1 //===--- SemaModule.cpp - Semantic Analysis for Modules -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for modules (C++ modules syntax, 10 // Objective-C modules syntax, and Clang header modules). 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/AST/ASTConsumer.h" 15 #include "clang/Lex/HeaderSearch.h" 16 #include "clang/Lex/Preprocessor.h" 17 #include "clang/Sema/SemaInternal.h" 18 19 using namespace clang; 20 using namespace sema; 21 22 static void checkModuleImportContext(Sema &S, Module *M, 23 SourceLocation ImportLoc, DeclContext *DC, 24 bool FromInclude = false) { 25 SourceLocation ExternCLoc; 26 27 if (auto *LSD = dyn_cast<LinkageSpecDecl>(DC)) { 28 switch (LSD->getLanguage()) { 29 case LinkageSpecDecl::lang_c: 30 if (ExternCLoc.isInvalid()) 31 ExternCLoc = LSD->getBeginLoc(); 32 break; 33 case LinkageSpecDecl::lang_cxx: 34 break; 35 } 36 DC = LSD->getParent(); 37 } 38 39 while (isa<LinkageSpecDecl>(DC) || isa<ExportDecl>(DC)) 40 DC = DC->getParent(); 41 42 if (!isa<TranslationUnitDecl>(DC)) { 43 S.Diag(ImportLoc, (FromInclude && S.isModuleVisible(M)) 44 ? diag::ext_module_import_not_at_top_level_noop 45 : diag::err_module_import_not_at_top_level_fatal) 46 << M->getFullModuleName() << DC; 47 S.Diag(cast<Decl>(DC)->getBeginLoc(), 48 diag::note_module_import_not_at_top_level) 49 << DC; 50 } else if (!M->IsExternC && ExternCLoc.isValid()) { 51 S.Diag(ImportLoc, diag::ext_module_import_in_extern_c) 52 << M->getFullModuleName(); 53 S.Diag(ExternCLoc, diag::note_extern_c_begins_here); 54 } 55 } 56 57 // We represent the primary and partition names as 'Paths' which are sections 58 // of the hierarchical access path for a clang module. However for C++20 59 // the periods in a name are just another character, and we will need to 60 // flatten them into a string. 61 static std::string stringFromPath(ModuleIdPath Path) { 62 std::string Name; 63 if (Path.empty()) 64 return Name; 65 66 for (auto &Piece : Path) { 67 if (!Name.empty()) 68 Name += "."; 69 Name += Piece.first->getName(); 70 } 71 return Name; 72 } 73 74 Sema::DeclGroupPtrTy 75 Sema::ActOnGlobalModuleFragmentDecl(SourceLocation ModuleLoc) { 76 if (!ModuleScopes.empty() && 77 ModuleScopes.back().Module->Kind == Module::GlobalModuleFragment) { 78 // Under -std=c++2a -fmodules-ts, we can find an explicit 'module;' after 79 // already implicitly entering the global module fragment. That's OK. 80 assert(getLangOpts().CPlusPlusModules && getLangOpts().ModulesTS && 81 "unexpectedly encountered multiple global module fragment decls"); 82 ModuleScopes.back().BeginLoc = ModuleLoc; 83 return nullptr; 84 } 85 86 // We start in the global module; all those declarations are implicitly 87 // module-private (though they do not have module linkage). 88 Module *GlobalModule = 89 PushGlobalModuleFragment(ModuleLoc, /*IsImplicit=*/false); 90 91 // All declarations created from now on are owned by the global module. 92 auto *TU = Context.getTranslationUnitDecl(); 93 // [module.global.frag]p2 94 // A global-module-fragment specifies the contents of the global module 95 // fragment for a module unit. The global module fragment can be used to 96 // provide declarations that are attached to the global module and usable 97 // within the module unit. 98 // 99 // So the declations in the global module shouldn't be visible by default. 100 TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ReachableWhenImported); 101 TU->setLocalOwningModule(GlobalModule); 102 103 // FIXME: Consider creating an explicit representation of this declaration. 104 return nullptr; 105 } 106 107 void Sema::HandleStartOfHeaderUnit() { 108 assert(getLangOpts().CPlusPlusModules && 109 "Header units are only valid for C++20 modules"); 110 SourceLocation StartOfTU = 111 SourceMgr.getLocForStartOfFile(SourceMgr.getMainFileID()); 112 113 StringRef HUName = getLangOpts().CurrentModule; 114 if (HUName.empty()) { 115 HUName = SourceMgr.getFileEntryForID(SourceMgr.getMainFileID())->getName(); 116 const_cast<LangOptions &>(getLangOpts()).CurrentModule = HUName.str(); 117 } 118 119 // TODO: Make the C++20 header lookup independent. 120 // When the input is pre-processed source, we need a file ref to the original 121 // file for the header map. 122 auto F = SourceMgr.getFileManager().getFile(HUName); 123 // For the sake of error recovery (if someone has moved the original header 124 // after creating the pre-processed output) fall back to obtaining the file 125 // ref for the input file, which must be present. 126 if (!F) 127 F = SourceMgr.getFileEntryForID(SourceMgr.getMainFileID()); 128 assert(F && "failed to find the header unit source?"); 129 Module::Header H{HUName.str(), HUName.str(), *F}; 130 auto &Map = PP.getHeaderSearchInfo().getModuleMap(); 131 Module *Mod = Map.createHeaderUnit(StartOfTU, HUName, H); 132 assert(Mod && "module creation should not fail"); 133 ModuleScopes.push_back({}); // No GMF 134 ModuleScopes.back().BeginLoc = StartOfTU; 135 ModuleScopes.back().Module = Mod; 136 ModuleScopes.back().ModuleInterface = true; 137 ModuleScopes.back().IsPartition = false; 138 VisibleModules.setVisible(Mod, StartOfTU); 139 140 // From now on, we have an owning module for all declarations we see. 141 // All of these are implicitly exported. 