1 //===--- SemaModule.cpp - Semantic Analysis for Modules -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for modules (C++ modules syntax, 10 // Objective-C modules syntax, and Clang header modules). 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/AST/ASTConsumer.h" 15 #include "clang/Lex/HeaderSearch.h" 16 #include "clang/Lex/Preprocessor.h" 17 #include "clang/Sema/SemaInternal.h" 18 #include <optional> 19 20 using namespace clang; 21 using namespace sema; 22 23 static void checkModuleImportContext(Sema &S, Module *M, 24 SourceLocation ImportLoc, DeclContext *DC, 25 bool FromInclude = false) { 26 SourceLocation ExternCLoc; 27 28 if (auto *LSD = dyn_cast<LinkageSpecDecl>(DC)) { 29 switch (LSD->getLanguage()) { 30 case LinkageSpecDecl::lang_c: 31 if (ExternCLoc.isInvalid()) 32 ExternCLoc = LSD->getBeginLoc(); 33 break; 34 case LinkageSpecDecl::lang_cxx: 35 break; 36 } 37 DC = LSD->getParent(); 38 } 39 40 while (isa<LinkageSpecDecl>(DC) || isa<ExportDecl>(DC)) 41 DC = DC->getParent(); 42 43 if (!isa<TranslationUnitDecl>(DC)) { 44 S.Diag(ImportLoc, (FromInclude && S.isModuleVisible(M)) 45 ? diag::ext_module_import_not_at_top_level_noop 46 : diag::err_module_import_not_at_top_level_fatal) 47 << M->getFullModuleName() << DC; 48 S.Diag(cast<Decl>(DC)->getBeginLoc(), 49 diag::note_module_import_not_at_top_level) 50 << DC; 51 } else if (!M->IsExternC && ExternCLoc.isValid()) { 52 S.Diag(ImportLoc, diag::ext_module_import_in_extern_c) 53 << M->getFullModuleName(); 54 S.Diag(ExternCLoc, diag::note_extern_c_begins_here); 55 } 56 } 57 58 // We represent the primary and partition names as 'Paths' which are sections 59 // of the hierarchical access path for a clang module. However for C++20 60 // the periods in a name are just another character, and we will need to 61 // flatten them into a string. 62 static std::string stringFromPath(ModuleIdPath Path) { 63 std::string Name; 64 if (Path.empty()) 65 return Name; 66 67 for (auto &Piece : Path) { 68 if (!Name.empty()) 69 Name += "."; 70 Name += Piece.first->getName(); 71 } 72 return Name; 73 } 74 75 Sema::DeclGroupPtrTy 76 Sema::ActOnGlobalModuleFragmentDecl(SourceLocation ModuleLoc) { 77 // We start in the global module; all those declarations are implicitly 78 // module-private (though they do not have module linkage). 79 Module *GlobalModule = 80 PushGlobalModuleFragment(ModuleLoc, /*IsImplicit=*/false); 81 82 // All declarations created from now on are owned by the global module. 83 auto *TU = Context.getTranslationUnitDecl(); 84 // [module.global.frag]p2 85 // A global-module-fragment specifies the contents of the global module 86 // fragment for a module unit. The global module fragment can be used to 87 // provide declarations that are attached to the global module and usable 88 // within the module unit. 89 // 90 // So the declations in the global module shouldn't be visible by default. 91 TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ReachableWhenImported); 92 TU->setLocalOwningModule(GlobalModule); 93 94 // FIXME: Consider creating an explicit representation of this declaration. 95 return nullptr; 96 } 97 98 void Sema::HandleStartOfHeaderUnit() { 99 assert(getLangOpts().CPlusPlusModules && 100 "Header units are only valid for C++20 modules"); 101 SourceLocation StartOfTU = 102 SourceMgr.getLocForStartOfFile(SourceMgr.getMainFileID()); 103 104 StringRef HUName = getLangOpts().CurrentModule; 105 if (HUName.empty()) { 106 HUName = SourceMgr.getFileEntryForID(SourceMgr.getMainFileID())->getName(); 107 const_cast<LangOptions &>(getLangOpts()).CurrentModule = HUName.str(); 108 } 109 110 // TODO: Make the C++20 header lookup independent. 111 // When the input is pre-processed source, we need a file ref to the original 112 // file for the header map. 113 auto F = SourceMgr.getFileManager().getOptionalFileRef(HUName); 114 // For the sake of error recovery (if someone has moved the original header 115 // after creating the pre-processed output) fall back to obtaining the file 116 // ref for the input file, which must be present. 117 if (!F) 118 F = SourceMgr.getFileEntryRefForID(SourceMgr.getMainFileID()); 119 assert(F && "failed to find the header unit source?"); 120 Module::Header H{HUName.str(), HUName.str(), *F}; 121 auto &Map = PP.getHeaderSearchInfo().getModuleMap(); 122 Module *Mod = Map.createHeaderUnit(StartOfTU, HUName, H); 123 assert(Mod && "module creation should not fail"); 124 ModuleScopes.push_back({}); // No GMF 125 ModuleScopes.back().BeginLoc = StartOfTU; 126 ModuleScopes.back().Module = Mod; 127 ModuleScopes.back().ModuleInterface = true; 128 ModuleScopes.back().IsPartition = false; 129 VisibleModules.setVisible(Mod, StartOfTU); 130 131 // From now on, we have an owning module for all declarations we see. 132 // All of these are implicitly exported. 