1 //===--- SemaModule.cpp - Semantic Analysis for Modules -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for modules (C++ modules syntax, 10 // Objective-C modules syntax, and Clang header modules). 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/AST/ASTConsumer.h" 15 #include "clang/Lex/HeaderSearch.h" 16 #include "clang/Lex/Preprocessor.h" 17 #include "clang/Sema/SemaInternal.h" 18 #include <optional> 19 20 using namespace clang; 21 using namespace sema; 22 23 static void checkModuleImportContext(Sema &S, Module *M, 24 SourceLocation ImportLoc, DeclContext *DC, 25 bool FromInclude = false) { 26 SourceLocation ExternCLoc; 27 28 if (auto *LSD = dyn_cast<LinkageSpecDecl>(DC)) { 29 switch (LSD->getLanguage()) { 30 case LinkageSpecDecl::lang_c: 31 if (ExternCLoc.isInvalid()) 32 ExternCLoc = LSD->getBeginLoc(); 33 break; 34 case LinkageSpecDecl::lang_cxx: 35 break; 36 } 37 DC = LSD->getParent(); 38 } 39 40 while (isa<LinkageSpecDecl>(DC) || isa<ExportDecl>(DC)) 41 DC = DC->getParent(); 42 43 if (!isa<TranslationUnitDecl>(DC)) { 44 S.Diag(ImportLoc, (FromInclude && S.isModuleVisible(M)) 45 ? diag::ext_module_import_not_at_top_level_noop 46 : diag::err_module_import_not_at_top_level_fatal) 47 << M->getFullModuleName() << DC; 48 S.Diag(cast<Decl>(DC)->getBeginLoc(), 49 diag::note_module_import_not_at_top_level) 50 << DC; 51 } else if (!M->IsExternC && ExternCLoc.isValid()) { 52 S.Diag(ImportLoc, diag::ext_module_import_in_extern_c) 53 << M->getFullModuleName(); 54 S.Diag(ExternCLoc, diag::note_extern_c_begins_here); 55 } 56 } 57 58 // We represent the primary and partition names as 'Paths' which are sections 59 // of the hierarchical access path for a clang module. However for C++20 60 // the periods in a name are just another character, and we will need to 61 // flatten them into a string. 62 static std::string stringFromPath(ModuleIdPath Path) { 63 std::string Name; 64 if (Path.empty()) 65 return Name; 66 67 for (auto &Piece : Path) { 68 if (!Name.empty()) 69 Name += "."; 70 Name += Piece.first->getName(); 71 } 72 return Name; 73 } 74 75 Sema::DeclGroupPtrTy 76 Sema::ActOnGlobalModuleFragmentDecl(SourceLocation ModuleLoc) { 77 // We start in the global module; 78 Module *GlobalModule = 79 PushGlobalModuleFragment(ModuleLoc); 80 81 // All declarations created from now on are owned by the global module. 82 auto *TU = Context.getTranslationUnitDecl(); 83 // [module.global.frag]p2 84 // A global-module-fragment specifies the contents of the global module 85 // fragment for a module unit. The global module fragment can be used to 86 // provide declarations that are attached to the global module and usable 87 // within the module unit. 88 // 89 // So the declations in the global module shouldn't be visible by default. 90 TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ReachableWhenImported); 91 TU->setLocalOwningModule(GlobalModule); 92 93 // FIXME: Consider creating an explicit representation of this declaration. 94 return nullptr; 95 } 96 97 void Sema::HandleStartOfHeaderUnit() { 98 assert(getLangOpts().CPlusPlusModules && 99 "Header units are only valid for C++20 modules"); 100 SourceLocation StartOfTU = 101 SourceMgr.getLocForStartOfFile(SourceMgr.getMainFileID()); 102 103 StringRef HUName = getLangOpts().CurrentModule; 104 if (HUName.empty()) { 105 HUName = SourceMgr.getFileEntryForID(SourceMgr.getMainFileID())->getName(); 106 const_cast<LangOptions &>(getLangOpts()).CurrentModule = HUName.str(); 107 } 108 109 // TODO: Make the C++20 header lookup independent. 110 // When the input is pre-processed source, we need a file ref to the original 111 // file for the header map. 112 auto F = SourceMgr.getFileManager().getOptionalFileRef(HUName); 113 // For the sake of error recovery (if someone has moved the original header 114 // after creating the pre-processed output) fall back to obtaining the file 115 // ref for the input file, which must be present. 116 if (!F) 117 F = SourceMgr.getFileEntryRefForID(SourceMgr.getMainFileID()); 118 assert(F && "failed to find the header unit source?"); 119 Module::Header H{HUName.str(), HUName.str(), *F}; 120 auto &Map = PP.getHeaderSearchInfo().getModuleMap(); 121 Module *Mod = Map.createHeaderUnit(StartOfTU, HUName, H); 122 assert(Mod && "module creation should not fail"); 123 ModuleScopes.push_back({}); // No GMF 124 ModuleScopes.back().BeginLoc = StartOfTU; 125 ModuleScopes.back().Module = Mod; 126 ModuleScopes.back().ModuleInterface = true; 127 VisibleModules.setVisible(Mod, StartOfTU); 128 129 // From now on, we have an owning module for all declarations we see. 130 // All of these are implicitly exported. 131 auto *TU = Context.getTranslationUnitDecl(); 132 TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::Visible); 133 TU->setLocalOwningModule(Mod); 134 } 135 136 /// Tests whether the given identifier is reserved as a module name and 137 /// diagnoses if it is. Returns true if a diagnostic is emitted and false 138 /// otherwise. 