142 auto *TU = Context.getTranslationUnitDecl(); 143 TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::Visible); 144 TU->setLocalOwningModule(Mod); 145 } 146 147 /// Tests whether the given identifier is reserved as a module name and 148 /// diagnoses if it is. Returns true if a diagnostic is emitted and false 149 /// otherwise. 150 static bool DiagReservedModuleName(Sema &S, const IdentifierInfo *II, 151 SourceLocation Loc) { 152 enum { 153 Valid = -1, 154 Invalid = 0, 155 Reserved = 1, 156 } Reason = Valid; 157 158 if (II->isStr("module") || II->isStr("import")) 159 Reason = Invalid; 160 else if (II->isReserved(S.getLangOpts()) != 161 ReservedIdentifierStatus::NotReserved) 162 Reason = Reserved; 163 164 // If the identifier is reserved (not invalid) but is in a system header, 165 // we do not diagnose (because we expect system headers to use reserved 166 // identifiers). 167 if (Reason == Reserved && S.getSourceManager().isInSystemHeader(Loc)) 168 Reason = Valid; 169 170 if (Reason != Valid) { 171 S.Diag(Loc, diag::err_invalid_module_name) << II << (int)Reason; 172 return true; 173 } 174 return false; 175 } 176 177 Sema::DeclGroupPtrTy 178 Sema::ActOnModuleDecl(SourceLocation StartLoc, SourceLocation ModuleLoc, 179 ModuleDeclKind MDK, ModuleIdPath Path, 180 ModuleIdPath Partition, ModuleImportState &ImportState) { 181 assert((getLangOpts().ModulesTS || getLangOpts().CPlusPlusModules) && 182 "should only have module decl in Modules TS or C++20"); 183 184 bool IsFirstDecl = ImportState == ModuleImportState::FirstDecl; 185 bool SeenGMF = ImportState == ModuleImportState::GlobalFragment; 186 // If any of the steps here fail, we count that as invalidating C++20 187 // module state; 188 ImportState = ModuleImportState::NotACXX20Module; 189 190 bool IsPartition = !Partition.empty(); 191 if (IsPartition) 192 switch (MDK) { 193 case ModuleDeclKind::Implementation: 194 MDK = ModuleDeclKind::PartitionImplementation; 195 break; 196 case ModuleDeclKind::Interface: 197 MDK = ModuleDeclKind::PartitionInterface; 198 break; 199 default: 200 llvm_unreachable("how did we get a partition type set?"); 201 } 202 203 // A (non-partition) module implementation unit requires that we are not 204 // compiling a module of any kind. A partition implementation emits an 205 // interface (and the AST for the implementation), which will subsequently 206 // be consumed to emit a binary. 207 // A module interface unit requires that we are not compiling a module map. 208 switch (getLangOpts().getCompilingModule()) { 209 case LangOptions::CMK_None: 210 // It's OK to compile a module interface as a normal translation unit. 211 break; 212 213 case LangOptions::CMK_ModuleInterface: 214 if (MDK != ModuleDeclKind::Implementation) 215 break; 216 217 // We were asked to compile a module interface unit but this is a module 218 // implementation unit. 219 Diag(ModuleLoc, diag::err_module_interface_implementation_mismatch) 220 << FixItHint::CreateInsertion(ModuleLoc, "export "); 221 MDK = ModuleDeclKind::Interface; 222 break; 223 224 case LangOptions::CMK_ModuleMap: 225 Diag(ModuleLoc, diag::err_module_decl_in_module_map_module); 226 return nullptr; 227 228 case LangOptions::CMK_HeaderUnit: 229 Diag(ModuleLoc, diag::err_module_decl_in_header_unit); 230 return nullptr; 231 } 232 233 assert(ModuleScopes.size() <= 1 && "expected to be at global module scope"); 234 235 // FIXME: Most of this work should be done by the preprocessor rather than 236 // here, in order to support macro import. 237 238 // Only one module-declaration is permitted per source file. 239 if (isCurrentModulePurview()) { 240 Diag(ModuleLoc, diag::err_module_redeclaration); 241 Diag(VisibleModules.getImportLoc(ModuleScopes.back().Module), 242 diag::note_prev_module_declaration); 243 return nullptr; 244 } 245 246 assert((!getLangOpts().CPlusPlusModules || getLangOpts().ModulesTS || 247 SeenGMF == (bool)this->GlobalModuleFragment) && 248 "mismatched global module state"); 249 250 // In C++20, the module-declaration must be the first declaration if there 251 // is no global module fragment. 252 if (getLangOpts().CPlusPlusModules && !IsFirstDecl && !SeenGMF) { 253 Diag(ModuleLoc, diag::err_module_decl_not_at_start); 254 SourceLocation BeginLoc = 255 ModuleScopes.empty() 256 ? SourceMgr.getLocForStartOfFile(SourceMgr.getMainFileID()) 257 : ModuleScopes.back().BeginLoc; 258 if (BeginLoc.isValid()) { 259 Diag(BeginLoc, diag::note_global_module_introducer_missing) 260 << FixItHint::CreateInsertion(BeginLoc, "module;\n"); 261 } 262 } 263 264 // C++2b [module.unit]p1: ... The identifiers module and import shall not 265 // appear as identifiers in a module-name or module-partition. All 266 // module-names either beginning with an identifier consisting of std 267 // followed by zero or more digits or containing a reserved identifier 268 // ([lex.name]) are reserved and shall not be specified in a 269 // module-declaration; no diagnostic is required. 