xref: /llvm-project/clang/lib/Sema/SemaExprCXX.cpp (revision 5ede7b6a6bc22aee86e592835ccc4eaa9459e5cd)
1 //===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// Implements semantic analysis for C++ expressions.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "TreeTransform.h"
15 #include "TypeLocBuilder.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/CXXInheritance.h"
19 #include "clang/AST/CharUnits.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/DynamicRecursiveASTVisitor.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/ExprConcepts.h"
24 #include "clang/AST/ExprObjC.h"
25 #include "clang/AST/Type.h"
26 #include "clang/AST/TypeLoc.h"
27 #include "clang/Basic/AlignedAllocation.h"
28 #include "clang/Basic/DiagnosticSema.h"
29 #include "clang/Basic/PartialDiagnostic.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "clang/Basic/TokenKinds.h"
32 #include "clang/Basic/TypeTraits.h"
33 #include "clang/Lex/Preprocessor.h"
34 #include "clang/Sema/DeclSpec.h"
35 #include "clang/Sema/EnterExpressionEvaluationContext.h"
36 #include "clang/Sema/Initialization.h"
37 #include "clang/Sema/Lookup.h"
38 #include "clang/Sema/ParsedTemplate.h"
39 #include "clang/Sema/Scope.h"
40 #include "clang/Sema/ScopeInfo.h"
41 #include "clang/Sema/SemaCUDA.h"
42 #include "clang/Sema/SemaHLSL.h"
43 #include "clang/Sema/SemaInternal.h"
44 #include "clang/Sema/SemaLambda.h"
45 #include "clang/Sema/SemaObjC.h"
46 #include "clang/Sema/SemaPPC.h"
47 #include "clang/Sema/Template.h"
48 #include "clang/Sema/TemplateDeduction.h"
49 #include "llvm/ADT/APInt.h"
50 #include "llvm/ADT/STLExtras.h"
51 #include "llvm/ADT/STLForwardCompat.h"
52 #include "llvm/ADT/StringExtras.h"
53 #include "llvm/Support/ErrorHandling.h"
54 #include "llvm/Support/TypeSize.h"
55 #include <optional>
56 using namespace clang;
57 using namespace sema;
58 
59 ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS,
60                                               SourceLocation NameLoc,
61                                               const IdentifierInfo &Name) {
62   NestedNameSpecifier *NNS = SS.getScopeRep();
63 
64   // Convert the nested-name-specifier into a type.
65   QualType Type;
66   switch (NNS->getKind()) {
67   case NestedNameSpecifier::TypeSpec:
68   case NestedNameSpecifier::TypeSpecWithTemplate:
69     Type = QualType(NNS->getAsType(), 0);
70     break;
71 
72   case NestedNameSpecifier::Identifier:
73     // Strip off the last layer of the nested-name-specifier and build a
74     // typename type for it.
75     assert(NNS->getAsIdentifier() == &Name && "not a constructor name");
76     Type = Context.getDependentNameType(
77         ElaboratedTypeKeyword::None, NNS->getPrefix(), NNS->getAsIdentifier());
78     break;
79 
80   case NestedNameSpecifier::Global:
81   case NestedNameSpecifier::Super:
82   case NestedNameSpecifier::Namespace:
83   case NestedNameSpecifier::NamespaceAlias:
84     llvm_unreachable("Nested name specifier is not a type for inheriting ctor");
85   }
86 
87   // This reference to the type is located entirely at the location of the
88   // final identifier in the qualified-id.
89   return CreateParsedType(Type,
90                           Context.getTrivialTypeSourceInfo(Type, NameLoc));
91 }
92 
93 ParsedType Sema::getConstructorName(const IdentifierInfo &II,
94                                     SourceLocation NameLoc, Scope *S,
95                                     CXXScopeSpec &SS, bool EnteringContext) {
96   CXXRecordDecl *CurClass = getCurrentClass(S, &SS);
97   assert(CurClass && &II == CurClass->getIdentifier() &&
98          "not a constructor name");
99 
100   // When naming a constructor as a member of a dependent context (eg, in a
101   // friend declaration or an inherited constructor declaration), form an
102   // unresolved "typename" type.
103   if (CurClass->isDependentContext() && !EnteringContext && SS.getScopeRep()) {
104     QualType T = Context.getDependentNameType(ElaboratedTypeKeyword::None,
105                                               SS.getScopeRep(), &II);
106     return ParsedType::make(T);
107   }
108 
109   if (SS.isNotEmpty() && RequireCompleteDeclContext(SS, CurClass))
110     return ParsedType();
111 
112   // Find the injected-class-name declaration. Note that we make no attempt to
113   // diagnose cases where the injected-class-name is shadowed: the only
114   // declaration that can validly shadow the injected-class-name is a
115   // non-static data member, and if the class contains both a non-static data
116   // member and a constructor then it is ill-formed (we check that in
117   // CheckCompletedCXXClass).
118   CXXRecordDecl *InjectedClassName = nullptr;
119   for (NamedDecl *ND : CurClass->lookup(&II)) {
120     auto *RD = dyn_cast<CXXRecordDecl>(ND);
121     if (RD && RD->isInjectedClassName()) {
122       InjectedClassName = RD;
123       break;
124     }
125   }
126   if (!InjectedClassName) {
127     if (!CurClass->isInvalidDecl()) {
128       // FIXME: RequireCompleteDeclContext doesn't check dependent contexts
129       // properly. Work around it here for now.
130       Diag(SS.getLastQualifierNameLoc(),
131            diag::err_incomplete_nested_name_spec) << CurClass << SS.getRange();
132     }
133     return ParsedType();
134   }
135 
136   QualType T = Context.getTypeDeclType(InjectedClassName);
137   DiagnoseUseOfDecl(InjectedClassName, NameLoc);
138   MarkAnyDeclReferenced(NameLoc, InjectedClassName, /*OdrUse=*/false);
139 
140   return ParsedType::make(T);
141 }
142 
143 ParsedType Sema::getDestructorName(const IdentifierInfo &II,
144                                    SourceLocation NameLoc, Scope *S,
145                                    CXXScopeSpec &SS, ParsedType ObjectTypePtr,
146                                    bool EnteringContext) {
147   // Determine where to perform name lookup.
148 
149   // FIXME: This area of the standard is very messy, and the current
150   // wording is rather unclear about which scopes we search for the
151   // destructor name; see core issues 399 and 555. Issue 399 in
152   // particular shows where the current description of destructor name
153   // lookup is completely out of line with existing practice, e.g.,
154   // this appears to be ill-formed:
155   //
156   //   namespace N {
157   //     template <typename T> struct S {
158   //       ~S();
159   //     };
160   //   }
161   //
162   //   void f(N::S<int>* s) {
163   //     s->N::S<int>::~S();
164   //   }
165   //
166   // See also PR6358 and PR6359.
167   //
168   // For now, we accept all the cases in which the name given could plausibly
169   // be interpreted as a correct destructor name, issuing off-by-default
170   // extension diagnostics on the cases that don't strictly conform to the
171   // C++20 rules. This basically means we always consider looking in the
172   // nested-name-specifier prefix, the complete nested-name-specifier, and
173   // the scope, and accept if we find the expected type in any of the three
174   // places.
175 
176   if (SS.isInvalid())
177     return nullptr;
178 
179   // Whether we've failed with a diagnostic already.
180   bool Failed = false;
181 
182   llvm::SmallVector<NamedDecl*, 8> FoundDecls;
183   llvm::SmallPtrSet<CanonicalDeclPtr<Decl>, 8> FoundDeclSet;
184 
185   // If we have an object type, it's because we are in a
186   // pseudo-destructor-expression or a member access expression, and
187   // we know what type we're looking for.
188   QualType SearchType =
189       ObjectTypePtr ? GetTypeFromParser(ObjectTypePtr) : QualType();
190 
191   auto CheckLookupResult = [&](LookupResult &Found) -> ParsedType {
192     auto IsAcceptableResult = [&](NamedDecl *D) -> bool {
193       auto *Type = dyn_cast<TypeDecl>(D->getUnderlyingDecl());
194       if (!Type)
195         return false;
196 
197       if (SearchType.isNull() || SearchType->isDependentType())
198         return true;
199 
200       QualType T = Context.getTypeDeclType(Type);
201       return Context.hasSameUnqualifiedType(T, SearchType);
202     };
203 
204     unsigned NumAcceptableResults = 0;
205     for (NamedDecl *D : Found) {
206       if (IsAcceptableResult(D))
207         ++NumAcceptableResults;
208 
209       // Don't list a class twice in the lookup failure diagnostic if it's
210       // found by both its injected-class-name and by the name in the enclosing
211       // scope.
212       if (auto *RD = dyn_cast<CXXRecordDecl>(D))
213         if (RD->isInjectedClassName())
214           D = cast<NamedDecl>(RD->getParent());
215 
216       if (FoundDeclSet.insert(D).second)
217         FoundDecls.push_back(D);
218     }
219 
220     // As an extension, attempt to "fix" an ambiguity by erasing all non-type
221     // results, and all non-matching results if we have a search type. It's not
222     // clear what the right behavior is if destructor lookup hits an ambiguity,
223     // but other compilers do generally accept at least some kinds of
224     // ambiguity.
225     if (Found.isAmbiguous() && NumAcceptableResults == 1) {
226       Diag(NameLoc, diag::ext_dtor_name_ambiguous);
227       LookupResult::Filter F = Found.makeFilter();
228       while (F.hasNext()) {
229         NamedDecl *D = F.next();
230         if (auto *TD = dyn_cast<TypeDecl>(D->getUnderlyingDecl()))
231           Diag(D->getLocation(), diag::note_destructor_type_here)
232               << Context.getTypeDeclType(TD);
233         else
234           Diag(D->getLocation(), diag::note_destructor_nontype_here);
235 
236         if (!IsAcceptableResult(D))
237           F.erase();
238       }
239       F.done();
240     }
241 
242     if (Found.isAmbiguous())
243       Failed = true;
244 
245     if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
246       if (IsAcceptableResult(Type)) {
247         QualType T = Context.getTypeDeclType(Type);
248         MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
249         return CreateParsedType(
250             Context.getElaboratedType(ElaboratedTypeKeyword::None, nullptr, T),
251             Context.getTrivialTypeSourceInfo(T, NameLoc));
252       }
253     }
254 
255     return nullptr;
256   };
257 
258   bool IsDependent = false;
259 
260   auto LookupInObjectType = [&]() -> ParsedType {
261     if (Failed || SearchType.isNull())
262       return nullptr;
263 
264     IsDependent |= SearchType->isDependentType();
265 
266     LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
267     DeclContext *LookupCtx = computeDeclContext(SearchType);
268     if (!LookupCtx)
269       return nullptr;
270     LookupQualifiedName(Found, LookupCtx);
271     return CheckLookupResult(Found);
272   };
273 
274   auto LookupInNestedNameSpec = [&](CXXScopeSpec &LookupSS) -> ParsedType {
275     if (Failed)
276       return nullptr;
277 
278     IsDependent |= isDependentScopeSpecifier(LookupSS);
279     DeclContext *LookupCtx = computeDeclContext(LookupSS, EnteringContext);
280     if (!LookupCtx)
281       return nullptr;
282 
283     LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
284     if (RequireCompleteDeclContext(LookupSS, LookupCtx)) {
285       Failed = true;
286       return nullptr;
287     }
288     LookupQualifiedName(Found, LookupCtx);
289     return CheckLookupResult(Found);
290   };
291 
292   auto LookupInScope = [&]() -> ParsedType {
293     if (Failed || !S)
294       return nullptr;
295 
296     LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
297     LookupName(Found, S);
298     return CheckLookupResult(Found);
299   };
300 
301   // C++2a [basic.lookup.qual]p6:
302   //   In a qualified-id of the form
303   //
304   //     nested-name-specifier[opt] type-name :: ~ type-name
305   //
306   //   the second type-name is looked up in the same scope as the first.
307   //
308   // We interpret this as meaning that if you do a dual-scope lookup for the
309   // first name, you also do a dual-scope lookup for the second name, per
310   // C++ [basic.lookup.classref]p4:
311   //
312   //   If the id-expression in a class member access is a qualified-id of the
313   //   form
314   //
315   //     class-name-or-namespace-name :: ...
316   //
317   //   the class-name-or-namespace-name following the . or -> is first looked
318   //   up in the class of the object expression and the name, if found, is used.
319   //   Otherwise, it is looked up in the context of the entire
320   //   postfix-expression.
321   //
322   // This looks in the same scopes as for an unqualified destructor name:
323   //
324   // C++ [basic.lookup.classref]p3:
325   //   If the unqualified-id is ~ type-name, the type-name is looked up
326   //   in the context of the entire postfix-expression. If the type T
327   //   of the object expression is of a class type C, the type-name is
328   //   also looked up in the scope of class C. At least one of the
329   //   lookups shall find a name that refers to cv T.
330   //
331   // FIXME: The intent is unclear here. Should type-name::~type-name look in
332   // the scope anyway if it finds a non-matching name declared in the class?
333   // If both lookups succeed and find a dependent result, which result should
334   // we retain? (Same question for p->~type-name().)
335 
336   if (NestedNameSpecifier *Prefix =
337       SS.isSet() ? SS.getScopeRep()->getPrefix() : nullptr) {
338     // This is
339     //
340     //   nested-name-specifier type-name :: ~ type-name
341     //
342     // Look for the second type-name in the nested-name-specifier.
343     CXXScopeSpec PrefixSS;
344     PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
345     if (ParsedType T = LookupInNestedNameSpec(PrefixSS))
346       return T;
347   } else {
348     // This is one of
349     //
350     //   type-name :: ~ type-name
351     //   ~ type-name
352     //
353     // Look in the scope and (if any) the object type.
354     if (ParsedType T = LookupInScope())
355       return T;
356     if (ParsedType T = LookupInObjectType())
357       return T;
358   }
359 
360   if (Failed)
361     return nullptr;
362 
363   if (IsDependent) {
364     // We didn't find our type, but that's OK: it's dependent anyway.
365 
366     // FIXME: What if we have no nested-name-specifier?
367     QualType T =
368         CheckTypenameType(ElaboratedTypeKeyword::None, SourceLocation(),
369                           SS.getWithLocInContext(Context), II, NameLoc);
370     return ParsedType::make(T);
371   }
372 
373   // The remaining cases are all non-standard extensions imitating the behavior
374   // of various other compilers.
375   unsigned NumNonExtensionDecls = FoundDecls.size();
376 
377   if (SS.isSet()) {
378     // For compatibility with older broken C++ rules and existing code,
379     //
380     //   nested-name-specifier :: ~ type-name
381     //
382     // also looks for type-name within the nested-name-specifier.
383     if (ParsedType T = LookupInNestedNameSpec(SS)) {
384       Diag(SS.getEndLoc(), diag::ext_dtor_named_in_wrong_scope)
385           << SS.getRange()
386           << FixItHint::CreateInsertion(SS.getEndLoc(),
387                                         ("::" + II.getName()).str());
388       return T;
389     }
390 
391     // For compatibility with other compilers and older versions of Clang,
392     //
393     //   nested-name-specifier type-name :: ~ type-name
394     //
395     // also looks for type-name in the scope. Unfortunately, we can't
396     // reasonably apply this fallback for dependent nested-name-specifiers.
397     if (SS.isValid() && SS.getScopeRep()->getPrefix()) {
398       if (ParsedType T = LookupInScope()) {
399         Diag(SS.getEndLoc(), diag::ext_qualified_dtor_named_in_lexical_scope)
400             << FixItHint::CreateRemoval(SS.getRange());
401         Diag(FoundDecls.back()->getLocation(), diag::note_destructor_type_here)
402             << GetTypeFromParser(T);
403         return T;
404       }
405     }
406   }
407 
408   // We didn't find anything matching; tell the user what we did find (if
409   // anything).
410 
411   // Don't tell the user about declarations we shouldn't have found.
412   FoundDecls.resize(NumNonExtensionDecls);
413 
414   // List types before non-types.
415   std::stable_sort(FoundDecls.begin(), FoundDecls.end(),
416                    [](NamedDecl *A, NamedDecl *B) {
417                      return isa<TypeDecl>(A->getUnderlyingDecl()) >
418                             isa<TypeDecl>(B->getUnderlyingDecl());
419                    });
420 
421   // Suggest a fixit to properly name the destroyed type.
422   auto MakeFixItHint = [&]{
423     const CXXRecordDecl *Destroyed = nullptr;
424     // FIXME: If we have a scope specifier, suggest its last component?
425     if (!SearchType.isNull())
426       Destroyed = SearchType->getAsCXXRecordDecl();
427     else if (S)
428       Destroyed = dyn_cast_or_null<CXXRecordDecl>(S->getEntity());
429     if (Destroyed)
430       return FixItHint::CreateReplacement(SourceRange(NameLoc),
431                                           Destroyed->getNameAsString());
432     return FixItHint();
433   };
434 
435   if (FoundDecls.empty()) {
436     // FIXME: Attempt typo-correction?
437     Diag(NameLoc, diag::err_undeclared_destructor_name)
438       << &II << MakeFixItHint();
439   } else if (!SearchType.isNull() && FoundDecls.size() == 1) {
440     if (auto *TD = dyn_cast<TypeDecl>(FoundDecls[0]->getUnderlyingDecl())) {
441       assert(!SearchType.isNull() &&
442              "should only reject a type result if we have a search type");
443       QualType T = Context.getTypeDeclType(TD);
444       Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
445           << T << SearchType << MakeFixItHint();
446     } else {
447       Diag(NameLoc, diag::err_destructor_expr_nontype)
448           << &II << MakeFixItHint();
449     }
450   } else {
451     Diag(NameLoc, SearchType.isNull() ? diag::err_destructor_name_nontype
452                                       : diag::err_destructor_expr_mismatch)
453         << &II << SearchType << MakeFixItHint();
454   }
455 
456   for (NamedDecl *FoundD : FoundDecls) {
457     if (auto *TD = dyn_cast<TypeDecl>(FoundD->getUnderlyingDecl()))
458       Diag(FoundD->getLocation(), diag::note_destructor_type_here)
459           << Context.getTypeDeclType(TD);
460     else
461       Diag(FoundD->getLocation(), diag::note_destructor_nontype_here)
462           << FoundD;
463   }
464 
465   return nullptr;
466 }
467 
468 ParsedType Sema::getDestructorTypeForDecltype(const DeclSpec &DS,
469                                               ParsedType ObjectType) {
470   if (DS.getTypeSpecType() == DeclSpec::TST_error)
471     return nullptr;
472 
473   if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) {
474     Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
475     return nullptr;
476   }
477 
478   assert(DS.getTypeSpecType() == DeclSpec::TST_decltype &&
479          "unexpected type in getDestructorType");
480   QualType T = BuildDecltypeType(DS.getRepAsExpr());
481 
482   // If we know the type of the object, check that the correct destructor
483   // type was named now; we can give better diagnostics this way.
484   QualType SearchType = GetTypeFromParser(ObjectType);
485   if (!SearchType.isNull() && !SearchType->isDependentType() &&
486       !Context.hasSameUnqualifiedType(T, SearchType)) {
487     Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
488       << T << SearchType;
489     return nullptr;
490   }
491 
492   return ParsedType::make(T);
493 }
494 
495 bool Sema::checkLiteralOperatorId(const CXXScopeSpec &SS,
496                                   const UnqualifiedId &Name, bool IsUDSuffix) {
497   assert(Name.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId);
498   if (!IsUDSuffix) {
499     // [over.literal] p8
500     //
501     // double operator""_Bq(long double);  // OK: not a reserved identifier
502     // double operator"" _Bq(long double); // ill-formed, no diagnostic required
503     const IdentifierInfo *II = Name.Identifier;
504     ReservedIdentifierStatus Status = II->isReserved(PP.getLangOpts());
505     SourceLocation Loc = Name.getEndLoc();
506 
507     auto Hint = FixItHint::CreateReplacement(
508         Name.getSourceRange(),
509         (StringRef("operator\"\"") + II->getName()).str());
510 
511     // Only emit this diagnostic if we start with an underscore, else the
512     // diagnostic for C++11 requiring a space between the quotes and the
513     // identifier conflicts with this and gets confusing. The diagnostic stating
514     // this is a reserved name should force the underscore, which gets this
515     // back.
516     if (II->isReservedLiteralSuffixId() !=
517         ReservedLiteralSuffixIdStatus::NotStartsWithUnderscore)
518       Diag(Loc, diag::warn_deprecated_literal_operator_id) << II << Hint;
519 
520     if (isReservedInAllContexts(Status))
521       Diag(Loc, diag::warn_reserved_extern_symbol)
522           << II << static_cast<int>(Status) << Hint;
523   }
524 
525   if (!SS.isValid())
526     return false;
527 
528   switch (SS.getScopeRep()->getKind()) {
529   case NestedNameSpecifier::Identifier:
530   case NestedNameSpecifier::TypeSpec:
531   case NestedNameSpecifier::TypeSpecWithTemplate:
532     // Per C++11 [over.literal]p2, literal operators can only be declared at
533     // namespace scope. Therefore, this unqualified-id cannot name anything.
534     // Reject it early, because we have no AST representation for this in the
535     // case where the scope is dependent.
536     Diag(Name.getBeginLoc(), diag::err_literal_operator_id_outside_namespace)
537         << SS.getScopeRep();
538     return true;
539 
540   case NestedNameSpecifier::Global:
541   case NestedNameSpecifier::Super:
542   case NestedNameSpecifier::Namespace:
543   case NestedNameSpecifier::NamespaceAlias:
544     return false;
545   }
546 
547   llvm_unreachable("unknown nested name specifier kind");
548 }
549 
550 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
551                                 SourceLocation TypeidLoc,
552                                 TypeSourceInfo *Operand,
553                                 SourceLocation RParenLoc) {
554   // C++ [expr.typeid]p4:
555   //   The top-level cv-qualifiers of the lvalue expression or the type-id
556   //   that is the operand of typeid are always ignored.
557   //   If the type of the type-id is a class type or a reference to a class
558   //   type, the class shall be completely-defined.
559   Qualifiers Quals;
560   QualType T
561     = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
562                                       Quals);
563   if (T->getAs<RecordType>() &&
564       RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
565     return ExprError();
566 
567   if (T->isVariablyModifiedType())
568     return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) << T);
569 
570   if (CheckQualifiedFunctionForTypeId(T, TypeidLoc))
571     return ExprError();
572 
573   return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand,
574                                      SourceRange(TypeidLoc, RParenLoc));
575 }
576 
577 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
578                                 SourceLocation TypeidLoc,
579                                 Expr *E,
580                                 SourceLocation RParenLoc) {
581   bool WasEvaluated = false;
582   if (E && !E->isTypeDependent()) {
583     if (E->hasPlaceholderType()) {
584       ExprResult result = CheckPlaceholderExpr(E);
585       if (result.isInvalid()) return ExprError();
586       E = result.get();
587     }
588 
589     QualType T = E->getType();
590     if (const RecordType *RecordT = T->getAs<RecordType>()) {
591       CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
592       // C++ [expr.typeid]p3:
593       //   [...] If the type of the expression is a class type, the class
594       //   shall be completely-defined.
595       if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
596         return ExprError();
597 
598       // C++ [expr.typeid]p3:
599       //   When typeid is applied to an expression other than an glvalue of a
600       //   polymorphic class type [...] [the] expression is an unevaluated
601       //   operand. [...]
602       if (RecordD->isPolymorphic() && E->isGLValue()) {
603         if (isUnevaluatedContext()) {
604           // The operand was processed in unevaluated context, switch the
605           // context and recheck the subexpression.
606           ExprResult Result = TransformToPotentiallyEvaluated(E);
607           if (Result.isInvalid())
608             return ExprError();
609           E = Result.get();
610         }
611 
612         // We require a vtable to query the type at run time.
613         MarkVTableUsed(TypeidLoc, RecordD);
614         WasEvaluated = true;
615       }
616     }
617 
618     ExprResult Result = CheckUnevaluatedOperand(E);
619     if (Result.isInvalid())
620       return ExprError();
621     E = Result.get();
622 
623     // C++ [expr.typeid]p4:
624     //   [...] If the type of the type-id is a reference to a possibly
625     //   cv-qualified type, the result of the typeid expression refers to a
626     //   std::type_info object representing the cv-unqualified referenced
627     //   type.
628     Qualifiers Quals;
629     QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
630     if (!Context.hasSameType(T, UnqualT)) {
631       T = UnqualT;
632       E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).get();
633     }
634   }
635 
636   if (E->getType()->isVariablyModifiedType())
637     return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid)
638                      << E->getType());
639   else if (!inTemplateInstantiation() &&
640            E->HasSideEffects(Context, WasEvaluated)) {
641     // The expression operand for typeid is in an unevaluated expression
642     // context, so side effects could result in unintended consequences.
643     Diag(E->getExprLoc(), WasEvaluated
644                               ? diag::warn_side_effects_typeid
645                               : diag::warn_side_effects_unevaluated_context);
646   }
647 
648   return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E,
649                                      SourceRange(TypeidLoc, RParenLoc));
650 }
651 
652 /// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
653 ExprResult
654 Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
655                      bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
656   // typeid is not supported in OpenCL.
657   if (getLangOpts().OpenCLCPlusPlus) {
658     return ExprError(Diag(OpLoc, diag::err_openclcxx_not_supported)
659                      << "typeid");
660   }
661 
662   // Find the std::type_info type.
663   if (!getStdNamespace())
664     return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
665 
666   if (!CXXTypeInfoDecl) {
667     IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
668     LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
669     LookupQualifiedName(R, getStdNamespace());
670     CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
671     // Microsoft's typeinfo doesn't have type_info in std but in the global
672     // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
673     if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) {
674       LookupQualifiedName(R, Context.getTranslationUnitDecl());
675       CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
676     }
677     if (!CXXTypeInfoDecl)
678       return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
679   }
680 
681   if (!getLangOpts().RTTI) {
682     return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
683   }
684 
685   QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
686 
687   if (isType) {
688     // The operand is a type; handle it as such.
689     TypeSourceInfo *TInfo = nullptr;
690     QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
691                                    &TInfo);
692     if (T.isNull())
693       return ExprError();
694 
695     if (!TInfo)
696       TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
697 
698     return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
699   }
700 
701   // The operand is an expression.
702   ExprResult Result =
703       BuildCXXTypeId(TypeInfoType, OpLoc, (Expr *)TyOrExpr, RParenLoc);
704 
705   if (!getLangOpts().RTTIData && !Result.isInvalid())
706     if (auto *CTE = dyn_cast<CXXTypeidExpr>(Result.get()))
707       if (CTE->isPotentiallyEvaluated() && !CTE->isMostDerived(Context))
708         Diag(OpLoc, diag::warn_no_typeid_with_rtti_disabled)
709             << (getDiagnostics().getDiagnosticOptions().getFormat() ==
710                 DiagnosticOptions::MSVC);
711   return Result;
712 }
713 
714 /// Grabs __declspec(uuid()) off a type, or returns 0 if we cannot resolve to
715 /// a single GUID.
716 static void
717 getUuidAttrOfType(Sema &SemaRef, QualType QT,
718                   llvm::SmallSetVector<const UuidAttr *, 1> &UuidAttrs) {
719   // Optionally remove one level of pointer, reference or array indirection.
720   const Type *Ty = QT.getTypePtr();
721   if (QT->isPointerOrReferenceType())
722     Ty = QT->getPointeeType().getTypePtr();
723   else if (QT->isArrayType())
724     Ty = Ty->getBaseElementTypeUnsafe();
725 
726   const auto *TD = Ty->getAsTagDecl();
727   if (!TD)
728     return;
729 
730   if (const auto *Uuid = TD->getMostRecentDecl()->getAttr<UuidAttr>()) {
731     UuidAttrs.insert(Uuid);
732     return;
733   }
734 
735   // __uuidof can grab UUIDs from template arguments.
736   if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(TD)) {
737     const TemplateArgumentList &TAL = CTSD->getTemplateArgs();
738     for (const TemplateArgument &TA : TAL.asArray()) {
739       const UuidAttr *UuidForTA = nullptr;
740       if (TA.getKind() == TemplateArgument::Type)
741         getUuidAttrOfType(SemaRef, TA.getAsType(), UuidAttrs);
742       else if (TA.getKind() == TemplateArgument::Declaration)
743         getUuidAttrOfType(SemaRef, TA.getAsDecl()->getType(), UuidAttrs);
744 
745       if (UuidForTA)
746         UuidAttrs.insert(UuidForTA);
747     }
748   }
749 }
750 
751 ExprResult Sema::BuildCXXUuidof(QualType Type,
752                                 SourceLocation TypeidLoc,
753                                 TypeSourceInfo *Operand,
754                                 SourceLocation RParenLoc) {
755   MSGuidDecl *Guid = nullptr;
756   if (!Operand->getType()->isDependentType()) {
757     llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
758     getUuidAttrOfType(*this, Operand->getType(), UuidAttrs);
759     if (UuidAttrs.empty())
760       return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
761     if (UuidAttrs.size() > 1)
762       return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
763     Guid = UuidAttrs.back()->getGuidDecl();
764   }
765 
766   return new (Context)
767       CXXUuidofExpr(Type, Operand, Guid, SourceRange(TypeidLoc, RParenLoc));
768 }
769 
770 ExprResult Sema::BuildCXXUuidof(QualType Type, SourceLocation TypeidLoc,
771                                 Expr *E, SourceLocation RParenLoc) {
772   MSGuidDecl *Guid = nullptr;
773   if (!E->getType()->isDependentType()) {
774     if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
775       // A null pointer results in {00000000-0000-0000-0000-000000000000}.
776       Guid = Context.getMSGuidDecl(MSGuidDecl::Parts{});
777     } else {
778       llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
779       getUuidAttrOfType(*this, E->getType(), UuidAttrs);
780       if (UuidAttrs.empty())
781         return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
782       if (UuidAttrs.size() > 1)
783         return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
784       Guid = UuidAttrs.back()->getGuidDecl();
785     }
786   }
787 
788   return new (Context)
789       CXXUuidofExpr(Type, E, Guid, SourceRange(TypeidLoc, RParenLoc));
790 }
791 
792 /// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
793 ExprResult
794 Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
795                      bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
796   QualType GuidType = Context.getMSGuidType();
797   GuidType.addConst();
798 
799   if (isType) {
800     // The operand is a type; handle it as such.
801     TypeSourceInfo *TInfo = nullptr;
802     QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
803                                    &TInfo);
804     if (T.isNull())
805       return ExprError();
806 
807     if (!TInfo)
808       TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
809 
810     return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
811   }
812 
813   // The operand is an expression.
814   return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
815 }
816 
817 ExprResult
818 Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
819   assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
820          "Unknown C++ Boolean value!");
821   return new (Context)
822       CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc);
823 }
824 
825 ExprResult
826 Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
827   return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
828 }
829 
830 ExprResult
831 Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
832   bool IsThrownVarInScope = false;
833   if (Ex) {
834     // C++0x [class.copymove]p31:
835     //   When certain criteria are met, an implementation is allowed to omit the
836     //   copy/move construction of a class object [...]
837     //
838     //     - in a throw-expression, when the operand is the name of a
839     //       non-volatile automatic object (other than a function or catch-
840     //       clause parameter) whose scope does not extend beyond the end of the
841     //       innermost enclosing try-block (if there is one), the copy/move
842     //       operation from the operand to the exception object (15.1) can be
843     //       omitted by constructing the automatic object directly into the
844     //       exception object
845     if (const auto *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
846       if (const auto *Var = dyn_cast<VarDecl>(DRE->getDecl());
847           Var && Var->hasLocalStorage() &&
848           !Var->getType().isVolatileQualified()) {
849         for (; S; S = S->getParent()) {
850           if (S->isDeclScope(Var)) {
851             IsThrownVarInScope = true;
852             break;
853           }
854 
855           // FIXME: Many of the scope checks here seem incorrect.
856           if (S->getFlags() &
857               (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
858                Scope::ObjCMethodScope | Scope::TryScope))
859             break;
860         }
861       }
862   }
863 
864   return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
865 }
866 
867 ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
868                                bool IsThrownVarInScope) {
869   const llvm::Triple &T = Context.getTargetInfo().getTriple();
870   const bool IsOpenMPGPUTarget =
871       getLangOpts().OpenMPIsTargetDevice && (T.isNVPTX() || T.isAMDGCN());
872   // Don't report an error if 'throw' is used in system headers or in an OpenMP
873   // target region compiled for a GPU architecture.
874   if (!IsOpenMPGPUTarget && !getLangOpts().CXXExceptions &&
875       !getSourceManager().isInSystemHeader(OpLoc) && !getLangOpts().CUDA) {
876     // Delay error emission for the OpenMP device code.
877     targetDiag(OpLoc, diag::err_exceptions_disabled) << "throw";
878   }
879 
880   // In OpenMP target regions, we replace 'throw' with a trap on GPU targets.
881   if (IsOpenMPGPUTarget)
882     targetDiag(OpLoc, diag::warn_throw_not_valid_on_target) << T.str();
883 
884   // Exceptions aren't allowed in CUDA device code.
885   if (getLangOpts().CUDA)
886     CUDA().DiagIfDeviceCode(OpLoc, diag::err_cuda_device_exceptions)
887         << "throw" << llvm::to_underlying(CUDA().CurrentTarget());
888 
889   if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
890     Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw";
891 
892   // Exceptions that escape a compute construct are ill-formed.
893   if (getLangOpts().OpenACC && getCurScope() &&
894       getCurScope()->isInOpenACCComputeConstructScope(Scope::TryScope))
895     Diag(OpLoc, diag::err_acc_branch_in_out_compute_construct)
896         << /*throw*/ 2 << /*out of*/ 0;
897 
898   if (Ex && !Ex->isTypeDependent()) {
899     // Initialize the exception result.  This implicitly weeds out
900     // abstract types or types with inaccessible copy constructors.
901 
902     // C++0x [class.copymove]p31:
903     //   When certain criteria are met, an implementation is allowed to omit the
904     //   copy/move construction of a class object [...]
905     //
906     //     - in a throw-expression, when the operand is the name of a
907     //       non-volatile automatic object (other than a function or
908     //       catch-clause
909     //       parameter) whose scope does not extend beyond the end of the
910     //       innermost enclosing try-block (if there is one), the copy/move
911     //       operation from the operand to the exception object (15.1) can be
912     //       omitted by constructing the automatic object directly into the
913     //       exception object
914     NamedReturnInfo NRInfo =
915         IsThrownVarInScope ? getNamedReturnInfo(Ex) : NamedReturnInfo();
916 
917     QualType ExceptionObjectTy = Context.getExceptionObjectType(Ex->getType());
918     if (CheckCXXThrowOperand(OpLoc, ExceptionObjectTy, Ex))
919       return ExprError();
920 
921     InitializedEntity Entity =
922         InitializedEntity::InitializeException(OpLoc, ExceptionObjectTy);
923     ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRInfo, Ex);
924     if (Res.isInvalid())
925       return ExprError();
926     Ex = Res.get();
927   }
928 
929   // PPC MMA non-pointer types are not allowed as throw expr types.
930   if (Ex && Context.getTargetInfo().getTriple().isPPC64())
931     PPC().CheckPPCMMAType(Ex->getType(), Ex->getBeginLoc());
932 
933   return new (Context)
934       CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope);
935 }
936 
937 static void
938 collectPublicBases(CXXRecordDecl *RD,
939                    llvm::DenseMap<CXXRecordDecl *, unsigned> &SubobjectsSeen,
940                    llvm::SmallPtrSetImpl<CXXRecordDecl *> &VBases,
941                    llvm::SetVector<CXXRecordDecl *> &PublicSubobjectsSeen,
942                    bool ParentIsPublic) {
943   for (const CXXBaseSpecifier &BS : RD->bases()) {
944     CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
945     bool NewSubobject;
946     // Virtual bases constitute the same subobject.  Non-virtual bases are
947     // always distinct subobjects.
948     if (BS.isVirtual())
949       NewSubobject = VBases.insert(BaseDecl).second;
950     else
951       NewSubobject = true;
952 
953     if (NewSubobject)
954       ++SubobjectsSeen[BaseDecl];
955 
956     // Only add subobjects which have public access throughout the entire chain.
957     bool PublicPath = ParentIsPublic && BS.getAccessSpecifier() == AS_public;
958     if (PublicPath)
959       PublicSubobjectsSeen.insert(BaseDecl);
960 
961     // Recurse on to each base subobject.
962     collectPublicBases(BaseDecl, SubobjectsSeen, VBases, PublicSubobjectsSeen,
963                        PublicPath);
964   }
965 }
966 
967 static void getUnambiguousPublicSubobjects(
968     CXXRecordDecl *RD, llvm::SmallVectorImpl<CXXRecordDecl *> &Objects) {
969   llvm::DenseMap<CXXRecordDecl *, unsigned> SubobjectsSeen;
970   llvm::SmallSet<CXXRecordDecl *, 2> VBases;
971   llvm::SetVector<CXXRecordDecl *> PublicSubobjectsSeen;
972   SubobjectsSeen[RD] = 1;
973   PublicSubobjectsSeen.insert(RD);
974   collectPublicBases(RD, SubobjectsSeen, VBases, PublicSubobjectsSeen,
975                      /*ParentIsPublic=*/true);
976 
977   for (CXXRecordDecl *PublicSubobject : PublicSubobjectsSeen) {
978     // Skip ambiguous objects.
979     if (SubobjectsSeen[PublicSubobject] > 1)
980       continue;
981 
982     Objects.push_back(PublicSubobject);
983   }
984 }
985 
986 bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc,
987                                 QualType ExceptionObjectTy, Expr *E) {
988   //   If the type of the exception would be an incomplete type or a pointer
989   //   to an incomplete type other than (cv) void the program is ill-formed.
990   QualType Ty = ExceptionObjectTy;
991   bool isPointer = false;
992   if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
993     Ty = Ptr->getPointeeType();
994     isPointer = true;
995   }
996 
997   // Cannot throw WebAssembly reference type.
998   if (Ty.isWebAssemblyReferenceType()) {
999     Diag(ThrowLoc, diag::err_wasm_reftype_tc) << 0 << E->getSourceRange();
1000     return true;
1001   }
1002 
1003   // Cannot throw WebAssembly table.
1004   if (isPointer && Ty.isWebAssemblyReferenceType()) {
1005     Diag(ThrowLoc, diag::err_wasm_table_art) << 2 << E->getSourceRange();
1006     return true;
1007   }
1008 
1009   if (!isPointer || !Ty->isVoidType()) {
1010     if (RequireCompleteType(ThrowLoc, Ty,
1011                             isPointer ? diag::err_throw_incomplete_ptr
1012                                       : diag::err_throw_incomplete,
1013                             E->getSourceRange()))
1014       return true;
1015 
1016     if (!isPointer && Ty->isSizelessType()) {
1017       Diag(ThrowLoc, diag::err_throw_sizeless) << Ty << E->getSourceRange();
1018       return true;
1019     }
1020 
1021     if (RequireNonAbstractType(ThrowLoc, ExceptionObjectTy,
1022                                diag::err_throw_abstract_type, E))
1023       return true;
1024   }
1025 
1026   // If the exception has class type, we need additional handling.
1027   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
1028   if (!RD)
1029     return false;
1030 
1031   // If we are throwing a polymorphic class type or pointer thereof,
1032   // exception handling will make use of the vtable.
1033   MarkVTableUsed(ThrowLoc, RD);
1034 
1035   // If a pointer is thrown, the referenced object will not be destroyed.
1036   if (isPointer)
1037     return false;
1038 
1039   // If the class has a destructor, we must be able to call it.
1040   if (!RD->hasIrrelevantDestructor()) {
1041     if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
1042       MarkFunctionReferenced(E->getExprLoc(), Destructor);
1043       CheckDestructorAccess(E->getExprLoc(), Destructor,
1044                             PDiag(diag::err_access_dtor_exception) << Ty);
1045       if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
1046         return true;
1047     }
1048   }
1049 
1050   // The MSVC ABI creates a list of all types which can catch the exception
1051   // object.  This list also references the appropriate copy constructor to call
1052   // if the object is caught by value and has a non-trivial copy constructor.
1053   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1054     // We are only interested in the public, unambiguous bases contained within
1055     // the exception object.  Bases which are ambiguous or otherwise
1056     // inaccessible are not catchable types.
1057     llvm::SmallVector<CXXRecordDecl *, 2> UnambiguousPublicSubobjects;
1058     getUnambiguousPublicSubobjects(RD, UnambiguousPublicSubobjects);
1059 
1060     for (CXXRecordDecl *Subobject : UnambiguousPublicSubobjects) {
1061       // Attempt to lookup the copy constructor.  Various pieces of machinery
1062       // will spring into action, like template instantiation, which means this
1063       // cannot be a simple walk of the class's decls.  Instead, we must perform
1064       // lookup and overload resolution.
1065       CXXConstructorDecl *CD = LookupCopyingConstructor(Subobject, 0);
1066       if (!CD || CD->isDeleted())
1067         continue;
1068 
1069       // Mark the constructor referenced as it is used by this throw expression.
1070       MarkFunctionReferenced(E->getExprLoc(), CD);
1071 
1072       // Skip this copy constructor if it is trivial, we don't need to record it
1073       // in the catchable type data.
1074       if (CD->isTrivial())
1075         continue;
1076 
1077       // The copy constructor is non-trivial, create a mapping from this class
1078       // type to this constructor.
1079       // N.B.  The selection of copy constructor is not sensitive to this
1080       // particular throw-site.  Lookup will be performed at the catch-site to
1081       // ensure that the copy constructor is, in fact, accessible (via
1082       // friendship or any other means).
1083       Context.addCopyConstructorForExceptionObject(Subobject, CD);
1084 
1085       // We don't keep the instantiated default argument expressions around so
1086       // we must rebuild them here.
1087       for (unsigned I = 1, E = CD->getNumParams(); I != E; ++I) {
1088         if (CheckCXXDefaultArgExpr(ThrowLoc, CD, CD->getParamDecl(I)))
1089           return true;
1090       }
1091     }
1092   }
1093 
1094   // Under the Itanium C++ ABI, memory for the exception object is allocated by
1095   // the runtime with no ability for the compiler to request additional
1096   // alignment. Warn if the exception type requires alignment beyond the minimum
1097   // guaranteed by the target C++ runtime.
1098   if (Context.getTargetInfo().getCXXABI().isItaniumFamily()) {
1099     CharUnits TypeAlign = Context.getTypeAlignInChars(Ty);
1100     CharUnits ExnObjAlign = Context.getExnObjectAlignment();
1101     if (ExnObjAlign < TypeAlign) {
1102       Diag(ThrowLoc, diag::warn_throw_underaligned_obj);
1103       Diag(ThrowLoc, diag::note_throw_underaligned_obj)
1104           << Ty << (unsigned)TypeAlign.getQuantity()
1105           << (unsigned)ExnObjAlign.getQuantity();
1106     }
1107   }
1108   if (!isPointer && getLangOpts().AssumeNothrowExceptionDtor) {
1109     if (CXXDestructorDecl *Dtor = RD->getDestructor()) {
1110       auto Ty = Dtor->getType();
1111       if (auto *FT = Ty.getTypePtr()->getAs<FunctionProtoType>()) {
1112         if (!isUnresolvedExceptionSpec(FT->getExceptionSpecType()) &&
1113             !FT->isNothrow())
1114           Diag(ThrowLoc, diag::err_throw_object_throwing_dtor) << RD;
1115       }
1116     }
1117   }
1118 
1119   return false;
1120 }
1121 
1122 static QualType adjustCVQualifiersForCXXThisWithinLambda(
1123     ArrayRef<FunctionScopeInfo *> FunctionScopes, QualType ThisTy,
1124     DeclContext *CurSemaContext, ASTContext &ASTCtx) {
1125 
1126   QualType ClassType = ThisTy->getPointeeType();
1127   LambdaScopeInfo *CurLSI = nullptr;
1128   DeclContext *CurDC = CurSemaContext;
1129 
1130   // Iterate through the stack of lambdas starting from the innermost lambda to
1131   // the outermost lambda, checking if '*this' is ever captured by copy - since
1132   // that could change the cv-qualifiers of the '*this' object.
1133   // The object referred to by '*this' starts out with the cv-qualifiers of its
1134   // member function.  We then start with the innermost lambda and iterate
1135   // outward checking to see if any lambda performs a by-copy capture of '*this'
1136   // - and if so, any nested lambda must respect the 'constness' of that
1137   // capturing lamdbda's call operator.
1138   //
1139 
1140   // Since the FunctionScopeInfo stack is representative of the lexical
1141   // nesting of the lambda expressions during initial parsing (and is the best
1142   // place for querying information about captures about lambdas that are
1143   // partially processed) and perhaps during instantiation of function templates
1144   // that contain lambda expressions that need to be transformed BUT not
1145   // necessarily during instantiation of a nested generic lambda's function call
1146   // operator (which might even be instantiated at the end of the TU) - at which
1147   // time the DeclContext tree is mature enough to query capture information
1148   // reliably - we use a two pronged approach to walk through all the lexically
1149   // enclosing lambda expressions:
1150   //
1151   //  1) Climb down the FunctionScopeInfo stack as long as each item represents
1152   //  a Lambda (i.e. LambdaScopeInfo) AND each LSI's 'closure-type' is lexically
1153   //  enclosed by the call-operator of the LSI below it on the stack (while
1154   //  tracking the enclosing DC for step 2 if needed).  Note the topmost LSI on
1155   //  the stack represents the innermost lambda.
1156   //
1157   //  2) If we run out of enclosing LSI's, check if the enclosing DeclContext
1158   //  represents a lambda's call operator.  If it does, we must be instantiating
1159   //  a generic lambda's call operator (represented by the Current LSI, and
1160   //  should be the only scenario where an inconsistency between the LSI and the
1161   //  DeclContext should occur), so climb out the DeclContexts if they
1162   //  represent lambdas, while querying the corresponding closure types
1163   //  regarding capture information.
1164 
1165   // 1) Climb down the function scope info stack.
1166   for (int I = FunctionScopes.size();
1167        I-- && isa<LambdaScopeInfo>(FunctionScopes[I]) &&
1168        (!CurLSI || !CurLSI->Lambda || CurLSI->Lambda->getDeclContext() ==
1169                        cast<LambdaScopeInfo>(FunctionScopes[I])->CallOperator);
1170        CurDC = getLambdaAwareParentOfDeclContext(CurDC)) {
1171     CurLSI = cast<LambdaScopeInfo>(FunctionScopes[I]);
1172 
1173     if (!CurLSI->isCXXThisCaptured())
1174         continue;
1175 
1176     auto C = CurLSI->getCXXThisCapture();
1177 
1178     if (C.isCopyCapture()) {
1179       if (CurLSI->lambdaCaptureShouldBeConst())
1180         ClassType.addConst();
1181       return ASTCtx.getPointerType(ClassType);
1182     }
1183   }
1184 
1185   // 2) We've run out of ScopeInfos but check 1. if CurDC is a lambda (which
1186   //    can happen during instantiation of its nested generic lambda call
1187   //    operator); 2. if we're in a lambda scope (lambda body).