139 static bool DiagReservedModuleName(Sema &S, const IdentifierInfo *II, 140 SourceLocation Loc) { 141 enum { 142 Valid = -1, 143 Invalid = 0, 144 Reserved = 1, 145 } Reason = Valid; 146 147 if (II->isStr("module") || II->isStr("import")) 148 Reason = Invalid; 149 else if (II->isReserved(S.getLangOpts()) != 150 ReservedIdentifierStatus::NotReserved) 151 Reason = Reserved; 152 153 // If the identifier is reserved (not invalid) but is in a system header, 154 // we do not diagnose (because we expect system headers to use reserved 155 // identifiers). 156 if (Reason == Reserved && S.getSourceManager().isInSystemHeader(Loc)) 157 Reason = Valid; 158 159 if (Reason != Valid) { 160 S.Diag(Loc, diag::err_invalid_module_name) << II << (int)Reason; 161 return true; 162 } 163 return false; 164 } 165 166 Sema::DeclGroupPtrTy 167 Sema::ActOnModuleDecl(SourceLocation StartLoc, SourceLocation ModuleLoc, 168 ModuleDeclKind MDK, ModuleIdPath Path, 169 ModuleIdPath Partition, ModuleImportState &ImportState) { 170 assert(getLangOpts().CPlusPlusModules && 171 "should only have module decl in standard C++ modules"); 172 173 bool IsFirstDecl = ImportState == ModuleImportState::FirstDecl; 174 bool SeenGMF = ImportState == ModuleImportState::GlobalFragment; 175 // If any of the steps here fail, we count that as invalidating C++20 176 // module state; 177 ImportState = ModuleImportState::NotACXX20Module; 178 179 bool IsPartition = !Partition.empty(); 180 if (IsPartition) 181 switch (MDK) { 182 case ModuleDeclKind::Implementation: 183 MDK = ModuleDeclKind::PartitionImplementation; 184 break; 185 case ModuleDeclKind::Interface: 186 MDK = ModuleDeclKind::PartitionInterface; 187 break; 188 default: 189 llvm_unreachable("how did we get a partition type set?"); 190 } 191 192 // A (non-partition) module implementation unit requires that we are not 193 // compiling a module of any kind. A partition implementation emits an 194 // interface (and the AST for the implementation), which will subsequently 195 // be consumed to emit a binary. 196 // A module interface unit requires that we are not compiling a module map. 197 switch (getLangOpts().getCompilingModule()) { 198 case LangOptions::CMK_None: 199 // It's OK to compile a module interface as a normal translation unit. 200 break; 201 202 case LangOptions::CMK_ModuleInterface: 203 if (MDK != ModuleDeclKind::Implementation) 204 break; 205 206 // We were asked to compile a module interface unit but this is a module 207 // implementation unit. 208 Diag(ModuleLoc, diag::err_module_interface_implementation_mismatch) 209 << FixItHint::CreateInsertion(ModuleLoc, "export "); 210 MDK = ModuleDeclKind::Interface; 211 break; 212 213 case LangOptions::CMK_ModuleMap: 214 Diag(ModuleLoc, diag::err_module_decl_in_module_map_module); 215 return nullptr; 216 217 case LangOptions::CMK_HeaderUnit: 218 Diag(ModuleLoc, diag::err_module_decl_in_header_unit); 219 return nullptr; 220 } 221 222 assert(ModuleScopes.size() <= 1 && "expected to be at global module scope"); 223 224 // FIXME: Most of this work should be done by the preprocessor rather than 225 // here, in order to support macro import. 226 227 // Only one module-declaration is permitted per source file. 228 if (isCurrentModulePurview()) { 229 Diag(ModuleLoc, diag::err_module_redeclaration); 230 Diag(VisibleModules.getImportLoc(ModuleScopes.back().Module), 231 diag::note_prev_module_declaration); 232 return nullptr; 233 } 234 235 assert((!getLangOpts().CPlusPlusModules || 236 SeenGMF == (bool)this->TheGlobalModuleFragment) && 237 "mismatched global module state"); 238 239 // In C++20, the module-declaration must be the first declaration if there 240 // is no global module fragment. 241 if (getLangOpts().CPlusPlusModules && !IsFirstDecl && !SeenGMF) { 242 Diag(ModuleLoc, diag::err_module_decl_not_at_start); 243 SourceLocation BeginLoc = 244 ModuleScopes.empty() 245 ? SourceMgr.getLocForStartOfFile(SourceMgr.getMainFileID()) 246 : ModuleScopes.back().BeginLoc; 247 if (BeginLoc.isValid()) { 248 Diag(BeginLoc, diag::note_global_module_introducer_missing) 249 << FixItHint::CreateInsertion(BeginLoc, "module;\n"); 250 } 251 } 252 253 // C++2b [module.unit]p1: ... The identifiers module and import shall not 254 // appear as identifiers in a module-name or module-partition. All 255 // module-names either beginning with an identifier consisting of std 256 // followed by zero or more digits or containing a reserved identifier 257 // ([lex.name]) are reserved and shall not be specified in a 258 // module-declaration; no diagnostic is required. 259 260 // Test the first part of the path to see if it's std[0-9]+ but allow the 261 // name in a system header. 