270 271 // Test the first part of the path to see if it's std[0-9]+ but allow the 272 // name in a system header. 273 StringRef FirstComponentName = Path[0].first->getName(); 274 if (!getSourceManager().isInSystemHeader(Path[0].second) && 275 (FirstComponentName == "std" || 276 (FirstComponentName.startswith("std") && 277 llvm::all_of(FirstComponentName.drop_front(3), &llvm::isDigit)))) { 278 Diag(Path[0].second, diag::err_invalid_module_name) 279 << Path[0].first << /*reserved*/ 1; 280 return nullptr; 281 } 282 283 // Then test all of the components in the path to see if any of them are 284 // using another kind of reserved or invalid identifier. 285 for (auto Part : Path) { 286 if (DiagReservedModuleName(*this, Part.first, Part.second)) 287 return nullptr; 288 } 289 290 // Flatten the dots in a module name. Unlike Clang's hierarchical module map 291 // modules, the dots here are just another character that can appear in a 292 // module name. 293 std::string ModuleName = stringFromPath(Path); 294 if (IsPartition) { 295 ModuleName += ":"; 296 ModuleName += stringFromPath(Partition); 297 } 298 // If a module name was explicitly specified on the command line, it must be 299 // correct. 300 if (!getLangOpts().CurrentModule.empty() && 301 getLangOpts().CurrentModule != ModuleName) { 302 Diag(Path.front().second, diag::err_current_module_name_mismatch) 303 << SourceRange(Path.front().second, IsPartition 304 ? Partition.back().second 305 : Path.back().second) 306 << getLangOpts().CurrentModule; 307 return nullptr; 308 } 309 const_cast<LangOptions&>(getLangOpts()).CurrentModule = ModuleName; 310 311 auto &Map = PP.getHeaderSearchInfo().getModuleMap(); 312 Module *Mod; 313 314 switch (MDK) { 315 case ModuleDeclKind::Interface: 316 case ModuleDeclKind::PartitionInterface: { 317 // We can't have parsed or imported a definition of this module or parsed a 318 // module map defining it already. 319 if (auto *M = Map.findModule(ModuleName)) { 320 Diag(Path[0].second, diag::err_module_redefinition) << ModuleName; 321 if (M->DefinitionLoc.isValid()) 322 Diag(M->DefinitionLoc, diag::note_prev_module_definition); 323 else if (Optional<FileEntryRef> FE = M->getASTFile()) 324 Diag(M->DefinitionLoc, diag::note_prev_module_definition_from_ast_file) 325 << FE->getName(); 326 Mod = M; 327 break; 328 } 329 330 // Create a Module for the module that we're defining. 331 Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName); 332 if (MDK == ModuleDeclKind::PartitionInterface) 333 Mod->Kind = Module::ModulePartitionInterface; 334 assert(Mod && "module creation should not fail"); 335 break; 336 } 337 338 case ModuleDeclKind::Implementation: { 339 std::pair<IdentifierInfo *, SourceLocation> ModuleNameLoc( 340 PP.getIdentifierInfo(ModuleName), Path[0].second); 341 // C++20 A module-declaration that contains neither an export- 342 // keyword nor a module-partition implicitly imports the primary 343 // module interface unit of the module as if by a module-import- 344 // declaration. 345 Mod = getModuleLoader().loadModule(ModuleLoc, {ModuleNameLoc}, 346 Module::AllVisible, 347 /*IsInclusionDirective=*/false); 348 if (!Mod) { 349 Diag(ModuleLoc, diag::err_module_not_defined) << ModuleName; 350 // Create an empty module interface unit for error recovery. 351 Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName); 352 } 353 } break; 354 355 case ModuleDeclKind::PartitionImplementation: 356 // Create an interface, but note that it is an implementation 357 // unit. 358 Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName); 359 Mod->Kind = Module::ModulePartitionImplementation; 360 break; 361 } 362 363 if (!this->GlobalModuleFragment) { 364 ModuleScopes.push_back({}); 365 if (getLangOpts().ModulesLocalVisibility) 366 ModuleScopes.back().OuterVisibleModules = std::move(VisibleModules); 367 } else { 368 // We're done with the global module fragment now. 369 ActOnEndOfTranslationUnitFragment(TUFragmentKind::Global); 370 } 371 372 // Switch from the global module fragment (if any) to the named module. 373 ModuleScopes.back().BeginLoc = StartLoc; 374 ModuleScopes.back().Module = Mod; 375 ModuleScopes.back().ModuleInterface = MDK != ModuleDeclKind::Implementation; 376 ModuleScopes.back().IsPartition = IsPartition; 377 VisibleModules.setVisible(Mod, ModuleLoc); 378 379 // From now on, we have an owning module for all declarations we see. 380 // In C++20 modules, those declaration would be reachable when imported 381 // unless explicitily exported. 