xref: /llvm-project/clang/lib/Sema/SemaFunctionEffects.cpp (revision 286f8423c5e26df0743e47931d840b6226ae6a8c)
1 //=== SemaFunctionEffects.cpp - Sema handling of function effects ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements Sema handling of function effects.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/Decl.h"
14 #include "clang/AST/DeclCXX.h"
15 #include "clang/AST/DynamicRecursiveASTVisitor.h"
16 #include "clang/AST/ExprObjC.h"
17 #include "clang/AST/Stmt.h"
18 #include "clang/AST/StmtObjC.h"
19 #include "clang/AST/Type.h"
20 #include "clang/Basic/SourceManager.h"
21 #include "clang/Sema/SemaInternal.h"
22 
23 #define DEBUG_TYPE "effectanalysis"
24 
25 using namespace clang;
26 
27 namespace {
28 
29 enum class ViolationID : uint8_t {
30   None = 0, // Sentinel for an empty Violation.
31   // These first 5 map to a %select{} in one of several FunctionEffects
32   // diagnostics, e.g. warn_func_effect_violation.
33   BaseDiagnosticIndex,
34   AllocatesMemory = BaseDiagnosticIndex,
35   ThrowsOrCatchesExceptions,
36   HasStaticLocalVariable,
37   AccessesThreadLocalVariable,
38   AccessesObjCMethodOrProperty,
39 
40   // These only apply to callees, where the analysis stops at the Decl.
41   DeclDisallowsInference,
42 
43   // These both apply to indirect calls. The difference is that sometimes
44   // we have an actual Decl (generally a variable) which is the function
45   // pointer being called, and sometimes, typically due to a cast, we only
46   // have an expression.
47   CallsDeclWithoutEffect,
48   CallsExprWithoutEffect,
49 };
50 
51 // Information about the AST context in which a violation was found, so
52 // that diagnostics can point to the correct source.
53 class ViolationSite {
54 public:
55   enum class Kind : uint8_t {
56     Default, // Function body.
57     MemberInitializer,
58     DefaultArgExpr
59   };
60 
61 private:
62   llvm::PointerIntPair<CXXDefaultArgExpr *, 2, Kind> Impl;
63 
64 public:
65   ViolationSite() = default;
66 
67   explicit ViolationSite(CXXDefaultArgExpr *E)
68       : Impl(E, Kind::DefaultArgExpr) {}
69 
70   Kind kind() const { return static_cast<Kind>(Impl.getInt()); }
71   CXXDefaultArgExpr *defaultArgExpr() const { return Impl.getPointer(); }
72 
73   void setKind(Kind K) { Impl.setPointerAndInt(nullptr, K); }
74 };
75 
76 // Represents a violation of the rules, potentially for the entire duration of
77 // the analysis phase, in order to refer to it when explaining why a caller has
78 // been made unsafe by a callee. Can be transformed into either a Diagnostic
79 // (warning or a note), depending on whether the violation pertains to a
80 // function failing to be verifed as holding an effect vs. a function failing to
81 // be inferred as holding that effect.
82 struct Violation {
83   FunctionEffect Effect;
84   std::optional<FunctionEffect>
85       CalleeEffectPreventingInference; // Only for certain IDs; can be nullopt.
86   ViolationID ID = ViolationID::None;
87   ViolationSite Site;
88   SourceLocation Loc;
89   const Decl *Callee =
90       nullptr; // Only valid for ViolationIDs Calls{Decl,Expr}WithoutEffect.
91 
92   Violation(FunctionEffect Effect, ViolationID ID, ViolationSite VS,
93             SourceLocation Loc, const Decl *Callee = nullptr,
94             std::optional<FunctionEffect> CalleeEffect = std::nullopt)
95       : Effect(Effect), CalleeEffectPreventingInference(CalleeEffect), ID(ID),
96         Site(VS), Loc(Loc), Callee(Callee) {}
97 
98   unsigned diagnosticSelectIndex() const {
99     return unsigned(ID) - unsigned(ViolationID::BaseDiagnosticIndex);
100   }
101 };
102 
103 enum class SpecialFuncType : uint8_t { None, OperatorNew, OperatorDelete };
104 enum class CallableType : uint8_t {
105   // Unknown: probably function pointer.
106   Unknown,
107   Function,
108   Virtual,
109   Block
110 };
111 
112 // Return whether a function's effects CAN be verified.
113 // The question of whether it SHOULD be verified is independent.
114 static bool functionIsVerifiable(const FunctionDecl *FD) {
115   if (FD->isTrivial()) {
116     // Otherwise `struct x { int a; };` would have an unverifiable default
117     // constructor.
118     return true;
119   }
120   return FD->hasBody();
121 }
122 
123 static bool isNoexcept(const FunctionDecl *FD) {
124   const auto *FPT = FD->getType()->getAs<FunctionProtoType>();
125   return FPT && (FPT->isNothrow() || FD->hasAttr<NoThrowAttr>());
126 }
127 
128 // This list is probably incomplete.
129 // FIXME: Investigate:
130 // __builtin_eh_return?
131 // __builtin_allow_runtime_check?
132 // __builtin_unwind_init and other similar things that sound exception-related.
133 // va_copy?
134 // coroutines?
135 static FunctionEffectKindSet getBuiltinFunctionEffects(unsigned BuiltinID) {
136   FunctionEffectKindSet Result;
137 
138   switch (BuiltinID) {
139   case 0:  // Not builtin.
140   default: // By default, builtins have no known effects.
141     break;
142 
143   // These allocate/deallocate heap memory.
144   case Builtin::ID::BI__builtin_calloc:
145   case Builtin::ID::BI__builtin_malloc:
146   case Builtin::ID::BI__builtin_realloc:
147   case Builtin::ID::BI__builtin_free:
148   case Builtin::ID::BI__builtin_operator_delete:
149   case Builtin::ID::BI__builtin_operator_new:
150   case Builtin::ID::BIaligned_alloc:
151   case Builtin::ID::BIcalloc:
152   case Builtin::ID::BImalloc:
153   case Builtin::ID::BImemalign:
154   case Builtin::ID::BIrealloc:
155   case Builtin::ID::BIfree:
156 
157   case Builtin::ID::BIfopen:
158   case Builtin::ID::BIpthread_create:
159   case Builtin::ID::BI_Block_object_dispose:
160     Result.insert(FunctionEffect(FunctionEffect::Kind::Allocating));
161     break;
162 
163   // These block in some other way than allocating memory.
164   // longjmp() and friends are presumed unsafe because they are the moral
165   // equivalent of throwing a C++ exception, which is unsafe.
166   case Builtin::ID::BIlongjmp:
167   case Builtin::ID::BI_longjmp:
168   case Builtin::ID::BIsiglongjmp:
169   case Builtin::ID::BI__builtin_longjmp:
170   case Builtin::ID::BIobjc_exception_throw:
171 
172   // Objective-C runtime.
173   case Builtin::ID::BIobjc_msgSend:
174   case Builtin::ID::BIobjc_msgSend_fpret:
175   case Builtin::ID::BIobjc_msgSend_fp2ret:
176   case Builtin::ID::BIobjc_msgSend_stret:
177   case Builtin::ID::BIobjc_msgSendSuper:
178   case Builtin::ID::BIobjc_getClass:
179   case Builtin::ID::BIobjc_getMetaClass:
180   case Builtin::ID::BIobjc_enumerationMutation:
181   case Builtin::ID::BIobjc_assign_ivar:
182   case Builtin::ID::BIobjc_assign_global:
183   case Builtin::ID::BIobjc_sync_enter:
184   case Builtin::ID::BIobjc_sync_exit:
185   case Builtin::ID::BINSLog:
186   case Builtin::ID::BINSLogv:
187 
188   // stdio.h
189   case Builtin::ID::BIfread:
190   case Builtin::ID::BIfwrite:
191 
192   // stdio.h: printf family.
193   case Builtin::ID::BIprintf:
194   case Builtin::ID::BI__builtin_printf:
195   case Builtin::ID::BIfprintf:
196   case Builtin::ID::BIsnprintf:
197   case Builtin::ID::BIsprintf:
198   case Builtin::ID::BIvprintf:
199   case Builtin::ID::BIvfprintf:
200   case Builtin::ID::BIvsnprintf:
201   case Builtin::ID::BIvsprintf:
202 
203   // stdio.h: scanf family.
204   case Builtin::ID::BIscanf:
205   case Builtin::ID::BIfscanf:
206   case Builtin::ID::BIsscanf:
207   case Builtin::ID::BIvscanf:
208   case Builtin::ID::BIvfscanf:
209   case Builtin::ID::BIvsscanf:
210     Result.insert(FunctionEffect(FunctionEffect::Kind::Blocking));
211     break;
212   }
213 
214   return Result;
215 }
216 
217 // Transitory, more extended information about a callable, which can be a
218 // function, block, or function pointer.
219 struct CallableInfo {
220   // CDecl holds the function's definition, if any.