262 StringRef FirstComponentName = Path[0].first->getName(); 263 if (!getSourceManager().isInSystemHeader(Path[0].second) && 264 (FirstComponentName == "std" || 265 (FirstComponentName.startswith("std") && 266 llvm::all_of(FirstComponentName.drop_front(3), &llvm::isDigit)))) { 267 Diag(Path[0].second, diag::err_invalid_module_name) 268 << Path[0].first << /*reserved*/ 1; 269 return nullptr; 270 } 271 272 // Then test all of the components in the path to see if any of them are 273 // using another kind of reserved or invalid identifier. 274 for (auto Part : Path) { 275 if (DiagReservedModuleName(*this, Part.first, Part.second)) 276 return nullptr; 277 } 278 279 // Flatten the dots in a module name. Unlike Clang's hierarchical module map 280 // modules, the dots here are just another character that can appear in a 281 // module name. 282 std::string ModuleName = stringFromPath(Path); 283 if (IsPartition) { 284 ModuleName += ":"; 285 ModuleName += stringFromPath(Partition); 286 } 287 // If a module name was explicitly specified on the command line, it must be 288 // correct. 289 if (!getLangOpts().CurrentModule.empty() && 290 getLangOpts().CurrentModule != ModuleName) { 291 Diag(Path.front().second, diag::err_current_module_name_mismatch) 292 << SourceRange(Path.front().second, IsPartition 293 ? Partition.back().second 294 : Path.back().second) 295 << getLangOpts().CurrentModule; 296 return nullptr; 297 } 298 const_cast<LangOptions&>(getLangOpts()).CurrentModule = ModuleName; 299 300 auto &Map = PP.getHeaderSearchInfo().getModuleMap(); 301 Module *Mod; 302 303 switch (MDK) { 304 case ModuleDeclKind::Interface: 305 case ModuleDeclKind::PartitionInterface: { 306 // We can't have parsed or imported a definition of this module or parsed a 307 // module map defining it already. 308 if (auto *M = Map.findModule(ModuleName)) { 309 Diag(Path[0].second, diag::err_module_redefinition) << ModuleName; 310 if (M->DefinitionLoc.isValid()) 311 Diag(M->DefinitionLoc, diag::note_prev_module_definition); 312 else if (OptionalFileEntryRef FE = M->getASTFile()) 313 Diag(M->DefinitionLoc, diag::note_prev_module_definition_from_ast_file) 314 << FE->getName(); 315 Mod = M; 316 break; 317 } 318 319 // Create a Module for the module that we're defining. 320 Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName); 321 if (MDK == ModuleDeclKind::PartitionInterface) 322 Mod->Kind = Module::ModulePartitionInterface; 323 assert(Mod && "module creation should not fail"); 324 break; 325 } 326 327 case ModuleDeclKind::Implementation: { 328 // C++20 A module-declaration that contains neither an export- 329 // keyword nor a module-partition implicitly imports the primary 330 // module interface unit of the module as if by a module-import- 331 // declaration. 332 std::pair<IdentifierInfo *, SourceLocation> ModuleNameLoc( 333 PP.getIdentifierInfo(ModuleName), Path[0].second); 334 335 // The module loader will assume we're trying to import the module that 336 // we're building if `LangOpts.CurrentModule` equals to 'ModuleName'. 337 // Change the value for `LangOpts.CurrentModule` temporarily to make the 338 // module loader work properly. 339 const_cast<LangOptions&>(getLangOpts()).CurrentModule = ""; 340 Mod = getModuleLoader().loadModule(ModuleLoc, {ModuleNameLoc}, 341 Module::AllVisible, 342 /*IsInclusionDirective=*/false); 343 const_cast<LangOptions&>(getLangOpts()).CurrentModule = ModuleName; 344 345 if (!Mod) { 346 Diag(ModuleLoc, diag::err_module_not_defined) << ModuleName; 347 // Create an empty module interface unit for error recovery. 348 Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName); 349 } 350 351 } break; 352 353 case ModuleDeclKind::PartitionImplementation: 354 // Create an interface, but note that it is an implementation 355 // unit. 356 Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName); 357 Mod->Kind = Module::ModulePartitionImplementation; 358 break; 359 } 360 361 if (!this->TheGlobalModuleFragment) { 362 ModuleScopes.push_back({}); 363 if (getLangOpts().ModulesLocalVisibility) 364 ModuleScopes.back().OuterVisibleModules = std::move(VisibleModules); 365 } else { 366 // We're done with the global module fragment now. 367 ActOnEndOfTranslationUnitFragment(TUFragmentKind::Global); 368 } 369 370 // Switch from the global module fragment (if any) to the named module. 371 ModuleScopes.back().BeginLoc = StartLoc; 372 ModuleScopes.back().Module = Mod; 373 ModuleScopes.back().ModuleInterface = MDK != ModuleDeclKind::Implementation; 374 VisibleModules.setVisible(Mod, ModuleLoc); 375 376 // From now on, we have an owning module for all declarations we see. 377 // In C++20 modules, those declaration would be reachable when imported 378 // unless explicitily exported. 379 // Otherwise, those declarations are module-private unless explicitly 380 // exported. 381 auto *TU = Context.getTranslationUnitDecl(); 382 TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ReachableWhenImported); 383 TU->setLocalOwningModule(Mod); 384 385 // We are in the module purview, but before any other (non import) 386 // statements, so imports are allowed. 