382 // Otherwise, those declarations are module-private unless explicitly 383 // exported. 384 auto *TU = Context.getTranslationUnitDecl(); 385 TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ReachableWhenImported); 386 TU->setLocalOwningModule(Mod); 387 388 // We are in the module purview, but before any other (non import) 389 // statements, so imports are allowed. 390 ImportState = ModuleImportState::ImportAllowed; 391 392 // For an implementation, We already made an implicit import (its interface). 393 // Make and return the import decl to be added to the current TU. 394 if (MDK == ModuleDeclKind::Implementation) { 395 // Make the import decl for the interface. 396 ImportDecl *Import = 397 ImportDecl::Create(Context, CurContext, ModuleLoc, Mod, Path[0].second); 398 // and return it to be added. 399 return ConvertDeclToDeclGroup(Import); 400 } 401 402 // FIXME: Create a ModuleDecl. 403 return nullptr; 404 } 405 406 Sema::DeclGroupPtrTy 407 Sema::ActOnPrivateModuleFragmentDecl(SourceLocation ModuleLoc, 408 SourceLocation PrivateLoc) { 409 // C++20 [basic.link]/2: 410 // A private-module-fragment shall appear only in a primary module 411 // interface unit. 412 switch (ModuleScopes.empty() ? Module::GlobalModuleFragment 413 : ModuleScopes.back().Module->Kind) { 414 case Module::ModuleMapModule: 415 case Module::GlobalModuleFragment: 416 case Module::ModulePartitionImplementation: 417 case Module::ModulePartitionInterface: 418 case Module::ModuleHeaderUnit: 419 Diag(PrivateLoc, diag::err_private_module_fragment_not_module); 420 return nullptr; 421 422 case Module::PrivateModuleFragment: 423 Diag(PrivateLoc, diag::err_private_module_fragment_redefined); 424 Diag(ModuleScopes.back().BeginLoc, diag::note_previous_definition); 425 return nullptr; 426 427 case Module::ModuleInterfaceUnit: 428 break; 429 } 430 431 if (!ModuleScopes.back().ModuleInterface) { 432 Diag(PrivateLoc, diag::err_private_module_fragment_not_module_interface); 433 Diag(ModuleScopes.back().BeginLoc, 434 diag::note_not_module_interface_add_export) 435 << FixItHint::CreateInsertion(ModuleScopes.back().BeginLoc, "export "); 436 return nullptr; 437 } 438 439 // FIXME: Check this isn't a module interface partition. 440 // FIXME: Check that this translation unit does not import any partitions; 441 // such imports would violate [basic.link]/2's "shall be the only module unit" 442 // restriction. 443 444 // We've finished the public fragment of the translation unit. 445 ActOnEndOfTranslationUnitFragment(TUFragmentKind::Normal); 446 447 auto &Map = PP.getHeaderSearchInfo().getModuleMap(); 448 Module *PrivateModuleFragment = 449 Map.createPrivateModuleFragmentForInterfaceUnit( 450 ModuleScopes.back().Module, PrivateLoc); 451 assert(PrivateModuleFragment && "module creation should not fail"); 452 453 // Enter the scope of the private module fragment. 454 ModuleScopes.push_back({}); 455 ModuleScopes.back().BeginLoc = ModuleLoc; 456 ModuleScopes.back().Module = PrivateModuleFragment; 457 ModuleScopes.back().ModuleInterface = true; 458 VisibleModules.setVisible(PrivateModuleFragment, ModuleLoc); 459 460 // All declarations created from now on are scoped to the private module 461 // fragment (and are neither visible nor reachable in importers of the module 462 // interface). 463 auto *TU = Context.getTranslationUnitDecl(); 464 TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ModulePrivate); 465 TU->setLocalOwningModule(PrivateModuleFragment); 466 467 // FIXME: Consider creating an explicit representation of this declaration. 468 return nullptr; 469 } 470 471 DeclResult Sema::ActOnModuleImport(SourceLocation StartLoc, 472 SourceLocation ExportLoc, 473 SourceLocation ImportLoc, ModuleIdPath Path, 474 bool IsPartition) { 475 476 bool Cxx20Mode = getLangOpts().CPlusPlusModules || getLangOpts().ModulesTS; 477 assert((!IsPartition || Cxx20Mode) && "partition seen in non-C++20 code?"); 478 479 // For a C++20 module name, flatten into a single identifier with the source 480 // location of the first component. 481 std::pair<IdentifierInfo *, SourceLocation> ModuleNameLoc; 482 483 std::string ModuleName; 484 if (IsPartition) { 485 // We already checked that we are in a module purview in the parser. 486 assert(!ModuleScopes.empty() && "in a module purview, but no module?"); 487 Module *NamedMod = ModuleScopes.back().Module; 488 // If we are importing into a partition, find the owning named module, 489 // otherwise, the name of the importing named module. 490 ModuleName = NamedMod->getPrimaryModuleInterfaceName().str(); 491 ModuleName += ":"; 492 ModuleName += stringFromPath(Path); 493 ModuleNameLoc = {PP.getIdentifierInfo(ModuleName), Path[0].second}; 494 Path = ModuleIdPath(ModuleNameLoc); 495 } else if (Cxx20Mode) { 496 ModuleName = stringFromPath(Path); 497 ModuleNameLoc = {PP.getIdentifierInfo(ModuleName), Path[0].second}; 498 Path = ModuleIdPath(ModuleNameLoc); 499 } 500 501 // Diagnose self-import before attempting a load. 502 // [module.import]/9 503 // A module implementation unit of a module M that is not a module partition 504 // shall not contain a module-import-declaration nominating M. 505 // (for an implementation, the module interface is imported implicitly, 506 // but that's handled in the module decl code). 