221   // FunctionDecl if CallableType::Function or Virtual
222   // BlockDecl if CallableType::Block
223   const Decl *CDecl;
224 
225   // Remember whether the callable is a function, block, virtual method,
226   // or (presumed) function pointer.
227   CallableType CType = CallableType::Unknown;
228 
229   // Remember whether the callable is an operator new or delete function,
230   // so that calls to them are reported more meaningfully, as memory
231   // allocations.
232   SpecialFuncType FuncType = SpecialFuncType::None;
233 
234   // We inevitably want to know the callable's declared effects, so cache them.
235   FunctionEffectKindSet Effects;
236 
237   CallableInfo(const Decl &CD, SpecialFuncType FT = SpecialFuncType::None)
238       : CDecl(&CD), FuncType(FT) {
239     FunctionEffectsRef DeclEffects;
240     if (auto *FD = dyn_cast<FunctionDecl>(CDecl)) {
241       // Use the function's definition, if any.
242       if (const FunctionDecl *Def = FD->getDefinition())
243         CDecl = FD = Def;
244       CType = CallableType::Function;
245       if (auto *Method = dyn_cast<CXXMethodDecl>(FD);
246           Method && Method->isVirtual())
247         CType = CallableType::Virtual;
248       DeclEffects = FD->getFunctionEffects();
249     } else if (auto *BD = dyn_cast<BlockDecl>(CDecl)) {
250       CType = CallableType::Block;
251       DeclEffects = BD->getFunctionEffects();
252     } else if (auto *VD = dyn_cast<ValueDecl>(CDecl)) {
253       // ValueDecl is function, enum, or variable, so just look at its type.
254       DeclEffects = FunctionEffectsRef::get(VD->getType());
255     }
256     Effects = FunctionEffectKindSet(DeclEffects);
257   }
258 
259   CallableType type() const { return CType; }
260 
261   bool isCalledDirectly() const {
262     return CType == CallableType::Function || CType == CallableType::Block;
263   }
264 
265   bool isVerifiable() const {
266     switch (CType) {
267     case CallableType::Unknown:
268     case CallableType::Virtual:
269       return false;
270     case CallableType::Block:
271       return true;
272     case CallableType::Function:
273       return functionIsVerifiable(dyn_cast<FunctionDecl>(CDecl));
274     }
275     llvm_unreachable("undefined CallableType");
276   }
277 
278   /// Generate a name for logging and diagnostics.
279   std::string getNameForDiagnostic(Sema &S) const {
280     std::string Name;
281     llvm::raw_string_ostream OS(Name);
282 
283     if (auto *FD = dyn_cast<FunctionDecl>(CDecl))
284       FD->getNameForDiagnostic(OS, S.getPrintingPolicy(),
285                                /*Qualified=*/true);
286     else if (auto *BD = dyn_cast<BlockDecl>(CDecl))
287       OS << "(block " << BD->getBlockManglingNumber() << ")";
288     else if (auto *VD = dyn_cast<NamedDecl>(CDecl))
289       VD->printQualifiedName(OS);
290     return Name;
291   }
292 };
293 
294 // ----------
295 // Map effects to single Violations, to hold the first (of potentially many)
296 // violations pertaining to an effect, per function.
297 class EffectToViolationMap {
298   // Since we currently only have a tiny number of effects (typically no more
299   // than 1), use a SmallVector with an inline capacity of 1. Since it
300   // is often empty, use a unique_ptr to the SmallVector.
301   // Note that Violation itself contains a FunctionEffect which is the key.
302   // FIXME: Is there a way to simplify this using existing data structures?
303   using ImplVec = llvm::SmallVector<Violation, 1>;
304   std::unique_ptr<ImplVec> Impl;
305 
306 public:
307   // Insert a new Violation if we do not already have one for its effect.
308   void maybeInsert(const Violation &Viol) {
309     if (Impl == nullptr)
310       Impl = std::make_unique<ImplVec>();
311     else if (lookup(Viol.Effect) != nullptr)
312       return;
313 
314     Impl->push_back(Viol);
315   }
316 
317   const Violation *lookup(FunctionEffect Key) {
318     if (Impl == nullptr)
319       return nullptr;
320 
321     auto *Iter = llvm::find_if(
322         *Impl, [&](const auto &Item) { return Item.Effect == Key; });
323     return Iter != Impl->end() ? &*Iter : nullptr;
324   }
325 
326   size_t size() const { return Impl ? Impl->size() : 0; }
327 };
328 
329 // ----------
330 // State pertaining to a function whose AST is walked and whose effect analysis
331 // is dependent on a subsequent analysis of other functions.
332 class PendingFunctionAnalysis {
333   friend class CompleteFunctionAnalysis;
334 
335 public:
336   struct DirectCall {
337     const Decl *Callee;
338     SourceLocation CallLoc;
339     // Not all recursive calls are detected, just enough
340     // to break cycles.
341     bool Recursed = false;
342     ViolationSite VSite;
343 
344     DirectCall(const Decl *D, SourceLocation CallLoc, ViolationSite VSite)
345         : Callee(D), CallLoc(CallLoc), VSite(VSite) {}
346   };
347 
348   // We always have two disjoint sets of effects to verify:
349   // 1. Effects declared explicitly by this function.
350   // 2. All other inferrable effects needing verification.
351   FunctionEffectKindSet DeclaredVerifiableEffects;
352   FunctionEffectKindSet EffectsToInfer;
353 
354 private:
355   // Violations pertaining to the function's explicit effects.
356   SmallVector<Violation, 0> ViolationsForExplicitEffects;
357 
358   // Violations pertaining to other, non-explicit, inferrable effects.
359   EffectToViolationMap InferrableEffectToFirstViolation;
360 
361   // These unverified direct calls are what keeps the analysis "pending",
362   // until the callees can be verified.
363   SmallVector<DirectCall, 0> UnverifiedDirectCalls;
364 
365 public:
366   PendingFunctionAnalysis(Sema &S, const CallableInfo &CInfo,
367                           FunctionEffectKindSet AllInferrableEffectsToVerify)
368       : DeclaredVerifiableEffects(CInfo.Effects) {
369     // Check for effects we are not allowed to infer.
370     FunctionEffectKindSet InferrableEffects;
371 
372     for (FunctionEffect effect : AllInferrableEffectsToVerify) {
373       std::optional<FunctionEffect> ProblemCalleeEffect =
374           effect.effectProhibitingInference(*CInfo.CDecl, CInfo.Effects);
375       if (!ProblemCalleeEffect)
376         InferrableEffects.insert(effect);
377       else {
378         // Add a Violation for this effect if a caller were to
379         // try to infer it.
380         InferrableEffectToFirstViolation.maybeInsert(Violation(
381             effect, ViolationID::DeclDisallowsInference, ViolationSite{},
382             CInfo.CDecl->getLocation(), nullptr, ProblemCalleeEffect));
383       }
384     }
385     // InferrableEffects is now the set of inferrable effects which are not
386     // prohibited.
387     EffectsToInfer = FunctionEffectKindSet::difference(
388         InferrableEffects, DeclaredVerifiableEffects);
389   }
390 
391   // Hide the way that Violations for explicitly required effects vs. inferred
392   // ones are handled differently.
393   void checkAddViolation(bool Inferring, const Violation &NewViol) {
394     if (!Inferring)
395       ViolationsForExplicitEffects.push_back(NewViol);
396     else
397       InferrableEffectToFirstViolation.maybeInsert(NewViol);
398   }
399 
400   void addUnverifiedDirectCall(const Decl *D, SourceLocation CallLoc,
401                                ViolationSite VSite) {
402     UnverifiedDirectCalls.emplace_back(D, CallLoc, VSite);
403   }
404 
405   // Analysis is complete when there are no unverified direct calls.
406   bool isComplete() const { return UnverifiedDirectCalls.empty(); }
407 
408   const Violation *violationForInferrableEffect(FunctionEffect effect) {
409     return InferrableEffectToFirstViolation.lookup(effect);
410   }
411 
412   // Mutable because caller may need to set a DirectCall's Recursing flag.
413   MutableArrayRef<DirectCall> unverifiedCalls() {
414     assert(!isComplete());
415     return UnverifiedDirectCalls;
416   }
417 
418   ArrayRef<Violation> getSortedViolationsForExplicitEffects(SourceManager &SM) {
419     if (!ViolationsForExplicitEffects.empty())
420       llvm::sort(ViolationsForExplicitEffects,
421                  [&SM](const Violation &LHS, const Violation &RHS) {
422                    return SM.isBeforeInTranslationUnit(LHS.Loc, RHS.Loc);
423                  });
424     return ViolationsForExplicitEffects;
425   }
426 
427   void dump(Sema &SemaRef, llvm::raw_ostream &OS) const {
428     OS << "Pending: Declared ";
429     DeclaredVerifiableEffects.dump(OS);
430     OS << ", " << ViolationsForExplicitEffects.size() << " violations; ";
431     OS << " Infer ";
432     EffectsToInfer.dump(OS);
433     OS << ", " << InferrableEffectToFirstViolation.size() << " violations";
434     if (!UnverifiedDirectCalls.empty()) {
435       OS << "; Calls: ";
436       for (const DirectCall &Call : UnverifiedDirectCalls) {
437         CallableInfo CI(*Call.Callee);
438         OS << " " << CI.getNameForDiagnostic(SemaRef);
439       }
440     }
441     OS << "\n";
442   }
443 };
444 
445 // ----------
446 class CompleteFunctionAnalysis {
447   // Current size: 2 pointers
448 public:
449   // Has effects which are both the declared ones -- not to be inferred -- plus
450   // ones which have been successfully inferred. These are all considered
451   // "verified" for the purposes of callers; any issue with verifying declared
452   // effects has already been reported and is not the problem of any caller.