387 ImportState = ModuleImportState::ImportAllowed; 388 389 // For an implementation, We already made an implicit import (its interface). 390 // Make and return the import decl to be added to the current TU. 391 if (MDK == ModuleDeclKind::Implementation) { 392 // Make the import decl for the interface. 393 ImportDecl *Import = 394 ImportDecl::Create(Context, CurContext, ModuleLoc, Mod, Path[0].second); 395 // and return it to be added. 396 return ConvertDeclToDeclGroup(Import); 397 } 398 399 getASTContext().setNamedModuleForCodeGen(Mod); 400 401 // FIXME: Create a ModuleDecl. 402 return nullptr; 403 } 404 405 Sema::DeclGroupPtrTy 406 Sema::ActOnPrivateModuleFragmentDecl(SourceLocation ModuleLoc, 407 SourceLocation PrivateLoc) { 408 // C++20 [basic.link]/2: 409 // A private-module-fragment shall appear only in a primary module 410 // interface unit. 411 switch (ModuleScopes.empty() ? Module::ExplicitGlobalModuleFragment 412 : ModuleScopes.back().Module->Kind) { 413 case Module::ModuleMapModule: 414 case Module::ExplicitGlobalModuleFragment: 415 case Module::ImplicitGlobalModuleFragment: 416 case Module::ModulePartitionImplementation: 417 case Module::ModulePartitionInterface: 418 case Module::ModuleHeaderUnit: 419 Diag(PrivateLoc, diag::err_private_module_fragment_not_module); 420 return nullptr; 421 422 case Module::PrivateModuleFragment: 423 Diag(PrivateLoc, diag::err_private_module_fragment_redefined); 424 Diag(ModuleScopes.back().BeginLoc, diag::note_previous_definition); 425 return nullptr; 426 427 case Module::ModuleInterfaceUnit: 428 break; 429 } 430 431 if (!ModuleScopes.back().ModuleInterface) { 432 Diag(PrivateLoc, diag::err_private_module_fragment_not_module_interface); 433 Diag(ModuleScopes.back().BeginLoc, 434 diag::note_not_module_interface_add_export) 435 << FixItHint::CreateInsertion(ModuleScopes.back().BeginLoc, "export "); 436 return nullptr; 437 } 438 439 // FIXME: Check this isn't a module interface partition. 440 // FIXME: Check that this translation unit does not import any partitions; 441 // such imports would violate [basic.link]/2's "shall be the only module unit" 442 // restriction. 443 444 // We've finished the public fragment of the translation unit. 445 ActOnEndOfTranslationUnitFragment(TUFragmentKind::Normal); 446 447 auto &Map = PP.getHeaderSearchInfo().getModuleMap(); 448 Module *PrivateModuleFragment = 449 Map.createPrivateModuleFragmentForInterfaceUnit( 450 ModuleScopes.back().Module, PrivateLoc); 451 assert(PrivateModuleFragment && "module creation should not fail"); 452 453 // Enter the scope of the private module fragment. 454 ModuleScopes.push_back({}); 455 ModuleScopes.back().BeginLoc = ModuleLoc; 456 ModuleScopes.back().Module = PrivateModuleFragment; 457 ModuleScopes.back().ModuleInterface = true; 458 VisibleModules.setVisible(PrivateModuleFragment, ModuleLoc); 459 460 // All declarations created from now on are scoped to the private module 461 // fragment (and are neither visible nor reachable in importers of the module 462 // interface). 463 auto *TU = Context.getTranslationUnitDecl(); 464 TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ModulePrivate); 465 TU->setLocalOwningModule(PrivateModuleFragment); 466 467 // FIXME: Consider creating an explicit representation of this declaration. 468 return nullptr; 469 } 470 471 DeclResult Sema::ActOnModuleImport(SourceLocation StartLoc, 472 SourceLocation ExportLoc, 473 SourceLocation ImportLoc, ModuleIdPath Path, 474 bool IsPartition) { 475 assert((!IsPartition || getLangOpts().CPlusPlusModules) && 476 "partition seen in non-C++20 code?"); 477 478 // For a C++20 module name, flatten into a single identifier with the source 479 // location of the first component. 480 std::pair<IdentifierInfo *, SourceLocation> ModuleNameLoc; 481 482 std::string ModuleName; 483 if (IsPartition) { 484 // We already checked that we are in a module purview in the parser. 485 assert(!ModuleScopes.empty() && "in a module purview, but no module?"); 486 Module *NamedMod = ModuleScopes.back().Module; 487 // If we are importing into a partition, find the owning named module, 488 // otherwise, the name of the importing named module. 489 ModuleName = NamedMod->getPrimaryModuleInterfaceName().str(); 490 ModuleName += ":"; 491 ModuleName += stringFromPath(Path); 492 ModuleNameLoc = {PP.getIdentifierInfo(ModuleName), Path[0].second}; 493 Path = ModuleIdPath(ModuleNameLoc); 494 } else if (getLangOpts().CPlusPlusModules) { 495 ModuleName = stringFromPath(Path); 496 ModuleNameLoc = {PP.getIdentifierInfo(ModuleName), Path[0].second}; 497 Path = ModuleIdPath(ModuleNameLoc); 498 } 499 500 // Diagnose self-import before attempting a load. 501 // [module.import]/9 502 // A module implementation unit of a module M that is not a module partition 503 // shall not contain a module-import-declaration nominating M. 504 // (for an implementation, the module interface is imported implicitly, 505 // but that's handled in the module decl code). 