1188   if (CurLSI && isLambdaCallOperator(CurDC)) {
1189     assert(isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) &&
1190            "While computing 'this' capture-type for a generic lambda, when we "
1191            "run out of enclosing LSI's, yet the enclosing DC is a "
1192            "lambda-call-operator we must be (i.e. Current LSI) in a generic "
1193            "lambda call oeprator");
1194     assert(CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator));
1195 
1196     auto IsThisCaptured =
1197         [](CXXRecordDecl *Closure, bool &IsByCopy, bool &IsConst) {
1198       IsConst = false;
1199       IsByCopy = false;
1200       for (auto &&C : Closure->captures()) {
1201         if (C.capturesThis()) {
1202           if (C.getCaptureKind() == LCK_StarThis)
1203             IsByCopy = true;
1204           if (Closure->getLambdaCallOperator()->isConst())
1205             IsConst = true;
1206           return true;
1207         }
1208       }
1209       return false;
1210     };
1211 
1212     bool IsByCopyCapture = false;
1213     bool IsConstCapture = false;
1214     CXXRecordDecl *Closure = cast<CXXRecordDecl>(CurDC->getParent());
1215     while (Closure &&
1216            IsThisCaptured(Closure, IsByCopyCapture, IsConstCapture)) {
1217       if (IsByCopyCapture) {
1218         if (IsConstCapture)
1219           ClassType.addConst();
1220         return ASTCtx.getPointerType(ClassType);
1221       }
1222       Closure = isLambdaCallOperator(Closure->getParent())
1223                     ? cast<CXXRecordDecl>(Closure->getParent()->getParent())
1224                     : nullptr;
1225     }
1226   }
1227   return ThisTy;
1228 }
1229 
1230 QualType Sema::getCurrentThisType() {
1231   DeclContext *DC = getFunctionLevelDeclContext();
1232   QualType ThisTy = CXXThisTypeOverride;
1233 
1234   if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
1235     if (method && method->isImplicitObjectMemberFunction())
1236       ThisTy = method->getThisType().getNonReferenceType();
1237   }
1238 
1239   if (ThisTy.isNull() && isLambdaCallWithImplicitObjectParameter(CurContext) &&
1240       inTemplateInstantiation() && isa<CXXRecordDecl>(DC)) {
1241 
1242     // This is a lambda call operator that is being instantiated as a default
1243     // initializer. DC must point to the enclosing class type, so we can recover
1244     // the 'this' type from it.
1245     QualType ClassTy = Context.getTypeDeclType(cast<CXXRecordDecl>(DC));
1246     // There are no cv-qualifiers for 'this' within default initializers,
1247     // per [expr.prim.general]p4.
1248     ThisTy = Context.getPointerType(ClassTy);
1249   }
1250 
1251   // If we are within a lambda's call operator, the cv-qualifiers of 'this'
1252   // might need to be adjusted if the lambda or any of its enclosing lambda's
1253   // captures '*this' by copy.
1254   if (!ThisTy.isNull() && isLambdaCallOperator(CurContext))
1255     return adjustCVQualifiersForCXXThisWithinLambda(FunctionScopes, ThisTy,
1256                                                     CurContext, Context);
1257   return ThisTy;
1258 }
1259 
1260 Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
1261                                          Decl *ContextDecl,
1262                                          Qualifiers CXXThisTypeQuals,
1263                                          bool Enabled)
1264   : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
1265 {
1266   if (!Enabled || !ContextDecl)
1267     return;
1268 
1269   CXXRecordDecl *Record = nullptr;
1270   if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
1271     Record = Template->getTemplatedDecl();
1272   else
1273     Record = cast<CXXRecordDecl>(ContextDecl);
1274 
1275   QualType T = S.Context.getRecordType(Record);
1276   T = S.getASTContext().getQualifiedType(T, CXXThisTypeQuals);
1277 
1278   S.CXXThisTypeOverride =
1279       S.Context.getLangOpts().HLSL ? T : S.Context.getPointerType(T);
1280 
1281   this->Enabled = true;
1282 }
1283 
1284 
1285 Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
1286   if (Enabled) {
1287     S.CXXThisTypeOverride = OldCXXThisTypeOverride;
1288   }
1289 }
1290 
1291 static void buildLambdaThisCaptureFixit(Sema &Sema, LambdaScopeInfo *LSI) {
1292   SourceLocation DiagLoc = LSI->IntroducerRange.getEnd();
1293   assert(!LSI->isCXXThisCaptured());
1294   //  [=, this] {};   // until C++20: Error: this when = is the default
1295   if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval &&
1296       !Sema.getLangOpts().CPlusPlus20)
1297     return;
1298   Sema.Diag(DiagLoc, diag::note_lambda_this_capture_fixit)
1299       << FixItHint::CreateInsertion(
1300              DiagLoc, LSI->NumExplicitCaptures > 0 ? ", this" : "this");
1301 }
1302 
1303 bool Sema::CheckCXXThisCapture(SourceLocation Loc, const bool Explicit,
1304     bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt,
1305     const bool ByCopy) {
1306   // We don't need to capture this in an unevaluated context.
1307   if (isUnevaluatedContext() && !Explicit)
1308     return true;
1309 
1310   assert((!ByCopy || Explicit) && "cannot implicitly capture *this by value");
1311 
1312   const int MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
1313                                          ? *FunctionScopeIndexToStopAt
1314                                          : FunctionScopes.size() - 1;
1315 
1316   // Check that we can capture the *enclosing object* (referred to by '*this')
1317   // by the capturing-entity/closure (lambda/block/etc) at
1318   // MaxFunctionScopesIndex-deep on the FunctionScopes stack.
1319 
1320   // Note: The *enclosing object* can only be captured by-value by a
1321   // closure that is a lambda, using the explicit notation:
1322   //    [*this] { ... }.
1323   // Every other capture of the *enclosing object* results in its by-reference
1324   // capture.
1325 
1326   // For a closure 'L' (at MaxFunctionScopesIndex in the FunctionScopes
1327   // stack), we can capture the *enclosing object* only if:
1328   // - 'L' has an explicit byref or byval capture of the *enclosing object*
1329   // -  or, 'L' has an implicit capture.
1330   // AND
1331   //   -- there is no enclosing closure
1332   //   -- or, there is some enclosing closure 'E' that has already captured the
1333   //      *enclosing object*, and every intervening closure (if any) between 'E'
1334   //      and 'L' can implicitly capture the *enclosing object*.
1335   //   -- or, every enclosing closure can implicitly capture the
1336   //      *enclosing object*
1337 
1338 
1339   unsigned NumCapturingClosures = 0;
1340   for (int idx = MaxFunctionScopesIndex; idx >= 0; idx--) {
1341     if (CapturingScopeInfo *CSI =
1342             dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
1343       if (CSI->CXXThisCaptureIndex != 0) {
1344         // 'this' is already being captured; there isn't anything more to do.
1345         CSI->Captures[CSI->CXXThisCaptureIndex - 1].markUsed(BuildAndDiagnose);
1346         break;
1347       }
1348       LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI);
1349       if (LSI && isGenericLambdaCallOperatorSpecialization(LSI->CallOperator)) {
1350         // This context can't implicitly capture 'this'; fail out.
1351         if (BuildAndDiagnose) {
1352           LSI->CallOperator->setInvalidDecl();
1353           Diag(Loc, diag::err_this_capture)
1354               << (Explicit && idx == MaxFunctionScopesIndex);
1355           if (!Explicit)
1356             buildLambdaThisCaptureFixit(*this, LSI);
1357         }
1358         return true;
1359       }
1360       if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
1361           CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
1362           CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
1363           CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion ||
1364           (Explicit && idx == MaxFunctionScopesIndex)) {
1365         // Regarding (Explicit && idx == MaxFunctionScopesIndex): only the first
1366         // iteration through can be an explicit capture, all enclosing closures,
1367         // if any, must perform implicit captures.
1368 
1369         // This closure can capture 'this'; continue looking upwards.
1370         NumCapturingClosures++;
1371         continue;
1372       }
1373       // This context can't implicitly capture 'this'; fail out.
1374       if (BuildAndDiagnose) {
1375         LSI->CallOperator->setInvalidDecl();
1376         Diag(Loc, diag::err_this_capture)
1377             << (Explicit && idx == MaxFunctionScopesIndex);
1378       }
1379       if (!Explicit)
1380         buildLambdaThisCaptureFixit(*this, LSI);
1381       return true;
1382     }
1383     break;
1384   }
1385   if (!BuildAndDiagnose) return false;
1386 
1387   // If we got here, then the closure at MaxFunctionScopesIndex on the
1388   // FunctionScopes stack, can capture the *enclosing object*, so capture it
1389   // (including implicit by-reference captures in any enclosing closures).
1390 
1391   // In the loop below, respect the ByCopy flag only for the closure requesting
1392   // the capture (i.e. first iteration through the loop below).  Ignore it for
1393   // all enclosing closure's up to NumCapturingClosures (since they must be
1394   // implicitly capturing the *enclosing  object* by reference (see loop
1395   // above)).
1396   assert((!ByCopy ||
1397           isa<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) &&
1398          "Only a lambda can capture the enclosing object (referred to by "
1399          "*this) by copy");
1400   QualType ThisTy = getCurrentThisType();
1401   for (int idx = MaxFunctionScopesIndex; NumCapturingClosures;
1402        --idx, --NumCapturingClosures) {
1403     CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);
1404 
1405     // The type of the corresponding data member (not a 'this' pointer if 'by
1406     // copy').
1407     QualType CaptureType = ByCopy ? ThisTy->getPointeeType() : ThisTy;
1408 
1409     bool isNested = NumCapturingClosures > 1;
1410     CSI->addThisCapture(isNested, Loc, CaptureType, ByCopy);
1411   }
1412   return false;
1413 }
1414 
1415 ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
1416   // C++20 [expr.prim.this]p1:
1417   //   The keyword this names a pointer to the object for which an
1418   //   implicit object member function is invoked or a non-static
1419   //   data member's initializer is evaluated.
1420   QualType ThisTy = getCurrentThisType();
1421 
1422   if (CheckCXXThisType(Loc, ThisTy))
1423     return ExprError();
1424 
1425   return BuildCXXThisExpr(Loc, ThisTy, /*IsImplicit=*/false);
1426 }
1427 
1428 bool Sema::CheckCXXThisType(SourceLocation Loc, QualType Type) {
1429   if (!Type.isNull())
1430     return false;
1431 
1432   // C++20 [expr.prim.this]p3:
1433   //   If a declaration declares a member function or member function template
1434   //   of a class X, the expression this is a prvalue of type
1435   //   "pointer to cv-qualifier-seq X" wherever X is the current class between
1436   //   the optional cv-qualifier-seq and the end of the function-definition,
1437   //   member-declarator, or declarator. It shall not appear within the
1438   //   declaration of either a static member function or an explicit object
1439   //   member function of the current class (although its type and value
1440   //   category are defined within such member functions as they are within
1441   //   an implicit object member function).
1442   DeclContext *DC = getFunctionLevelDeclContext();
1443   const auto *Method = dyn_cast<CXXMethodDecl>(DC);
1444   if (Method && Method->isExplicitObjectMemberFunction()) {
1445     Diag(Loc, diag::err_invalid_this_use) << 1;
1446   } else if (Method && isLambdaCallWithExplicitObjectParameter(CurContext)) {
1447     Diag(Loc, diag::err_invalid_this_use) << 1;
1448   } else {
1449     Diag(Loc, diag::err_invalid_this_use) << 0;
1450   }
1451   return true;
1452 }
1453 
1454 Expr *Sema::BuildCXXThisExpr(SourceLocation Loc, QualType Type,
1455                              bool IsImplicit) {
1456   auto *This = CXXThisExpr::Create(Context, Loc, Type, IsImplicit);
1457   MarkThisReferenced(This);
1458   return This;
1459 }
1460 
1461 void Sema::MarkThisReferenced(CXXThisExpr *This) {
1462   CheckCXXThisCapture(This->getExprLoc());
1463   if (This->isTypeDependent())
1464     return;
1465 
1466   // Check if 'this' is captured by value in a lambda with a dependent explicit
1467   // object parameter, and mark it as type-dependent as well if so.
1468   auto IsDependent = [&]() {
1469     for (auto *Scope : llvm::reverse(FunctionScopes)) {
1470       auto *LSI = dyn_cast<sema::LambdaScopeInfo>(Scope);
1471       if (!LSI)
1472         continue;
1473 
1474       if (LSI->Lambda && !LSI->Lambda->Encloses(CurContext) &&
1475           LSI->AfterParameterList)
1476         return false;
1477 
1478       // If this lambda captures 'this' by value, then 'this' is dependent iff
1479       // this lambda has a dependent explicit object parameter. If we can't
1480       // determine whether it does (e.g. because the CXXMethodDecl's type is
1481       // null), assume it doesn't.
1482       if (LSI->isCXXThisCaptured()) {
1483         if (!LSI->getCXXThisCapture().isCopyCapture())
1484           continue;
1485 
1486         const auto *MD = LSI->CallOperator;
1487         if (MD->getType().isNull())
1488           return false;
1489 
1490         const auto *Ty = MD->getType()->getAs<FunctionProtoType>();
1491         return Ty && MD->isExplicitObjectMemberFunction() &&
1492                Ty->getParamType(0)->isDependentType();
1493       }
1494     }
1495     return false;
1496   }();
1497 
1498   This->setCapturedByCopyInLambdaWithExplicitObjectParameter(IsDependent);
1499 }
1500 
1501 bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) {
1502   // If we're outside the body of a member function, then we'll have a specified
1503   // type for 'this'.
1504   if (CXXThisTypeOverride.isNull())
1505     return false;
1506 
1507   // Determine whether we're looking into a class that's currently being
1508   // defined.
1509   CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl();
1510   return Class && Class->isBeingDefined();
1511 }
1512 
1513 ExprResult
1514 Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
1515                                 SourceLocation LParenOrBraceLoc,
1516                                 MultiExprArg exprs,
1517                                 SourceLocation RParenOrBraceLoc,
1518                                 bool ListInitialization) {
1519   if (!TypeRep)
1520     return ExprError();
1521 
1522   TypeSourceInfo *TInfo;
1523   QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
1524   if (!TInfo)
1525     TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
1526 
1527   auto Result = BuildCXXTypeConstructExpr(TInfo, LParenOrBraceLoc, exprs,
1528                                           RParenOrBraceLoc, ListInitialization);
1529   // Avoid creating a non-type-dependent expression that contains typos.
1530   // Non-type-dependent expressions are liable to be discarded without
1531   // checking for embedded typos.
1532   if (!Result.isInvalid() && Result.get()->isInstantiationDependent() &&
1533       !Result.get()->isTypeDependent())
1534     Result = CorrectDelayedTyposInExpr(Result.get());
1535   else if (Result.isInvalid())
1536     Result = CreateRecoveryExpr(TInfo->getTypeLoc().getBeginLoc(),
1537                                 RParenOrBraceLoc, exprs, Ty);
1538   return Result;
1539 }
1540 
1541 ExprResult
1542 Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
1543                                 SourceLocation LParenOrBraceLoc,
1544                                 MultiExprArg Exprs,
1545                                 SourceLocation RParenOrBraceLoc,
1546                                 bool ListInitialization) {
1547   QualType Ty = TInfo->getType();
1548   SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
1549   SourceRange FullRange = SourceRange(TyBeginLoc, RParenOrBraceLoc);
1550 
1551   InitializedEntity Entity =
1552       InitializedEntity::InitializeTemporary(Context, TInfo);
1553   InitializationKind Kind =
1554       Exprs.size()
1555           ? ListInitialization
1556                 ? InitializationKind::CreateDirectList(
1557                       TyBeginLoc, LParenOrBraceLoc, RParenOrBraceLoc)
1558                 : InitializationKind::CreateDirect(TyBeginLoc, LParenOrBraceLoc,
1559                                                    RParenOrBraceLoc)
1560           : InitializationKind::CreateValue(TyBeginLoc, LParenOrBraceLoc,
1561                                             RParenOrBraceLoc);
1562 
1563   // C++17 [expr.type.conv]p1:
1564   //   If the type is a placeholder for a deduced class type, [...perform class
1565   //   template argument deduction...]
1566   // C++23:
1567   //   Otherwise, if the type contains a placeholder type, it is replaced by the
1568   //   type determined by placeholder type deduction.
1569   DeducedType *Deduced = Ty->getContainedDeducedType();
1570   if (Deduced && !Deduced->isDeduced() &&
1571       isa<DeducedTemplateSpecializationType>(Deduced)) {
1572     Ty = DeduceTemplateSpecializationFromInitializer(TInfo, Entity,
1573                                                      Kind, Exprs);
1574     if (Ty.isNull())
1575       return ExprError();
1576     Entity = InitializedEntity::InitializeTemporary(TInfo, Ty);
1577   } else if (Deduced && !Deduced->isDeduced()) {
1578     MultiExprArg Inits = Exprs;
1579     if (ListInitialization) {
1580       auto *ILE = cast<InitListExpr>(Exprs[0]);
1581       Inits = MultiExprArg(ILE->getInits(), ILE->getNumInits());
1582     }
1583 
1584     if (Inits.empty())
1585       return ExprError(Diag(TyBeginLoc, diag::err_auto_expr_init_no_expression)
1586                        << Ty << FullRange);
1587     if (Inits.size() > 1) {
1588       Expr *FirstBad = Inits[1];
1589       return ExprError(Diag(FirstBad->getBeginLoc(),
1590                             diag::err_auto_expr_init_multiple_expressions)
1591                        << Ty << FullRange);
1592     }
1593     if (getLangOpts().CPlusPlus23) {
1594       if (Ty->getAs<AutoType>())
1595         Diag(TyBeginLoc, diag::warn_cxx20_compat_auto_expr) << FullRange;
1596     }
1597     Expr *Deduce = Inits[0];
1598     if (isa<InitListExpr>(Deduce))
1599       return ExprError(
1600           Diag(Deduce->getBeginLoc(), diag::err_auto_expr_init_paren_braces)
1601           << ListInitialization << Ty << FullRange);
1602     QualType DeducedType;
1603     TemplateDeductionInfo Info(Deduce->getExprLoc());
1604     TemplateDeductionResult Result =
1605         DeduceAutoType(TInfo->getTypeLoc(), Deduce, DeducedType, Info);
1606     if (Result != TemplateDeductionResult::Success &&
1607         Result != TemplateDeductionResult::AlreadyDiagnosed)
1608       return ExprError(Diag(TyBeginLoc, diag::err_auto_expr_deduction_failure)
1609                        << Ty << Deduce->getType() << FullRange
1610                        << Deduce->getSourceRange());
1611     if (DeducedType.isNull()) {
1612       assert(Result == TemplateDeductionResult::AlreadyDiagnosed);
1613       return ExprError();
1614     }
1615 
1616     Ty = DeducedType;
1617     Entity = InitializedEntity::InitializeTemporary(TInfo, Ty);
1618   }
1619 
1620   if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs))
1621     return CXXUnresolvedConstructExpr::Create(
1622         Context, Ty.getNonReferenceType(), TInfo, LParenOrBraceLoc, Exprs,
1623         RParenOrBraceLoc, ListInitialization);
1624 
1625   // C++ [expr.type.conv]p1:
1626   // If the expression list is a parenthesized single expression, the type
1627   // conversion expression is equivalent (in definedness, and if defined in
1628   // meaning) to the corresponding cast expression.
1629   if (Exprs.size() == 1 && !ListInitialization &&
1630       !isa<InitListExpr>(Exprs[0])) {
1631     Expr *Arg = Exprs[0];
1632     return BuildCXXFunctionalCastExpr(TInfo, Ty, LParenOrBraceLoc, Arg,
1633                                       RParenOrBraceLoc);
1634   }
1635 
1636   //   For an expression of the form T(), T shall not be an array type.
1637   QualType ElemTy = Ty;
1638   if (Ty->isArrayType()) {
1639     if (!ListInitialization)
1640       return ExprError(Diag(TyBeginLoc, diag::err_value_init_for_array_type)
1641                          << FullRange);
1642     ElemTy = Context.getBaseElementType(Ty);
1643   }
1644 
1645   // Only construct objects with object types.
1646   // The standard doesn't explicitly forbid function types here, but that's an
1647   // obvious oversight, as there's no way to dynamically construct a function
1648   // in general.
1649   if (Ty->isFunctionType())
1650     return ExprError(Diag(TyBeginLoc, diag::err_init_for_function_type)
1651                        << Ty << FullRange);
1652 
1653   // C++17 [expr.type.conv]p2, per DR2351:
1654   //   If the type is cv void and the initializer is () or {}, the expression is
1655   //   a prvalue of the specified type that performs no initialization.
1656   if (Ty->isVoidType()) {
1657     if (Exprs.empty())
1658       return new (Context) CXXScalarValueInitExpr(
1659           Ty.getUnqualifiedType(), TInfo, Kind.getRange().getEnd());
1660     if (ListInitialization &&
1661         cast<InitListExpr>(Exprs[0])->getNumInits() == 0) {
1662       return CXXFunctionalCastExpr::Create(
1663           Context, Ty.getUnqualifiedType(), VK_PRValue, TInfo, CK_ToVoid,
1664           Exprs[0], /*Path=*/nullptr, CurFPFeatureOverrides(),
1665           Exprs[0]->getBeginLoc(), Exprs[0]->getEndLoc());
1666     }
1667   } else if (RequireCompleteType(TyBeginLoc, ElemTy,
1668                                  diag::err_invalid_incomplete_type_use,
1669                                  FullRange))
1670     return ExprError();
1671 
1672   //   Otherwise, the expression is a prvalue of the specified type whose
1673   //   result object is direct-initialized (11.6) with the initializer.
1674   InitializationSequence InitSeq(*this, Entity, Kind, Exprs);
1675   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs);
1676 
1677   if (Result.isInvalid())
1678     return Result;
1679 
1680   Expr *Inner = Result.get();
1681   if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner))
1682     Inner = BTE->getSubExpr();
1683   if (auto *CE = dyn_cast<ConstantExpr>(Inner);
1684       CE && CE->isImmediateInvocation())
1685     Inner = CE->getSubExpr();
1686   if (!isa<CXXTemporaryObjectExpr>(Inner) &&
1687       !isa<CXXScalarValueInitExpr>(Inner)) {
1688     // If we created a CXXTemporaryObjectExpr, that node also represents the
1689     // functional cast. Otherwise, create an explicit cast to represent
1690     // the syntactic form of a functional-style cast that was used here.
1691     //
1692     // FIXME: Creating a CXXFunctionalCastExpr around a CXXConstructExpr
1693     // would give a more consistent AST representation than using a
1694     // CXXTemporaryObjectExpr. It's also weird that the functional cast
1695     // is sometimes handled by initialization and sometimes not.
1696     QualType ResultType = Result.get()->getType();
1697     SourceRange Locs = ListInitialization
1698                            ? SourceRange()
1699                            : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc);
1700     Result = CXXFunctionalCastExpr::Create(
1701         Context, ResultType, Expr::getValueKindForType(Ty), TInfo, CK_NoOp,
1702         Result.get(), /*Path=*/nullptr, CurFPFeatureOverrides(),
1703         Locs.getBegin(), Locs.getEnd());
1704   }
1705 
1706   return Result;
1707 }
1708 
1709 bool Sema::isUsualDeallocationFunction(const CXXMethodDecl *Method) {
1710   // [CUDA] Ignore this function, if we can't call it.
1711   const FunctionDecl *Caller = getCurFunctionDecl(/*AllowLambda=*/true);
1712   if (getLangOpts().CUDA) {
1713     auto CallPreference = CUDA().IdentifyPreference(Caller, Method);
1714     // If it's not callable at all, it's not the right function.
1715     if (CallPreference < SemaCUDA::CFP_WrongSide)
1716       return false;
1717     if (CallPreference == SemaCUDA::CFP_WrongSide) {
1718       // Maybe. We have to check if there are better alternatives.
1719       DeclContext::lookup_result R =
1720           Method->getDeclContext()->lookup(Method->getDeclName());
1721       for (const auto *D : R) {
1722         if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
1723           if (CUDA().IdentifyPreference(Caller, FD) > SemaCUDA::CFP_WrongSide)
1724             return false;
1725         }
1726       }
1727       // We've found no better variants.
1728     }
1729   }
1730 
1731   SmallVector<const FunctionDecl*, 4> PreventedBy;
1732   bool Result = Method->isUsualDeallocationFunction(PreventedBy);
1733 
1734   if (Result || !getLangOpts().CUDA || PreventedBy.empty())
1735     return Result;
1736 
1737   // In case of CUDA, return true if none of the 1-argument deallocator
1738   // functions are actually callable.
1739   return llvm::none_of(PreventedBy, [&](const FunctionDecl *FD) {
1740     assert(FD->getNumParams() == 1 &&
1741            "Only single-operand functions should be in PreventedBy");
1742     return CUDA().IdentifyPreference(Caller, FD) >= SemaCUDA::CFP_HostDevice;
1743   });
1744 }
1745 
1746 /// Determine whether the given function is a non-placement
1747 /// deallocation function.
1748 static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) {
1749   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
1750     return S.isUsualDeallocationFunction(Method);
1751 
1752   if (FD->getOverloadedOperator() != OO_Delete &&
1753       FD->getOverloadedOperator() != OO_Array_Delete)
1754     return false;
1755 
1756   unsigned UsualParams = 1;
1757 
1758   if (S.getLangOpts().SizedDeallocation && UsualParams < FD->getNumParams() &&
1759       S.Context.hasSameUnqualifiedType(
1760           FD->getParamDecl(UsualParams)->getType(),
1761           S.Context.getSizeType()))
1762     ++UsualParams;
1763 
1764   if (S.getLangOpts().AlignedAllocation && UsualParams < FD->getNumParams() &&
1765       S.Context.hasSameUnqualifiedType(
1766           FD->getParamDecl(UsualParams)->getType(),
1767           S.Context.getTypeDeclType(S.getStdAlignValT())))
1768     ++UsualParams;
1769 
1770   return UsualParams == FD->getNumParams();
1771 }
1772 
1773 namespace {
1774   struct UsualDeallocFnInfo {
1775     UsualDeallocFnInfo() : Found(), FD(nullptr) {}
1776     UsualDeallocFnInfo(Sema &S, DeclAccessPair Found)
1777         : Found(Found), FD(dyn_cast<FunctionDecl>(Found->getUnderlyingDecl())),
1778           Destroying(false), HasSizeT(false), HasAlignValT(false),
1779           CUDAPref(SemaCUDA::CFP_Native) {
1780       // A function template declaration is never a usual deallocation function.
1781       if (!FD)
1782         return;
1783       unsigned NumBaseParams = 1;
1784       if (FD->isDestroyingOperatorDelete()) {
1785         Destroying = true;
1786         ++NumBaseParams;
1787       }
1788 
1789       if (NumBaseParams < FD->getNumParams() &&
1790           S.Context.hasSameUnqualifiedType(
1791               FD->getParamDecl(NumBaseParams)->getType(),
1792               S.Context.getSizeType())) {
1793         ++NumBaseParams;
1794         HasSizeT = true;
1795       }
1796 
1797       if (NumBaseParams < FD->getNumParams() &&
1798           FD->getParamDecl(NumBaseParams)->getType()->isAlignValT()) {
1799         ++NumBaseParams;
1800         HasAlignValT = true;
1801       }
1802 
1803       // In CUDA, determine how much we'd like / dislike to call this.
1804       if (S.getLangOpts().CUDA)
1805         CUDAPref = S.CUDA().IdentifyPreference(
1806             S.getCurFunctionDecl(/*AllowLambda=*/true), FD);
1807     }
1808 
1809     explicit operator bool() const { return FD; }
1810 
1811     bool isBetterThan(const UsualDeallocFnInfo &Other, bool WantSize,
1812                       bool WantAlign) const {
1813       // C++ P0722:
1814       //   A destroying operator delete is preferred over a non-destroying
1815       //   operator delete.
1816       if (Destroying != Other.Destroying)
1817         return Destroying;
1818 
1819       // C++17 [expr.delete]p10:
1820       //   If the type has new-extended alignment, a function with a parameter
1821       //   of type std::align_val_t is preferred; otherwise a function without
1822       //   such a parameter is preferred
1823       if (HasAlignValT != Other.HasAlignValT)
1824         return HasAlignValT == WantAlign;
1825 
1826       if (HasSizeT != Other.HasSizeT)
1827         return HasSizeT == WantSize;
1828 
1829       // Use CUDA call preference as a tiebreaker.
1830       return CUDAPref > Other.CUDAPref;
1831     }
1832 
1833     DeclAccessPair Found;
1834     FunctionDecl *FD;
1835     bool Destroying, HasSizeT, HasAlignValT;
1836     SemaCUDA::CUDAFunctionPreference CUDAPref;
1837   };
1838 }
1839 
1840 /// Determine whether a type has new-extended alignment. This may be called when
1841 /// the type is incomplete (for a delete-expression with an incomplete pointee
1842 /// type), in which case it will conservatively return false if the alignment is
1843 /// not known.
1844 static bool hasNewExtendedAlignment(Sema &S, QualType AllocType) {
1845   return S.getLangOpts().AlignedAllocation &&
1846          S.getASTContext().getTypeAlignIfKnown(AllocType) >
1847              S.getASTContext().getTargetInfo().getNewAlign();
1848 }
1849 
1850 /// Select the correct "usual" deallocation function to use from a selection of
1851 /// deallocation functions (either global or class-scope).
1852 static UsualDeallocFnInfo resolveDeallocationOverload(
1853     Sema &S, LookupResult &R, bool WantSize, bool WantAlign,
1854     llvm::SmallVectorImpl<UsualDeallocFnInfo> *BestFns = nullptr) {
1855   UsualDeallocFnInfo Best;
1856 
1857   for (auto I = R.begin(), E = R.end(); I != E; ++I) {
1858     UsualDeallocFnInfo Info(S, I.getPair());
1859     if (!Info || !isNonPlacementDeallocationFunction(S, Info.FD) ||
1860         Info.CUDAPref == SemaCUDA::CFP_Never)
1861       continue;
1862 
1863     if (!Best) {
1864       Best = Info;
1865       if (BestFns)
1866         BestFns->push_back(Info);
1867       continue;
1868     }
1869 
1870     if (Best.isBetterThan(Info, WantSize, WantAlign))
1871       continue;
1872 
1873     //   If more than one preferred function is found, all non-preferred
1874     //   functions are eliminated from further consideration.
1875     if (BestFns && Info.isBetterThan(Best, WantSize, WantAlign))
1876       BestFns->clear();
1877 
1878     Best = Info;
1879     if (BestFns)
1880       BestFns->push_back(Info);
1881   }
1882 
1883   return Best;
1884 }
1885 
1886 /// Determine whether a given type is a class for which 'delete[]' would call
1887 /// a member 'operator delete[]' with a 'size_t' parameter. This implies that
1888 /// we need to store the array size (even if the type is
1889 /// trivially-destructible).
1890 static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
1891                                          QualType allocType) {
1892   const RecordType *record =
1893     allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
1894   if (!record) return false;
1895 
1896   // Try to find an operator delete[] in class scope.
1897 
1898   DeclarationName deleteName =
1899     S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
1900   LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
1901   S.LookupQualifiedName(ops, record->getDecl());
1902 
1903   // We're just doing this for information.
1904   ops.suppressDiagnostics();
1905 
1906   // Very likely: there's no operator delete[].
1907   if (ops.empty()) return false;
1908 
1909   // If it's ambiguous, it should be illegal to call operator delete[]
1910   // on this thing, so it doesn't matter if we allocate extra space or not.
1911   if (ops.isAmbiguous()) return false;
1912 
1913   // C++17 [expr.delete]p10:
1914   //   If the deallocation functions have class scope, the one without a
1915   //   parameter of type std::size_t is selected.
1916   auto Best = resolveDeallocationOverload(
1917       S, ops, /*WantSize*/false,
1918       /*WantAlign*/hasNewExtendedAlignment(S, allocType));
1919   return Best && Best.HasSizeT;
1920 }
1921 
1922 ExprResult
1923 Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
1924                   SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
1925                   SourceLocation PlacementRParen, SourceRange TypeIdParens,
1926                   Declarator &D, Expr *Initializer) {
1927   std::optional<Expr *> ArraySize;
1928   // If the specified type is an array, unwrap it and save the expression.
1929   if (D.getNumTypeObjects() > 0 &&
1930       D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
1931     DeclaratorChunk &Chunk = D.getTypeObject(0);
1932     if (D.getDeclSpec().hasAutoTypeSpec())
1933       return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
1934         << D.getSourceRange());
1935     if (Chunk.Arr.hasStatic)
1936       return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
1937         << D.getSourceRange());
1938     if (!Chunk.Arr.NumElts && !Initializer)
1939       return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
1940         << D.getSourceRange());
1941 
1942     ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
1943     D.DropFirstTypeObject();
1944   }
1945 
1946   // Every dimension shall be of constant size.
1947   if (ArraySize) {
1948     for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
1949       if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
1950         break;
1951 
1952       DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
1953       if (Expr *NumElts = (Expr *)Array.NumElts) {
1954         if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
1955           // FIXME: GCC permits constant folding here. We should either do so consistently
1956           // or not do so at all, rather than changing behavior in C++14 onwards.
1957           if (getLangOpts().CPlusPlus14) {
1958             // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator
1959             //   shall be a converted constant expression (5.19) of type std::size_t
1960             //   and shall evaluate to a strictly positive value.
1961             llvm::APSInt Value(Context.getIntWidth(Context.getSizeType()));
1962             Array.NumElts
1963              = CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value,
1964                                                 CCEK_ArrayBound)
1965                  .get();
1966           } else {
1967             Array.NumElts =
1968                 VerifyIntegerConstantExpression(
1969                     NumElts, nullptr, diag::err_new_array_nonconst, AllowFold)
1970                     .get();
1971           }
1972           if (!Array.NumElts)
1973             return ExprError();
1974         }
1975       }
1976     }
1977   }
1978 
1979   TypeSourceInfo *TInfo = GetTypeForDeclarator(D);
1980   QualType AllocType = TInfo->getType();
1981   if (D.isInvalidType())
1982     return ExprError();
1983 
1984   SourceRange DirectInitRange;
1985   if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer))
1986     DirectInitRange = List->getSourceRange();
1987 
1988   return BuildCXXNew(SourceRange(StartLoc, D.getEndLoc()), UseGlobal,
1989                      PlacementLParen, PlacementArgs, PlacementRParen,
1990                      TypeIdParens, AllocType, TInfo, ArraySize, DirectInitRange,
1991                      Initializer);
1992 }
1993 
1994 static bool isLegalArrayNewInitializer(CXXNewInitializationStyle Style,
1995                                        Expr *Init, bool IsCPlusPlus20) {
1996   if (!Init)
1997     return true;
1998   if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
1999     return IsCPlusPlus20 || PLE->getNumExprs() == 0;
2000   if (isa<ImplicitValueInitExpr>(Init))
2001     return true;
2002   else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
2003     return !CCE->isListInitialization() &&
2004            CCE->getConstructor()->isDefaultConstructor();
2005   else if (Style == CXXNewInitializationStyle::Braces) {
2006     assert(isa<InitListExpr>(Init) &&
2007            "Shouldn't create list CXXConstructExprs for arrays.");
2008     return true;
2009   }
2010   return false;
2011 }
2012 
2013 bool
2014 Sema::isUnavailableAlignedAllocationFunction(const FunctionDecl &FD) const {
2015   if (!getLangOpts().AlignedAllocationUnavailable)
2016     return false;
2017   if (FD.isDefined())
2018     return false;
2019   std::optional<unsigned> AlignmentParam;
2020   if (FD.isReplaceableGlobalAllocationFunction(&AlignmentParam) &&
2021       AlignmentParam)
2022     return true;
2023   return false;
2024 }
2025 
2026 // Emit a diagnostic if an aligned allocation/deallocation function that is not
2027 // implemented in the standard library is selected.
2028 void Sema::diagnoseUnavailableAlignedAllocation(const FunctionDecl &FD,
2029                                                 SourceLocation Loc) {
2030   if (isUnavailableAlignedAllocationFunction(FD)) {
2031     const llvm::Triple &T = getASTContext().getTargetInfo().getTriple();
2032     StringRef OSName = AvailabilityAttr::getPlatformNameSourceSpelling(
2033         getASTContext().getTargetInfo().getPlatformName());
2034     VersionTuple OSVersion = alignedAllocMinVersion(T.getOS());
2035 
2036     OverloadedOperatorKind Kind = FD.getDeclName().getCXXOverloadedOperator();
2037     bool IsDelete = Kind == OO_Delete || Kind == OO_Array_Delete;
2038     Diag(Loc, diag::err_aligned_allocation_unavailable)
2039         << IsDelete << FD.getType().getAsString() << OSName
2040         << OSVersion.getAsString() << OSVersion.empty();
2041     Diag(Loc, diag::note_silence_aligned_allocation_unavailable);
2042   }
2043 }
2044 
2045 ExprResult Sema::BuildCXXNew(SourceRange Range, bool UseGlobal,
2046                              SourceLocation PlacementLParen,
2047                              MultiExprArg PlacementArgs,
2048                              SourceLocation PlacementRParen,
2049                              SourceRange TypeIdParens, QualType AllocType,
2050                              TypeSourceInfo *AllocTypeInfo,
2051                              std::optional<Expr *> ArraySize,
2052                              SourceRange DirectInitRange, Expr *Initializer) {
2053   SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
2054   SourceLocation StartLoc = Range.getBegin();
2055 
2056   CXXNewInitializationStyle InitStyle;
2057   if (DirectInitRange.isValid()) {
2058     assert(Initializer && "Have parens but no initializer.");
2059     InitStyle = CXXNewInitializationStyle::Parens;
2060   } else if (isa_and_nonnull<InitListExpr>(Initializer))
2061     InitStyle = CXXNewInitializationStyle::Braces;
2062   else {
2063     assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||
2064             isa<CXXConstructExpr>(Initializer)) &&
2065            "Initializer expression that cannot have been implicitly created.");
2066     InitStyle = CXXNewInitializationStyle::None;
2067   }
2068 
2069   MultiExprArg Exprs(&Initializer, Initializer ? 1 : 0);
2070   if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) {
2071     assert(InitStyle == CXXNewInitializationStyle::Parens &&
2072            "paren init for non-call init");
2073     Exprs = MultiExprArg(List->getExprs(), List->getNumExprs());
2074   }
2075 
2076   // C++11 [expr.new]p15:
2077   //   A new-expression that creates an object of type T initializes that
2078   //   object as follows:
2079   InitializationKind Kind = [&] {
2080     switch (InitStyle) {
2081     //     - If the new-initializer is omitted, the object is default-
2082     //       initialized (8.5); if no initialization is performed,
2083     //       the object has indeterminate value
2084     case CXXNewInitializationStyle::None:
2085       return InitializationKind::CreateDefault(TypeRange.getBegin());
2086     //     - Otherwise, the new-initializer is interpreted according to the
2087     //       initialization rules of 8.5 for direct-initialization.
2088     case CXXNewInitializationStyle::Parens:
2089       return InitializationKind::CreateDirect(TypeRange.getBegin(),
2090                                               DirectInitRange.getBegin(),
2091                                               DirectInitRange.getEnd());
2092     case CXXNewInitializationStyle::Braces:
2093       return InitializationKind::CreateDirectList(TypeRange.getBegin(),
2094                                                   Initializer->getBeginLoc(),
2095                                                   Initializer->getEndLoc());
2096     }
2097     llvm_unreachable("Unknown initialization kind");
2098   }();
2099 
2100   // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for.
2101   auto *Deduced = AllocType->getContainedDeducedType();
2102   if (Deduced && !Deduced->isDeduced() &&
2103       isa<DeducedTemplateSpecializationType>(Deduced)) {
2104     if (ArraySize)
2105       return ExprError(
2106           Diag(*ArraySize ? (*ArraySize)->getExprLoc() : TypeRange.getBegin(),
2107                diag::err_deduced_class_template_compound_type)
2108           << /*array*/ 2
2109           << (*ArraySize ? (*ArraySize)->getSourceRange() : TypeRange));
2110 
2111     InitializedEntity Entity
2112       = InitializedEntity::InitializeNew(StartLoc, AllocType);
2113     AllocType = DeduceTemplateSpecializationFromInitializer(
2114         AllocTypeInfo, Entity, Kind, Exprs);
2115     if (AllocType.isNull())
2116       return ExprError();
2117   } else if (Deduced && !Deduced->isDeduced()) {
2118     MultiExprArg Inits = Exprs;
2119     bool Braced = (InitStyle == CXXNewInitializationStyle::Braces);
2120     if (Braced) {
2121       auto *ILE = cast<InitListExpr>(Exprs[0]);
2122       Inits = MultiExprArg(ILE->getInits(), ILE->getNumInits());
2123     }
2124 
2125     if (InitStyle == CXXNewInitializationStyle::None || Inits.empty())
2126       return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
2127                        << AllocType << TypeRange);
2128     if (Inits.size() > 1) {
2129       Expr *FirstBad = Inits[1];
2130       return ExprError(Diag(FirstBad->getBeginLoc(),
2131                             diag::err_auto_new_ctor_multiple_expressions)
2132                        << AllocType << TypeRange);
2133     }
2134     if (Braced && !getLangOpts().CPlusPlus17)
2135       Diag(Initializer->getBeginLoc(), diag::ext_auto_new_list_init)
2136           << AllocType << TypeRange;
2137     Expr *Deduce = Inits[0];
2138     if (isa<InitListExpr>(Deduce))
2139       return ExprError(
2140           Diag(Deduce->getBeginLoc(), diag::err_auto_expr_init_paren_braces)
2141           << Braced << AllocType << TypeRange);
2142     QualType DeducedType;
2143     TemplateDeductionInfo Info(Deduce->getExprLoc());
2144     TemplateDeductionResult Result =
2145         DeduceAutoType(AllocTypeInfo->getTypeLoc(), Deduce, DeducedType, Info);
2146     if (Result != TemplateDeductionResult::Success &&
2147         Result != TemplateDeductionResult::AlreadyDiagnosed)
2148       return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
2149                        << AllocType << Deduce->getType() << TypeRange
2150                        << Deduce->getSourceRange());
2151     if (DeducedType.isNull()) {
2152       assert(Result == TemplateDeductionResult::AlreadyDiagnosed);
2153       return ExprError();
2154     }
2155     AllocType = DeducedType;
2156   }
2157 
2158   // Per C++0x [expr.new]p5, the type being constructed may be a
2159   // typedef of an array type.
2160   // Dependent case will be handled separately.
2161   if (!ArraySize && !AllocType->isDependentType()) {
2162     if (const ConstantArrayType *Array
2163                               = Context.getAsConstantArrayType(AllocType)) {
2164       ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
2165                                          Context.getSizeType(),
2166                                          TypeRange.getEnd());
2167       AllocType = Array->getElementType();
2168     }
2169   }
2170 
2171   if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
2172     return ExprError();
2173 
2174   if (ArraySize && !checkArrayElementAlignment(AllocType, TypeRange.getBegin()))
2175     return ExprError();
2176 
2177   // In ARC, infer 'retaining' for the allocated
2178   if (getLangOpts().ObjCAutoRefCount &&
2179       AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
2180       AllocType->isObjCLifetimeType()) {
2181     AllocType = Context.getLifetimeQualifiedType(AllocType,
2182                                     AllocType->getObjCARCImplicitLifetime());
2183   }
2184 
2185   QualType ResultType = Context.getPointerType(AllocType);
2186 
2187   if (ArraySize && *ArraySize &&
2188       (*ArraySize)->getType()->isNonOverloadPlaceholderType()) {
2189     ExprResult result = CheckPlaceholderExpr(*ArraySize);
2190     if (result.isInvalid()) return ExprError();
2191     ArraySize = result.get();
2192   }
2193   // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
2194   //   integral or enumeration type with a non-negative value."
2195   // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
2196   //   enumeration type, or a class type for which a single non-explicit
2197   //   conversion function to integral or unscoped enumeration type exists.
2198   // C++1y [expr.new]p6: The expression [...] is implicitly converted to
2199   //   std::size_t.
2200   std::optional<uint64_t> KnownArraySize;
2201   if (ArraySize && *ArraySize && !(*ArraySize)->isTypeDependent()) {
2202     ExprResult ConvertedSize;
2203     if (getLangOpts().CPlusPlus14) {
2204       assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?");
2205 
2206       ConvertedSize = PerformImplicitConversion(
2207           *ArraySize, Context.getSizeType(), AssignmentAction::Converting);
2208 
2209       if (!ConvertedSize.isInvalid() &&
2210           (*ArraySize)->getType()->getAs<RecordType>())
2211         // Diagnose the compatibility of this conversion.
2212         Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion)
2213           << (*ArraySize)->getType() << 0 << "'size_t'";
2214     } else {
2215       class SizeConvertDiagnoser : public ICEConvertDiagnoser {
2216       protected:
2217         Expr *ArraySize;
2218 
2219       public:
2220         SizeConvertDiagnoser(Expr *ArraySize)
2221             : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false),
2222               ArraySize(ArraySize) {}
2223 
2224         SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
2225                                              QualType T) override {
2226           return S.Diag(Loc, diag::err_array_size_not_integral)
2227                    << S.getLangOpts().CPlusPlus11 << T;
2228         }
2229 
2230         SemaDiagnosticBuilder diagnoseIncomplete(
2231             Sema &S, SourceLocation Loc, QualType T) override {
2232           return S.Diag(Loc, diag::err_array_size_incomplete_type)
2233                    << T << ArraySize->getSourceRange();
2234         }
2235 
2236         SemaDiagnosticBuilder diagnoseExplicitConv(
2237             Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
2238           return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy;
2239         }
2240 
2241         SemaDiagnosticBuilder noteExplicitConv(
2242             Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
2243           return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
2244                    << ConvTy->isEnumeralType() << ConvTy;
2245         }
2246 
2247         SemaDiagnosticBuilder diagnoseAmbiguous(
2248             Sema &S, SourceLocation Loc, QualType T) override {
2249           return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T;
2250         }
2251 
2252         SemaDiagnosticBuilder noteAmbiguous(
2253             Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
2254           return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
2255                    << ConvTy->isEnumeralType() << ConvTy;
2256         }
2257 
2258         SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
2259                                                  QualType T,
2260                                                  QualType ConvTy) override {
2261           return S.Diag(Loc,
2262                         S.getLangOpts().CPlusPlus11
2263                           ? diag::warn_cxx98_compat_array_size_conversion
2264                           : diag::ext_array_size_conversion)
2265                    << T << ConvTy->isEnumeralType() << ConvTy;
2266         }
2267       } SizeDiagnoser(*ArraySize);
2268 
2269       ConvertedSize = PerformContextualImplicitConversion(StartLoc, *ArraySize,
2270                                                           SizeDiagnoser);
2271     }
2272     if (ConvertedSize.isInvalid())
2273       return ExprError();
2274 
2275     ArraySize = ConvertedSize.get();
2276     QualType SizeType = (*ArraySize)->getType();
2277 
2278     if (!SizeType->isIntegralOrUnscopedEnumerationType())
2279       return ExprError();
2280 
2281     // C++98 [expr.new]p7:
2282     //   The expression in a direct-new-declarator shall have integral type
2283     //   with a non-negative value.
2284     //
2285     // Let's see if this is a constant < 0. If so, we reject it out of hand,
2286     // per CWG1464. Otherwise, if it's not a constant, we must have an
2287     // unparenthesized array type.
2288 
2289     // We've already performed any required implicit conversion to integer or
2290     // unscoped enumeration type.
2291     // FIXME: Per CWG1464, we are required to check the value prior to
2292     // converting to size_t. This will never find a negative array size in
2293     // C++14 onwards, because Value is always unsigned here!
2294     if (std::optional<llvm::APSInt> Value =
2295             (*ArraySize)->getIntegerConstantExpr(Context)) {
2296       if (Value->isSigned() && Value->isNegative()) {
2297         return ExprError(Diag((*ArraySize)->getBeginLoc(),
2298                               diag::err_typecheck_negative_array_size)
2299                          << (*ArraySize)->getSourceRange());
2300       }
2301 
2302       if (!AllocType->isDependentType()) {
2303         unsigned ActiveSizeBits =
2304             ConstantArrayType::getNumAddressingBits(Context, AllocType, *Value);
2305         if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context))
2306           return ExprError(
2307               Diag((*ArraySize)->getBeginLoc(), diag::err_array_too_large)
2308               << toString(*Value, 10) << (*ArraySize)->getSourceRange());
2309       }
2310 
2311       KnownArraySize = Value->getZExtValue();
2312     } else if (TypeIdParens.isValid()) {
2313       // Can't have dynamic array size when the type-id is in parentheses.
2314       Diag((*ArraySize)->getBeginLoc(), diag::ext_new_paren_array_nonconst)
2315           << (*ArraySize)->getSourceRange()
2316           << FixItHint::CreateRemoval(TypeIdParens.getBegin())
2317           << FixItHint::CreateRemoval(TypeIdParens.getEnd());
2318 
2319       TypeIdParens = SourceRange();
2320     }
2321 
2322     // Note that we do *not* convert the argument in any way.  It can
2323     // be signed, larger than size_t, whatever.