507 508 if (getLangOpts().CPlusPlusModules && isCurrentModulePurview() && 509 getCurrentModule()->Name == ModuleName) { 510 Diag(ImportLoc, diag::err_module_self_import_cxx20) 511 << ModuleName << !ModuleScopes.back().ModuleInterface; 512 return true; 513 } 514 515 Module *Mod = getModuleLoader().loadModule( 516 ImportLoc, Path, Module::AllVisible, /*IsInclusionDirective=*/false); 517 if (!Mod) 518 return true; 519 520 return ActOnModuleImport(StartLoc, ExportLoc, ImportLoc, Mod, Path); 521 } 522 523 /// Determine whether \p D is lexically within an export-declaration. 524 static const ExportDecl *getEnclosingExportDecl(const Decl *D) { 525 for (auto *DC = D->getLexicalDeclContext(); DC; DC = DC->getLexicalParent()) 526 if (auto *ED = dyn_cast<ExportDecl>(DC)) 527 return ED; 528 return nullptr; 529 } 530 531 DeclResult Sema::ActOnModuleImport(SourceLocation StartLoc, 532 SourceLocation ExportLoc, 533 SourceLocation ImportLoc, Module *Mod, 534 ModuleIdPath Path) { 535 VisibleModules.setVisible(Mod, ImportLoc); 536 537 checkModuleImportContext(*this, Mod, ImportLoc, CurContext); 538 539 // FIXME: we should support importing a submodule within a different submodule 540 // of the same top-level module. Until we do, make it an error rather than 541 // silently ignoring the import. 542 // FIXME: Should we warn on a redundant import of the current module? 543 if (Mod->getTopLevelModuleName() == getLangOpts().CurrentModule && 544 (getLangOpts().isCompilingModule() || !getLangOpts().ModulesTS)) { 545 Diag(ImportLoc, getLangOpts().isCompilingModule() 546 ? diag::err_module_self_import 547 : diag::err_module_import_in_implementation) 548 << Mod->getFullModuleName() << getLangOpts().CurrentModule; 549 } 550 551 SmallVector<SourceLocation, 2> IdentifierLocs; 552 553 if (Path.empty()) { 554 // If this was a header import, pad out with dummy locations. 555 // FIXME: Pass in and use the location of the header-name token in this 556 // case. 557 for (Module *ModCheck = Mod; ModCheck; ModCheck = ModCheck->Parent) 558 IdentifierLocs.push_back(SourceLocation()); 559 } else if (getLangOpts().CPlusPlusModules && !Mod->Parent) { 560 // A single identifier for the whole name. 561 IdentifierLocs.push_back(Path[0].second); 562 } else { 563 Module *ModCheck = Mod; 564 for (unsigned I = 0, N = Path.size(); I != N; ++I) { 565 // If we've run out of module parents, just drop the remaining 566 // identifiers. We need the length to be consistent. 567 if (!ModCheck) 568 break; 569 ModCheck = ModCheck->Parent; 570 571 IdentifierLocs.push_back(Path[I].second); 572 } 573 } 574 575 ImportDecl *Import = ImportDecl::Create(Context, CurContext, StartLoc, 576 Mod, IdentifierLocs); 577 CurContext->addDecl(Import); 578 579 // Sequence initialization of the imported module before that of the current 580 // module, if any. 581 if (!ModuleScopes.empty()) 582 Context.addModuleInitializer(ModuleScopes.back().Module, Import); 583 584 // A module (partition) implementation unit shall not be exported. 585 if (getLangOpts().CPlusPlusModules && ExportLoc.isValid() && 586 Mod->Kind == Module::ModuleKind::ModulePartitionImplementation) { 587 Diag(ExportLoc, diag::err_export_partition_impl) 588 << SourceRange(ExportLoc, Path.back().second); 589 } else if (!ModuleScopes.empty() && 590 (ModuleScopes.back().ModuleInterface || 591 (getLangOpts().CPlusPlusModules && 592 ModuleScopes.back().Module->isGlobalModule()))) { 593 assert((!ModuleScopes.back().Module->isGlobalModule() || 594 Mod->Kind == Module::ModuleKind::ModuleHeaderUnit) && 595 "should only be importing a header unit into the GMF"); 596 // Re-export the module if the imported module is exported. 597 // Note that we don't need to add re-exported module to Imports field 598 // since `Exports` implies the module is imported already. 599 if (ExportLoc.isValid() || getEnclosingExportDecl(Import)) 600 getCurrentModule()->Exports.emplace_back(Mod, false); 601 else 602 getCurrentModule()->Imports.insert(Mod); 603 } else if (ExportLoc.isValid()) { 604 // [module.interface]p1: 605 // An export-declaration shall inhabit a namespace scope and appear in the 606 // purview of a module interface unit. 607 Diag(ExportLoc, diag::err_export_not_in_module_interface) 608 << (!ModuleScopes.empty() && 609 !ModuleScopes.back().ImplicitGlobalModuleFragment); 610 } 611 612 // In some cases we need to know if an entity was present in a directly- 613 // imported module (as opposed to a transitive import). This avoids 614 // searching both Imports and Exports. 