1 //===--- SemaModule.cpp - Semantic Analysis for Modules -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for modules (C++ modules syntax, 10 // Objective-C modules syntax, and Clang header modules). 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/AST/ASTConsumer.h" 15 #include "clang/Lex/HeaderSearch.h" 16 #include "clang/Lex/Preprocessor.h" 17 #include "clang/Sema/SemaInternal.h" 18 #include <optional> 19 20 using namespace clang; 21 using namespace sema; 22 23 static void checkModuleImportContext(Sema &S, Module *M, 24 SourceLocation ImportLoc, DeclContext *DC, 25 bool FromInclude = false) { 26 SourceLocation ExternCLoc; 27 28 if (auto *LSD = dyn_cast<LinkageSpecDecl>(DC)) { 29 switch (LSD->getLanguage()) { 30 case LinkageSpecDecl::lang_c: 31 if (ExternCLoc.isInvalid()) 32 ExternCLoc = LSD->getBeginLoc(); 33 break; 34 case LinkageSpecDecl::lang_cxx: 35 break; 36 } 37 DC = LSD->getParent(); 38 } 39 40 while (isa<LinkageSpecDecl>(DC) || isa<ExportDecl>(DC)) 41 DC = DC->getParent(); 42 43 if (!isa<TranslationUnitDecl>(DC)) { 44 S.Diag(ImportLoc, (FromInclude && S.isModuleVisible(M)) 45 ? diag::ext_module_import_not_at_top_level_noop 46 : diag::err_module_import_not_at_top_level_fatal) 47 << M->getFullModuleName() << DC; 48 S.Diag(cast<Decl>(DC)->getBeginLoc(), 49 diag::note_module_import_not_at_top_level) 50 << DC; 51 } else if (!M->IsExternC && ExternCLoc.isValid()) { 52 S.Diag(ImportLoc, diag::ext_module_import_in_extern_c) 53 << M->getFullModuleName(); 54 S.Diag(ExternCLoc, diag::note_extern_c_begins_here); 55 } 56 } 57 58 // We represent the primary and partition names as 'Paths' which are sections 59 // of the hierarchical access path for a clang module. However for C++20 60 // the periods in a name are just another character, and we will need to 61 // flatten them into a string. 62 static std::string stringFromPath(ModuleIdPath Path) { 63 std::string Name; 64 if (Path.empty()) 65 return Name; 66 67 for (auto &Piece : Path) { 68 if (!Name.empty()) 69 Name += "."; 70 Name += Piece.first->getName(); 71 } 72 return Name; 73 } 74 75 Sema::DeclGroupPtrTy 76 Sema::ActOnGlobalModuleFragmentDecl(SourceLocation ModuleLoc) { 77 if (!ModuleScopes.empty() && 78 ModuleScopes.back().Module->Kind == Module::GlobalModuleFragment) { 79 // Under -std=c++2a -fmodules-ts, we can find an explicit 'module;' after 80 // already implicitly entering the global module fragment. That's OK. 81 assert(getLangOpts().CPlusPlusModules && getLangOpts().ModulesTS && 82 "unexpectedly encountered multiple global module fragment decls"); 83 ModuleScopes.back().BeginLoc = ModuleLoc; 84 return nullptr; 85 } 86 87 // We start in the global module; all those declarations are implicitly 88 // module-private (though they do not have module linkage). 89 Module *GlobalModule = 90 PushGlobalModuleFragment(ModuleLoc, /*IsImplicit=*/false); 91 92 // All declarations created from now on are owned by the global module. 93 auto *TU = Context.getTranslationUnitDecl(); 94 // [module.global.frag]p2 95 // A global-module-fragment specifies the contents of the global module 96 // fragment for a module unit. The global module fragment can be used to 97 // provide declarations that are attached to the global module and usable 98 // within the module unit. 99 // 100 // So the declations in the global module shouldn't be visible by default. 101 TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ReachableWhenImported); 102 TU->setLocalOwningModule(GlobalModule); 103 104 // FIXME: Consider creating an explicit representation of this declaration. 105 return nullptr; 106 } 107 108 void Sema::HandleStartOfHeaderUnit() { 109 assert(getLangOpts().CPlusPlusModules && 110 "Header units are only valid for C++20 modules"); 111 SourceLocation StartOfTU = 112 SourceMgr.getLocForStartOfFile(SourceMgr.getMainFileID()); 113 114 StringRef HUName = getLangOpts().CurrentModule; 115 if (HUName.empty()) { 116 HUName = SourceMgr.getFileEntryForID(SourceMgr.getMainFileID())->getName(); 117 const_cast<LangOptions &>(getLangOpts()).CurrentModule = HUName.str(); 118 } 119 120 // TODO: Make the C++20 header lookup independent. 121 // When the input is pre-processed source, we need a file ref to the original 122 // file for the header map. 123 auto F = SourceMgr.getFileManager().getOptionalFileRef(HUName); 124 // For the sake of error recovery (if someone has moved the original header 125 // after creating the pre-processed output) fall back to obtaining the file 126 // ref for the input file, which must be present. 127 if (!F) 128 F = SourceMgr.getFileEntryRefForID(SourceMgr.getMainFileID()); 129 assert(F && "failed to find the header unit source?"); 130 Module::Header H{HUName.str(), HUName.str(), *F}; 131 auto &Map = PP.getHeaderSearchInfo().getModuleMap(); 132 Module *Mod = Map.createHeaderUnit(StartOfTU, HUName, H); 133 assert(Mod && "module creation should not fail"); 134 ModuleScopes.push_back({}); // No GMF 135 ModuleScopes.back().BeginLoc = StartOfTU; 136 ModuleScopes.back().Module = Mod; 137 ModuleScopes.back().ModuleInterface = true; 138 ModuleScopes.back().IsPartition = false; 139 VisibleModules.setVisible(Mod, StartOfTU); 140 141 // From now on, we have an owning module for all declarations we see. 142 // All of these are implicitly exported. 