2324   }
2325 
2326   FunctionDecl *OperatorNew = nullptr;
2327   FunctionDecl *OperatorDelete = nullptr;
2328   unsigned Alignment =
2329       AllocType->isDependentType() ? 0 : Context.getTypeAlign(AllocType);
2330   unsigned NewAlignment = Context.getTargetInfo().getNewAlign();
2331   bool PassAlignment = getLangOpts().AlignedAllocation &&
2332                        Alignment > NewAlignment;
2333 
2334   if (CheckArgsForPlaceholders(PlacementArgs))
2335     return ExprError();
2336 
2337   AllocationFunctionScope Scope = UseGlobal ? AFS_Global : AFS_Both;
2338   if (!AllocType->isDependentType() &&
2339       !Expr::hasAnyTypeDependentArguments(PlacementArgs) &&
2340       FindAllocationFunctions(
2341           StartLoc, SourceRange(PlacementLParen, PlacementRParen), Scope, Scope,
2342           AllocType, ArraySize.has_value(), PassAlignment, PlacementArgs,
2343           OperatorNew, OperatorDelete))
2344     return ExprError();
2345 
2346   // If this is an array allocation, compute whether the usual array
2347   // deallocation function for the type has a size_t parameter.
2348   bool UsualArrayDeleteWantsSize = false;
2349   if (ArraySize && !AllocType->isDependentType())
2350     UsualArrayDeleteWantsSize =
2351         doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
2352 
2353   SmallVector<Expr *, 8> AllPlaceArgs;
2354   if (OperatorNew) {
2355     auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>();
2356     VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction
2357                                                     : VariadicDoesNotApply;
2358 
2359     // We've already converted the placement args, just fill in any default
2360     // arguments. Skip the first parameter because we don't have a corresponding
2361     // argument. Skip the second parameter too if we're passing in the
2362     // alignment; we've already filled it in.
2363     unsigned NumImplicitArgs = PassAlignment ? 2 : 1;
2364     if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto,
2365                                NumImplicitArgs, PlacementArgs, AllPlaceArgs,
2366                                CallType))
2367       return ExprError();
2368 
2369     if (!AllPlaceArgs.empty())
2370       PlacementArgs = AllPlaceArgs;
2371 
2372     // We would like to perform some checking on the given `operator new` call,
2373     // but the PlacementArgs does not contain the implicit arguments,
2374     // namely allocation size and maybe allocation alignment,
2375     // so we need to conjure them.
2376 
2377     QualType SizeTy = Context.getSizeType();
2378     unsigned SizeTyWidth = Context.getTypeSize(SizeTy);
2379 
2380     llvm::APInt SingleEltSize(
2381         SizeTyWidth, Context.getTypeSizeInChars(AllocType).getQuantity());
2382 
2383     // How many bytes do we want to allocate here?
2384     std::optional<llvm::APInt> AllocationSize;
2385     if (!ArraySize && !AllocType->isDependentType()) {
2386       // For non-array operator new, we only want to allocate one element.
2387       AllocationSize = SingleEltSize;
2388     } else if (KnownArraySize && !AllocType->isDependentType()) {
2389       // For array operator new, only deal with static array size case.
2390       bool Overflow;
2391       AllocationSize = llvm::APInt(SizeTyWidth, *KnownArraySize)
2392                            .umul_ov(SingleEltSize, Overflow);
2393       (void)Overflow;
2394       assert(
2395           !Overflow &&
2396           "Expected that all the overflows would have been handled already.");
2397     }
2398 
2399     IntegerLiteral AllocationSizeLiteral(
2400         Context, AllocationSize.value_or(llvm::APInt::getZero(SizeTyWidth)),
2401         SizeTy, SourceLocation());
2402     // Otherwise, if we failed to constant-fold the allocation size, we'll
2403     // just give up and pass-in something opaque, that isn't a null pointer.
2404     OpaqueValueExpr OpaqueAllocationSize(SourceLocation(), SizeTy, VK_PRValue,
2405                                          OK_Ordinary, /*SourceExpr=*/nullptr);
2406 
2407     // Let's synthesize the alignment argument in case we will need it.
2408     // Since we *really* want to allocate these on stack, this is slightly ugly
2409     // because there might not be a `std::align_val_t` type.
2410     EnumDecl *StdAlignValT = getStdAlignValT();
2411     QualType AlignValT =
2412         StdAlignValT ? Context.getTypeDeclType(StdAlignValT) : SizeTy;
2413     IntegerLiteral AlignmentLiteral(
2414         Context,
2415         llvm::APInt(Context.getTypeSize(SizeTy),
2416                     Alignment / Context.getCharWidth()),
2417         SizeTy, SourceLocation());
2418     ImplicitCastExpr DesiredAlignment(ImplicitCastExpr::OnStack, AlignValT,
2419                                       CK_IntegralCast, &AlignmentLiteral,
2420                                       VK_PRValue, FPOptionsOverride());
2421 
2422     // Adjust placement args by prepending conjured size and alignment exprs.
2423     llvm::SmallVector<Expr *, 8> CallArgs;
2424     CallArgs.reserve(NumImplicitArgs + PlacementArgs.size());
2425     CallArgs.emplace_back(AllocationSize
2426                               ? static_cast<Expr *>(&AllocationSizeLiteral)
2427                               : &OpaqueAllocationSize);
2428     if (PassAlignment)
2429       CallArgs.emplace_back(&DesiredAlignment);
2430     CallArgs.insert(CallArgs.end(), PlacementArgs.begin(), PlacementArgs.end());
2431 
2432     DiagnoseSentinelCalls(OperatorNew, PlacementLParen, CallArgs);
2433 
2434     checkCall(OperatorNew, Proto, /*ThisArg=*/nullptr, CallArgs,
2435               /*IsMemberFunction=*/false, StartLoc, Range, CallType);
2436 
2437     // Warn if the type is over-aligned and is being allocated by (unaligned)
2438     // global operator new.
2439     if (PlacementArgs.empty() && !PassAlignment &&
2440         (OperatorNew->isImplicit() ||
2441          (OperatorNew->getBeginLoc().isValid() &&
2442           getSourceManager().isInSystemHeader(OperatorNew->getBeginLoc())))) {
2443       if (Alignment > NewAlignment)
2444         Diag(StartLoc, diag::warn_overaligned_type)
2445             << AllocType
2446             << unsigned(Alignment / Context.getCharWidth())
2447             << unsigned(NewAlignment / Context.getCharWidth());
2448     }
2449   }
2450 
2451   // Array 'new' can't have any initializers except empty parentheses.
2452   // Initializer lists are also allowed, in C++11. Rely on the parser for the
2453   // dialect distinction.
2454   if (ArraySize && !isLegalArrayNewInitializer(InitStyle, Initializer,
2455                                                getLangOpts().CPlusPlus20)) {
2456     SourceRange InitRange(Exprs.front()->getBeginLoc(),
2457                           Exprs.back()->getEndLoc());
2458     Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
2459     return ExprError();
2460   }
2461 
2462   // If we can perform the initialization, and we've not already done so,
2463   // do it now.
2464   if (!AllocType->isDependentType() &&
2465       !Expr::hasAnyTypeDependentArguments(Exprs)) {
2466     // The type we initialize is the complete type, including the array bound.
2467     QualType InitType;
2468     if (KnownArraySize)
2469       InitType = Context.getConstantArrayType(
2470           AllocType,
2471           llvm::APInt(Context.getTypeSize(Context.getSizeType()),
2472                       *KnownArraySize),
2473           *ArraySize, ArraySizeModifier::Normal, 0);
2474     else if (ArraySize)
2475       InitType = Context.getIncompleteArrayType(AllocType,
2476                                                 ArraySizeModifier::Normal, 0);
2477     else
2478       InitType = AllocType;
2479 
2480     InitializedEntity Entity
2481       = InitializedEntity::InitializeNew(StartLoc, InitType);
2482     InitializationSequence InitSeq(*this, Entity, Kind, Exprs);
2483     ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind, Exprs);
2484     if (FullInit.isInvalid())
2485       return ExprError();
2486 
2487     // FullInit is our initializer; strip off CXXBindTemporaryExprs, because
2488     // we don't want the initialized object to be destructed.
2489     // FIXME: We should not create these in the first place.
2490     if (CXXBindTemporaryExpr *Binder =
2491             dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
2492       FullInit = Binder->getSubExpr();
2493 
2494     Initializer = FullInit.get();
2495 
2496     // FIXME: If we have a KnownArraySize, check that the array bound of the
2497     // initializer is no greater than that constant value.
2498 
2499     if (ArraySize && !*ArraySize) {
2500       auto *CAT = Context.getAsConstantArrayType(Initializer->getType());
2501       if (CAT) {
2502         // FIXME: Track that the array size was inferred rather than explicitly
2503         // specified.
2504         ArraySize = IntegerLiteral::Create(
2505             Context, CAT->getSize(), Context.getSizeType(), TypeRange.getEnd());
2506       } else {
2507         Diag(TypeRange.getEnd(), diag::err_new_array_size_unknown_from_init)
2508             << Initializer->getSourceRange();
2509       }
2510     }
2511   }
2512 
2513   // Mark the new and delete operators as referenced.
2514   if (OperatorNew) {
2515     if (DiagnoseUseOfDecl(OperatorNew, StartLoc))
2516       return ExprError();
2517     MarkFunctionReferenced(StartLoc, OperatorNew);
2518   }
2519   if (OperatorDelete) {
2520     if (DiagnoseUseOfDecl(OperatorDelete, StartLoc))
2521       return ExprError();
2522     MarkFunctionReferenced(StartLoc, OperatorDelete);
2523   }
2524 
2525   return CXXNewExpr::Create(Context, UseGlobal, OperatorNew, OperatorDelete,
2526                             PassAlignment, UsualArrayDeleteWantsSize,
2527                             PlacementArgs, TypeIdParens, ArraySize, InitStyle,
2528                             Initializer, ResultType, AllocTypeInfo, Range,
2529                             DirectInitRange);
2530 }
2531 
2532 bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
2533                               SourceRange R) {
2534   // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
2535   //   abstract class type or array thereof.
2536   if (AllocType->isFunctionType())
2537     return Diag(Loc, diag::err_bad_new_type)
2538       << AllocType << 0 << R;
2539   else if (AllocType->isReferenceType())
2540     return Diag(Loc, diag::err_bad_new_type)
2541       << AllocType << 1 << R;
2542   else if (!AllocType->isDependentType() &&
2543            RequireCompleteSizedType(
2544                Loc, AllocType, diag::err_new_incomplete_or_sizeless_type, R))
2545     return true;
2546   else if (RequireNonAbstractType(Loc, AllocType,
2547                                   diag::err_allocation_of_abstract_type))
2548     return true;
2549   else if (AllocType->isVariablyModifiedType())
2550     return Diag(Loc, diag::err_variably_modified_new_type)
2551              << AllocType;
2552   else if (AllocType.getAddressSpace() != LangAS::Default &&
2553            !getLangOpts().OpenCLCPlusPlus)
2554     return Diag(Loc, diag::err_address_space_qualified_new)
2555       << AllocType.getUnqualifiedType()
2556       << AllocType.getQualifiers().getAddressSpaceAttributePrintValue();
2557   else if (getLangOpts().ObjCAutoRefCount) {
2558     if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
2559       QualType BaseAllocType = Context.getBaseElementType(AT);
2560       if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
2561           BaseAllocType->isObjCLifetimeType())
2562         return Diag(Loc, diag::err_arc_new_array_without_ownership)
2563           << BaseAllocType;
2564     }
2565   }
2566 
2567   return false;
2568 }
2569 
2570 static bool resolveAllocationOverload(
2571     Sema &S, LookupResult &R, SourceRange Range, SmallVectorImpl<Expr *> &Args,
2572     bool &PassAlignment, FunctionDecl *&Operator,
2573     OverloadCandidateSet *AlignedCandidates, Expr *AlignArg, bool Diagnose) {
2574   OverloadCandidateSet Candidates(R.getNameLoc(),
2575                                   OverloadCandidateSet::CSK_Normal);
2576   for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
2577        Alloc != AllocEnd; ++Alloc) {
2578     // Even member operator new/delete are implicitly treated as
2579     // static, so don't use AddMemberCandidate.
2580     NamedDecl *D = (*Alloc)->getUnderlyingDecl();
2581 
2582     if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
2583       S.AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
2584                                      /*ExplicitTemplateArgs=*/nullptr, Args,
2585                                      Candidates,
2586                                      /*SuppressUserConversions=*/false);
2587       continue;
2588     }
2589 
2590     FunctionDecl *Fn = cast<FunctionDecl>(D);
2591     S.AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates,
2592                            /*SuppressUserConversions=*/false);
2593   }
2594 
2595   // Do the resolution.
2596   OverloadCandidateSet::iterator Best;
2597   switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) {
2598   case OR_Success: {
2599     // Got one!
2600     FunctionDecl *FnDecl = Best->Function;
2601     if (S.CheckAllocationAccess(R.getNameLoc(), Range, R.getNamingClass(),
2602                                 Best->FoundDecl) == Sema::AR_inaccessible)
2603       return true;
2604 
2605     Operator = FnDecl;
2606     return false;
2607   }
2608 
2609   case OR_No_Viable_Function:
2610     // C++17 [expr.new]p13:
2611     //   If no matching function is found and the allocated object type has
2612     //   new-extended alignment, the alignment argument is removed from the
2613     //   argument list, and overload resolution is performed again.
2614     if (PassAlignment) {
2615       PassAlignment = false;
2616       AlignArg = Args[1];
2617       Args.erase(Args.begin() + 1);
2618       return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
2619                                        Operator, &Candidates, AlignArg,
2620                                        Diagnose);
2621     }
2622 
2623     // MSVC will fall back on trying to find a matching global operator new
2624     // if operator new[] cannot be found.  Also, MSVC will leak by not
2625     // generating a call to operator delete or operator delete[], but we
2626     // will not replicate that bug.
2627     // FIXME: Find out how this interacts with the std::align_val_t fallback
2628     // once MSVC implements it.
2629     if (R.getLookupName().getCXXOverloadedOperator() == OO_Array_New &&
2630         S.Context.getLangOpts().MSVCCompat) {
2631       R.clear();
2632       R.setLookupName(S.Context.DeclarationNames.getCXXOperatorName(OO_New));
2633       S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl());
2634       // FIXME: This will give bad diagnostics pointing at the wrong functions.
2635       return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
2636                                        Operator, /*Candidates=*/nullptr,
2637                                        /*AlignArg=*/nullptr, Diagnose);
2638     }
2639 
2640     if (Diagnose) {
2641       // If this is an allocation of the form 'new (p) X' for some object
2642       // pointer p (or an expression that will decay to such a pointer),
2643       // diagnose the missing inclusion of <new>.
2644       if (!R.isClassLookup() && Args.size() == 2 &&
2645           (Args[1]->getType()->isObjectPointerType() ||
2646            Args[1]->getType()->isArrayType())) {
2647         S.Diag(R.getNameLoc(), diag::err_need_header_before_placement_new)
2648             << R.getLookupName() << Range;
2649         // Listing the candidates is unlikely to be useful; skip it.
2650         return true;
2651       }
2652 
2653       // Finish checking all candidates before we note any. This checking can
2654       // produce additional diagnostics so can't be interleaved with our
2655       // emission of notes.
2656       //
2657       // For an aligned allocation, separately check the aligned and unaligned
2658       // candidates with their respective argument lists.
2659       SmallVector<OverloadCandidate*, 32> Cands;
2660       SmallVector<OverloadCandidate*, 32> AlignedCands;
2661       llvm::SmallVector<Expr*, 4> AlignedArgs;
2662       if (AlignedCandidates) {
2663         auto IsAligned = [](OverloadCandidate &C) {
2664           return C.Function->getNumParams() > 1 &&
2665                  C.Function->getParamDecl(1)->getType()->isAlignValT();
2666         };
2667         auto IsUnaligned = [&](OverloadCandidate &C) { return !IsAligned(C); };
2668 
2669         AlignedArgs.reserve(Args.size() + 1);
2670         AlignedArgs.push_back(Args[0]);
2671         AlignedArgs.push_back(AlignArg);
2672         AlignedArgs.append(Args.begin() + 1, Args.end());
2673         AlignedCands = AlignedCandidates->CompleteCandidates(
2674             S, OCD_AllCandidates, AlignedArgs, R.getNameLoc(), IsAligned);
2675 
2676         Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args,
2677                                               R.getNameLoc(), IsUnaligned);
2678       } else {
2679         Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args,
2680                                               R.getNameLoc());
2681       }
2682 
2683       S.Diag(R.getNameLoc(), diag::err_ovl_no_viable_function_in_call)
2684           << R.getLookupName() << Range;
2685       if (AlignedCandidates)
2686         AlignedCandidates->NoteCandidates(S, AlignedArgs, AlignedCands, "",
2687                                           R.getNameLoc());
2688       Candidates.NoteCandidates(S, Args, Cands, "", R.getNameLoc());
2689     }
2690     return true;
2691 
2692   case OR_Ambiguous:
2693     if (Diagnose) {
2694       Candidates.NoteCandidates(
2695           PartialDiagnosticAt(R.getNameLoc(),
2696                               S.PDiag(diag::err_ovl_ambiguous_call)
2697                                   << R.getLookupName() << Range),
2698           S, OCD_AmbiguousCandidates, Args);
2699     }
2700     return true;
2701 
2702   case OR_Deleted: {
2703     if (Diagnose)
2704       S.DiagnoseUseOfDeletedFunction(R.getNameLoc(), Range, R.getLookupName(),
2705                                      Candidates, Best->Function, Args);
2706     return true;
2707   }
2708   }
2709   llvm_unreachable("Unreachable, bad result from BestViableFunction");
2710 }
2711 
2712 bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
2713                                    AllocationFunctionScope NewScope,
2714                                    AllocationFunctionScope DeleteScope,
2715                                    QualType AllocType, bool IsArray,
2716                                    bool &PassAlignment, MultiExprArg PlaceArgs,
2717                                    FunctionDecl *&OperatorNew,
2718                                    FunctionDecl *&OperatorDelete,
2719                                    bool Diagnose) {
2720   // --- Choosing an allocation function ---
2721   // C++ 5.3.4p8 - 14 & 18
2722   // 1) If looking in AFS_Global scope for allocation functions, only look in
2723   //    the global scope. Else, if AFS_Class, only look in the scope of the
2724   //    allocated class. If AFS_Both, look in both.
2725   // 2) If an array size is given, look for operator new[], else look for
2726   //   operator new.
2727   // 3) The first argument is always size_t. Append the arguments from the
2728   //   placement form.
2729 
2730   SmallVector<Expr*, 8> AllocArgs;
2731   AllocArgs.reserve((PassAlignment ? 2 : 1) + PlaceArgs.size());
2732 
2733   // We don't care about the actual value of these arguments.
2734   // FIXME: Should the Sema create the expression and embed it in the syntax
2735   // tree? Or should the consumer just recalculate the value?
2736   // FIXME: Using a dummy value will interact poorly with attribute enable_if.
2737   QualType SizeTy = Context.getSizeType();
2738   unsigned SizeTyWidth = Context.getTypeSize(SizeTy);
2739   IntegerLiteral Size(Context, llvm::APInt::getZero(SizeTyWidth), SizeTy,
2740                       SourceLocation());
2741   AllocArgs.push_back(&Size);
2742 
2743   QualType AlignValT = Context.VoidTy;
2744   if (PassAlignment) {
2745     DeclareGlobalNewDelete();
2746     AlignValT = Context.getTypeDeclType(getStdAlignValT());
2747   }
2748   CXXScalarValueInitExpr Align(AlignValT, nullptr, SourceLocation());
2749   if (PassAlignment)
2750     AllocArgs.push_back(&Align);
2751 
2752   AllocArgs.insert(AllocArgs.end(), PlaceArgs.begin(), PlaceArgs.end());
2753 
2754   // C++ [expr.new]p8:
2755   //   If the allocated type is a non-array type, the allocation
2756   //   function's name is operator new and the deallocation function's
2757   //   name is operator delete. If the allocated type is an array
2758   //   type, the allocation function's name is operator new[] and the
2759   //   deallocation function's name is operator delete[].
2760   DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
2761       IsArray ? OO_Array_New : OO_New);
2762 
2763   QualType AllocElemType = Context.getBaseElementType(AllocType);
2764 
2765   // Find the allocation function.
2766   {
2767     LookupResult R(*this, NewName, StartLoc, LookupOrdinaryName);
2768 
2769     // C++1z [expr.new]p9:
2770     //   If the new-expression begins with a unary :: operator, the allocation
2771     //   function's name is looked up in the global scope. Otherwise, if the
2772     //   allocated type is a class type T or array thereof, the allocation
2773     //   function's name is looked up in the scope of T.
2774     if (AllocElemType->isRecordType() && NewScope != AFS_Global)
2775       LookupQualifiedName(R, AllocElemType->getAsCXXRecordDecl());
2776 
2777     // We can see ambiguity here if the allocation function is found in
2778     // multiple base classes.
2779     if (R.isAmbiguous())
2780       return true;
2781 
2782     //   If this lookup fails to find the name, or if the allocated type is not
2783     //   a class type, the allocation function's name is looked up in the
2784     //   global scope.
2785     if (R.empty()) {
2786       if (NewScope == AFS_Class)
2787         return true;
2788 
2789       LookupQualifiedName(R, Context.getTranslationUnitDecl());
2790     }
2791 
2792     if (getLangOpts().OpenCLCPlusPlus && R.empty()) {
2793       if (PlaceArgs.empty()) {
2794         Diag(StartLoc, diag::err_openclcxx_not_supported) << "default new";
2795       } else {
2796         Diag(StartLoc, diag::err_openclcxx_placement_new);
2797       }
2798       return true;
2799     }
2800 
2801     assert(!R.empty() && "implicitly declared allocation functions not found");
2802     assert(!R.isAmbiguous() && "global allocation functions are ambiguous");
2803 
2804     // We do our own custom access checks below.
2805     R.suppressDiagnostics();
2806 
2807     if (resolveAllocationOverload(*this, R, Range, AllocArgs, PassAlignment,
2808                                   OperatorNew, /*Candidates=*/nullptr,
2809                                   /*AlignArg=*/nullptr, Diagnose))
2810       return true;
2811   }
2812 
2813   // We don't need an operator delete if we're running under -fno-exceptions.
2814   if (!getLangOpts().Exceptions) {
2815     OperatorDelete = nullptr;
2816     return false;
2817   }
2818 
2819   // Note, the name of OperatorNew might have been changed from array to
2820   // non-array by resolveAllocationOverload.
2821   DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
2822       OperatorNew->getDeclName().getCXXOverloadedOperator() == OO_Array_New
2823           ? OO_Array_Delete
2824           : OO_Delete);
2825 
2826   // C++ [expr.new]p19:
2827   //
2828   //   If the new-expression begins with a unary :: operator, the
2829   //   deallocation function's name is looked up in the global
2830   //   scope. Otherwise, if the allocated type is a class type T or an
2831   //   array thereof, the deallocation function's name is looked up in
2832   //   the scope of T. If this lookup fails to find the name, or if
2833   //   the allocated type is not a class type or array thereof, the
2834   //   deallocation function's name is looked up in the global scope.
2835   LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
2836   if (AllocElemType->isRecordType() && DeleteScope != AFS_Global) {
2837     auto *RD =
2838         cast<CXXRecordDecl>(AllocElemType->castAs<RecordType>()->getDecl());
2839     LookupQualifiedName(FoundDelete, RD);
2840   }
2841   if (FoundDelete.isAmbiguous())
2842     return true; // FIXME: clean up expressions?
2843 
2844   // Filter out any destroying operator deletes. We can't possibly call such a
2845   // function in this context, because we're handling the case where the object
2846   // was not successfully constructed.
2847   // FIXME: This is not covered by the language rules yet.
2848   {
2849     LookupResult::Filter Filter = FoundDelete.makeFilter();
2850     while (Filter.hasNext()) {
2851       auto *FD = dyn_cast<FunctionDecl>(Filter.next()->getUnderlyingDecl());
2852       if (FD && FD->isDestroyingOperatorDelete())
2853         Filter.erase();
2854     }
2855     Filter.done();
2856   }
2857 
2858   bool FoundGlobalDelete = FoundDelete.empty();
2859   if (FoundDelete.empty()) {
2860     FoundDelete.clear(LookupOrdinaryName);
2861 
2862     if (DeleteScope == AFS_Class)
2863       return true;
2864 
2865     DeclareGlobalNewDelete();
2866     LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
2867   }
2868 
2869   FoundDelete.suppressDiagnostics();
2870 
2871   SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
2872 
2873   // Whether we're looking for a placement operator delete is dictated
2874   // by whether we selected a placement operator new, not by whether
2875   // we had explicit placement arguments.  This matters for things like
2876   //   struct A { void *operator new(size_t, int = 0); ... };
2877   //   A *a = new A()
2878   //
2879   // We don't have any definition for what a "placement allocation function"
2880   // is, but we assume it's any allocation function whose
2881   // parameter-declaration-clause is anything other than (size_t).
2882   //
2883   // FIXME: Should (size_t, std::align_val_t) also be considered non-placement?
2884   // This affects whether an exception from the constructor of an overaligned
2885   // type uses the sized or non-sized form of aligned operator delete.
2886   bool isPlacementNew = !PlaceArgs.empty() || OperatorNew->param_size() != 1 ||
2887                         OperatorNew->isVariadic();
2888 
2889   if (isPlacementNew) {
2890     // C++ [expr.new]p20:
2891     //   A declaration of a placement deallocation function matches the
2892     //   declaration of a placement allocation function if it has the
2893     //   same number of parameters and, after parameter transformations
2894     //   (8.3.5), all parameter types except the first are
2895     //   identical. [...]
2896     //
2897     // To perform this comparison, we compute the function type that
2898     // the deallocation function should have, and use that type both
2899     // for template argument deduction and for comparison purposes.
2900     QualType ExpectedFunctionType;
2901     {
2902       auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>();
2903 
2904       SmallVector<QualType, 4> ArgTypes;
2905       ArgTypes.push_back(Context.VoidPtrTy);
2906       for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I)
2907         ArgTypes.push_back(Proto->getParamType(I));
2908 
2909       FunctionProtoType::ExtProtoInfo EPI;
2910       // FIXME: This is not part of the standard's rule.
2911       EPI.Variadic = Proto->isVariadic();
2912 
2913       ExpectedFunctionType
2914         = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI);
2915     }
2916 
2917     for (LookupResult::iterator D = FoundDelete.begin(),
2918                              DEnd = FoundDelete.end();
2919          D != DEnd; ++D) {
2920       FunctionDecl *Fn = nullptr;
2921       if (FunctionTemplateDecl *FnTmpl =
2922               dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
2923         // Perform template argument deduction to try to match the
2924         // expected function type.
2925         TemplateDeductionInfo Info(StartLoc);
2926         if (DeduceTemplateArguments(FnTmpl, nullptr, ExpectedFunctionType, Fn,
2927                                     Info) != TemplateDeductionResult::Success)
2928           continue;
2929       } else
2930         Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
2931 
2932       if (Context.hasSameType(adjustCCAndNoReturn(Fn->getType(),
2933                                                   ExpectedFunctionType,
2934                                                   /*AdjustExcpetionSpec*/true),
2935                               ExpectedFunctionType))
2936         Matches.push_back(std::make_pair(D.getPair(), Fn));
2937     }
2938 
2939     if (getLangOpts().CUDA)
2940       CUDA().EraseUnwantedMatches(getCurFunctionDecl(/*AllowLambda=*/true),
2941                                   Matches);
2942   } else {
2943     // C++1y [expr.new]p22:
2944     //   For a non-placement allocation function, the normal deallocation
2945     //   function lookup is used
2946     //
2947     // Per [expr.delete]p10, this lookup prefers a member operator delete
2948     // without a size_t argument, but prefers a non-member operator delete
2949     // with a size_t where possible (which it always is in this case).
2950     llvm::SmallVector<UsualDeallocFnInfo, 4> BestDeallocFns;
2951     UsualDeallocFnInfo Selected = resolveDeallocationOverload(
2952         *this, FoundDelete, /*WantSize*/ FoundGlobalDelete,
2953         /*WantAlign*/ hasNewExtendedAlignment(*this, AllocElemType),
2954         &BestDeallocFns);
2955     if (Selected)
2956       Matches.push_back(std::make_pair(Selected.Found, Selected.FD));
2957     else {
2958       // If we failed to select an operator, all remaining functions are viable
2959       // but ambiguous.
2960       for (auto Fn : BestDeallocFns)
2961         Matches.push_back(std::make_pair(Fn.Found, Fn.FD));
2962     }
2963   }
2964 
2965   // C++ [expr.new]p20:
2966   //   [...] If the lookup finds a single matching deallocation
2967   //   function, that function will be called; otherwise, no
2968   //   deallocation function will be called.
2969   if (Matches.size() == 1) {
2970     OperatorDelete = Matches[0].second;
2971 
2972     // C++1z [expr.new]p23:
2973     //   If the lookup finds a usual deallocation function (3.7.4.2)
2974     //   with a parameter of type std::size_t and that function, considered
2975     //   as a placement deallocation function, would have been
2976     //   selected as a match for the allocation function, the program
2977     //   is ill-formed.
2978     if (getLangOpts().CPlusPlus11 && isPlacementNew &&
2979         isNonPlacementDeallocationFunction(*this, OperatorDelete)) {
2980       UsualDeallocFnInfo Info(*this,
2981                               DeclAccessPair::make(OperatorDelete, AS_public));
2982       // Core issue, per mail to core reflector, 2016-10-09:
2983       //   If this is a member operator delete, and there is a corresponding
2984       //   non-sized member operator delete, this isn't /really/ a sized
2985       //   deallocation function, it just happens to have a size_t parameter.
2986       bool IsSizedDelete = Info.HasSizeT;
2987       if (IsSizedDelete && !FoundGlobalDelete) {
2988         auto NonSizedDelete =
2989             resolveDeallocationOverload(*this, FoundDelete, /*WantSize*/false,
2990                                         /*WantAlign*/Info.HasAlignValT);
2991         if (NonSizedDelete && !NonSizedDelete.HasSizeT &&
2992             NonSizedDelete.HasAlignValT == Info.HasAlignValT)
2993           IsSizedDelete = false;
2994       }
2995 
2996       if (IsSizedDelete) {
2997         SourceRange R = PlaceArgs.empty()
2998                             ? SourceRange()
2999                             : SourceRange(PlaceArgs.front()->getBeginLoc(),
3000                                           PlaceArgs.back()->getEndLoc());
3001         Diag(StartLoc, diag::err_placement_new_non_placement_delete) << R;
3002         if (!OperatorDelete->isImplicit())
3003           Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
3004               << DeleteName;
3005       }
3006     }
3007 
3008     CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
3009                           Matches[0].first);
3010   } else if (!Matches.empty()) {
3011     // We found multiple suitable operators. Per [expr.new]p20, that means we
3012     // call no 'operator delete' function, but we should at least warn the user.
3013     // FIXME: Suppress this warning if the construction cannot throw.
3014     Diag(StartLoc, diag::warn_ambiguous_suitable_delete_function_found)
3015       << DeleteName << AllocElemType;
3016 
3017     for (auto &Match : Matches)
3018       Diag(Match.second->getLocation(),
3019            diag::note_member_declared_here) << DeleteName;
3020   }
3021 
3022   return false;
3023 }
3024 
3025 void Sema::DeclareGlobalNewDelete() {
3026   if (GlobalNewDeleteDeclared)
3027     return;
3028 
3029   // The implicitly declared new and delete operators
3030   // are not supported in OpenCL.
3031   if (getLangOpts().OpenCLCPlusPlus)
3032     return;
3033 
3034   // C++ [basic.stc.dynamic.general]p2:
3035   //   The library provides default definitions for the global allocation
3036   //   and deallocation functions. Some global allocation and deallocation
3037   //   functions are replaceable ([new.delete]); these are attached to the
3038   //   global module ([module.unit]).
3039   if (getLangOpts().CPlusPlusModules && getCurrentModule())
3040     PushGlobalModuleFragment(SourceLocation());
3041 
3042   // C++ [basic.std.dynamic]p2:
3043   //   [...] The following allocation and deallocation functions (18.4) are
3044   //   implicitly declared in global scope in each translation unit of a
3045   //   program
3046   //
3047   //     C++03:
3048   //     void* operator new(std::size_t) throw(std::bad_alloc);
3049   //     void* operator new[](std::size_t) throw(std::bad_alloc);
3050   //     void  operator delete(void*) throw();
3051   //     void  operator delete[](void*) throw();
3052   //     C++11:
3053   //     void* operator new(std::size_t);
3054   //     void* operator new[](std::size_t);
3055   //     void  operator delete(void*) noexcept;
3056   //     void  operator delete[](void*) noexcept;
3057   //     C++1y:
3058   //     void* operator new(std::size_t);
3059   //     void* operator new[](std::size_t);
3060   //     void  operator delete(void*) noexcept;
3061   //     void  operator delete[](void*) noexcept;
3062   //     void  operator delete(void*, std::size_t) noexcept;
3063   //     void  operator delete[](void*, std::size_t) noexcept;
3064   //
3065   //   These implicit declarations introduce only the function names operator
3066   //   new, operator new[], operator delete, operator delete[].
3067   //
3068   // Here, we need to refer to std::bad_alloc, so we will implicitly declare
3069   // "std" or "bad_alloc" as necessary to form the exception specification.
3070   // However, we do not make these implicit declarations visible to name
3071   // lookup.
3072   if (!StdBadAlloc && !getLangOpts().CPlusPlus11) {
3073     // The "std::bad_alloc" class has not yet been declared, so build it
3074     // implicitly.
3075     StdBadAlloc = CXXRecordDecl::Create(
3076         Context, TagTypeKind::Class, getOrCreateStdNamespace(),
3077         SourceLocation(), SourceLocation(),
3078         &PP.getIdentifierTable().get("bad_alloc"), nullptr);
3079     getStdBadAlloc()->setImplicit(true);
3080 
3081     // The implicitly declared "std::bad_alloc" should live in global module
3082     // fragment.
3083     if (TheGlobalModuleFragment) {
3084       getStdBadAlloc()->setModuleOwnershipKind(
3085           Decl::ModuleOwnershipKind::ReachableWhenImported);
3086       getStdBadAlloc()->setLocalOwningModule(TheGlobalModuleFragment);
3087     }
3088   }
3089   if (!StdAlignValT && getLangOpts().AlignedAllocation) {
3090     // The "std::align_val_t" enum class has not yet been declared, so build it
3091     // implicitly.
3092     auto *AlignValT = EnumDecl::Create(
3093         Context, getOrCreateStdNamespace(), SourceLocation(), SourceLocation(),
3094         &PP.getIdentifierTable().get("align_val_t"), nullptr, true, true, true);
3095 
3096     // The implicitly declared "std::align_val_t" should live in global module
3097     // fragment.
3098     if (TheGlobalModuleFragment) {
3099       AlignValT->setModuleOwnershipKind(
3100           Decl::ModuleOwnershipKind::ReachableWhenImported);
3101       AlignValT->setLocalOwningModule(TheGlobalModuleFragment);
3102     }
3103 
3104     AlignValT->setIntegerType(Context.getSizeType());
3105     AlignValT->setPromotionType(Context.getSizeType());
3106     AlignValT->setImplicit(true);
3107 
3108     StdAlignValT = AlignValT;
3109   }
3110 
3111   GlobalNewDeleteDeclared = true;
3112 
3113   QualType VoidPtr = Context.getPointerType(Context.VoidTy);
3114   QualType SizeT = Context.getSizeType();
3115 
3116   auto DeclareGlobalAllocationFunctions = [&](OverloadedOperatorKind Kind,
3117                                               QualType Return, QualType Param) {
3118     llvm::SmallVector<QualType, 3> Params;
3119     Params.push_back(Param);
3120 
3121     // Create up to four variants of the function (sized/aligned).
3122     bool HasSizedVariant = getLangOpts().SizedDeallocation &&
3123                            (Kind == OO_Delete || Kind == OO_Array_Delete);
3124     bool HasAlignedVariant = getLangOpts().AlignedAllocation;
3125 
3126     int NumSizeVariants = (HasSizedVariant ? 2 : 1);
3127     int NumAlignVariants = (HasAlignedVariant ? 2 : 1);
3128     for (int Sized = 0; Sized < NumSizeVariants; ++Sized) {
3129       if (Sized)
3130         Params.push_back(SizeT);
3131 
3132       for (int Aligned = 0; Aligned < NumAlignVariants; ++Aligned) {
3133         if (Aligned)
3134           Params.push_back(Context.getTypeDeclType(getStdAlignValT()));
3135 
3136         DeclareGlobalAllocationFunction(
3137             Context.DeclarationNames.getCXXOperatorName(Kind), Return, Params);
3138 
3139         if (Aligned)
3140           Params.pop_back();
3141       }
3142     }
3143   };
3144 
3145   DeclareGlobalAllocationFunctions(OO_New, VoidPtr, SizeT);
3146   DeclareGlobalAllocationFunctions(OO_Array_New, VoidPtr, SizeT);
3147   DeclareGlobalAllocationFunctions(OO_Delete, Context.VoidTy, VoidPtr);
3148   DeclareGlobalAllocationFunctions(OO_Array_Delete, Context.VoidTy, VoidPtr);
3149 
3150   if (getLangOpts().CPlusPlusModules && getCurrentModule())
3151     PopGlobalModuleFragment();
3152 }
3153 
3154 /// DeclareGlobalAllocationFunction - Declares a single implicit global
3155 /// allocation function if it doesn't already exist.
3156 void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
3157                                            QualType Return,
3158                                            ArrayRef<QualType> Params) {
3159   DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
3160 
3161   // Check if this function is already declared.
3162   DeclContext::lookup_result R = GlobalCtx->lookup(Name);
3163   for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end();
3164        Alloc != AllocEnd; ++Alloc) {
3165     // Only look at non-template functions, as it is the predefined,
3166     // non-templated allocation function we are trying to declare here.
3167     if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
3168       if (Func->getNumParams() == Params.size()) {
3169         llvm::SmallVector<QualType, 3> FuncParams;
3170         for (auto *P : Func->parameters())
3171           FuncParams.push_back(
3172               Context.getCanonicalType(P->getType().getUnqualifiedType()));
3173         if (llvm::ArrayRef(FuncParams) == Params) {
3174           // Make the function visible to name lookup, even if we found it in
3175           // an unimported module. It either is an implicitly-declared global
3176           // allocation function, or is suppressing that function.
3177           Func->setVisibleDespiteOwningModule();
3178           return;
3179         }
3180       }
3181     }
3182   }
3183 
3184   FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention(
3185       /*IsVariadic=*/false, /*IsCXXMethod=*/false, /*IsBuiltin=*/true));
3186 
3187   QualType BadAllocType;
3188   bool HasBadAllocExceptionSpec
3189     = (Name.getCXXOverloadedOperator() == OO_New ||
3190        Name.getCXXOverloadedOperator() == OO_Array_New);
3191   if (HasBadAllocExceptionSpec) {
3192     if (!getLangOpts().CPlusPlus11) {
3193       BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
3194       assert(StdBadAlloc && "Must have std::bad_alloc declared");
3195       EPI.ExceptionSpec.Type = EST_Dynamic;
3196       EPI.ExceptionSpec.Exceptions = llvm::ArrayRef(BadAllocType);
3197     }
3198     if (getLangOpts().NewInfallible) {
3199       EPI.ExceptionSpec.Type = EST_DynamicNone;
3200     }
3201   } else {
3202     EPI.ExceptionSpec =
3203         getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone;
3204   }
3205 
3206   auto CreateAllocationFunctionDecl = [&](Attr *ExtraAttr) {
3207     QualType FnType = Context.getFunctionType(Return, Params, EPI);
3208     FunctionDecl *Alloc = FunctionDecl::Create(
3209         Context, GlobalCtx, SourceLocation(), SourceLocation(), Name, FnType,
3210         /*TInfo=*/nullptr, SC_None, getCurFPFeatures().isFPConstrained(), false,
3211         true);
3212     Alloc->setImplicit();
3213     // Global allocation functions should always be visible.
3214     Alloc->setVisibleDespiteOwningModule();
3215 
3216     if (HasBadAllocExceptionSpec && getLangOpts().NewInfallible &&
3217         !getLangOpts().CheckNew)
3218       Alloc->addAttr(
3219           ReturnsNonNullAttr::CreateImplicit(Context, Alloc->getLocation()));
3220 
3221     // C++ [basic.stc.dynamic.general]p2:
3222     //   The library provides default definitions for the global allocation
3223     //   and deallocation functions. Some global allocation and deallocation
3224     //   functions are replaceable ([new.delete]); these are attached to the
3225     //   global module ([module.unit]).
3226     //
3227     // In the language wording, these functions are attched to the global
3228     // module all the time. But in the implementation, the global module
3229     // is only meaningful when we're in a module unit. So here we attach
3230     // these allocation functions to global module conditionally.
3231     if (TheGlobalModuleFragment) {
3232       Alloc->setModuleOwnershipKind(
3233           Decl::ModuleOwnershipKind::ReachableWhenImported);
3234       Alloc->setLocalOwningModule(TheGlobalModuleFragment);
3235     }
3236 
3237     if (LangOpts.hasGlobalAllocationFunctionVisibility())
3238       Alloc->addAttr(VisibilityAttr::CreateImplicit(
3239           Context, LangOpts.hasHiddenGlobalAllocationFunctionVisibility()
3240                        ? VisibilityAttr::Hidden
3241                    : LangOpts.hasProtectedGlobalAllocationFunctionVisibility()
3242                        ? VisibilityAttr::Protected
3243                        : VisibilityAttr::Default));
3244 
3245     llvm::SmallVector<ParmVarDecl *, 3> ParamDecls;
3246     for (QualType T : Params) {
3247       ParamDecls.push_back(ParmVarDecl::Create(
3248           Context, Alloc, SourceLocation(), SourceLocation(), nullptr, T,
3249           /*TInfo=*/nullptr, SC_None, nullptr));
3250       ParamDecls.back()->setImplicit();
3251     }
3252     Alloc->setParams(ParamDecls);
3253     if (ExtraAttr)
3254       Alloc->addAttr(ExtraAttr);
3255     AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(Alloc);
3256     Context.getTranslationUnitDecl()->addDecl(Alloc);
3257     IdResolver.tryAddTopLevelDecl(Alloc, Name);
3258   };
3259 
3260   if (!LangOpts.CUDA)
3261     CreateAllocationFunctionDecl(nullptr);
3262   else {
3263     // Host and device get their own declaration so each can be
3264     // defined or re-declared independently.
3265     CreateAllocationFunctionDecl(CUDAHostAttr::CreateImplicit(Context));
3266     CreateAllocationFunctionDecl(CUDADeviceAttr::CreateImplicit(Context));
3267   }
3268 }
3269 
3270 FunctionDecl *Sema::FindUsualDeallocationFunction(SourceLocation StartLoc,
3271                                                   bool CanProvideSize,
3272                                                   bool Overaligned,
3273                                                   DeclarationName Name) {
3274   DeclareGlobalNewDelete();
3275 
3276   LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName);
3277   LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
3278 
3279   // FIXME: It's possible for this to result in ambiguity, through a
3280   // user-declared variadic operator delete or the enable_if attribute. We
3281   // should probably not consider those cases to be usual deallocation
3282   // functions. But for now we just make an arbitrary choice in that case.
3283   auto Result = resolveDeallocationOverload(*this, FoundDelete, CanProvideSize,
3284                                             Overaligned);
3285   assert(Result.FD && "operator delete missing from global scope?");
3286   return Result.FD;
3287 }
3288 
3289 FunctionDecl *Sema::FindDeallocationFunctionForDestructor(SourceLocation Loc,
3290                                                           CXXRecordDecl *RD) {
3291   DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Delete);
3292 
3293   FunctionDecl *OperatorDelete = nullptr;
3294   if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
3295     return nullptr;
3296   if (OperatorDelete)
3297     return OperatorDelete;
3298 
3299   // If there's no class-specific operator delete, look up the global
3300   // non-array delete.
3301   return FindUsualDeallocationFunction(
3302       Loc, true, hasNewExtendedAlignment(*this, Context.getRecordType(RD)),
3303       Name);
3304 }
3305 
3306 bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
3307                                     DeclarationName Name,
3308                                     FunctionDecl *&Operator, bool Diagnose,
3309                                     bool WantSize, bool WantAligned) {
3310   LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
3311   // Try to find operator delete/operator delete[] in class scope.
3312   LookupQualifiedName(Found, RD);
3313 
3314   if (Found.isAmbiguous())
3315     return true;
3316 
3317   Found.suppressDiagnostics();
3318 
3319   bool Overaligned =
3320       WantAligned || hasNewExtendedAlignment(*this, Context.getRecordType(RD));
3321 
3322   // C++17 [expr.delete]p10:
3323   //   If the deallocation functions have class scope, the one without a
3324   //   parameter of type std::size_t is selected.
3325   llvm::SmallVector<UsualDeallocFnInfo, 4> Matches;
3326   resolveDeallocationOverload(*this, Found, /*WantSize*/ WantSize,
3327                               /*WantAlign*/ Overaligned, &Matches);
3328 
3329   // If we could find an overload, use it.
3330   if (Matches.size() == 1) {
3331     Operator = cast<CXXMethodDecl>(Matches[0].FD);
3332 
3333     // FIXME: DiagnoseUseOfDecl?
3334     if (Operator->isDeleted()) {
3335       if (Diagnose) {
3336         StringLiteral *Msg = Operator->getDeletedMessage();
3337         Diag(StartLoc, diag::err_deleted_function_use)
3338             << (Msg != nullptr) << (Msg ? Msg->getString() : StringRef());
3339         NoteDeletedFunction(Operator);
3340       }
3341       return true;
3342     }
3343 
3344     if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
3345                               Matches[0].Found, Diagnose) == AR_inaccessible)
3346       return true;
3347 
3348     return false;
3349   }
3350 
3351   // We found multiple suitable operators; complain about the ambiguity.
3352   // FIXME: The standard doesn't say to do this; it appears that the intent
3353   // is that this should never happen.
3354   if (!Matches.empty()) {
3355     if (Diagnose) {
3356       Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
3357         << Name << RD;
3358       for (auto &Match : Matches)
3359         Diag(Match.FD->getLocation(), diag::note_member_declared_here) << Name;
3360     }
3361     return true;
3362   }
3363 
3364   // We did find operator delete/operator delete[] declarations, but
3365   // none of them were suitable.
3366   if (!Found.empty()) {
3367     if (Diagnose) {
3368       Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
3369         << Name << RD;
3370 
3371       for (NamedDecl *D : Found)
3372         Diag(D->getUnderlyingDecl()->getLocation(),
3373              diag::note_member_declared_here) << Name;
3374     }
3375     return true;
3376   }
3377 
3378   Operator = nullptr;
3379   return false;
3380 }
3381 
3382 namespace {
3383 /// Checks whether delete-expression, and new-expression used for
3384 ///  initializing deletee have the same array form.
3385 class MismatchingNewDeleteDetector {
3386 public:
3387   enum MismatchResult {
3388     /// Indicates that there is no mismatch or a mismatch cannot be proven.
3389     NoMismatch,
3390     /// Indicates that variable is initialized with mismatching form of \a new.
3391     VarInitMismatches,
3392     /// Indicates that member is initialized with mismatching form of \a new.
3393     MemberInitMismatches,
3394     /// Indicates that 1 or more constructors' definitions could not been
3395     /// analyzed, and they will be checked again at the end of translation unit.
3396     AnalyzeLater
3397   };
3398 
3399   /// \param EndOfTU True, if this is the final analysis at the end of
3400   /// translation unit. False, if this is the initial analysis at the point
3401   /// delete-expression was encountered.