453   FunctionEffectKindSet VerifiedEffects;
454 
455 private:
456   // This is used to generate notes about failed inference.
457   EffectToViolationMap InferrableEffectToFirstViolation;
458 
459 public:
460   // The incoming Pending analysis is consumed (member(s) are moved-from).
461   CompleteFunctionAnalysis(ASTContext &Ctx, PendingFunctionAnalysis &&Pending,
462                            FunctionEffectKindSet DeclaredEffects,
463                            FunctionEffectKindSet AllInferrableEffectsToVerify)
464       : VerifiedEffects(DeclaredEffects) {
465     for (FunctionEffect effect : AllInferrableEffectsToVerify)
466       if (Pending.violationForInferrableEffect(effect) == nullptr)
467         VerifiedEffects.insert(effect);
468 
469     InferrableEffectToFirstViolation =
470         std::move(Pending.InferrableEffectToFirstViolation);
471   }
472 
473   const Violation *firstViolationForEffect(FunctionEffect Effect) {
474     return InferrableEffectToFirstViolation.lookup(Effect);
475   }
476 
477   void dump(llvm::raw_ostream &OS) const {
478     OS << "Complete: Verified ";
479     VerifiedEffects.dump(OS);
480     OS << "; Infer ";
481     OS << InferrableEffectToFirstViolation.size() << " violations\n";
482   }
483 };
484 
485 // ==========
486 class Analyzer {
487   Sema &S;
488 
489   // Subset of Sema.AllEffectsToVerify
490   FunctionEffectKindSet AllInferrableEffectsToVerify;
491 
492   using FuncAnalysisPtr =
493       llvm::PointerUnion<PendingFunctionAnalysis *, CompleteFunctionAnalysis *>;
494 
495   // Map all Decls analyzed to FuncAnalysisPtr. Pending state is larger
496   // than complete state, so use different objects to represent them.
497   // The state pointers are owned by the container.
498   class AnalysisMap : llvm::DenseMap<const Decl *, FuncAnalysisPtr> {
499     using Base = llvm::DenseMap<const Decl *, FuncAnalysisPtr>;
500 
501   public:
502     ~AnalysisMap();
503 
504     // Use non-public inheritance in order to maintain the invariant
505     // that lookups and insertions are via the canonical Decls.
506 
507     FuncAnalysisPtr lookup(const Decl *Key) const {
508       return Base::lookup(Key->getCanonicalDecl());
509     }
510 
511     FuncAnalysisPtr &operator[](const Decl *Key) {
512       return Base::operator[](Key->getCanonicalDecl());
513     }
514 
515     /// Shortcut for the case where we only care about completed analysis.
516     CompleteFunctionAnalysis *completedAnalysisForDecl(const Decl *D) const {
517       if (FuncAnalysisPtr AP = lookup(D);
518           isa_and_nonnull<CompleteFunctionAnalysis *>(AP))
519         return cast<CompleteFunctionAnalysis *>(AP);
520       return nullptr;
521     }
522 
523     void dump(Sema &SemaRef, llvm::raw_ostream &OS) {
524       OS << "\nAnalysisMap:\n";
525       for (const auto &item : *this) {
526         CallableInfo CI(*item.first);
527         const auto AP = item.second;
528         OS << item.first << " " << CI.getNameForDiagnostic(SemaRef) << " : ";
529         if (AP.isNull()) {
530           OS << "null\n";
531         } else if (auto *CFA = dyn_cast<CompleteFunctionAnalysis *>(AP)) {
532           OS << CFA << " ";
533           CFA->dump(OS);
534         } else if (auto *PFA = dyn_cast<PendingFunctionAnalysis *>(AP)) {
535           OS << PFA << " ";
536           PFA->dump(SemaRef, OS);
537         } else
538           llvm_unreachable("never");
539       }
540       OS << "---\n";
541     }
542   };
543   AnalysisMap DeclAnalysis;
544 
545 public:
546   Analyzer(Sema &S) : S(S) {}
547 
548   void run(const TranslationUnitDecl &TU) {
549     // Gather all of the effects to be verified to see what operations need to
550     // be checked, and to see which ones are inferrable.
551     for (FunctionEffect Effect : S.AllEffectsToVerify) {
552       const FunctionEffect::Flags Flags = Effect.flags();
553       if (Flags & FunctionEffect::FE_InferrableOnCallees)
554         AllInferrableEffectsToVerify.insert(Effect);
555     }
556     LLVM_DEBUG(llvm::dbgs() << "AllInferrableEffectsToVerify: ";
557                AllInferrableEffectsToVerify.dump(llvm::dbgs());
558                llvm::dbgs() << "\n";);
559 
560     // We can use DeclsWithEffectsToVerify as a stack for a
561     // depth-first traversal; there's no need for a second container. But first,
562     // reverse it, so when working from the end, Decls are verified in the order
563     // they are declared.
564     SmallVector<const Decl *> &VerificationQueue = S.DeclsWithEffectsToVerify;
565     std::reverse(VerificationQueue.begin(), VerificationQueue.end());
566 
567     while (!VerificationQueue.empty()) {
568       const Decl *D = VerificationQueue.back();
569       if (FuncAnalysisPtr AP = DeclAnalysis.lookup(D)) {
570         if (auto *Pending = dyn_cast<PendingFunctionAnalysis *>(AP)) {
571           // All children have been traversed; finish analysis.
572           finishPendingAnalysis(D, Pending);
573         }
574         VerificationQueue.pop_back();
575         continue;
576       }
577 
578       // Not previously visited; begin a new analysis for this Decl.
579       PendingFunctionAnalysis *Pending = verifyDecl(D);
580       if (Pending == nullptr) {
581         // Completed now.
582         VerificationQueue.pop_back();
583         continue;
584       }
585 
586       // Analysis remains pending because there are direct callees to be
587       // verified first. Push them onto the queue.
588       for (PendingFunctionAnalysis::DirectCall &Call :
589            Pending->unverifiedCalls()) {
590         FuncAnalysisPtr AP = DeclAnalysis.lookup(Call.Callee);
591         if (AP.isNull()) {
592           VerificationQueue.push_back(Call.Callee);
593           continue;
594         }
595 
596         // This indicates recursion (not necessarily direct). For the
597         // purposes of effect analysis, we can just ignore it since
598         // no effects forbid recursion.
599         assert(isa<PendingFunctionAnalysis *>(AP));
600         Call.Recursed = true;
601       }
602     }
603   }
604 
605 private:
606   // Verify a single Decl. Return the pending structure if that was the result,
607   // else null. This method must not recurse.
608   PendingFunctionAnalysis *verifyDecl(const Decl *D) {
609     CallableInfo CInfo(*D);
610     bool isExternC = false;
611 
612     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
613       isExternC = FD->getCanonicalDecl()->isExternCContext();
614 
615     // For C++, with non-extern "C" linkage only - if any of the Decl's declared
616     // effects forbid throwing (e.g. nonblocking) then the function should also
617     // be declared noexcept.
618     if (S.getLangOpts().CPlusPlus && !isExternC) {
619       for (FunctionEffect Effect : CInfo.Effects) {
620         if (!(Effect.flags() & FunctionEffect::FE_ExcludeThrow))
621           continue;
622 
623         bool IsNoexcept = false;
624         if (auto *FD = D->getAsFunction()) {
625           IsNoexcept = isNoexcept(FD);
626         } else if (auto *BD = dyn_cast<BlockDecl>(D)) {
627           if (auto *TSI = BD->getSignatureAsWritten()) {
628             auto *FPT = TSI->getType()->castAs<FunctionProtoType>();
629             IsNoexcept = FPT->isNothrow() || BD->hasAttr<NoThrowAttr>();
630           }
631         }
632         if (!IsNoexcept)
633           S.Diag(D->getBeginLoc(), diag::warn_perf_constraint_implies_noexcept)
634               << GetCallableDeclKind(D, nullptr) << Effect.name();
635         break;
636       }
637     }
638 
639     // Build a PendingFunctionAnalysis on the stack. If it turns out to be
640     // complete, we'll have avoided a heap allocation; if it's incomplete, it's
641     // a fairly trivial move to a heap-allocated object.
