xref: /llvm-project/clang/lib/Sema/SemaModule.cpp (revision 82034aca30ad8b08aadfe6b6b9048f5cdfa1d3ff)
1 //===--- SemaModule.cpp - Semantic Analysis for Modules -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements semantic analysis for modules (C++ modules syntax,
10 //  Objective-C modules syntax, and Clang header modules).
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/AST/ASTConsumer.h"
15 #include "clang/AST/ASTMutationListener.h"
16 #include "clang/Lex/HeaderSearch.h"
17 #include "clang/Lex/Preprocessor.h"
18 #include "clang/Sema/SemaInternal.h"
19 #include "llvm/ADT/StringExtras.h"
20 #include <optional>
21 
22 using namespace clang;
23 using namespace sema;
24 
25 static void checkModuleImportContext(Sema &S, Module *M,
26                                      SourceLocation ImportLoc, DeclContext *DC,
27                                      bool FromInclude = false) {
28   SourceLocation ExternCLoc;
29 
30   if (auto *LSD = dyn_cast<LinkageSpecDecl>(DC)) {
31     switch (LSD->getLanguage()) {
32     case LinkageSpecLanguageIDs::C:
33       if (ExternCLoc.isInvalid())
34         ExternCLoc = LSD->getBeginLoc();
35       break;
36     case LinkageSpecLanguageIDs::CXX:
37       break;
38     }
39     DC = LSD->getParent();
40   }
41 
42   while (isa<LinkageSpecDecl>(DC) || isa<ExportDecl>(DC))
43     DC = DC->getParent();
44 
45   if (!isa<TranslationUnitDecl>(DC)) {
46     S.Diag(ImportLoc, (FromInclude && S.isModuleVisible(M))
47                           ? diag::ext_module_import_not_at_top_level_noop
48                           : diag::err_module_import_not_at_top_level_fatal)
49         << M->getFullModuleName() << DC;
50     S.Diag(cast<Decl>(DC)->getBeginLoc(),
51            diag::note_module_import_not_at_top_level)
52         << DC;
53   } else if (!M->IsExternC && ExternCLoc.isValid()) {
54     S.Diag(ImportLoc, diag::ext_module_import_in_extern_c)
55       << M->getFullModuleName();
56     S.Diag(ExternCLoc, diag::note_extern_c_begins_here);
57   }
58 }
59 
60 // We represent the primary and partition names as 'Paths' which are sections
61 // of the hierarchical access path for a clang module.  However for C++20
62 // the periods in a name are just another character, and we will need to
63 // flatten them into a string.
64 static std::string stringFromPath(ModuleIdPath Path) {
65   std::string Name;
66   if (Path.empty())
67     return Name;
68 
69   for (auto &Piece : Path) {
70     if (!Name.empty())
71       Name += ".";
72     Name += Piece.first->getName();
73   }
74   return Name;
75 }
76 
77 /// Helper function for makeTransitiveImportsVisible to decide whether
78 /// the \param Imported module unit is in the same module with the \param
79 /// CurrentModule.
80 /// \param FoundPrimaryModuleInterface is a helper parameter to record the
81 /// primary module interface unit corresponding to the module \param
82 /// CurrentModule. Since currently it is expensive to decide whether two module
83 /// units come from the same module by comparing the module name.
84 static bool
85 isImportingModuleUnitFromSameModule(ASTContext &Ctx, Module *Imported,
86                                     Module *CurrentModule,
87                                     Module *&FoundPrimaryModuleInterface) {
88   if (!Imported->isNamedModule())
89     return false;
90 
91   // The a partition unit we're importing must be in the same module of the
92   // current module.
93   if (Imported->isModulePartition())
94     return true;
95 
96   // If we found the primary module interface during the search process, we can
97   // return quickly to avoid expensive string comparison.
98   if (FoundPrimaryModuleInterface)
99     return Imported == FoundPrimaryModuleInterface;
100 
101   if (!CurrentModule)
102     return false;
103 
104   // Then the imported module must be a primary module interface unit.  It
105   // is only allowed to import the primary module interface unit from the same
106   // module in the implementation unit and the implementation partition unit.
107 
108   // Since we'll handle implementation unit above. We can only care
109   // about the implementation partition unit here.
110   if (!CurrentModule->isModulePartitionImplementation())
111     return false;
112 
113   if (Ctx.isInSameModule(Imported, CurrentModule)) {
114     assert(!FoundPrimaryModuleInterface ||
115            FoundPrimaryModuleInterface == Imported);
116     FoundPrimaryModuleInterface = Imported;
117     return true;
118   }
119 
120   return false;
121 }
122 
123 /// [module.import]p7:
124 ///   Additionally, when a module-import-declaration in a module unit of some
125 ///   module M imports another module unit U of M, it also imports all
126 ///   translation units imported by non-exported module-import-declarations in
127 ///   the module unit purview of U. These rules can in turn lead to the
128 ///   importation of yet more translation units.
129 static void
130 makeTransitiveImportsVisible(ASTContext &Ctx, VisibleModuleSet &VisibleModules,
131                              Module *Imported, Module *CurrentModule,
132                              SourceLocation ImportLoc,
133                              bool IsImportingPrimaryModuleInterface = false) {
134   assert(Imported->isNamedModule() &&
135          "'makeTransitiveImportsVisible()' is intended for standard C++ named "
136          "modules only.");
137 
138   llvm::SmallVector<Module *, 4> Worklist;
139   Worklist.push_back(Imported);
140 
141   Module *FoundPrimaryModuleInterface =
142       IsImportingPrimaryModuleInterface ? Imported : nullptr;
143 
144   while (!Worklist.empty()) {
145     Module *Importing = Worklist.pop_back_val();
146 
147     if (VisibleModules.isVisible(Importing))
148       continue;
149 
150     // FIXME: The ImportLoc here is not meaningful. It may be problematic if we
151     // use the sourcelocation loaded from the visible modules.