3402   explicit MismatchingNewDeleteDetector(bool EndOfTU)
3403       : Field(nullptr), IsArrayForm(false), EndOfTU(EndOfTU),
3404         HasUndefinedConstructors(false) {}
3405 
3406   /// Checks whether pointee of a delete-expression is initialized with
3407   /// matching form of new-expression.
3408   ///
3409   /// If return value is \c VarInitMismatches or \c MemberInitMismatches at the
3410   /// point where delete-expression is encountered, then a warning will be
3411   /// issued immediately. If return value is \c AnalyzeLater at the point where
3412   /// delete-expression is seen, then member will be analyzed at the end of
3413   /// translation unit. \c AnalyzeLater is returned iff at least one constructor
3414   /// couldn't be analyzed. If at least one constructor initializes the member
3415   /// with matching type of new, the return value is \c NoMismatch.
3416   MismatchResult analyzeDeleteExpr(const CXXDeleteExpr *DE);
3417   /// Analyzes a class member.
3418   /// \param Field Class member to analyze.
3419   /// \param DeleteWasArrayForm Array form-ness of the delete-expression used
3420   /// for deleting the \p Field.
3421   MismatchResult analyzeField(FieldDecl *Field, bool DeleteWasArrayForm);
3422   FieldDecl *Field;
3423   /// List of mismatching new-expressions used for initialization of the pointee
3424   llvm::SmallVector<const CXXNewExpr *, 4> NewExprs;
3425   /// Indicates whether delete-expression was in array form.
3426   bool IsArrayForm;
3427 
3428 private:
3429   const bool EndOfTU;
3430   /// Indicates that there is at least one constructor without body.
3431   bool HasUndefinedConstructors;
3432   /// Returns \c CXXNewExpr from given initialization expression.
3433   /// \param E Expression used for initializing pointee in delete-expression.
3434   /// E can be a single-element \c InitListExpr consisting of new-expression.
3435   const CXXNewExpr *getNewExprFromInitListOrExpr(const Expr *E);
3436   /// Returns whether member is initialized with mismatching form of
3437   /// \c new either by the member initializer or in-class initialization.
3438   ///
3439   /// If bodies of all constructors are not visible at the end of translation
3440   /// unit or at least one constructor initializes member with the matching
3441   /// form of \c new, mismatch cannot be proven, and this function will return
3442   /// \c NoMismatch.
3443   MismatchResult analyzeMemberExpr(const MemberExpr *ME);
3444   /// Returns whether variable is initialized with mismatching form of
3445   /// \c new.
3446   ///
3447   /// If variable is initialized with matching form of \c new or variable is not
3448   /// initialized with a \c new expression, this function will return true.
3449   /// If variable is initialized with mismatching form of \c new, returns false.
3450   /// \param D Variable to analyze.
3451   bool hasMatchingVarInit(const DeclRefExpr *D);
3452   /// Checks whether the constructor initializes pointee with mismatching
3453   /// form of \c new.
3454   ///
3455   /// Returns true, if member is initialized with matching form of \c new in
3456   /// member initializer list. Returns false, if member is initialized with the
3457   /// matching form of \c new in this constructor's initializer or given
3458   /// constructor isn't defined at the point where delete-expression is seen, or
3459   /// member isn't initialized by the constructor.
3460   bool hasMatchingNewInCtor(const CXXConstructorDecl *CD);
3461   /// Checks whether member is initialized with matching form of
3462   /// \c new in member initializer list.
3463   bool hasMatchingNewInCtorInit(const CXXCtorInitializer *CI);
3464   /// Checks whether member is initialized with mismatching form of \c new by
3465   /// in-class initializer.
3466   MismatchResult analyzeInClassInitializer();
3467 };
3468 }
3469 
3470 MismatchingNewDeleteDetector::MismatchResult
3471 MismatchingNewDeleteDetector::analyzeDeleteExpr(const CXXDeleteExpr *DE) {
3472   NewExprs.clear();
3473   assert(DE && "Expected delete-expression");
3474   IsArrayForm = DE->isArrayForm();
3475   const Expr *E = DE->getArgument()->IgnoreParenImpCasts();
3476   if (const MemberExpr *ME = dyn_cast<const MemberExpr>(E)) {
3477     return analyzeMemberExpr(ME);
3478   } else if (const DeclRefExpr *D = dyn_cast<const DeclRefExpr>(E)) {
3479     if (!hasMatchingVarInit(D))
3480       return VarInitMismatches;
3481   }
3482   return NoMismatch;
3483 }
3484 
3485 const CXXNewExpr *
3486 MismatchingNewDeleteDetector::getNewExprFromInitListOrExpr(const Expr *E) {
3487   assert(E != nullptr && "Expected a valid initializer expression");
3488   E = E->IgnoreParenImpCasts();
3489   if (const InitListExpr *ILE = dyn_cast<const InitListExpr>(E)) {
3490     if (ILE->getNumInits() == 1)
3491       E = dyn_cast<const CXXNewExpr>(ILE->getInit(0)->IgnoreParenImpCasts());
3492   }
3493 
3494   return dyn_cast_or_null<const CXXNewExpr>(E);
3495 }
3496 
3497 bool MismatchingNewDeleteDetector::hasMatchingNewInCtorInit(
3498     const CXXCtorInitializer *CI) {
3499   const CXXNewExpr *NE = nullptr;
3500   if (Field == CI->getMember() &&
3501       (NE = getNewExprFromInitListOrExpr(CI->getInit()))) {
3502     if (NE->isArray() == IsArrayForm)
3503       return true;
3504     else
3505       NewExprs.push_back(NE);
3506   }
3507   return false;
3508 }
3509 
3510 bool MismatchingNewDeleteDetector::hasMatchingNewInCtor(
3511     const CXXConstructorDecl *CD) {
3512   if (CD->isImplicit())
3513     return false;
3514   const FunctionDecl *Definition = CD;
3515   if (!CD->isThisDeclarationADefinition() && !CD->isDefined(Definition)) {
3516     HasUndefinedConstructors = true;
3517     return EndOfTU;
3518   }
3519   for (const auto *CI : cast<const CXXConstructorDecl>(Definition)->inits()) {
3520     if (hasMatchingNewInCtorInit(CI))
3521       return true;
3522   }
3523   return false;
3524 }
3525 
3526 MismatchingNewDeleteDetector::MismatchResult
3527 MismatchingNewDeleteDetector::analyzeInClassInitializer() {
3528   assert(Field != nullptr && "This should be called only for members");
3529   const Expr *InitExpr = Field->getInClassInitializer();
3530   if (!InitExpr)
3531     return EndOfTU ? NoMismatch : AnalyzeLater;
3532   if (const CXXNewExpr *NE = getNewExprFromInitListOrExpr(InitExpr)) {
3533     if (NE->isArray() != IsArrayForm) {
3534       NewExprs.push_back(NE);
3535       return MemberInitMismatches;
3536     }
3537   }
3538   return NoMismatch;
3539 }
3540 
3541 MismatchingNewDeleteDetector::MismatchResult
3542 MismatchingNewDeleteDetector::analyzeField(FieldDecl *Field,
3543                                            bool DeleteWasArrayForm) {
3544   assert(Field != nullptr && "Analysis requires a valid class member.");
3545   this->Field = Field;
3546   IsArrayForm = DeleteWasArrayForm;
3547   const CXXRecordDecl *RD = cast<const CXXRecordDecl>(Field->getParent());
3548   for (const auto *CD : RD->ctors()) {
3549     if (hasMatchingNewInCtor(CD))
3550       return NoMismatch;
3551   }
3552   if (HasUndefinedConstructors)
3553     return EndOfTU ? NoMismatch : AnalyzeLater;
3554   if (!NewExprs.empty())
3555     return MemberInitMismatches;
3556   return Field->hasInClassInitializer() ? analyzeInClassInitializer()
3557                                         : NoMismatch;
3558 }
3559 
3560 MismatchingNewDeleteDetector::MismatchResult
3561 MismatchingNewDeleteDetector::analyzeMemberExpr(const MemberExpr *ME) {
3562   assert(ME != nullptr && "Expected a member expression");
3563   if (FieldDecl *F = dyn_cast<FieldDecl>(ME->getMemberDecl()))
3564     return analyzeField(F, IsArrayForm);
3565   return NoMismatch;
3566 }
3567 
3568 bool MismatchingNewDeleteDetector::hasMatchingVarInit(const DeclRefExpr *D) {
3569   const CXXNewExpr *NE = nullptr;
3570   if (const VarDecl *VD = dyn_cast<const VarDecl>(D->getDecl())) {
3571     if (VD->hasInit() && (NE = getNewExprFromInitListOrExpr(VD->getInit())) &&
3572         NE->isArray() != IsArrayForm) {
3573       NewExprs.push_back(NE);
3574     }
3575   }
3576   return NewExprs.empty();
3577 }
3578 
3579 static void
3580 DiagnoseMismatchedNewDelete(Sema &SemaRef, SourceLocation DeleteLoc,
3581                             const MismatchingNewDeleteDetector &Detector) {
3582   SourceLocation EndOfDelete = SemaRef.getLocForEndOfToken(DeleteLoc);
3583   FixItHint H;
3584   if (!Detector.IsArrayForm)
3585     H = FixItHint::CreateInsertion(EndOfDelete, "[]");
3586   else {
3587     SourceLocation RSquare = Lexer::findLocationAfterToken(
3588         DeleteLoc, tok::l_square, SemaRef.getSourceManager(),
3589         SemaRef.getLangOpts(), true);
3590     if (RSquare.isValid())
3591       H = FixItHint::CreateRemoval(SourceRange(EndOfDelete, RSquare));
3592   }
3593   SemaRef.Diag(DeleteLoc, diag::warn_mismatched_delete_new)
3594       << Detector.IsArrayForm << H;
3595 
3596   for (const auto *NE : Detector.NewExprs)
3597     SemaRef.Diag(NE->getExprLoc(), diag::note_allocated_here)
3598         << Detector.IsArrayForm;
3599 }
3600 
3601 void Sema::AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE) {
3602   if (Diags.isIgnored(diag::warn_mismatched_delete_new, SourceLocation()))
3603     return;
3604   MismatchingNewDeleteDetector Detector(/*EndOfTU=*/false);
3605   switch (Detector.analyzeDeleteExpr(DE)) {
3606   case MismatchingNewDeleteDetector::VarInitMismatches:
3607   case MismatchingNewDeleteDetector::MemberInitMismatches: {
3608     DiagnoseMismatchedNewDelete(*this, DE->getBeginLoc(), Detector);
3609     break;
3610   }
3611   case MismatchingNewDeleteDetector::AnalyzeLater: {
3612     DeleteExprs[Detector.Field].push_back(
3613         std::make_pair(DE->getBeginLoc(), DE->isArrayForm()));
3614     break;
3615   }
3616   case MismatchingNewDeleteDetector::NoMismatch:
3617     break;
3618   }
3619 }
3620 
3621 void Sema::AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc,
3622                                      bool DeleteWasArrayForm) {
3623   MismatchingNewDeleteDetector Detector(/*EndOfTU=*/true);
3624   switch (Detector.analyzeField(Field, DeleteWasArrayForm)) {
3625   case MismatchingNewDeleteDetector::VarInitMismatches:
3626     llvm_unreachable("This analysis should have been done for class members.");
3627   case MismatchingNewDeleteDetector::AnalyzeLater:
3628     llvm_unreachable("Analysis cannot be postponed any point beyond end of "
3629                      "translation unit.");
3630   case MismatchingNewDeleteDetector::MemberInitMismatches:
3631     DiagnoseMismatchedNewDelete(*this, DeleteLoc, Detector);
3632     break;
3633   case MismatchingNewDeleteDetector::NoMismatch:
3634     break;
3635   }
3636 }
3637 
3638 ExprResult
3639 Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
3640                      bool ArrayForm, Expr *ExE) {
3641   // C++ [expr.delete]p1:
3642   //   The operand shall have a pointer type, or a class type having a single
3643   //   non-explicit conversion function to a pointer type. The result has type
3644   //   void.
3645   //
3646   // DR599 amends "pointer type" to "pointer to object type" in both cases.
3647 
3648   ExprResult Ex = ExE;
3649   FunctionDecl *OperatorDelete = nullptr;
3650   bool ArrayFormAsWritten = ArrayForm;
3651   bool UsualArrayDeleteWantsSize = false;
3652 
3653   if (!Ex.get()->isTypeDependent()) {
3654     // Perform lvalue-to-rvalue cast, if needed.
3655     Ex = DefaultLvalueConversion(Ex.get());
3656     if (Ex.isInvalid())
3657       return ExprError();
3658 
3659     QualType Type = Ex.get()->getType();
3660 
3661     class DeleteConverter : public ContextualImplicitConverter {
3662     public:
3663       DeleteConverter() : ContextualImplicitConverter(false, true) {}
3664 
3665       bool match(QualType ConvType) override {
3666         // FIXME: If we have an operator T* and an operator void*, we must pick
3667         // the operator T*.
3668         if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
3669           if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
3670             return true;
3671         return false;
3672       }
3673 
3674       SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc,
3675                                             QualType T) override {
3676         return S.Diag(Loc, diag::err_delete_operand) << T;
3677       }
3678 
3679       SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
3680                                                QualType T) override {
3681         return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T;
3682       }
3683 
3684       SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc,
3685                                                  QualType T,
3686                                                  QualType ConvTy) override {
3687         return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy;
3688       }
3689 
3690       SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv,
3691                                              QualType ConvTy) override {
3692         return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
3693           << ConvTy;
3694       }
3695 
3696       SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
3697                                               QualType T) override {
3698         return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T;
3699       }
3700 
3701       SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
3702                                           QualType ConvTy) override {
3703         return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
3704           << ConvTy;
3705       }
3706 
3707       SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
3708                                                QualType T,
3709                                                QualType ConvTy) override {
3710         llvm_unreachable("conversion functions are permitted");
3711       }
3712     } Converter;
3713 
3714     Ex = PerformContextualImplicitConversion(StartLoc, Ex.get(), Converter);
3715     if (Ex.isInvalid())
3716       return ExprError();
3717     Type = Ex.get()->getType();
3718     if (!Converter.match(Type))
3719       // FIXME: PerformContextualImplicitConversion should return ExprError
3720       //        itself in this case.
3721       return ExprError();
3722 
3723     QualType Pointee = Type->castAs<PointerType>()->getPointeeType();
3724     QualType PointeeElem = Context.getBaseElementType(Pointee);
3725 
3726     if (Pointee.getAddressSpace() != LangAS::Default &&
3727         !getLangOpts().OpenCLCPlusPlus)
3728       return Diag(Ex.get()->getBeginLoc(),
3729                   diag::err_address_space_qualified_delete)
3730              << Pointee.getUnqualifiedType()
3731              << Pointee.getQualifiers().getAddressSpaceAttributePrintValue();
3732 
3733     CXXRecordDecl *PointeeRD = nullptr;
3734     if (Pointee->isVoidType() && !isSFINAEContext()) {
3735       // The C++ standard bans deleting a pointer to a non-object type, which
3736       // effectively bans deletion of "void*". However, most compilers support
3737       // this, so we treat it as a warning unless we're in a SFINAE context.
3738       // But we still prohibit this since C++26.
3739       Diag(StartLoc, LangOpts.CPlusPlus26 ? diag::err_delete_incomplete
3740                                           : diag::ext_delete_void_ptr_operand)
3741           << (LangOpts.CPlusPlus26 ? Pointee : Type)
3742           << Ex.get()->getSourceRange();
3743     } else if (Pointee->isFunctionType() || Pointee->isVoidType() ||
3744                Pointee->isSizelessType()) {
3745       return ExprError(Diag(StartLoc, diag::err_delete_operand)
3746         << Type << Ex.get()->getSourceRange());
3747     } else if (!Pointee->isDependentType()) {
3748       // FIXME: This can result in errors if the definition was imported from a
3749       // module but is hidden.
3750       if (Pointee->isEnumeralType() ||
3751           !RequireCompleteType(StartLoc, Pointee,
3752                                LangOpts.CPlusPlus26
3753                                    ? diag::err_delete_incomplete
3754                                    : diag::warn_delete_incomplete,
3755                                Ex.get())) {
3756         if (const RecordType *RT = PointeeElem->getAs<RecordType>())
3757           PointeeRD = cast<CXXRecordDecl>(RT->getDecl());
3758       }
3759     }
3760 
3761     if (Pointee->isArrayType() && !ArrayForm) {
3762       Diag(StartLoc, diag::warn_delete_array_type)
3763           << Type << Ex.get()->getSourceRange()
3764           << FixItHint::CreateInsertion(getLocForEndOfToken(StartLoc), "[]");
3765       ArrayForm = true;
3766     }
3767 
3768     DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
3769                                       ArrayForm ? OO_Array_Delete : OO_Delete);
3770 
3771     if (PointeeRD) {
3772       if (!UseGlobal &&
3773           FindDeallocationFunction(StartLoc, PointeeRD, DeleteName,
3774                                    OperatorDelete))
3775         return ExprError();
3776 
3777       // If we're allocating an array of records, check whether the
3778       // usual operator delete[] has a size_t parameter.
3779       if (ArrayForm) {
3780         // If the user specifically asked to use the global allocator,
3781         // we'll need to do the lookup into the class.
3782         if (UseGlobal)
3783           UsualArrayDeleteWantsSize =
3784             doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
3785 
3786         // Otherwise, the usual operator delete[] should be the
3787         // function we just found.
3788         else if (isa_and_nonnull<CXXMethodDecl>(OperatorDelete))
3789           UsualArrayDeleteWantsSize =
3790             UsualDeallocFnInfo(*this,
3791                                DeclAccessPair::make(OperatorDelete, AS_public))
3792               .HasSizeT;
3793       }
3794 
3795       if (!PointeeRD->hasIrrelevantDestructor()) {
3796         if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
3797           if (Dtor->isCalledByDelete(OperatorDelete)) {
3798             MarkFunctionReferenced(StartLoc,
3799                                    const_cast<CXXDestructorDecl *>(Dtor));
3800             if (DiagnoseUseOfDecl(Dtor, StartLoc))
3801               return ExprError();
3802           }
3803         }
3804       }
3805 
3806       CheckVirtualDtorCall(PointeeRD->getDestructor(), StartLoc,
3807                            /*IsDelete=*/true, /*CallCanBeVirtual=*/true,
3808                            /*WarnOnNonAbstractTypes=*/!ArrayForm,
3809                            SourceLocation());
3810     }
3811 
3812     if (!OperatorDelete) {
3813       if (getLangOpts().OpenCLCPlusPlus) {
3814         Diag(StartLoc, diag::err_openclcxx_not_supported) << "default delete";
3815         return ExprError();
3816       }
3817 
3818       bool IsComplete = isCompleteType(StartLoc, Pointee);
3819       bool CanProvideSize =
3820           IsComplete && (!ArrayForm || UsualArrayDeleteWantsSize ||
3821                          Pointee.isDestructedType());
3822       bool Overaligned = hasNewExtendedAlignment(*this, Pointee);
3823 
3824       // Look for a global declaration.
3825       OperatorDelete = FindUsualDeallocationFunction(StartLoc, CanProvideSize,
3826                                                      Overaligned, DeleteName);
3827     }
3828 
3829     if (OperatorDelete->isInvalidDecl())
3830       return ExprError();
3831 
3832     MarkFunctionReferenced(StartLoc, OperatorDelete);
3833 
3834     // Check access and ambiguity of destructor if we're going to call it.
3835     // Note that this is required even for a virtual delete.
3836     bool IsVirtualDelete = false;
3837     if (PointeeRD) {
3838       if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
3839         if (Dtor->isCalledByDelete(OperatorDelete))
3840           CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
3841                                 PDiag(diag::err_access_dtor) << PointeeElem);
3842         IsVirtualDelete = Dtor->isVirtual();
3843       }
3844     }
3845 
3846     DiagnoseUseOfDecl(OperatorDelete, StartLoc);
3847 
3848     // Convert the operand to the type of the first parameter of operator
3849     // delete. This is only necessary if we selected a destroying operator
3850     // delete that we are going to call (non-virtually); converting to void*
3851     // is trivial and left to AST consumers to handle.
3852     QualType ParamType = OperatorDelete->getParamDecl(0)->getType();
3853     if (!IsVirtualDelete && !ParamType->getPointeeType()->isVoidType()) {
3854       Qualifiers Qs = Pointee.getQualifiers();
3855       if (Qs.hasCVRQualifiers()) {
3856         // Qualifiers are irrelevant to this conversion; we're only looking
3857         // for access and ambiguity.
3858         Qs.removeCVRQualifiers();
3859         QualType Unqual = Context.getPointerType(
3860             Context.getQualifiedType(Pointee.getUnqualifiedType(), Qs));
3861         Ex = ImpCastExprToType(Ex.get(), Unqual, CK_NoOp);
3862       }
3863       Ex = PerformImplicitConversion(Ex.get(), ParamType,
3864                                      AssignmentAction::Passing);
3865       if (Ex.isInvalid())
3866         return ExprError();
3867     }
3868   }
3869 
3870   CXXDeleteExpr *Result = new (Context) CXXDeleteExpr(
3871       Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten,
3872       UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc);
3873   AnalyzeDeleteExprMismatch(Result);
3874   return Result;
3875 }
3876 
3877 static bool resolveBuiltinNewDeleteOverload(Sema &S, CallExpr *TheCall,
3878                                             bool IsDelete,
3879                                             FunctionDecl *&Operator) {
3880 
3881   DeclarationName NewName = S.Context.DeclarationNames.getCXXOperatorName(
3882       IsDelete ? OO_Delete : OO_New);
3883 
3884   LookupResult R(S, NewName, TheCall->getBeginLoc(), Sema::LookupOrdinaryName);
3885   S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl());
3886   assert(!R.empty() && "implicitly declared allocation functions not found");
3887   assert(!R.isAmbiguous() && "global allocation functions are ambiguous");
3888 
3889   // We do our own custom access checks below.
3890   R.suppressDiagnostics();
3891 
3892   SmallVector<Expr *, 8> Args(TheCall->arguments());
3893   OverloadCandidateSet Candidates(R.getNameLoc(),
3894                                   OverloadCandidateSet::CSK_Normal);
3895   for (LookupResult::iterator FnOvl = R.begin(), FnOvlEnd = R.end();
3896        FnOvl != FnOvlEnd; ++FnOvl) {
3897     // Even member operator new/delete are implicitly treated as
3898     // static, so don't use AddMemberCandidate.
3899     NamedDecl *D = (*FnOvl)->getUnderlyingDecl();
3900 
3901     if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
3902       S.AddTemplateOverloadCandidate(FnTemplate, FnOvl.getPair(),
3903                                      /*ExplicitTemplateArgs=*/nullptr, Args,
3904                                      Candidates,
3905                                      /*SuppressUserConversions=*/false);
3906       continue;
3907     }
3908 
3909     FunctionDecl *Fn = cast<FunctionDecl>(D);
3910     S.AddOverloadCandidate(Fn, FnOvl.getPair(), Args, Candidates,
3911                            /*SuppressUserConversions=*/false);
3912   }
3913 
3914   SourceRange Range = TheCall->getSourceRange();
3915 
3916   // Do the resolution.
3917   OverloadCandidateSet::iterator Best;
3918   switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) {
3919   case OR_Success: {
3920     // Got one!
3921     FunctionDecl *FnDecl = Best->Function;
3922     assert(R.getNamingClass() == nullptr &&
3923            "class members should not be considered");
3924 
3925     if (!FnDecl->isReplaceableGlobalAllocationFunction()) {
3926       S.Diag(R.getNameLoc(), diag::err_builtin_operator_new_delete_not_usual)
3927           << (IsDelete ? 1 : 0) << Range;
3928       S.Diag(FnDecl->getLocation(), diag::note_non_usual_function_declared_here)
3929           << R.getLookupName() << FnDecl->getSourceRange();
3930       return true;
3931     }
3932 
3933     Operator = FnDecl;
3934     return false;
3935   }
3936 
3937   case OR_No_Viable_Function:
3938     Candidates.NoteCandidates(
3939         PartialDiagnosticAt(R.getNameLoc(),
3940                             S.PDiag(diag::err_ovl_no_viable_function_in_call)
3941                                 << R.getLookupName() << Range),
3942         S, OCD_AllCandidates, Args);
3943     return true;
3944 
3945   case OR_Ambiguous:
3946     Candidates.NoteCandidates(
3947         PartialDiagnosticAt(R.getNameLoc(),
3948                             S.PDiag(diag::err_ovl_ambiguous_call)
3949                                 << R.getLookupName() << Range),
3950         S, OCD_AmbiguousCandidates, Args);
3951     return true;
3952 
3953   case OR_Deleted:
3954     S.DiagnoseUseOfDeletedFunction(R.getNameLoc(), Range, R.getLookupName(),
3955                                    Candidates, Best->Function, Args);
3956     return true;
3957   }
3958   llvm_unreachable("Unreachable, bad result from BestViableFunction");
3959 }
3960 
3961 ExprResult Sema::BuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult,
3962                                                     bool IsDelete) {
3963   CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
3964   if (!getLangOpts().CPlusPlus) {
3965     Diag(TheCall->getExprLoc(), diag::err_builtin_requires_language)
3966         << (IsDelete ? "__builtin_operator_delete" : "__builtin_operator_new")
3967         << "C++";
3968     return ExprError();
3969   }
3970   // CodeGen assumes it can find the global new and delete to call,
3971   // so ensure that they are declared.
3972   DeclareGlobalNewDelete();
3973 
3974   FunctionDecl *OperatorNewOrDelete = nullptr;
3975   if (resolveBuiltinNewDeleteOverload(*this, TheCall, IsDelete,
3976                                       OperatorNewOrDelete))
3977     return ExprError();
3978   assert(OperatorNewOrDelete && "should be found");
3979 
3980   DiagnoseUseOfDecl(OperatorNewOrDelete, TheCall->getExprLoc());
3981   MarkFunctionReferenced(TheCall->getExprLoc(), OperatorNewOrDelete);
3982 
3983   TheCall->setType(OperatorNewOrDelete->getReturnType());
3984   for (unsigned i = 0; i != TheCall->getNumArgs(); ++i) {
3985     QualType ParamTy = OperatorNewOrDelete->getParamDecl(i)->getType();
3986     InitializedEntity Entity =
3987         InitializedEntity::InitializeParameter(Context, ParamTy, false);
3988     ExprResult Arg = PerformCopyInitialization(
3989         Entity, TheCall->getArg(i)->getBeginLoc(), TheCall->getArg(i));
3990     if (Arg.isInvalid())
3991       return ExprError();
3992     TheCall->setArg(i, Arg.get());
3993   }
3994   auto Callee = dyn_cast<ImplicitCastExpr>(TheCall->getCallee());
3995   assert(Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr &&
3996          "Callee expected to be implicit cast to a builtin function pointer");
3997   Callee->setType(OperatorNewOrDelete->getType());
3998 
3999   return TheCallResult;
4000 }
4001 
4002 void Sema::CheckVirtualDtorCall(CXXDestructorDecl *dtor, SourceLocation Loc,
4003                                 bool IsDelete, bool CallCanBeVirtual,
4004                                 bool WarnOnNonAbstractTypes,
4005                                 SourceLocation DtorLoc) {
4006   if (!dtor || dtor->isVirtual() || !CallCanBeVirtual || isUnevaluatedContext())
4007     return;
4008 
4009   // C++ [expr.delete]p3:
4010   //   In the first alternative (delete object), if the static type of the
4011   //   object to be deleted is different from its dynamic type, the static
4012   //   type shall be a base class of the dynamic type of the object to be
4013   //   deleted and the static type shall have a virtual destructor or the
4014   //   behavior is undefined.
4015   //
4016   const CXXRecordDecl *PointeeRD = dtor->getParent();
4017   // Note: a final class cannot be derived from, no issue there
4018   if (!PointeeRD->isPolymorphic() || PointeeRD->hasAttr<FinalAttr>())
4019     return;
4020 
4021   // If the superclass is in a system header, there's nothing that can be done.
4022   // The `delete` (where we emit the warning) can be in a system header,
4023   // what matters for this warning is where the deleted type is defined.
4024   if (getSourceManager().isInSystemHeader(PointeeRD->getLocation()))
4025     return;
4026 
4027   QualType ClassType = dtor->getFunctionObjectParameterType();
4028   if (PointeeRD->isAbstract()) {
4029     // If the class is abstract, we warn by default, because we're
4030     // sure the code has undefined behavior.
4031     Diag(Loc, diag::warn_delete_abstract_non_virtual_dtor) << (IsDelete ? 0 : 1)
4032                                                            << ClassType;
4033   } else if (WarnOnNonAbstractTypes) {
4034     // Otherwise, if this is not an array delete, it's a bit suspect,
4035     // but not necessarily wrong.
4036     Diag(Loc, diag::warn_delete_non_virtual_dtor) << (IsDelete ? 0 : 1)
4037                                                   << ClassType;
4038   }
4039   if (!IsDelete) {
4040     std::string TypeStr;
4041     ClassType.getAsStringInternal(TypeStr, getPrintingPolicy());
4042     Diag(DtorLoc, diag::note_delete_non_virtual)
4043         << FixItHint::CreateInsertion(DtorLoc, TypeStr + "::");
4044   }
4045 }
4046 
4047 Sema::ConditionResult Sema::ActOnConditionVariable(Decl *ConditionVar,
4048                                                    SourceLocation StmtLoc,
4049                                                    ConditionKind CK) {
4050   ExprResult E =
4051       CheckConditionVariable(cast<VarDecl>(ConditionVar), StmtLoc, CK);
4052   if (E.isInvalid())
4053     return ConditionError();
4054   return ConditionResult(*this, ConditionVar, MakeFullExpr(E.get(), StmtLoc),
4055                          CK == ConditionKind::ConstexprIf);
4056 }
4057 
4058 ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
4059                                         SourceLocation StmtLoc,
4060                                         ConditionKind CK) {
4061   if (ConditionVar->isInvalidDecl())
4062     return ExprError();
4063 
4064   QualType T = ConditionVar->getType();
4065 
4066   // C++ [stmt.select]p2:
4067   //   The declarator shall not specify a function or an array.
4068   if (T->isFunctionType())
4069     return ExprError(Diag(ConditionVar->getLocation(),
4070                           diag::err_invalid_use_of_function_type)
4071                        << ConditionVar->getSourceRange());
4072   else if (T->isArrayType())
4073     return ExprError(Diag(ConditionVar->getLocation(),
4074                           diag::err_invalid_use_of_array_type)
4075                      << ConditionVar->getSourceRange());
4076 
4077   ExprResult Condition = BuildDeclRefExpr(
4078       ConditionVar, ConditionVar->getType().getNonReferenceType(), VK_LValue,
4079       ConditionVar->getLocation());
4080 
4081   switch (CK) {
4082   case ConditionKind::Boolean:
4083     return CheckBooleanCondition(StmtLoc, Condition.get());
4084 
4085   case ConditionKind::ConstexprIf:
4086     return CheckBooleanCondition(StmtLoc, Condition.get(), true);
4087 
4088   case ConditionKind::Switch:
4089     return CheckSwitchCondition(StmtLoc, Condition.get());
4090   }
4091 
4092   llvm_unreachable("unexpected condition kind");
4093 }
4094 
4095 ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr) {
4096   // C++11 6.4p4:
4097   // The value of a condition that is an initialized declaration in a statement
4098   // other than a switch statement is the value of the declared variable
4099   // implicitly converted to type bool. If that conversion is ill-formed, the
4100   // program is ill-formed.
4101   // The value of a condition that is an expression is the value of the
4102   // expression, implicitly converted to bool.
4103   //
4104   // C++23 8.5.2p2
4105   // If the if statement is of the form if constexpr, the value of the condition
4106   // is contextually converted to bool and the converted expression shall be
4107   // a constant expression.
4108   //
4109 
4110   ExprResult E = PerformContextuallyConvertToBool(CondExpr);
4111   if (!IsConstexpr || E.isInvalid() || E.get()->isValueDependent())
4112     return E;
4113 
4114   // FIXME: Return this value to the caller so they don't need to recompute it.
4115   llvm::APSInt Cond;
4116   E = VerifyIntegerConstantExpression(
4117       E.get(), &Cond,
4118       diag::err_constexpr_if_condition_expression_is_not_constant);
4119   return E;
4120 }
4121 
4122 bool
4123 Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
4124   // Look inside the implicit cast, if it exists.
4125   if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
4126     From = Cast->getSubExpr();
4127 
4128   // A string literal (2.13.4) that is not a wide string literal can
4129   // be converted to an rvalue of type "pointer to char"; a wide
4130   // string literal can be converted to an rvalue of type "pointer
4131   // to wchar_t" (C++ 4.2p2).
4132   if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
4133     if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
4134       if (const BuiltinType *ToPointeeType
4135           = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
4136         // This conversion is considered only when there is an
4137         // explicit appropriate pointer target type (C++ 4.2p2).
4138         if (!ToPtrType->getPointeeType().hasQualifiers()) {
4139           switch (StrLit->getKind()) {
4140           case StringLiteralKind::UTF8:
4141           case StringLiteralKind::UTF16:
4142           case StringLiteralKind::UTF32:
4143             // We don't allow UTF literals to be implicitly converted
4144             break;
4145           case StringLiteralKind::Ordinary:
4146             return (ToPointeeType->getKind() == BuiltinType::Char_U ||
4147                     ToPointeeType->getKind() == BuiltinType::Char_S);
4148           case StringLiteralKind::Wide:
4149             return Context.typesAreCompatible(Context.getWideCharType(),
4150                                               QualType(ToPointeeType, 0));
4151           case StringLiteralKind::Unevaluated:
4152             assert(false && "Unevaluated string literal in expression");
4153             break;
4154           }
4155         }
4156       }
4157 
4158   return false;
4159 }
4160 
4161 static ExprResult BuildCXXCastArgument(Sema &S,
4162                                        SourceLocation CastLoc,
4163                                        QualType Ty,
4164                                        CastKind Kind,
4165                                        CXXMethodDecl *Method,
4166                                        DeclAccessPair FoundDecl,
4167                                        bool HadMultipleCandidates,
4168                                        Expr *From) {
4169   switch (Kind) {
4170   default: llvm_unreachable("Unhandled cast kind!");
4171   case CK_ConstructorConversion: {
4172     CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method);
4173     SmallVector<Expr*, 8> ConstructorArgs;
4174 
4175     if (S.RequireNonAbstractType(CastLoc, Ty,
4176                                  diag::err_allocation_of_abstract_type))
4177       return ExprError();
4178 
4179     if (S.CompleteConstructorCall(Constructor, Ty, From, CastLoc,
4180                                   ConstructorArgs))
4181       return ExprError();
4182 
4183     S.CheckConstructorAccess(CastLoc, Constructor, FoundDecl,
4184                              InitializedEntity::InitializeTemporary(Ty));
4185     if (S.DiagnoseUseOfDecl(Method, CastLoc))
4186       return ExprError();
4187 
4188     ExprResult Result = S.BuildCXXConstructExpr(
4189         CastLoc, Ty, FoundDecl, cast<CXXConstructorDecl>(Method),
4190         ConstructorArgs, HadMultipleCandidates,
4191         /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
4192         CXXConstructionKind::Complete, SourceRange());
4193     if (Result.isInvalid())
4194       return ExprError();
4195 
4196     return S.MaybeBindToTemporary(Result.getAs<Expr>());
4197   }
4198 
4199   case CK_UserDefinedConversion: {
4200     assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
4201 
4202     S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ nullptr, FoundDecl);
4203     if (S.DiagnoseUseOfDecl(Method, CastLoc))
4204       return ExprError();
4205 
4206     // Create an implicit call expr that calls it.
4207     CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method);
4208     ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv,
4209                                                  HadMultipleCandidates);
4210     if (Result.isInvalid())
4211       return ExprError();
4212     // Record usage of conversion in an implicit cast.
4213     Result = ImplicitCastExpr::Create(S.Context, Result.get()->getType(),
4214                                       CK_UserDefinedConversion, Result.get(),
4215                                       nullptr, Result.get()->getValueKind(),
4216                                       S.CurFPFeatureOverrides());
4217 
4218     return S.MaybeBindToTemporary(Result.get());
4219   }
4220   }
4221 }
4222 
4223 ExprResult
4224 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
4225                                 const ImplicitConversionSequence &ICS,
4226                                 AssignmentAction Action,
4227                                 CheckedConversionKind CCK) {
4228   // C++ [over.match.oper]p7: [...] operands of class type are converted [...]
4229   if (CCK == CheckedConversionKind::ForBuiltinOverloadedOp &&
4230       !From->getType()->isRecordType())
4231     return From;
4232 
4233   switch (ICS.getKind()) {
4234   case ImplicitConversionSequence::StandardConversion: {
4235     ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
4236                                                Action, CCK);
4237     if (Res.isInvalid())
4238       return ExprError();
4239     From = Res.get();
4240     break;
4241   }
4242 
4243   case ImplicitConversionSequence::UserDefinedConversion: {
4244 
4245       FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
4246       CastKind CastKind;
4247       QualType BeforeToType;
4248       assert(FD && "no conversion function for user-defined conversion seq");
4249       if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
4250         CastKind = CK_UserDefinedConversion;
4251 
4252         // If the user-defined conversion is specified by a conversion function,
4253         // the initial standard conversion sequence converts the source type to
4254         // the implicit object parameter of the conversion function.
4255         BeforeToType = Context.getTagDeclType(Conv->getParent());
4256       } else {
4257         const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
4258         CastKind = CK_ConstructorConversion;
4259         // Do no conversion if dealing with ... for the first conversion.
4260         if (!ICS.UserDefined.EllipsisConversion) {
4261           // If the user-defined conversion is specified by a constructor, the
4262           // initial standard conversion sequence converts the source type to
4263           // the type required by the argument of the constructor
4264           BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
4265         }
4266       }
4267       // Watch out for ellipsis conversion.
4268       if (!ICS.UserDefined.EllipsisConversion) {
4269         ExprResult Res = PerformImplicitConversion(
4270             From, BeforeToType, ICS.UserDefined.Before,
4271             AssignmentAction::Converting, CCK);
4272         if (Res.isInvalid())
4273           return ExprError();
4274         From = Res.get();
4275       }
4276 
4277       ExprResult CastArg = BuildCXXCastArgument(
4278           *this, From->getBeginLoc(), ToType.getNonReferenceType(), CastKind,
4279           cast<CXXMethodDecl>(FD), ICS.UserDefined.FoundConversionFunction,
4280           ICS.UserDefined.HadMultipleCandidates, From);
4281 
4282       if (CastArg.isInvalid())
4283         return ExprError();
4284 
4285       From = CastArg.get();
4286 
4287       // C++ [over.match.oper]p7:
4288       //   [...] the second standard conversion sequence of a user-defined
4289       //   conversion sequence is not applied.
4290       if (CCK == CheckedConversionKind::ForBuiltinOverloadedOp)
4291         return From;
4292 
4293       return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
4294                                        AssignmentAction::Converting, CCK);
4295   }
4296 
4297   case ImplicitConversionSequence::AmbiguousConversion:
4298     ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
4299                           PDiag(diag::err_typecheck_ambiguous_condition)
4300                             << From->getSourceRange());
4301     return ExprError();
4302 
4303   case ImplicitConversionSequence::EllipsisConversion:
4304   case ImplicitConversionSequence::StaticObjectArgumentConversion:
4305     llvm_unreachable("bad conversion");
4306 
4307   case ImplicitConversionSequence::BadConversion:
4308     Sema::AssignConvertType ConvTy =
4309         CheckAssignmentConstraints(From->getExprLoc(), ToType, From->getType());
4310     bool Diagnosed = DiagnoseAssignmentResult(
4311         ConvTy == Compatible ? Incompatible : ConvTy, From->getExprLoc(),
4312         ToType, From->getType(), From, Action);
4313     assert(Diagnosed && "failed to diagnose bad conversion"); (void)Diagnosed;
4314     return ExprError();
4315   }
4316 
4317   // Everything went well.
4318   return From;
4319 }
4320 
4321 // adjustVectorType - Compute the intermediate cast type casting elements of the
4322 // from type to the elements of the to type without resizing the vector.
4323 static QualType adjustVectorType(ASTContext &Context, QualType FromTy,
4324                                  QualType ToType, QualType *ElTy = nullptr) {
4325   QualType ElType = ToType;
4326   if (auto *ToVec = ToType->getAs<VectorType>())
4327     ElType = ToVec->getElementType();
4328 
4329   if (ElTy)
4330     *ElTy = ElType;
4331   if (!FromTy->isVectorType())
4332     return ElType;
4333   auto *FromVec = FromTy->castAs<VectorType>();
4334   return Context.getExtVectorType(ElType, FromVec->getNumElements());
4335 }
4336 
4337 ExprResult
4338 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
4339                                 const StandardConversionSequence& SCS,
4340                                 AssignmentAction Action,
4341                                 CheckedConversionKind CCK) {
4342   bool CStyle = (CCK == CheckedConversionKind::CStyleCast ||
4343                  CCK == CheckedConversionKind::FunctionalCast);
4344 
4345   // Overall FIXME: we are recomputing too many types here and doing far too
4346   // much extra work. What this means is that we need to keep track of more
4347   // information that is computed when we try the implicit conversion initially,
4348   // so that we don't need to recompute anything here.
4349   QualType FromType = From->getType();
4350 
4351   if (SCS.CopyConstructor) {
4352     // FIXME: When can ToType be a reference type?
4353     assert(!ToType->isReferenceType());
4354     if (SCS.Second == ICK_Derived_To_Base) {
4355       SmallVector<Expr*, 8> ConstructorArgs;
4356       if (CompleteConstructorCall(
4357               cast<CXXConstructorDecl>(SCS.CopyConstructor), ToType, From,
4358               /*FIXME:ConstructLoc*/ SourceLocation(), ConstructorArgs))
4359         return ExprError();
4360       return BuildCXXConstructExpr(
4361           /*FIXME:ConstructLoc*/ SourceLocation(), ToType,
4362           SCS.FoundCopyConstructor, SCS.CopyConstructor, ConstructorArgs,
4363           /*HadMultipleCandidates*/ false,
4364           /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
4365           CXXConstructionKind::Complete, SourceRange());
4366     }
4367     return BuildCXXConstructExpr(
4368         /*FIXME:ConstructLoc*/ SourceLocation(), ToType,
4369         SCS.FoundCopyConstructor, SCS.CopyConstructor, From,
4370         /*HadMultipleCandidates*/ false,
4371         /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
4372         CXXConstructionKind::Complete, SourceRange());
4373   }
4374 
4375   // Resolve overloaded function references.
4376   if (Context.hasSameType(FromType, Context.OverloadTy)) {
4377     DeclAccessPair Found;
4378     FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
4379                                                           true, Found);
4380     if (!Fn)
4381       return ExprError();
4382 
4383     if (DiagnoseUseOfDecl(Fn, From->getBeginLoc()))
4384       return ExprError();
4385 
4386     ExprResult Res = FixOverloadedFunctionReference(From, Found, Fn);
4387     if (Res.isInvalid())
4388       return ExprError();
4389 
4390     // We might get back another placeholder expression if we resolved to a
4391     // builtin.
4392     Res = CheckPlaceholderExpr(Res.get());
4393     if (Res.isInvalid())
4394       return ExprError();
4395 
4396     From = Res.get();
4397     FromType = From->getType();
4398   }
4399 
4400   // If we're converting to an atomic type, first convert to the corresponding
4401   // non-atomic type.
4402   QualType ToAtomicType;
4403   if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) {
4404     ToAtomicType = ToType;
4405     ToType = ToAtomic->getValueType();
4406   }
4407 
4408   QualType InitialFromType = FromType;
4409   // Perform the first implicit conversion.
4410   switch (SCS.First) {
4411   case ICK_Identity:
4412     if (const AtomicType *FromAtomic = FromType->getAs<AtomicType>()) {
4413       FromType = FromAtomic->getValueType().getUnqualifiedType();
4414       From = ImplicitCastExpr::Create(Context, FromType, CK_AtomicToNonAtomic,
4415                                       From, /*BasePath=*/nullptr, VK_PRValue,
4416                                       FPOptionsOverride());
4417     }
4418     break;
4419 
4420   case ICK_Lvalue_To_Rvalue: {
4421     assert(From->getObjectKind() != OK_ObjCProperty);
4422     ExprResult FromRes = DefaultLvalueConversion(From);
4423     if (FromRes.isInvalid())
4424       return ExprError();
4425 
4426     From = FromRes.get();
4427     FromType = From->getType();
4428     break;
4429   }
4430 
4431   case ICK_Array_To_Pointer:
4432     FromType = Context.getArrayDecayedType(FromType);
4433     From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay, VK_PRValue,
4434                              /*BasePath=*/nullptr, CCK)
4435                .get();
4436     break;
4437 
4438   case ICK_HLSL_Array_RValue:
4439     if (ToType->isArrayParameterType()) {
4440       FromType = Context.getArrayParameterType(FromType);
4441       From = ImpCastExprToType(From, FromType, CK_HLSLArrayRValue, VK_PRValue,
4442                                /*BasePath=*/nullptr, CCK)
4443                  .get();
4444     } else { // FromType must be ArrayParameterType
4445       assert(FromType->isArrayParameterType() &&
4446              "FromType must be ArrayParameterType in ICK_HLSL_Array_RValue \
4447               if it is not ToType");
4448       const ArrayParameterType *APT = cast<ArrayParameterType>(FromType);
4449       FromType = APT->getConstantArrayType(Context);
4450       From = ImpCastExprToType(From, FromType, CK_HLSLArrayRValue, VK_PRValue,
4451                                /*BasePath=*/nullptr, CCK)
4452                  .get();
4453     }
4454     break;
4455 
4456   case ICK_Function_To_Pointer:
4457     FromType = Context.getPointerType(FromType);
4458     From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
4459                              VK_PRValue, /*BasePath=*/nullptr, CCK)
4460                .get();
4461     break;
4462 
4463   default:
4464     llvm_unreachable("Improper first standard conversion");
4465   }
4466 
4467   // Perform the second implicit conversion
4468   switch (SCS.Second) {
4469   case ICK_Identity:
4470     // C++ [except.spec]p5:
4471     //   [For] assignment to and initialization of pointers to functions,
4472     //   pointers to member functions, and references to functions: the
4473     //   target entity shall allow at least the exceptions allowed by the
4474     //   source value in the assignment or initialization.
4475     switch (Action) {
4476     case AssignmentAction::Assigning:
4477     case AssignmentAction::Initializing:
4478       // Note, function argument passing and returning are initialization.
4479     case AssignmentAction::Passing:
4480     case AssignmentAction::Returning:
4481     case AssignmentAction::Sending:
4482     case AssignmentAction::Passing_CFAudited:
4483       if (CheckExceptionSpecCompatibility(From, ToType))
4484         return ExprError();
4485       break;
4486 
4487     case AssignmentAction::Casting:
4488     case AssignmentAction::Converting:
4489       // Casts and implicit conversions are not initialization, so are not
4490       // checked for exception specification mismatches.
4491       break;
4492     }
4493     // Nothing else to do.