143 auto *TU = Context.getTranslationUnitDecl(); 144 TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::Visible); 145 TU->setLocalOwningModule(Mod); 146 } 147 148 /// Tests whether the given identifier is reserved as a module name and 149 /// diagnoses if it is. Returns true if a diagnostic is emitted and false 150 /// otherwise. 151 static bool DiagReservedModuleName(Sema &S, const IdentifierInfo *II, 152 SourceLocation Loc) { 153 enum { 154 Valid = -1, 155 Invalid = 0, 156 Reserved = 1, 157 } Reason = Valid; 158 159 if (II->isStr("module") || II->isStr("import")) 160 Reason = Invalid; 161 else if (II->isReserved(S.getLangOpts()) != 162 ReservedIdentifierStatus::NotReserved) 163 Reason = Reserved; 164 165 // If the identifier is reserved (not invalid) but is in a system header, 166 // we do not diagnose (because we expect system headers to use reserved 167 // identifiers). 168 if (Reason == Reserved && S.getSourceManager().isInSystemHeader(Loc)) 169 Reason = Valid; 170 171 if (Reason != Valid) { 172 S.Diag(Loc, diag::err_invalid_module_name) << II << (int)Reason; 173 return true; 174 } 175 return false; 176 } 177 178 Sema::DeclGroupPtrTy 179 Sema::ActOnModuleDecl(SourceLocation StartLoc, SourceLocation ModuleLoc, 180 ModuleDeclKind MDK, ModuleIdPath Path, 181 ModuleIdPath Partition, ModuleImportState &ImportState) { 182 assert((getLangOpts().ModulesTS || getLangOpts().CPlusPlusModules) && 183 "should only have module decl in Modules TS or C++20"); 184 185 bool IsFirstDecl = ImportState == ModuleImportState::FirstDecl; 186 bool SeenGMF = ImportState == ModuleImportState::GlobalFragment; 187 // If any of the steps here fail, we count that as invalidating C++20 188 // module state; 189 ImportState = ModuleImportState::NotACXX20Module; 190 191 bool IsPartition = !Partition.empty(); 192 if (IsPartition) 193 switch (MDK) { 194 case ModuleDeclKind::Implementation: 195 MDK = ModuleDeclKind::PartitionImplementation; 196 break; 197 case ModuleDeclKind::Interface: 198 MDK = ModuleDeclKind::PartitionInterface; 199 break; 200 default: 201 llvm_unreachable("how did we get a partition type set?"); 202 } 203 204 // A (non-partition) module implementation unit requires that we are not 205 // compiling a module of any kind. A partition implementation emits an 206 // interface (and the AST for the implementation), which will subsequently 207 // be consumed to emit a binary. 208 // A module interface unit requires that we are not compiling a module map. 209 switch (getLangOpts().getCompilingModule()) { 210 case LangOptions::CMK_None: 211 // It's OK to compile a module interface as a normal translation unit. 212 break; 213 214 case LangOptions::CMK_ModuleInterface: 215 if (MDK != ModuleDeclKind::Implementation) 216 break; 217 218 // We were asked to compile a module interface unit but this is a module 219 // implementation unit. 220 Diag(ModuleLoc, diag::err_module_interface_implementation_mismatch) 221 << FixItHint::CreateInsertion(ModuleLoc, "export "); 222 MDK = ModuleDeclKind::Interface; 223 break; 224 225 case LangOptions::CMK_ModuleMap: 226 Diag(ModuleLoc, diag::err_module_decl_in_module_map_module); 227 return nullptr; 228 229 case LangOptions::CMK_HeaderUnit: 230 Diag(ModuleLoc, diag::err_module_decl_in_header_unit); 231 return nullptr; 232 } 233 234 assert(ModuleScopes.size() <= 1 && "expected to be at global module scope"); 235 236 // FIXME: Most of this work should be done by the preprocessor rather than 237 // here, in order to support macro import. 238 239 // Only one module-declaration is permitted per source file. 240 if (isCurrentModulePurview()) { 241 Diag(ModuleLoc, diag::err_module_redeclaration); 242 Diag(VisibleModules.getImportLoc(ModuleScopes.back().Module), 243 diag::note_prev_module_declaration); 244 return nullptr; 245 } 246 247 assert((!getLangOpts().CPlusPlusModules || getLangOpts().ModulesTS || 248 SeenGMF == (bool)this->GlobalModuleFragment) && 249 "mismatched global module state"); 250 251 // In C++20, the module-declaration must be the first declaration if there 252 // is no global module fragment. 253 if (getLangOpts().CPlusPlusModules && !IsFirstDecl && !SeenGMF) { 254 Diag(ModuleLoc, diag::err_module_decl_not_at_start); 255 SourceLocation BeginLoc = 256 ModuleScopes.empty() 257 ? SourceMgr.getLocForStartOfFile(SourceMgr.getMainFileID()) 258 : ModuleScopes.back().BeginLoc; 259 if (BeginLoc.isValid()) { 260 Diag(BeginLoc, diag::note_global_module_introducer_missing) 261 << FixItHint::CreateInsertion(BeginLoc, "module;\n"); 262 } 263 } 264 265 // C++2b [module.unit]p1: ... The identifiers module and import shall not 266 // appear as identifiers in a module-name or module-partition. All 267 // module-names either beginning with an identifier consisting of std 268 // followed by zero or more digits or containing a reserved identifier 269 // ([lex.name]) are reserved and shall not be specified in a 270 // module-declaration; no diagnostic is required. 