133 auto *TU = Context.getTranslationUnitDecl(); 134 TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::Visible); 135 TU->setLocalOwningModule(Mod); 136 } 137 138 /// Tests whether the given identifier is reserved as a module name and 139 /// diagnoses if it is. Returns true if a diagnostic is emitted and false 140 /// otherwise. 141 static bool DiagReservedModuleName(Sema &S, const IdentifierInfo *II, 142 SourceLocation Loc) { 143 enum { 144 Valid = -1, 145 Invalid = 0, 146 Reserved = 1, 147 } Reason = Valid; 148 149 if (II->isStr("module") || II->isStr("import")) 150 Reason = Invalid; 151 else if (II->isReserved(S.getLangOpts()) != 152 ReservedIdentifierStatus::NotReserved) 153 Reason = Reserved; 154 155 // If the identifier is reserved (not invalid) but is in a system header, 156 // we do not diagnose (because we expect system headers to use reserved 157 // identifiers). 158 if (Reason == Reserved && S.getSourceManager().isInSystemHeader(Loc)) 159 Reason = Valid; 160 161 if (Reason != Valid) { 162 S.Diag(Loc, diag::err_invalid_module_name) << II << (int)Reason; 163 return true; 164 } 165 return false; 166 } 167 168 Sema::DeclGroupPtrTy 169 Sema::ActOnModuleDecl(SourceLocation StartLoc, SourceLocation ModuleLoc, 170 ModuleDeclKind MDK, ModuleIdPath Path, 171 ModuleIdPath Partition, ModuleImportState &ImportState) { 172 assert(getLangOpts().CPlusPlusModules && 173 "should only have module decl in standard C++ modules"); 174 175 bool IsFirstDecl = ImportState == ModuleImportState::FirstDecl; 176 bool SeenGMF = ImportState == ModuleImportState::GlobalFragment; 177 // If any of the steps here fail, we count that as invalidating C++20 178 // module state; 179 ImportState = ModuleImportState::NotACXX20Module; 180 181 bool IsPartition = !Partition.empty(); 182 if (IsPartition) 183 switch (MDK) { 184 case ModuleDeclKind::Implementation: 185 MDK = ModuleDeclKind::PartitionImplementation; 186 break; 187 case ModuleDeclKind::Interface: 188 MDK = ModuleDeclKind::PartitionInterface; 189 break; 190 default: 191 llvm_unreachable("how did we get a partition type set?"); 192 } 193 194 // A (non-partition) module implementation unit requires that we are not 195 // compiling a module of any kind. A partition implementation emits an 196 // interface (and the AST for the implementation), which will subsequently 197 // be consumed to emit a binary. 198 // A module interface unit requires that we are not compiling a module map. 199 switch (getLangOpts().getCompilingModule()) { 200 case LangOptions::CMK_None: 201 // It's OK to compile a module interface as a normal translation unit. 202 break; 203 204 case LangOptions::CMK_ModuleInterface: 205 if (MDK != ModuleDeclKind::Implementation) 206 break; 207 208 // We were asked to compile a module interface unit but this is a module 209 // implementation unit. 210 Diag(ModuleLoc, diag::err_module_interface_implementation_mismatch) 211 << FixItHint::CreateInsertion(ModuleLoc, "export "); 212 MDK = ModuleDeclKind::Interface; 213 break; 214 215 case LangOptions::CMK_ModuleMap: 216 Diag(ModuleLoc, diag::err_module_decl_in_module_map_module); 217 return nullptr; 218 219 case LangOptions::CMK_HeaderUnit: 220 Diag(ModuleLoc, diag::err_module_decl_in_header_unit); 221 return nullptr; 222 } 223 224 assert(ModuleScopes.size() <= 1 && "expected to be at global module scope"); 225 226 // FIXME: Most of this work should be done by the preprocessor rather than 227 // here, in order to support macro import. 228 229 // Only one module-declaration is permitted per source file. 230 if (isCurrentModulePurview()) { 231 Diag(ModuleLoc, diag::err_module_redeclaration); 232 Diag(VisibleModules.getImportLoc(ModuleScopes.back().Module), 233 diag::note_prev_module_declaration); 234 return nullptr; 235 } 236 237 assert((!getLangOpts().CPlusPlusModules || 238 SeenGMF == (bool)this->GlobalModuleFragment) && 239 "mismatched global module state"); 240 241 // In C++20, the module-declaration must be the first declaration if there 242 // is no global module fragment. 243 if (getLangOpts().CPlusPlusModules && !IsFirstDecl && !SeenGMF) { 244 Diag(ModuleLoc, diag::err_module_decl_not_at_start); 245 SourceLocation BeginLoc = 246 ModuleScopes.empty() 247 ? SourceMgr.getLocForStartOfFile(SourceMgr.getMainFileID()) 248 : ModuleScopes.back().BeginLoc; 249 if (BeginLoc.isValid()) { 250 Diag(BeginLoc, diag::note_global_module_introducer_missing) 251 << FixItHint::CreateInsertion(BeginLoc, "module;\n"); 252 } 253 } 254 255 // C++2b [module.unit]p1: ... The identifiers module and import shall not 256 // appear as identifiers in a module-name or module-partition. All 257 // module-names either beginning with an identifier consisting of std 258 // followed by zero or more digits or containing a reserved identifier 259 // ([lex.name]) are reserved and shall not be specified in a 260 // module-declaration; no diagnostic is required. 