506 507 if (getLangOpts().CPlusPlusModules && isCurrentModulePurview() && 508 getCurrentModule()->Name == ModuleName) { 509 Diag(ImportLoc, diag::err_module_self_import_cxx20) 510 << ModuleName << !ModuleScopes.back().ModuleInterface; 511 return true; 512 } 513 514 Module *Mod = getModuleLoader().loadModule( 515 ImportLoc, Path, Module::AllVisible, /*IsInclusionDirective=*/false); 516 if (!Mod) 517 return true; 518 519 return ActOnModuleImport(StartLoc, ExportLoc, ImportLoc, Mod, Path); 520 } 521 522 /// Determine whether \p D is lexically within an export-declaration. 523 static const ExportDecl *getEnclosingExportDecl(const Decl *D) { 524 for (auto *DC = D->getLexicalDeclContext(); DC; DC = DC->getLexicalParent()) 525 if (auto *ED = dyn_cast<ExportDecl>(DC)) 526 return ED; 527 return nullptr; 528 } 529 530 DeclResult Sema::ActOnModuleImport(SourceLocation StartLoc, 531 SourceLocation ExportLoc, 532 SourceLocation ImportLoc, Module *Mod, 533 ModuleIdPath Path) { 534 VisibleModules.setVisible(Mod, ImportLoc); 535 536 checkModuleImportContext(*this, Mod, ImportLoc, CurContext); 537 538 // FIXME: we should support importing a submodule within a different submodule 539 // of the same top-level module. Until we do, make it an error rather than 540 // silently ignoring the import. 541 // FIXME: Should we warn on a redundant import of the current module? 542 if (Mod->isForBuilding(getLangOpts())) { 543 Diag(ImportLoc, getLangOpts().isCompilingModule() 544 ? diag::err_module_self_import 545 : diag::err_module_import_in_implementation) 546 << Mod->getFullModuleName() << getLangOpts().CurrentModule; 547 } 548 549 SmallVector<SourceLocation, 2> IdentifierLocs; 550 551 if (Path.empty()) { 552 // If this was a header import, pad out with dummy locations. 553 // FIXME: Pass in and use the location of the header-name token in this 554 // case. 555 for (Module *ModCheck = Mod; ModCheck; ModCheck = ModCheck->Parent) 556 IdentifierLocs.push_back(SourceLocation()); 557 } else if (getLangOpts().CPlusPlusModules && !Mod->Parent) { 558 // A single identifier for the whole name. 559 IdentifierLocs.push_back(Path[0].second); 560 } else { 561 Module *ModCheck = Mod; 562 for (unsigned I = 0, N = Path.size(); I != N; ++I) { 563 // If we've run out of module parents, just drop the remaining 564 // identifiers. We need the length to be consistent. 565 if (!ModCheck) 566 break; 567 ModCheck = ModCheck->Parent; 568 569 IdentifierLocs.push_back(Path[I].second); 570 } 571 } 572 573 ImportDecl *Import = ImportDecl::Create(Context, CurContext, StartLoc, 574 Mod, IdentifierLocs); 575 CurContext->addDecl(Import); 576 577 // Sequence initialization of the imported module before that of the current 578 // module, if any. 579 if (!ModuleScopes.empty()) 580 Context.addModuleInitializer(ModuleScopes.back().Module, Import); 581 582 // A module (partition) implementation unit shall not be exported. 583 if (getLangOpts().CPlusPlusModules && ExportLoc.isValid() && 584 Mod->Kind == Module::ModuleKind::ModulePartitionImplementation) { 585 Diag(ExportLoc, diag::err_export_partition_impl) 586 << SourceRange(ExportLoc, Path.back().second); 587 } else if (!ModuleScopes.empty() && 588 (ModuleScopes.back().ModuleInterface || 589 (getLangOpts().CPlusPlusModules && 590 ModuleScopes.back().Module->isGlobalModule()))) { 591 // Re-export the module if the imported module is exported. 592 // Note that we don't need to add re-exported module to Imports field 593 // since `Exports` implies the module is imported already. 594 if (ExportLoc.isValid() || getEnclosingExportDecl(Import)) 595 getCurrentModule()->Exports.emplace_back(Mod, false); 596 else 597 getCurrentModule()->Imports.insert(Mod); 598 } else if (ExportLoc.isValid()) { 599 // [module.interface]p1: 600 // An export-declaration shall inhabit a namespace scope and appear in the 601 // purview of a module interface unit. 602 Diag(ExportLoc, diag::err_export_not_in_module_interface); 603 } 604 605 return Import; 606 } 607 608 void Sema::ActOnModuleInclude(SourceLocation DirectiveLoc, Module *Mod) { 609 checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext, true); 610 BuildModuleInclude(DirectiveLoc, Mod); 611 } 612 613 void Sema::BuildModuleInclude(SourceLocation DirectiveLoc, Module *Mod) { 614 // Determine whether we're in the #include buffer for a module. The #includes 615 // in that buffer do not qualify as module imports; they're just an 616 // implementation detail of us building the module. 617 // 618 // FIXME: Should we even get ActOnModuleInclude calls for those? 