271 272 // Test the first part of the path to see if it's std[0-9]+ but allow the 273 // name in a system header. 274 StringRef FirstComponentName = Path[0].first->getName(); 275 if (!getSourceManager().isInSystemHeader(Path[0].second) && 276 (FirstComponentName == "std" || 277 (FirstComponentName.startswith("std") && 278 llvm::all_of(FirstComponentName.drop_front(3), &llvm::isDigit)))) { 279 Diag(Path[0].second, diag::err_invalid_module_name) 280 << Path[0].first << /*reserved*/ 1; 281 return nullptr; 282 } 283 284 // Then test all of the components in the path to see if any of them are 285 // using another kind of reserved or invalid identifier. 286 for (auto Part : Path) { 287 if (DiagReservedModuleName(*this, Part.first, Part.second)) 288 return nullptr; 289 } 290 291 // Flatten the dots in a module name. Unlike Clang's hierarchical module map 292 // modules, the dots here are just another character that can appear in a 293 // module name. 294 std::string ModuleName = stringFromPath(Path); 295 if (IsPartition) { 296 ModuleName += ":"; 297 ModuleName += stringFromPath(Partition); 298 } 299 // If a module name was explicitly specified on the command line, it must be 300 // correct. 301 if (!getLangOpts().CurrentModule.empty() && 302 getLangOpts().CurrentModule != ModuleName) { 303 Diag(Path.front().second, diag::err_current_module_name_mismatch) 304 << SourceRange(Path.front().second, IsPartition 305 ? Partition.back().second 306 : Path.back().second) 307 << getLangOpts().CurrentModule; 308 return nullptr; 309 } 310 const_cast<LangOptions&>(getLangOpts()).CurrentModule = ModuleName; 311 312 auto &Map = PP.getHeaderSearchInfo().getModuleMap(); 313 Module *Mod; 314 315 switch (MDK) { 316 case ModuleDeclKind::Interface: 317 case ModuleDeclKind::PartitionInterface: { 318 // We can't have parsed or imported a definition of this module or parsed a 319 // module map defining it already. 320 if (auto *M = Map.findModule(ModuleName)) { 321 Diag(Path[0].second, diag::err_module_redefinition) << ModuleName; 322 if (M->DefinitionLoc.isValid()) 323 Diag(M->DefinitionLoc, diag::note_prev_module_definition); 324 else if (OptionalFileEntryRef FE = M->getASTFile()) 325 Diag(M->DefinitionLoc, diag::note_prev_module_definition_from_ast_file) 326 << FE->getName(); 327 Mod = M; 328 break; 329 } 330 331 // Create a Module for the module that we're defining. 332 Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName); 333 if (MDK == ModuleDeclKind::PartitionInterface) 334 Mod->Kind = Module::ModulePartitionInterface; 335 assert(Mod && "module creation should not fail"); 336 break; 337 } 338 339 case ModuleDeclKind::Implementation: { 340 // C++20 A module-declaration that contains neither an export- 341 // keyword nor a module-partition implicitly imports the primary 342 // module interface unit of the module as if by a module-import- 343 // declaration. 344 std::pair<IdentifierInfo *, SourceLocation> ModuleNameLoc( 345 PP.getIdentifierInfo(ModuleName), Path[0].second); 346 347 // The module loader will assume we're trying to import the module that 348 // we're building if `LangOpts.CurrentModule` equals to 'ModuleName'. 349 // Change the value for `LangOpts.CurrentModule` temporarily to make the 350 // module loader work properly. 351 const_cast<LangOptions&>(getLangOpts()).CurrentModule = ""; 352 Mod = getModuleLoader().loadModule(ModuleLoc, {ModuleNameLoc}, 353 Module::AllVisible, 354 /*IsInclusionDirective=*/false); 355 const_cast<LangOptions&>(getLangOpts()).CurrentModule = ModuleName; 356 357 if (!Mod) { 358 Diag(ModuleLoc, diag::err_module_not_defined) << ModuleName; 359 // Create an empty module interface unit for error recovery. 360 Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName); 361 } 362 363 } break; 364 365 case ModuleDeclKind::PartitionImplementation: 366 // Create an interface, but note that it is an implementation 367 // unit. 368 Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName); 369 Mod->Kind = Module::ModulePartitionImplementation; 370 break; 371 } 372 373 if (!this->GlobalModuleFragment) { 374 ModuleScopes.push_back({}); 375 if (getLangOpts().ModulesLocalVisibility) 376 ModuleScopes.back().OuterVisibleModules = std::move(VisibleModules); 377 } else { 378 // We're done with the global module fragment now. 379 ActOnEndOfTranslationUnitFragment(TUFragmentKind::Global); 380 } 381 382 // Switch from the global module fragment (if any) to the named module. 