FixItHint::CreateInsertion(ModuleScopes.back().BeginLoc, "export "); 538 return nullptr; 539 540 case Module::ModuleInterfaceUnit: 541 break; 542 } 543 544 // FIXME: Check that this translation unit does not import any partitions; 545 // such imports would violate [basic.link]/2's "shall be the only module unit" 546 // restriction. 547 548 // We've finished the public fragment of the translation unit. 549 ActOnEndOfTranslationUnitFragment(TUFragmentKind::Normal); 550 551 auto &Map = PP.getHeaderSearchInfo().getModuleMap(); 552 Module *PrivateModuleFragment = 553 Map.createPrivateModuleFragmentForInterfaceUnit( 554 ModuleScopes.back().Module, PrivateLoc); 555 assert(PrivateModuleFragment && "module creation should not fail"); 556 557 // Enter the scope of the private module fragment. 558 ModuleScopes.push_back({}); 559 ModuleScopes.back().BeginLoc = ModuleLoc; 560 ModuleScopes.back().Module = PrivateModuleFragment; 561 VisibleModules.setVisible(PrivateModuleFragment, ModuleLoc); 562 563 // All declarations created from now on are scoped to the private module 564 // fragment (and are neither visible nor reachable in importers of the module 565 // interface). 566 auto *TU = Context.getTranslationUnitDecl(); 567 TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ModulePrivate); 568 TU->setLocalOwningModule(PrivateModuleFragment); 569 570 // FIXME: Consider creating an explicit representation of this declaration. 571 return nullptr; 572 } 573 574 DeclResult Sema::ActOnModuleImport(SourceLocation StartLoc, 575 SourceLocation ExportLoc, 576 SourceLocation ImportLoc, ModuleIdPath Path, 577 bool IsPartition) { 578 assert((!IsPartition || getLangOpts().CPlusPlusModules) && 579 "partition seen in non-C++20 code?"); 580 581 // For a C++20 module name, flatten into a single identifier with the source 582 // location of the first component. 583 std::pair<IdentifierInfo *, SourceLocation> ModuleNameLoc; 584 585 std::string ModuleName; 586 if (IsPartition) { 587 // We already checked that we are in a module purview in the parser. 588 assert(!ModuleScopes.empty() && "in a module purview, but no module?"); 589 Module *NamedMod = ModuleScopes.back().Module; 590 // If we are importing into a partition, find the owning named module, 591 // otherwise, the name of the importing named module. 592 ModuleName = NamedMod->getPrimaryModuleInterfaceName().str(); 593 ModuleName += ":"; 594 ModuleName += stringFromPath(Path); 595 ModuleNameLoc = {PP.getIdentifierInfo(ModuleName), Path[0].second}; 596 Path = ModuleIdPath(ModuleNameLoc); 597 } else if (getLangOpts().CPlusPlusModules) { 598 ModuleName = stringFromPath(Path); 599 ModuleNameLoc = {PP.getIdentifierInfo(ModuleName), Path[0].second}; 600 Path = ModuleIdPath(ModuleNameLoc); 601 } 602 603 // Diagnose self-import before attempting a load. 604 // [module.import]/9 605 // A module implementation unit of a module M that is not a module partition 606 // shall not contain a module-import-declaration nominating M. 607 // (for an implementation, the module interface is imported implicitly, 608 // but that's handled in the module decl code). 609 610 if (getLangOpts().CPlusPlusModules && isCurrentModulePurview() && 611 getCurrentModule()->Name == ModuleName) { 612 Diag(ImportLoc, diag::err_module_self_import_cxx20) 613 << ModuleName << currentModuleIsImplementation(); 614 return true; 615 } 616 617 Module *Mod = getModuleLoader().loadModule( 618 ImportLoc, Path, Module::AllVisible, /*IsInclusionDirective=*/false); 619 if (!Mod) 620 return true; 621 622 if (!Mod->isInterfaceOrPartition() && !ModuleName.empty() && 623 !getLangOpts().ObjC) { 624 Diag(ImportLoc, diag::err_module_import_non_interface_nor_parition) 625 << ModuleName; 626 return true; 627 } 628 629 return ActOnModuleImport(StartLoc, ExportLoc, ImportLoc, Mod, Path); 630 } 631 632 /// Determine whether \p D is lexically within an export-declaration. 