619 bool IsInModuleIncludes = 620 TUKind == TU_Module && 621 getSourceManager().isWrittenInMainFile(DirectiveLoc); 622 623 bool ShouldAddImport = !IsInModuleIncludes; 624 625 // If this module import was due to an inclusion directive, create an 626 // implicit import declaration to capture it in the AST. 627 if (ShouldAddImport) { 628 TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl(); 629 ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU, 630 DirectiveLoc, Mod, 631 DirectiveLoc); 632 if (!ModuleScopes.empty()) 633 Context.addModuleInitializer(ModuleScopes.back().Module, ImportD); 634 TU->addDecl(ImportD); 635 Consumer.HandleImplicitImportDecl(ImportD); 636 } 637 638 getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, DirectiveLoc); 639 VisibleModules.setVisible(Mod, DirectiveLoc); 640 641 if (getLangOpts().isCompilingModule()) { 642 Module *ThisModule = PP.getHeaderSearchInfo().lookupModule( 643 getLangOpts().CurrentModule, DirectiveLoc, false, false); 644 (void)ThisModule; 645 assert(ThisModule && "was expecting a module if building one"); 646 } 647 } 648 649 void Sema::ActOnModuleBegin(SourceLocation DirectiveLoc, Module *Mod) { 650 checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext, true); 651 652 ModuleScopes.push_back({}); 653 ModuleScopes.back().Module = Mod; 654 if (getLangOpts().ModulesLocalVisibility) 655 ModuleScopes.back().OuterVisibleModules = std::move(VisibleModules); 656 657 VisibleModules.setVisible(Mod, DirectiveLoc); 658 659 // The enclosing context is now part of this module. 660 // FIXME: Consider creating a child DeclContext to hold the entities 661 // lexically within the module. 662 if (getLangOpts().trackLocalOwningModule()) { 663 for (auto *DC = CurContext; DC; DC = DC->getLexicalParent()) { 664 cast<Decl>(DC)->setModuleOwnershipKind( 665 getLangOpts().ModulesLocalVisibility 666 ? Decl::ModuleOwnershipKind::VisibleWhenImported 667 : Decl::ModuleOwnershipKind::Visible); 668 cast<Decl>(DC)->setLocalOwningModule(Mod); 669 } 670 } 671 } 672 673 void Sema::ActOnModuleEnd(SourceLocation EomLoc, Module *Mod) { 674 if (getLangOpts().ModulesLocalVisibility) { 675 VisibleModules = std::move(ModuleScopes.back().OuterVisibleModules); 676 // Leaving a module hides namespace names, so our visible namespace cache 677 // is now out of date. 678 VisibleNamespaceCache.clear(); 679 } 680 681 assert(!ModuleScopes.empty() && ModuleScopes.back().Module == Mod && 682 "left the wrong module scope"); 683 ModuleScopes.pop_back(); 684 685 // We got to the end of processing a local module. Create an 686 // ImportDecl as we would for an imported module. 687 FileID File = getSourceManager().getFileID(EomLoc); 688 SourceLocation DirectiveLoc; 689 if (EomLoc == getSourceManager().getLocForEndOfFile(File)) { 690 // We reached the end of a #included module header. Use the #include loc. 691 assert(File != getSourceManager().getMainFileID() && 692 "end of submodule in main source file"); 693 DirectiveLoc = getSourceManager().getIncludeLoc(File); 694 } else { 695 // We reached an EOM pragma. Use the pragma location. 696 DirectiveLoc = EomLoc; 697 } 698 BuildModuleInclude(DirectiveLoc, Mod); 699 700 // Any further declarations are in whatever module we returned to. 701 if (getLangOpts().trackLocalOwningModule()) { 702 // The parser guarantees that this is the same context that we entered 703 // the module within. 704 for (auto *DC = CurContext; DC; DC = DC->getLexicalParent()) { 705 cast<Decl>(DC)->setLocalOwningModule(getCurrentModule()); 706 if (!getCurrentModule()) 707 cast<Decl>(DC)->setModuleOwnershipKind( 708 Decl::ModuleOwnershipKind::Unowned); 709 } 710 } 711 } 712 713 void Sema::createImplicitModuleImportForErrorRecovery(SourceLocation Loc, 714 Module *Mod) { 715 // Bail if we're not allowed to implicitly import a module here. 716 if (isSFINAEContext() || !getLangOpts().ModulesErrorRecovery || 717 VisibleModules.isVisible(Mod)) 718 return; 719 720 // Create the implicit import declaration. 721 TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl(); 722 ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU, 723 Loc, Mod, Loc); 724 TU->addDecl(ImportD); 725 Consumer.HandleImplicitImportDecl(ImportD); 726 727 // Make the module visible. 728 getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, Loc); 729 VisibleModules.setVisible(Mod, Loc); 730 } 731 732 /// We have parsed the start of an export declaration, including the '{' 733 /// (if present). 734 Decl *Sema::ActOnStartExportDecl(Scope *S, SourceLocation ExportLoc, 735 SourceLocation LBraceLoc) { 736 ExportDecl *D = ExportDecl::Create(Context, CurContext, ExportLoc); 737 738 // Set this temporarily so we know the export-declaration was braced. 739 D->setRBraceLoc(LBraceLoc); 740 741 CurContext->addDecl(D); 742 PushDeclContext(S, D); 743 744 // C++2a [module.interface]p1: 745 // An export-declaration shall appear only [...] in the purview of a module 746 // interface unit. An export-declaration shall not appear directly or 747 // indirectly within [...] a private-module-fragment. 