152     VisibleModules.setVisible(Importing, ImportLoc);
153 
154     if (isImportingModuleUnitFromSameModule(Ctx, Importing, CurrentModule,
155                                             FoundPrimaryModuleInterface))
156       for (Module *TransImported : Importing->Imports)
157         if (!VisibleModules.isVisible(TransImported))
158           Worklist.push_back(TransImported);
159   }
160 }
161 
162 Sema::DeclGroupPtrTy
163 Sema::ActOnGlobalModuleFragmentDecl(SourceLocation ModuleLoc) {
164   // We start in the global module;
165   Module *GlobalModule =
166       PushGlobalModuleFragment(ModuleLoc);
167 
168   // All declarations created from now on are owned by the global module.
169   auto *TU = Context.getTranslationUnitDecl();
170   // [module.global.frag]p2
171   // A global-module-fragment specifies the contents of the global module
172   // fragment for a module unit. The global module fragment can be used to
173   // provide declarations that are attached to the global module and usable
174   // within the module unit.
175   //
176   // So the declations in the global module shouldn't be visible by default.
177   TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ReachableWhenImported);
178   TU->setLocalOwningModule(GlobalModule);
179 
180   // FIXME: Consider creating an explicit representation of this declaration.
181   return nullptr;
182 }
183 
184 void Sema::HandleStartOfHeaderUnit() {
185   assert(getLangOpts().CPlusPlusModules &&
186          "Header units are only valid for C++20 modules");
187   SourceLocation StartOfTU =
188       SourceMgr.getLocForStartOfFile(SourceMgr.getMainFileID());
189 
190   StringRef HUName = getLangOpts().CurrentModule;
191   if (HUName.empty()) {
192     HUName =
193         SourceMgr.getFileEntryRefForID(SourceMgr.getMainFileID())->getName();
194     const_cast<LangOptions &>(getLangOpts()).CurrentModule = HUName.str();
195   }
196 
197   // TODO: Make the C++20 header lookup independent.
198   // When the input is pre-processed source, we need a file ref to the original
199   // file for the header map.
200   auto F = SourceMgr.getFileManager().getOptionalFileRef(HUName);
201   // For the sake of error recovery (if someone has moved the original header
202   // after creating the pre-processed output) fall back to obtaining the file
203   // ref for the input file, which must be present.
204   if (!F)
205     F = SourceMgr.getFileEntryRefForID(SourceMgr.getMainFileID());
206   assert(F && "failed to find the header unit source?");
207   Module::Header H{HUName.str(), HUName.str(), *F};
208   auto &Map = PP.getHeaderSearchInfo().getModuleMap();
209   Module *Mod = Map.createHeaderUnit(StartOfTU, HUName, H);
210   assert(Mod && "module creation should not fail");
211   ModuleScopes.push_back({}); // No GMF
212   ModuleScopes.back().BeginLoc = StartOfTU;
213   ModuleScopes.back().Module = Mod;
214   VisibleModules.setVisible(Mod, StartOfTU);
215 
216   // From now on, we have an owning module for all declarations we see.
217   // All of these are implicitly exported.
218   auto *TU = Context.getTranslationUnitDecl();
219   TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::Visible);
220   TU->setLocalOwningModule(Mod);
221 }
222 
223 /// Tests whether the given identifier is reserved as a module name and
224 /// diagnoses if it is. Returns true if a diagnostic is emitted and false
225 /// otherwise.
226 static bool DiagReservedModuleName(Sema &S, const IdentifierInfo *II,
227                                    SourceLocation Loc) {
228   enum {
229     Valid = -1,
230     Invalid = 0,
231     Reserved = 1,
232   } Reason = Valid;
233 
234   if (II->isStr("module") || II->isStr("import"))
235     Reason = Invalid;
236   else if (II->isReserved(S.getLangOpts()) !=
237            ReservedIdentifierStatus::NotReserved)
238     Reason = Reserved;
239 
240   // If the identifier is reserved (not invalid) but is in a system header,
241   // we do not diagnose (because we expect system headers to use reserved
242   // identifiers).
243   if (Reason == Reserved && S.getSourceManager().isInSystemHeader(Loc))
244     Reason = Valid;
245 
246   switch (Reason) {
247   case Valid:
248     return false;
249   case Invalid:
250     return S.Diag(Loc, diag::err_invalid_module_name) << II;
251   case Reserved:
252     S.Diag(Loc, diag::warn_reserved_module_name) << II;
253     return false;
254   }
255   llvm_unreachable("fell off a fully covered switch");
256 }
257 
258 Sema::DeclGroupPtrTy
259 Sema::ActOnModuleDecl(SourceLocation StartLoc, SourceLocation ModuleLoc,
260                       ModuleDeclKind MDK, ModuleIdPath Path,
261                       ModuleIdPath Partition, ModuleImportState &ImportState) {
262   assert(getLangOpts().CPlusPlusModules &&
263          "should only have module decl in standard C++ modules");
264 
265   bool IsFirstDecl = ImportState == ModuleImportState::FirstDecl;
266   bool SeenGMF = ImportState == ModuleImportState::GlobalFragment;
267   // If any of the steps here fail, we count that as invalidating C++20
268   // module state;
269   ImportState = ModuleImportState::NotACXX20Module;
270 
271   bool IsPartition = !Partition.empty();
272   if (IsPartition)
273     switch (MDK) {
274     case ModuleDeclKind::Implementation:
275       MDK = ModuleDeclKind::PartitionImplementation;
276       break;
277     case ModuleDeclKind::Interface:
278       MDK = ModuleDeclKind::PartitionInterface;
279       break;
280     default:
281       llvm_unreachable("how did we get a partition type set?");
282     }
283 
284   // A (non-partition) module implementation unit requires that we are not
285   // compiling a module of any kind.  A partition implementation emits an
286   // interface (and the AST for the implementation), which will subsequently
287   // be consumed to emit a binary.
288   // A module interface unit requires that we are not compiling a module map.
289   switch (getLangOpts().getCompilingModule()) {
290   case LangOptions::CMK_None:
291     // It's OK to compile a module interface as a normal translation unit.