633 static const ExportDecl *getEnclosingExportDecl(const Decl *D) { 634 for (auto *DC = D->getLexicalDeclContext(); DC; DC = DC->getLexicalParent()) 635 if (auto *ED = dyn_cast<ExportDecl>(DC)) 636 return ED; 637 return nullptr; 638 } 639 640 DeclResult Sema::ActOnModuleImport(SourceLocation StartLoc, 641 SourceLocation ExportLoc, 642 SourceLocation ImportLoc, Module *Mod, 643 ModuleIdPath Path) { 644 if (Mod->isHeaderUnit()) 645 Diag(ImportLoc, diag::warn_experimental_header_unit); 646 647 if (Mod->isNamedModule()) 648 makeTransitiveImportsVisible(getASTContext(), VisibleModules, Mod, 649 getCurrentModule(), ImportLoc); 650 else 651 VisibleModules.setVisible(Mod, ImportLoc); 652 653 assert((!Mod->isModulePartitionImplementation() || getCurrentModule()) && 654 "We can only import a partition unit in a named module."); 655 if (Mod->isModulePartitionImplementation() && 656 getCurrentModule()->isModuleInterfaceUnit()) 657 Diag(ImportLoc, 658 diag::warn_import_implementation_partition_unit_in_interface_unit) 659 << Mod->Name; 660 661 checkModuleImportContext(*this, Mod, ImportLoc, CurContext); 662 663 // FIXME: we should support importing a submodule within a different submodule 664 // of the same top-level module. Until we do, make it an error rather than 665 // silently ignoring the import. 666 // FIXME: Should we warn on a redundant import of the current module? 667 if (Mod->isForBuilding(getLangOpts())) { 668 Diag(ImportLoc, getLangOpts().isCompilingModule() 669 ? diag::err_module_self_import 670 : diag::err_module_import_in_implementation) 671 << Mod->getFullModuleName() << getLangOpts().CurrentModule; 672 } 673 674 SmallVector<SourceLocation, 2> IdentifierLocs; 675 676 if (Path.empty()) { 677 // If this was a header import, pad out with dummy locations. 678 // FIXME: Pass in and use the location of the header-name token in this 679 // case. 680 for (Module *ModCheck = Mod; ModCheck; ModCheck = ModCheck->Parent) 681 IdentifierLocs.push_back(SourceLocation()); 682 } else if (getLangOpts().CPlusPlusModules && !Mod->Parent) { 683 // A single identifier for the whole name. 684 IdentifierLocs.push_back(Path[0].second); 685 } else { 686 Module *ModCheck = Mod; 687 for (unsigned I = 0, N = Path.size(); I != N; ++I) { 688 // If we've run out of module parents, just drop the remaining 689 // identifiers. We need the length to be consistent. 690 if (!ModCheck) 691 break; 692 ModCheck = ModCheck->Parent; 693 694 IdentifierLocs.push_back(Path[I].second); 695 } 696 } 697 698 ImportDecl *Import = ImportDecl::Create(Context, CurContext, StartLoc, 699 Mod, IdentifierLocs); 700 CurContext->addDecl(Import); 701 702 // Sequence initialization of the imported module before that of the current 703 // module, if any. 704 if (!ModuleScopes.empty()) 705 Context.addModuleInitializer(ModuleScopes.back().Module, Import); 706 707 // A module (partition) implementation unit shall not be exported. 708 if (getLangOpts().CPlusPlusModules && ExportLoc.isValid() && 709 Mod->Kind == Module::ModuleKind::ModulePartitionImplementation) { 710 Diag(ExportLoc, diag::err_export_partition_impl) 711 << SourceRange(ExportLoc, Path.back().second); 712 } else if (!ModuleScopes.empty() && !currentModuleIsImplementation()) { 713 // Re-export the module if the imported module is exported. 714 // Note that we don't need to add re-exported module to Imports field 715 // since `Exports` implies the module is imported already. 