261 262 // Test the first part of the path to see if it's std[0-9]+ but allow the 263 // name in a system header. 264 StringRef FirstComponentName = Path[0].first->getName(); 265 if (!getSourceManager().isInSystemHeader(Path[0].second) && 266 (FirstComponentName == "std" || 267 (FirstComponentName.startswith("std") && 268 llvm::all_of(FirstComponentName.drop_front(3), &llvm::isDigit)))) { 269 Diag(Path[0].second, diag::err_invalid_module_name) 270 << Path[0].first << /*reserved*/ 1; 271 return nullptr; 272 } 273 274 // Then test all of the components in the path to see if any of them are 275 // using another kind of reserved or invalid identifier. 276 for (auto Part : Path) { 277 if (DiagReservedModuleName(*this, Part.first, Part.second)) 278 return nullptr; 279 } 280 281 // Flatten the dots in a module name. Unlike Clang's hierarchical module map 282 // modules, the dots here are just another character that can appear in a 283 // module name. 284 std::string ModuleName = stringFromPath(Path); 285 if (IsPartition) { 286 ModuleName += ":"; 287 ModuleName += stringFromPath(Partition); 288 } 289 // If a module name was explicitly specified on the command line, it must be 290 // correct. 291 if (!getLangOpts().CurrentModule.empty() && 292 getLangOpts().CurrentModule != ModuleName) { 293 Diag(Path.front().second, diag::err_current_module_name_mismatch) 294 << SourceRange(Path.front().second, IsPartition 295 ? Partition.back().second 296 : Path.back().second) 297 << getLangOpts().CurrentModule; 298 return nullptr; 299 } 300 const_cast<LangOptions&>(getLangOpts()).CurrentModule = ModuleName; 301 302 auto &Map = PP.getHeaderSearchInfo().getModuleMap(); 303 Module *Mod; 304 305 switch (MDK) { 306 case ModuleDeclKind::Interface: 307 case ModuleDeclKind::PartitionInterface: { 308 // We can't have parsed or imported a definition of this module or parsed a 309 // module map defining it already. 310 if (auto *M = Map.findModule(ModuleName)) { 311 Diag(Path[0].second, diag::err_module_redefinition) << ModuleName; 312 if (M->DefinitionLoc.isValid()) 313 Diag(M->DefinitionLoc, diag::note_prev_module_definition); 314 else if (OptionalFileEntryRef FE = M->getASTFile()) 315 Diag(M->DefinitionLoc, diag::note_prev_module_definition_from_ast_file) 316 << FE->getName(); 317 Mod = M; 318 break; 319 } 320 321 // Create a Module for the module that we're defining. 322 Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName); 323 if (MDK == ModuleDeclKind::PartitionInterface) 324 Mod->Kind = Module::ModulePartitionInterface; 325 assert(Mod && "module creation should not fail"); 326 break; 327 } 328 329 case ModuleDeclKind::Implementation: { 330 // C++20 A module-declaration that contains neither an export- 331 // keyword nor a module-partition implicitly imports the primary 332 // module interface unit of the module as if by a module-import- 333 // declaration. 334 std::pair<IdentifierInfo *, SourceLocation> ModuleNameLoc( 335 PP.getIdentifierInfo(ModuleName), Path[0].second); 336 337 // The module loader will assume we're trying to import the module that 338 // we're building if `LangOpts.CurrentModule` equals to 'ModuleName'. 339 // Change the value for `LangOpts.CurrentModule` temporarily to make the 340 // module loader work properly. 341 const_cast<LangOptions&>(getLangOpts()).CurrentModule = ""; 342 Mod = getModuleLoader().loadModule(ModuleLoc, {ModuleNameLoc}, 343 Module::AllVisible, 344 /*IsInclusionDirective=*/false); 345 const_cast<LangOptions&>(getLangOpts()).CurrentModule = ModuleName; 346 347 if (!Mod) { 348 Diag(ModuleLoc, diag::err_module_not_defined) << ModuleName; 349 // Create an empty module interface unit for error recovery. 350 Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName); 351 } 352 353 } break; 354 355 case ModuleDeclKind::PartitionImplementation: 356 // Create an interface, but note that it is an implementation 357 // unit. 358 Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName); 359 Mod->Kind = Module::ModulePartitionImplementation; 360 break; 361 } 362 363 if (!this->GlobalModuleFragment) { 364 ModuleScopes.push_back({}); 365 if (getLangOpts().ModulesLocalVisibility) 366 ModuleScopes.back().OuterVisibleModules = std::move(VisibleModules); 367 } else { 368 // We're done with the global module fragment now. 369 ActOnEndOfTranslationUnitFragment(TUFragmentKind::Global); 370 } 371 372 // Switch from the global module fragment (if any) to the named module. 373 ModuleScopes.back().BeginLoc = StartLoc; 374 ModuleScopes.back().Module = Mod; 375 ModuleScopes.back().ModuleInterface = MDK != ModuleDeclKind::Implementation; 376 ModuleScopes.back().IsPartition = IsPartition; 377 VisibleModules.setVisible(Mod, ModuleLoc); 378 379 // From now on, we have an owning module for all declarations we see. 380 // In C++20 modules, those declaration would be reachable when imported 381 // unless explicitily exported. 