383 ModuleScopes.back().BeginLoc = StartLoc; 384 ModuleScopes.back().Module = Mod; 385 ModuleScopes.back().ModuleInterface = MDK != ModuleDeclKind::Implementation; 386 ModuleScopes.back().IsPartition = IsPartition; 387 VisibleModules.setVisible(Mod, ModuleLoc); 388 389 // From now on, we have an owning module for all declarations we see. 390 // In C++20 modules, those declaration would be reachable when imported 391 // unless explicitily exported. 392 // Otherwise, those declarations are module-private unless explicitly 393 // exported. 394 auto *TU = Context.getTranslationUnitDecl(); 395 TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ReachableWhenImported); 396 TU->setLocalOwningModule(Mod); 397 398 // We are in the module purview, but before any other (non import) 399 // statements, so imports are allowed. 400 ImportState = ModuleImportState::ImportAllowed; 401 402 // For an implementation, We already made an implicit import (its interface). 403 // Make and return the import decl to be added to the current TU. 404 if (MDK == ModuleDeclKind::Implementation) { 405 // Make the import decl for the interface. 406 ImportDecl *Import = 407 ImportDecl::Create(Context, CurContext, ModuleLoc, Mod, Path[0].second); 408 // and return it to be added. 409 return ConvertDeclToDeclGroup(Import); 410 } 411 412 getASTContext().setNamedModuleForCodeGen(Mod); 413 414 // FIXME: Create a ModuleDecl. 415 return nullptr; 416 } 417 418 Sema::DeclGroupPtrTy 419 Sema::ActOnPrivateModuleFragmentDecl(SourceLocation ModuleLoc, 420 SourceLocation PrivateLoc) { 421 // C++20 [basic.link]/2: 422 // A private-module-fragment shall appear only in a primary module 423 // interface unit. 424 switch (ModuleScopes.empty() ? Module::GlobalModuleFragment 425 : ModuleScopes.back().Module->Kind) { 426 case Module::ModuleMapModule: 427 case Module::GlobalModuleFragment: 428 case Module::ModulePartitionImplementation: 429 case Module::ModulePartitionInterface: 430 case Module::ModuleHeaderUnit: 431 Diag(PrivateLoc, diag::err_private_module_fragment_not_module); 432 return nullptr; 433 434 case Module::PrivateModuleFragment: 435 Diag(PrivateLoc, diag::err_private_module_fragment_redefined); 436 Diag(ModuleScopes.back().BeginLoc, diag::note_previous_definition); 437 return nullptr; 438 439 case Module::ModuleInterfaceUnit: 440 break; 441 } 442 443 if (!ModuleScopes.back().ModuleInterface) { 444 Diag(PrivateLoc, diag::err_private_module_fragment_not_module_interface); 445 Diag(ModuleScopes.back().BeginLoc, 446 diag::note_not_module_interface_add_export) 447 << FixItHint::CreateInsertion(ModuleScopes.back().BeginLoc, "export "); 448 return nullptr; 449 } 450 451 // FIXME: Check this isn't a module interface partition. 452 // FIXME: Check that this translation unit does not import any partitions; 453 // such imports would violate [basic.link]/2's "shall be the only module unit" 454 // restriction. 455 456 // We've finished the public fragment of the translation unit. 457 ActOnEndOfTranslationUnitFragment(TUFragmentKind::Normal); 458 459 auto &Map = PP.getHeaderSearchInfo().getModuleMap(); 460 Module *PrivateModuleFragment = 461 Map.createPrivateModuleFragmentForInterfaceUnit( 462 ModuleScopes.back().Module, PrivateLoc); 463 assert(PrivateModuleFragment && "module creation should not fail"); 464 465 // Enter the scope of the private module fragment. 466 ModuleScopes.push_back({}); 467 ModuleScopes.back().BeginLoc = ModuleLoc; 468 ModuleScopes.back().Module = PrivateModuleFragment; 469 ModuleScopes.back().ModuleInterface = true; 470 VisibleModules.setVisible(PrivateModuleFragment, ModuleLoc); 471 472 // All declarations created from now on are scoped to the private module 473 // fragment (and are neither visible nor reachable in importers of the module 474 // interface). 475 auto *TU = Context.getTranslationUnitDecl(); 476 TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ModulePrivate); 477 TU->setLocalOwningModule(PrivateModuleFragment); 478 479 // FIXME: Consider creating an explicit representation of this declaration. 480 return nullptr; 481 } 482 483 DeclResult Sema::ActOnModuleImport(SourceLocation StartLoc, 484 SourceLocation ExportLoc, 485 SourceLocation ImportLoc, ModuleIdPath Path, 486 bool IsPartition) { 487 488 bool Cxx20Mode = getLangOpts().CPlusPlusModules || getLangOpts().ModulesTS; 489 assert((!IsPartition || Cxx20Mode) && "partition seen in non-C++20 code?"); 490 491 // For a C++20 module name, flatten into a single identifier with the source 492 // location of the first component. 493 std::pair<IdentifierInfo *, SourceLocation> ModuleNameLoc; 494 495 std::string ModuleName; 496 if (IsPartition) { 497 // We already checked that we are in a module purview in the parser. 498 assert(!ModuleScopes.empty() && "in a module purview, but no module?"); 499 Module *NamedMod = ModuleScopes.back().Module; 500 // If we are importing into a partition, find the owning named module, 501 // otherwise, the name of the importing named module. 