642     PendingFunctionAnalysis FAnalysis(S, CInfo, AllInferrableEffectsToVerify);
643 
644     LLVM_DEBUG(llvm::dbgs()
645                    << "\nVerifying " << CInfo.getNameForDiagnostic(S) << " ";
646                FAnalysis.dump(S, llvm::dbgs()););
647 
648     FunctionBodyASTVisitor Visitor(*this, FAnalysis, CInfo);
649 
650     Visitor.run();
651     if (FAnalysis.isComplete()) {
652       completeAnalysis(CInfo, std::move(FAnalysis));
653       return nullptr;
654     }
655     // Move the pending analysis to the heap and save it in the map.
656     PendingFunctionAnalysis *PendingPtr =
657         new PendingFunctionAnalysis(std::move(FAnalysis));
658     DeclAnalysis[D] = PendingPtr;
659     LLVM_DEBUG(llvm::dbgs() << "inserted pending " << PendingPtr << "\n";
660                DeclAnalysis.dump(S, llvm::dbgs()););
661     return PendingPtr;
662   }
663 
664   // Consume PendingFunctionAnalysis, create with it a CompleteFunctionAnalysis,
665   // inserted in the container.
666   void completeAnalysis(const CallableInfo &CInfo,
667                         PendingFunctionAnalysis &&Pending) {
668     if (ArrayRef<Violation> Viols =
669             Pending.getSortedViolationsForExplicitEffects(S.getSourceManager());
670         !Viols.empty())
671       emitDiagnostics(Viols, CInfo);
672 
673     CompleteFunctionAnalysis *CompletePtr = new CompleteFunctionAnalysis(
674         S.getASTContext(), std::move(Pending), CInfo.Effects,
675         AllInferrableEffectsToVerify);
676     DeclAnalysis[CInfo.CDecl] = CompletePtr;
677     LLVM_DEBUG(llvm::dbgs() << "inserted complete " << CompletePtr << "\n";
678                DeclAnalysis.dump(S, llvm::dbgs()););
679   }
680 
681   // Called after all direct calls requiring inference have been found -- or
682   // not. Repeats calls to FunctionBodyASTVisitor::followCall() but without
683   // the possibility of inference. Deletes Pending.
684   void finishPendingAnalysis(const Decl *D, PendingFunctionAnalysis *Pending) {
685     CallableInfo Caller(*D);
686     LLVM_DEBUG(llvm::dbgs() << "finishPendingAnalysis for "
687                             << Caller.getNameForDiagnostic(S) << " : ";
688                Pending->dump(S, llvm::dbgs()); llvm::dbgs() << "\n";);
689     for (const PendingFunctionAnalysis::DirectCall &Call :
690          Pending->unverifiedCalls()) {
691       if (Call.Recursed)
692         continue;
693 
694       CallableInfo Callee(*Call.Callee);
695       followCall(Caller, *Pending, Callee, Call.CallLoc,
696                  /*AssertNoFurtherInference=*/true, Call.VSite);
697     }
698     completeAnalysis(Caller, std::move(*Pending));
699     delete Pending;
700   }
701 
702   // Here we have a call to a Decl, either explicitly via a CallExpr or some
703   // other AST construct. PFA pertains to the caller.
704   void followCall(const CallableInfo &Caller, PendingFunctionAnalysis &PFA,
705                   const CallableInfo &Callee, SourceLocation CallLoc,
706                   bool AssertNoFurtherInference, ViolationSite VSite) {
707     const bool DirectCall = Callee.isCalledDirectly();
708 
709     // Initially, the declared effects; inferred effects will be added.
710     FunctionEffectKindSet CalleeEffects = Callee.Effects;
711 
712     bool IsInferencePossible = DirectCall;
713 
714     if (DirectCall)
715       if (CompleteFunctionAnalysis *CFA =
716               DeclAnalysis.completedAnalysisForDecl(Callee.CDecl)) {
717         // Combine declared effects with those which may have been inferred.
718         CalleeEffects.insert(CFA->VerifiedEffects);
719         IsInferencePossible = false; // We've already traversed it.
720       }
721 
722     if (AssertNoFurtherInference) {
723       assert(!IsInferencePossible);
724     }
725 
726     if (!Callee.isVerifiable())
727       IsInferencePossible = false;
728 
729     LLVM_DEBUG(llvm::dbgs()
730                    << "followCall from " << Caller.getNameForDiagnostic(S)
731                    << " to " << Callee.getNameForDiagnostic(S)
732                    << "; verifiable: " << Callee.isVerifiable() << "; callee ";
733                CalleeEffects.dump(llvm::dbgs()); llvm::dbgs() << "\n";
734                llvm::dbgs() << "  callee " << Callee.CDecl << " canonical "
735                             << Callee.CDecl->getCanonicalDecl() << "\n";);
736 
737     auto Check1Effect = [&](FunctionEffect Effect, bool Inferring) {
738       if (!Effect.shouldDiagnoseFunctionCall(DirectCall, CalleeEffects))
739         return;
740 
741       // If inference is not allowed, or the target is indirect (virtual
742       // method/function ptr?), generate a Violation now.
743       if (!IsInferencePossible ||
744           !(Effect.flags() & FunctionEffect::FE_InferrableOnCallees)) {
745         if (Callee.FuncType == SpecialFuncType::None)
746           PFA.checkAddViolation(Inferring,
747                                 {Effect, ViolationID::CallsDeclWithoutEffect,
748                                  VSite, CallLoc, Callee.CDecl});
749         else
750           PFA.checkAddViolation(
751               Inferring,
752               {Effect, ViolationID::AllocatesMemory, VSite, CallLoc});
753       } else {
754         // Inference is allowed and necessary; defer it.
755         PFA.addUnverifiedDirectCall(Callee.CDecl, CallLoc, VSite);
756       }
757     };
758 
759     for (FunctionEffect Effect : PFA.DeclaredVerifiableEffects)
760       Check1Effect(Effect, false);
761 
762     for (FunctionEffect Effect : PFA.EffectsToInfer)
763       Check1Effect(Effect, true);
764   }
765 
766   // Describe a callable Decl for a diagnostic.
767   // (Not an enum class because the value is always converted to an integer for
768   // use in a diagnostic.)
769   enum CallableDeclKind {
770     CDK_Function,
771     CDK_Constructor,
772     CDK_Destructor,
773     CDK_Lambda,
774     CDK_Block,
775     CDK_MemberInitializer,
776   };
777 
778   // Describe a call site or target using an enum mapping to a %select{}
779   // in a diagnostic, e.g. warn_func_effect_violation,
780   // warn_perf_constraint_implies_noexcept, and others.
781   static CallableDeclKind GetCallableDeclKind(const Decl *D,
782                                               const Violation *V) {
783     if (V != nullptr &&
784         V->Site.kind() == ViolationSite::Kind::MemberInitializer)
785       return CDK_MemberInitializer;
786     if (isa<BlockDecl>(D))
787       return CDK_Block;
788     if (auto *Method = dyn_cast<CXXMethodDecl>(D)) {
789       if (isa<CXXConstructorDecl>(D))
790         return CDK_Constructor;
791       if (isa<CXXDestructorDecl>(D))
792         return CDK_Destructor;
793       const CXXRecordDecl *Rec = Method->getParent();
794       if (Rec->isLambda())
795         return CDK_Lambda;
796     }
797     return CDK_Function;
798   };
799 
800   // Should only be called when function's analysis is determined to be
801   // complete.
802   void emitDiagnostics(ArrayRef<Violation> Viols, const CallableInfo &CInfo) {
803     if (Viols.empty())
804       return;
805 
806     auto MaybeAddTemplateNote = [&](const Decl *D) {
807       if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
808         while (FD != nullptr && FD->isTemplateInstantiation() &&
809                FD->getPointOfInstantiation().isValid()) {
810           S.Diag(FD->getPointOfInstantiation(),
811                  diag::note_func_effect_from_template);
812           FD = FD->getTemplateInstantiationPattern();
813         }
814       }
815     };
816 
817     // For note_func_effect_call_indirect.
818     enum { Indirect_VirtualMethod, Indirect_FunctionPtr };
819 
820     auto MaybeAddSiteContext = [&](const Decl *D, const Violation &V) {
821       // If a violation site is a member initializer, add a note pointing to
822       // the constructor which invoked it.
823       if (V.Site.kind() == ViolationSite::Kind::MemberInitializer) {
824         unsigned ImplicitCtor = 0;
825         if (auto *Ctor = dyn_cast<CXXConstructorDecl>(D);
826             Ctor && Ctor->isImplicit())
827           ImplicitCtor = 1;
828         S.Diag(D->getLocation(), diag::note_func_effect_in_constructor)
829             << ImplicitCtor;
830       }
831 
832       // If a violation site is a default argument expression, add a note
833       // pointing to the call site using the default argument.
834       else if (V.Site.kind() == ViolationSite::Kind::DefaultArgExpr)
835         S.Diag(V.Site.defaultArgExpr()->getUsedLocation(),
836                diag::note_in_evaluating_default_argument);
837     };
838 
839     // Top-level violations are warnings.
840     for (const Violation &Viol1 : Viols) {
841       StringRef effectName = Viol1.Effect.name();
842       switch (Viol1.ID) {
843       case ViolationID::None:
844       case ViolationID::DeclDisallowsInference: // Shouldn't happen
845                                                 // here.