382 // Otherwise, those declarations are module-private unless explicitly 383 // exported. 384 auto *TU = Context.getTranslationUnitDecl(); 385 TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ReachableWhenImported); 386 TU->setLocalOwningModule(Mod); 387 388 // We are in the module purview, but before any other (non import) 389 // statements, so imports are allowed. 390 ImportState = ModuleImportState::ImportAllowed; 391 392 // For an implementation, We already made an implicit import (its interface). 393 // Make and return the import decl to be added to the current TU. 394 if (MDK == ModuleDeclKind::Implementation) { 395 // Make the import decl for the interface. 396 ImportDecl *Import = 397 ImportDecl::Create(Context, CurContext, ModuleLoc, Mod, Path[0].second); 398 // and return it to be added. 399 return ConvertDeclToDeclGroup(Import); 400 } 401 402 getASTContext().setNamedModuleForCodeGen(Mod); 403 404 // FIXME: Create a ModuleDecl. 405 return nullptr; 406 } 407 408 Sema::DeclGroupPtrTy 409 Sema::ActOnPrivateModuleFragmentDecl(SourceLocation ModuleLoc, 410 SourceLocation PrivateLoc) { 411 // C++20 [basic.link]/2: 412 // A private-module-fragment shall appear only in a primary module 413 // interface unit. 414 switch (ModuleScopes.empty() ? Module::GlobalModuleFragment 415 : ModuleScopes.back().Module->Kind) { 416 case Module::ModuleMapModule: 417 case Module::GlobalModuleFragment: 418 case Module::ModulePartitionImplementation: 419 case Module::ModulePartitionInterface: 420 case Module::ModuleHeaderUnit: 421 Diag(PrivateLoc, diag::err_private_module_fragment_not_module); 422 return nullptr; 423 424 case Module::PrivateModuleFragment: 425 Diag(PrivateLoc, diag::err_private_module_fragment_redefined); 426 Diag(ModuleScopes.back().BeginLoc, diag::note_previous_definition); 427 return nullptr; 428 429 case Module::ModuleInterfaceUnit: 430 break; 431 } 432 433 if (!ModuleScopes.back().ModuleInterface) { 434 Diag(PrivateLoc, diag::err_private_module_fragment_not_module_interface); 435 Diag(ModuleScopes.back().BeginLoc, 436 diag::note_not_module_interface_add_export) 437 << FixItHint::CreateInsertion(ModuleScopes.back().BeginLoc, "export "); 438 return nullptr; 439 } 440 441 // FIXME: Check this isn't a module interface partition. 442 // FIXME: Check that this translation unit does not import any partitions; 443 // such imports would violate [basic.link]/2's "shall be the only module unit" 444 // restriction. 445 446 // We've finished the public fragment of the translation unit. 447 ActOnEndOfTranslationUnitFragment(TUFragmentKind::Normal); 448 449 auto &Map = PP.getHeaderSearchInfo().getModuleMap(); 450 Module *PrivateModuleFragment = 451 Map.createPrivateModuleFragmentForInterfaceUnit( 452 ModuleScopes.back().Module, PrivateLoc); 453 assert(PrivateModuleFragment && "module creation should not fail"); 454 455 // Enter the scope of the private module fragment. 456 ModuleScopes.push_back({}); 457 ModuleScopes.back().BeginLoc = ModuleLoc; 458 ModuleScopes.back().Module = PrivateModuleFragment; 459 ModuleScopes.back().ModuleInterface = true; 460 VisibleModules.setVisible(PrivateModuleFragment, ModuleLoc); 461 462 // All declarations created from now on are scoped to the private module 463 // fragment (and are neither visible nor reachable in importers of the module 464 // interface). 465 auto *TU = Context.getTranslationUnitDecl(); 466 TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ModulePrivate); 467 TU->setLocalOwningModule(PrivateModuleFragment); 468 469 // FIXME: Consider creating an explicit representation of this declaration. 470 return nullptr; 471 } 472 473 DeclResult Sema::ActOnModuleImport(SourceLocation StartLoc, 474 SourceLocation ExportLoc, 475 SourceLocation ImportLoc, ModuleIdPath Path, 476 bool IsPartition) { 477 assert((!IsPartition || getLangOpts().CPlusPlusModules) && 478 "partition seen in non-C++20 code?"); 479 480 // For a C++20 module name, flatten into a single identifier with the source 481 // location of the first component. 482 std::pair<IdentifierInfo *, SourceLocation> ModuleNameLoc; 483 484 std::string ModuleName; 485 if (IsPartition) { 486 // We already checked that we are in a module purview in the parser. 487 assert(!ModuleScopes.empty() && "in a module purview, but no module?"); 488 Module *NamedMod = ModuleScopes.back().Module; 489 // If we are importing into a partition, find the owning named module, 490 // otherwise, the name of the importing named module. 