502 ModuleName = NamedMod->getPrimaryModuleInterfaceName().str(); 503 ModuleName += ":"; 504 ModuleName += stringFromPath(Path); 505 ModuleNameLoc = {PP.getIdentifierInfo(ModuleName), Path[0].second}; 506 Path = ModuleIdPath(ModuleNameLoc); 507 } else if (Cxx20Mode) { 508 ModuleName = stringFromPath(Path); 509 ModuleNameLoc = {PP.getIdentifierInfo(ModuleName), Path[0].second}; 510 Path = ModuleIdPath(ModuleNameLoc); 511 } 512 513 // Diagnose self-import before attempting a load. 514 // [module.import]/9 515 // A module implementation unit of a module M that is not a module partition 516 // shall not contain a module-import-declaration nominating M. 517 // (for an implementation, the module interface is imported implicitly, 518 // but that's handled in the module decl code). 519 520 if (getLangOpts().CPlusPlusModules && isCurrentModulePurview() && 521 getCurrentModule()->Name == ModuleName) { 522 Diag(ImportLoc, diag::err_module_self_import_cxx20) 523 << ModuleName << !ModuleScopes.back().ModuleInterface; 524 return true; 525 } 526 527 Module *Mod = getModuleLoader().loadModule( 528 ImportLoc, Path, Module::AllVisible, /*IsInclusionDirective=*/false); 529 if (!Mod) 530 return true; 531 532 return ActOnModuleImport(StartLoc, ExportLoc, ImportLoc, Mod, Path); 533 } 534 535 /// Determine whether \p D is lexically within an export-declaration. 536 static const ExportDecl *getEnclosingExportDecl(const Decl *D) { 537 for (auto *DC = D->getLexicalDeclContext(); DC; DC = DC->getLexicalParent()) 538 if (auto *ED = dyn_cast<ExportDecl>(DC)) 539 return ED; 540 return nullptr; 541 } 542 543 DeclResult Sema::ActOnModuleImport(SourceLocation StartLoc, 544 SourceLocation ExportLoc, 545 SourceLocation ImportLoc, Module *Mod, 546 ModuleIdPath Path) { 547 VisibleModules.setVisible(Mod, ImportLoc); 548 549 checkModuleImportContext(*this, Mod, ImportLoc, CurContext); 550 551 // FIXME: we should support importing a submodule within a different submodule 552 // of the same top-level module. Until we do, make it an error rather than 553 // silently ignoring the import. 554 // FIXME: Should we warn on a redundant import of the current module? 555 if (Mod->isForBuilding(getLangOpts()) && 556 (getLangOpts().isCompilingModule() || !getLangOpts().ModulesTS)) { 557 Diag(ImportLoc, getLangOpts().isCompilingModule() 558 ? diag::err_module_self_import 559 : diag::err_module_import_in_implementation) 560 << Mod->getFullModuleName() << getLangOpts().CurrentModule; 561 } 562 563 SmallVector<SourceLocation, 2> IdentifierLocs; 564 565 if (Path.empty()) { 566 // If this was a header import, pad out with dummy locations. 567 // FIXME: Pass in and use the location of the header-name token in this 568 // case. 569 for (Module *ModCheck = Mod; ModCheck; ModCheck = ModCheck->Parent) 570 IdentifierLocs.push_back(SourceLocation()); 571 } else if (getLangOpts().CPlusPlusModules && !Mod->Parent) { 572 // A single identifier for the whole name. 573 IdentifierLocs.push_back(Path[0].second); 574 } else { 575 Module *ModCheck = Mod; 576 for (unsigned I = 0, N = Path.size(); I != N; ++I) { 577 // If we've run out of module parents, just drop the remaining 578 // identifiers. We need the length to be consistent. 579 if (!ModCheck) 580 break; 581 ModCheck = ModCheck->Parent; 582 583 IdentifierLocs.push_back(Path[I].second); 584 } 585 } 586 587 ImportDecl *Import = ImportDecl::Create(Context, CurContext, StartLoc, 588 Mod, IdentifierLocs); 589 CurContext->addDecl(Import); 590 591 // Sequence initialization of the imported module before that of the current 592 // module, if any. 593 if (!ModuleScopes.empty()) 594 Context.addModuleInitializer(ModuleScopes.back().Module, Import); 595 596 // A module (partition) implementation unit shall not be exported. 597 if (getLangOpts().CPlusPlusModules && ExportLoc.isValid() && 598 Mod->Kind == Module::ModuleKind::ModulePartitionImplementation) { 599 Diag(ExportLoc, diag::err_export_partition_impl) 600 << SourceRange(ExportLoc, Path.back().second); 601 } else if (!ModuleScopes.empty() && 602 (ModuleScopes.back().ModuleInterface || 603 (getLangOpts().CPlusPlusModules && 604 ModuleScopes.back().Module->isGlobalModule()))) { 605 // Re-export the module if the imported module is exported. 606 // Note that we don't need to add re-exported module to Imports field 607 // since `Exports` implies the module is imported already. 608 if (ExportLoc.isValid() || getEnclosingExportDecl(Import)) 609 getCurrentModule()->Exports.emplace_back(Mod, false); 610 else 611 getCurrentModule()->Imports.insert(Mod); 612 } else if (ExportLoc.isValid()) { 613 // [module.interface]p1: 614 // An export-declaration shall inhabit a namespace scope and appear in the 615 // purview of a module interface unit. 616 Diag(ExportLoc, diag::err_export_not_in_module_interface) 617 << (!ModuleScopes.empty() && 618 !ModuleScopes.back().ImplicitGlobalModuleFragment); 619 } 620 621 // In some cases we need to know if an entity was present in a directly- 622 // imported module (as opposed to a transitive import). This avoids 623 // searching both Imports and Exports. 