716 if (ExportLoc.isValid() || getEnclosingExportDecl(Import)) 717 getCurrentModule()->Exports.emplace_back(Mod, false); 718 else 719 getCurrentModule()->Imports.insert(Mod); 720 } else if (ExportLoc.isValid()) { 721 // [module.interface]p1: 722 // An export-declaration shall inhabit a namespace scope and appear in the 723 // purview of a module interface unit. 724 Diag(ExportLoc, diag::err_export_not_in_module_interface); 725 } 726 727 return Import; 728 } 729 730 void Sema::ActOnAnnotModuleInclude(SourceLocation DirectiveLoc, Module *Mod) { 731 checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext, true); 732 BuildModuleInclude(DirectiveLoc, Mod); 733 } 734 735 void Sema::BuildModuleInclude(SourceLocation DirectiveLoc, Module *Mod) { 736 // Determine whether we're in the #include buffer for a module. The #includes 737 // in that buffer do not qualify as module imports; they're just an 738 // implementation detail of us building the module. 739 // 740 // FIXME: Should we even get ActOnAnnotModuleInclude calls for those? 741 bool IsInModuleIncludes = 742 TUKind == TU_ClangModule && 743 getSourceManager().isWrittenInMainFile(DirectiveLoc); 744 745 // If we are really importing a module (not just checking layering) due to an 746 // #include in the main file, synthesize an ImportDecl. 747 if (getLangOpts().Modules && !IsInModuleIncludes) { 748 TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl(); 749 ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU, 750 DirectiveLoc, Mod, 751 DirectiveLoc); 752 if (!ModuleScopes.empty()) 753 Context.addModuleInitializer(ModuleScopes.back().Module, ImportD); 754 TU->addDecl(ImportD); 755 Consumer.HandleImplicitImportDecl(ImportD); 756 } 757 758 getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, DirectiveLoc); 759 VisibleModules.setVisible(Mod, DirectiveLoc); 760 761 if (getLangOpts().isCompilingModule()) { 762 Module *ThisModule = PP.getHeaderSearchInfo().lookupModule( 763 getLangOpts().CurrentModule, DirectiveLoc, false, false); 764 (void)ThisModule; 765 assert(ThisModule && "was expecting a module if building one"); 766 } 767 } 768 769 void Sema::ActOnAnnotModuleBegin(SourceLocation DirectiveLoc, Module *Mod) { 770 checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext, true); 771 772 ModuleScopes.push_back({}); 773 ModuleScopes.back().Module = Mod; 774 if (getLangOpts().ModulesLocalVisibility) 775 ModuleScopes.back().OuterVisibleModules = std::move(VisibleModules); 776 777 VisibleModules.setVisible(Mod, DirectiveLoc); 778 779 // The enclosing context is now part of this module. 780 // FIXME: Consider creating a child DeclContext to hold the entities 781 // lexically within the module. 782 if (getLangOpts().trackLocalOwningModule()) { 783 for (auto *DC = CurContext; DC; DC = DC->getLexicalParent()) { 784 cast<Decl>(DC)->setModuleOwnershipKind( 785 getLangOpts().ModulesLocalVisibility 786 ? Decl::ModuleOwnershipKind::VisibleWhenImported 787 : Decl::ModuleOwnershipKind::Visible); 788 cast<Decl>(DC)->setLocalOwningModule(Mod); 789 } 790 } 791 } 792 793 void Sema::ActOnAnnotModuleEnd(SourceLocation EomLoc, Module *Mod) { 794 if (getLangOpts().ModulesLocalVisibility) { 795 VisibleModules = std::move(ModuleScopes.back().OuterVisibleModules); 796 // Leaving a module hides namespace names, so our visible namespace cache 797 // is now out of date. 798 VisibleNamespaceCache.clear(); 799 } 800 801 assert(!ModuleScopes.empty() && ModuleScopes.back().Module == Mod && 802 "left the wrong module scope"); 803 ModuleScopes.pop_back(); 804 805 // We got to the end of processing a local module. Create an 806 // ImportDecl as we would for an imported module. 