4494     break;
4495 
4496   case ICK_Integral_Promotion:
4497   case ICK_Integral_Conversion: {
4498     QualType ElTy = ToType;
4499     QualType StepTy = ToType;
4500     if (FromType->isVectorType() || ToType->isVectorType())
4501       StepTy = adjustVectorType(Context, FromType, ToType, &ElTy);
4502     if (ElTy->isBooleanType()) {
4503       assert(FromType->castAs<EnumType>()->getDecl()->isFixed() &&
4504              SCS.Second == ICK_Integral_Promotion &&
4505              "only enums with fixed underlying type can promote to bool");
4506       From = ImpCastExprToType(From, StepTy, CK_IntegralToBoolean, VK_PRValue,
4507                                /*BasePath=*/nullptr, CCK)
4508                  .get();
4509     } else {
4510       From = ImpCastExprToType(From, StepTy, CK_IntegralCast, VK_PRValue,
4511                                /*BasePath=*/nullptr, CCK)
4512                  .get();
4513     }
4514     break;
4515   }
4516 
4517   case ICK_Floating_Promotion:
4518   case ICK_Floating_Conversion: {
4519     QualType StepTy = ToType;
4520     if (FromType->isVectorType() || ToType->isVectorType())
4521       StepTy = adjustVectorType(Context, FromType, ToType);
4522     From = ImpCastExprToType(From, StepTy, CK_FloatingCast, VK_PRValue,
4523                              /*BasePath=*/nullptr, CCK)
4524                .get();
4525     break;
4526   }
4527 
4528   case ICK_Complex_Promotion:
4529   case ICK_Complex_Conversion: {
4530     QualType FromEl = From->getType()->castAs<ComplexType>()->getElementType();
4531     QualType ToEl = ToType->castAs<ComplexType>()->getElementType();
4532     CastKind CK;
4533     if (FromEl->isRealFloatingType()) {
4534       if (ToEl->isRealFloatingType())
4535         CK = CK_FloatingComplexCast;
4536       else
4537         CK = CK_FloatingComplexToIntegralComplex;
4538     } else if (ToEl->isRealFloatingType()) {
4539       CK = CK_IntegralComplexToFloatingComplex;
4540     } else {
4541       CK = CK_IntegralComplexCast;
4542     }
4543     From = ImpCastExprToType(From, ToType, CK, VK_PRValue, /*BasePath=*/nullptr,
4544                              CCK)
4545                .get();
4546     break;
4547   }
4548 
4549   case ICK_Floating_Integral: {
4550     QualType ElTy = ToType;
4551     QualType StepTy = ToType;
4552     if (FromType->isVectorType() || ToType->isVectorType())
4553       StepTy = adjustVectorType(Context, FromType, ToType, &ElTy);
4554     if (ElTy->isRealFloatingType())
4555       From = ImpCastExprToType(From, StepTy, CK_IntegralToFloating, VK_PRValue,
4556                                /*BasePath=*/nullptr, CCK)
4557                  .get();
4558     else
4559       From = ImpCastExprToType(From, StepTy, CK_FloatingToIntegral, VK_PRValue,
4560                                /*BasePath=*/nullptr, CCK)
4561                  .get();
4562     break;
4563   }
4564 
4565   case ICK_Fixed_Point_Conversion:
4566     assert((FromType->isFixedPointType() || ToType->isFixedPointType()) &&
4567            "Attempting implicit fixed point conversion without a fixed "
4568            "point operand");
4569     if (FromType->isFloatingType())
4570       From = ImpCastExprToType(From, ToType, CK_FloatingToFixedPoint,
4571                                VK_PRValue,
4572                                /*BasePath=*/nullptr, CCK).get();
4573     else if (ToType->isFloatingType())
4574       From = ImpCastExprToType(From, ToType, CK_FixedPointToFloating,
4575                                VK_PRValue,
4576                                /*BasePath=*/nullptr, CCK).get();
4577     else if (FromType->isIntegralType(Context))
4578       From = ImpCastExprToType(From, ToType, CK_IntegralToFixedPoint,
4579                                VK_PRValue,
4580                                /*BasePath=*/nullptr, CCK).get();
4581     else if (ToType->isIntegralType(Context))
4582       From = ImpCastExprToType(From, ToType, CK_FixedPointToIntegral,
4583                                VK_PRValue,
4584                                /*BasePath=*/nullptr, CCK).get();
4585     else if (ToType->isBooleanType())
4586       From = ImpCastExprToType(From, ToType, CK_FixedPointToBoolean,
4587                                VK_PRValue,
4588                                /*BasePath=*/nullptr, CCK).get();
4589     else
4590       From = ImpCastExprToType(From, ToType, CK_FixedPointCast,
4591                                VK_PRValue,
4592                                /*BasePath=*/nullptr, CCK).get();
4593     break;
4594 
4595   case ICK_Compatible_Conversion:
4596     From = ImpCastExprToType(From, ToType, CK_NoOp, From->getValueKind(),
4597                              /*BasePath=*/nullptr, CCK).get();
4598     break;
4599 
4600   case ICK_Writeback_Conversion:
4601   case ICK_Pointer_Conversion: {
4602     if (SCS.IncompatibleObjC && Action != AssignmentAction::Casting) {
4603       // Diagnose incompatible Objective-C conversions
4604       if (Action == AssignmentAction::Initializing ||
4605           Action == AssignmentAction::Assigning)
4606         Diag(From->getBeginLoc(),
4607              diag::ext_typecheck_convert_incompatible_pointer)
4608             << ToType << From->getType() << Action << From->getSourceRange()
4609             << 0;
4610       else
4611         Diag(From->getBeginLoc(),
4612              diag::ext_typecheck_convert_incompatible_pointer)
4613             << From->getType() << ToType << Action << From->getSourceRange()
4614             << 0;
4615 
4616       if (From->getType()->isObjCObjectPointerType() &&
4617           ToType->isObjCObjectPointerType())
4618         ObjC().EmitRelatedResultTypeNote(From);
4619     } else if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
4620                !ObjC().CheckObjCARCUnavailableWeakConversion(ToType,
4621                                                              From->getType())) {
4622       if (Action == AssignmentAction::Initializing)
4623         Diag(From->getBeginLoc(), diag::err_arc_weak_unavailable_assign);
4624       else
4625         Diag(From->getBeginLoc(), diag::err_arc_convesion_of_weak_unavailable)
4626             << (Action == AssignmentAction::Casting) << From->getType()
4627             << ToType << From->getSourceRange();
4628     }
4629 
4630     // Defer address space conversion to the third conversion.
4631     QualType FromPteeType = From->getType()->getPointeeType();
4632     QualType ToPteeType = ToType->getPointeeType();
4633     QualType NewToType = ToType;
4634     if (!FromPteeType.isNull() && !ToPteeType.isNull() &&
4635         FromPteeType.getAddressSpace() != ToPteeType.getAddressSpace()) {
4636       NewToType = Context.removeAddrSpaceQualType(ToPteeType);
4637       NewToType = Context.getAddrSpaceQualType(NewToType,
4638                                                FromPteeType.getAddressSpace());
4639       if (ToType->isObjCObjectPointerType())
4640         NewToType = Context.getObjCObjectPointerType(NewToType);
4641       else if (ToType->isBlockPointerType())
4642         NewToType = Context.getBlockPointerType(NewToType);
4643       else
4644         NewToType = Context.getPointerType(NewToType);
4645     }
4646 
4647     CastKind Kind;
4648     CXXCastPath BasePath;
4649     if (CheckPointerConversion(From, NewToType, Kind, BasePath, CStyle))
4650       return ExprError();
4651 
4652     // Make sure we extend blocks if necessary.
4653     // FIXME: doing this here is really ugly.
4654     if (Kind == CK_BlockPointerToObjCPointerCast) {
4655       ExprResult E = From;
4656       (void)ObjC().PrepareCastToObjCObjectPointer(E);
4657       From = E.get();
4658     }
4659     if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers())
4660       ObjC().CheckObjCConversion(SourceRange(), NewToType, From, CCK);
4661     From = ImpCastExprToType(From, NewToType, Kind, VK_PRValue, &BasePath, CCK)
4662                .get();
4663     break;
4664   }
4665 
4666   case ICK_Pointer_Member: {
4667     CastKind Kind;
4668     CXXCastPath BasePath;
4669     if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
4670       return ExprError();
4671     if (CheckExceptionSpecCompatibility(From, ToType))
4672       return ExprError();
4673 
4674     // We may not have been able to figure out what this member pointer resolved
4675     // to up until this exact point.  Attempt to lock-in it's inheritance model.
4676     if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4677       (void)isCompleteType(From->getExprLoc(), From->getType());
4678       (void)isCompleteType(From->getExprLoc(), ToType);
4679     }
4680 
4681     From =
4682         ImpCastExprToType(From, ToType, Kind, VK_PRValue, &BasePath, CCK).get();
4683     break;
4684   }
4685 
4686   case ICK_Boolean_Conversion: {
4687     // Perform half-to-boolean conversion via float.
4688     if (From->getType()->isHalfType()) {
4689       From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).get();
4690       FromType = Context.FloatTy;
4691     }
4692     QualType ElTy = FromType;
4693     QualType StepTy = ToType;
4694     if (FromType->isVectorType())
4695       ElTy = FromType->castAs<VectorType>()->getElementType();
4696     if (getLangOpts().HLSL &&
4697         (FromType->isVectorType() || ToType->isVectorType()))
4698       StepTy = adjustVectorType(Context, FromType, ToType);
4699 
4700     From = ImpCastExprToType(From, StepTy, ScalarTypeToBooleanCastKind(ElTy),
4701                              VK_PRValue,
4702                              /*BasePath=*/nullptr, CCK)
4703                .get();
4704     break;
4705   }
4706 
4707   case ICK_Derived_To_Base: {
4708     CXXCastPath BasePath;
4709     if (CheckDerivedToBaseConversion(
4710             From->getType(), ToType.getNonReferenceType(), From->getBeginLoc(),
4711             From->getSourceRange(), &BasePath, CStyle))
4712       return ExprError();
4713 
4714     From = ImpCastExprToType(From, ToType.getNonReferenceType(),
4715                       CK_DerivedToBase, From->getValueKind(),
4716                       &BasePath, CCK).get();
4717     break;
4718   }
4719 
4720   case ICK_Vector_Conversion:
4721     From = ImpCastExprToType(From, ToType, CK_BitCast, VK_PRValue,
4722                              /*BasePath=*/nullptr, CCK)
4723                .get();
4724     break;
4725 
4726   case ICK_SVE_Vector_Conversion:
4727   case ICK_RVV_Vector_Conversion:
4728     From = ImpCastExprToType(From, ToType, CK_BitCast, VK_PRValue,
4729                              /*BasePath=*/nullptr, CCK)
4730                .get();
4731     break;
4732 
4733   case ICK_Vector_Splat: {
4734     // Vector splat from any arithmetic type to a vector.
4735     Expr *Elem = prepareVectorSplat(ToType, From).get();
4736     From = ImpCastExprToType(Elem, ToType, CK_VectorSplat, VK_PRValue,
4737                              /*BasePath=*/nullptr, CCK)
4738                .get();
4739     break;
4740   }
4741 
4742   case ICK_Complex_Real:
4743     // Case 1.  x -> _Complex y
4744     if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
4745       QualType ElType = ToComplex->getElementType();
4746       bool isFloatingComplex = ElType->isRealFloatingType();
4747 
4748       // x -> y
4749       if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
4750         // do nothing
4751       } else if (From->getType()->isRealFloatingType()) {
4752         From = ImpCastExprToType(From, ElType,
4753                 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get();
4754       } else {
4755         assert(From->getType()->isIntegerType());
4756         From = ImpCastExprToType(From, ElType,
4757                 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get();
4758       }
4759       // y -> _Complex y
4760       From = ImpCastExprToType(From, ToType,
4761                    isFloatingComplex ? CK_FloatingRealToComplex
4762                                      : CK_IntegralRealToComplex).get();
4763 
4764     // Case 2.  _Complex x -> y
4765     } else {
4766       auto *FromComplex = From->getType()->castAs<ComplexType>();
4767       QualType ElType = FromComplex->getElementType();
4768       bool isFloatingComplex = ElType->isRealFloatingType();
4769 
4770       // _Complex x -> x
4771       From = ImpCastExprToType(From, ElType,
4772                                isFloatingComplex ? CK_FloatingComplexToReal
4773                                                  : CK_IntegralComplexToReal,
4774                                VK_PRValue, /*BasePath=*/nullptr, CCK)
4775                  .get();
4776 
4777       // x -> y
4778       if (Context.hasSameUnqualifiedType(ElType, ToType)) {
4779         // do nothing
4780       } else if (ToType->isRealFloatingType()) {
4781         From = ImpCastExprToType(From, ToType,
4782                                  isFloatingComplex ? CK_FloatingCast
4783                                                    : CK_IntegralToFloating,
4784                                  VK_PRValue, /*BasePath=*/nullptr, CCK)
4785                    .get();
4786       } else {
4787         assert(ToType->isIntegerType());
4788         From = ImpCastExprToType(From, ToType,
4789                                  isFloatingComplex ? CK_FloatingToIntegral
4790                                                    : CK_IntegralCast,
4791                                  VK_PRValue, /*BasePath=*/nullptr, CCK)
4792                    .get();
4793       }
4794     }
4795     break;
4796 
4797   case ICK_Block_Pointer_Conversion: {
4798     LangAS AddrSpaceL =
4799         ToType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace();
4800     LangAS AddrSpaceR =
4801         FromType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace();
4802     assert(Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR,
4803                                                 getASTContext()) &&
4804            "Invalid cast");
4805     CastKind Kind =
4806         AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
4807     From = ImpCastExprToType(From, ToType.getUnqualifiedType(), Kind,
4808                              VK_PRValue, /*BasePath=*/nullptr, CCK)
4809                .get();
4810     break;
4811   }
4812 
4813   case ICK_TransparentUnionConversion: {
4814     ExprResult FromRes = From;
4815     Sema::AssignConvertType ConvTy =
4816       CheckTransparentUnionArgumentConstraints(ToType, FromRes);
4817     if (FromRes.isInvalid())
4818       return ExprError();
4819     From = FromRes.get();
4820     assert ((ConvTy == Sema::Compatible) &&
4821             "Improper transparent union conversion");
4822     (void)ConvTy;
4823     break;
4824   }
4825 
4826   case ICK_Zero_Event_Conversion:
4827   case ICK_Zero_Queue_Conversion:
4828     From = ImpCastExprToType(From, ToType,
4829                              CK_ZeroToOCLOpaqueType,
4830                              From->getValueKind()).get();
4831     break;
4832 
4833   case ICK_Lvalue_To_Rvalue:
4834   case ICK_Array_To_Pointer:
4835   case ICK_Function_To_Pointer:
4836   case ICK_Function_Conversion:
4837   case ICK_Qualification:
4838   case ICK_Num_Conversion_Kinds:
4839   case ICK_C_Only_Conversion:
4840   case ICK_Incompatible_Pointer_Conversion:
4841   case ICK_HLSL_Array_RValue:
4842   case ICK_HLSL_Vector_Truncation:
4843   case ICK_HLSL_Vector_Splat:
4844     llvm_unreachable("Improper second standard conversion");
4845   }
4846 
4847   if (SCS.Dimension != ICK_Identity) {
4848     // If SCS.Element is not ICK_Identity the To and From types must be HLSL
4849     // vectors or matrices.
4850 
4851     // TODO: Support HLSL matrices.
4852     assert((!From->getType()->isMatrixType() && !ToType->isMatrixType()) &&
4853            "Dimension conversion for matrix types is not implemented yet.");
4854     assert((ToType->isVectorType() || ToType->isBuiltinType()) &&
4855            "Dimension conversion output must be vector or scalar type.");
4856     switch (SCS.Dimension) {
4857     case ICK_HLSL_Vector_Splat: {
4858       // Vector splat from any arithmetic type to a vector.
4859       Expr *Elem = prepareVectorSplat(ToType, From).get();
4860       From = ImpCastExprToType(Elem, ToType, CK_VectorSplat, VK_PRValue,
4861                                /*BasePath=*/nullptr, CCK)
4862                  .get();
4863       break;
4864     }
4865     case ICK_HLSL_Vector_Truncation: {
4866       // Note: HLSL built-in vectors are ExtVectors. Since this truncates a
4867       // vector to a smaller vector or to a scalar, this can only operate on
4868       // arguments where the source type is an ExtVector and the destination
4869       // type is destination type is either an ExtVectorType or a builtin scalar
4870       // type.
4871       auto *FromVec = From->getType()->castAs<VectorType>();
4872       QualType TruncTy = FromVec->getElementType();
4873       if (auto *ToVec = ToType->getAs<VectorType>())
4874         TruncTy = Context.getExtVectorType(TruncTy, ToVec->getNumElements());
4875       From = ImpCastExprToType(From, TruncTy, CK_HLSLVectorTruncation,
4876                                From->getValueKind())
4877                  .get();
4878 
4879       break;
4880     }
4881     case ICK_Identity:
4882     default:
4883       llvm_unreachable("Improper element standard conversion");
4884     }
4885   }
4886 
4887   switch (SCS.Third) {
4888   case ICK_Identity:
4889     // Nothing to do.
4890     break;
4891 
4892   case ICK_Function_Conversion:
4893     // If both sides are functions (or pointers/references to them), there could
4894     // be incompatible exception declarations.
4895     if (CheckExceptionSpecCompatibility(From, ToType))
4896       return ExprError();
4897 
4898     From = ImpCastExprToType(From, ToType, CK_NoOp, VK_PRValue,
4899                              /*BasePath=*/nullptr, CCK)
4900                .get();
4901     break;
4902 
4903   case ICK_Qualification: {
4904     ExprValueKind VK = From->getValueKind();
4905     CastKind CK = CK_NoOp;
4906 
4907     if (ToType->isReferenceType() &&
4908         ToType->getPointeeType().getAddressSpace() !=
4909             From->getType().getAddressSpace())
4910       CK = CK_AddressSpaceConversion;
4911 
4912     if (ToType->isPointerType() &&
4913         ToType->getPointeeType().getAddressSpace() !=
4914             From->getType()->getPointeeType().getAddressSpace())
4915       CK = CK_AddressSpaceConversion;
4916 
4917     if (!isCast(CCK) &&
4918         !ToType->getPointeeType().getQualifiers().hasUnaligned() &&
4919         From->getType()->getPointeeType().getQualifiers().hasUnaligned()) {
4920       Diag(From->getBeginLoc(), diag::warn_imp_cast_drops_unaligned)
4921           << InitialFromType << ToType;
4922     }
4923 
4924     From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context), CK, VK,
4925                              /*BasePath=*/nullptr, CCK)
4926                .get();
4927 
4928     if (SCS.DeprecatedStringLiteralToCharPtr &&
4929         !getLangOpts().WritableStrings) {
4930       Diag(From->getBeginLoc(),
4931            getLangOpts().CPlusPlus11
4932                ? diag::ext_deprecated_string_literal_conversion
4933                : diag::warn_deprecated_string_literal_conversion)
4934           << ToType.getNonReferenceType();
4935     }
4936 
4937     break;
4938   }
4939 
4940   default:
4941     llvm_unreachable("Improper third standard conversion");
4942   }
4943 
4944   // If this conversion sequence involved a scalar -> atomic conversion, perform
4945   // that conversion now.
4946   if (!ToAtomicType.isNull()) {
4947     assert(Context.hasSameType(
4948         ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType()));
4949     From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic,
4950                              VK_PRValue, nullptr, CCK)
4951                .get();
4952   }
4953 
4954   // Materialize a temporary if we're implicitly converting to a reference
4955   // type. This is not required by the C++ rules but is necessary to maintain
4956   // AST invariants.
4957   if (ToType->isReferenceType() && From->isPRValue()) {
4958     ExprResult Res = TemporaryMaterializationConversion(From);
4959     if (Res.isInvalid())
4960       return ExprError();
4961     From = Res.get();
4962   }
4963 
4964   // If this conversion sequence succeeded and involved implicitly converting a
4965   // _Nullable type to a _Nonnull one, complain.
4966   if (!isCast(CCK))
4967     diagnoseNullableToNonnullConversion(ToType, InitialFromType,
4968                                         From->getBeginLoc());
4969 
4970   return From;
4971 }
4972 
4973 /// Checks that type T is not a VLA.
4974 ///
4975 /// @returns @c true if @p T is VLA and a diagnostic was emitted,
4976 /// @c false otherwise.
4977 static bool DiagnoseVLAInCXXTypeTrait(Sema &S, const TypeSourceInfo *T,
4978                                       clang::tok::TokenKind TypeTraitID) {
4979   if (!T->getType()->isVariableArrayType())
4980     return false;
4981 
4982   S.Diag(T->getTypeLoc().getBeginLoc(), diag::err_vla_unsupported)
4983       << 1 << TypeTraitID;
4984   return true;
4985 }
4986 
4987 /// Checks that type T is not an atomic type (_Atomic).
4988 ///
4989 /// @returns @c true if @p T is VLA and a diagnostic was emitted,
4990 /// @c false otherwise.
4991 static bool DiagnoseAtomicInCXXTypeTrait(Sema &S, const TypeSourceInfo *T,
4992                                          clang::tok::TokenKind TypeTraitID) {
4993   if (!T->getType()->isAtomicType())
4994     return false;
4995 
4996   S.Diag(T->getTypeLoc().getBeginLoc(), diag::err_atomic_unsupported)
4997       << TypeTraitID;
4998   return true;
4999 }
5000 
5001 /// Check the completeness of a type in a unary type trait.
5002 ///
5003 /// If the particular type trait requires a complete type, tries to complete
5004 /// it. If completing the type fails, a diagnostic is emitted and false
5005 /// returned. If completing the type succeeds or no completion was required,
5006 /// returns true.
5007 static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, TypeTrait UTT,
5008                                                 SourceLocation Loc,
5009                                                 QualType ArgTy) {
5010   // C++0x [meta.unary.prop]p3:
5011   //   For all of the class templates X declared in this Clause, instantiating
5012   //   that template with a template argument that is a class template
5013   //   specialization may result in the implicit instantiation of the template
5014   //   argument if and only if the semantics of X require that the argument
5015   //   must be a complete type.
5016   // We apply this rule to all the type trait expressions used to implement
5017   // these class templates. We also try to follow any GCC documented behavior
5018   // in these expressions to ensure portability of standard libraries.
5019   switch (UTT) {
5020   default: llvm_unreachable("not a UTT");
5021     // is_complete_type somewhat obviously cannot require a complete type.
5022   case UTT_IsCompleteType:
5023     // Fall-through
5024 
5025     // These traits are modeled on the type predicates in C++0x
5026     // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
5027     // requiring a complete type, as whether or not they return true cannot be
5028     // impacted by the completeness of the type.
5029   case UTT_IsVoid:
5030   case UTT_IsIntegral:
5031   case UTT_IsFloatingPoint:
5032   case UTT_IsArray:
5033   case UTT_IsBoundedArray:
5034   case UTT_IsPointer:
5035   case UTT_IsReferenceable:
5036   case UTT_IsLvalueReference:
5037   case UTT_IsRvalueReference:
5038   case UTT_IsMemberFunctionPointer:
5039   case UTT_IsMemberObjectPointer:
5040   case UTT_IsEnum:
5041   case UTT_IsScopedEnum:
5042   case UTT_IsUnion:
5043   case UTT_IsClass:
5044   case UTT_IsFunction:
5045   case UTT_IsReference:
5046   case UTT_IsArithmetic:
5047   case UTT_IsFundamental:
5048   case UTT_IsObject:
5049   case UTT_IsScalar:
5050   case UTT_IsCompound:
5051   case UTT_IsMemberPointer:
5052   case UTT_IsTypedResourceElementCompatible:
5053     // Fall-through
5054 
5055     // These traits are modeled on type predicates in C++0x [meta.unary.prop]
5056     // which requires some of its traits to have the complete type. However,
5057     // the completeness of the type cannot impact these traits' semantics, and
5058     // so they don't require it. This matches the comments on these traits in
5059     // Table 49.
5060   case UTT_IsConst:
5061   case UTT_IsVolatile:
5062   case UTT_IsSigned:
5063   case UTT_IsUnboundedArray:
5064   case UTT_IsUnsigned:
5065 
5066   // This type trait always returns false, checking the type is moot.
5067   case UTT_IsInterfaceClass:
5068     return true;
5069 
5070   // C++14 [meta.unary.prop]:
5071   //   If T is a non-union class type, T shall be a complete type.
5072   case UTT_IsEmpty:
5073   case UTT_IsPolymorphic:
5074   case UTT_IsAbstract:
5075     if (const auto *RD = ArgTy->getAsCXXRecordDecl())
5076       if (!RD->isUnion())
5077         return !S.RequireCompleteType(
5078             Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
5079     return true;
5080 
5081   // C++14 [meta.unary.prop]:
5082   //   If T is a class type, T shall be a complete type.
5083   case UTT_IsFinal:
5084   case UTT_IsSealed:
5085     if (ArgTy->getAsCXXRecordDecl())
5086       return !S.RequireCompleteType(
5087           Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
5088     return true;
5089 
5090   // LWG3823: T shall be an array type, a complete type, or cv void.
5091   case UTT_IsAggregate:
5092   case UTT_IsImplicitLifetime:
5093     if (ArgTy->isArrayType() || ArgTy->isVoidType())
5094       return true;
5095 
5096     return !S.RequireCompleteType(
5097         Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
5098 
5099   // C++1z [meta.unary.prop]:
5100   //   remove_all_extents_t<T> shall be a complete type or cv void.
5101   case UTT_IsTrivial:
5102   case UTT_IsTriviallyCopyable:
5103   case UTT_IsStandardLayout:
5104   case UTT_IsPOD:
5105   case UTT_IsLiteral:
5106   case UTT_IsBitwiseCloneable:
5107   // By analogy, is_trivially_relocatable and is_trivially_equality_comparable
5108   // impose the same constraints.
5109   case UTT_IsTriviallyRelocatable:
5110   case UTT_IsTriviallyEqualityComparable:
5111   case UTT_CanPassInRegs:
5112   // Per the GCC type traits documentation, T shall be a complete type, cv void,
5113   // or an array of unknown bound. But GCC actually imposes the same constraints
5114   // as above.
5115   case UTT_HasNothrowAssign:
5116   case UTT_HasNothrowMoveAssign:
5117   case UTT_HasNothrowConstructor:
5118   case UTT_HasNothrowCopy:
5119   case UTT_HasTrivialAssign:
5120   case UTT_HasTrivialMoveAssign:
5121   case UTT_HasTrivialDefaultConstructor:
5122   case UTT_HasTrivialMoveConstructor:
5123   case UTT_HasTrivialCopy:
5124   case UTT_HasTrivialDestructor:
5125   case UTT_HasVirtualDestructor:
5126   // has_unique_object_representations<T> when T is an array is defined in terms
5127   // of has_unique_object_representations<remove_all_extents_t<T>>, so the base
5128   // type needs to be complete even if the type is an incomplete array type.
5129   case UTT_HasUniqueObjectRepresentations:
5130     ArgTy = QualType(ArgTy->getBaseElementTypeUnsafe(), 0);
5131     [[fallthrough]];
5132 
5133   // C++1z [meta.unary.prop]:
5134   //   T shall be a complete type, cv void, or an array of unknown bound.
5135   case UTT_IsDestructible:
5136   case UTT_IsNothrowDestructible:
5137   case UTT_IsTriviallyDestructible:
5138   case UTT_IsIntangibleType:
5139     if (ArgTy->isIncompleteArrayType() || ArgTy->isVoidType())
5140       return true;
5141 
5142     return !S.RequireCompleteType(
5143         Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
5144   }
5145 }
5146 
5147 static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op,
5148                                Sema &Self, SourceLocation KeyLoc, ASTContext &C,
5149                                bool (CXXRecordDecl::*HasTrivial)() const,
5150                                bool (CXXRecordDecl::*HasNonTrivial)() const,
5151                                bool (CXXMethodDecl::*IsDesiredOp)() const)
5152 {
5153   CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
5154   if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)())
5155     return true;
5156 
5157   DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op);
5158   DeclarationNameInfo NameInfo(Name, KeyLoc);
5159   LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName);
5160   if (Self.LookupQualifiedName(Res, RD)) {
5161     bool FoundOperator = false;
5162     Res.suppressDiagnostics();
5163     for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
5164          Op != OpEnd; ++Op) {
5165       if (isa<FunctionTemplateDecl>(*Op))
5166         continue;
5167 
5168       CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
5169       if((Operator->*IsDesiredOp)()) {
5170         FoundOperator = true;
5171         auto *CPT = Operator->getType()->castAs<FunctionProtoType>();
5172         CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
5173         if (!CPT || !CPT->isNothrow())
5174           return false;
5175       }
5176     }
5177     return FoundOperator;
5178   }
5179   return false;
5180 }
5181 
5182 static bool HasNonDeletedDefaultedEqualityComparison(Sema &S,
5183                                                      const CXXRecordDecl *Decl,
5184                                                      SourceLocation KeyLoc) {
5185   if (Decl->isUnion())
5186     return false;
5187   if (Decl->isLambda())
5188     return Decl->isCapturelessLambda();
5189 
5190   {
5191     EnterExpressionEvaluationContext UnevaluatedContext(
5192         S, Sema::ExpressionEvaluationContext::Unevaluated);
5193     Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
5194     Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
5195 
5196     // const ClassT& obj;
5197     OpaqueValueExpr Operand(
5198         KeyLoc,
5199         Decl->getTypeForDecl()->getCanonicalTypeUnqualified().withConst(),
5200         ExprValueKind::VK_LValue);
5201     UnresolvedSet<16> Functions;
5202     // obj == obj;
5203     S.LookupBinOp(S.TUScope, {}, BinaryOperatorKind::BO_EQ, Functions);
5204 
5205     auto Result = S.CreateOverloadedBinOp(KeyLoc, BinaryOperatorKind::BO_EQ,
5206                                           Functions, &Operand, &Operand);
5207     if (Result.isInvalid() || SFINAE.hasErrorOccurred())
5208       return false;
5209 
5210     const auto *CallExpr = dyn_cast<CXXOperatorCallExpr>(Result.get());
5211     if (!CallExpr)
5212       return false;
5213     const auto *Callee = CallExpr->getDirectCallee();
5214     auto ParamT = Callee->getParamDecl(0)->getType();
5215     if (!Callee->isDefaulted())
5216       return false;
5217     if (!ParamT->isReferenceType() && !Decl->isTriviallyCopyable())
5218       return false;
5219     if (ParamT.getNonReferenceType()->getUnqualifiedDesugaredType() !=
5220         Decl->getTypeForDecl())
5221       return false;
5222   }
5223 
5224   return llvm::all_of(Decl->bases(),
5225                       [&](const CXXBaseSpecifier &BS) {
5226                         if (const auto *RD = BS.getType()->getAsCXXRecordDecl())
5227                           return HasNonDeletedDefaultedEqualityComparison(
5228                               S, RD, KeyLoc);
5229                         return true;
5230                       }) &&
5231          llvm::all_of(Decl->fields(), [&](const FieldDecl *FD) {
5232            auto Type = FD->getType();
5233            if (Type->isArrayType())
5234              Type = Type->getBaseElementTypeUnsafe()
5235                         ->getCanonicalTypeUnqualified();
5236 
5237            if (Type->isReferenceType() || Type->isEnumeralType())
5238              return false;
5239            if (const auto *RD = Type->getAsCXXRecordDecl())
5240              return HasNonDeletedDefaultedEqualityComparison(S, RD, KeyLoc);
5241            return true;
5242          });
5243 }
5244 
5245 static bool isTriviallyEqualityComparableType(Sema &S, QualType Type, SourceLocation KeyLoc) {
5246   QualType CanonicalType = Type.getCanonicalType();
5247   if (CanonicalType->isIncompleteType() || CanonicalType->isDependentType() ||
5248       CanonicalType->isEnumeralType() || CanonicalType->isArrayType())
5249     return false;
5250 
5251   if (const auto *RD = CanonicalType->getAsCXXRecordDecl()) {
5252     if (!HasNonDeletedDefaultedEqualityComparison(S, RD, KeyLoc))
5253       return false;
5254   }
5255 
5256   return S.getASTContext().hasUniqueObjectRepresentations(
5257       CanonicalType, /*CheckIfTriviallyCopyable=*/false);
5258 }
5259 
5260 static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT,
5261                                    SourceLocation KeyLoc,
5262                                    TypeSourceInfo *TInfo) {
5263   QualType T = TInfo->getType();
5264   assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
5265 
5266   ASTContext &C = Self.Context;
5267   switch(UTT) {
5268   default: llvm_unreachable("not a UTT");
5269     // Type trait expressions corresponding to the primary type category
5270     // predicates in C++0x [meta.unary.cat].
5271   case UTT_IsVoid:
5272     return T->isVoidType();
5273   case UTT_IsIntegral:
5274     return T->isIntegralType(C);
5275   case UTT_IsFloatingPoint:
5276     return T->isFloatingType();
5277   case UTT_IsArray:
5278     // Zero-sized arrays aren't considered arrays in partial specializations,
5279     // so __is_array shouldn't consider them arrays either.
5280     if (const auto *CAT = C.getAsConstantArrayType(T))
5281       return CAT->getSize() != 0;
5282     return T->isArrayType();
5283   case UTT_IsBoundedArray:
5284     if (DiagnoseVLAInCXXTypeTrait(Self, TInfo, tok::kw___is_bounded_array))
5285       return false;
5286     // Zero-sized arrays aren't considered arrays in partial specializations,
5287     // so __is_bounded_array shouldn't consider them arrays either.
5288     if (const auto *CAT = C.getAsConstantArrayType(T))
5289       return CAT->getSize() != 0;
5290     return T->isArrayType() && !T->isIncompleteArrayType();
5291   case UTT_IsUnboundedArray:
5292     if (DiagnoseVLAInCXXTypeTrait(Self, TInfo, tok::kw___is_unbounded_array))
5293       return false;
5294     return T->isIncompleteArrayType();
5295   case UTT_IsPointer:
5296     return T->isAnyPointerType();
5297   case UTT_IsLvalueReference:
5298     return T->isLValueReferenceType();
5299   case UTT_IsRvalueReference:
5300     return T->isRValueReferenceType();
5301   case UTT_IsMemberFunctionPointer:
5302     return T->isMemberFunctionPointerType();
5303   case UTT_IsMemberObjectPointer:
5304     return T->isMemberDataPointerType();
5305   case UTT_IsEnum:
5306     return T->isEnumeralType();
5307   case UTT_IsScopedEnum:
5308     return T->isScopedEnumeralType();
5309   case UTT_IsUnion:
5310     return T->isUnionType();
5311   case UTT_IsClass:
5312     return T->isClassType() || T->isStructureType() || T->isInterfaceType();
5313   case UTT_IsFunction:
5314     return T->isFunctionType();
5315 
5316     // Type trait expressions which correspond to the convenient composition
5317     // predicates in C++0x [meta.unary.comp].
5318   case UTT_IsReference:
5319     return T->isReferenceType();
5320   case UTT_IsArithmetic:
5321     return T->isArithmeticType() && !T->isEnumeralType();
5322   case UTT_IsFundamental:
5323     return T->isFundamentalType();
5324   case UTT_IsObject:
5325     return T->isObjectType();
5326   case UTT_IsScalar:
5327     // Note: semantic analysis depends on Objective-C lifetime types to be
5328     // considered scalar types. However, such types do not actually behave
5329     // like scalar types at run time (since they may require retain/release
5330     // operations), so we report them as non-scalar.
5331     if (T->isObjCLifetimeType()) {
5332       switch (T.getObjCLifetime()) {
5333       case Qualifiers::OCL_None:
5334       case Qualifiers::OCL_ExplicitNone:
5335         return true;
5336 
5337       case Qualifiers::OCL_Strong:
5338       case Qualifiers::OCL_Weak:
5339       case Qualifiers::OCL_Autoreleasing:
5340         return false;
5341       }
5342     }
5343 
5344     return T->isScalarType();
5345   case UTT_IsCompound:
5346     return T->isCompoundType();
5347   case UTT_IsMemberPointer:
5348     return T->isMemberPointerType();
5349 
5350     // Type trait expressions which correspond to the type property predicates
5351     // in C++0x [meta.unary.prop].
5352   case UTT_IsConst:
5353     return T.isConstQualified();
5354   case UTT_IsVolatile:
5355     return T.isVolatileQualified();
5356   case UTT_IsTrivial:
5357     return T.isTrivialType(C);
5358   case UTT_IsTriviallyCopyable:
5359     return T.isTriviallyCopyableType(C);
5360   case UTT_IsStandardLayout:
5361     return T->isStandardLayoutType();
5362   case UTT_IsPOD:
5363     return T.isPODType(C);
5364   case UTT_IsLiteral:
5365     return T->isLiteralType(C);
5366   case UTT_IsEmpty:
5367     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5368       return !RD->isUnion() && RD->isEmpty();
5369     return false;
5370   case UTT_IsPolymorphic:
5371     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5372       return !RD->isUnion() && RD->isPolymorphic();
5373     return false;
5374   case UTT_IsAbstract:
5375     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5376       return !RD->isUnion() && RD->isAbstract();
5377     return false;
5378   case UTT_IsAggregate:
5379     // Report vector extensions and complex types as aggregates because they
5380     // support aggregate initialization. GCC mirrors this behavior for vectors
5381     // but not _Complex.
5382     return T->isAggregateType() || T->isVectorType() || T->isExtVectorType() ||
5383            T->isAnyComplexType();
5384   // __is_interface_class only returns true when CL is invoked in /CLR mode and
5385   // even then only when it is used with the 'interface struct ...' syntax
5386   // Clang doesn't support /CLR which makes this type trait moot.
5387   case UTT_IsInterfaceClass:
5388     return false;
5389   case UTT_IsFinal:
5390   case UTT_IsSealed:
5391     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5392       return RD->hasAttr<FinalAttr>();
5393     return false;
5394   case UTT_IsSigned:
5395     // Enum types should always return false.
5396     // Floating points should always return true.
5397     return T->isFloatingType() ||
5398            (T->isSignedIntegerType() && !T->isEnumeralType());
5399   case UTT_IsUnsigned:
5400     // Enum types should always return false.
5401     return T->isUnsignedIntegerType() && !T->isEnumeralType();
5402 
5403     // Type trait expressions which query classes regarding their construction,
5404     // destruction, and copying. Rather than being based directly on the
5405     // related type predicates in the standard, they are specified by both
5406     // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
5407     // specifications.
5408     //
5409     //   1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
5410     //   2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
5411     //
5412     // Note that these builtins do not behave as documented in g++: if a class
5413     // has both a trivial and a non-trivial special member of a particular kind,
5414     // they return false! For now, we emulate this behavior.
5415     // FIXME: This appears to be a g++ bug: more complex cases reveal that it
5416     // does not correctly compute triviality in the presence of multiple special
5417     // members of the same kind. Revisit this once the g++ bug is fixed.
5418   case UTT_HasTrivialDefaultConstructor:
5419     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5420     //   If __is_pod (type) is true then the trait is true, else if type is
5421     //   a cv class or union type (or array thereof) with a trivial default
5422     //   constructor ([class.ctor]) then the trait is true, else it is false.
5423     if (T.isPODType(C))
5424       return true;
5425     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
5426       return RD->hasTrivialDefaultConstructor() &&
5427              !RD->hasNonTrivialDefaultConstructor();
5428     return false;
5429   case UTT_HasTrivialMoveConstructor:
5430     //  This trait is implemented by MSVC 2012 and needed to parse the
5431     //  standard library headers. Specifically this is used as the logic
5432     //  behind std::is_trivially_move_constructible (20.9.4.3).
5433     if (T.isPODType(C))
5434       return true;
5435     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
5436       return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor();
5437     return false;
5438   case UTT_HasTrivialCopy:
5439     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5440     //   If __is_pod (type) is true or type is a reference type then
5441     //   the trait is true, else if type is a cv class or union type
5442     //   with a trivial copy constructor ([class.copy]) then the trait
5443     //   is true, else it is false.
5444     if (T.isPODType(C) || T->isReferenceType())
5445       return true;
5446     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5447       return RD->hasTrivialCopyConstructor() &&
5448              !RD->hasNonTrivialCopyConstructor();
5449     return false;
5450   case UTT_HasTrivialMoveAssign:
5451     //  This trait is implemented by MSVC 2012 and needed to parse the
5452     //  standard library headers. Specifically it is used as the logic
5453     //  behind std::is_trivially_move_assignable (20.9.4.3)
5454     if (T.isPODType(C))
5455       return true;
5456     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
5457       return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment();
5458     return false;
5459   case UTT_HasTrivialAssign:
5460     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5461     //   If type is const qualified or is a reference type then the
5462     //   trait is false. Otherwise if __is_pod (type) is true then the
5463     //   trait is true, else if type is a cv class or union type with
5464     //   a trivial copy assignment ([class.copy]) then the trait is
5465     //   true, else it is false.
5466     // Note: the const and reference restrictions are interesting,
5467     // given that const and reference members don't prevent a class
5468     // from having a trivial copy assignment operator (but do cause
5469     // errors if the copy assignment operator is actually used, q.v.
5470     // [class.copy]p12).
5471 
5472     if (T.isConstQualified())
5473       return false;
5474     if (T.isPODType(C))
5475       return true;
5476     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5477       return RD->hasTrivialCopyAssignment() &&
5478              !RD->hasNonTrivialCopyAssignment();
5479     return false;
5480   case UTT_IsDestructible:
5481   case UTT_IsTriviallyDestructible:
5482   case UTT_IsNothrowDestructible:
5483     // C++14 [meta.unary.prop]:
5484     //   For reference types, is_destructible<T>::value is true.
5485     if (T->isReferenceType())
5486       return true;
5487 
5488     // Objective-C++ ARC: autorelease types don't require destruction.
5489     if (T->isObjCLifetimeType() &&
5490         T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
5491       return true;
5492 
5493     // C++14 [meta.unary.prop]:
5494     //   For incomplete types and function types, is_destructible<T>::value is
5495     //   false.
5496     if (T->isIncompleteType() || T->isFunctionType())
5497       return false;
5498 
5499     // A type that requires destruction (via a non-trivial destructor or ARC
5500     // lifetime semantics) is not trivially-destructible.
5501     if (UTT == UTT_IsTriviallyDestructible && T.isDestructedType())
5502       return false;
5503 
5504     // C++14 [meta.unary.prop]:
5505     //   For object types and given U equal to remove_all_extents_t<T>, if the
5506     //   expression std::declval<U&>().~U() is well-formed when treated as an
5507     //   unevaluated operand (Clause 5), then is_destructible<T>::value is true
5508     if (auto *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
5509       CXXDestructorDecl *Destructor = Self.LookupDestructor(RD);
5510       if (!Destructor)
5511         return false;
5512       //  C++14 [dcl.fct.def.delete]p2:
5513       //    A program that refers to a deleted function implicitly or
5514       //    explicitly, other than to declare it, is ill-formed.
5515       if (Destructor->isDeleted())
5516         return false;
5517       if (C.getLangOpts().AccessControl && Destructor->getAccess() != AS_public)
5518         return false;
5519       if (UTT == UTT_IsNothrowDestructible) {
5520         auto *CPT = Destructor->getType()->castAs<FunctionProtoType>();
5521         CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
5522         if (!CPT || !CPT->isNothrow())
5523           return false;
5524       }
5525     }
5526     return true;
5527 
5528   case UTT_HasTrivialDestructor:
5529     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
5530     //   If __is_pod (type) is true or type is a reference type
5531     //   then the trait is true, else if type is a cv class or union
5532     //   type (or array thereof) with a trivial destructor
5533     //   ([class.dtor]) then the trait is true, else it is
5534     //   false.
5535     if (T.isPODType(C) || T->isReferenceType())
5536       return true;
5537 
5538     // Objective-C++ ARC: autorelease types don't require destruction.
5539     if (T->isObjCLifetimeType() &&
5540         T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
5541       return true;
5542 
5543     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
5544       return RD->hasTrivialDestructor();
5545     return false;
5546   // TODO: Propagate nothrowness for implicitly declared special members.
5547   case UTT_HasNothrowAssign:
5548     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5549     //   If type is const qualified or is a reference type then the
5550     //   trait is false. Otherwise if __has_trivial_assign (type)
5551     //   is true then the trait is true, else if type is a cv class
5552     //   or union type with copy assignment operators that are known
5553     //   not to throw an exception then the trait is true, else it is
5554     //   false.
5555     if (C.getBaseElementType(T).isConstQualified())
5556       return false;
5557     if (T->isReferenceType())
5558       return false;
5559     if (T.isPODType(C) || T->isObjCLifetimeType())
5560       return true;
5561 
5562     if (const RecordType *RT = T->getAs<RecordType>())
5563       return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
5564                                 &CXXRecordDecl::hasTrivialCopyAssignment,
5565                                 &CXXRecordDecl::hasNonTrivialCopyAssignment,
5566                                 &CXXMethodDecl::isCopyAssignmentOperator);
5567     return false;
5568   case UTT_HasNothrowMoveAssign:
5569     //  This trait is implemented by MSVC 2012 and needed to parse the
5570     //  standard library headers. Specifically this is used as the logic
5571     //  behind std::is_nothrow_move_assignable (20.9.4.3).
5572     if (T.isPODType(C))
5573       return true;
5574 
5575     if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>())
5576       return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
5577                                 &CXXRecordDecl::hasTrivialMoveAssignment,
5578                                 &CXXRecordDecl::hasNonTrivialMoveAssignment,
5579                                 &CXXMethodDecl::isMoveAssignmentOperator);
5580     return false;
5581   case UTT_HasNothrowCopy:
5582     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5583     //   If __has_trivial_copy (type) is true then the trait is true, else
5584     //   if type is a cv class or union type with copy constructors that are
5585     //   known not to throw an exception then the trait is true, else it is
5586     //   false.
5587     if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
5588       return true;
5589     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
5590       if (RD->hasTrivialCopyConstructor() &&
5591           !RD->hasNonTrivialCopyConstructor())
5592         return true;
5593 
5594       bool FoundConstructor = false;
5595       unsigned FoundTQs;
5596       for (const auto *ND : Self.LookupConstructors(RD)) {
5597         // A template constructor is never a copy constructor.
5598         // FIXME: However, it may actually be selected at the actual overload
5599         // resolution point.
5600         if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl()))
5601           continue;
5602         // UsingDecl itself is not a constructor
5603         if (isa<UsingDecl>(ND))
5604           continue;
5605         auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl());
5606         if (Constructor->isCopyConstructor(FoundTQs)) {
5607           FoundConstructor = true;
5608           auto *CPT = Constructor->getType()->castAs<FunctionProtoType>();
5609           CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
5610           if (!CPT)
5611             return false;
5612           // TODO: check whether evaluating default arguments can throw.
5613           // For now, we'll be conservative and assume that they can throw.
5614           if (!CPT->isNothrow() || CPT->getNumParams() > 1)
5615             return false;
5616         }
5617       }
5618 
5619       return FoundConstructor;
5620     }
5621     return false;
5622   case UTT_HasNothrowConstructor:
5623     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
5624     //   If __has_trivial_constructor (type) is true then the trait is
5625     //   true, else if type is a cv class or union type (or array
5626     //   thereof) with a default constructor that is known not to
5627     //   throw an exception then the trait is true, else it is false.
5628     if (T.isPODType(C) || T->isObjCLifetimeType())
5629       return true;
5630     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
5631       if (RD->hasTrivialDefaultConstructor() &&
5632           !RD->hasNonTrivialDefaultConstructor())
5633         return true;
5634 
5635       bool FoundConstructor = false;
5636       for (const auto *ND : Self.LookupConstructors(RD)) {
5637         // FIXME: In C++0x, a constructor template can be a default constructor.
5638         if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl()))
5639           continue;
5640         // UsingDecl itself is not a constructor
5641         if (isa<UsingDecl>(ND))
5642           continue;
5643         auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl());
5644         if (Constructor->isDefaultConstructor()) {
5645           FoundConstructor = true;
5646           auto *CPT = Constructor->getType()->castAs<FunctionProtoType>();
5647           CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
5648           if (!CPT)
5649             return false;
5650           // FIXME: check whether evaluating default arguments can throw.
5651           // For now, we'll be conservative and assume that they can throw.
5652           if (!CPT->isNothrow() || CPT->getNumParams() > 0)
5653             return false;
5654         }
5655       }
5656       return FoundConstructor;
5657     }
5658     return false;
5659   case UTT_HasVirtualDestructor:
5660     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5661     //   If type is a class type with a virtual destructor ([class.dtor])
5662     //   then the trait is true, else it is false.
5663     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5664       if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
5665         return Destructor->isVirtual();
5666     return false;
5667 
5668     // These type trait expressions are modeled on the specifications for the
5669     // Embarcadero C++0x type trait functions:
5670     //   http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
5671   case UTT_IsCompleteType:
5672     // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
5673     //   Returns True if and only if T is a complete type at the point of the
5674     //   function call.