624 DirectModuleImports.insert(Mod); 625 626 return Import; 627 } 628 629 void Sema::ActOnModuleInclude(SourceLocation DirectiveLoc, Module *Mod) { 630 checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext, true); 631 BuildModuleInclude(DirectiveLoc, Mod); 632 } 633 634 void Sema::BuildModuleInclude(SourceLocation DirectiveLoc, Module *Mod) { 635 // Determine whether we're in the #include buffer for a module. The #includes 636 // in that buffer do not qualify as module imports; they're just an 637 // implementation detail of us building the module. 638 // 639 // FIXME: Should we even get ActOnModuleInclude calls for those? 640 bool IsInModuleIncludes = 641 TUKind == TU_Module && 642 getSourceManager().isWrittenInMainFile(DirectiveLoc); 643 644 bool ShouldAddImport = !IsInModuleIncludes; 645 646 // If this module import was due to an inclusion directive, create an 647 // implicit import declaration to capture it in the AST. 648 if (ShouldAddImport) { 649 TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl(); 650 ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU, 651 DirectiveLoc, Mod, 652 DirectiveLoc); 653 if (!ModuleScopes.empty()) 654 Context.addModuleInitializer(ModuleScopes.back().Module, ImportD); 655 TU->addDecl(ImportD); 656 Consumer.HandleImplicitImportDecl(ImportD); 657 } 658 659 getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, DirectiveLoc); 660 VisibleModules.setVisible(Mod, DirectiveLoc); 661 662 if (getLangOpts().isCompilingModule()) { 663 Module *ThisModule = PP.getHeaderSearchInfo().lookupModule( 664 getLangOpts().CurrentModule, DirectiveLoc, false, false); 665 (void)ThisModule; 666 assert(ThisModule && "was expecting a module if building one"); 667 } 668 } 669 670 void Sema::ActOnModuleBegin(SourceLocation DirectiveLoc, Module *Mod) { 671 checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext, true); 672 673 ModuleScopes.push_back({}); 674 ModuleScopes.back().Module = Mod; 675 if (getLangOpts().ModulesLocalVisibility) 676 ModuleScopes.back().OuterVisibleModules = std::move(VisibleModules); 677 678 VisibleModules.setVisible(Mod, DirectiveLoc); 679 680 // The enclosing context is now part of this module. 681 // FIXME: Consider creating a child DeclContext to hold the entities 682 // lexically within the module. 683 if (getLangOpts().trackLocalOwningModule()) { 684 for (auto *DC = CurContext; DC; DC = DC->getLexicalParent()) { 685 cast<Decl>(DC)->setModuleOwnershipKind( 686 getLangOpts().ModulesLocalVisibility 687 ? Decl::ModuleOwnershipKind::VisibleWhenImported 688 : Decl::ModuleOwnershipKind::Visible); 689 cast<Decl>(DC)->setLocalOwningModule(Mod); 690 } 691 } 692 } 693 694 void Sema::ActOnModuleEnd(SourceLocation EomLoc, Module *Mod) { 695 if (getLangOpts().ModulesLocalVisibility) { 696 VisibleModules = std::move(ModuleScopes.back().OuterVisibleModules); 697 // Leaving a module hides namespace names, so our visible namespace cache 698 // is now out of date. 699 VisibleNamespaceCache.clear(); 700 } 701 702 assert(!ModuleScopes.empty() && ModuleScopes.back().Module == Mod && 703 "left the wrong module scope"); 704 ModuleScopes.pop_back(); 705 706 // We got to the end of processing a local module. Create an 707 // ImportDecl as we would for an imported module. 708 FileID File = getSourceManager().getFileID(EomLoc); 709 SourceLocation DirectiveLoc; 710 if (EomLoc == getSourceManager().getLocForEndOfFile(File)) { 711 // We reached the end of a #included module header. Use the #include loc. 712 assert(File != getSourceManager().getMainFileID() && 713 "end of submodule in main source file"); 714 DirectiveLoc = getSourceManager().getIncludeLoc(File); 715 } else { 716 // We reached an EOM pragma. Use the pragma location. 717 DirectiveLoc = EomLoc; 718 } 719 BuildModuleInclude(DirectiveLoc, Mod); 720 721 // Any further declarations are in whatever module we returned to. 722 if (getLangOpts().trackLocalOwningModule()) { 723 // The parser guarantees that this is the same context that we entered 724 // the module within. 725 for (auto *DC = CurContext; DC; DC = DC->getLexicalParent()) { 726 cast<Decl>(DC)->setLocalOwningModule(getCurrentModule()); 727 if (!getCurrentModule()) 728 cast<Decl>(DC)->setModuleOwnershipKind( 729 Decl::ModuleOwnershipKind::Unowned); 730 } 731 } 732 } 733 734 void Sema::createImplicitModuleImportForErrorRecovery(SourceLocation Loc, 735 Module *Mod) { 736 // Bail if we're not allowed to implicitly import a module here. 737 if (isSFINAEContext() || !getLangOpts().ModulesErrorRecovery || 738 VisibleModules.isVisible(Mod)) 739 return; 740 741 // Create the implicit import declaration. 742 TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl(); 743 ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU, 744 Loc, Mod, Loc); 745 TU->addDecl(ImportD); 746 Consumer.HandleImplicitImportDecl(ImportD); 747 748 // Make the module visible. 