491 ModuleName = NamedMod->getPrimaryModuleInterfaceName().str(); 492 ModuleName += ":"; 493 ModuleName += stringFromPath(Path); 494 ModuleNameLoc = {PP.getIdentifierInfo(ModuleName), Path[0].second}; 495 Path = ModuleIdPath(ModuleNameLoc); 496 } else if (getLangOpts().CPlusPlusModules) { 497 ModuleName = stringFromPath(Path); 498 ModuleNameLoc = {PP.getIdentifierInfo(ModuleName), Path[0].second}; 499 Path = ModuleIdPath(ModuleNameLoc); 500 } 501 502 // Diagnose self-import before attempting a load. 503 // [module.import]/9 504 // A module implementation unit of a module M that is not a module partition 505 // shall not contain a module-import-declaration nominating M. 506 // (for an implementation, the module interface is imported implicitly, 507 // but that's handled in the module decl code). 508 509 if (getLangOpts().CPlusPlusModules && isCurrentModulePurview() && 510 getCurrentModule()->Name == ModuleName) { 511 Diag(ImportLoc, diag::err_module_self_import_cxx20) 512 << ModuleName << !ModuleScopes.back().ModuleInterface; 513 return true; 514 } 515 516 Module *Mod = getModuleLoader().loadModule( 517 ImportLoc, Path, Module::AllVisible, /*IsInclusionDirective=*/false); 518 if (!Mod) 519 return true; 520 521 return ActOnModuleImport(StartLoc, ExportLoc, ImportLoc, Mod, Path); 522 } 523 524 /// Determine whether \p D is lexically within an export-declaration. 525 static const ExportDecl *getEnclosingExportDecl(const Decl *D) { 526 for (auto *DC = D->getLexicalDeclContext(); DC; DC = DC->getLexicalParent()) 527 if (auto *ED = dyn_cast<ExportDecl>(DC)) 528 return ED; 529 return nullptr; 530 } 531 532 DeclResult Sema::ActOnModuleImport(SourceLocation StartLoc, 533 SourceLocation ExportLoc, 534 SourceLocation ImportLoc, Module *Mod, 535 ModuleIdPath Path) { 536 VisibleModules.setVisible(Mod, ImportLoc); 537 538 checkModuleImportContext(*this, Mod, ImportLoc, CurContext); 539 540 // FIXME: we should support importing a submodule within a different submodule 541 // of the same top-level module. Until we do, make it an error rather than 542 // silently ignoring the import. 543 // FIXME: Should we warn on a redundant import of the current module? 544 if (Mod->isForBuilding(getLangOpts())) { 545 Diag(ImportLoc, getLangOpts().isCompilingModule() 546 ? diag::err_module_self_import 547 : diag::err_module_import_in_implementation) 548 << Mod->getFullModuleName() << getLangOpts().CurrentModule; 549 } 550 551 SmallVector<SourceLocation, 2> IdentifierLocs; 552 553 if (Path.empty()) { 554 // If this was a header import, pad out with dummy locations. 555 // FIXME: Pass in and use the location of the header-name token in this 556 // case. 557 for (Module *ModCheck = Mod; ModCheck; ModCheck = ModCheck->Parent) 558 IdentifierLocs.push_back(SourceLocation()); 559 } else if (getLangOpts().CPlusPlusModules && !Mod->Parent) { 560 // A single identifier for the whole name. 561 IdentifierLocs.push_back(Path[0].second); 562 } else { 563 Module *ModCheck = Mod; 564 for (unsigned I = 0, N = Path.size(); I != N; ++I) { 565 // If we've run out of module parents, just drop the remaining 566 // identifiers. We need the length to be consistent. 567 if (!ModCheck) 568 break; 569 ModCheck = ModCheck->Parent; 570 571 IdentifierLocs.push_back(Path[I].second); 572 } 573 } 574 575 ImportDecl *Import = ImportDecl::Create(Context, CurContext, StartLoc, 576 Mod, IdentifierLocs); 577 CurContext->addDecl(Import); 578 579 // Sequence initialization of the imported module before that of the current 580 // module, if any. 581 if (!ModuleScopes.empty()) 582 Context.addModuleInitializer(ModuleScopes.back().Module, Import); 583 584 // A module (partition) implementation unit shall not be exported. 585 if (getLangOpts().CPlusPlusModules && ExportLoc.isValid() && 586 Mod->Kind == Module::ModuleKind::ModulePartitionImplementation) { 587 Diag(ExportLoc, diag::err_export_partition_impl) 588 << SourceRange(ExportLoc, Path.back().second); 589 } else if (!ModuleScopes.empty() && 590 (ModuleScopes.back().ModuleInterface || 591 (getLangOpts().CPlusPlusModules && 592 ModuleScopes.back().Module->isGlobalModule()))) { 593 // Re-export the module if the imported module is exported. 594 // Note that we don't need to add re-exported module to Imports field 595 // since `Exports` implies the module is imported already. 596 if (ExportLoc.isValid() || getEnclosingExportDecl(Import)) 597 getCurrentModule()->Exports.emplace_back(Mod, false); 598 else 599 getCurrentModule()->Imports.insert(Mod); 600 } else if (ExportLoc.isValid()) { 601 // [module.interface]p1: 602 // An export-declaration shall inhabit a namespace scope and appear in the 603 // purview of a module interface unit. 604 Diag(ExportLoc, diag::err_export_not_in_module_interface) 605 << (!ModuleScopes.empty() && 606 !ModuleScopes.back().ImplicitGlobalModuleFragment); 607 } 608 609 // In some cases we need to know if an entity was present in a directly- 610 // imported module (as opposed to a transitive import). This avoids 611 // searching both Imports and Exports. 