748 if (!isCurrentModulePurview()) { 749 Diag(ExportLoc, diag::err_export_not_in_module_interface) << 0; 750 D->setInvalidDecl(); 751 return D; 752 } else if (!ModuleScopes.back().ModuleInterface) { 753 Diag(ExportLoc, diag::err_export_not_in_module_interface) << 1; 754 Diag(ModuleScopes.back().BeginLoc, 755 diag::note_not_module_interface_add_export) 756 << FixItHint::CreateInsertion(ModuleScopes.back().BeginLoc, "export "); 757 D->setInvalidDecl(); 758 return D; 759 } else if (ModuleScopes.back().Module->Kind == 760 Module::PrivateModuleFragment) { 761 Diag(ExportLoc, diag::err_export_in_private_module_fragment); 762 Diag(ModuleScopes.back().BeginLoc, diag::note_private_module_fragment); 763 D->setInvalidDecl(); 764 return D; 765 } 766 767 for (const DeclContext *DC = CurContext; DC; DC = DC->getLexicalParent()) { 768 if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) { 769 // An export-declaration shall not appear directly or indirectly within 770 // an unnamed namespace [...] 771 if (ND->isAnonymousNamespace()) { 772 Diag(ExportLoc, diag::err_export_within_anonymous_namespace); 773 Diag(ND->getLocation(), diag::note_anonymous_namespace); 774 // Don't diagnose internal-linkage declarations in this region. 775 D->setInvalidDecl(); 776 return D; 777 } 778 779 // A declaration is exported if it is [...] a namespace-definition 780 // that contains an exported declaration. 781 // 782 // Defer exporting the namespace until after we leave it, in order to 783 // avoid marking all subsequent declarations in the namespace as exported. 784 if (!DeferredExportedNamespaces.insert(ND).second) 785 break; 786 } 787 } 788 789 // [...] its declaration or declaration-seq shall not contain an 790 // export-declaration. 791 if (auto *ED = getEnclosingExportDecl(D)) { 792 Diag(ExportLoc, diag::err_export_within_export); 793 if (ED->hasBraces()) 794 Diag(ED->getLocation(), diag::note_export); 795 D->setInvalidDecl(); 796 return D; 797 } 798 799 D->setModuleOwnershipKind(Decl::ModuleOwnershipKind::VisibleWhenImported); 800 return D; 801 } 802 803 static bool checkExportedDeclContext(Sema &S, DeclContext *DC, 804 SourceLocation BlockStart); 805 806 namespace { 807 enum class UnnamedDeclKind { 808 Empty, 809 StaticAssert, 810 Asm, 811 UsingDirective, 812 Namespace, 813 Context 814 }; 815 } 816 817 static std::optional<UnnamedDeclKind> getUnnamedDeclKind(Decl *D) { 818 if (isa<EmptyDecl>(D)) 819 return UnnamedDeclKind::Empty; 820 if (isa<StaticAssertDecl>(D)) 821 return UnnamedDeclKind::StaticAssert; 822 if (isa<FileScopeAsmDecl>(D)) 823 return UnnamedDeclKind::Asm; 824 if (isa<UsingDirectiveDecl>(D)) 825 return UnnamedDeclKind::UsingDirective; 826 // Everything else either introduces one or more names or is ill-formed. 827 return std::nullopt; 828 } 829 830 unsigned getUnnamedDeclDiag(UnnamedDeclKind UDK, bool InBlock) { 831 switch (UDK) { 832 case UnnamedDeclKind::Empty: 833 case UnnamedDeclKind::StaticAssert: 834 // Allow empty-declarations and static_asserts in an export block as an 835 // extension. 836 return InBlock ? diag::ext_export_no_name_block : diag::err_export_no_name; 837 838 case UnnamedDeclKind::UsingDirective: 839 // Allow exporting using-directives as an extension. 840 return diag::ext_export_using_directive; 841 842 case UnnamedDeclKind::Namespace: 843 // Anonymous namespace with no content. 844 return diag::introduces_no_names; 845 846 case UnnamedDeclKind::Context: 847 // Allow exporting DeclContexts that transitively contain no declarations 848 // as an extension. 849 return diag::ext_export_no_names; 850 851 case UnnamedDeclKind::Asm: 852 return diag::err_export_no_name; 853 } 854 llvm_unreachable("unknown kind"); 855 } 856 857 static void diagExportedUnnamedDecl(Sema &S, UnnamedDeclKind UDK, Decl *D, 858 SourceLocation BlockStart) { 859 S.Diag(D->getLocation(), getUnnamedDeclDiag(UDK, BlockStart.isValid())) 860 << (unsigned)UDK; 861 if (BlockStart.isValid()) 862 S.Diag(BlockStart, diag::note_export); 863 } 864 865 /// Check that it's valid to export \p D. 866 static bool checkExportedDecl(Sema &S, Decl *D, SourceLocation BlockStart) { 867 // C++2a [module.interface]p3: 868 // An exported declaration shall declare at least one name 869 if (auto UDK = getUnnamedDeclKind(D)) 870 diagExportedUnnamedDecl(S, *UDK, D, BlockStart); 871 872 // [...] shall not declare a name with internal linkage. 873 bool HasName = false; 874 if (auto *ND = dyn_cast<NamedDecl>(D)) { 875 // Don't diagnose anonymous union objects; we'll diagnose their members 876 // instead. 877 HasName = (bool)ND->getDeclName(); 878 if (HasName && ND->getFormalLinkage() == InternalLinkage) { 879 S.Diag(ND->getLocation(), diag::err_export_internal) << ND; 880 if (BlockStart.isValid()) 881 S.Diag(BlockStart, diag::note_export); 882 } 883 } 884 885 // C++2a [module.interface]p5: 886 // all entities to which all of the using-declarators ultimately refer 887 // shall have been introduced with a name having external linkage 888 if (auto *USD = dyn_cast<UsingShadowDecl>(D)) { 889 NamedDecl *Target = USD->getUnderlyingDecl(); 890 Linkage Lk = Target->getFormalLinkage(); 891 if (Lk == InternalLinkage || Lk == ModuleLinkage) { 892 S.Diag(USD->getLocation(), diag::err_export_using_internal) 893 << (Lk == InternalLinkage ? 