292     break;
293 
294   case LangOptions::CMK_ModuleInterface:
295     if (MDK != ModuleDeclKind::Implementation)
296       break;
297 
298     // We were asked to compile a module interface unit but this is a module
299     // implementation unit.
300     Diag(ModuleLoc, diag::err_module_interface_implementation_mismatch)
301       << FixItHint::CreateInsertion(ModuleLoc, "export ");
302     MDK = ModuleDeclKind::Interface;
303     break;
304 
305   case LangOptions::CMK_ModuleMap:
306     Diag(ModuleLoc, diag::err_module_decl_in_module_map_module);
307     return nullptr;
308 
309   case LangOptions::CMK_HeaderUnit:
310     Diag(ModuleLoc, diag::err_module_decl_in_header_unit);
311     return nullptr;
312   }
313 
314   assert(ModuleScopes.size() <= 1 && "expected to be at global module scope");
315 
316   // FIXME: Most of this work should be done by the preprocessor rather than
317   // here, in order to support macro import.
318 
319   // Only one module-declaration is permitted per source file.
320   if (isCurrentModulePurview()) {
321     Diag(ModuleLoc, diag::err_module_redeclaration);
322     Diag(VisibleModules.getImportLoc(ModuleScopes.back().Module),
323          diag::note_prev_module_declaration);
324     return nullptr;
325   }
326 
327   assert((!getLangOpts().CPlusPlusModules ||
328           SeenGMF == (bool)this->TheGlobalModuleFragment) &&
329          "mismatched global module state");
330 
331   // In C++20, the module-declaration must be the first declaration if there
332   // is no global module fragment.
333   if (getLangOpts().CPlusPlusModules && !IsFirstDecl && !SeenGMF) {
334     Diag(ModuleLoc, diag::err_module_decl_not_at_start);
335     SourceLocation BeginLoc =
336         ModuleScopes.empty()
337             ? SourceMgr.getLocForStartOfFile(SourceMgr.getMainFileID())
338             : ModuleScopes.back().BeginLoc;
339     if (BeginLoc.isValid()) {
340       Diag(BeginLoc, diag::note_global_module_introducer_missing)
341           << FixItHint::CreateInsertion(BeginLoc, "module;\n");
342     }
343   }
344 
345   // C++23 [module.unit]p1: ... The identifiers module and import shall not
346   // appear as identifiers in a module-name or module-partition. All
347   // module-names either beginning with an identifier consisting of std
348   // followed by zero or more digits or containing a reserved identifier
349   // ([lex.name]) are reserved and shall not be specified in a
350   // module-declaration; no diagnostic is required.
351 
352   // Test the first part of the path to see if it's std[0-9]+ but allow the
353   // name in a system header.
354   StringRef FirstComponentName = Path[0].first->getName();
355   if (!getSourceManager().isInSystemHeader(Path[0].second) &&
356       (FirstComponentName == "std" ||
357        (FirstComponentName.starts_with("std") &&
358         llvm::all_of(FirstComponentName.drop_front(3), &llvm::isDigit))))
359     Diag(Path[0].second, diag::warn_reserved_module_name) << Path[0].first;
360 
361   // Then test all of the components in the path to see if any of them are
362   // using another kind of reserved or invalid identifier.
363   for (auto Part : Path) {
364     if (DiagReservedModuleName(*this, Part.first, Part.second))
365       return nullptr;
366   }
367 
368   // Flatten the dots in a module name. Unlike Clang's hierarchical module map
369   // modules, the dots here are just another character that can appear in a
370   // module name.
371   std::string ModuleName = stringFromPath(Path);
372   if (IsPartition) {
373     ModuleName += ":";
374     ModuleName += stringFromPath(Partition);
375   }
376   // If a module name was explicitly specified on the command line, it must be
377   // correct.
378   if (!getLangOpts().CurrentModule.empty() &&
379       getLangOpts().CurrentModule != ModuleName) {
380     Diag(Path.front().second, diag::err_current_module_name_mismatch)
381         << SourceRange(Path.front().second, IsPartition
382                                                 ? Partition.back().second
383                                                 : Path.back().second)
384         << getLangOpts().CurrentModule;
385     return nullptr;
386   }
387   const_cast<LangOptions&>(getLangOpts()).CurrentModule = ModuleName;
388 
389   auto &Map = PP.getHeaderSearchInfo().getModuleMap();
390   Module *Mod;                 // The module we are creating.
391   Module *Interface = nullptr; // The interface for an implementation.
392   switch (MDK) {
393   case ModuleDeclKind::Interface:
394   case ModuleDeclKind::PartitionInterface: {
395     // We can't have parsed or imported a definition of this module or parsed a
396     // module map defining it already.
397     if (auto *M = Map.findModule(ModuleName)) {
398       Diag(Path[0].second, diag::err_module_redefinition) << ModuleName;
399       if (M->DefinitionLoc.isValid())
400         Diag(M->DefinitionLoc, diag::note_prev_module_definition);
401       else if (OptionalFileEntryRef FE = M->getASTFile())
402         Diag(M->DefinitionLoc, diag::note_prev_module_definition_from_ast_file)
403             << FE->getName();
404       Mod = M;
405       break;
406     }
407 
408     // Create a Module for the module that we're defining.
409     Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName);
410     if (MDK == ModuleDeclKind::PartitionInterface)
411       Mod->Kind = Module::ModulePartitionInterface;
412     assert(Mod && "module creation should not fail");
413     break;
414   }
415 
416   case ModuleDeclKind::Implementation: {
417     // C++20 A module-declaration that contains neither an export-
418     // keyword nor a module-partition implicitly imports the primary
419     // module interface unit of the module as if by a module-import-
420     // declaration.
421     std::pair<IdentifierInfo *, SourceLocation> ModuleNameLoc(
422         PP.getIdentifierInfo(ModuleName), Path[0].second);
423 
424     // The module loader will assume we're trying to import the module that
425     // we're building if `LangOpts.CurrentModule` equals to 'ModuleName'.