5675     return !T->isIncompleteType();
5676   case UTT_HasUniqueObjectRepresentations:
5677     return C.hasUniqueObjectRepresentations(T);
5678   case UTT_IsTriviallyRelocatable:
5679     return T.isTriviallyRelocatableType(C);
5680   case UTT_IsBitwiseCloneable:
5681     return T.isBitwiseCloneableType(C);
5682   case UTT_IsReferenceable:
5683     return T.isReferenceable();
5684   case UTT_CanPassInRegs:
5685     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl(); RD && !T.hasQualifiers())
5686       return RD->canPassInRegisters();
5687     Self.Diag(KeyLoc, diag::err_builtin_pass_in_regs_non_class) << T;
5688     return false;
5689   case UTT_IsTriviallyEqualityComparable:
5690     return isTriviallyEqualityComparableType(Self, T, KeyLoc);
5691   case UTT_IsImplicitLifetime: {
5692     DiagnoseVLAInCXXTypeTrait(Self, TInfo,
5693                               tok::kw___builtin_is_implicit_lifetime);
5694     DiagnoseAtomicInCXXTypeTrait(Self, TInfo,
5695                                  tok::kw___builtin_is_implicit_lifetime);
5696 
5697     // [basic.types.general] p9
5698     // Scalar types, implicit-lifetime class types ([class.prop]),
5699     // array types, and cv-qualified versions of these types
5700     // are collectively called implicit-lifetime types.
5701     QualType UnqualT = T->getCanonicalTypeUnqualified();
5702     if (UnqualT->isScalarType())
5703       return true;
5704     if (UnqualT->isArrayType() || UnqualT->isVectorType())
5705       return true;
5706     const CXXRecordDecl *RD = UnqualT->getAsCXXRecordDecl();
5707     if (!RD)
5708       return false;
5709 
5710     // [class.prop] p9
5711     // A class S is an implicit-lifetime class if
5712     //   - it is an aggregate whose destructor is not user-provided or
5713     //   - it has at least one trivial eligible constructor and a trivial,
5714     //     non-deleted destructor.
5715     const CXXDestructorDecl *Dtor = RD->getDestructor();
5716     if (UnqualT->isAggregateType())
5717       if (Dtor && !Dtor->isUserProvided())
5718         return true;
5719     if (RD->hasTrivialDestructor() && (!Dtor || !Dtor->isDeleted()))
5720       if (RD->hasTrivialDefaultConstructor() ||
5721           RD->hasTrivialCopyConstructor() || RD->hasTrivialMoveConstructor())
5722         return true;
5723     return false;
5724   }
5725   case UTT_IsIntangibleType:
5726     assert(Self.getLangOpts().HLSL && "intangible types are HLSL-only feature");
5727     if (!T->isVoidType() && !T->isIncompleteArrayType())
5728       if (Self.RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), T,
5729                                    diag::err_incomplete_type))
5730         return false;
5731     if (DiagnoseVLAInCXXTypeTrait(Self, TInfo,
5732                                   tok::kw___builtin_hlsl_is_intangible))
5733       return false;
5734     return T->isHLSLIntangibleType();
5735 
5736   case UTT_IsTypedResourceElementCompatible:
5737     assert(Self.getLangOpts().HLSL &&
5738            "typed resource element compatible types are an HLSL-only feature");
5739     if (T->isIncompleteType())
5740       return false;
5741 
5742     return Self.HLSL().IsTypedResourceElementCompatible(T);
5743   }
5744 }
5745 
5746 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, const TypeSourceInfo *Lhs,
5747                                     const TypeSourceInfo *Rhs, SourceLocation KeyLoc);
5748 
5749 static ExprResult CheckConvertibilityForTypeTraits(
5750     Sema &Self, const TypeSourceInfo *Lhs, const TypeSourceInfo *Rhs,
5751     SourceLocation KeyLoc, llvm::BumpPtrAllocator &OpaqueExprAllocator) {
5752 
5753   QualType LhsT = Lhs->getType();
5754   QualType RhsT = Rhs->getType();
5755 
5756   // C++0x [meta.rel]p4:
5757   //   Given the following function prototype:
5758   //
5759   //     template <class T>
5760   //       typename add_rvalue_reference<T>::type create();
5761   //
5762   //   the predicate condition for a template specialization
5763   //   is_convertible<From, To> shall be satisfied if and only if
5764   //   the return expression in the following code would be
5765   //   well-formed, including any implicit conversions to the return
5766   //   type of the function:
5767   //
5768   //     To test() {
5769   //       return create<From>();
5770   //     }
5771   //
5772   //   Access checking is performed as if in a context unrelated to To and
5773   //   From. Only the validity of the immediate context of the expression
5774   //   of the return-statement (including conversions to the return type)
5775   //   is considered.
5776   //
5777   // We model the initialization as a copy-initialization of a temporary
5778   // of the appropriate type, which for this expression is identical to the
5779   // return statement (since NRVO doesn't apply).
5780 
5781   // Functions aren't allowed to return function or array types.
5782   if (RhsT->isFunctionType() || RhsT->isArrayType())
5783     return ExprError();
5784 
5785   // A function definition requires a complete, non-abstract return type.
5786   if (!Self.isCompleteType(Rhs->getTypeLoc().getBeginLoc(), RhsT) ||
5787       Self.isAbstractType(Rhs->getTypeLoc().getBeginLoc(), RhsT))
5788     return ExprError();
5789 
5790   // Compute the result of add_rvalue_reference.
5791   if (LhsT->isObjectType() || LhsT->isFunctionType())
5792     LhsT = Self.Context.getRValueReferenceType(LhsT);
5793 
5794   // Build a fake source and destination for initialization.
5795   InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
5796   Expr *From = new (OpaqueExprAllocator.Allocate<OpaqueValueExpr>())
5797       OpaqueValueExpr(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
5798                       Expr::getValueKindForType(LhsT));
5799   InitializationKind Kind =
5800       InitializationKind::CreateCopy(KeyLoc, SourceLocation());
5801 
5802   // Perform the initialization in an unevaluated context within a SFINAE
5803   // trap at translation unit scope.
5804   EnterExpressionEvaluationContext Unevaluated(
5805       Self, Sema::ExpressionEvaluationContext::Unevaluated);
5806   Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
5807   Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
5808   InitializationSequence Init(Self, To, Kind, From);
5809   if (Init.Failed())
5810     return ExprError();
5811 
5812   ExprResult Result = Init.Perform(Self, To, Kind, From);
5813   if (Result.isInvalid() || SFINAE.hasErrorOccurred())
5814     return ExprError();
5815 
5816   return Result;
5817 }
5818 
5819 static bool EvaluateBooleanTypeTrait(Sema &S, TypeTrait Kind,
5820                                      SourceLocation KWLoc,
5821                                      ArrayRef<TypeSourceInfo *> Args,
5822                                      SourceLocation RParenLoc,
5823                                      bool IsDependent) {
5824   if (IsDependent)
5825     return false;
5826 
5827   if (Kind <= UTT_Last)
5828     return EvaluateUnaryTypeTrait(S, Kind, KWLoc, Args[0]);
5829 
5830   // Evaluate ReferenceBindsToTemporary and ReferenceConstructsFromTemporary
5831   // alongside the IsConstructible traits to avoid duplication.
5832   if (Kind <= BTT_Last && Kind != BTT_ReferenceBindsToTemporary &&
5833       Kind != BTT_ReferenceConstructsFromTemporary &&
5834       Kind != BTT_ReferenceConvertsFromTemporary)
5835     return EvaluateBinaryTypeTrait(S, Kind, Args[0],
5836                                    Args[1], RParenLoc);
5837 
5838   switch (Kind) {
5839   case clang::BTT_ReferenceBindsToTemporary:
5840   case clang::BTT_ReferenceConstructsFromTemporary:
5841   case clang::BTT_ReferenceConvertsFromTemporary:
5842   case clang::TT_IsConstructible:
5843   case clang::TT_IsNothrowConstructible:
5844   case clang::TT_IsTriviallyConstructible: {
5845     // C++11 [meta.unary.prop]:
5846     //   is_trivially_constructible is defined as:
5847     //
5848     //     is_constructible<T, Args...>::value is true and the variable
5849     //     definition for is_constructible, as defined below, is known to call
5850     //     no operation that is not trivial.
5851     //
5852     //   The predicate condition for a template specialization
5853     //   is_constructible<T, Args...> shall be satisfied if and only if the
5854     //   following variable definition would be well-formed for some invented
5855     //   variable t:
5856     //
5857     //     T t(create<Args>()...);
5858     assert(!Args.empty());
5859 
5860     // Precondition: T and all types in the parameter pack Args shall be
5861     // complete types, (possibly cv-qualified) void, or arrays of
5862     // unknown bound.
5863     for (const auto *TSI : Args) {
5864       QualType ArgTy = TSI->getType();
5865       if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType())
5866         continue;
5867 
5868       if (S.RequireCompleteType(KWLoc, ArgTy,
5869           diag::err_incomplete_type_used_in_type_trait_expr))
5870         return false;
5871     }
5872 
5873     // Make sure the first argument is not incomplete nor a function type.
5874     QualType T = Args[0]->getType();
5875     if (T->isIncompleteType() || T->isFunctionType())
5876       return false;
5877 
5878     // Make sure the first argument is not an abstract type.
5879     CXXRecordDecl *RD = T->getAsCXXRecordDecl();
5880     if (RD && RD->isAbstract())
5881       return false;
5882 
5883     llvm::BumpPtrAllocator OpaqueExprAllocator;
5884     SmallVector<Expr *, 2> ArgExprs;
5885     ArgExprs.reserve(Args.size() - 1);
5886     for (unsigned I = 1, N = Args.size(); I != N; ++I) {
5887       QualType ArgTy = Args[I]->getType();
5888       if (ArgTy->isObjectType() || ArgTy->isFunctionType())
5889         ArgTy = S.Context.getRValueReferenceType(ArgTy);
5890       ArgExprs.push_back(
5891           new (OpaqueExprAllocator.Allocate<OpaqueValueExpr>())
5892               OpaqueValueExpr(Args[I]->getTypeLoc().getBeginLoc(),
5893                               ArgTy.getNonLValueExprType(S.Context),
5894                               Expr::getValueKindForType(ArgTy)));
5895     }
5896 
5897     // Perform the initialization in an unevaluated context within a SFINAE
5898     // trap at translation unit scope.
5899     EnterExpressionEvaluationContext Unevaluated(
5900         S, Sema::ExpressionEvaluationContext::Unevaluated);
5901     Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
5902     Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
5903     InitializedEntity To(
5904         InitializedEntity::InitializeTemporary(S.Context, Args[0]));
5905     InitializationKind InitKind(
5906         Kind == clang::BTT_ReferenceConvertsFromTemporary
5907             ? InitializationKind::CreateCopy(KWLoc, KWLoc)
5908             : InitializationKind::CreateDirect(KWLoc, KWLoc, RParenLoc));
5909     InitializationSequence Init(S, To, InitKind, ArgExprs);
5910     if (Init.Failed())
5911       return false;
5912 
5913     ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs);
5914     if (Result.isInvalid() || SFINAE.hasErrorOccurred())
5915       return false;
5916 
5917     if (Kind == clang::TT_IsConstructible)
5918       return true;
5919 
5920     if (Kind == clang::BTT_ReferenceBindsToTemporary ||
5921         Kind == clang::BTT_ReferenceConstructsFromTemporary ||
5922         Kind == clang::BTT_ReferenceConvertsFromTemporary) {
5923       if (!T->isReferenceType())
5924         return false;
5925 
5926       if (!Init.isDirectReferenceBinding())
5927         return true;
5928 
5929       if (Kind == clang::BTT_ReferenceBindsToTemporary)
5930         return false;
5931 
5932       QualType U = Args[1]->getType();
5933       if (U->isReferenceType())
5934         return false;
5935 
5936       TypeSourceInfo *TPtr = S.Context.CreateTypeSourceInfo(
5937           S.Context.getPointerType(T.getNonReferenceType()));
5938       TypeSourceInfo *UPtr = S.Context.CreateTypeSourceInfo(
5939           S.Context.getPointerType(U.getNonReferenceType()));
5940       return !CheckConvertibilityForTypeTraits(S, UPtr, TPtr, RParenLoc,
5941                                                OpaqueExprAllocator)
5942                   .isInvalid();
5943     }
5944 
5945     if (Kind == clang::TT_IsNothrowConstructible)
5946       return S.canThrow(Result.get()) == CT_Cannot;
5947 
5948     if (Kind == clang::TT_IsTriviallyConstructible) {
5949       // Under Objective-C ARC and Weak, if the destination has non-trivial
5950       // Objective-C lifetime, this is a non-trivial construction.
5951       if (T.getNonReferenceType().hasNonTrivialObjCLifetime())
5952         return false;
5953 
5954       // The initialization succeeded; now make sure there are no non-trivial
5955       // calls.
5956       return !Result.get()->hasNonTrivialCall(S.Context);
5957     }
5958 
5959     llvm_unreachable("unhandled type trait");
5960     return false;
5961   }
5962     default: llvm_unreachable("not a TT");
5963   }
5964 
5965   return false;
5966 }
5967 
5968 namespace {
5969 void DiagnoseBuiltinDeprecation(Sema& S, TypeTrait Kind,
5970                                 SourceLocation KWLoc) {
5971   TypeTrait Replacement;
5972   switch (Kind) {
5973     case UTT_HasNothrowAssign:
5974     case UTT_HasNothrowMoveAssign:
5975       Replacement = BTT_IsNothrowAssignable;
5976       break;
5977     case UTT_HasNothrowCopy:
5978     case UTT_HasNothrowConstructor:
5979       Replacement = TT_IsNothrowConstructible;
5980       break;
5981     case UTT_HasTrivialAssign:
5982     case UTT_HasTrivialMoveAssign:
5983       Replacement = BTT_IsTriviallyAssignable;
5984       break;
5985     case UTT_HasTrivialCopy:
5986       Replacement = UTT_IsTriviallyCopyable;
5987       break;
5988     case UTT_HasTrivialDefaultConstructor:
5989     case UTT_HasTrivialMoveConstructor:
5990       Replacement = TT_IsTriviallyConstructible;
5991       break;
5992     case UTT_HasTrivialDestructor:
5993       Replacement = UTT_IsTriviallyDestructible;
5994       break;
5995     default:
5996       return;
5997   }
5998   S.Diag(KWLoc, diag::warn_deprecated_builtin)
5999     << getTraitSpelling(Kind) << getTraitSpelling(Replacement);
6000 }
6001 }
6002 
6003 bool Sema::CheckTypeTraitArity(unsigned Arity, SourceLocation Loc, size_t N) {
6004   if (Arity && N != Arity) {
6005     Diag(Loc, diag::err_type_trait_arity)
6006         << Arity << 0 << (Arity > 1) << (int)N << SourceRange(Loc);
6007     return false;
6008   }
6009 
6010   if (!Arity && N == 0) {
6011     Diag(Loc, diag::err_type_trait_arity)
6012         << 1 << 1 << 1 << (int)N << SourceRange(Loc);
6013     return false;
6014   }
6015   return true;
6016 }
6017 
6018 enum class TypeTraitReturnType {
6019   Bool,
6020 };
6021 
6022 static TypeTraitReturnType GetReturnType(TypeTrait Kind) {
6023   return TypeTraitReturnType::Bool;
6024 }
6025 
6026 ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
6027                                 ArrayRef<TypeSourceInfo *> Args,
6028                                 SourceLocation RParenLoc) {
6029   if (!CheckTypeTraitArity(getTypeTraitArity(Kind), KWLoc, Args.size()))
6030     return ExprError();
6031 
6032   if (Kind <= UTT_Last && !CheckUnaryTypeTraitTypeCompleteness(
6033                                *this, Kind, KWLoc, Args[0]->getType()))
6034     return ExprError();
6035 
6036   DiagnoseBuiltinDeprecation(*this, Kind, KWLoc);
6037 
6038   bool Dependent = false;
6039   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
6040     if (Args[I]->getType()->isDependentType()) {
6041       Dependent = true;
6042       break;
6043     }
6044   }
6045 
6046   switch (GetReturnType(Kind)) {
6047   case TypeTraitReturnType::Bool: {
6048     bool Result = EvaluateBooleanTypeTrait(*this, Kind, KWLoc, Args, RParenLoc,
6049                                            Dependent);
6050     return TypeTraitExpr::Create(Context, Context.getLogicalOperationType(),
6051                                  KWLoc, Kind, Args, RParenLoc, Result);
6052   }
6053   }
6054   llvm_unreachable("unhandled type trait return type");
6055 }
6056 
6057 ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
6058                                 ArrayRef<ParsedType> Args,
6059                                 SourceLocation RParenLoc) {
6060   SmallVector<TypeSourceInfo *, 4> ConvertedArgs;
6061   ConvertedArgs.reserve(Args.size());
6062 
6063   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
6064     TypeSourceInfo *TInfo;
6065     QualType T = GetTypeFromParser(Args[I], &TInfo);
6066     if (!TInfo)
6067       TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc);
6068 
6069     ConvertedArgs.push_back(TInfo);
6070   }
6071 
6072   return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc);
6073 }
6074 
6075 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, const TypeSourceInfo *Lhs,
6076                                     const TypeSourceInfo *Rhs, SourceLocation KeyLoc) {
6077   QualType LhsT = Lhs->getType();
6078   QualType RhsT = Rhs->getType();
6079 
6080   assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&
6081          "Cannot evaluate traits of dependent types");
6082 
6083   switch(BTT) {
6084   case BTT_IsBaseOf: {
6085     // C++0x [meta.rel]p2
6086     // Base is a base class of Derived without regard to cv-qualifiers or
6087     // Base and Derived are not unions and name the same class type without
6088     // regard to cv-qualifiers.
6089 
6090     const RecordType *lhsRecord = LhsT->getAs<RecordType>();
6091     const RecordType *rhsRecord = RhsT->getAs<RecordType>();
6092     if (!rhsRecord || !lhsRecord) {
6093       const ObjCObjectType *LHSObjTy = LhsT->getAs<ObjCObjectType>();
6094       const ObjCObjectType *RHSObjTy = RhsT->getAs<ObjCObjectType>();
6095       if (!LHSObjTy || !RHSObjTy)
6096         return false;
6097 
6098       ObjCInterfaceDecl *BaseInterface = LHSObjTy->getInterface();
6099       ObjCInterfaceDecl *DerivedInterface = RHSObjTy->getInterface();
6100       if (!BaseInterface || !DerivedInterface)
6101         return false;
6102 
6103       if (Self.RequireCompleteType(
6104               Rhs->getTypeLoc().getBeginLoc(), RhsT,
6105               diag::err_incomplete_type_used_in_type_trait_expr))
6106         return false;
6107 
6108       return BaseInterface->isSuperClassOf(DerivedInterface);
6109     }
6110 
6111     assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
6112              == (lhsRecord == rhsRecord));
6113 
6114     // Unions are never base classes, and never have base classes.
6115     // It doesn't matter if they are complete or not. See PR#41843
6116     if (lhsRecord && lhsRecord->getDecl()->isUnion())
6117       return false;
6118     if (rhsRecord && rhsRecord->getDecl()->isUnion())
6119       return false;
6120 
6121     if (lhsRecord == rhsRecord)
6122       return true;
6123 
6124     // C++0x [meta.rel]p2:
6125     //   If Base and Derived are class types and are different types
6126     //   (ignoring possible cv-qualifiers) then Derived shall be a
6127     //   complete type.
6128     if (Self.RequireCompleteType(
6129             Rhs->getTypeLoc().getBeginLoc(), RhsT,
6130             diag::err_incomplete_type_used_in_type_trait_expr))
6131       return false;
6132 
6133     return cast<CXXRecordDecl>(rhsRecord->getDecl())
6134       ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
6135   }
6136   case BTT_IsVirtualBaseOf: {
6137     const RecordType *BaseRecord = LhsT->getAs<RecordType>();
6138     const RecordType *DerivedRecord = RhsT->getAs<RecordType>();
6139 
6140     if (!BaseRecord || !DerivedRecord) {
6141       DiagnoseVLAInCXXTypeTrait(Self, Lhs,
6142                                 tok::kw___builtin_is_virtual_base_of);
6143       DiagnoseVLAInCXXTypeTrait(Self, Rhs,
6144                                 tok::kw___builtin_is_virtual_base_of);
6145       return false;
6146     }
6147 
6148     if (BaseRecord->isUnionType() || DerivedRecord->isUnionType())
6149       return false;
6150 
6151     if (!BaseRecord->isStructureOrClassType() ||
6152         !DerivedRecord->isStructureOrClassType())
6153       return false;
6154 
6155     if (Self.RequireCompleteType(Rhs->getTypeLoc().getBeginLoc(), RhsT,
6156                                  diag::err_incomplete_type))
6157       return false;
6158 
6159     return cast<CXXRecordDecl>(DerivedRecord->getDecl())
6160         ->isVirtuallyDerivedFrom(cast<CXXRecordDecl>(BaseRecord->getDecl()));
6161   }
6162   case BTT_IsSame:
6163     return Self.Context.hasSameType(LhsT, RhsT);
6164   case BTT_TypeCompatible: {
6165     // GCC ignores cv-qualifiers on arrays for this builtin.
6166     Qualifiers LhsQuals, RhsQuals;
6167     QualType Lhs = Self.getASTContext().getUnqualifiedArrayType(LhsT, LhsQuals);
6168     QualType Rhs = Self.getASTContext().getUnqualifiedArrayType(RhsT, RhsQuals);
6169     return Self.Context.typesAreCompatible(Lhs, Rhs);
6170   }
6171   case BTT_IsConvertible:
6172   case BTT_IsConvertibleTo:
6173   case BTT_IsNothrowConvertible: {
6174     if (RhsT->isVoidType())
6175       return LhsT->isVoidType();
6176     llvm::BumpPtrAllocator OpaqueExprAllocator;
6177     ExprResult Result = CheckConvertibilityForTypeTraits(Self, Lhs, Rhs, KeyLoc,
6178                                                          OpaqueExprAllocator);
6179     if (Result.isInvalid())
6180       return false;
6181 
6182     if (BTT != BTT_IsNothrowConvertible)
6183       return true;
6184 
6185     return Self.canThrow(Result.get()) == CT_Cannot;
6186   }
6187 
6188   case BTT_IsAssignable:
6189   case BTT_IsNothrowAssignable:
6190   case BTT_IsTriviallyAssignable: {
6191     // C++11 [meta.unary.prop]p3:
6192     //   is_trivially_assignable is defined as:
6193     //     is_assignable<T, U>::value is true and the assignment, as defined by
6194     //     is_assignable, is known to call no operation that is not trivial
6195     //
6196     //   is_assignable is defined as:
6197     //     The expression declval<T>() = declval<U>() is well-formed when
6198     //     treated as an unevaluated operand (Clause 5).
6199     //
6200     //   For both, T and U shall be complete types, (possibly cv-qualified)
6201     //   void, or arrays of unknown bound.
6202     if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
6203         Self.RequireCompleteType(
6204             Lhs->getTypeLoc().getBeginLoc(), LhsT,
6205             diag::err_incomplete_type_used_in_type_trait_expr))
6206       return false;
6207     if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
6208         Self.RequireCompleteType(
6209             Rhs->getTypeLoc().getBeginLoc(), RhsT,
6210             diag::err_incomplete_type_used_in_type_trait_expr))
6211       return false;
6212 
6213     // cv void is never assignable.
6214     if (LhsT->isVoidType() || RhsT->isVoidType())
6215       return false;
6216 
6217     // Build expressions that emulate the effect of declval<T>() and
6218     // declval<U>().
6219     if (LhsT->isObjectType() || LhsT->isFunctionType())
6220       LhsT = Self.Context.getRValueReferenceType(LhsT);
6221     if (RhsT->isObjectType() || RhsT->isFunctionType())
6222       RhsT = Self.Context.getRValueReferenceType(RhsT);
6223     OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
6224                         Expr::getValueKindForType(LhsT));
6225     OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context),
6226                         Expr::getValueKindForType(RhsT));
6227 
6228     // Attempt the assignment in an unevaluated context within a SFINAE
6229     // trap at translation unit scope.
6230     EnterExpressionEvaluationContext Unevaluated(
6231         Self, Sema::ExpressionEvaluationContext::Unevaluated);
6232     Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
6233     Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
6234     ExprResult Result = Self.BuildBinOp(/*S=*/nullptr, KeyLoc, BO_Assign, &Lhs,
6235                                         &Rhs);
6236     if (Result.isInvalid())
6237       return false;
6238 
6239     // Treat the assignment as unused for the purpose of -Wdeprecated-volatile.
6240     Self.CheckUnusedVolatileAssignment(Result.get());
6241 
6242     if (SFINAE.hasErrorOccurred())
6243       return false;
6244 
6245     if (BTT == BTT_IsAssignable)
6246       return true;
6247 
6248     if (BTT == BTT_IsNothrowAssignable)
6249       return Self.canThrow(Result.get()) == CT_Cannot;
6250 
6251     if (BTT == BTT_IsTriviallyAssignable) {
6252       // Under Objective-C ARC and Weak, if the destination has non-trivial
6253       // Objective-C lifetime, this is a non-trivial assignment.
6254       if (LhsT.getNonReferenceType().hasNonTrivialObjCLifetime())
6255         return false;
6256 
6257       return !Result.get()->hasNonTrivialCall(Self.Context);
6258     }
6259 
6260     llvm_unreachable("unhandled type trait");
6261     return false;
6262   }
6263   case BTT_IsLayoutCompatible: {
6264     if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType())
6265       Self.RequireCompleteType(Lhs->getTypeLoc().getBeginLoc(), LhsT,
6266                                diag::err_incomplete_type);
6267     if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType())
6268       Self.RequireCompleteType(Rhs->getTypeLoc().getBeginLoc(), RhsT,
6269                                diag::err_incomplete_type);
6270 
6271     DiagnoseVLAInCXXTypeTrait(Self, Lhs, tok::kw___is_layout_compatible);
6272     DiagnoseVLAInCXXTypeTrait(Self, Rhs, tok::kw___is_layout_compatible);
6273 
6274     return Self.IsLayoutCompatible(LhsT, RhsT);
6275   }
6276   case BTT_IsPointerInterconvertibleBaseOf: {
6277     if (LhsT->isStructureOrClassType() && RhsT->isStructureOrClassType() &&
6278         !Self.getASTContext().hasSameUnqualifiedType(LhsT, RhsT)) {
6279       Self.RequireCompleteType(Rhs->getTypeLoc().getBeginLoc(), RhsT,
6280                                diag::err_incomplete_type);
6281     }
6282 
6283     DiagnoseVLAInCXXTypeTrait(Self, Lhs,
6284                               tok::kw___is_pointer_interconvertible_base_of);
6285     DiagnoseVLAInCXXTypeTrait(Self, Rhs,
6286                               tok::kw___is_pointer_interconvertible_base_of);
6287 
6288     return Self.IsPointerInterconvertibleBaseOf(Lhs, Rhs);
6289   }
6290   case BTT_IsDeducible: {
6291     const auto *TSTToBeDeduced = cast<DeducedTemplateSpecializationType>(LhsT);
6292     sema::TemplateDeductionInfo Info(KeyLoc);
6293     return Self.DeduceTemplateArgumentsFromType(
6294                TSTToBeDeduced->getTemplateName().getAsTemplateDecl(), RhsT,
6295                Info) == TemplateDeductionResult::Success;
6296   }
6297   case BTT_IsScalarizedLayoutCompatible: {
6298     if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
6299         Self.RequireCompleteType(Lhs->getTypeLoc().getBeginLoc(), LhsT,
6300                                  diag::err_incomplete_type))
6301       return true;
6302     if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
6303         Self.RequireCompleteType(Rhs->getTypeLoc().getBeginLoc(), RhsT,
6304                                  diag::err_incomplete_type))
6305       return true;
6306 
6307     DiagnoseVLAInCXXTypeTrait(
6308         Self, Lhs, tok::kw___builtin_hlsl_is_scalarized_layout_compatible);
6309     DiagnoseVLAInCXXTypeTrait(
6310         Self, Rhs, tok::kw___builtin_hlsl_is_scalarized_layout_compatible);
6311 
6312     return Self.HLSL().IsScalarizedLayoutCompatible(LhsT, RhsT);
6313   }
6314   default:
6315     llvm_unreachable("not a BTT");
6316   }
6317   llvm_unreachable("Unknown type trait or not implemented");
6318 }
6319 
6320 ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
6321                                      SourceLocation KWLoc,
6322                                      ParsedType Ty,
6323                                      Expr* DimExpr,
6324                                      SourceLocation RParen) {
6325   TypeSourceInfo *TSInfo;
6326   QualType T = GetTypeFromParser(Ty, &TSInfo);
6327   if (!TSInfo)
6328     TSInfo = Context.getTrivialTypeSourceInfo(T);
6329 
6330   return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
6331 }
6332 
6333 static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
6334                                            QualType T, Expr *DimExpr,
6335                                            SourceLocation KeyLoc) {
6336   assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
6337 
6338   switch(ATT) {
6339   case ATT_ArrayRank:
6340     if (T->isArrayType()) {
6341       unsigned Dim = 0;
6342       while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
6343         ++Dim;
6344         T = AT->getElementType();
6345       }
6346       return Dim;
6347     }
6348     return 0;
6349 
6350   case ATT_ArrayExtent: {
6351     llvm::APSInt Value;
6352     uint64_t Dim;
6353     if (Self.VerifyIntegerConstantExpression(
6354                 DimExpr, &Value, diag::err_dimension_expr_not_constant_integer)
6355             .isInvalid())
6356       return 0;
6357     if (Value.isSigned() && Value.isNegative()) {
6358       Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer)
6359         << DimExpr->getSourceRange();
6360       return 0;
6361     }
6362     Dim = Value.getLimitedValue();
6363 
6364     if (T->isArrayType()) {
6365       unsigned D = 0;
6366       bool Matched = false;
6367       while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
6368         if (Dim == D) {
6369           Matched = true;
6370           break;
6371         }
6372         ++D;
6373         T = AT->getElementType();
6374       }
6375 
6376       if (Matched && T->isArrayType()) {
6377         if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
6378           return CAT->getLimitedSize();
6379       }
6380     }
6381     return 0;
6382   }
6383   }
6384   llvm_unreachable("Unknown type trait or not implemented");
6385 }
6386 
6387 ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
6388                                      SourceLocation KWLoc,
6389                                      TypeSourceInfo *TSInfo,
6390                                      Expr* DimExpr,
6391                                      SourceLocation RParen) {
6392   QualType T = TSInfo->getType();
6393 
6394   // FIXME: This should likely be tracked as an APInt to remove any host
6395   // assumptions about the width of size_t on the target.
6396   uint64_t Value = 0;
6397   if (!T->isDependentType())
6398     Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
6399 
6400   // While the specification for these traits from the Embarcadero C++
6401   // compiler's documentation says the return type is 'unsigned int', Clang
6402   // returns 'size_t'. On Windows, the primary platform for the Embarcadero
6403   // compiler, there is no difference. On several other platforms this is an
6404   // important distinction.
6405   return new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr,
6406                                           RParen, Context.getSizeType());
6407 }
6408 
6409 ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
6410                                       SourceLocation KWLoc,
6411                                       Expr *Queried,
6412                                       SourceLocation RParen) {
6413   // If error parsing the expression, ignore.
6414   if (!Queried)
6415     return ExprError();
6416 
6417   ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
6418 
6419   return Result;
6420 }
6421 
6422 static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
6423   switch (ET) {
6424   case ET_IsLValueExpr: return E->isLValue();
6425   case ET_IsRValueExpr:
6426     return E->isPRValue();
6427   }
6428   llvm_unreachable("Expression trait not covered by switch");
6429 }
6430 
6431 ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
6432                                       SourceLocation KWLoc,
6433                                       Expr *Queried,
6434                                       SourceLocation RParen) {
6435   if (Queried->isTypeDependent()) {
6436     // Delay type-checking for type-dependent expressions.
6437   } else if (Queried->hasPlaceholderType()) {
6438     ExprResult PE = CheckPlaceholderExpr(Queried);
6439     if (PE.isInvalid()) return ExprError();
6440     return BuildExpressionTrait(ET, KWLoc, PE.get(), RParen);
6441   }
6442 
6443   bool Value = EvaluateExpressionTrait(ET, Queried);
6444 
6445   return new (Context)
6446       ExpressionTraitExpr(KWLoc, ET, Queried, Value, RParen, Context.BoolTy);
6447 }
6448 
6449 QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS,
6450                                             ExprValueKind &VK,
6451                                             SourceLocation Loc,
6452                                             bool isIndirect) {
6453   assert(!LHS.get()->hasPlaceholderType() && !RHS.get()->hasPlaceholderType() &&
6454          "placeholders should have been weeded out by now");
6455 
6456   // The LHS undergoes lvalue conversions if this is ->*, and undergoes the
6457   // temporary materialization conversion otherwise.
6458   if (isIndirect)
6459     LHS = DefaultLvalueConversion(LHS.get());
6460   else if (LHS.get()->isPRValue())
6461     LHS = TemporaryMaterializationConversion(LHS.get());
6462   if (LHS.isInvalid())
6463     return QualType();
6464 
6465   // The RHS always undergoes lvalue conversions.
6466   RHS = DefaultLvalueConversion(RHS.get());
6467   if (RHS.isInvalid()) return QualType();
6468 
6469   const char *OpSpelling = isIndirect ? "->*" : ".*";
6470   // C++ 5.5p2
6471   //   The binary operator .* [p3: ->*] binds its second operand, which shall
6472   //   be of type "pointer to member of T" (where T is a completely-defined
6473   //   class type) [...]
6474   QualType RHSType = RHS.get()->getType();
6475   const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>();
6476   if (!MemPtr) {
6477     Diag(Loc, diag::err_bad_memptr_rhs)
6478       << OpSpelling << RHSType << RHS.get()->getSourceRange();
6479     return QualType();
6480   }
6481 
6482   QualType Class(MemPtr->getClass(), 0);
6483 
6484   // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
6485   // member pointer points must be completely-defined. However, there is no
6486   // reason for this semantic distinction, and the rule is not enforced by
6487   // other compilers. Therefore, we do not check this property, as it is
6488   // likely to be considered a defect.
6489 
6490   // C++ 5.5p2
6491   //   [...] to its first operand, which shall be of class T or of a class of
6492   //   which T is an unambiguous and accessible base class. [p3: a pointer to
6493   //   such a class]
6494   QualType LHSType = LHS.get()->getType();
6495   if (isIndirect) {
6496     if (const PointerType *Ptr = LHSType->getAs<PointerType>())
6497       LHSType = Ptr->getPointeeType();
6498     else {
6499       Diag(Loc, diag::err_bad_memptr_lhs)
6500         << OpSpelling << 1 << LHSType
6501         << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
6502       return QualType();
6503     }
6504   }
6505 
6506   if (!Context.hasSameUnqualifiedType(Class, LHSType)) {
6507     // If we want to check the hierarchy, we need a complete type.
6508     if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs,
6509                             OpSpelling, (int)isIndirect)) {
6510       return QualType();
6511     }
6512 
6513     if (!IsDerivedFrom(Loc, LHSType, Class)) {
6514       Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
6515         << (int)isIndirect << LHS.get()->getType();
6516       return QualType();
6517     }
6518 
6519     CXXCastPath BasePath;
6520     if (CheckDerivedToBaseConversion(
6521             LHSType, Class, Loc,
6522             SourceRange(LHS.get()->getBeginLoc(), RHS.get()->getEndLoc()),
6523             &BasePath))
6524       return QualType();
6525 
6526     // Cast LHS to type of use.
6527     QualType UseType = Context.getQualifiedType(Class, LHSType.getQualifiers());
6528     if (isIndirect)
6529       UseType = Context.getPointerType(UseType);
6530     ExprValueKind VK = isIndirect ? VK_PRValue : LHS.get()->getValueKind();
6531     LHS = ImpCastExprToType(LHS.get(), UseType, CK_DerivedToBase, VK,
6532                             &BasePath);
6533   }
6534 
6535   if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) {
6536     // Diagnose use of pointer-to-member type which when used as
6537     // the functional cast in a pointer-to-member expression.
6538     Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
6539      return QualType();
6540   }
6541 
6542   // C++ 5.5p2
6543   //   The result is an object or a function of the type specified by the
6544   //   second operand.
6545   // The cv qualifiers are the union of those in the pointer and the left side,
6546   // in accordance with 5.5p5 and 5.2.5.
6547   QualType Result = MemPtr->getPointeeType();
6548   Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers());
6549 
6550   // C++0x [expr.mptr.oper]p6:
6551   //   In a .* expression whose object expression is an rvalue, the program is
6552   //   ill-formed if the second operand is a pointer to member function with
6553   //   ref-qualifier &. In a ->* expression or in a .* expression whose object
6554   //   expression is an lvalue, the program is ill-formed if the second operand
6555   //   is a pointer to member function with ref-qualifier &&.
6556   if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
6557     switch (Proto->getRefQualifier()) {
6558     case RQ_None:
6559       // Do nothing
6560       break;
6561 
6562     case RQ_LValue:
6563       if (!isIndirect && !LHS.get()->Classify(Context).isLValue()) {
6564         // C++2a allows functions with ref-qualifier & if their cv-qualifier-seq
6565         // is (exactly) 'const'.
6566         if (Proto->isConst() && !Proto->isVolatile())
6567           Diag(Loc, getLangOpts().CPlusPlus20
6568                         ? diag::warn_cxx17_compat_pointer_to_const_ref_member_on_rvalue
6569                         : diag::ext_pointer_to_const_ref_member_on_rvalue);
6570         else
6571           Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
6572               << RHSType << 1 << LHS.get()->getSourceRange();
6573       }
6574       break;
6575 
6576     case RQ_RValue:
6577       if (isIndirect || !LHS.get()->Classify(Context).isRValue())
6578         Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
6579           << RHSType << 0 << LHS.get()->getSourceRange();
6580       break;
6581     }
6582   }
6583 
6584   // C++ [expr.mptr.oper]p6:
6585   //   The result of a .* expression whose second operand is a pointer
6586   //   to a data member is of the same value category as its
6587   //   first operand. The result of a .* expression whose second
6588   //   operand is a pointer to a member function is a prvalue. The
6589   //   result of an ->* expression is an lvalue if its second operand
6590   //   is a pointer to data member and a prvalue otherwise.
6591   if (Result->isFunctionType()) {
6592     VK = VK_PRValue;
6593     return Context.BoundMemberTy;
6594   } else if (isIndirect) {
6595     VK = VK_LValue;
6596   } else {
6597     VK = LHS.get()->getValueKind();
6598   }
6599 
6600   return Result;
6601 }
6602 
6603 /// Try to convert a type to another according to C++11 5.16p3.
6604 ///
6605 /// This is part of the parameter validation for the ? operator. If either
6606 /// value operand is a class type, the two operands are attempted to be
6607 /// converted to each other. This function does the conversion in one direction.
6608 /// It returns true if the program is ill-formed and has already been diagnosed
6609 /// as such.
6610 static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
6611                                 SourceLocation QuestionLoc,
6612                                 bool &HaveConversion,
6613                                 QualType &ToType) {
6614   HaveConversion = false;
6615   ToType = To->getType();
6616 
6617   InitializationKind Kind =
6618       InitializationKind::CreateCopy(To->getBeginLoc(), SourceLocation());
6619   // C++11 5.16p3
6620   //   The process for determining whether an operand expression E1 of type T1
6621   //   can be converted to match an operand expression E2 of type T2 is defined
6622   //   as follows:
6623   //   -- If E2 is an lvalue: E1 can be converted to match E2 if E1 can be
6624   //      implicitly converted to type "lvalue reference to T2", subject to the
6625   //      constraint that in the conversion the reference must bind directly to
6626   //      an lvalue.
6627   //   -- If E2 is an xvalue: E1 can be converted to match E2 if E1 can be
6628   //      implicitly converted to the type "rvalue reference to R2", subject to
6629   //      the constraint that the reference must bind directly.
6630   if (To->isGLValue()) {
6631     QualType T = Self.Context.getReferenceQualifiedType(To);
6632     InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
6633 
6634     InitializationSequence InitSeq(Self, Entity, Kind, From);
6635     if (InitSeq.isDirectReferenceBinding()) {
6636       ToType = T;
6637       HaveConversion = true;
6638       return false;
6639     }
6640 
6641     if (InitSeq.isAmbiguous())
6642       return InitSeq.Diagnose(Self, Entity, Kind, From);
6643   }
6644 
6645   //   -- If E2 is an rvalue, or if the conversion above cannot be done:
6646   //      -- if E1 and E2 have class type, and the underlying class types are
6647   //         the same or one is a base class of the other:
6648   QualType FTy = From->getType();
6649   QualType TTy = To->getType();
6650   const RecordType *FRec = FTy->getAs<RecordType>();
6651   const RecordType *TRec = TTy->getAs<RecordType>();
6652   bool FDerivedFromT = FRec && TRec && FRec != TRec &&
6653                        Self.IsDerivedFrom(QuestionLoc, FTy, TTy);
6654   if (FRec && TRec && (FRec == TRec || FDerivedFromT ||
6655                        Self.IsDerivedFrom(QuestionLoc, TTy, FTy))) {
6656     //         E1 can be converted to match E2 if the class of T2 is the
6657     //         same type as, or a base class of, the class of T1, and
6658     //         [cv2 > cv1].
6659     if (FRec == TRec || FDerivedFromT) {
6660       if (TTy.isAtLeastAsQualifiedAs(FTy, Self.getASTContext())) {
6661         InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
6662         InitializationSequence InitSeq(Self, Entity, Kind, From);
6663         if (InitSeq) {
6664           HaveConversion = true;
6665           return false;
6666         }
6667 
6668         if (InitSeq.isAmbiguous())
6669           return InitSeq.Diagnose(Self, Entity, Kind, From);
6670       }
6671     }
6672 
6673     return false;
6674   }
6675 
6676   //     -- Otherwise: E1 can be converted to match E2 if E1 can be
6677   //        implicitly converted to the type that expression E2 would have
6678   //        if E2 were converted to an rvalue (or the type it has, if E2 is
6679   //        an rvalue).
6680   //
6681   // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
6682   // to the array-to-pointer or function-to-pointer conversions.
6683   TTy = TTy.getNonLValueExprType(Self.Context);
6684 
6685   InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
6686   InitializationSequence InitSeq(Self, Entity, Kind, From);
6687   HaveConversion = !InitSeq.Failed();
6688   ToType = TTy;
6689   if (InitSeq.isAmbiguous())
6690     return InitSeq.Diagnose(Self, Entity, Kind, From);
6691 
6692   return false;
6693 }
6694 
6695 /// Try to find a common type for two according to C++0x 5.16p5.
6696 ///
6697 /// This is part of the parameter validation for the ? operator. If either
6698 /// value operand is a class type, overload resolution is used to find a
6699 /// conversion to a common type.
6700 static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
6701                                     SourceLocation QuestionLoc) {
6702   Expr *Args[2] = { LHS.get(), RHS.get() };
6703   OverloadCandidateSet CandidateSet(QuestionLoc,
6704                                     OverloadCandidateSet::CSK_Operator);
6705   Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args,
6706                                     CandidateSet);
6707 
6708   OverloadCandidateSet::iterator Best;
6709   switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
6710     case OR_Success: {
6711       // We found a match. Perform the conversions on the arguments and move on.
6712       ExprResult LHSRes = Self.PerformImplicitConversion(
6713           LHS.get(), Best->BuiltinParamTypes[0], Best->Conversions[0],
6714           AssignmentAction::Converting);
6715       if (LHSRes.isInvalid())
6716         break;
6717       LHS = LHSRes;
6718 
6719       ExprResult RHSRes = Self.PerformImplicitConversion(
6720           RHS.get(), Best->BuiltinParamTypes[1], Best->Conversions[1],
6721           AssignmentAction::Converting);
6722       if (RHSRes.isInvalid())
6723         break;
6724       RHS = RHSRes;
6725       if (Best->Function)
6726         Self.MarkFunctionReferenced(QuestionLoc, Best->Function);
6727       return false;
6728     }
6729 
6730     case OR_No_Viable_Function:
6731 
6732       // Emit a better diagnostic if one of the expressions is a null pointer
6733       // constant and the other is a pointer type. In this case, the user most
6734       // likely forgot to take the address of the other expression.
6735       if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
6736         return true;
6737 
6738       Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
6739         << LHS.get()->getType() << RHS.get()->getType()
6740         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6741       return true;
6742 
6743     case OR_Ambiguous:
6744       Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
6745         << LHS.get()->getType() << RHS.get()->getType()
6746         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6747       // FIXME: Print the possible common types by printing the return types of
6748       // the viable candidates.
6749       break;
6750 
6751     case OR_Deleted:
6752       llvm_unreachable("Conditional operator has only built-in overloads");
6753   }
6754   return true;
6755 }
6756 
6757 /// Perform an "extended" implicit conversion as returned by
6758 /// TryClassUnification.
6759 static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
6760   InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
6761   InitializationKind Kind =
6762       InitializationKind::CreateCopy(E.get()->getBeginLoc(), SourceLocation());
6763   Expr *Arg = E.get();
6764   InitializationSequence InitSeq(Self, Entity, Kind, Arg);
6765   ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg);
6766   if (Result.isInvalid())
6767     return true;
6768 
6769   E = Result;
6770   return false;
6771 }
6772 
6773 // Check the condition operand of ?: to see if it is valid for the GCC
6774 // extension.
6775 static bool isValidVectorForConditionalCondition(ASTContext &Ctx,
6776                                                  QualType CondTy) {
6777   if (!CondTy->isVectorType() && !CondTy->isExtVectorType())
6778     return false;
6779   const QualType EltTy =
6780       cast<VectorType>(CondTy.getCanonicalType())->getElementType();
6781   assert(!EltTy->isEnumeralType() && "Vectors cant be enum types");
6782   return EltTy->isIntegralType(Ctx);
6783 }
6784 
6785 static bool isValidSizelessVectorForConditionalCondition(ASTContext &Ctx,
6786                                                          QualType CondTy) {
6787   if (!CondTy->isSveVLSBuiltinType())
6788     return false;
6789   const QualType EltTy =
6790       cast<BuiltinType>(CondTy.getCanonicalType())->getSveEltType(Ctx);
6791   assert(!EltTy->isEnumeralType() && "Vectors cant be enum types");
6792   return EltTy->isIntegralType(Ctx);
6793 }
6794 
6795 QualType Sema::CheckVectorConditionalTypes(ExprResult &Cond, ExprResult &LHS,
6796                                            ExprResult &RHS,
6797                                            SourceLocation QuestionLoc) {
6798   LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
6799   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
6800 
6801   QualType CondType = Cond.get()->getType();
6802   const auto *CondVT = CondType->castAs<VectorType>();
6803   QualType CondElementTy = CondVT->getElementType();
6804   unsigned CondElementCount = CondVT->getNumElements();
6805   QualType LHSType = LHS.get()->getType();
6806   const auto *LHSVT = LHSType->getAs<VectorType>();
6807   QualType RHSType = RHS.get()->getType();
6808   const auto *RHSVT = RHSType->getAs<VectorType>();
6809 
6810   QualType ResultType;
6811 
6812 
6813   if (LHSVT && RHSVT) {
6814     if (isa<ExtVectorType>(CondVT) != isa<ExtVectorType>(LHSVT)) {
6815       Diag(QuestionLoc, diag::err_conditional_vector_cond_result_mismatch)
6816           << /*isExtVector*/ isa<ExtVectorType>(CondVT);
6817       return {};
6818     }
6819 
6820     // If both are vector types, they must be the same type.
6821     if (!Context.hasSameType(LHSType, RHSType)) {
6822       Diag(QuestionLoc, diag::err_conditional_vector_mismatched)
6823           << LHSType << RHSType;
6824       return {};
6825     }
6826     ResultType = Context.getCommonSugaredType(LHSType, RHSType);
6827   } else if (LHSVT || RHSVT) {
6828     ResultType = CheckVectorOperands(
6829         LHS, RHS, QuestionLoc, /*isCompAssign*/ false, /*AllowBothBool*/ true,
6830         /*AllowBoolConversions*/ false,
6831         /*AllowBoolOperation*/ true,
6832         /*ReportInvalid*/ true);
6833     if (ResultType.isNull())
6834       return {};
6835   } else {
6836     // Both are scalar.