807 FileID File = getSourceManager().getFileID(EomLoc); 808 SourceLocation DirectiveLoc; 809 if (EomLoc == getSourceManager().getLocForEndOfFile(File)) { 810 // We reached the end of a #included module header. Use the #include loc. 811 assert(File != getSourceManager().getMainFileID() && 812 "end of submodule in main source file"); 813 DirectiveLoc = getSourceManager().getIncludeLoc(File); 814 } else { 815 // We reached an EOM pragma. Use the pragma location. 816 DirectiveLoc = EomLoc; 817 } 818 BuildModuleInclude(DirectiveLoc, Mod); 819 820 // Any further declarations are in whatever module we returned to. 821 if (getLangOpts().trackLocalOwningModule()) { 822 // The parser guarantees that this is the same context that we entered 823 // the module within. 824 for (auto *DC = CurContext; DC; DC = DC->getLexicalParent()) { 825 cast<Decl>(DC)->setLocalOwningModule(getCurrentModule()); 826 if (!getCurrentModule()) 827 cast<Decl>(DC)->setModuleOwnershipKind( 828 Decl::ModuleOwnershipKind::Unowned); 829 } 830 } 831 } 832 833 void Sema::createImplicitModuleImportForErrorRecovery(SourceLocation Loc, 834 Module *Mod) { 835 // Bail if we're not allowed to implicitly import a module here. 836 if (isSFINAEContext() || !getLangOpts().ModulesErrorRecovery || 837 VisibleModules.isVisible(Mod)) 838 return; 839 840 // Create the implicit import declaration. 841 TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl(); 842 ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU, 843 Loc, Mod, Loc); 844 TU->addDecl(ImportD); 845 Consumer.HandleImplicitImportDecl(ImportD); 846 847 // Make the module visible. 848 getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, Loc); 849 VisibleModules.setVisible(Mod, Loc); 850 } 851 852 Decl *Sema::ActOnStartExportDecl(Scope *S, SourceLocation ExportLoc, 853 SourceLocation LBraceLoc) { 854 ExportDecl *D = ExportDecl::Create(Context, CurContext, ExportLoc); 855 856 // Set this temporarily so we know the export-declaration was braced. 857 D->setRBraceLoc(LBraceLoc); 858 859 CurContext->addDecl(D); 860 PushDeclContext(S, D); 861 862 // C++2a [module.interface]p1: 863 // An export-declaration shall appear only [...] in the purview of a module 864 // interface unit. An export-declaration shall not appear directly or 865 // indirectly within [...] a private-module-fragment. 866 if (!getLangOpts().HLSL) { 867 if (!isCurrentModulePurview()) { 868 Diag(ExportLoc, diag::err_export_not_in_module_interface) << 0; 869 D->setInvalidDecl(); 870 return D; 871 } else if (currentModuleIsImplementation()) { 872 Diag(ExportLoc, diag::err_export_not_in_module_interface) << 1; 873 Diag(ModuleScopes.back().BeginLoc, 874 diag::note_not_module_interface_add_export) 875 << FixItHint::CreateInsertion(ModuleScopes.back().BeginLoc, "export "); 876 D->setInvalidDecl(); 877 return D; 878 } else if (ModuleScopes.back().Module->Kind == 879 Module::PrivateModuleFragment) { 880 Diag(ExportLoc, diag::err_export_in_private_module_fragment); 881 Diag(ModuleScopes.back().BeginLoc, diag::note_private_module_fragment); 882 D->setInvalidDecl(); 883 return D; 884 } 885 } 886 887 for (const DeclContext *DC = CurContext; DC; DC = DC->getLexicalParent()) { 888 if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) { 889 // An export-declaration shall not appear directly or indirectly within 890 // an unnamed namespace [...] 891 if (ND->isAnonymousNamespace()) { 892 Diag(ExportLoc, diag::err_export_within_anonymous_namespace); 893 Diag(ND->getLocation(), diag::note_anonymous_namespace); 894 // Don't diagnose internal-linkage declarations in this region. 