846         llvm_unreachable("Unexpected violation kind");
847         break;
848       case ViolationID::AllocatesMemory:
849       case ViolationID::ThrowsOrCatchesExceptions:
850       case ViolationID::HasStaticLocalVariable:
851       case ViolationID::AccessesThreadLocalVariable:
852       case ViolationID::AccessesObjCMethodOrProperty:
853         S.Diag(Viol1.Loc, diag::warn_func_effect_violation)
854             << GetCallableDeclKind(CInfo.CDecl, &Viol1) << effectName
855             << Viol1.diagnosticSelectIndex();
856         MaybeAddSiteContext(CInfo.CDecl, Viol1);
857         MaybeAddTemplateNote(CInfo.CDecl);
858         break;
859       case ViolationID::CallsExprWithoutEffect:
860         S.Diag(Viol1.Loc, diag::warn_func_effect_calls_expr_without_effect)
861             << GetCallableDeclKind(CInfo.CDecl, &Viol1) << effectName;
862         MaybeAddSiteContext(CInfo.CDecl, Viol1);
863         MaybeAddTemplateNote(CInfo.CDecl);
864         break;
865 
866       case ViolationID::CallsDeclWithoutEffect: {
867         CallableInfo CalleeInfo(*Viol1.Callee);
868         std::string CalleeName = CalleeInfo.getNameForDiagnostic(S);
869 
870         S.Diag(Viol1.Loc, diag::warn_func_effect_calls_func_without_effect)
871             << GetCallableDeclKind(CInfo.CDecl, &Viol1) << effectName
872             << GetCallableDeclKind(CalleeInfo.CDecl, nullptr) << CalleeName;
873         MaybeAddSiteContext(CInfo.CDecl, Viol1);
874         MaybeAddTemplateNote(CInfo.CDecl);
875 
876         // Emit notes explaining the transitive chain of inferences: Why isn't
877         // the callee safe?
878         for (const Decl *Callee = Viol1.Callee; Callee != nullptr;) {
879           std::optional<CallableInfo> MaybeNextCallee;
880           CompleteFunctionAnalysis *Completed =
881               DeclAnalysis.completedAnalysisForDecl(CalleeInfo.CDecl);
882           if (Completed == nullptr) {
883             // No result - could be
884             // - non-inline and extern
885             // - indirect (virtual or through function pointer)
886             // - effect has been explicitly disclaimed (e.g. "blocking")
887 
888             CallableType CType = CalleeInfo.type();
889             if (CType == CallableType::Virtual)
890               S.Diag(Callee->getLocation(),
891                      diag::note_func_effect_call_indirect)
892                   << Indirect_VirtualMethod << effectName;
893             else if (CType == CallableType::Unknown)
894               S.Diag(Callee->getLocation(),
895                      diag::note_func_effect_call_indirect)
896                   << Indirect_FunctionPtr << effectName;
897             else if (CalleeInfo.Effects.contains(Viol1.Effect.oppositeKind()))
898               S.Diag(Callee->getLocation(),
899                      diag::note_func_effect_call_disallows_inference)
900                   << GetCallableDeclKind(CInfo.CDecl, nullptr) << effectName
901                   << FunctionEffect(Viol1.Effect.oppositeKind()).name();
902             else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Callee);
903                      FD == nullptr || FD->getBuiltinID() == 0) {
904               // A builtin callee generally doesn't have a useful source
905               // location at which to insert a note.
906               S.Diag(Callee->getLocation(), diag::note_func_effect_call_extern)
907                   << effectName;
908             }
909             break;
910           }
911           const Violation *PtrViol2 =
912               Completed->firstViolationForEffect(Viol1.Effect);
913           if (PtrViol2 == nullptr)
914             break;
915 
916           const Violation &Viol2 = *PtrViol2;
917           switch (Viol2.ID) {
918           case ViolationID::None:
919             llvm_unreachable("Unexpected violation kind");
920             break;
921           case ViolationID::DeclDisallowsInference:
922             S.Diag(Viol2.Loc, diag::note_func_effect_call_disallows_inference)
923                 << GetCallableDeclKind(CalleeInfo.CDecl, nullptr) << effectName
924                 << Viol2.CalleeEffectPreventingInference->name();
925             break;
926           case ViolationID::CallsExprWithoutEffect:
927             S.Diag(Viol2.Loc, diag::note_func_effect_call_indirect)
928                 << Indirect_FunctionPtr << effectName;
929             break;
930           case ViolationID::AllocatesMemory:
931           case ViolationID::ThrowsOrCatchesExceptions:
932           case ViolationID::HasStaticLocalVariable:
933           case ViolationID::AccessesThreadLocalVariable:
934           case ViolationID::AccessesObjCMethodOrProperty:
935             S.Diag(Viol2.Loc, diag::note_func_effect_violation)
936                 << GetCallableDeclKind(CalleeInfo.CDecl, &Viol2) << effectName
937                 << Viol2.diagnosticSelectIndex();
938             MaybeAddSiteContext(CalleeInfo.CDecl, Viol2);
939             break;
940           case ViolationID::CallsDeclWithoutEffect:
941             MaybeNextCallee.emplace(*Viol2.Callee);
942             S.Diag(Viol2.Loc, diag::note_func_effect_calls_func_without_effect)
943                 << GetCallableDeclKind(CalleeInfo.CDecl, &Viol2) << effectName
944                 << GetCallableDeclKind(Viol2.Callee, nullptr)
945                 << MaybeNextCallee->getNameForDiagnostic(S);
946             break;
947           }
948           MaybeAddTemplateNote(Callee);
949           Callee = Viol2.Callee;
950           if (MaybeNextCallee) {
951             CalleeInfo = *MaybeNextCallee;
952             CalleeName = CalleeInfo.getNameForDiagnostic(S);
953           }
954         }
955       } break;
956       }
957     }
958   }
959 
960   // ----------
961   // This AST visitor is used to traverse the body of a function during effect
962   // verification. This happens in 2 situations:
963   //  [1] The function has declared effects which need to be validated.
964   //  [2] The function has not explicitly declared an effect in question, and is
965   //      being checked for implicit conformance.
966   //
967   // Violations are always routed to a PendingFunctionAnalysis.
968   struct FunctionBodyASTVisitor : DynamicRecursiveASTVisitor {
969     Analyzer &Outer;
970     PendingFunctionAnalysis &CurrentFunction;
971     CallableInfo &CurrentCaller;
972     ViolationSite VSite;
973     const Expr *TrailingRequiresClause = nullptr;
974     const Expr *NoexceptExpr = nullptr;
975 
976     FunctionBodyASTVisitor(Analyzer &Outer,
977                            PendingFunctionAnalysis &CurrentFunction,
978                            CallableInfo &CurrentCaller)
979         : Outer(Outer), CurrentFunction(CurrentFunction),
980           CurrentCaller(CurrentCaller) {
981       ShouldVisitImplicitCode = true;
982       ShouldWalkTypesOfTypeLocs = false;
983     }
984 
985     // -- Entry point --
986     void run() {
987       // The target function may have implicit code paths beyond the
988       // body: member and base destructors. Visit these first.
989       if (auto *Dtor = dyn_cast<CXXDestructorDecl>(CurrentCaller.CDecl))
990         followDestructor(dyn_cast<CXXRecordDecl>(Dtor->getParent()), Dtor);
991 
992       if (auto *FD = dyn_cast<FunctionDecl>(CurrentCaller.CDecl)) {
993         TrailingRequiresClause = FD->getTrailingRequiresClause();
994 
995         // Note that FD->getType->getAs<FunctionProtoType>() can yield a
996         // noexcept Expr which has been boiled down to a constant expression.
997         // Going through the TypeSourceInfo obtains the actual expression which
998         // will be traversed as part of the function -- unless we capture it
999         // here and have TraverseStmt skip it.
1000         if (TypeSourceInfo *TSI = FD->getTypeSourceInfo()) {
1001           if (FunctionProtoTypeLoc TL =
1002                   TSI->getTypeLoc().getAs<FunctionProtoTypeLoc>())
1003             if (const FunctionProtoType *FPT = TL.getTypePtr())
1004               NoexceptExpr = FPT->getNoexceptExpr();
1005         }
1006       }
1007 
1008       // Do an AST traversal of the function/block body
1009       TraverseDecl(const_cast<Decl *>(CurrentCaller.CDecl));
1010     }
1011 
1012     // -- Methods implementing common logic --
1013 
1014     // Handle a language construct forbidden by some effects. Only effects whose
1015     // flags include the specified flag receive a violation. \p Flag describes
1016     // the construct.
1017     void diagnoseLanguageConstruct(FunctionEffect::FlagBit Flag,
1018                                    ViolationID VID, SourceLocation Loc,
1019                                    const Decl *Callee = nullptr) {
1020       // If there are any declared verifiable effects which forbid the construct
1021       // represented by the flag, store just one violation.