749 getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, Loc); 750 VisibleModules.setVisible(Mod, Loc); 751 } 752 753 /// We have parsed the start of an export declaration, including the '{' 754 /// (if present). 755 Decl *Sema::ActOnStartExportDecl(Scope *S, SourceLocation ExportLoc, 756 SourceLocation LBraceLoc) { 757 ExportDecl *D = ExportDecl::Create(Context, CurContext, ExportLoc); 758 759 // Set this temporarily so we know the export-declaration was braced. 760 D->setRBraceLoc(LBraceLoc); 761 762 CurContext->addDecl(D); 763 PushDeclContext(S, D); 764 765 // C++2a [module.interface]p1: 766 // An export-declaration shall appear only [...] in the purview of a module 767 // interface unit. An export-declaration shall not appear directly or 768 // indirectly within [...] a private-module-fragment. 769 if (!isCurrentModulePurview()) { 770 Diag(ExportLoc, diag::err_export_not_in_module_interface) << 0; 771 D->setInvalidDecl(); 772 return D; 773 } else if (!ModuleScopes.back().ModuleInterface) { 774 Diag(ExportLoc, diag::err_export_not_in_module_interface) << 1; 775 Diag(ModuleScopes.back().BeginLoc, 776 diag::note_not_module_interface_add_export) 777 << FixItHint::CreateInsertion(ModuleScopes.back().BeginLoc, "export "); 778 D->setInvalidDecl(); 779 return D; 780 } else if (ModuleScopes.back().Module->Kind == 781 Module::PrivateModuleFragment) { 782 Diag(ExportLoc, diag::err_export_in_private_module_fragment); 783 Diag(ModuleScopes.back().BeginLoc, diag::note_private_module_fragment); 784 D->setInvalidDecl(); 785 return D; 786 } 787 788 for (const DeclContext *DC = CurContext; DC; DC = DC->getLexicalParent()) { 789 if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) { 790 // An export-declaration shall not appear directly or indirectly within 791 // an unnamed namespace [...] 792 if (ND->isAnonymousNamespace()) { 793 Diag(ExportLoc, diag::err_export_within_anonymous_namespace); 794 Diag(ND->getLocation(), diag::note_anonymous_namespace); 795 // Don't diagnose internal-linkage declarations in this region. 796 D->setInvalidDecl(); 797 return D; 798 } 799 800 // A declaration is exported if it is [...] a namespace-definition 801 // that contains an exported declaration. 802 // 803 // Defer exporting the namespace until after we leave it, in order to 804 // avoid marking all subsequent declarations in the namespace as exported. 805 if (!DeferredExportedNamespaces.insert(ND).second) 806 break; 807 } 808 } 809 810 // [...] its declaration or declaration-seq shall not contain an 811 // export-declaration. 812 if (auto *ED = getEnclosingExportDecl(D)) { 813 Diag(ExportLoc, diag::err_export_within_export); 814 if (ED->hasBraces()) 815 Diag(ED->getLocation(), diag::note_export); 816 D->setInvalidDecl(); 817 return D; 818 } 819 820 D->setModuleOwnershipKind(Decl::ModuleOwnershipKind::VisibleWhenImported); 821 return D; 822 } 823 824 static bool checkExportedDeclContext(Sema &S, DeclContext *DC, 825 SourceLocation BlockStart); 826 827 namespace { 828 enum class UnnamedDeclKind { 829 Empty, 830 StaticAssert, 831 Asm, 832 UsingDirective, 833 Namespace, 834 Context 835 }; 836 } 837 838 static std::optional<UnnamedDeclKind> getUnnamedDeclKind(Decl *D) { 839 if (isa<EmptyDecl>(D)) 840 return UnnamedDeclKind::Empty; 841 if (isa<StaticAssertDecl>(D)) 842 return UnnamedDeclKind::StaticAssert; 843 if (isa<FileScopeAsmDecl>(D)) 844 return UnnamedDeclKind::Asm; 845 if (isa<UsingDirectiveDecl>(D)) 846 return UnnamedDeclKind::UsingDirective; 847 // Everything else either introduces one or more names or is ill-formed. 848 return std::nullopt; 849 } 850 851 unsigned getUnnamedDeclDiag(UnnamedDeclKind UDK, bool InBlock) { 852 switch (UDK) { 853 case UnnamedDeclKind::Empty: 854 case UnnamedDeclKind::StaticAssert: 855 // Allow empty-declarations and static_asserts in an export block as an 856 // extension. 857 return InBlock ? diag::ext_export_no_name_block : diag::err_export_no_name; 858 859 case UnnamedDeclKind::UsingDirective: 860 // Allow exporting using-directives as an extension. 861 return diag::ext_export_using_directive; 862 863 case UnnamedDeclKind::Namespace: 864 // Anonymous namespace with no content. 865 return diag::introduces_no_names; 866 867 case UnnamedDeclKind::Context: 868 // Allow exporting DeclContexts that transitively contain no declarations 869 // as an extension. 870 return diag::ext_export_no_names; 871 872 case UnnamedDeclKind::Asm: 873 return diag::err_export_no_name; 874 } 875 llvm_unreachable("unknown kind"); 876 } 877 878 static void diagExportedUnnamedDecl(Sema &S, UnnamedDeclKind UDK, Decl *D, 879 SourceLocation BlockStart) { 880 S.Diag(D->getLocation(), getUnnamedDeclDiag(UDK, BlockStart.isValid())) 881 << (unsigned)UDK; 882 if (BlockStart.isValid()) 883 S.Diag(BlockStart, diag::note_export); 884 } 885 886 /// Check that it's valid to export \p D. 887 static bool checkExportedDecl(Sema &S, Decl *D, SourceLocation BlockStart) { 888 // C++2a [module.interface]p3: 889 // An exported declaration shall declare at least one name 890 if (auto UDK = getUnnamedDeclKind(D)) 891 diagExportedUnnamedDecl(S, *UDK, D, BlockStart); 892 893 // [...] shall not declare a name with internal linkage. 