426     // Change the value for `LangOpts.CurrentModule` temporarily to make the
427     // module loader work properly.
428     const_cast<LangOptions &>(getLangOpts()).CurrentModule = "";
429     Interface = getModuleLoader().loadModule(ModuleLoc, {ModuleNameLoc},
430                                              Module::AllVisible,
431                                              /*IsInclusionDirective=*/false);
432     const_cast<LangOptions&>(getLangOpts()).CurrentModule = ModuleName;
433 
434     if (!Interface) {
435       Diag(ModuleLoc, diag::err_module_not_defined) << ModuleName;
436       // Create an empty module interface unit for error recovery.
437       Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName);
438     } else {
439       Mod = Map.createModuleForImplementationUnit(ModuleLoc, ModuleName);
440     }
441   } break;
442 
443   case ModuleDeclKind::PartitionImplementation:
444     // Create an interface, but note that it is an implementation
445     // unit.
446     Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName);
447     Mod->Kind = Module::ModulePartitionImplementation;
448     break;
449   }
450 
451   if (!this->TheGlobalModuleFragment) {
452     ModuleScopes.push_back({});
453     if (getLangOpts().ModulesLocalVisibility)
454       ModuleScopes.back().OuterVisibleModules = std::move(VisibleModules);
455   } else {
456     // We're done with the global module fragment now.
457     ActOnEndOfTranslationUnitFragment(TUFragmentKind::Global);
458   }
459 
460   // Switch from the global module fragment (if any) to the named module.
461   ModuleScopes.back().BeginLoc = StartLoc;
462   ModuleScopes.back().Module = Mod;
463   VisibleModules.setVisible(Mod, ModuleLoc);
464 
465   // From now on, we have an owning module for all declarations we see.
466   // In C++20 modules, those declaration would be reachable when imported
467   // unless explicitily exported.
468   // Otherwise, those declarations are module-private unless explicitly
469   // exported.
470   auto *TU = Context.getTranslationUnitDecl();
471   TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ReachableWhenImported);
472   TU->setLocalOwningModule(Mod);
473 
474   // We are in the module purview, but before any other (non import)
475   // statements, so imports are allowed.
476   ImportState = ModuleImportState::ImportAllowed;
477 
478   getASTContext().setCurrentNamedModule(Mod);
479 
480   if (auto *Listener = getASTMutationListener())
481     Listener->EnteringModulePurview();
482 
483   // We already potentially made an implicit import (in the case of a module
484   // implementation unit importing its interface).  Make this module visible
485   // and return the import decl to be added to the current TU.
486   if (Interface) {
487 
488     makeTransitiveImportsVisible(getASTContext(), VisibleModules, Interface,
489                                  Mod, ModuleLoc,
490                                  /*IsImportingPrimaryModuleInterface=*/true);
491 
492     // Make the import decl for the interface in the impl module.
493     ImportDecl *Import = ImportDecl::Create(Context, CurContext, ModuleLoc,
494                                             Interface, Path[0].second);
495     CurContext->addDecl(Import);
496 
497     // Sequence initialization of the imported module before that of the current
498     // module, if any.
499     Context.addModuleInitializer(ModuleScopes.back().Module, Import);
500     Mod->Imports.insert(Interface); // As if we imported it.
501     // Also save this as a shortcut to checking for decls in the interface
502     ThePrimaryInterface = Interface;
503     // If we made an implicit import of the module interface, then return the
504     // imported module decl.
505     return ConvertDeclToDeclGroup(Import);
506   }
507 
508   return nullptr;
509 }
510 
511 Sema::DeclGroupPtrTy
512 Sema::ActOnPrivateModuleFragmentDecl(SourceLocation ModuleLoc,
513                                      SourceLocation PrivateLoc) {
514   // C++20 [basic.link]/2:
515   //   A private-module-fragment shall appear only in a primary module
516   //   interface unit.
517   switch (ModuleScopes.empty() ? Module::ExplicitGlobalModuleFragment
518                                : ModuleScopes.back().Module->Kind) {
519   case Module::ModuleMapModule:
520   case Module::ExplicitGlobalModuleFragment:
521   case Module::ImplicitGlobalModuleFragment:
522   case Module::ModulePartitionImplementation:
523   case Module::ModulePartitionInterface:
524   case Module::ModuleHeaderUnit:
525     Diag(PrivateLoc, diag::err_private_module_fragment_not_module);
526     return nullptr;
527 
528   case Module::PrivateModuleFragment:
529     Diag(PrivateLoc, diag::err_private_module_fragment_redefined);
530     Diag(ModuleScopes.back().BeginLoc, diag::note_previous_definition);
531     return nullptr;
532 
533   case Module::ModuleImplementationUnit:
534     Diag(PrivateLoc, diag::err_private_module_fragment_not_module_interface);
535     Diag(ModuleScopes.back().BeginLoc,
536          diag::note_not_module_interface_add_export)
537         << FixItHint::CreateInsertion(ModuleScopes.back().BeginLoc, "export ");
538     return nullptr;
539 
540   case Module::ModuleInterfaceUnit:
541     break;
542   }
543 
544   // FIXME: Check that this translation unit does not import any partitions;
545   // such imports would violate [basic.link]/2's "shall be the only module unit"
546   // restriction.
547 
548   // We've finished the public fragment of the translation unit.
549   ActOnEndOfTranslationUnitFragment(TUFragmentKind::Normal);
550 
551   auto &Map = PP.getHeaderSearchInfo().getModuleMap();
552   Module *PrivateModuleFragment =
553       Map.createPrivateModuleFragmentForInterfaceUnit(
554           ModuleScopes.back().Module, PrivateLoc);
555   assert(PrivateModuleFragment && "module creation should not fail");
556 
557   // Enter the scope of the private module fragment.
558   ModuleScopes.push_back({});
559   ModuleScopes.back().BeginLoc = ModuleLoc;
560   ModuleScopes.back().Module = PrivateModuleFragment;
561   VisibleModules.setVisible(PrivateModuleFragment, ModuleLoc);
562 
563   // All declarations created from now on are scoped to the private module
564   // fragment (and are neither visible nor reachable in importers of the module
565   // interface).