615 DirectModuleImports.insert(Mod); 616 617 return Import; 618 } 619 620 void Sema::ActOnModuleInclude(SourceLocation DirectiveLoc, Module *Mod) { 621 checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext, true); 622 BuildModuleInclude(DirectiveLoc, Mod); 623 } 624 625 void Sema::BuildModuleInclude(SourceLocation DirectiveLoc, Module *Mod) { 626 // Determine whether we're in the #include buffer for a module. The #includes 627 // in that buffer do not qualify as module imports; they're just an 628 // implementation detail of us building the module. 629 // 630 // FIXME: Should we even get ActOnModuleInclude calls for those? 631 bool IsInModuleIncludes = 632 TUKind == TU_Module && 633 getSourceManager().isWrittenInMainFile(DirectiveLoc); 634 635 bool ShouldAddImport = !IsInModuleIncludes; 636 637 // If this module import was due to an inclusion directive, create an 638 // implicit import declaration to capture it in the AST. 639 if (ShouldAddImport) { 640 TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl(); 641 ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU, 642 DirectiveLoc, Mod, 643 DirectiveLoc); 644 if (!ModuleScopes.empty()) 645 Context.addModuleInitializer(ModuleScopes.back().Module, ImportD); 646 TU->addDecl(ImportD); 647 Consumer.HandleImplicitImportDecl(ImportD); 648 } 649 650 getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, DirectiveLoc); 651 VisibleModules.setVisible(Mod, DirectiveLoc); 652 653 if (getLangOpts().isCompilingModule()) { 654 Module *ThisModule = PP.getHeaderSearchInfo().lookupModule( 655 getLangOpts().CurrentModule, DirectiveLoc, false, false); 656 (void)ThisModule; 657 assert(ThisModule && "was expecting a module if building one"); 658 } 659 } 660 661 void Sema::ActOnModuleBegin(SourceLocation DirectiveLoc, Module *Mod) { 662 checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext, true); 663 664 ModuleScopes.push_back({}); 665 ModuleScopes.back().Module = Mod; 666 if (getLangOpts().ModulesLocalVisibility) 667 ModuleScopes.back().OuterVisibleModules = std::move(VisibleModules); 668 669 VisibleModules.setVisible(Mod, DirectiveLoc); 670 671 // The enclosing context is now part of this module. 672 // FIXME: Consider creating a child DeclContext to hold the entities 673 // lexically within the module. 674 if (getLangOpts().trackLocalOwningModule()) { 675 for (auto *DC = CurContext; DC; DC = DC->getLexicalParent()) { 676 cast<Decl>(DC)->setModuleOwnershipKind( 677 getLangOpts().ModulesLocalVisibility 678 ? Decl::ModuleOwnershipKind::VisibleWhenImported 679 : Decl::ModuleOwnershipKind::Visible); 680 cast<Decl>(DC)->setLocalOwningModule(Mod); 681 } 682 } 683 } 684 685 void Sema::ActOnModuleEnd(SourceLocation EomLoc, Module *Mod) { 686 if (getLangOpts().ModulesLocalVisibility) { 687 VisibleModules = std::move(ModuleScopes.back().OuterVisibleModules); 688 // Leaving a module hides namespace names, so our visible namespace cache 689 // is now out of date. 690 VisibleNamespaceCache.clear(); 691 } 692 693 assert(!ModuleScopes.empty() && ModuleScopes.back().Module == Mod && 694 "left the wrong module scope"); 695 ModuleScopes.pop_back(); 696 697 // We got to the end of processing a local module. Create an 698 // ImportDecl as we would for an imported module. 699 FileID File = getSourceManager().getFileID(EomLoc); 700 SourceLocation DirectiveLoc; 701 if (EomLoc == getSourceManager().getLocForEndOfFile(File)) { 702 // We reached the end of a #included module header. Use the #include loc. 703 assert(File != getSourceManager().getMainFileID() && 704 "end of submodule in main source file"); 705 DirectiveLoc = getSourceManager().getIncludeLoc(File); 706 } else { 707 // We reached an EOM pragma. Use the pragma location. 708 DirectiveLoc = EomLoc; 709 } 710 BuildModuleInclude(DirectiveLoc, Mod); 711 712 // Any further declarations are in whatever module we returned to. 713 if (getLangOpts().trackLocalOwningModule()) { 714 // The parser guarantees that this is the same context that we entered 715 // the module within. 716 for (auto *DC = CurContext; DC; DC = DC->getLexicalParent()) { 717 cast<Decl>(DC)->setLocalOwningModule(getCurrentModule()); 718 if (!getCurrentModule()) 719 cast<Decl>(DC)->setModuleOwnershipKind( 720 Decl::ModuleOwnershipKind::Unowned); 721 } 722 } 723 } 724 725 void Sema::createImplicitModuleImportForErrorRecovery(SourceLocation Loc, 726 Module *Mod) { 727 // Bail if we're not allowed to implicitly import a module here. 728 if (isSFINAEContext() || !getLangOpts().ModulesErrorRecovery || 729 VisibleModules.isVisible(Mod)) 730 return; 731 732 // Create the implicit import declaration. 733 TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl(); 734 ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU, 735 Loc, Mod, Loc); 736 TU->addDecl(ImportD); 737 Consumer.HandleImplicitImportDecl(ImportD); 738 739 // Make the module visible. 740 getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, Loc); 741 VisibleModules.setVisible(Mod, Loc); 742 } 743 744 /// We have parsed the start of an export declaration, including the '{' 745 /// (if present). 