612 DirectModuleImports.insert(Mod); 613 614 return Import; 615 } 616 617 void Sema::ActOnModuleInclude(SourceLocation DirectiveLoc, Module *Mod) { 618 checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext, true); 619 BuildModuleInclude(DirectiveLoc, Mod); 620 } 621 622 void Sema::BuildModuleInclude(SourceLocation DirectiveLoc, Module *Mod) { 623 // Determine whether we're in the #include buffer for a module. The #includes 624 // in that buffer do not qualify as module imports; they're just an 625 // implementation detail of us building the module. 626 // 627 // FIXME: Should we even get ActOnModuleInclude calls for those? 628 bool IsInModuleIncludes = 629 TUKind == TU_Module && 630 getSourceManager().isWrittenInMainFile(DirectiveLoc); 631 632 bool ShouldAddImport = !IsInModuleIncludes; 633 634 // If this module import was due to an inclusion directive, create an 635 // implicit import declaration to capture it in the AST. 636 if (ShouldAddImport) { 637 TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl(); 638 ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU, 639 DirectiveLoc, Mod, 640 DirectiveLoc); 641 if (!ModuleScopes.empty()) 642 Context.addModuleInitializer(ModuleScopes.back().Module, ImportD); 643 TU->addDecl(ImportD); 644 Consumer.HandleImplicitImportDecl(ImportD); 645 } 646 647 getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, DirectiveLoc); 648 VisibleModules.setVisible(Mod, DirectiveLoc); 649 650 if (getLangOpts().isCompilingModule()) { 651 Module *ThisModule = PP.getHeaderSearchInfo().lookupModule( 652 getLangOpts().CurrentModule, DirectiveLoc, false, false); 653 (void)ThisModule; 654 assert(ThisModule && "was expecting a module if building one"); 655 } 656 } 657 658 void Sema::ActOnModuleBegin(SourceLocation DirectiveLoc, Module *Mod) { 659 checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext, true); 660 661 ModuleScopes.push_back({}); 662 ModuleScopes.back().Module = Mod; 663 if (getLangOpts().ModulesLocalVisibility) 664 ModuleScopes.back().OuterVisibleModules = std::move(VisibleModules); 665 666 VisibleModules.setVisible(Mod, DirectiveLoc); 667 668 // The enclosing context is now part of this module. 669 // FIXME: Consider creating a child DeclContext to hold the entities 670 // lexically within the module. 671 if (getLangOpts().trackLocalOwningModule()) { 672 for (auto *DC = CurContext; DC; DC = DC->getLexicalParent()) { 673 cast<Decl>(DC)->setModuleOwnershipKind( 674 getLangOpts().ModulesLocalVisibility 675 ? Decl::ModuleOwnershipKind::VisibleWhenImported 676 : Decl::ModuleOwnershipKind::Visible); 677 cast<Decl>(DC)->setLocalOwningModule(Mod); 678 } 679 } 680 } 681 682 void Sema::ActOnModuleEnd(SourceLocation EomLoc, Module *Mod) { 683 if (getLangOpts().ModulesLocalVisibility) { 684 VisibleModules = std::move(ModuleScopes.back().OuterVisibleModules); 685 // Leaving a module hides namespace names, so our visible namespace cache 686 // is now out of date. 687 VisibleNamespaceCache.clear(); 688 } 689 690 assert(!ModuleScopes.empty() && ModuleScopes.back().Module == Mod && 691 "left the wrong module scope"); 692 ModuleScopes.pop_back(); 693 694 // We got to the end of processing a local module. Create an 695 // ImportDecl as we would for an imported module. 696 FileID File = getSourceManager().getFileID(EomLoc); 697 SourceLocation DirectiveLoc; 698 if (EomLoc == getSourceManager().getLocForEndOfFile(File)) { 699 // We reached the end of a #included module header. Use the #include loc. 700 assert(File != getSourceManager().getMainFileID() && 701 "end of submodule in main source file"); 702 DirectiveLoc = getSourceManager().getIncludeLoc(File); 703 } else { 704 // We reached an EOM pragma. Use the pragma location. 705 DirectiveLoc = EomLoc; 706 } 707 BuildModuleInclude(DirectiveLoc, Mod); 708 709 // Any further declarations are in whatever module we returned to. 710 if (getLangOpts().trackLocalOwningModule()) { 711 // The parser guarantees that this is the same context that we entered 712 // the module within. 713 for (auto *DC = CurContext; DC; DC = DC->getLexicalParent()) { 714 cast<Decl>(DC)->setLocalOwningModule(getCurrentModule()); 715 if (!getCurrentModule()) 716 cast<Decl>(DC)->setModuleOwnershipKind( 717 Decl::ModuleOwnershipKind::Unowned); 718 } 719 } 720 } 721 722 void Sema::createImplicitModuleImportForErrorRecovery(SourceLocation Loc, 723 Module *Mod) { 724 // Bail if we're not allowed to implicitly import a module here. 725 if (isSFINAEContext() || !getLangOpts().ModulesErrorRecovery || 726 VisibleModules.isVisible(Mod)) 727 return; 728 729 // Create the implicit import declaration. 730 TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl(); 731 ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU, 732 Loc, Mod, Loc); 733 TU->addDecl(ImportD); 734 Consumer.HandleImplicitImportDecl(ImportD); 735 736 // Make the module visible. 737 getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, Loc); 738 VisibleModules.setVisible(Mod, Loc); 739 } 740 741 /// We have parsed the start of an export declaration, including the '{' 742 /// (if present). 