566   auto *TU = Context.getTranslationUnitDecl();
567   TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ModulePrivate);
568   TU->setLocalOwningModule(PrivateModuleFragment);
569 
570   // FIXME: Consider creating an explicit representation of this declaration.
571   return nullptr;
572 }
573 
574 DeclResult Sema::ActOnModuleImport(SourceLocation StartLoc,
575                                    SourceLocation ExportLoc,
576                                    SourceLocation ImportLoc, ModuleIdPath Path,
577                                    bool IsPartition) {
578   assert((!IsPartition || getLangOpts().CPlusPlusModules) &&
579          "partition seen in non-C++20 code?");
580 
581   // For a C++20 module name, flatten into a single identifier with the source
582   // location of the first component.
583   std::pair<IdentifierInfo *, SourceLocation> ModuleNameLoc;
584 
585   std::string ModuleName;
586   if (IsPartition) {
587     // We already checked that we are in a module purview in the parser.
588     assert(!ModuleScopes.empty() && "in a module purview, but no module?");
589     Module *NamedMod = ModuleScopes.back().Module;
590     // If we are importing into a partition, find the owning named module,
591     // otherwise, the name of the importing named module.
592     ModuleName = NamedMod->getPrimaryModuleInterfaceName().str();
593     ModuleName += ":";
594     ModuleName += stringFromPath(Path);
595     ModuleNameLoc = {PP.getIdentifierInfo(ModuleName), Path[0].second};
596     Path = ModuleIdPath(ModuleNameLoc);
597   } else if (getLangOpts().CPlusPlusModules) {
598     ModuleName = stringFromPath(Path);
599     ModuleNameLoc = {PP.getIdentifierInfo(ModuleName), Path[0].second};
600     Path = ModuleIdPath(ModuleNameLoc);
601   }
602 
603   // Diagnose self-import before attempting a load.
604   // [module.import]/9
605   // A module implementation unit of a module M that is not a module partition
606   // shall not contain a module-import-declaration nominating M.
607   // (for an implementation, the module interface is imported implicitly,
608   //  but that's handled in the module decl code).
609 
610   if (getLangOpts().CPlusPlusModules && isCurrentModulePurview() &&
611       getCurrentModule()->Name == ModuleName) {
612     Diag(ImportLoc, diag::err_module_self_import_cxx20)
613         << ModuleName << currentModuleIsImplementation();
614     return true;
615   }
616 
617   Module *Mod = getModuleLoader().loadModule(
618       ImportLoc, Path, Module::AllVisible, /*IsInclusionDirective=*/false);
619   if (!Mod)
620     return true;
621 
622   if (!Mod->isInterfaceOrPartition() && !ModuleName.empty() &&
623       !getLangOpts().ObjC) {
624     Diag(ImportLoc, diag::err_module_import_non_interface_nor_parition)
625         << ModuleName;
626     return true;
627   }
628 
629   return ActOnModuleImport(StartLoc, ExportLoc, ImportLoc, Mod, Path);
630 }
631 
632 /// Determine whether \p D is lexically within an export-declaration.
633 static const ExportDecl *getEnclosingExportDecl(const Decl *D) {
634   for (auto *DC = D->getLexicalDeclContext(); DC; DC = DC->getLexicalParent())
635     if (auto *ED = dyn_cast<ExportDecl>(DC))
636       return ED;
637   return nullptr;
638 }
639 
640 DeclResult Sema::ActOnModuleImport(SourceLocation StartLoc,
641                                    SourceLocation ExportLoc,
642                                    SourceLocation ImportLoc, Module *Mod,
643                                    ModuleIdPath Path) {
644   if (Mod->isHeaderUnit())
645     Diag(ImportLoc, diag::warn_experimental_header_unit);
646 
647   if (Mod->isNamedModule())
648     makeTransitiveImportsVisible(getASTContext(), VisibleModules, Mod,
649                                  getCurrentModule(), ImportLoc);
650   else
651     VisibleModules.setVisible(Mod, ImportLoc);
652 
653   assert((!Mod->isModulePartitionImplementation() || getCurrentModule()) &&
654          "We can only import a partition unit in a named module.");
655   if (Mod->isModulePartitionImplementation() &&
656       getCurrentModule()->isModuleInterfaceUnit())
657     Diag(ImportLoc,
658          diag::warn_import_implementation_partition_unit_in_interface_unit)
659         << Mod->Name;
660 
661   checkModuleImportContext(*this, Mod, ImportLoc, CurContext);
662 
663   // FIXME: we should support importing a submodule within a different submodule
664   // of the same top-level module. Until we do, make it an error rather than
665   // silently ignoring the import.
666   // FIXME: Should we warn on a redundant import of the current module?
667   if (Mod->isForBuilding(getLangOpts())) {
668     Diag(ImportLoc, getLangOpts().isCompilingModule()
669                         ? diag::err_module_self_import
670                         : diag::err_module_import_in_implementation)
671         << Mod->getFullModuleName() << getLangOpts().CurrentModule;
672   }
673 
674   SmallVector<SourceLocation, 2> IdentifierLocs;
675 
676   if (Path.empty()) {
677     // If this was a header import, pad out with dummy locations.
678     // FIXME: Pass in and use the location of the header-name token in this
679     // case.
680     for (Module *ModCheck = Mod; ModCheck; ModCheck = ModCheck->Parent)
681       IdentifierLocs.push_back(SourceLocation());
682   } else if (getLangOpts().CPlusPlusModules && !Mod->Parent) {
683     // A single identifier for the whole name.
684     IdentifierLocs.push_back(Path[0].second);
685   } else {
686     Module *ModCheck = Mod;
687     for (unsigned I = 0, N = Path.size(); I != N; ++I) {
688       // If we've run out of module parents, just drop the remaining
689       // identifiers.  We need the length to be consistent.