746 Decl *Sema::ActOnStartExportDecl(Scope *S, SourceLocation ExportLoc, 747 SourceLocation LBraceLoc) { 748 ExportDecl *D = ExportDecl::Create(Context, CurContext, ExportLoc); 749 750 // Set this temporarily so we know the export-declaration was braced. 751 D->setRBraceLoc(LBraceLoc); 752 753 CurContext->addDecl(D); 754 PushDeclContext(S, D); 755 756 // C++2a [module.interface]p1: 757 // An export-declaration shall appear only [...] in the purview of a module 758 // interface unit. An export-declaration shall not appear directly or 759 // indirectly within [...] a private-module-fragment. 760 if (!isCurrentModulePurview()) { 761 Diag(ExportLoc, diag::err_export_not_in_module_interface) << 0; 762 D->setInvalidDecl(); 763 return D; 764 } else if (!ModuleScopes.back().ModuleInterface) { 765 Diag(ExportLoc, diag::err_export_not_in_module_interface) << 1; 766 Diag(ModuleScopes.back().BeginLoc, 767 diag::note_not_module_interface_add_export) 768 << FixItHint::CreateInsertion(ModuleScopes.back().BeginLoc, "export "); 769 D->setInvalidDecl(); 770 return D; 771 } else if (ModuleScopes.back().Module->Kind == 772 Module::PrivateModuleFragment) { 773 Diag(ExportLoc, diag::err_export_in_private_module_fragment); 774 Diag(ModuleScopes.back().BeginLoc, diag::note_private_module_fragment); 775 D->setInvalidDecl(); 776 return D; 777 } 778 779 for (const DeclContext *DC = CurContext; DC; DC = DC->getLexicalParent()) { 780 if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) { 781 // An export-declaration shall not appear directly or indirectly within 782 // an unnamed namespace [...] 783 if (ND->isAnonymousNamespace()) { 784 Diag(ExportLoc, diag::err_export_within_anonymous_namespace); 785 Diag(ND->getLocation(), diag::note_anonymous_namespace); 786 // Don't diagnose internal-linkage declarations in this region. 787 D->setInvalidDecl(); 788 return D; 789 } 790 791 // A declaration is exported if it is [...] a namespace-definition 792 // that contains an exported declaration. 793 // 794 // Defer exporting the namespace until after we leave it, in order to 795 // avoid marking all subsequent declarations in the namespace as exported. 796 if (!DeferredExportedNamespaces.insert(ND).second) 797 break; 798 } 799 } 800 801 // [...] its declaration or declaration-seq shall not contain an 802 // export-declaration. 803 if (auto *ED = getEnclosingExportDecl(D)) { 804 Diag(ExportLoc, diag::err_export_within_export); 805 if (ED->hasBraces()) 806 Diag(ED->getLocation(), diag::note_export); 807 D->setInvalidDecl(); 808 return D; 809 } 810 811 D->setModuleOwnershipKind(Decl::ModuleOwnershipKind::VisibleWhenImported); 812 return D; 813 } 814 815 static bool checkExportedDeclContext(Sema &S, DeclContext *DC, 816 SourceLocation BlockStart); 817 818 namespace { 819 enum class UnnamedDeclKind { 820 Empty, 821 StaticAssert, 822 Asm, 823 UsingDirective, 824 Namespace, 825 Context 826 }; 827 } 828 829 static llvm::Optional<UnnamedDeclKind> getUnnamedDeclKind(Decl *D) { 830 if (isa<EmptyDecl>(D)) 831 return UnnamedDeclKind::Empty; 832 if (isa<StaticAssertDecl>(D)) 833 return UnnamedDeclKind::StaticAssert; 834 if (isa<FileScopeAsmDecl>(D)) 835 return UnnamedDeclKind::Asm; 836 if (isa<UsingDirectiveDecl>(D)) 837 return UnnamedDeclKind::UsingDirective; 838 // Everything else either introduces one or more names or is ill-formed. 839 return std::nullopt; 840 } 841 842 unsigned getUnnamedDeclDiag(UnnamedDeclKind UDK, bool InBlock) { 843 switch (UDK) { 844 case UnnamedDeclKind::Empty: 845 case UnnamedDeclKind::StaticAssert: 846 // Allow empty-declarations and static_asserts in an export block as an 847 // extension. 848 return InBlock ? diag::ext_export_no_name_block : diag::err_export_no_name; 849 850 case UnnamedDeclKind::UsingDirective: 851 // Allow exporting using-directives as an extension. 852 return diag::ext_export_using_directive; 853 854 case UnnamedDeclKind::Namespace: 855 // Anonymous namespace with no content. 856 return diag::introduces_no_names; 857 858 case UnnamedDeclKind::Context: 859 // Allow exporting DeclContexts that transitively contain no declarations 860 // as an extension. 861 return diag::ext_export_no_names; 862 863 case UnnamedDeclKind::Asm: 864 return diag::err_export_no_name; 865 } 866 llvm_unreachable("unknown kind"); 867 } 868 869 static void diagExportedUnnamedDecl(Sema &S, UnnamedDeclKind UDK, Decl *D, 870 SourceLocation BlockStart) { 871 S.Diag(D->getLocation(), getUnnamedDeclDiag(UDK, BlockStart.isValid())) 872 << (unsigned)UDK; 873 if (BlockStart.isValid()) 874 S.Diag(BlockStart, diag::note_export); 875 } 876 877 /// Check that it's valid to export \p D. 878 static bool checkExportedDecl(Sema &S, Decl *D, SourceLocation BlockStart) { 879 // C++2a [module.interface]p3: 880 // An exported declaration shall declare at least one name 881 if (auto UDK = getUnnamedDeclKind(D)) 882 diagExportedUnnamedDecl(S, *UDK, D, BlockStart); 883 884 // [...] shall not declare a name with internal linkage. 