1022       for (FunctionEffect Effect : CurrentFunction.DeclaredVerifiableEffects) {
1023         if (Effect.flags() & Flag) {
1024           addViolation(/*inferring=*/false, Effect, VID, Loc, Callee);
1025           break;
1026         }
1027       }
1028       // For each inferred effect which forbids the construct, store a
1029       // violation, if we don't already have a violation for that effect.
1030       for (FunctionEffect Effect : CurrentFunction.EffectsToInfer)
1031         if (Effect.flags() & Flag)
1032           addViolation(/*inferring=*/true, Effect, VID, Loc, Callee);
1033     }
1034 
1035     void addViolation(bool Inferring, FunctionEffect Effect, ViolationID VID,
1036                       SourceLocation Loc, const Decl *Callee = nullptr) {
1037       CurrentFunction.checkAddViolation(
1038           Inferring, Violation(Effect, VID, VSite, Loc, Callee));
1039     }
1040 
1041     // Here we have a call to a Decl, either explicitly via a CallExpr or some
1042     // other AST construct. CallableInfo pertains to the callee.
1043     void followCall(CallableInfo &CI, SourceLocation CallLoc) {
1044       // Check for a call to a builtin function, whose effects are
1045       // handled specially.
1046       if (const auto *FD = dyn_cast<FunctionDecl>(CI.CDecl)) {
1047         if (unsigned BuiltinID = FD->getBuiltinID()) {
1048           CI.Effects = getBuiltinFunctionEffects(BuiltinID);
1049           if (CI.Effects.empty()) {
1050             // A builtin with no known effects is assumed safe.
1051             return;
1052           }
1053           // A builtin WITH effects doesn't get any special treatment for
1054           // being noreturn/noexcept, e.g. longjmp(), so we skip the check
1055           // below.
1056         } else {
1057           // If the callee is both `noreturn` and `noexcept`, it presumably
1058           // terminates. Ignore it for the purposes of effect analysis.
1059           // If not C++, `noreturn` alone is sufficient.
1060           if (FD->isNoReturn() &&
1061               (!Outer.S.getLangOpts().CPlusPlus || isNoexcept(FD)))
1062             return;
1063         }
1064       }
1065 
1066       Outer.followCall(CurrentCaller, CurrentFunction, CI, CallLoc,
1067                        /*AssertNoFurtherInference=*/false, VSite);
1068     }
1069 
1070     void checkIndirectCall(CallExpr *Call, QualType CalleeType) {
1071       FunctionEffectKindSet CalleeEffects;
1072       if (FunctionEffectsRef Effects = FunctionEffectsRef::get(CalleeType);
1073           !Effects.empty())
1074         CalleeEffects.insert(Effects);
1075 
1076       auto Check1Effect = [&](FunctionEffect Effect, bool Inferring) {
1077         if (Effect.shouldDiagnoseFunctionCall(
1078                 /*direct=*/false, CalleeEffects))
1079           addViolation(Inferring, Effect, ViolationID::CallsExprWithoutEffect,
1080                        Call->getBeginLoc());
1081       };
1082 
1083       for (FunctionEffect Effect : CurrentFunction.DeclaredVerifiableEffects)
1084         Check1Effect(Effect, false);
1085 
1086       for (FunctionEffect Effect : CurrentFunction.EffectsToInfer)
1087         Check1Effect(Effect, true);
1088     }
1089 
1090     // This destructor's body should be followed by the caller, but here we
1091     // follow the field and base destructors.
1092     void followDestructor(const CXXRecordDecl *Rec,
1093                           const CXXDestructorDecl *Dtor) {
1094       SourceLocation DtorLoc = Dtor->getLocation();
1095       for (const FieldDecl *Field : Rec->fields())
1096         followTypeDtor(Field->getType(), DtorLoc);
1097 
1098       if (const auto *Class = dyn_cast<CXXRecordDecl>(Rec))
1099         for (const CXXBaseSpecifier &Base : Class->bases())
1100           followTypeDtor(Base.getType(), DtorLoc);
1101     }
1102 
1103     void followTypeDtor(QualType QT, SourceLocation CallSite) {
1104       const Type *Ty = QT.getTypePtr();
1105       while (Ty->isArrayType()) {
1106         const ArrayType *Arr = Ty->getAsArrayTypeUnsafe();
1107         QT = Arr->getElementType();
1108         Ty = QT.getTypePtr();
1109       }
1110 
1111       if (Ty->isRecordType()) {
1112         if (const CXXRecordDecl *Class = Ty->getAsCXXRecordDecl()) {
1113           if (CXXDestructorDecl *Dtor = Class->getDestructor();
1114               Dtor && !Dtor->isDeleted()) {
1115             CallableInfo CI(*Dtor);
1116             followCall(CI, CallSite);
1117           }
1118         }
1119       }
1120     }
1121 
1122     // -- Methods for use of RecursiveASTVisitor --
1123 
1124     bool VisitCXXThrowExpr(CXXThrowExpr *Throw) override {
1125       diagnoseLanguageConstruct(FunctionEffect::FE_ExcludeThrow,
1126                                 ViolationID::ThrowsOrCatchesExceptions,
1127                                 Throw->getThrowLoc());
1128       return true;
1129     }
1130 
1131     bool VisitCXXCatchStmt(CXXCatchStmt *Catch) override {
1132       diagnoseLanguageConstruct(FunctionEffect::FE_ExcludeCatch,
1133                                 ViolationID::ThrowsOrCatchesExceptions,
1134                                 Catch->getCatchLoc());
1135       return true;
1136     }
1137 
1138     bool VisitObjCAtThrowStmt(ObjCAtThrowStmt *Throw) override {
1139       diagnoseLanguageConstruct(FunctionEffect::FE_ExcludeThrow,
1140                                 ViolationID::ThrowsOrCatchesExceptions,
1141                                 Throw->getThrowLoc());
1142       return true;
1143     }
1144 
1145     bool VisitObjCAtCatchStmt(ObjCAtCatchStmt *Catch) override {
1146       diagnoseLanguageConstruct(FunctionEffect::FE_ExcludeCatch,
1147                                 ViolationID::ThrowsOrCatchesExceptions,
1148                                 Catch->getAtCatchLoc());
1149       return true;
1150     }
1151 
1152     bool VisitObjCAtFinallyStmt(ObjCAtFinallyStmt *Finally) override {
1153       diagnoseLanguageConstruct(FunctionEffect::FE_ExcludeCatch,
1154                                 ViolationID::ThrowsOrCatchesExceptions,
1155                                 Finally->getAtFinallyLoc());
1156       return true;
1157     }
1158 
1159     bool VisitObjCMessageExpr(ObjCMessageExpr *Msg) override {
1160       diagnoseLanguageConstruct(FunctionEffect::FE_ExcludeObjCMessageSend,
1161                                 ViolationID::AccessesObjCMethodOrProperty,
1162                                 Msg->getBeginLoc());
1163       return true;
1164     }
1165 
1166     bool VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *ARP) override {
1167       // Under the hood, @autorelease (potentially?) allocates memory and
1168       // invokes ObjC methods. We don't currently have memory allocation as
1169       // a "language construct" but we do have ObjC messaging, so diagnose that.
1170       diagnoseLanguageConstruct(FunctionEffect::FE_ExcludeObjCMessageSend,
1171                                 ViolationID::AccessesObjCMethodOrProperty,
1172                                 ARP->getBeginLoc());
1173       return true;
1174     }
1175 
1176     bool VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *Sync) override {
1177       // Under the hood, this calls objc_sync_enter and objc_sync_exit, wrapped
1178       // in a @try/@finally block. Diagnose this generically as "ObjC
1179       // messaging".
1180       diagnoseLanguageConstruct(FunctionEffect::FE_ExcludeObjCMessageSend,
1181                                 ViolationID::AccessesObjCMethodOrProperty,
1182                                 Sync->getBeginLoc());
1183       return true;
1184     }
1185 
1186     bool VisitSEHExceptStmt(SEHExceptStmt *Exc) override {
1187       diagnoseLanguageConstruct(FunctionEffect::FE_ExcludeCatch,
1188                                 ViolationID::ThrowsOrCatchesExceptions,
1189                                 Exc->getExceptLoc());
1190       return true;
1191     }
1192 
1193     bool VisitCallExpr(CallExpr *Call) override {
1194       LLVM_DEBUG(llvm::dbgs()
1195                      << "VisitCallExpr : "
1196                      << Call->getBeginLoc().printToString(Outer.S.SourceMgr)
1197                      << "\n";);
1198 
1199       Expr *CalleeExpr = Call->getCallee();
1200       if (const Decl *Callee = CalleeExpr->getReferencedDeclOfCallee()) {
1201         CallableInfo CI(*Callee);
1202         followCall(CI, Call->getBeginLoc());
1203         return true;
1204       }
1205 
1206       if (isa<CXXPseudoDestructorExpr>(CalleeExpr)) {
1207         // Just destroying a scalar, fine.
1208         return true;
1209       }
1210 
1211       // No Decl, just an Expr. Just check based on its type.