690       if (!ModCheck)
691         break;
692       ModCheck = ModCheck->Parent;
693 
694       IdentifierLocs.push_back(Path[I].second);
695     }
696   }
697 
698   ImportDecl *Import = ImportDecl::Create(Context, CurContext, StartLoc,
699                                           Mod, IdentifierLocs);
700   CurContext->addDecl(Import);
701 
702   // Sequence initialization of the imported module before that of the current
703   // module, if any.
704   if (!ModuleScopes.empty())
705     Context.addModuleInitializer(ModuleScopes.back().Module, Import);
706 
707   // A module (partition) implementation unit shall not be exported.
708   if (getLangOpts().CPlusPlusModules && ExportLoc.isValid() &&
709       Mod->Kind == Module::ModuleKind::ModulePartitionImplementation) {
710     Diag(ExportLoc, diag::err_export_partition_impl)
711         << SourceRange(ExportLoc, Path.back().second);
712   } else if (!ModuleScopes.empty() && !currentModuleIsImplementation()) {
713     // Re-export the module if the imported module is exported.
714     // Note that we don't need to add re-exported module to Imports field
715     // since `Exports` implies the module is imported already.
716     if (ExportLoc.isValid() || getEnclosingExportDecl(Import))
717       getCurrentModule()->Exports.emplace_back(Mod, false);
718     else
719       getCurrentModule()->Imports.insert(Mod);
720   } else if (ExportLoc.isValid()) {
721     // [module.interface]p1:
722     // An export-declaration shall inhabit a namespace scope and appear in the
723     // purview of a module interface unit.
724     Diag(ExportLoc, diag::err_export_not_in_module_interface);
725   }
726 
727   return Import;
728 }
729 
730 void Sema::ActOnAnnotModuleInclude(SourceLocation DirectiveLoc, Module *Mod) {
731   checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext, true);
732   BuildModuleInclude(DirectiveLoc, Mod);
733 }
734 
735 void Sema::BuildModuleInclude(SourceLocation DirectiveLoc, Module *Mod) {
736   // Determine whether we're in the #include buffer for a module. The #includes
737   // in that buffer do not qualify as module imports; they're just an
738   // implementation detail of us building the module.
739   //
740   // FIXME: Should we even get ActOnAnnotModuleInclude calls for those?
741   bool IsInModuleIncludes =
742       TUKind == TU_ClangModule &&
743       getSourceManager().isWrittenInMainFile(DirectiveLoc);
744 
745   // If we are really importing a module (not just checking layering) due to an
746   // #include in the main file, synthesize an ImportDecl.
747   if (getLangOpts().Modules && !IsInModuleIncludes) {
748     TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
749     ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
750                                                      DirectiveLoc, Mod,
751                                                      DirectiveLoc);
752     if (!ModuleScopes.empty())
753       Context.addModuleInitializer(ModuleScopes.back().Module, ImportD);
754     TU->addDecl(ImportD);
755     Consumer.HandleImplicitImportDecl(ImportD);
756   }
757 
758   getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, DirectiveLoc);
759   VisibleModules.setVisible(Mod, DirectiveLoc);
760 
761   if (getLangOpts().isCompilingModule()) {
762     Module *ThisModule = PP.getHeaderSearchInfo().lookupModule(
763         getLangOpts().CurrentModule, DirectiveLoc, false, false);
764     (void)ThisModule;
765     assert(ThisModule && "was expecting a module if building one");
766   }
767 }
768 
769 void Sema::ActOnAnnotModuleBegin(SourceLocation DirectiveLoc, Module *Mod) {
770   checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext, true);
771 
772   ModuleScopes.push_back({});
773   ModuleScopes.back().Module = Mod;
774   if (getLangOpts().ModulesLocalVisibility)
775     ModuleScopes.back().OuterVisibleModules = std::move(VisibleModules);
776 
777   VisibleModules.setVisible(Mod, DirectiveLoc);
778 
779   // The enclosing context is now part of this module.
780   // FIXME: Consider creating a child DeclContext to hold the entities
781   // lexically within the module.
782   if (getLangOpts().trackLocalOwningModule()) {
783     for (auto *DC = CurContext; DC; DC = DC->getLexicalParent()) {
784       cast<Decl>(DC)->setModuleOwnershipKind(
785           getLangOpts().ModulesLocalVisibility
786               ? Decl::ModuleOwnershipKind::VisibleWhenImported
787               : Decl::ModuleOwnershipKind::Visible);
788       cast<Decl>(DC)->setLocalOwningModule(Mod);
789     }
790   }
791 }
792 
793 void Sema::ActOnAnnotModuleEnd(SourceLocation EomLoc, Module *Mod) {
794   if (getLangOpts().ModulesLocalVisibility) {
795     VisibleModules = std::move(ModuleScopes.back().OuterVisibleModules);
796     // Leaving a module hides namespace names, so our visible namespace cache
797     // is now out of date.
798     VisibleNamespaceCache.clear();
799   }
800 
801   assert(!ModuleScopes.empty() && ModuleScopes.back().Module == Mod &&
802          "left the wrong module scope");
803   ModuleScopes.pop_back();
804 
805   // We got to the end of processing a local module. Create an
806   // ImportDecl as we would for an imported module.
807   FileID File = getSourceManager().getFileID(EomLoc);
808   SourceLocation DirectiveLoc;
809   if (EomLoc == getSourceManager().getLocForEndOfFile(File)) {
810     // We reached the end of a #included module header. Use the #include loc.
811     assert(File != getSourceManager().getMainFileID() &&
812            "end of submodule in main source file");
813     DirectiveLoc = getSourceManager().getIncludeLoc(File);
814   } else {
815     // We reached an EOM pragma. Use the pragma location.
816     DirectiveLoc = EomLoc;
817   }
818   BuildModuleInclude(DirectiveLoc, Mod);
819 
820   // Any further declarations are in whatever module we returned to.
821   if (getLangOpts().trackLocalOwningModule()) {
822     // The parser guarantees that this is the same context that we entered
823     // the module within.