6837     LHSType = LHSType.getUnqualifiedType();
6838     RHSType = RHSType.getUnqualifiedType();
6839     QualType ResultElementTy =
6840         Context.hasSameType(LHSType, RHSType)
6841             ? Context.getCommonSugaredType(LHSType, RHSType)
6842             : UsualArithmeticConversions(LHS, RHS, QuestionLoc,
6843                                          ACK_Conditional);
6844 
6845     if (ResultElementTy->isEnumeralType()) {
6846       Diag(QuestionLoc, diag::err_conditional_vector_operand_type)
6847           << ResultElementTy;
6848       return {};
6849     }
6850     if (CondType->isExtVectorType())
6851       ResultType =
6852           Context.getExtVectorType(ResultElementTy, CondVT->getNumElements());
6853     else
6854       ResultType = Context.getVectorType(
6855           ResultElementTy, CondVT->getNumElements(), VectorKind::Generic);
6856 
6857     LHS = ImpCastExprToType(LHS.get(), ResultType, CK_VectorSplat);
6858     RHS = ImpCastExprToType(RHS.get(), ResultType, CK_VectorSplat);
6859   }
6860 
6861   assert(!ResultType.isNull() && ResultType->isVectorType() &&
6862          (!CondType->isExtVectorType() || ResultType->isExtVectorType()) &&
6863          "Result should have been a vector type");
6864   auto *ResultVectorTy = ResultType->castAs<VectorType>();
6865   QualType ResultElementTy = ResultVectorTy->getElementType();
6866   unsigned ResultElementCount = ResultVectorTy->getNumElements();
6867 
6868   if (ResultElementCount != CondElementCount) {
6869     Diag(QuestionLoc, diag::err_conditional_vector_size) << CondType
6870                                                          << ResultType;
6871     return {};
6872   }
6873 
6874   if (Context.getTypeSize(ResultElementTy) !=
6875       Context.getTypeSize(CondElementTy)) {
6876     Diag(QuestionLoc, diag::err_conditional_vector_element_size) << CondType
6877                                                                  << ResultType;
6878     return {};
6879   }
6880 
6881   return ResultType;
6882 }
6883 
6884 QualType Sema::CheckSizelessVectorConditionalTypes(ExprResult &Cond,
6885                                                    ExprResult &LHS,
6886                                                    ExprResult &RHS,
6887                                                    SourceLocation QuestionLoc) {
6888   LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
6889   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
6890 
6891   QualType CondType = Cond.get()->getType();
6892   const auto *CondBT = CondType->castAs<BuiltinType>();
6893   QualType CondElementTy = CondBT->getSveEltType(Context);
6894   llvm::ElementCount CondElementCount =
6895       Context.getBuiltinVectorTypeInfo(CondBT).EC;
6896 
6897   QualType LHSType = LHS.get()->getType();
6898   const auto *LHSBT =
6899       LHSType->isSveVLSBuiltinType() ? LHSType->getAs<BuiltinType>() : nullptr;
6900   QualType RHSType = RHS.get()->getType();
6901   const auto *RHSBT =
6902       RHSType->isSveVLSBuiltinType() ? RHSType->getAs<BuiltinType>() : nullptr;
6903 
6904   QualType ResultType;
6905 
6906   if (LHSBT && RHSBT) {
6907     // If both are sizeless vector types, they must be the same type.
6908     if (!Context.hasSameType(LHSType, RHSType)) {
6909       Diag(QuestionLoc, diag::err_conditional_vector_mismatched)
6910           << LHSType << RHSType;
6911       return QualType();
6912     }
6913     ResultType = LHSType;
6914   } else if (LHSBT || RHSBT) {
6915     ResultType = CheckSizelessVectorOperands(
6916         LHS, RHS, QuestionLoc, /*IsCompAssign*/ false, ACK_Conditional);
6917     if (ResultType.isNull())
6918       return QualType();
6919   } else {
6920     // Both are scalar so splat
6921     QualType ResultElementTy;
6922     LHSType = LHSType.getCanonicalType().getUnqualifiedType();
6923     RHSType = RHSType.getCanonicalType().getUnqualifiedType();
6924 
6925     if (Context.hasSameType(LHSType, RHSType))
6926       ResultElementTy = LHSType;
6927     else
6928       ResultElementTy =
6929           UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional);
6930 
6931     if (ResultElementTy->isEnumeralType()) {
6932       Diag(QuestionLoc, diag::err_conditional_vector_operand_type)
6933           << ResultElementTy;
6934       return QualType();
6935     }
6936 
6937     ResultType = Context.getScalableVectorType(
6938         ResultElementTy, CondElementCount.getKnownMinValue());
6939 
6940     LHS = ImpCastExprToType(LHS.get(), ResultType, CK_VectorSplat);
6941     RHS = ImpCastExprToType(RHS.get(), ResultType, CK_VectorSplat);
6942   }
6943 
6944   assert(!ResultType.isNull() && ResultType->isSveVLSBuiltinType() &&
6945          "Result should have been a vector type");
6946   auto *ResultBuiltinTy = ResultType->castAs<BuiltinType>();
6947   QualType ResultElementTy = ResultBuiltinTy->getSveEltType(Context);
6948   llvm::ElementCount ResultElementCount =
6949       Context.getBuiltinVectorTypeInfo(ResultBuiltinTy).EC;
6950 
6951   if (ResultElementCount != CondElementCount) {
6952     Diag(QuestionLoc, diag::err_conditional_vector_size)
6953         << CondType << ResultType;
6954     return QualType();
6955   }
6956 
6957   if (Context.getTypeSize(ResultElementTy) !=
6958       Context.getTypeSize(CondElementTy)) {
6959     Diag(QuestionLoc, diag::err_conditional_vector_element_size)
6960         << CondType << ResultType;
6961     return QualType();
6962   }
6963 
6964   return ResultType;
6965 }
6966 
6967 QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
6968                                            ExprResult &RHS, ExprValueKind &VK,
6969                                            ExprObjectKind &OK,
6970                                            SourceLocation QuestionLoc) {
6971   // FIXME: Handle C99's complex types, block pointers and Obj-C++ interface
6972   // pointers.
6973 
6974   // Assume r-value.
6975   VK = VK_PRValue;
6976   OK = OK_Ordinary;
6977   bool IsVectorConditional =
6978       isValidVectorForConditionalCondition(Context, Cond.get()->getType());
6979 
6980   bool IsSizelessVectorConditional =
6981       isValidSizelessVectorForConditionalCondition(Context,
6982                                                    Cond.get()->getType());
6983 
6984   // C++11 [expr.cond]p1
6985   //   The first expression is contextually converted to bool.
6986   if (!Cond.get()->isTypeDependent()) {
6987     ExprResult CondRes = IsVectorConditional || IsSizelessVectorConditional
6988                              ? DefaultFunctionArrayLvalueConversion(Cond.get())
6989                              : CheckCXXBooleanCondition(Cond.get());
6990     if (CondRes.isInvalid())
6991       return QualType();
6992     Cond = CondRes;
6993   } else {
6994     // To implement C++, the first expression typically doesn't alter the result
6995     // type of the conditional, however the GCC compatible vector extension
6996     // changes the result type to be that of the conditional. Since we cannot
6997     // know if this is a vector extension here, delay the conversion of the
6998     // LHS/RHS below until later.
6999     return Context.DependentTy;
7000   }
7001 
7002 
7003   // Either of the arguments dependent?
7004   if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
7005     return Context.DependentTy;
7006 
7007   // C++11 [expr.cond]p2
7008   //   If either the second or the third operand has type (cv) void, ...
7009   QualType LTy = LHS.get()->getType();
7010   QualType RTy = RHS.get()->getType();
7011   bool LVoid = LTy->isVoidType();
7012   bool RVoid = RTy->isVoidType();
7013   if (LVoid || RVoid) {
7014     //   ... one of the following shall hold:
7015     //   -- The second or the third operand (but not both) is a (possibly
7016     //      parenthesized) throw-expression; the result is of the type
7017     //      and value category of the other.
7018     bool LThrow = isa<CXXThrowExpr>(LHS.get()->IgnoreParenImpCasts());
7019     bool RThrow = isa<CXXThrowExpr>(RHS.get()->IgnoreParenImpCasts());
7020 
7021     // Void expressions aren't legal in the vector-conditional expressions.
7022     if (IsVectorConditional) {
7023       SourceRange DiagLoc =
7024           LVoid ? LHS.get()->getSourceRange() : RHS.get()->getSourceRange();
7025       bool IsThrow = LVoid ? LThrow : RThrow;
7026       Diag(DiagLoc.getBegin(), diag::err_conditional_vector_has_void)
7027           << DiagLoc << IsThrow;
7028       return QualType();
7029     }
7030 
7031     if (LThrow != RThrow) {
7032       Expr *NonThrow = LThrow ? RHS.get() : LHS.get();
7033       VK = NonThrow->getValueKind();
7034       // DR (no number yet): the result is a bit-field if the
7035       // non-throw-expression operand is a bit-field.
7036       OK = NonThrow->getObjectKind();
7037       return NonThrow->getType();
7038     }
7039 
7040     //   -- Both the second and third operands have type void; the result is of
7041     //      type void and is a prvalue.
7042     if (LVoid && RVoid)
7043       return Context.getCommonSugaredType(LTy, RTy);
7044 
7045     // Neither holds, error.
7046     Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
7047       << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
7048       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
7049     return QualType();
7050   }
7051 
7052   // Neither is void.
7053   if (IsVectorConditional)
7054     return CheckVectorConditionalTypes(Cond, LHS, RHS, QuestionLoc);
7055 
7056   if (IsSizelessVectorConditional)
7057     return CheckSizelessVectorConditionalTypes(Cond, LHS, RHS, QuestionLoc);
7058 
7059   // WebAssembly tables are not allowed as conditional LHS or RHS.
7060   if (LTy->isWebAssemblyTableType() || RTy->isWebAssemblyTableType()) {
7061     Diag(QuestionLoc, diag::err_wasm_table_conditional_expression)
7062         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
7063     return QualType();
7064   }
7065 
7066   // C++11 [expr.cond]p3
7067   //   Otherwise, if the second and third operand have different types, and
7068   //   either has (cv) class type [...] an attempt is made to convert each of
7069   //   those operands to the type of the other.
7070   if (!Context.hasSameType(LTy, RTy) &&
7071       (LTy->isRecordType() || RTy->isRecordType())) {
7072     // These return true if a single direction is already ambiguous.
7073     QualType L2RType, R2LType;
7074     bool HaveL2R, HaveR2L;
7075     if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType))
7076       return QualType();
7077     if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType))
7078       return QualType();
7079 
7080     //   If both can be converted, [...] the program is ill-formed.
7081     if (HaveL2R && HaveR2L) {
7082       Diag(QuestionLoc, diag::err_conditional_ambiguous)
7083         << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
7084       return QualType();
7085     }
7086 
7087     //   If exactly one conversion is possible, that conversion is applied to
7088     //   the chosen operand and the converted operands are used in place of the
7089     //   original operands for the remainder of this section.
7090     if (HaveL2R) {
7091       if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid())
7092         return QualType();
7093       LTy = LHS.get()->getType();
7094     } else if (HaveR2L) {
7095       if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid())
7096         return QualType();
7097       RTy = RHS.get()->getType();
7098     }
7099   }
7100 
7101   // C++11 [expr.cond]p3
7102   //   if both are glvalues of the same value category and the same type except
7103   //   for cv-qualification, an attempt is made to convert each of those
7104   //   operands to the type of the other.
7105   // FIXME:
7106   //   Resolving a defect in P0012R1: we extend this to cover all cases where
7107   //   one of the operands is reference-compatible with the other, in order
7108   //   to support conditionals between functions differing in noexcept. This
7109   //   will similarly cover difference in array bounds after P0388R4.
7110   // FIXME: If LTy and RTy have a composite pointer type, should we convert to
7111   //   that instead?
7112   ExprValueKind LVK = LHS.get()->getValueKind();
7113   ExprValueKind RVK = RHS.get()->getValueKind();
7114   if (!Context.hasSameType(LTy, RTy) && LVK == RVK && LVK != VK_PRValue) {
7115     // DerivedToBase was already handled by the class-specific case above.
7116     // FIXME: Should we allow ObjC conversions here?
7117     const ReferenceConversions AllowedConversions =
7118         ReferenceConversions::Qualification |
7119         ReferenceConversions::NestedQualification |
7120         ReferenceConversions::Function;
7121 
7122     ReferenceConversions RefConv;
7123     if (CompareReferenceRelationship(QuestionLoc, LTy, RTy, &RefConv) ==
7124             Ref_Compatible &&
7125         !(RefConv & ~AllowedConversions) &&
7126         // [...] subject to the constraint that the reference must bind
7127         // directly [...]
7128         !RHS.get()->refersToBitField() && !RHS.get()->refersToVectorElement()) {
7129       RHS = ImpCastExprToType(RHS.get(), LTy, CK_NoOp, RVK);
7130       RTy = RHS.get()->getType();
7131     } else if (CompareReferenceRelationship(QuestionLoc, RTy, LTy, &RefConv) ==
7132                    Ref_Compatible &&
7133                !(RefConv & ~AllowedConversions) &&
7134                !LHS.get()->refersToBitField() &&
7135                !LHS.get()->refersToVectorElement()) {
7136       LHS = ImpCastExprToType(LHS.get(), RTy, CK_NoOp, LVK);
7137       LTy = LHS.get()->getType();
7138     }
7139   }
7140 
7141   // C++11 [expr.cond]p4
7142   //   If the second and third operands are glvalues of the same value
7143   //   category and have the same type, the result is of that type and
7144   //   value category and it is a bit-field if the second or the third
7145   //   operand is a bit-field, or if both are bit-fields.
7146   // We only extend this to bitfields, not to the crazy other kinds of
7147   // l-values.
7148   bool Same = Context.hasSameType(LTy, RTy);
7149   if (Same && LVK == RVK && LVK != VK_PRValue &&
7150       LHS.get()->isOrdinaryOrBitFieldObject() &&
7151       RHS.get()->isOrdinaryOrBitFieldObject()) {
7152     VK = LHS.get()->getValueKind();
7153     if (LHS.get()->getObjectKind() == OK_BitField ||
7154         RHS.get()->getObjectKind() == OK_BitField)
7155       OK = OK_BitField;
7156     return Context.getCommonSugaredType(LTy, RTy);
7157   }
7158 
7159   // C++11 [expr.cond]p5
7160   //   Otherwise, the result is a prvalue. If the second and third operands
7161   //   do not have the same type, and either has (cv) class type, ...
7162   if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
7163     //   ... overload resolution is used to determine the conversions (if any)
7164     //   to be applied to the operands. If the overload resolution fails, the
7165     //   program is ill-formed.
7166     if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
7167       return QualType();
7168   }
7169 
7170   // C++11 [expr.cond]p6
7171   //   Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard
7172   //   conversions are performed on the second and third operands.
7173   LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
7174   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
7175   if (LHS.isInvalid() || RHS.isInvalid())
7176     return QualType();
7177   LTy = LHS.get()->getType();
7178   RTy = RHS.get()->getType();
7179 
7180   //   After those conversions, one of the following shall hold:
7181   //   -- The second and third operands have the same type; the result
7182   //      is of that type. If the operands have class type, the result
7183   //      is a prvalue temporary of the result type, which is
7184   //      copy-initialized from either the second operand or the third
7185   //      operand depending on the value of the first operand.
7186   if (Context.hasSameType(LTy, RTy)) {
7187     if (LTy->isRecordType()) {
7188       // The operands have class type. Make a temporary copy.
7189       ExprResult LHSCopy = PerformCopyInitialization(
7190           InitializedEntity::InitializeTemporary(LTy), SourceLocation(), LHS);
7191       if (LHSCopy.isInvalid())
7192         return QualType();
7193 
7194       ExprResult RHSCopy = PerformCopyInitialization(
7195           InitializedEntity::InitializeTemporary(RTy), SourceLocation(), RHS);
7196       if (RHSCopy.isInvalid())
7197         return QualType();
7198 
7199       LHS = LHSCopy;
7200       RHS = RHSCopy;
7201     }
7202     return Context.getCommonSugaredType(LTy, RTy);
7203   }
7204 
7205   // Extension: conditional operator involving vector types.
7206   if (LTy->isVectorType() || RTy->isVectorType())
7207     return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/ false,
7208                                /*AllowBothBool*/ true,
7209                                /*AllowBoolConversions*/ false,
7210                                /*AllowBoolOperation*/ false,
7211                                /*ReportInvalid*/ true);
7212 
7213   //   -- The second and third operands have arithmetic or enumeration type;
7214   //      the usual arithmetic conversions are performed to bring them to a
7215   //      common type, and the result is of that type.
7216   if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
7217     QualType ResTy =
7218         UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional);
7219     if (LHS.isInvalid() || RHS.isInvalid())
7220       return QualType();
7221     if (ResTy.isNull()) {
7222       Diag(QuestionLoc,
7223            diag::err_typecheck_cond_incompatible_operands) << LTy << RTy
7224         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
7225       return QualType();
7226     }
7227 
7228     LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
7229     RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));
7230 
7231     return ResTy;
7232   }
7233 
7234   //   -- The second and third operands have pointer type, or one has pointer
7235   //      type and the other is a null pointer constant, or both are null
7236   //      pointer constants, at least one of which is non-integral; pointer
7237   //      conversions and qualification conversions are performed to bring them
7238   //      to their composite pointer type. The result is of the composite
7239   //      pointer type.
7240   //   -- The second and third operands have pointer to member type, or one has
7241   //      pointer to member type and the other is a null pointer constant;
7242   //      pointer to member conversions and qualification conversions are
7243   //      performed to bring them to a common type, whose cv-qualification
7244   //      shall match the cv-qualification of either the second or the third
7245   //      operand. The result is of the common type.
7246   QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS);
7247   if (!Composite.isNull())
7248     return Composite;
7249 
7250   // Similarly, attempt to find composite type of two objective-c pointers.
7251   Composite = ObjC().FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
7252   if (LHS.isInvalid() || RHS.isInvalid())
7253     return QualType();
7254   if (!Composite.isNull())
7255     return Composite;
7256 
7257   // Check if we are using a null with a non-pointer type.
7258   if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
7259     return QualType();
7260 
7261   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
7262     << LHS.get()->getType() << RHS.get()->getType()
7263     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
7264   return QualType();
7265 }
7266 
7267 QualType Sema::FindCompositePointerType(SourceLocation Loc,
7268                                         Expr *&E1, Expr *&E2,
7269                                         bool ConvertArgs) {
7270   assert(getLangOpts().CPlusPlus && "This function assumes C++");
7271 
7272   // C++1z [expr]p14:
7273   //   The composite pointer type of two operands p1 and p2 having types T1
7274   //   and T2
7275   QualType T1 = E1->getType(), T2 = E2->getType();
7276 
7277   //   where at least one is a pointer or pointer to member type or
7278   //   std::nullptr_t is:
7279   bool T1IsPointerLike = T1->isAnyPointerType() || T1->isMemberPointerType() ||
7280                          T1->isNullPtrType();
7281   bool T2IsPointerLike = T2->isAnyPointerType() || T2->isMemberPointerType() ||
7282                          T2->isNullPtrType();
7283   if (!T1IsPointerLike && !T2IsPointerLike)
7284     return QualType();
7285 
7286   //   - if both p1 and p2 are null pointer constants, std::nullptr_t;
7287   // This can't actually happen, following the standard, but we also use this
7288   // to implement the end of [expr.conv], which hits this case.
7289   //
7290   //   - if either p1 or p2 is a null pointer constant, T2 or T1, respectively;
7291   if (T1IsPointerLike &&
7292       E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
7293     if (ConvertArgs)
7294       E2 = ImpCastExprToType(E2, T1, T1->isMemberPointerType()
7295                                          ? CK_NullToMemberPointer
7296                                          : CK_NullToPointer).get();
7297     return T1;
7298   }
7299   if (T2IsPointerLike &&
7300       E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
7301     if (ConvertArgs)
7302       E1 = ImpCastExprToType(E1, T2, T2->isMemberPointerType()
7303                                          ? CK_NullToMemberPointer
7304                                          : CK_NullToPointer).get();
7305     return T2;
7306   }
7307 
7308   // Now both have to be pointers or member pointers.
7309   if (!T1IsPointerLike || !T2IsPointerLike)
7310     return QualType();
7311   assert(!T1->isNullPtrType() && !T2->isNullPtrType() &&
7312          "nullptr_t should be a null pointer constant");
7313 
7314   struct Step {
7315     enum Kind { Pointer, ObjCPointer, MemberPointer, Array } K;
7316     // Qualifiers to apply under the step kind.
7317     Qualifiers Quals;
7318     /// The class for a pointer-to-member; a constant array type with a bound
7319     /// (if any) for an array.
7320     const Type *ClassOrBound;
7321 
7322     Step(Kind K, const Type *ClassOrBound = nullptr)
7323         : K(K), ClassOrBound(ClassOrBound) {}
7324     QualType rebuild(ASTContext &Ctx, QualType T) const {
7325       T = Ctx.getQualifiedType(T, Quals);
7326       switch (K) {
7327       case Pointer:
7328         return Ctx.getPointerType(T);
7329       case MemberPointer:
7330         return Ctx.getMemberPointerType(T, ClassOrBound);
7331       case ObjCPointer:
7332         return Ctx.getObjCObjectPointerType(T);
7333       case Array:
7334         if (auto *CAT = cast_or_null<ConstantArrayType>(ClassOrBound))
7335           return Ctx.getConstantArrayType(T, CAT->getSize(), nullptr,
7336                                           ArraySizeModifier::Normal, 0);
7337         else
7338           return Ctx.getIncompleteArrayType(T, ArraySizeModifier::Normal, 0);
7339       }
7340       llvm_unreachable("unknown step kind");
7341     }
7342   };
7343 
7344   SmallVector<Step, 8> Steps;
7345 
7346   //  - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1
7347   //    is reference-related to C2 or C2 is reference-related to C1 (8.6.3),
7348   //    the cv-combined type of T1 and T2 or the cv-combined type of T2 and T1,
7349   //    respectively;
7350   //  - if T1 is "pointer to member of C1 of type cv1 U1" and T2 is "pointer
7351   //    to member of C2 of type cv2 U2" for some non-function type U, where
7352   //    C1 is reference-related to C2 or C2 is reference-related to C1, the
7353   //    cv-combined type of T2 and T1 or the cv-combined type of T1 and T2,
7354   //    respectively;
7355   //  - if T1 and T2 are similar types (4.5), the cv-combined type of T1 and
7356   //    T2;
7357   //
7358   // Dismantle T1 and T2 to simultaneously determine whether they are similar
7359   // and to prepare to form the cv-combined type if so.
7360   QualType Composite1 = T1;
7361   QualType Composite2 = T2;
7362   unsigned NeedConstBefore = 0;
7363   while (true) {
7364     assert(!Composite1.isNull() && !Composite2.isNull());
7365 
7366     Qualifiers Q1, Q2;
7367     Composite1 = Context.getUnqualifiedArrayType(Composite1, Q1);
7368     Composite2 = Context.getUnqualifiedArrayType(Composite2, Q2);
7369 
7370     // Top-level qualifiers are ignored. Merge at all lower levels.
7371     if (!Steps.empty()) {
7372       // Find the qualifier union: (approximately) the unique minimal set of
7373       // qualifiers that is compatible with both types.
7374       Qualifiers Quals = Qualifiers::fromCVRUMask(Q1.getCVRUQualifiers() |
7375                                                   Q2.getCVRUQualifiers());
7376 
7377       // Under one level of pointer or pointer-to-member, we can change to an
7378       // unambiguous compatible address space.
7379       if (Q1.getAddressSpace() == Q2.getAddressSpace()) {
7380         Quals.setAddressSpace(Q1.getAddressSpace());
7381       } else if (Steps.size() == 1) {
7382         bool MaybeQ1 = Q1.isAddressSpaceSupersetOf(Q2, getASTContext());
7383         bool MaybeQ2 = Q2.isAddressSpaceSupersetOf(Q1, getASTContext());
7384         if (MaybeQ1 == MaybeQ2) {
7385           // Exception for ptr size address spaces. Should be able to choose
7386           // either address space during comparison.
7387           if (isPtrSizeAddressSpace(Q1.getAddressSpace()) ||
7388               isPtrSizeAddressSpace(Q2.getAddressSpace()))
7389             MaybeQ1 = true;
7390           else
7391             return QualType(); // No unique best address space.
7392         }
7393         Quals.setAddressSpace(MaybeQ1 ? Q1.getAddressSpace()
7394                                       : Q2.getAddressSpace());
7395       } else {
7396         return QualType();
7397       }
7398 
7399       // FIXME: In C, we merge __strong and none to __strong at the top level.
7400       if (Q1.getObjCGCAttr() == Q2.getObjCGCAttr())
7401         Quals.setObjCGCAttr(Q1.getObjCGCAttr());
7402       else if (T1->isVoidPointerType() || T2->isVoidPointerType())
7403         assert(Steps.size() == 1);
7404       else
7405         return QualType();
7406 
7407       // Mismatched lifetime qualifiers never compatibly include each other.
7408       if (Q1.getObjCLifetime() == Q2.getObjCLifetime())
7409         Quals.setObjCLifetime(Q1.getObjCLifetime());
7410       else if (T1->isVoidPointerType() || T2->isVoidPointerType())
7411         assert(Steps.size() == 1);
7412       else
7413         return QualType();
7414 
7415       Steps.back().Quals = Quals;
7416       if (Q1 != Quals || Q2 != Quals)
7417         NeedConstBefore = Steps.size() - 1;
7418     }
7419 
7420     // FIXME: Can we unify the following with UnwrapSimilarTypes?
7421 
7422     const ArrayType *Arr1, *Arr2;
7423     if ((Arr1 = Context.getAsArrayType(Composite1)) &&
7424         (Arr2 = Context.getAsArrayType(Composite2))) {
7425       auto *CAT1 = dyn_cast<ConstantArrayType>(Arr1);
7426       auto *CAT2 = dyn_cast<ConstantArrayType>(Arr2);
7427       if (CAT1 && CAT2 && CAT1->getSize() == CAT2->getSize()) {
7428         Composite1 = Arr1->getElementType();
7429         Composite2 = Arr2->getElementType();
7430         Steps.emplace_back(Step::Array, CAT1);
7431         continue;
7432       }
7433       bool IAT1 = isa<IncompleteArrayType>(Arr1);
7434       bool IAT2 = isa<IncompleteArrayType>(Arr2);
7435       if ((IAT1 && IAT2) ||
7436           (getLangOpts().CPlusPlus20 && (IAT1 != IAT2) &&
7437            ((bool)CAT1 != (bool)CAT2) &&
7438            (Steps.empty() || Steps.back().K != Step::Array))) {
7439         // In C++20 onwards, we can unify an array of N T with an array of
7440         // a different or unknown bound. But we can't form an array whose
7441         // element type is an array of unknown bound by doing so.
7442         Composite1 = Arr1->getElementType();
7443         Composite2 = Arr2->getElementType();
7444         Steps.emplace_back(Step::Array);
7445         if (CAT1 || CAT2)
7446           NeedConstBefore = Steps.size();
7447         continue;
7448       }
7449     }
7450 
7451     const PointerType *Ptr1, *Ptr2;
7452     if ((Ptr1 = Composite1->getAs<PointerType>()) &&
7453         (Ptr2 = Composite2->getAs<PointerType>())) {
7454       Composite1 = Ptr1->getPointeeType();
7455       Composite2 = Ptr2->getPointeeType();
7456       Steps.emplace_back(Step::Pointer);
7457       continue;
7458     }
7459 
7460     const ObjCObjectPointerType *ObjPtr1, *ObjPtr2;
7461     if ((ObjPtr1 = Composite1->getAs<ObjCObjectPointerType>()) &&
7462         (ObjPtr2 = Composite2->getAs<ObjCObjectPointerType>())) {
7463       Composite1 = ObjPtr1->getPointeeType();
7464       Composite2 = ObjPtr2->getPointeeType();
7465       Steps.emplace_back(Step::ObjCPointer);
7466       continue;
7467     }
7468 
7469     const MemberPointerType *MemPtr1, *MemPtr2;
7470     if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
7471         (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
7472       Composite1 = MemPtr1->getPointeeType();
7473       Composite2 = MemPtr2->getPointeeType();
7474 
7475       // At the top level, we can perform a base-to-derived pointer-to-member
7476       // conversion:
7477       //
7478       //  - [...] where C1 is reference-related to C2 or C2 is
7479       //    reference-related to C1
7480       //
7481       // (Note that the only kinds of reference-relatedness in scope here are
7482       // "same type or derived from".) At any other level, the class must
7483       // exactly match.
7484       const Type *Class = nullptr;
7485       QualType Cls1(MemPtr1->getClass(), 0);
7486       QualType Cls2(MemPtr2->getClass(), 0);
7487       if (Context.hasSameType(Cls1, Cls2))
7488         Class = MemPtr1->getClass();
7489       else if (Steps.empty())
7490         Class = IsDerivedFrom(Loc, Cls1, Cls2) ? MemPtr1->getClass() :
7491                 IsDerivedFrom(Loc, Cls2, Cls1) ? MemPtr2->getClass() : nullptr;
7492       if (!Class)
7493         return QualType();
7494 
7495       Steps.emplace_back(Step::MemberPointer, Class);
7496       continue;
7497     }
7498 
7499     // Special case: at the top level, we can decompose an Objective-C pointer
7500     // and a 'cv void *'. Unify the qualifiers.
7501     if (Steps.empty() && ((Composite1->isVoidPointerType() &&
7502                            Composite2->isObjCObjectPointerType()) ||
7503                           (Composite1->isObjCObjectPointerType() &&
7504                            Composite2->isVoidPointerType()))) {
7505       Composite1 = Composite1->getPointeeType();
7506       Composite2 = Composite2->getPointeeType();
7507       Steps.emplace_back(Step::Pointer);
7508       continue;
7509     }
7510 
7511     // FIXME: block pointer types?
7512 
7513     // Cannot unwrap any more types.
7514     break;
7515   }
7516 
7517   //  - if T1 or T2 is "pointer to noexcept function" and the other type is
7518   //    "pointer to function", where the function types are otherwise the same,
7519   //    "pointer to function";
7520   //  - if T1 or T2 is "pointer to member of C1 of type function", the other
7521   //    type is "pointer to member of C2 of type noexcept function", and C1
7522   //    is reference-related to C2 or C2 is reference-related to C1, where
7523   //    the function types are otherwise the same, "pointer to member of C2 of
7524   //    type function" or "pointer to member of C1 of type function",
7525   //    respectively;
7526   //
7527   // We also support 'noreturn' here, so as a Clang extension we generalize the
7528   // above to:
7529   //
7530   //  - [Clang] If T1 and T2 are both of type "pointer to function" or
7531   //    "pointer to member function" and the pointee types can be unified
7532   //    by a function pointer conversion, that conversion is applied
7533   //    before checking the following rules.
7534   //
7535   // We've already unwrapped down to the function types, and we want to merge
7536   // rather than just convert, so do this ourselves rather than calling
7537   // IsFunctionConversion.
7538   //
7539   // FIXME: In order to match the standard wording as closely as possible, we
7540   // currently only do this under a single level of pointers. Ideally, we would
7541   // allow this in general, and set NeedConstBefore to the relevant depth on
7542   // the side(s) where we changed anything. If we permit that, we should also
7543   // consider this conversion when determining type similarity and model it as
7544   // a qualification conversion.
7545   if (Steps.size() == 1) {
7546     if (auto *FPT1 = Composite1->getAs<FunctionProtoType>()) {
7547       if (auto *FPT2 = Composite2->getAs<FunctionProtoType>()) {
7548         FunctionProtoType::ExtProtoInfo EPI1 = FPT1->getExtProtoInfo();
7549         FunctionProtoType::ExtProtoInfo EPI2 = FPT2->getExtProtoInfo();
7550 
7551         // The result is noreturn if both operands are.
7552         bool Noreturn =
7553             EPI1.ExtInfo.getNoReturn() && EPI2.ExtInfo.getNoReturn();
7554         EPI1.ExtInfo = EPI1.ExtInfo.withNoReturn(Noreturn);
7555         EPI2.ExtInfo = EPI2.ExtInfo.withNoReturn(Noreturn);
7556 
7557         // The result is nothrow if both operands are.
7558         SmallVector<QualType, 8> ExceptionTypeStorage;
7559         EPI1.ExceptionSpec = EPI2.ExceptionSpec = Context.mergeExceptionSpecs(
7560             EPI1.ExceptionSpec, EPI2.ExceptionSpec, ExceptionTypeStorage,
7561             getLangOpts().CPlusPlus17);
7562 
7563         Composite1 = Context.getFunctionType(FPT1->getReturnType(),
7564                                              FPT1->getParamTypes(), EPI1);
7565         Composite2 = Context.getFunctionType(FPT2->getReturnType(),
7566                                              FPT2->getParamTypes(), EPI2);
7567       }
7568     }
7569   }
7570 
7571   // There are some more conversions we can perform under exactly one pointer.
7572   if (Steps.size() == 1 && Steps.front().K == Step::Pointer &&
7573       !Context.hasSameType(Composite1, Composite2)) {
7574     //  - if T1 or T2 is "pointer to cv1 void" and the other type is
7575     //    "pointer to cv2 T", where T is an object type or void,
7576     //    "pointer to cv12 void", where cv12 is the union of cv1 and cv2;
7577     if (Composite1->isVoidType() && Composite2->isObjectType())
7578       Composite2 = Composite1;
7579     else if (Composite2->isVoidType() && Composite1->isObjectType())
7580       Composite1 = Composite2;
7581     //  - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1
7582     //    is reference-related to C2 or C2 is reference-related to C1 (8.6.3),
7583     //    the cv-combined type of T1 and T2 or the cv-combined type of T2 and
7584     //    T1, respectively;
7585     //
7586     // The "similar type" handling covers all of this except for the "T1 is a
7587     // base class of T2" case in the definition of reference-related.
7588     else if (IsDerivedFrom(Loc, Composite1, Composite2))
7589       Composite1 = Composite2;
7590     else if (IsDerivedFrom(Loc, Composite2, Composite1))
7591       Composite2 = Composite1;
7592   }
7593 
7594   // At this point, either the inner types are the same or we have failed to
7595   // find a composite pointer type.
7596   if (!Context.hasSameType(Composite1, Composite2))
7597     return QualType();
7598 
7599   // Per C++ [conv.qual]p3, add 'const' to every level before the last
7600   // differing qualifier.
7601   for (unsigned I = 0; I != NeedConstBefore; ++I)
7602     Steps[I].Quals.addConst();
7603 
7604   // Rebuild the composite type.
7605   QualType Composite = Context.getCommonSugaredType(Composite1, Composite2);
7606   for (auto &S : llvm::reverse(Steps))
7607     Composite = S.rebuild(Context, Composite);
7608 
7609   if (ConvertArgs) {
7610     // Convert the expressions to the composite pointer type.
7611     InitializedEntity Entity =
7612         InitializedEntity::InitializeTemporary(Composite);
7613     InitializationKind Kind =
7614         InitializationKind::CreateCopy(Loc, SourceLocation());
7615 
7616     InitializationSequence E1ToC(*this, Entity, Kind, E1);
7617     if (!E1ToC)
7618       return QualType();
7619 
7620     InitializationSequence E2ToC(*this, Entity, Kind, E2);
7621     if (!E2ToC)
7622       return QualType();
7623 
7624     // FIXME: Let the caller know if these fail to avoid duplicate diagnostics.
7625     ExprResult E1Result = E1ToC.Perform(*this, Entity, Kind, E1);
7626     if (E1Result.isInvalid())
7627       return QualType();
7628     E1 = E1Result.get();
7629 
7630     ExprResult E2Result = E2ToC.Perform(*this, Entity, Kind, E2);
7631     if (E2Result.isInvalid())
7632       return QualType();
7633     E2 = E2Result.get();
7634   }
7635 
7636   return Composite;
7637 }
7638 
7639 ExprResult Sema::MaybeBindToTemporary(Expr *E) {
7640   if (!E)
7641     return ExprError();
7642 
7643   assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
7644 
7645   // If the result is a glvalue, we shouldn't bind it.
7646   if (E->isGLValue())
7647     return E;
7648 
7649   // In ARC, calls that return a retainable type can return retained,
7650   // in which case we have to insert a consuming cast.
7651   if (getLangOpts().ObjCAutoRefCount &&
7652       E->getType()->isObjCRetainableType()) {
7653 
7654     bool ReturnsRetained;
7655 
7656     // For actual calls, we compute this by examining the type of the
7657     // called value.
7658     if (CallExpr *Call = dyn_cast<CallExpr>(E)) {
7659       Expr *Callee = Call->getCallee()->IgnoreParens();
7660       QualType T = Callee->getType();
7661 
7662       if (T == Context.BoundMemberTy) {
7663         // Handle pointer-to-members.
7664         if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee))
7665           T = BinOp->getRHS()->getType();
7666         else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee))
7667           T = Mem->getMemberDecl()->getType();
7668       }
7669 
7670       if (const PointerType *Ptr = T->getAs<PointerType>())
7671         T = Ptr->getPointeeType();
7672       else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>())
7673         T = Ptr->getPointeeType();
7674       else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>())
7675         T = MemPtr->getPointeeType();
7676 
7677       auto *FTy = T->castAs<FunctionType>();
7678       ReturnsRetained = FTy->getExtInfo().getProducesResult();
7679 
7680     // ActOnStmtExpr arranges things so that StmtExprs of retainable
7681     // type always produce a +1 object.
7682     } else if (isa<StmtExpr>(E)) {
7683       ReturnsRetained = true;
7684 
7685     // We hit this case with the lambda conversion-to-block optimization;
7686     // we don't want any extra casts here.
7687     } else if (isa<CastExpr>(E) &&
7688                isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) {
7689       return E;
7690 
7691     // For message sends and property references, we try to find an
7692     // actual method.  FIXME: we should infer retention by selector in
7693     // cases where we don't have an actual method.
7694     } else {
7695       ObjCMethodDecl *D = nullptr;
7696       if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) {
7697         D = Send->getMethodDecl();
7698       } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) {
7699         D = BoxedExpr->getBoxingMethod();
7700       } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) {
7701         // Don't do reclaims if we're using the zero-element array
7702         // constant.
7703         if (ArrayLit->getNumElements() == 0 &&
7704             Context.getLangOpts().ObjCRuntime.hasEmptyCollections())
7705           return E;
7706 
7707         D = ArrayLit->getArrayWithObjectsMethod();
7708       } else if (ObjCDictionaryLiteral *DictLit
7709                                         = dyn_cast<ObjCDictionaryLiteral>(E)) {
7710         // Don't do reclaims if we're using the zero-element dictionary
7711         // constant.
7712         if (DictLit->getNumElements() == 0 &&
7713             Context.getLangOpts().ObjCRuntime.hasEmptyCollections())
7714           return E;
7715 
7716         D = DictLit->getDictWithObjectsMethod();
7717       }
7718 
7719       ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>());
7720 
7721       // Don't do reclaims on performSelector calls; despite their
7722       // return type, the invoked method doesn't necessarily actually
7723       // return an object.
7724       if (!ReturnsRetained &&
7725           D && D->getMethodFamily() == OMF_performSelector)
7726         return E;
7727     }
7728 
7729     // Don't reclaim an object of Class type.
7730     if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType())
7731       return E;
7732 
7733     Cleanup.setExprNeedsCleanups(true);
7734 
7735     CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject
7736                                    : CK_ARCReclaimReturnedObject);
7737     return ImplicitCastExpr::Create(Context, E->getType(), ck, E, nullptr,
7738                                     VK_PRValue, FPOptionsOverride());
7739   }
7740 
7741   if (E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
7742     Cleanup.setExprNeedsCleanups(true);
7743 
7744   if (!getLangOpts().CPlusPlus)
7745     return E;
7746 
7747   // Search for the base element type (cf. ASTContext::getBaseElementType) with
7748   // a fast path for the common case that the type is directly a RecordType.
7749   const Type *T = Context.getCanonicalType(E->getType().getTypePtr());
7750   const RecordType *RT = nullptr;
7751   while (!RT) {
7752     switch (T->getTypeClass()) {
7753     case Type::Record:
7754       RT = cast<RecordType>(T);
7755       break;
7756     case Type::ConstantArray:
7757     case Type::IncompleteArray:
7758     case Type::VariableArray:
7759     case Type::DependentSizedArray:
7760       T = cast<ArrayType>(T)->getElementType().getTypePtr();
7761       break;
7762     default:
7763       return E;
7764     }
7765   }
7766 
7767   // That should be enough to guarantee that this type is complete, if we're
7768   // not processing a decltype expression.
7769   CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
7770   if (RD->isInvalidDecl() || RD->isDependentContext())
7771     return E;
7772 
7773   bool IsDecltype = ExprEvalContexts.back().ExprContext ==
7774                     ExpressionEvaluationContextRecord::EK_Decltype;
7775   CXXDestructorDecl *Destructor = IsDecltype ? nullptr : LookupDestructor(RD);
7776 
7777   if (Destructor) {
7778     MarkFunctionReferenced(E->getExprLoc(), Destructor);
7779     CheckDestructorAccess(E->getExprLoc(), Destructor,
7780                           PDiag(diag::err_access_dtor_temp)
7781                             << E->getType());
7782     if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
7783       return ExprError();
7784 
7785     // If destructor is trivial, we can avoid the extra copy.
7786     if (Destructor->isTrivial())
7787       return E;
7788 
7789     // We need a cleanup, but we don't need to remember the temporary.
7790     Cleanup.setExprNeedsCleanups(true);
7791   }
7792 
7793   CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor);
7794   CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E);
7795 
7796   if (IsDecltype)
7797     ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind);
7798 
7799   return Bind;
7800 }
7801 
7802 ExprResult
7803 Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
7804   if (SubExpr.isInvalid())
7805     return ExprError();
7806 
7807   return MaybeCreateExprWithCleanups(SubExpr.get());
7808 }
7809 
7810 Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
7811   assert(SubExpr && "subexpression can't be null!");
7812 
7813   CleanupVarDeclMarking();
7814 
7815   unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects;
7816   assert(ExprCleanupObjects.size() >= FirstCleanup);
7817   assert(Cleanup.exprNeedsCleanups() ||
7818          ExprCleanupObjects.size() == FirstCleanup);
7819   if (!Cleanup.exprNeedsCleanups())
7820     return SubExpr;
7821 
7822   auto Cleanups = llvm::ArrayRef(ExprCleanupObjects.begin() + FirstCleanup,
7823                                  ExprCleanupObjects.size() - FirstCleanup);
7824 
7825   auto *E = ExprWithCleanups::Create(
7826       Context, SubExpr, Cleanup.cleanupsHaveSideEffects(), Cleanups);
7827   DiscardCleanupsInEvaluationContext();
7828 
7829   return E;
7830 }
7831 
7832 Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
7833   assert(SubStmt && "sub-statement can't be null!");
7834 
7835   CleanupVarDeclMarking();
7836 
7837   if (!Cleanup.exprNeedsCleanups())
7838     return SubStmt;
7839 
7840   // FIXME: In order to attach the temporaries, wrap the statement into
7841   // a StmtExpr; currently this is only used for asm statements.
7842   // This is hacky, either create a new CXXStmtWithTemporaries statement or
7843   // a new AsmStmtWithTemporaries.
7844   CompoundStmt *CompStmt =
7845       CompoundStmt::Create(Context, SubStmt, FPOptionsOverride(),
7846                            SourceLocation(), SourceLocation());
7847   Expr *E = new (Context)
7848       StmtExpr(CompStmt, Context.VoidTy, SourceLocation(), SourceLocation(),
7849                /*FIXME TemplateDepth=*/0);
7850   return MaybeCreateExprWithCleanups(E);
7851 }
7852 
7853 ExprResult Sema::ActOnDecltypeExpression(Expr *E) {
7854   assert(ExprEvalContexts.back().ExprContext ==
7855              ExpressionEvaluationContextRecord::EK_Decltype &&
7856          "not in a decltype expression");
7857 
7858   ExprResult Result = CheckPlaceholderExpr(E);
7859   if (Result.isInvalid())
7860     return ExprError();
7861   E = Result.get();
7862 
7863   // C++11 [expr.call]p11:
7864   //   If a function call is a prvalue of object type,
7865   // -- if the function call is either
7866   //   -- the operand of a decltype-specifier, or
7867   //   -- the right operand of a comma operator that is the operand of a
7868   //      decltype-specifier,
7869   //   a temporary object is not introduced for the prvalue.
7870 
7871   // Recursively rebuild ParenExprs and comma expressions to strip out the
7872   // outermost CXXBindTemporaryExpr, if any.
7873   if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
7874     ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr());
7875     if (SubExpr.isInvalid())
7876       return ExprError();
7877     if (SubExpr.get() == PE->getSubExpr())
7878       return E;
7879     return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.get());
7880   }
7881   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
7882     if (BO->getOpcode() == BO_Comma) {
7883       ExprResult RHS = ActOnDecltypeExpression(BO->getRHS());
7884       if (RHS.isInvalid())
7885         return ExprError();
7886       if (RHS.get() == BO->getRHS())
7887         return E;
7888       return BinaryOperator::Create(Context, BO->getLHS(), RHS.get(), BO_Comma,
7889                                     BO->getType(), BO->getValueKind(),
7890                                     BO->getObjectKind(), BO->getOperatorLoc(),
7891                                     BO->getFPFeatures());
7892     }
7893   }
7894 
7895   CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E);
7896   CallExpr *TopCall = TopBind ? dyn_cast<CallExpr>(TopBind->getSubExpr())
7897                               : nullptr;
7898   if (TopCall)
7899     E = TopCall;
7900   else
7901     TopBind = nullptr;
7902 
7903   // Disable the special decltype handling now.
7904   ExprEvalContexts.back().ExprContext =
7905       ExpressionEvaluationContextRecord::EK_Other;
7906 
7907   Result = CheckUnevaluatedOperand(E);
7908   if (Result.isInvalid())
7909     return ExprError();
7910   E = Result.get();
7911 
7912   // In MS mode, don't perform any extra checking of call return types within a
7913   // decltype expression.
7914   if (getLangOpts().MSVCCompat)
7915     return E;
7916 
7917   // Perform the semantic checks we delayed until this point.
7918   for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeCalls.size();
7919        I != N; ++I) {
7920     CallExpr *Call = ExprEvalContexts.back().DelayedDecltypeCalls[I];
7921     if (Call == TopCall)
7922       continue;
7923 
7924     if (CheckCallReturnType(Call->getCallReturnType(Context),
7925                             Call->getBeginLoc(), Call, Call->getDirectCallee()))
7926       return ExprError();
7927   }
7928 
7929   // Now all relevant types are complete, check the destructors are accessible
7930   // and non-deleted, and annotate them on the temporaries.
7931   for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeBinds.size();
7932        I != N; ++I) {
7933     CXXBindTemporaryExpr *Bind =
7934       ExprEvalContexts.back().DelayedDecltypeBinds[I];
7935     if (Bind == TopBind)
7936       continue;
7937 
7938     CXXTemporary *Temp = Bind->getTemporary();
7939 
7940     CXXRecordDecl *RD =
7941       Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
7942     CXXDestructorDecl *Destructor = LookupDestructor(RD);
7943     Temp->setDestructor(Destructor);
7944 
7945     MarkFunctionReferenced(Bind->getExprLoc(), Destructor);
7946     CheckDestructorAccess(Bind->getExprLoc(), Destructor,
7947                           PDiag(diag::err_access_dtor_temp)
7948                             << Bind->getType());
7949     if (DiagnoseUseOfDecl(Destructor, Bind->getExprLoc()))
7950       return ExprError();
7951 
7952     // We need a cleanup, but we don't need to remember the temporary.
7953     Cleanup.setExprNeedsCleanups(true);
7954   }
7955 
7956   // Possibly strip off the top CXXBindTemporaryExpr.