1212       checkIndirectCall(Call, CalleeExpr->getType());
1213 
1214       return true;
1215     }
1216 
1217     bool VisitVarDecl(VarDecl *Var) override {
1218       LLVM_DEBUG(llvm::dbgs()
1219                      << "VisitVarDecl : "
1220                      << Var->getBeginLoc().printToString(Outer.S.SourceMgr)
1221                      << "\n";);
1222 
1223       if (Var->isStaticLocal())
1224         diagnoseLanguageConstruct(FunctionEffect::FE_ExcludeStaticLocalVars,
1225                                   ViolationID::HasStaticLocalVariable,
1226                                   Var->getLocation());
1227 
1228       const QualType::DestructionKind DK =
1229           Var->needsDestruction(Outer.S.getASTContext());
1230       if (DK == QualType::DK_cxx_destructor)
1231         followTypeDtor(Var->getType(), Var->getLocation());
1232       return true;
1233     }
1234 
1235     bool VisitCXXNewExpr(CXXNewExpr *New) override {
1236       // RecursiveASTVisitor does not visit the implicit call to operator new.
1237       if (FunctionDecl *FD = New->getOperatorNew()) {
1238         CallableInfo CI(*FD, SpecialFuncType::OperatorNew);
1239         followCall(CI, New->getBeginLoc());
1240       }
1241 
1242       // It's a bit excessive to check operator delete here, since it's
1243       // just a fallback for operator new followed by a failed constructor.
1244       // We could check it via New->getOperatorDelete().
1245 
1246       // It DOES however visit the called constructor
1247       return true;
1248     }
1249 
1250     bool VisitCXXDeleteExpr(CXXDeleteExpr *Delete) override {
1251       // RecursiveASTVisitor does not visit the implicit call to operator
1252       // delete.
1253       if (FunctionDecl *FD = Delete->getOperatorDelete()) {
1254         CallableInfo CI(*FD, SpecialFuncType::OperatorDelete);
1255         followCall(CI, Delete->getBeginLoc());
1256       }
1257 
1258       // It DOES however visit the called destructor
1259 
1260       return true;
1261     }
1262 
1263     bool VisitCXXConstructExpr(CXXConstructExpr *Construct) override {
1264       LLVM_DEBUG(llvm::dbgs() << "VisitCXXConstructExpr : "
1265                               << Construct->getBeginLoc().printToString(
1266                                      Outer.S.SourceMgr)
1267                               << "\n";);
1268 
1269       // RecursiveASTVisitor does not visit the implicit call to the
1270       // constructor.
1271       const CXXConstructorDecl *Ctor = Construct->getConstructor();
1272       CallableInfo CI(*Ctor);
1273       followCall(CI, Construct->getLocation());
1274 
1275       return true;
1276     }
1277 
1278     bool TraverseStmt(Stmt *Statement) override {
1279       // If this statement is a `requires` clause from the top-level function
1280       // being traversed, ignore it, since it's not generating runtime code.
1281       // We skip the traversal of lambdas (beyond their captures, see
1282       // TraverseLambdaExpr below), so just caching this from our constructor
1283       // should suffice.
1284       if (Statement != TrailingRequiresClause && Statement != NoexceptExpr)
1285         return DynamicRecursiveASTVisitor::TraverseStmt(Statement);
1286       return true;
1287     }
1288 
1289     bool TraverseConstructorInitializer(CXXCtorInitializer *Init) override {
1290       ViolationSite PrevVS = VSite;
1291       if (Init->isAnyMemberInitializer())
1292         VSite.setKind(ViolationSite::Kind::MemberInitializer);
1293       bool Result =
1294           DynamicRecursiveASTVisitor::TraverseConstructorInitializer(Init);
1295       VSite = PrevVS;
1296       return Result;
1297     }
1298 
1299     bool TraverseCXXDefaultArgExpr(CXXDefaultArgExpr *E) override {
1300       LLVM_DEBUG(llvm::dbgs()
1301                      << "TraverseCXXDefaultArgExpr : "
1302                      << E->getUsedLocation().printToString(Outer.S.SourceMgr)
1303                      << "\n";);
1304 
1305       ViolationSite PrevVS = VSite;
1306       if (VSite.kind() == ViolationSite::Kind::Default)
1307         VSite = ViolationSite{E};
1308 
1309       bool Result = DynamicRecursiveASTVisitor::TraverseCXXDefaultArgExpr(E);
1310       VSite = PrevVS;
1311       return Result;
1312     }
1313 
1314     bool TraverseLambdaExpr(LambdaExpr *Lambda) override {
1315       // We override this so as to be able to skip traversal of the lambda's
1316       // body. We have to explicitly traverse the captures. Why not return
1317       // false from shouldVisitLambdaBody()? Because we need to visit a lambda's
1318       // body when we are verifying the lambda itself; we only want to skip it
1319       // in the context of the outer function.
1320       for (unsigned I = 0, N = Lambda->capture_size(); I < N; ++I)
1321         TraverseLambdaCapture(Lambda, Lambda->capture_begin() + I,
1322                               Lambda->capture_init_begin()[I]);
1323 
1324       return true;
1325     }
1326 
1327     bool TraverseBlockExpr(BlockExpr * /*unused*/) override {
1328       // As with lambdas, don't traverse the block's body.
1329       // TODO: are the capture expressions (ctor call?) safe?
1330       return true;
1331     }
1332 
1333     bool VisitDeclRefExpr(DeclRefExpr *E) override {
1334       const ValueDecl *Val = E->getDecl();
1335       if (const auto *Var = dyn_cast<VarDecl>(Val)) {
1336         if (Var->getTLSKind() != VarDecl::TLS_None) {
1337           // At least on macOS, thread-local variables are initialized on
1338           // first access, including a heap allocation.
1339           diagnoseLanguageConstruct(FunctionEffect::FE_ExcludeThreadLocalVars,
1340                                     ViolationID::AccessesThreadLocalVariable,
1341                                     E->getLocation());
1342         }
1343       }
1344       return true;
1345     }
1346 
1347     bool TraverseGenericSelectionExpr(GenericSelectionExpr *Node) override {
1348       return TraverseStmt(Node->getResultExpr());
1349     }
1350     bool
1351     TraverseUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *Node) override {
1352       return true;
1353     }
1354 
1355     bool TraverseTypeOfExprTypeLoc(TypeOfExprTypeLoc Node) override {
1356       return true;
1357     }
1358 
1359     bool TraverseDecltypeTypeLoc(DecltypeTypeLoc Node) override { return true; }
1360 
1361     bool TraverseCXXNoexceptExpr(CXXNoexceptExpr *Node) override {
1362       return true;
1363     }
1364 
1365     bool TraverseCXXTypeidExpr(CXXTypeidExpr *Node) override { return true; }
1366 
1367     // Skip concept requirements since they don't generate code.
1368     bool TraverseConceptRequirement(concepts::Requirement *R) override {
1369       return true;
1370     }
1371   };
1372 };
1373 
1374 Analyzer::AnalysisMap::~AnalysisMap() {
1375   for (const auto &Item : *this) {
1376     FuncAnalysisPtr AP = Item.second;
1377     if (auto *PFA = dyn_cast<PendingFunctionAnalysis *>(AP))
1378       delete PFA;
1379     else
1380       delete cast<CompleteFunctionAnalysis *>(AP);
1381   }
1382 }
1383 
1384 } // anonymous namespace
1385 
1386 namespace clang {
1387 
1388 bool Sema::diagnoseConflictingFunctionEffect(
1389     const FunctionEffectsRef &FX, const FunctionEffectWithCondition &NewEC,
1390     SourceLocation NewAttrLoc) {
1391   // If the new effect has a condition, we can't detect conflicts until the
1392   // condition is resolved.
1393   if (NewEC.Cond.getCondition() != nullptr)
1394     return false;
1395 
1396   // Diagnose the new attribute as incompatible with a previous one.
1397   auto Incompatible = [&](const FunctionEffectWithCondition &PrevEC) {
1398     Diag(NewAttrLoc, diag::err_attributes_are_not_compatible)
1399         << ("'" + NewEC.description() + "'")
1400         << ("'" + PrevEC.description() + "'") << false;
1401     // We don't necessarily have the location of the previous attribute,
1402     // so no note.
1403     return true;
1404   };
1405 
1406   // Compare against previous attributes.
1407   FunctionEffect::Kind NewKind = NewEC.Effect.kind();
1408 
1409   for (const FunctionEffectWithCondition &PrevEC : FX) {
1410     // Again, can't check yet when the effect is conditional.
1411     if (PrevEC.Cond.getCondition() != nullptr)
1412       continue;
1413 
1414     FunctionEffect::Kind PrevKind = PrevEC.Effect.kind();
1415     // Note that we allow PrevKind == NewKind; it's redundant and ignored.
1416 
1417     if (PrevEC.Effect.oppositeKind() == NewKind)
1418       return Incompatible(PrevEC);
1419 
1420     // A new allocating is incompatible with a previous nonblocking.
1421     if (PrevKind == FunctionEffect::Kind::NonBlocking &&
1422         NewKind == FunctionEffect::Kind::Allocating)
1423       return Incompatible(PrevEC);
1424 
1425     // A new nonblocking is incompatible with a previous allocating.