824     for (auto *DC = CurContext; DC; DC = DC->getLexicalParent()) {
825       cast<Decl>(DC)->setLocalOwningModule(getCurrentModule());
826       if (!getCurrentModule())
827         cast<Decl>(DC)->setModuleOwnershipKind(
828             Decl::ModuleOwnershipKind::Unowned);
829     }
830   }
831 }
832 
833 void Sema::createImplicitModuleImportForErrorRecovery(SourceLocation Loc,
834                                                       Module *Mod) {
835   // Bail if we're not allowed to implicitly import a module here.
836   if (isSFINAEContext() || !getLangOpts().ModulesErrorRecovery ||
837       VisibleModules.isVisible(Mod))
838     return;
839 
840   // Create the implicit import declaration.
841   TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
842   ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
843                                                    Loc, Mod, Loc);
844   TU->addDecl(ImportD);
845   Consumer.HandleImplicitImportDecl(ImportD);
846 
847   // Make the module visible.
848   getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, Loc);
849   VisibleModules.setVisible(Mod, Loc);
850 }
851 
852 Decl *Sema::ActOnStartExportDecl(Scope *S, SourceLocation ExportLoc,
853                                  SourceLocation LBraceLoc) {
854   ExportDecl *D = ExportDecl::Create(Context, CurContext, ExportLoc);
855 
856   // Set this temporarily so we know the export-declaration was braced.
857   D->setRBraceLoc(LBraceLoc);
858 
859   CurContext->addDecl(D);
860   PushDeclContext(S, D);
861 
862   // C++2a [module.interface]p1:
863   //   An export-declaration shall appear only [...] in the purview of a module
864   //   interface unit. An export-declaration shall not appear directly or
865   //   indirectly within [...] a private-module-fragment.
866   if (!getLangOpts().HLSL) {
867     if (!isCurrentModulePurview()) {
868       Diag(ExportLoc, diag::err_export_not_in_module_interface) << 0;
869       D->setInvalidDecl();
870       return D;
871     } else if (currentModuleIsImplementation()) {
872       Diag(ExportLoc, diag::err_export_not_in_module_interface) << 1;
873       Diag(ModuleScopes.back().BeginLoc,
874           diag::note_not_module_interface_add_export)
875           << FixItHint::CreateInsertion(ModuleScopes.back().BeginLoc, "export ");
876       D->setInvalidDecl();
877       return D;
878     } else if (ModuleScopes.back().Module->Kind ==
879               Module::PrivateModuleFragment) {
880       Diag(ExportLoc, diag::err_export_in_private_module_fragment);
881       Diag(ModuleScopes.back().BeginLoc, diag::note_private_module_fragment);
882       D->setInvalidDecl();
883       return D;
884     }
885   }
886 
887   for (const DeclContext *DC = CurContext; DC; DC = DC->getLexicalParent()) {
888     if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) {
889       //   An export-declaration shall not appear directly or indirectly within
890       //   an unnamed namespace [...]
891       if (ND->isAnonymousNamespace()) {
892         Diag(ExportLoc, diag::err_export_within_anonymous_namespace);
893         Diag(ND->getLocation(), diag::note_anonymous_namespace);
894         // Don't diagnose internal-linkage declarations in this region.
895         D->setInvalidDecl();
896         return D;
897       }
898 
899       //   A declaration is exported if it is [...] a namespace-definition
900       //   that contains an exported declaration.
901       //
902       // Defer exporting the namespace until after we leave it, in order to
903       // avoid marking all subsequent declarations in the namespace as exported.
904       if (!getLangOpts().HLSL && !DeferredExportedNamespaces.insert(ND).second)
905         break;
906     }
907   }
908 
909   //   [...] its declaration or declaration-seq shall not contain an
910   //   export-declaration.
911   if (auto *ED = getEnclosingExportDecl(D)) {
912     Diag(ExportLoc, diag::err_export_within_export);
913     if (ED->hasBraces())
914       Diag(ED->getLocation(), diag::note_export);
915     D->setInvalidDecl();
916     return D;
917   }
918 
919   if (!getLangOpts().HLSL)
920     D->setModuleOwnershipKind(Decl::ModuleOwnershipKind::VisibleWhenImported);
921 
922   return D;
923 }
924 
925 static bool checkExportedDecl(Sema &, Decl *, SourceLocation);
926 
927 /// Check that it's valid to export all the declarations in \p DC.
928 static bool checkExportedDeclContext(Sema &S, DeclContext *DC,
929                                      SourceLocation BlockStart) {
930   bool AllUnnamed = true;
931   for (auto *D : DC->decls())
932     AllUnnamed &= checkExportedDecl(S, D, BlockStart);
933   return AllUnnamed;
934 }
935 
936 /// Check that it's valid to export \p D.
937 static bool checkExportedDecl(Sema &S, Decl *D, SourceLocation BlockStart) {
938 
939   // HLSL: export declaration is valid only on functions
940   if (S.getLangOpts().HLSL) {
941     // Export-within-export was already diagnosed in ActOnStartExportDecl
942     if (!dyn_cast<FunctionDecl>(D) && !dyn_cast<ExportDecl>(D)) {
943       S.Diag(D->getBeginLoc(), diag::err_hlsl_export_not_on_function);
944       D->setInvalidDecl();
945       return false;
946     }
947   }
948 
949   //  C++20 [module.interface]p3:
950   //   [...] it shall not declare a name with internal linkage.
951   bool HasName = false;
952   if (auto *ND = dyn_cast<NamedDecl>(D)) {
953     // Don't diagnose anonymous union objects; we'll diagnose their members
954     // instead.