894 bool HasName = false; 895 if (auto *ND = dyn_cast<NamedDecl>(D)) { 896 // Don't diagnose anonymous union objects; we'll diagnose their members 897 // instead. 898 HasName = (bool)ND->getDeclName(); 899 if (HasName && ND->getFormalLinkage() == InternalLinkage) { 900 S.Diag(ND->getLocation(), diag::err_export_internal) << ND; 901 if (BlockStart.isValid()) 902 S.Diag(BlockStart, diag::note_export); 903 } 904 } 905 906 // C++2a [module.interface]p5: 907 // all entities to which all of the using-declarators ultimately refer 908 // shall have been introduced with a name having external linkage 909 if (auto *USD = dyn_cast<UsingShadowDecl>(D)) { 910 NamedDecl *Target = USD->getUnderlyingDecl(); 911 Linkage Lk = Target->getFormalLinkage(); 912 if (Lk == InternalLinkage || Lk == ModuleLinkage) { 913 S.Diag(USD->getLocation(), diag::err_export_using_internal) 914 << (Lk == InternalLinkage ? 0 : 1) << Target; 915 S.Diag(Target->getLocation(), diag::note_using_decl_target); 916 if (BlockStart.isValid()) 917 S.Diag(BlockStart, diag::note_export); 918 } 919 } 920 921 // Recurse into namespace-scope DeclContexts. (Only namespace-scope 922 // declarations are exported.). 923 if (auto *DC = dyn_cast<DeclContext>(D)) { 924 if (isa<NamespaceDecl>(D) && DC->decls().empty()) { 925 if (!HasName) 926 // We don't allow an empty anonymous namespace (we don't allow decls 927 // in them either, but that's handled in the recursion). 928 diagExportedUnnamedDecl(S, UnnamedDeclKind::Namespace, D, BlockStart); 929 // We allow an empty named namespace decl. 930 } else if (DC->getRedeclContext()->isFileContext() && !isa<EnumDecl>(D)) 931 return checkExportedDeclContext(S, DC, BlockStart); 932 } 933 return false; 934 } 935 936 /// Check that it's valid to export all the declarations in \p DC. 937 static bool checkExportedDeclContext(Sema &S, DeclContext *DC, 938 SourceLocation BlockStart) { 939 bool AllUnnamed = true; 940 for (auto *D : DC->decls()) 941 AllUnnamed &= checkExportedDecl(S, D, BlockStart); 942 return AllUnnamed; 943 } 944 945 /// Complete the definition of an export declaration. 946 Decl *Sema::ActOnFinishExportDecl(Scope *S, Decl *D, SourceLocation RBraceLoc) { 947 auto *ED = cast<ExportDecl>(D); 948 if (RBraceLoc.isValid()) 949 ED->setRBraceLoc(RBraceLoc); 950 951 PopDeclContext(); 952 953 if (!D->isInvalidDecl()) { 954 SourceLocation BlockStart = 955 ED->hasBraces() ? ED->getBeginLoc() : SourceLocation(); 956 for (auto *Child : ED->decls()) { 957 if (checkExportedDecl(*this, Child, BlockStart)) { 958 // If a top-level child is a linkage-spec declaration, it might contain 959 // no declarations (transitively), in which case it's ill-formed. 960 diagExportedUnnamedDecl(*this, UnnamedDeclKind::Context, Child, 961 BlockStart); 962 } 963 if (auto *FD = dyn_cast<FunctionDecl>(Child)) { 964 // [dcl.inline]/7 965 // If an inline function or variable that is attached to a named module 966 // is declared in a definition domain, it shall be defined in that 967 // domain. 968 // So, if the current declaration does not have a definition, we must 969 // check at the end of the TU (or when the PMF starts) to see that we 970 // have a definition at that point. 971 if (FD->isInlineSpecified() && !FD->isDefined()) 972 PendingInlineFuncDecls.insert(FD); 973 } 974 } 975 } 976 977 return D; 978 } 979 980 Module *Sema::PushGlobalModuleFragment(SourceLocation BeginLoc, 981 bool IsImplicit) { 982 // We shouldn't create new global module fragment if there is already 983 // one. 984 if (!GlobalModuleFragment) { 985 ModuleMap &Map = PP.getHeaderSearchInfo().getModuleMap(); 986 GlobalModuleFragment = Map.createGlobalModuleFragmentForModuleUnit( 987 BeginLoc, getCurrentModule()); 988 } 989 990 assert(GlobalModuleFragment && "module creation should not fail"); 991 992 // Enter the scope of the global module. 993 ModuleScopes.push_back({BeginLoc, GlobalModuleFragment, 994 /*ModuleInterface=*/false, 995 /*IsPartition=*/false, 996 /*ImplicitGlobalModuleFragment=*/IsImplicit, 997 /*OuterVisibleModules=*/{}}); 998 VisibleModules.setVisible(GlobalModuleFragment, BeginLoc); 999 1000 return GlobalModuleFragment; 1001 } 1002 1003 void Sema::PopGlobalModuleFragment() { 1004 assert(!ModuleScopes.empty() && getCurrentModule()->isGlobalModule() && 1005 "left the wrong module scope, which is not global module fragment"); 1006 ModuleScopes.pop_back(); 1007 } 1008 1009 bool Sema::isModuleUnitOfCurrentTU(const Module *M) const { 1010 assert(M); 1011 1012 Module *CurrentModuleUnit = getCurrentModule(); 1013 1014 // If we are not in a module currently, M must not be the module unit of 1015 // current TU. 1016 if (!CurrentModuleUnit) 1017 return false; 1018 1019 return M->isSubModuleOf(CurrentModuleUnit->getTopLevelModule()); 1020 } 1021