743 Decl *Sema::ActOnStartExportDecl(Scope *S, SourceLocation ExportLoc, 744 SourceLocation LBraceLoc) { 745 ExportDecl *D = ExportDecl::Create(Context, CurContext, ExportLoc); 746 747 // Set this temporarily so we know the export-declaration was braced. 748 D->setRBraceLoc(LBraceLoc); 749 750 CurContext->addDecl(D); 751 PushDeclContext(S, D); 752 753 // C++2a [module.interface]p1: 754 // An export-declaration shall appear only [...] in the purview of a module 755 // interface unit. An export-declaration shall not appear directly or 756 // indirectly within [...] a private-module-fragment. 757 if (!isCurrentModulePurview()) { 758 Diag(ExportLoc, diag::err_export_not_in_module_interface) << 0; 759 D->setInvalidDecl(); 760 return D; 761 } else if (!ModuleScopes.back().ModuleInterface) { 762 Diag(ExportLoc, diag::err_export_not_in_module_interface) << 1; 763 Diag(ModuleScopes.back().BeginLoc, 764 diag::note_not_module_interface_add_export) 765 << FixItHint::CreateInsertion(ModuleScopes.back().BeginLoc, "export "); 766 D->setInvalidDecl(); 767 return D; 768 } else if (ModuleScopes.back().Module->Kind == 769 Module::PrivateModuleFragment) { 770 Diag(ExportLoc, diag::err_export_in_private_module_fragment); 771 Diag(ModuleScopes.back().BeginLoc, diag::note_private_module_fragment); 772 D->setInvalidDecl(); 773 return D; 774 } 775 776 for (const DeclContext *DC = CurContext; DC; DC = DC->getLexicalParent()) { 777 if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) { 778 // An export-declaration shall not appear directly or indirectly within 779 // an unnamed namespace [...] 780 if (ND->isAnonymousNamespace()) { 781 Diag(ExportLoc, diag::err_export_within_anonymous_namespace); 782 Diag(ND->getLocation(), diag::note_anonymous_namespace); 783 // Don't diagnose internal-linkage declarations in this region. 784 D->setInvalidDecl(); 785 return D; 786 } 787 788 // A declaration is exported if it is [...] a namespace-definition 789 // that contains an exported declaration. 790 // 791 // Defer exporting the namespace until after we leave it, in order to 792 // avoid marking all subsequent declarations in the namespace as exported. 793 if (!DeferredExportedNamespaces.insert(ND).second) 794 break; 795 } 796 } 797 798 // [...] its declaration or declaration-seq shall not contain an 799 // export-declaration. 800 if (auto *ED = getEnclosingExportDecl(D)) { 801 Diag(ExportLoc, diag::err_export_within_export); 802 if (ED->hasBraces()) 803 Diag(ED->getLocation(), diag::note_export); 804 D->setInvalidDecl(); 805 return D; 806 } 807 808 D->setModuleOwnershipKind(Decl::ModuleOwnershipKind::VisibleWhenImported); 809 return D; 810 } 811 812 static bool checkExportedDeclContext(Sema &S, DeclContext *DC, 813 SourceLocation BlockStart); 814 815 namespace { 816 enum class UnnamedDeclKind { 817 Empty, 818 StaticAssert, 819 Asm, 820 UsingDirective, 821 Namespace, 822 Context 823 }; 824 } 825 826 static std::optional<UnnamedDeclKind> getUnnamedDeclKind(Decl *D) { 827 if (isa<EmptyDecl>(D)) 828 return UnnamedDeclKind::Empty; 829 if (isa<StaticAssertDecl>(D)) 830 return UnnamedDeclKind::StaticAssert; 831 if (isa<FileScopeAsmDecl>(D)) 832 return UnnamedDeclKind::Asm; 833 if (isa<UsingDirectiveDecl>(D)) 834 return UnnamedDeclKind::UsingDirective; 835 // Everything else either introduces one or more names or is ill-formed. 836 return std::nullopt; 837 } 838 839 unsigned getUnnamedDeclDiag(UnnamedDeclKind UDK, bool InBlock) { 840 switch (UDK) { 841 case UnnamedDeclKind::Empty: 842 case UnnamedDeclKind::StaticAssert: 843 // Allow empty-declarations and static_asserts in an export block as an 844 // extension. 845 return InBlock ? diag::ext_export_no_name_block : diag::err_export_no_name; 846 847 case UnnamedDeclKind::UsingDirective: 848 // Allow exporting using-directives as an extension. 849 return diag::ext_export_using_directive; 850 851 case UnnamedDeclKind::Namespace: 852 // Anonymous namespace with no content. 853 return diag::introduces_no_names; 854 855 case UnnamedDeclKind::Context: 856 // Allow exporting DeclContexts that transitively contain no declarations 857 // as an extension. 858 return diag::ext_export_no_names; 859 860 case UnnamedDeclKind::Asm: 861 return diag::err_export_no_name; 862 } 863 llvm_unreachable("unknown kind"); 864 } 865 866 static void diagExportedUnnamedDecl(Sema &S, UnnamedDeclKind UDK, Decl *D, 867 SourceLocation BlockStart) { 868 S.Diag(D->getLocation(), getUnnamedDeclDiag(UDK, BlockStart.isValid())) 869 << (unsigned)UDK; 870 if (BlockStart.isValid()) 871 S.Diag(BlockStart, diag::note_export); 872 } 873 874 /// Check that it's valid to export \p D. 875 static bool checkExportedDecl(Sema &S, Decl *D, SourceLocation BlockStart) { 876 // C++2a [module.interface]p3: 877 // An exported declaration shall declare at least one name 878 if (auto UDK = getUnnamedDeclKind(D)) 879 diagExportedUnnamedDecl(S, *UDK, D, BlockStart); 880 881 // [...] shall not declare a name with internal linkage. 