895 D->setInvalidDecl(); 896 return D; 897 } 898 899 // A declaration is exported if it is [...] a namespace-definition 900 // that contains an exported declaration. 901 // 902 // Defer exporting the namespace until after we leave it, in order to 903 // avoid marking all subsequent declarations in the namespace as exported. 904 if (!getLangOpts().HLSL && !DeferredExportedNamespaces.insert(ND).second) 905 break; 906 } 907 } 908 909 // [...] its declaration or declaration-seq shall not contain an 910 // export-declaration. 911 if (auto *ED = getEnclosingExportDecl(D)) { 912 Diag(ExportLoc, diag::err_export_within_export); 913 if (ED->hasBraces()) 914 Diag(ED->getLocation(), diag::note_export); 915 D->setInvalidDecl(); 916 return D; 917 } 918 919 if (!getLangOpts().HLSL) 920 D->setModuleOwnershipKind(Decl::ModuleOwnershipKind::VisibleWhenImported); 921 922 return D; 923 } 924 925 static bool checkExportedDecl(Sema &, Decl *, SourceLocation); 926 927 /// Check that it's valid to export all the declarations in \p DC. 928 static bool checkExportedDeclContext(Sema &S, DeclContext *DC, 929 SourceLocation BlockStart) { 930 bool AllUnnamed = true; 931 for (auto *D : DC->decls()) 932 AllUnnamed &= checkExportedDecl(S, D, BlockStart); 933 return AllUnnamed; 934 } 935 936 /// Check that it's valid to export \p D. 937 static bool checkExportedDecl(Sema &S, Decl *D, SourceLocation BlockStart) { 938 939 // HLSL: export declaration is valid only on functions 940 if (S.getLangOpts().HLSL) { 941 // Export-within-export was already diagnosed in ActOnStartExportDecl 942 if (!dyn_cast<FunctionDecl>(D) && !dyn_cast<ExportDecl>(D)) { 943 S.Diag(D->getBeginLoc(), diag::err_hlsl_export_not_on_function); 944 D->setInvalidDecl(); 945 return false; 946 } 947 } 948 949 // C++20 [module.interface]p3: 950 // [...] it shall not declare a name with internal linkage. 951 bool HasName = false; 952 if (auto *ND = dyn_cast<NamedDecl>(D)) { 953 // Don't diagnose anonymous union objects; we'll diagnose their members 954 // instead. 955 HasName = (bool)ND->getDeclName(); 956 if (HasName && ND->getFormalLinkage() == Linkage::Internal) { 957 S.Diag(ND->getLocation(), diag::err_export_internal) << ND; 958 if (BlockStart.isValid()) 959 S.Diag(BlockStart, diag::note_export); 960 return false; 961 } 962 } 963 964 // C++2a [module.interface]p5: 965 // all entities to which all of the using-declarators ultimately refer 966 // shall have been introduced with a name having external linkage 967 if (auto *USD = dyn_cast<UsingShadowDecl>(D)) { 968 NamedDecl *Target = USD->getUnderlyingDecl(); 969 Linkage Lk = Target->getFormalLinkage(); 970 if (Lk == Linkage::Internal || Lk == Linkage::Module) { 971 S.Diag(USD->getLocation(), diag::err_export_using_internal) 972 << (Lk == Linkage::Internal ? 0 : 1) << Target; 973 S.Diag(Target->getLocation(), diag::note_using_decl_target); 974 if (BlockStart.isValid()) 975 S.Diag(BlockStart, diag::note_export); 976 return false; 977 } 978 } 979 980 // Recurse into namespace-scope DeclContexts. (Only namespace-scope 981 // declarations are exported). 982 if (auto *DC = dyn_cast<DeclContext>(D)) { 983 if (!isa<NamespaceDecl>(D)) 984 return true; 985 986 if (auto *ND = dyn_cast<NamedDecl>(D)) { 987 if (!ND->getDeclName()) { 988 S.Diag(ND->getLocation(), diag::err_export_anon_ns_internal); 989 if (BlockStart.isValid()) 990 S.Diag(BlockStart, diag::note_export); 991 return false; 992 } else if (!DC->decls().empty() && 993 DC->getRedeclContext()->isFileContext()) { 994 return checkExportedDeclContext(S, DC, BlockStart); 995 } 996 } 997 } 998 return true; 999 } 1000 1001 Decl *Sema::ActOnFinishExportDecl(Scope *S, Decl *D, SourceLocation RBraceLoc) { 1002 auto *ED = cast<ExportDecl>(D); 1003 if (RBraceLoc.isValid()) 1004 ED->setRBraceLoc(RBraceLoc); 1005 1006 PopDeclContext(); 1007 1008 if (!D->isInvalidDecl()) { 1009 SourceLocation BlockStart = 1010 ED->hasBraces() ? ED->getBeginLoc() : SourceLocation(); 1011 for (auto *Child : ED->decls()) { 1012 checkExportedDecl(*this, Child, BlockStart); 1013 if (auto *FD = dyn_cast<FunctionDecl>(Child)) { 1014 // [dcl.inline]/7 1015 // If an inline function or variable that is attached to a named module 1016 // is declared in a definition domain, it shall be defined in that 1017 // domain. 1018 // So, if the current declaration does not have a definition, we must 1019 // check at the end of the TU (or when the PMF starts) to see that we 1020 // have a definition at that point. 1021 if (FD->isInlineSpecified() && !FD->isDefined()) 1022 PendingInlineFuncDecls.insert(FD); 1023 } 1024 } 1025 } 1026 1027 // Anything exported from a module should never be considered unused. 1028 for (auto *Exported : ED->decls()) 1029 Exported->markUsed(getASTContext()); 1030 1031 return D; 1032 } 1033 1034 Module *Sema::PushGlobalModuleFragment(SourceLocation BeginLoc) { 1035 // We shouldn't create new global module fragment if there is already 1036 // one. 1037 if (!TheGlobalModuleFragment) { 1038 ModuleMap &Map = PP.getHeaderSearchInfo().getModuleMap(); 1039 TheGlobalModuleFragment = Map.createGlobalModuleFragmentForModuleUnit( 1040 BeginLoc, getCurrentModule()); 1041 } 1042 1043 assert(TheGlobalModuleFragment && "module creation should not fail"); 1044 1045 // Enter the scope of the global module. 1046 ModuleScopes.push_back({BeginLoc, TheGlobalModuleFragment, 1047 /*OuterVisibleModules=*/{}}); 1048 VisibleModules.setVisible(TheGlobalModuleFragment, BeginLoc); 1049 1050 return TheGlobalModuleFragment; 1051 } 1052 1053 void Sema::PopGlobalModuleFragment() { 1054 assert(!ModuleScopes.empty() && 1055 getCurrentModule()->isExplicitGlobalModule() && 1056 "left the wrong module scope, which is not global module fragment"); 1057 ModuleScopes.pop_back(); 1058 } 1059 1060 Module *Sema::PushImplicitGlobalModuleFragment(SourceLocation BeginLoc) { 1061 if (!TheImplicitGlobalModuleFragment) { 1062 ModuleMap &Map = PP.getHeaderSearchInfo().getModuleMap(); 1063 TheImplicitGlobalModuleFragment = 1064 Map.createImplicitGlobalModuleFragmentForModuleUnit(BeginLoc, 1065 getCurrentModule()); 1066 } 1067 assert(TheImplicitGlobalModuleFragment && "module creation should not fail"); 1068 1069 // Enter the scope of the global module. 1070 ModuleScopes.push_back({BeginLoc, TheImplicitGlobalModuleFragment, 1071 /*OuterVisibleModules=*/{}}); 1072 VisibleModules.setVisible(TheImplicitGlobalModuleFragment, BeginLoc); 1073 return TheImplicitGlobalModuleFragment; 1074 } 1075 1076 void Sema::PopImplicitGlobalModuleFragment() { 1077 assert(!ModuleScopes.empty() && 1078 getCurrentModule()->isImplicitGlobalModule() && 1079 "left the wrong module scope, which is not global module fragment"); 1080 ModuleScopes.pop_back(); 1081 } 1082 1083 bool Sema::isCurrentModulePurview() const { 1084 if (!getCurrentModule()) 1085 return false; 1086 1087 /// Does this Module scope describe part of the purview of a standard named 1088 /// C++ module? 1089 switch (getCurrentModule()->Kind) { 1090 case Module::ModuleInterfaceUnit: 1091 case Module::ModuleImplementationUnit: 1092 case Module::ModulePartitionInterface: 1093 case Module::ModulePartitionImplementation: 1094 case Module::PrivateModuleFragment: 1095 case Module::ImplicitGlobalModuleFragment: 1096 return true; 1097 default: 1098 return false; 1099 } 1100 } 1101