885 bool HasName = false; 886 if (auto *ND = dyn_cast<NamedDecl>(D)) { 887 // Don't diagnose anonymous union objects; we'll diagnose their members 888 // instead. 889 HasName = (bool)ND->getDeclName(); 890 if (HasName && ND->getFormalLinkage() == InternalLinkage) { 891 S.Diag(ND->getLocation(), diag::err_export_internal) << ND; 892 if (BlockStart.isValid()) 893 S.Diag(BlockStart, diag::note_export); 894 } 895 } 896 897 // C++2a [module.interface]p5: 898 // all entities to which all of the using-declarators ultimately refer 899 // shall have been introduced with a name having external linkage 900 if (auto *USD = dyn_cast<UsingShadowDecl>(D)) { 901 NamedDecl *Target = USD->getUnderlyingDecl(); 902 Linkage Lk = Target->getFormalLinkage(); 903 if (Lk == InternalLinkage || Lk == ModuleLinkage) { 904 S.Diag(USD->getLocation(), diag::err_export_using_internal) 905 << (Lk == InternalLinkage ? 0 : 1) << Target; 906 S.Diag(Target->getLocation(), diag::note_using_decl_target); 907 if (BlockStart.isValid()) 908 S.Diag(BlockStart, diag::note_export); 909 } 910 } 911 912 // Recurse into namespace-scope DeclContexts. (Only namespace-scope 913 // declarations are exported.). 914 if (auto *DC = dyn_cast<DeclContext>(D)) { 915 if (isa<NamespaceDecl>(D) && DC->decls().empty()) { 916 if (!HasName) 917 // We don't allow an empty anonymous namespace (we don't allow decls 918 // in them either, but that's handled in the recursion). 919 diagExportedUnnamedDecl(S, UnnamedDeclKind::Namespace, D, BlockStart); 920 // We allow an empty named namespace decl. 921 } else if (DC->getRedeclContext()->isFileContext() && !isa<EnumDecl>(D)) 922 return checkExportedDeclContext(S, DC, BlockStart); 923 } 924 return false; 925 } 926 927 /// Check that it's valid to export all the declarations in \p DC. 928 static bool checkExportedDeclContext(Sema &S, DeclContext *DC, 929 SourceLocation BlockStart) { 930 bool AllUnnamed = true; 931 for (auto *D : DC->decls()) 932 AllUnnamed &= checkExportedDecl(S, D, BlockStart); 933 return AllUnnamed; 934 } 935 936 /// Complete the definition of an export declaration. 937 Decl *Sema::ActOnFinishExportDecl(Scope *S, Decl *D, SourceLocation RBraceLoc) { 938 auto *ED = cast<ExportDecl>(D); 939 if (RBraceLoc.isValid()) 940 ED->setRBraceLoc(RBraceLoc); 941 942 PopDeclContext(); 943 944 if (!D->isInvalidDecl()) { 945 SourceLocation BlockStart = 946 ED->hasBraces() ? ED->getBeginLoc() : SourceLocation(); 947 for (auto *Child : ED->decls()) { 948 if (checkExportedDecl(*this, Child, BlockStart)) { 949 // If a top-level child is a linkage-spec declaration, it might contain 950 // no declarations (transitively), in which case it's ill-formed. 951 diagExportedUnnamedDecl(*this, UnnamedDeclKind::Context, Child, 952 BlockStart); 953 } 954 if (auto *FD = dyn_cast<FunctionDecl>(Child)) { 955 // [dcl.inline]/7 956 // If an inline function or variable that is attached to a named module 957 // is declared in a definition domain, it shall be defined in that 958 // domain. 959 // So, if the current declaration does not have a definition, we must 960 // check at the end of the TU (or when the PMF starts) to see that we 961 // have a definition at that point. 962 if (FD->isInlineSpecified() && !FD->isDefined()) 963 PendingInlineFuncDecls.insert(FD); 964 } 965 } 966 } 967 968 return D; 969 } 970 971 Module *Sema::PushGlobalModuleFragment(SourceLocation BeginLoc, 972 bool IsImplicit) { 973 // We shouldn't create new global module fragment if there is already 974 // one. 975 if (!GlobalModuleFragment) { 976 ModuleMap &Map = PP.getHeaderSearchInfo().getModuleMap(); 977 GlobalModuleFragment = Map.createGlobalModuleFragmentForModuleUnit( 978 BeginLoc, getCurrentModule()); 979 } 980 981 assert(GlobalModuleFragment && "module creation should not fail"); 982 983 // Enter the scope of the global module. 984 ModuleScopes.push_back({BeginLoc, GlobalModuleFragment, 985 /*ModuleInterface=*/false, 986 /*IsPartition=*/false, 987 /*ImplicitGlobalModuleFragment=*/IsImplicit, 988 /*OuterVisibleModules=*/{}}); 989 VisibleModules.setVisible(GlobalModuleFragment, BeginLoc); 990 991 return GlobalModuleFragment; 992 } 993 994 void Sema::PopGlobalModuleFragment() { 995 assert(!ModuleScopes.empty() && getCurrentModule()->isGlobalModule() && 996 "left the wrong module scope, which is not global module fragment"); 997 ModuleScopes.pop_back(); 998 } 999 1000 bool Sema::isModuleUnitOfCurrentTU(const Module *M) const { 1001 assert(M); 1002 1003 Module *CurrentModuleUnit = getCurrentModule(); 1004 1005 // If we are not in a module currently, M must not be the module unit of 1006 // current TU. 1007 if (!CurrentModuleUnit) 1008 return false; 1009 1010 return M->isSubModuleOf(CurrentModuleUnit->getTopLevelModule()); 1011 } 1012