882 bool HasName = false; 883 if (auto *ND = dyn_cast<NamedDecl>(D)) { 884 // Don't diagnose anonymous union objects; we'll diagnose their members 885 // instead. 886 HasName = (bool)ND->getDeclName(); 887 if (HasName && ND->getFormalLinkage() == InternalLinkage) { 888 S.Diag(ND->getLocation(), diag::err_export_internal) << ND; 889 if (BlockStart.isValid()) 890 S.Diag(BlockStart, diag::note_export); 891 } 892 } 893 894 // C++2a [module.interface]p5: 895 // all entities to which all of the using-declarators ultimately refer 896 // shall have been introduced with a name having external linkage 897 if (auto *USD = dyn_cast<UsingShadowDecl>(D)) { 898 NamedDecl *Target = USD->getUnderlyingDecl(); 899 Linkage Lk = Target->getFormalLinkage(); 900 if (Lk == InternalLinkage || Lk == ModuleLinkage) { 901 S.Diag(USD->getLocation(), diag::err_export_using_internal) 902 << (Lk == InternalLinkage ? 0 : 1) << Target; 903 S.Diag(Target->getLocation(), diag::note_using_decl_target); 904 if (BlockStart.isValid()) 905 S.Diag(BlockStart, diag::note_export); 906 } 907 } 908 909 // Recurse into namespace-scope DeclContexts. (Only namespace-scope 910 // declarations are exported.). 911 if (auto *DC = dyn_cast<DeclContext>(D)) { 912 if (isa<NamespaceDecl>(D) && DC->decls().empty()) { 913 if (!HasName) 914 // We don't allow an empty anonymous namespace (we don't allow decls 915 // in them either, but that's handled in the recursion). 916 diagExportedUnnamedDecl(S, UnnamedDeclKind::Namespace, D, BlockStart); 917 // We allow an empty named namespace decl. 918 } else if (DC->getRedeclContext()->isFileContext() && !isa<EnumDecl>(D)) 919 return checkExportedDeclContext(S, DC, BlockStart); 920 } 921 return false; 922 } 923 924 /// Check that it's valid to export all the declarations in \p DC. 925 static bool checkExportedDeclContext(Sema &S, DeclContext *DC, 926 SourceLocation BlockStart) { 927 bool AllUnnamed = true; 928 for (auto *D : DC->decls()) 929 AllUnnamed &= checkExportedDecl(S, D, BlockStart); 930 return AllUnnamed; 931 } 932 933 /// Complete the definition of an export declaration. 934 Decl *Sema::ActOnFinishExportDecl(Scope *S, Decl *D, SourceLocation RBraceLoc) { 935 auto *ED = cast<ExportDecl>(D); 936 if (RBraceLoc.isValid()) 937 ED->setRBraceLoc(RBraceLoc); 938 939 PopDeclContext(); 940 941 if (!D->isInvalidDecl()) { 942 SourceLocation BlockStart = 943 ED->hasBraces() ? ED->getBeginLoc() : SourceLocation(); 944 for (auto *Child : ED->decls()) { 945 if (checkExportedDecl(*this, Child, BlockStart)) { 946 // If a top-level child is a linkage-spec declaration, it might contain 947 // no declarations (transitively), in which case it's ill-formed. 948 diagExportedUnnamedDecl(*this, UnnamedDeclKind::Context, Child, 949 BlockStart); 950 } 951 if (auto *FD = dyn_cast<FunctionDecl>(Child)) { 952 // [dcl.inline]/7 953 // If an inline function or variable that is attached to a named module 954 // is declared in a definition domain, it shall be defined in that 955 // domain. 956 // So, if the current declaration does not have a definition, we must 957 // check at the end of the TU (or when the PMF starts) to see that we 958 // have a definition at that point. 959 if (FD->isInlineSpecified() && !FD->isDefined()) 960 PendingInlineFuncDecls.insert(FD); 961 } 962 } 963 } 964 965 return D; 966 } 967 968 Module *Sema::PushGlobalModuleFragment(SourceLocation BeginLoc, 969 bool IsImplicit) { 970 // We shouldn't create new global module fragment if there is already 971 // one. 972 if (!GlobalModuleFragment) { 973 ModuleMap &Map = PP.getHeaderSearchInfo().getModuleMap(); 974 GlobalModuleFragment = Map.createGlobalModuleFragmentForModuleUnit( 975 BeginLoc, getCurrentModule()); 976 } 977 978 assert(GlobalModuleFragment && "module creation should not fail"); 979 980 // Enter the scope of the global module. 981 ModuleScopes.push_back({BeginLoc, GlobalModuleFragment, 982 /*ModuleInterface=*/false, 983 /*IsPartition=*/false, 984 /*ImplicitGlobalModuleFragment=*/IsImplicit, 985 /*OuterVisibleModules=*/{}}); 986 VisibleModules.setVisible(GlobalModuleFragment, BeginLoc); 987 988 return GlobalModuleFragment; 989 } 990 991 void Sema::PopGlobalModuleFragment() { 992 assert(!ModuleScopes.empty() && getCurrentModule()->isGlobalModule() && 993 "left the wrong module scope, which is not global module fragment"); 994 ModuleScopes.pop_back(); 995 } 996 997 bool Sema::isModuleUnitOfCurrentTU(const Module *M) const { 998 assert(M); 999 1000 Module *CurrentModuleUnit = getCurrentModule(); 1001 1002 // If we are not in a module currently, M must not be the module unit of 1003 // current TU. 1004 if (!CurrentModuleUnit) 1005 return false; 1006 1007 return M->isSubModuleOf(CurrentModuleUnit->getTopLevelModule()); 1008 } 1009