0 : 1) << Target; 894 S.Diag(Target->getLocation(), diag::note_using_decl_target); 895 if (BlockStart.isValid()) 896 S.Diag(BlockStart, diag::note_export); 897 } 898 } 899 900 // Recurse into namespace-scope DeclContexts. (Only namespace-scope 901 // declarations are exported.). 902 if (auto *DC = dyn_cast<DeclContext>(D)) { 903 if (isa<NamespaceDecl>(D) && DC->decls().empty()) { 904 if (!HasName) 905 // We don't allow an empty anonymous namespace (we don't allow decls 906 // in them either, but that's handled in the recursion). 907 diagExportedUnnamedDecl(S, UnnamedDeclKind::Namespace, D, BlockStart); 908 // We allow an empty named namespace decl. 909 } else if (DC->getRedeclContext()->isFileContext() && !isa<EnumDecl>(D)) 910 return checkExportedDeclContext(S, DC, BlockStart); 911 } 912 return false; 913 } 914 915 /// Check that it's valid to export all the declarations in \p DC. 916 static bool checkExportedDeclContext(Sema &S, DeclContext *DC, 917 SourceLocation BlockStart) { 918 bool AllUnnamed = true; 919 for (auto *D : DC->decls()) 920 AllUnnamed &= checkExportedDecl(S, D, BlockStart); 921 return AllUnnamed; 922 } 923 924 /// Complete the definition of an export declaration. 925 Decl *Sema::ActOnFinishExportDecl(Scope *S, Decl *D, SourceLocation RBraceLoc) { 926 auto *ED = cast<ExportDecl>(D); 927 if (RBraceLoc.isValid()) 928 ED->setRBraceLoc(RBraceLoc); 929 930 PopDeclContext(); 931 932 if (!D->isInvalidDecl()) { 933 SourceLocation BlockStart = 934 ED->hasBraces() ? ED->getBeginLoc() : SourceLocation(); 935 for (auto *Child : ED->decls()) { 936 if (checkExportedDecl(*this, Child, BlockStart)) { 937 // If a top-level child is a linkage-spec declaration, it might contain 938 // no declarations (transitively), in which case it's ill-formed. 939 diagExportedUnnamedDecl(*this, UnnamedDeclKind::Context, Child, 940 BlockStart); 941 } 942 if (auto *FD = dyn_cast<FunctionDecl>(Child)) { 943 // [dcl.inline]/7 944 // If an inline function or variable that is attached to a named module 945 // is declared in a definition domain, it shall be defined in that 946 // domain. 947 // So, if the current declaration does not have a definition, we must 948 // check at the end of the TU (or when the PMF starts) to see that we 949 // have a definition at that point. 950 if (FD->isInlineSpecified() && !FD->isDefined()) 951 PendingInlineFuncDecls.insert(FD); 952 } 953 } 954 } 955 956 return D; 957 } 958 959 Module *Sema::PushGlobalModuleFragment(SourceLocation BeginLoc) { 960 // We shouldn't create new global module fragment if there is already 961 // one. 962 if (!TheGlobalModuleFragment) { 963 ModuleMap &Map = PP.getHeaderSearchInfo().getModuleMap(); 964 TheGlobalModuleFragment = Map.createGlobalModuleFragmentForModuleUnit( 965 BeginLoc, getCurrentModule()); 966 } 967 968 assert(TheGlobalModuleFragment && "module creation should not fail"); 969 970 // Enter the scope of the global module. 971 ModuleScopes.push_back({BeginLoc, TheGlobalModuleFragment, 972 /*ModuleInterface=*/false, 973 /*OuterVisibleModules=*/{}}); 974 VisibleModules.setVisible(TheGlobalModuleFragment, BeginLoc); 975 976 return TheGlobalModuleFragment; 977 } 978 979 void Sema::PopGlobalModuleFragment() { 980 assert(!ModuleScopes.empty() && 981 getCurrentModule()->isExplicitGlobalModule() && 982 "left the wrong module scope, which is not global module fragment"); 983 ModuleScopes.pop_back(); 984 } 985 986 Module *Sema::PushImplicitGlobalModuleFragment(SourceLocation BeginLoc, 987 bool IsExported) { 988 Module **M = IsExported ? &TheExportedImplicitGlobalModuleFragment 989 : &TheImplicitGlobalModuleFragment; 990 if (!*M) { 991 ModuleMap &Map = PP.getHeaderSearchInfo().getModuleMap(); 992 *M = Map.createImplicitGlobalModuleFragmentForModuleUnit( 993 BeginLoc, IsExported, getCurrentModule()); 994 } 995 assert(*M && "module creation should not fail"); 996 997 // Enter the scope of the global module. 998 ModuleScopes.push_back({BeginLoc, *M, 999 /*ModuleInterface=*/false, 1000 /*OuterVisibleModules=*/{}}); 1001 VisibleModules.setVisible(*M, BeginLoc); 1002 return *M; 1003 } 1004 1005 void Sema::PopImplicitGlobalModuleFragment() { 1006 assert(!ModuleScopes.empty() && 1007 getCurrentModule()->isImplicitGlobalModule() && 1008 "left the wrong module scope, which is not global module fragment"); 1009 ModuleScopes.pop_back(); 1010 } 1011 1012 bool Sema::isModuleUnitOfCurrentTU(const Module *M) const { 1013 assert(M); 1014 1015 Module *CurrentModuleUnit = getCurrentModule(); 1016 1017 // If we are not in a module currently, M must not be the module unit of 1018 // current TU. 1019 if (!CurrentModuleUnit) 1020 return false; 1021 1022 return M->isSubModuleOf(CurrentModuleUnit->getTopLevelModule()); 1023 } 1024