955     HasName = (bool)ND->getDeclName();
956     if (HasName && ND->getFormalLinkage() == Linkage::Internal) {
957       S.Diag(ND->getLocation(), diag::err_export_internal) << ND;
958       if (BlockStart.isValid())
959         S.Diag(BlockStart, diag::note_export);
960       return false;
961     }
962   }
963 
964   // C++2a [module.interface]p5:
965   //   all entities to which all of the using-declarators ultimately refer
966   //   shall have been introduced with a name having external linkage
967   if (auto *USD = dyn_cast<UsingShadowDecl>(D)) {
968     NamedDecl *Target = USD->getUnderlyingDecl();
969     Linkage Lk = Target->getFormalLinkage();
970     if (Lk == Linkage::Internal || Lk == Linkage::Module) {
971       S.Diag(USD->getLocation(), diag::err_export_using_internal)
972           << (Lk == Linkage::Internal ? 0 : 1) << Target;
973       S.Diag(Target->getLocation(), diag::note_using_decl_target);
974       if (BlockStart.isValid())
975         S.Diag(BlockStart, diag::note_export);
976       return false;
977     }
978   }
979 
980   // Recurse into namespace-scope DeclContexts. (Only namespace-scope
981   // declarations are exported).
982   if (auto *DC = dyn_cast<DeclContext>(D)) {
983     if (!isa<NamespaceDecl>(D))
984       return true;
985 
986     if (auto *ND = dyn_cast<NamedDecl>(D)) {
987       if (!ND->getDeclName()) {
988         S.Diag(ND->getLocation(), diag::err_export_anon_ns_internal);
989         if (BlockStart.isValid())
990           S.Diag(BlockStart, diag::note_export);
991         return false;
992       } else if (!DC->decls().empty() &&
993                  DC->getRedeclContext()->isFileContext()) {
994         return checkExportedDeclContext(S, DC, BlockStart);
995       }
996     }
997   }
998   return true;
999 }
1000 
1001 Decl *Sema::ActOnFinishExportDecl(Scope *S, Decl *D, SourceLocation RBraceLoc) {
1002   auto *ED = cast<ExportDecl>(D);
1003   if (RBraceLoc.isValid())
1004     ED->setRBraceLoc(RBraceLoc);
1005 
1006   PopDeclContext();
1007 
1008   if (!D->isInvalidDecl()) {
1009     SourceLocation BlockStart =
1010         ED->hasBraces() ? ED->getBeginLoc() : SourceLocation();
1011     for (auto *Child : ED->decls()) {
1012       checkExportedDecl(*this, Child, BlockStart);
1013       if (auto *FD = dyn_cast<FunctionDecl>(Child)) {
1014         // [dcl.inline]/7
1015         // If an inline function or variable that is attached to a named module
1016         // is declared in a definition domain, it shall be defined in that
1017         // domain.
1018         // So, if the current declaration does not have a definition, we must
1019         // check at the end of the TU (or when the PMF starts) to see that we
1020         // have a definition at that point.
1021         if (FD->isInlineSpecified() && !FD->isDefined())
1022           PendingInlineFuncDecls.insert(FD);
1023       }
1024     }
1025   }
1026 
1027   // Anything exported from a module should never be considered unused.
1028   for (auto *Exported : ED->decls())
1029     Exported->markUsed(getASTContext());
1030 
1031   return D;
1032 }
1033 
1034 Module *Sema::PushGlobalModuleFragment(SourceLocation BeginLoc) {
1035   // We shouldn't create new global module fragment if there is already
1036   // one.
1037   if (!TheGlobalModuleFragment) {
1038     ModuleMap &Map = PP.getHeaderSearchInfo().getModuleMap();
1039     TheGlobalModuleFragment = Map.createGlobalModuleFragmentForModuleUnit(
1040         BeginLoc, getCurrentModule());
1041   }
1042 
1043   assert(TheGlobalModuleFragment && "module creation should not fail");
1044 
1045   // Enter the scope of the global module.
1046   ModuleScopes.push_back({BeginLoc, TheGlobalModuleFragment,
1047                           /*OuterVisibleModules=*/{}});
1048   VisibleModules.setVisible(TheGlobalModuleFragment, BeginLoc);
1049 
1050   return TheGlobalModuleFragment;
1051 }
1052 
1053 void Sema::PopGlobalModuleFragment() {
1054   assert(!ModuleScopes.empty() &&
1055          getCurrentModule()->isExplicitGlobalModule() &&
1056          "left the wrong module scope, which is not global module fragment");
1057   ModuleScopes.pop_back();
1058 }
1059 
1060 Module *Sema::PushImplicitGlobalModuleFragment(SourceLocation BeginLoc) {
1061   if (!TheImplicitGlobalModuleFragment) {
1062     ModuleMap &Map = PP.getHeaderSearchInfo().getModuleMap();
1063     TheImplicitGlobalModuleFragment =
1064         Map.createImplicitGlobalModuleFragmentForModuleUnit(BeginLoc,
1065                                                             getCurrentModule());
1066   }
1067   assert(TheImplicitGlobalModuleFragment && "module creation should not fail");
1068 
1069   // Enter the scope of the global module.
1070   ModuleScopes.push_back({BeginLoc, TheImplicitGlobalModuleFragment,
1071                           /*OuterVisibleModules=*/{}});
1072   VisibleModules.setVisible(TheImplicitGlobalModuleFragment, BeginLoc);
1073   return TheImplicitGlobalModuleFragment;
1074 }
1075 
1076 void Sema::PopImplicitGlobalModuleFragment() {
1077   assert(!ModuleScopes.empty() &&
1078          getCurrentModule()->isImplicitGlobalModule() &&
1079          "left the wrong module scope, which is not global module fragment");
1080   ModuleScopes.pop_back();
1081 }
1082 
1083 bool Sema::isCurrentModulePurview() const {
1084   if (!getCurrentModule())
1085     return false;
1086 
1087   /// Does this Module scope describe part of the purview of a standard named
1088   /// C++ module?
1089   switch (getCurrentModule()->Kind) {
1090   case Module::ModuleInterfaceUnit:
1091   case Module::ModuleImplementationUnit:
1092   case Module::ModulePartitionInterface:
1093   case Module::ModulePartitionImplementation:
1094   case Module::PrivateModuleFragment:
1095   case Module::ImplicitGlobalModuleFragment:
1096     return true;
1097   default:
1098     return false;
1099   }
1100 }
1101