1426     if (PrevKind == FunctionEffect::Kind::Allocating &&
1427         NewKind == FunctionEffect::Kind::NonBlocking)
1428       return Incompatible(PrevEC);
1429   }
1430 
1431   return false;
1432 }
1433 
1434 void Sema::diagnoseFunctionEffectMergeConflicts(
1435     const FunctionEffectSet::Conflicts &Errs, SourceLocation NewLoc,
1436     SourceLocation OldLoc) {
1437   for (const FunctionEffectSet::Conflict &Conflict : Errs) {
1438     Diag(NewLoc, diag::warn_conflicting_func_effects)
1439         << Conflict.Kept.description() << Conflict.Rejected.description();
1440     Diag(OldLoc, diag::note_previous_declaration);
1441   }
1442 }
1443 
1444 // Decl should be a FunctionDecl or BlockDecl.
1445 void Sema::maybeAddDeclWithEffects(const Decl *D,
1446                                    const FunctionEffectsRef &FX) {
1447   if (!D->hasBody()) {
1448     if (const auto *FD = D->getAsFunction(); FD && !FD->willHaveBody())
1449       return;
1450   }
1451 
1452   if (Diags.getIgnoreAllWarnings() ||
1453       (Diags.getSuppressSystemWarnings() &&
1454        SourceMgr.isInSystemHeader(D->getLocation())))
1455     return;
1456 
1457   if (hasUncompilableErrorOccurred())
1458     return;
1459 
1460   // For code in dependent contexts, we'll do this at instantiation time.
1461   // Without this check, we would analyze the function based on placeholder
1462   // template parameters, and potentially generate spurious diagnostics.
1463   if (cast<DeclContext>(D)->isDependentContext())
1464     return;
1465 
1466   addDeclWithEffects(D, FX);
1467 }
1468 
1469 void Sema::addDeclWithEffects(const Decl *D, const FunctionEffectsRef &FX) {
1470   // To avoid the possibility of conflict, don't add effects which are
1471   // not FE_InferrableOnCallees and therefore not verified; this removes
1472   // blocking/allocating but keeps nonblocking/nonallocating.
1473   // Also, ignore any conditions when building the list of effects.
1474   bool AnyVerifiable = false;
1475   for (const FunctionEffectWithCondition &EC : FX)
1476     if (EC.Effect.flags() & FunctionEffect::FE_InferrableOnCallees) {
1477       AllEffectsToVerify.insert(EC.Effect);
1478       AnyVerifiable = true;
1479     }
1480 
1481   // Record the declaration for later analysis.
1482   if (AnyVerifiable)
1483     DeclsWithEffectsToVerify.push_back(D);
1484 }
1485 
1486 void Sema::performFunctionEffectAnalysis(TranslationUnitDecl *TU) {
1487   if (hasUncompilableErrorOccurred() || Diags.getIgnoreAllWarnings())
1488     return;
1489   if (TU == nullptr)
1490     return;
1491   Analyzer{*this}.run(*TU);
1492 }
1493 
1494 Sema::FunctionEffectDiffVector::FunctionEffectDiffVector(
1495     const FunctionEffectsRef &Old, const FunctionEffectsRef &New) {
1496 
1497   FunctionEffectsRef::iterator POld = Old.begin();
1498   FunctionEffectsRef::iterator OldEnd = Old.end();
1499   FunctionEffectsRef::iterator PNew = New.begin();
1500   FunctionEffectsRef::iterator NewEnd = New.end();
1501 
1502   while (true) {
1503     int cmp = 0;
1504     if (POld == OldEnd) {
1505       if (PNew == NewEnd)
1506         break;
1507       cmp = 1;
1508     } else if (PNew == NewEnd)
1509       cmp = -1;
1510     else {
1511       FunctionEffectWithCondition Old = *POld;
1512       FunctionEffectWithCondition New = *PNew;
1513       if (Old.Effect.kind() < New.Effect.kind())
1514         cmp = -1;
1515       else if (New.Effect.kind() < Old.Effect.kind())
1516         cmp = 1;
1517       else {
1518         cmp = 0;
1519         if (Old.Cond.getCondition() != New.Cond.getCondition()) {
1520           // FIXME: Cases where the expressions are equivalent but
1521           // don't have the same identity.
1522           push_back(FunctionEffectDiff{
1523               Old.Effect.kind(), FunctionEffectDiff::Kind::ConditionMismatch,
1524               Old, New});
1525         }
1526       }
1527     }
1528 
1529     if (cmp < 0) {
1530       // removal
1531       FunctionEffectWithCondition Old = *POld;
1532       push_back(FunctionEffectDiff{Old.Effect.kind(),
1533                                    FunctionEffectDiff::Kind::Removed, Old,
1534                                    std::nullopt});
1535       ++POld;
1536     } else if (cmp > 0) {
1537       // addition
1538       FunctionEffectWithCondition New = *PNew;
1539       push_back(FunctionEffectDiff{New.Effect.kind(),
1540                                    FunctionEffectDiff::Kind::Added,
1541                                    std::nullopt, New});
1542       ++PNew;
1543     } else {
1544       ++POld;
1545       ++PNew;
1546     }
1547   }
1548 }
1549 
1550 bool Sema::FunctionEffectDiff::shouldDiagnoseConversion(
1551     QualType SrcType, const FunctionEffectsRef &SrcFX, QualType DstType,
1552     const FunctionEffectsRef &DstFX) const {
1553 
1554   switch (EffectKind) {
1555   case FunctionEffect::Kind::NonAllocating:
1556     // nonallocating can't be added (spoofed) during a conversion, unless we
1557     // have nonblocking.
1558     if (DiffKind == Kind::Added) {
1559       for (const auto &CFE : SrcFX) {
1560         if (CFE.Effect.kind() == FunctionEffect::Kind::NonBlocking)
1561           return false;
1562       }
1563     }
1564     [[fallthrough]];
1565   case FunctionEffect::Kind::NonBlocking:
1566     // nonblocking can't be added (spoofed) during a conversion.
1567     switch (DiffKind) {
1568     case Kind::Added:
1569       return true;
1570     case Kind::Removed:
1571       return false;
1572     case Kind::ConditionMismatch:
1573       // FIXME: Condition mismatches are too coarse right now -- expressions
1574       // which are equivalent but don't have the same identity are detected as
1575       // mismatches. We're going to diagnose those anyhow until expression
1576       // matching is better.
1577       return true;
1578     }
1579     break;
1580   case FunctionEffect::Kind::Blocking:
1581   case FunctionEffect::Kind::Allocating:
1582     return false;
1583   }
1584   llvm_unreachable("unknown effect kind");
1585 }
1586 
1587 bool Sema::FunctionEffectDiff::shouldDiagnoseRedeclaration(
1588     const FunctionDecl &OldFunction, const FunctionEffectsRef &OldFX,
1589     const FunctionDecl &NewFunction, const FunctionEffectsRef &NewFX) const {
1590   switch (EffectKind) {
1591   case FunctionEffect::Kind::NonAllocating:
1592   case FunctionEffect::Kind::NonBlocking:
1593     // nonblocking/nonallocating can't be removed in a redeclaration.
1594     switch (DiffKind) {
1595     case Kind::Added:
1596       return false; // No diagnostic.
1597     case Kind::Removed:
1598       return true; // Issue diagnostic.
1599     case Kind::ConditionMismatch:
1600       // All these forms of mismatches are diagnosed.
1601       return true;
1602     }
1603     break;
1604   case FunctionEffect::Kind::Blocking:
1605   case FunctionEffect::Kind::Allocating:
1606     return false;
1607   }
1608   llvm_unreachable("unknown effect kind");
1609 }
1610 
1611 Sema::FunctionEffectDiff::OverrideResult
1612 Sema::FunctionEffectDiff::shouldDiagnoseMethodOverride(
1613     const CXXMethodDecl &OldMethod, const FunctionEffectsRef &OldFX,
1614     const CXXMethodDecl &NewMethod, const FunctionEffectsRef &NewFX) const {
1615   switch (EffectKind) {
1616   case FunctionEffect::Kind::NonAllocating:
1617   case FunctionEffect::Kind::NonBlocking:
1618     switch (DiffKind) {
1619 
1620     // If added on an override, that's fine and not diagnosed.
1621     case Kind::Added:
1622       return OverrideResult::NoAction;
1623 
1624     // If missing from an override (removed), propagate from base to derived.
1625     case Kind::Removed:
1626       return OverrideResult::Merge;
1627 
1628     // If there's a mismatch involving the effect's polarity or condition,
1629     // issue a warning.
1630     case Kind::ConditionMismatch:
1631       return OverrideResult::Warn;
1632     }
1633     break;
1634   case FunctionEffect::Kind::Blocking:
1635   case FunctionEffect::Kind::Allocating:
1636     return OverrideResult::NoAction;
1637   }
1638   llvm_unreachable("unknown effect kind");
1639 }
1640 
1641 } // namespace clang
1642