7957   return E;
7958 }
7959 
7960 /// Note a set of 'operator->' functions that were used for a member access.
7961 static void noteOperatorArrows(Sema &S,
7962                                ArrayRef<FunctionDecl *> OperatorArrows) {
7963   unsigned SkipStart = OperatorArrows.size(), SkipCount = 0;
7964   // FIXME: Make this configurable?
7965   unsigned Limit = 9;
7966   if (OperatorArrows.size() > Limit) {
7967     // Produce Limit-1 normal notes and one 'skipping' note.
7968     SkipStart = (Limit - 1) / 2 + (Limit - 1) % 2;
7969     SkipCount = OperatorArrows.size() - (Limit - 1);
7970   }
7971 
7972   for (unsigned I = 0; I < OperatorArrows.size(); /**/) {
7973     if (I == SkipStart) {
7974       S.Diag(OperatorArrows[I]->getLocation(),
7975              diag::note_operator_arrows_suppressed)
7976           << SkipCount;
7977       I += SkipCount;
7978     } else {
7979       S.Diag(OperatorArrows[I]->getLocation(), diag::note_operator_arrow_here)
7980           << OperatorArrows[I]->getCallResultType();
7981       ++I;
7982     }
7983   }
7984 }
7985 
7986 ExprResult Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base,
7987                                               SourceLocation OpLoc,
7988                                               tok::TokenKind OpKind,
7989                                               ParsedType &ObjectType,
7990                                               bool &MayBePseudoDestructor) {
7991   // Since this might be a postfix expression, get rid of ParenListExprs.
7992   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
7993   if (Result.isInvalid()) return ExprError();
7994   Base = Result.get();
7995 
7996   Result = CheckPlaceholderExpr(Base);
7997   if (Result.isInvalid()) return ExprError();
7998   Base = Result.get();
7999 
8000   QualType BaseType = Base->getType();
8001   MayBePseudoDestructor = false;
8002   if (BaseType->isDependentType()) {
8003     // If we have a pointer to a dependent type and are using the -> operator,
8004     // the object type is the type that the pointer points to. We might still
8005     // have enough information about that type to do something useful.
8006     if (OpKind == tok::arrow)
8007       if (const PointerType *Ptr = BaseType->getAs<PointerType>())
8008         BaseType = Ptr->getPointeeType();
8009 
8010     ObjectType = ParsedType::make(BaseType);
8011     MayBePseudoDestructor = true;
8012     return Base;
8013   }
8014 
8015   // C++ [over.match.oper]p8:
8016   //   [...] When operator->returns, the operator-> is applied  to the value
8017   //   returned, with the original second operand.
8018   if (OpKind == tok::arrow) {
8019     QualType StartingType = BaseType;
8020     bool NoArrowOperatorFound = false;
8021     bool FirstIteration = true;
8022     FunctionDecl *CurFD = dyn_cast<FunctionDecl>(CurContext);
8023     // The set of types we've considered so far.
8024     llvm::SmallPtrSet<CanQualType,8> CTypes;
8025     SmallVector<FunctionDecl*, 8> OperatorArrows;
8026     CTypes.insert(Context.getCanonicalType(BaseType));
8027 
8028     while (BaseType->isRecordType()) {
8029       if (OperatorArrows.size() >= getLangOpts().ArrowDepth) {
8030         Diag(OpLoc, diag::err_operator_arrow_depth_exceeded)
8031           << StartingType << getLangOpts().ArrowDepth << Base->getSourceRange();
8032         noteOperatorArrows(*this, OperatorArrows);
8033         Diag(OpLoc, diag::note_operator_arrow_depth)
8034           << getLangOpts().ArrowDepth;
8035         return ExprError();
8036       }
8037 
8038       Result = BuildOverloadedArrowExpr(
8039           S, Base, OpLoc,
8040           // When in a template specialization and on the first loop iteration,
8041           // potentially give the default diagnostic (with the fixit in a
8042           // separate note) instead of having the error reported back to here
8043           // and giving a diagnostic with a fixit attached to the error itself.
8044           (FirstIteration && CurFD && CurFD->isFunctionTemplateSpecialization())
8045               ? nullptr
8046               : &NoArrowOperatorFound);
8047       if (Result.isInvalid()) {
8048         if (NoArrowOperatorFound) {
8049           if (FirstIteration) {
8050             Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
8051               << BaseType << 1 << Base->getSourceRange()
8052               << FixItHint::CreateReplacement(OpLoc, ".");
8053             OpKind = tok::period;
8054             break;
8055           }
8056           Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
8057             << BaseType << Base->getSourceRange();
8058           CallExpr *CE = dyn_cast<CallExpr>(Base);
8059           if (Decl *CD = (CE ? CE->getCalleeDecl() : nullptr)) {
8060             Diag(CD->getBeginLoc(),
8061                  diag::note_member_reference_arrow_from_operator_arrow);
8062           }
8063         }
8064         return ExprError();
8065       }
8066       Base = Result.get();
8067       if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
8068         OperatorArrows.push_back(OpCall->getDirectCallee());
8069       BaseType = Base->getType();
8070       CanQualType CBaseType = Context.getCanonicalType(BaseType);
8071       if (!CTypes.insert(CBaseType).second) {
8072         Diag(OpLoc, diag::err_operator_arrow_circular) << StartingType;
8073         noteOperatorArrows(*this, OperatorArrows);
8074         return ExprError();
8075       }
8076       FirstIteration = false;
8077     }
8078 
8079     if (OpKind == tok::arrow) {
8080       if (BaseType->isPointerType())
8081         BaseType = BaseType->getPointeeType();
8082       else if (auto *AT = Context.getAsArrayType(BaseType))
8083         BaseType = AT->getElementType();
8084     }
8085   }
8086 
8087   // Objective-C properties allow "." access on Objective-C pointer types,
8088   // so adjust the base type to the object type itself.
8089   if (BaseType->isObjCObjectPointerType())
8090     BaseType = BaseType->getPointeeType();
8091 
8092   // C++ [basic.lookup.classref]p2:
8093   //   [...] If the type of the object expression is of pointer to scalar
8094   //   type, the unqualified-id is looked up in the context of the complete
8095   //   postfix-expression.
8096   //
8097   // This also indicates that we could be parsing a pseudo-destructor-name.
8098   // Note that Objective-C class and object types can be pseudo-destructor
8099   // expressions or normal member (ivar or property) access expressions, and
8100   // it's legal for the type to be incomplete if this is a pseudo-destructor
8101   // call.  We'll do more incomplete-type checks later in the lookup process,
8102   // so just skip this check for ObjC types.
8103   if (!BaseType->isRecordType()) {
8104     ObjectType = ParsedType::make(BaseType);
8105     MayBePseudoDestructor = true;
8106     return Base;
8107   }
8108 
8109   // The object type must be complete (or dependent), or
8110   // C++11 [expr.prim.general]p3:
8111   //   Unlike the object expression in other contexts, *this is not required to
8112   //   be of complete type for purposes of class member access (5.2.5) outside
8113   //   the member function body.
8114   if (!BaseType->isDependentType() &&
8115       !isThisOutsideMemberFunctionBody(BaseType) &&
8116       RequireCompleteType(OpLoc, BaseType,
8117                           diag::err_incomplete_member_access)) {
8118     return CreateRecoveryExpr(Base->getBeginLoc(), Base->getEndLoc(), {Base});
8119   }
8120 
8121   // C++ [basic.lookup.classref]p2:
8122   //   If the id-expression in a class member access (5.2.5) is an
8123   //   unqualified-id, and the type of the object expression is of a class
8124   //   type C (or of pointer to a class type C), the unqualified-id is looked
8125   //   up in the scope of class C. [...]
8126   ObjectType = ParsedType::make(BaseType);
8127   return Base;
8128 }
8129 
8130 static bool CheckArrow(Sema &S, QualType &ObjectType, Expr *&Base,
8131                        tok::TokenKind &OpKind, SourceLocation OpLoc) {
8132   if (Base->hasPlaceholderType()) {
8133     ExprResult result = S.CheckPlaceholderExpr(Base);
8134     if (result.isInvalid()) return true;
8135     Base = result.get();
8136   }
8137   ObjectType = Base->getType();
8138 
8139   // C++ [expr.pseudo]p2:
8140   //   The left-hand side of the dot operator shall be of scalar type. The
8141   //   left-hand side of the arrow operator shall be of pointer to scalar type.
8142   //   This scalar type is the object type.
8143   // Note that this is rather different from the normal handling for the
8144   // arrow operator.
8145   if (OpKind == tok::arrow) {
8146     // The operator requires a prvalue, so perform lvalue conversions.
8147     // Only do this if we might plausibly end with a pointer, as otherwise
8148     // this was likely to be intended to be a '.'.
8149     if (ObjectType->isPointerType() || ObjectType->isArrayType() ||
8150         ObjectType->isFunctionType()) {
8151       ExprResult BaseResult = S.DefaultFunctionArrayLvalueConversion(Base);
8152       if (BaseResult.isInvalid())
8153         return true;
8154       Base = BaseResult.get();
8155       ObjectType = Base->getType();
8156     }
8157 
8158     if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
8159       ObjectType = Ptr->getPointeeType();
8160     } else if (!Base->isTypeDependent()) {
8161       // The user wrote "p->" when they probably meant "p."; fix it.
8162       S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
8163         << ObjectType << true
8164         << FixItHint::CreateReplacement(OpLoc, ".");
8165       if (S.isSFINAEContext())
8166         return true;
8167 
8168       OpKind = tok::period;
8169     }
8170   }
8171 
8172   return false;
8173 }
8174 
8175 /// Check if it's ok to try and recover dot pseudo destructor calls on
8176 /// pointer objects.
8177 static bool
8178 canRecoverDotPseudoDestructorCallsOnPointerObjects(Sema &SemaRef,
8179                                                    QualType DestructedType) {
8180   // If this is a record type, check if its destructor is callable.
8181   if (auto *RD = DestructedType->getAsCXXRecordDecl()) {
8182     if (RD->hasDefinition())
8183       if (CXXDestructorDecl *D = SemaRef.LookupDestructor(RD))
8184         return SemaRef.CanUseDecl(D, /*TreatUnavailableAsInvalid=*/false);
8185     return false;
8186   }
8187 
8188   // Otherwise, check if it's a type for which it's valid to use a pseudo-dtor.
8189   return DestructedType->isDependentType() || DestructedType->isScalarType() ||
8190          DestructedType->isVectorType();
8191 }
8192 
8193 ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
8194                                            SourceLocation OpLoc,
8195                                            tok::TokenKind OpKind,
8196                                            const CXXScopeSpec &SS,
8197                                            TypeSourceInfo *ScopeTypeInfo,
8198                                            SourceLocation CCLoc,
8199                                            SourceLocation TildeLoc,
8200                                          PseudoDestructorTypeStorage Destructed) {
8201   TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
8202 
8203   QualType ObjectType;
8204   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
8205     return ExprError();
8206 
8207   if (!ObjectType->isDependentType() && !ObjectType->isScalarType() &&
8208       !ObjectType->isVectorType() && !ObjectType->isMatrixType()) {
8209     if (getLangOpts().MSVCCompat && ObjectType->isVoidType())
8210       Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange();
8211     else {
8212       Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
8213         << ObjectType << Base->getSourceRange();
8214       return ExprError();
8215     }
8216   }
8217 
8218   // C++ [expr.pseudo]p2:
8219   //   [...] The cv-unqualified versions of the object type and of the type
8220   //   designated by the pseudo-destructor-name shall be the same type.
8221   if (DestructedTypeInfo) {
8222     QualType DestructedType = DestructedTypeInfo->getType();
8223     SourceLocation DestructedTypeStart =
8224         DestructedTypeInfo->getTypeLoc().getBeginLoc();
8225     if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) {
8226       if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
8227         // Detect dot pseudo destructor calls on pointer objects, e.g.:
8228         //   Foo *foo;
8229         //   foo.~Foo();
8230         if (OpKind == tok::period && ObjectType->isPointerType() &&
8231             Context.hasSameUnqualifiedType(DestructedType,
8232                                            ObjectType->getPointeeType())) {
8233           auto Diagnostic =
8234               Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
8235               << ObjectType << /*IsArrow=*/0 << Base->getSourceRange();
8236 
8237           // Issue a fixit only when the destructor is valid.
8238           if (canRecoverDotPseudoDestructorCallsOnPointerObjects(
8239                   *this, DestructedType))
8240             Diagnostic << FixItHint::CreateReplacement(OpLoc, "->");
8241 
8242           // Recover by setting the object type to the destructed type and the
8243           // operator to '->'.
8244           ObjectType = DestructedType;
8245           OpKind = tok::arrow;
8246         } else {
8247           Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
8248               << ObjectType << DestructedType << Base->getSourceRange()
8249               << DestructedTypeInfo->getTypeLoc().getSourceRange();
8250 
8251           // Recover by setting the destructed type to the object type.
8252           DestructedType = ObjectType;
8253           DestructedTypeInfo =
8254               Context.getTrivialTypeSourceInfo(ObjectType, DestructedTypeStart);
8255           Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
8256         }
8257       } else if (DestructedType.getObjCLifetime() !=
8258                                                 ObjectType.getObjCLifetime()) {
8259 
8260         if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) {
8261           // Okay: just pretend that the user provided the correctly-qualified
8262           // type.
8263         } else {
8264           Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals)
8265               << ObjectType << DestructedType << Base->getSourceRange()
8266               << DestructedTypeInfo->getTypeLoc().getSourceRange();
8267         }
8268 
8269         // Recover by setting the destructed type to the object type.
8270         DestructedType = ObjectType;
8271         DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
8272                                                            DestructedTypeStart);
8273         Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
8274       }
8275     }
8276   }
8277 
8278   // C++ [expr.pseudo]p2:
8279   //   [...] Furthermore, the two type-names in a pseudo-destructor-name of the
8280   //   form
8281   //
8282   //     ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
8283   //
8284   //   shall designate the same scalar type.
8285   if (ScopeTypeInfo) {
8286     QualType ScopeType = ScopeTypeInfo->getType();
8287     if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
8288         !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
8289 
8290       Diag(ScopeTypeInfo->getTypeLoc().getSourceRange().getBegin(),
8291            diag::err_pseudo_dtor_type_mismatch)
8292           << ObjectType << ScopeType << Base->getSourceRange()
8293           << ScopeTypeInfo->getTypeLoc().getSourceRange();
8294 
8295       ScopeType = QualType();
8296       ScopeTypeInfo = nullptr;
8297     }
8298   }
8299 
8300   Expr *Result
8301     = new (Context) CXXPseudoDestructorExpr(Context, Base,
8302                                             OpKind == tok::arrow, OpLoc,
8303                                             SS.getWithLocInContext(Context),
8304                                             ScopeTypeInfo,
8305                                             CCLoc,
8306                                             TildeLoc,
8307                                             Destructed);
8308 
8309   return Result;
8310 }
8311 
8312 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
8313                                            SourceLocation OpLoc,
8314                                            tok::TokenKind OpKind,
8315                                            CXXScopeSpec &SS,
8316                                            UnqualifiedId &FirstTypeName,
8317                                            SourceLocation CCLoc,
8318                                            SourceLocation TildeLoc,
8319                                            UnqualifiedId &SecondTypeName) {
8320   assert((FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||
8321           FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) &&
8322          "Invalid first type name in pseudo-destructor");
8323   assert((SecondTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||
8324           SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) &&
8325          "Invalid second type name in pseudo-destructor");
8326 
8327   QualType ObjectType;
8328   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
8329     return ExprError();
8330 
8331   // Compute the object type that we should use for name lookup purposes. Only
8332   // record types and dependent types matter.
8333   ParsedType ObjectTypePtrForLookup;
8334   if (!SS.isSet()) {
8335     if (ObjectType->isRecordType())
8336       ObjectTypePtrForLookup = ParsedType::make(ObjectType);
8337     else if (ObjectType->isDependentType())
8338       ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
8339   }
8340 
8341   // Convert the name of the type being destructed (following the ~) into a
8342   // type (with source-location information).
8343   QualType DestructedType;
8344   TypeSourceInfo *DestructedTypeInfo = nullptr;
8345   PseudoDestructorTypeStorage Destructed;
8346   if (SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) {
8347     ParsedType T = getTypeName(*SecondTypeName.Identifier,
8348                                SecondTypeName.StartLocation,
8349                                S, &SS, true, false, ObjectTypePtrForLookup,
8350                                /*IsCtorOrDtorName*/true);
8351     if (!T &&
8352         ((SS.isSet() && !computeDeclContext(SS, false)) ||
8353          (!SS.isSet() && ObjectType->isDependentType()))) {
8354       // The name of the type being destroyed is a dependent name, and we
8355       // couldn't find anything useful in scope. Just store the identifier and
8356       // it's location, and we'll perform (qualified) name lookup again at
8357       // template instantiation time.
8358       Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
8359                                                SecondTypeName.StartLocation);
8360     } else if (!T) {
8361       Diag(SecondTypeName.StartLocation,
8362            diag::err_pseudo_dtor_destructor_non_type)
8363         << SecondTypeName.Identifier << ObjectType;
8364       if (isSFINAEContext())
8365         return ExprError();
8366 
8367       // Recover by assuming we had the right type all along.
8368       DestructedType = ObjectType;
8369     } else
8370       DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
8371   } else {
8372     // Resolve the template-id to a type.
8373     TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
8374     ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
8375                                        TemplateId->NumArgs);
8376     TypeResult T = ActOnTemplateIdType(S,
8377                                        SS,
8378                                        TemplateId->TemplateKWLoc,
8379                                        TemplateId->Template,
8380                                        TemplateId->Name,
8381                                        TemplateId->TemplateNameLoc,
8382                                        TemplateId->LAngleLoc,
8383                                        TemplateArgsPtr,
8384                                        TemplateId->RAngleLoc,
8385                                        /*IsCtorOrDtorName*/true);
8386     if (T.isInvalid() || !T.get()) {
8387       // Recover by assuming we had the right type all along.
8388       DestructedType = ObjectType;
8389     } else
8390       DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
8391   }
8392 
8393   // If we've performed some kind of recovery, (re-)build the type source
8394   // information.
8395   if (!DestructedType.isNull()) {
8396     if (!DestructedTypeInfo)
8397       DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
8398                                                   SecondTypeName.StartLocation);
8399     Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
8400   }
8401 
8402   // Convert the name of the scope type (the type prior to '::') into a type.
8403   TypeSourceInfo *ScopeTypeInfo = nullptr;
8404   QualType ScopeType;
8405   if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||
8406       FirstTypeName.Identifier) {
8407     if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) {
8408       ParsedType T = getTypeName(*FirstTypeName.Identifier,
8409                                  FirstTypeName.StartLocation,
8410                                  S, &SS, true, false, ObjectTypePtrForLookup,
8411                                  /*IsCtorOrDtorName*/true);
8412       if (!T) {
8413         Diag(FirstTypeName.StartLocation,
8414              diag::err_pseudo_dtor_destructor_non_type)
8415           << FirstTypeName.Identifier << ObjectType;
8416 
8417         if (isSFINAEContext())
8418           return ExprError();
8419 
8420         // Just drop this type. It's unnecessary anyway.
8421         ScopeType = QualType();
8422       } else
8423         ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
8424     } else {
8425       // Resolve the template-id to a type.
8426       TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
8427       ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
8428                                          TemplateId->NumArgs);
8429       TypeResult T = ActOnTemplateIdType(S,
8430                                          SS,
8431                                          TemplateId->TemplateKWLoc,
8432                                          TemplateId->Template,
8433                                          TemplateId->Name,
8434                                          TemplateId->TemplateNameLoc,
8435                                          TemplateId->LAngleLoc,
8436                                          TemplateArgsPtr,
8437                                          TemplateId->RAngleLoc,
8438                                          /*IsCtorOrDtorName*/true);
8439       if (T.isInvalid() || !T.get()) {
8440         // Recover by dropping this type.
8441         ScopeType = QualType();
8442       } else
8443         ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
8444     }
8445   }
8446 
8447   if (!ScopeType.isNull() && !ScopeTypeInfo)
8448     ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
8449                                                   FirstTypeName.StartLocation);
8450 
8451 
8452   return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
8453                                    ScopeTypeInfo, CCLoc, TildeLoc,
8454                                    Destructed);
8455 }
8456 
8457 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
8458                                            SourceLocation OpLoc,
8459                                            tok::TokenKind OpKind,
8460                                            SourceLocation TildeLoc,
8461                                            const DeclSpec& DS) {
8462   QualType ObjectType;
8463   QualType T;
8464   TypeLocBuilder TLB;
8465   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc) ||
8466       DS.getTypeSpecType() == DeclSpec::TST_error)
8467     return ExprError();
8468 
8469   switch (DS.getTypeSpecType()) {
8470   case DeclSpec::TST_decltype_auto: {
8471     Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
8472     return true;
8473   }
8474   case DeclSpec::TST_decltype: {
8475     T = BuildDecltypeType(DS.getRepAsExpr(), /*AsUnevaluated=*/false);
8476     DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
8477     DecltypeTL.setDecltypeLoc(DS.getTypeSpecTypeLoc());
8478     DecltypeTL.setRParenLoc(DS.getTypeofParensRange().getEnd());
8479     break;
8480   }
8481   case DeclSpec::TST_typename_pack_indexing: {
8482     T = ActOnPackIndexingType(DS.getRepAsType().get(), DS.getPackIndexingExpr(),
8483                               DS.getBeginLoc(), DS.getEllipsisLoc());
8484     TLB.pushTrivial(getASTContext(),
8485                     cast<PackIndexingType>(T.getTypePtr())->getPattern(),
8486                     DS.getBeginLoc());
8487     PackIndexingTypeLoc PITL = TLB.push<PackIndexingTypeLoc>(T);
8488     PITL.setEllipsisLoc(DS.getEllipsisLoc());
8489     break;
8490   }
8491   default:
8492     llvm_unreachable("Unsupported type in pseudo destructor");
8493   }
8494   TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T);
8495   PseudoDestructorTypeStorage Destructed(DestructedTypeInfo);
8496 
8497   return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(),
8498                                    nullptr, SourceLocation(), TildeLoc,
8499                                    Destructed);
8500 }
8501 
8502 ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
8503                                       SourceLocation RParen) {
8504   // If the operand is an unresolved lookup expression, the expression is ill-
8505   // formed per [over.over]p1, because overloaded function names cannot be used
8506   // without arguments except in explicit contexts.
8507   ExprResult R = CheckPlaceholderExpr(Operand);
8508   if (R.isInvalid())
8509     return R;
8510 
8511   R = CheckUnevaluatedOperand(R.get());
8512   if (R.isInvalid())
8513     return ExprError();
8514 
8515   Operand = R.get();
8516 
8517   if (!inTemplateInstantiation() && !Operand->isInstantiationDependent() &&
8518       Operand->HasSideEffects(Context, false)) {
8519     // The expression operand for noexcept is in an unevaluated expression
8520     // context, so side effects could result in unintended consequences.
8521     Diag(Operand->getExprLoc(), diag::warn_side_effects_unevaluated_context);
8522   }
8523 
8524   CanThrowResult CanThrow = canThrow(Operand);
8525   return new (Context)
8526       CXXNoexceptExpr(Context.BoolTy, Operand, CanThrow, KeyLoc, RParen);
8527 }
8528 
8529 ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
8530                                    Expr *Operand, SourceLocation RParen) {
8531   return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
8532 }
8533 
8534 static void MaybeDecrementCount(
8535     Expr *E, llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) {
8536   DeclRefExpr *LHS = nullptr;
8537   bool IsCompoundAssign = false;
8538   bool isIncrementDecrementUnaryOp = false;
8539   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
8540     if (BO->getLHS()->getType()->isDependentType() ||
8541         BO->getRHS()->getType()->isDependentType()) {
8542       if (BO->getOpcode() != BO_Assign)
8543         return;
8544     } else if (!BO->isAssignmentOp())
8545       return;
8546     else
8547       IsCompoundAssign = BO->isCompoundAssignmentOp();
8548     LHS = dyn_cast<DeclRefExpr>(BO->getLHS());
8549   } else if (CXXOperatorCallExpr *COCE = dyn_cast<CXXOperatorCallExpr>(E)) {
8550     if (COCE->getOperator() != OO_Equal)
8551       return;
8552     LHS = dyn_cast<DeclRefExpr>(COCE->getArg(0));
8553   } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
8554     if (!UO->isIncrementDecrementOp())
8555       return;
8556     isIncrementDecrementUnaryOp = true;
8557     LHS = dyn_cast<DeclRefExpr>(UO->getSubExpr());
8558   }
8559   if (!LHS)
8560     return;
8561   VarDecl *VD = dyn_cast<VarDecl>(LHS->getDecl());
8562   if (!VD)
8563     return;
8564   // Don't decrement RefsMinusAssignments if volatile variable with compound
8565   // assignment (+=, ...) or increment/decrement unary operator to avoid
8566   // potential unused-but-set-variable warning.
8567   if ((IsCompoundAssign || isIncrementDecrementUnaryOp) &&
8568       VD->getType().isVolatileQualified())
8569     return;
8570   auto iter = RefsMinusAssignments.find(VD);
8571   if (iter == RefsMinusAssignments.end())
8572     return;
8573   iter->getSecond()--;
8574 }
8575 
8576 /// Perform the conversions required for an expression used in a
8577 /// context that ignores the result.
8578 ExprResult Sema::IgnoredValueConversions(Expr *E) {
8579   MaybeDecrementCount(E, RefsMinusAssignments);
8580 
8581   if (E->hasPlaceholderType()) {
8582     ExprResult result = CheckPlaceholderExpr(E);
8583     if (result.isInvalid()) return E;
8584     E = result.get();
8585   }
8586 
8587   if (getLangOpts().CPlusPlus) {
8588     // The C++11 standard defines the notion of a discarded-value expression;
8589     // normally, we don't need to do anything to handle it, but if it is a
8590     // volatile lvalue with a special form, we perform an lvalue-to-rvalue
8591     // conversion.
8592     if (getLangOpts().CPlusPlus11 && E->isReadIfDiscardedInCPlusPlus11()) {
8593       ExprResult Res = DefaultLvalueConversion(E);
8594       if (Res.isInvalid())
8595         return E;
8596       E = Res.get();
8597     } else {
8598       // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if
8599       // it occurs as a discarded-value expression.
8600       CheckUnusedVolatileAssignment(E);
8601     }
8602 
8603     // C++1z:
8604     //   If the expression is a prvalue after this optional conversion, the
8605     //   temporary materialization conversion is applied.
8606     //
8607     // We do not materialize temporaries by default in order to avoid creating
8608     // unnecessary temporary objects. If we skip this step, IR generation is
8609     // able to synthesize the storage for itself in the aggregate case, and
8610     // adding the extra node to the AST is just clutter.
8611     if (isInLifetimeExtendingContext() && getLangOpts().CPlusPlus17 &&
8612         E->isPRValue() && !E->getType()->isVoidType()) {
8613       ExprResult Res = TemporaryMaterializationConversion(E);
8614       if (Res.isInvalid())
8615         return E;
8616       E = Res.get();
8617     }
8618     return E;
8619   }
8620 
8621   // C99 6.3.2.1:
8622   //   [Except in specific positions,] an lvalue that does not have
8623   //   array type is converted to the value stored in the
8624   //   designated object (and is no longer an lvalue).
8625   if (E->isPRValue()) {
8626     // In C, function designators (i.e. expressions of function type)
8627     // are r-values, but we still want to do function-to-pointer decay
8628     // on them.  This is both technically correct and convenient for
8629     // some clients.
8630     if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType())
8631       return DefaultFunctionArrayConversion(E);
8632 
8633     return E;
8634   }
8635 
8636   // GCC seems to also exclude expressions of incomplete enum type.
8637   if (const EnumType *T = E->getType()->getAs<EnumType>()) {
8638     if (!T->getDecl()->isComplete()) {
8639       // FIXME: stupid workaround for a codegen bug!
8640       E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).get();
8641       return E;
8642     }
8643   }
8644 
8645   ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
8646   if (Res.isInvalid())
8647     return E;
8648   E = Res.get();
8649 
8650   if (!E->getType()->isVoidType())
8651     RequireCompleteType(E->getExprLoc(), E->getType(),
8652                         diag::err_incomplete_type);
8653   return E;
8654 }
8655 
8656 ExprResult Sema::CheckUnevaluatedOperand(Expr *E) {
8657   // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if
8658   // it occurs as an unevaluated operand.
8659   CheckUnusedVolatileAssignment(E);
8660 
8661   return E;
8662 }
8663 
8664 // If we can unambiguously determine whether Var can never be used
8665 // in a constant expression, return true.
8666 //  - if the variable and its initializer are non-dependent, then
8667 //    we can unambiguously check if the variable is a constant expression.
8668 //  - if the initializer is not value dependent - we can determine whether
8669 //    it can be used to initialize a constant expression.  If Init can not
8670 //    be used to initialize a constant expression we conclude that Var can
8671 //    never be a constant expression.
8672 //  - FXIME: if the initializer is dependent, we can still do some analysis and
8673 //    identify certain cases unambiguously as non-const by using a Visitor:
8674 //      - such as those that involve odr-use of a ParmVarDecl, involve a new
8675 //        delete, lambda-expr, dynamic-cast, reinterpret-cast etc...
8676 static inline bool VariableCanNeverBeAConstantExpression(VarDecl *Var,
8677     ASTContext &Context) {
8678   if (isa<ParmVarDecl>(Var)) return true;
8679   const VarDecl *DefVD = nullptr;
8680 
8681   // If there is no initializer - this can not be a constant expression.
8682   const Expr *Init = Var->getAnyInitializer(DefVD);
8683   if (!Init)
8684     return true;
8685   assert(DefVD);
8686   if (DefVD->isWeak())
8687     return false;
8688 
8689   if (Var->getType()->isDependentType() || Init->isValueDependent()) {
8690     // FIXME: Teach the constant evaluator to deal with the non-dependent parts
8691     // of value-dependent expressions, and use it here to determine whether the
8692     // initializer is a potential constant expression.
8693     return false;
8694   }
8695 
8696   return !Var->isUsableInConstantExpressions(Context);
8697 }
8698 
8699 /// Check if the current lambda has any potential captures
8700 /// that must be captured by any of its enclosing lambdas that are ready to
8701 /// capture. If there is a lambda that can capture a nested
8702 /// potential-capture, go ahead and do so.  Also, check to see if any
8703 /// variables are uncaptureable or do not involve an odr-use so do not
8704 /// need to be captured.
8705 
8706 static void CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(
8707     Expr *const FE, LambdaScopeInfo *const CurrentLSI, Sema &S) {
8708 
8709   assert(!S.isUnevaluatedContext());
8710   assert(S.CurContext->isDependentContext());
8711 #ifndef NDEBUG
8712   DeclContext *DC = S.CurContext;
8713   while (isa_and_nonnull<CapturedDecl>(DC))
8714     DC = DC->getParent();
8715   assert(
8716       (CurrentLSI->CallOperator == DC || !CurrentLSI->AfterParameterList) &&
8717       "The current call operator must be synchronized with Sema's CurContext");
8718 #endif // NDEBUG
8719 
8720   const bool IsFullExprInstantiationDependent = FE->isInstantiationDependent();
8721 
8722   // All the potentially captureable variables in the current nested
8723   // lambda (within a generic outer lambda), must be captured by an
8724   // outer lambda that is enclosed within a non-dependent context.
8725   CurrentLSI->visitPotentialCaptures([&](ValueDecl *Var, Expr *VarExpr) {
8726     // If the variable is clearly identified as non-odr-used and the full
8727     // expression is not instantiation dependent, only then do we not
8728     // need to check enclosing lambda's for speculative captures.
8729     // For e.g.:
8730     // Even though 'x' is not odr-used, it should be captured.
8731     // int test() {
8732     //   const int x = 10;
8733     //   auto L = [=](auto a) {
8734     //     (void) +x + a;
8735     //   };
8736     // }
8737     if (CurrentLSI->isVariableExprMarkedAsNonODRUsed(VarExpr) &&
8738         !IsFullExprInstantiationDependent)
8739       return;
8740 
8741     VarDecl *UnderlyingVar = Var->getPotentiallyDecomposedVarDecl();
8742     if (!UnderlyingVar)
8743       return;
8744 
8745     // If we have a capture-capable lambda for the variable, go ahead and
8746     // capture the variable in that lambda (and all its enclosing lambdas).
8747     if (const std::optional<unsigned> Index =
8748             getStackIndexOfNearestEnclosingCaptureCapableLambda(
8749                 S.FunctionScopes, Var, S))
8750       S.MarkCaptureUsedInEnclosingContext(Var, VarExpr->getExprLoc(), *Index);
8751     const bool IsVarNeverAConstantExpression =
8752         VariableCanNeverBeAConstantExpression(UnderlyingVar, S.Context);
8753     if (!IsFullExprInstantiationDependent || IsVarNeverAConstantExpression) {
8754       // This full expression is not instantiation dependent or the variable
8755       // can not be used in a constant expression - which means
8756       // this variable must be odr-used here, so diagnose a
8757       // capture violation early, if the variable is un-captureable.
8758       // This is purely for diagnosing errors early.  Otherwise, this
8759       // error would get diagnosed when the lambda becomes capture ready.
8760       QualType CaptureType, DeclRefType;
8761       SourceLocation ExprLoc = VarExpr->getExprLoc();
8762       if (S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
8763                           /*EllipsisLoc*/ SourceLocation(),
8764                           /*BuildAndDiagnose*/false, CaptureType,
8765                           DeclRefType, nullptr)) {
8766         // We will never be able to capture this variable, and we need
8767         // to be able to in any and all instantiations, so diagnose it.
8768         S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
8769                           /*EllipsisLoc*/ SourceLocation(),
8770                           /*BuildAndDiagnose*/true, CaptureType,
8771                           DeclRefType, nullptr);
8772       }
8773     }
8774   });
8775 
8776   // Check if 'this' needs to be captured.
8777   if (CurrentLSI->hasPotentialThisCapture()) {
8778     // If we have a capture-capable lambda for 'this', go ahead and capture
8779     // 'this' in that lambda (and all its enclosing lambdas).
8780     if (const std::optional<unsigned> Index =
8781             getStackIndexOfNearestEnclosingCaptureCapableLambda(
8782                 S.FunctionScopes, /*0 is 'this'*/ nullptr, S)) {
8783       const unsigned FunctionScopeIndexOfCapturableLambda = *Index;
8784       S.CheckCXXThisCapture(CurrentLSI->PotentialThisCaptureLocation,
8785                             /*Explicit*/ false, /*BuildAndDiagnose*/ true,
8786                             &FunctionScopeIndexOfCapturableLambda);
8787     }
8788   }
8789 
8790   // Reset all the potential captures at the end of each full-expression.
8791   CurrentLSI->clearPotentialCaptures();
8792 }
8793 
8794 static ExprResult attemptRecovery(Sema &SemaRef,
8795                                   const TypoCorrectionConsumer &Consumer,
8796                                   const TypoCorrection &TC) {
8797   LookupResult R(SemaRef, Consumer.getLookupResult().getLookupNameInfo(),
8798                  Consumer.getLookupResult().getLookupKind());
8799   const CXXScopeSpec *SS = Consumer.getSS();
8800   CXXScopeSpec NewSS;
8801 
8802   // Use an approprate CXXScopeSpec for building the expr.
8803   if (auto *NNS = TC.getCorrectionSpecifier())
8804     NewSS.MakeTrivial(SemaRef.Context, NNS, TC.getCorrectionRange());
8805   else if (SS && !TC.WillReplaceSpecifier())
8806     NewSS = *SS;
8807 
8808   if (auto *ND = TC.getFoundDecl()) {
8809     R.setLookupName(ND->getDeclName());
8810     R.addDecl(ND);
8811     if (ND->isCXXClassMember()) {
8812       // Figure out the correct naming class to add to the LookupResult.
8813       CXXRecordDecl *Record = nullptr;
8814       if (auto *NNS = TC.getCorrectionSpecifier())
8815         Record = NNS->getAsType()->getAsCXXRecordDecl();
8816       if (!Record)
8817         Record =
8818             dyn_cast<CXXRecordDecl>(ND->getDeclContext()->getRedeclContext());
8819       if (Record)
8820         R.setNamingClass(Record);
8821 
8822       // Detect and handle the case where the decl might be an implicit
8823       // member.
8824       if (SemaRef.isPotentialImplicitMemberAccess(
8825               NewSS, R, Consumer.isAddressOfOperand()))
8826         return SemaRef.BuildPossibleImplicitMemberExpr(
8827             NewSS, /*TemplateKWLoc*/ SourceLocation(), R,
8828             /*TemplateArgs*/ nullptr, /*S*/ nullptr);
8829     } else if (auto *Ivar = dyn_cast<ObjCIvarDecl>(ND)) {
8830       return SemaRef.ObjC().LookupInObjCMethod(R, Consumer.getScope(),
8831                                                Ivar->getIdentifier());
8832     }
8833   }
8834 
8835   return SemaRef.BuildDeclarationNameExpr(NewSS, R, /*NeedsADL*/ false,
8836                                           /*AcceptInvalidDecl*/ true);
8837 }
8838 
8839 namespace {
8840 class FindTypoExprs : public DynamicRecursiveASTVisitor {
8841   llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs;
8842 
8843 public:
8844   explicit FindTypoExprs(llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs)
8845       : TypoExprs(TypoExprs) {}
8846   bool VisitTypoExpr(TypoExpr *TE) override {
8847     TypoExprs.insert(TE);
8848     return true;
8849   }
8850 };
8851 
8852 class TransformTypos : public TreeTransform<TransformTypos> {
8853   typedef TreeTransform<TransformTypos> BaseTransform;
8854 
8855   VarDecl *InitDecl; // A decl to avoid as a correction because it is in the
8856                      // process of being initialized.
8857   llvm::function_ref<ExprResult(Expr *)> ExprFilter;
8858   llvm::SmallSetVector<TypoExpr *, 2> TypoExprs, AmbiguousTypoExprs;
8859   llvm::SmallDenseMap<TypoExpr *, ExprResult, 2> TransformCache;
8860   llvm::SmallDenseMap<OverloadExpr *, Expr *, 4> OverloadResolution;
8861 
8862   /// Emit diagnostics for all of the TypoExprs encountered.
8863   ///
8864   /// If the TypoExprs were successfully corrected, then the diagnostics should
8865   /// suggest the corrections. Otherwise the diagnostics will not suggest
8866   /// anything (having been passed an empty TypoCorrection).
8867   ///
8868   /// If we've failed to correct due to ambiguous corrections, we need to
8869   /// be sure to pass empty corrections and replacements. Otherwise it's
8870   /// possible that the Consumer has a TypoCorrection that failed to ambiguity
8871   /// and we don't want to report those diagnostics.
8872   void EmitAllDiagnostics(bool IsAmbiguous) {
8873     for (TypoExpr *TE : TypoExprs) {
8874       auto &State = SemaRef.getTypoExprState(TE);
8875       if (State.DiagHandler) {
8876         TypoCorrection TC = IsAmbiguous
8877             ? TypoCorrection() : State.Consumer->getCurrentCorrection();
8878         ExprResult Replacement = IsAmbiguous ? ExprError() : TransformCache[TE];
8879 
8880         // Extract the NamedDecl from the transformed TypoExpr and add it to the
8881         // TypoCorrection, replacing the existing decls. This ensures the right
8882         // NamedDecl is used in diagnostics e.g. in the case where overload
8883         // resolution was used to select one from several possible decls that
8884         // had been stored in the TypoCorrection.
8885         if (auto *ND = getDeclFromExpr(
8886                 Replacement.isInvalid() ? nullptr : Replacement.get()))
8887           TC.setCorrectionDecl(ND);
8888 
8889         State.DiagHandler(TC);
8890       }
8891       SemaRef.clearDelayedTypo(TE);
8892     }
8893   }
8894 
8895   /// Try to advance the typo correction state of the first unfinished TypoExpr.
8896   /// We allow advancement of the correction stream by removing it from the
8897   /// TransformCache which allows `TransformTypoExpr` to advance during the
8898   /// next transformation attempt.
8899   ///
8900   /// Any substitution attempts for the previous TypoExprs (which must have been
8901   /// finished) will need to be retried since it's possible that they will now
8902   /// be invalid given the latest advancement.
8903   ///
8904   /// We need to be sure that we're making progress - it's possible that the
8905   /// tree is so malformed that the transform never makes it to the
8906   /// `TransformTypoExpr`.
8907   ///
8908   /// Returns true if there are any untried correction combinations.
8909   bool CheckAndAdvanceTypoExprCorrectionStreams() {
8910     for (auto *TE : TypoExprs) {
8911       auto &State = SemaRef.getTypoExprState(TE);
8912       TransformCache.erase(TE);
8913       if (!State.Consumer->hasMadeAnyCorrectionProgress())
8914         return false;
8915       if (!State.Consumer->finished())
8916         return true;
8917       State.Consumer->resetCorrectionStream();
8918     }
8919     return false;
8920   }
8921 
8922   NamedDecl *getDeclFromExpr(Expr *E) {
8923     if (auto *OE = dyn_cast_or_null<OverloadExpr>(E))
8924       E = OverloadResolution[OE];
8925 
8926     if (!E)
8927       return nullptr;
8928     if (auto *DRE = dyn_cast<DeclRefExpr>(E))
8929       return DRE->getFoundDecl();
8930     if (auto *ME = dyn_cast<MemberExpr>(E))
8931       return ME->getFoundDecl();
8932     // FIXME: Add any other expr types that could be seen by the delayed typo
8933     // correction TreeTransform for which the corresponding TypoCorrection could
8934     // contain multiple decls.
8935     return nullptr;
8936   }
8937 
8938   ExprResult TryTransform(Expr *E) {
8939     Sema::SFINAETrap Trap(SemaRef);
8940     ExprResult Res = TransformExpr(E);
8941     if (Trap.hasErrorOccurred() || Res.isInvalid())
8942       return ExprError();
8943 
8944     return ExprFilter(Res.get());
8945   }
8946 
8947   // Since correcting typos may intoduce new TypoExprs, this function
8948   // checks for new TypoExprs and recurses if it finds any. Note that it will
8949   // only succeed if it is able to correct all typos in the given expression.
8950   ExprResult CheckForRecursiveTypos(ExprResult Res, bool &IsAmbiguous) {
8951     if (Res.isInvalid()) {
8952       return Res;
8953     }
8954     // Check to see if any new TypoExprs were created. If so, we need to recurse
8955     // to check their validity.
8956     Expr *FixedExpr = Res.get();
8957 
8958     auto SavedTypoExprs = std::move(TypoExprs);
8959     auto SavedAmbiguousTypoExprs = std::move(AmbiguousTypoExprs);
8960     TypoExprs.clear();
8961     AmbiguousTypoExprs.clear();
8962 
8963     FindTypoExprs(TypoExprs).TraverseStmt(FixedExpr);
8964     if (!TypoExprs.empty()) {
8965       // Recurse to handle newly created TypoExprs. If we're not able to
8966       // handle them, discard these TypoExprs.
8967       ExprResult RecurResult =
8968           RecursiveTransformLoop(FixedExpr, IsAmbiguous);
8969       if (RecurResult.isInvalid()) {
8970         Res = ExprError();
8971         // Recursive corrections didn't work, wipe them away and don't add
8972         // them to the TypoExprs set. Remove them from Sema's TypoExpr list
8973         // since we don't want to clear them twice. Note: it's possible the
8974         // TypoExprs were created recursively and thus won't be in our
8975         // Sema's TypoExprs - they were created in our `RecursiveTransformLoop`.
8976         auto &SemaTypoExprs = SemaRef.TypoExprs;
8977         for (auto *TE : TypoExprs) {
8978           TransformCache.erase(TE);
8979           SemaRef.clearDelayedTypo(TE);
8980 
8981           auto SI = find(SemaTypoExprs, TE);
8982           if (SI != SemaTypoExprs.end()) {
8983             SemaTypoExprs.erase(SI);
8984           }
8985         }
8986       } else {
8987         // TypoExpr is valid: add newly created TypoExprs since we were
8988         // able to correct them.
8989         Res = RecurResult;
8990         SavedTypoExprs.set_union(TypoExprs);
8991       }
8992     }
8993 
8994     TypoExprs = std::move(SavedTypoExprs);
8995     AmbiguousTypoExprs = std::move(SavedAmbiguousTypoExprs);
8996 
8997     return Res;
8998   }
8999 
9000   // Try to transform the given expression, looping through the correction
9001   // candidates with `CheckAndAdvanceTypoExprCorrectionStreams`.
9002   //
9003   // If valid ambiguous typo corrections are seen, `IsAmbiguous` is set to
9004   // true and this method immediately will return an `ExprError`.
9005   ExprResult RecursiveTransformLoop(Expr *E, bool &IsAmbiguous) {
9006     ExprResult Res;
9007     auto SavedTypoExprs = std::move(SemaRef.TypoExprs);
9008     SemaRef.TypoExprs.clear();
9009 
9010     while (true) {
9011       Res = CheckForRecursiveTypos(TryTransform(E), IsAmbiguous);
9012 
9013       // Recursion encountered an ambiguous correction. This means that our
9014       // correction itself is ambiguous, so stop now.
9015       if (IsAmbiguous)
9016         break;
9017 
9018       // If the transform is still valid after checking for any new typos,
9019       // it's good to go.
9020       if (!Res.isInvalid())
9021         break;
9022 
9023       // The transform was invalid, see if we have any TypoExprs with untried
9024       // correction candidates.
9025       if (!CheckAndAdvanceTypoExprCorrectionStreams())
9026         break;
9027     }
9028 
9029     // If we found a valid result, double check to make sure it's not ambiguous.
9030     if (!IsAmbiguous && !Res.isInvalid() && !AmbiguousTypoExprs.empty()) {
9031       auto SavedTransformCache =
9032           llvm::SmallDenseMap<TypoExpr *, ExprResult, 2>(TransformCache);
9033 
9034       // Ensure none of the TypoExprs have multiple typo correction candidates
9035       // with the same edit length that pass all the checks and filters.
9036       while (!AmbiguousTypoExprs.empty()) {
9037         auto TE  = AmbiguousTypoExprs.back();
9038 
9039         // TryTransform itself can create new Typos, adding them to the TypoExpr map
9040         // and invalidating our TypoExprState, so always fetch it instead of storing.
9041         SemaRef.getTypoExprState(TE).Consumer->saveCurrentPosition();
9042 
9043         TypoCorrection TC = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection();
9044         TypoCorrection Next;
9045         do {
9046           // Fetch the next correction by erasing the typo from the cache and calling
9047           // `TryTransform` which will iterate through corrections in
9048           // `TransformTypoExpr`.
9049           TransformCache.erase(TE);
9050           ExprResult AmbigRes = CheckForRecursiveTypos(TryTransform(E), IsAmbiguous);
9051 
9052           if (!AmbigRes.isInvalid() || IsAmbiguous) {
9053             SemaRef.getTypoExprState(TE).Consumer->resetCorrectionStream();
9054             SavedTransformCache.erase(TE);
9055             Res = ExprError();
9056             IsAmbiguous = true;
9057             break;
9058           }
9059         } while ((Next = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection()) &&
9060                  Next.getEditDistance(false) == TC.getEditDistance(false));
9061 
9062         if (IsAmbiguous)
9063           break;
9064 
9065         AmbiguousTypoExprs.remove(TE);
9066         SemaRef.getTypoExprState(TE).Consumer->restoreSavedPosition();
9067         TransformCache[TE] = SavedTransformCache[TE];
9068       }
9069       TransformCache = std::move(SavedTransformCache);
9070     }
9071 
9072     // Wipe away any newly created TypoExprs that we don't know about. Since we
9073     // clear any invalid TypoExprs in `CheckForRecursiveTypos`, this is only
9074     // possible if a `TypoExpr` is created during a transformation but then
9075     // fails before we can discover it.
9076     auto &SemaTypoExprs = SemaRef.TypoExprs;
9077     for (auto Iterator = SemaTypoExprs.begin(); Iterator != SemaTypoExprs.end();) {
9078       auto TE = *Iterator;
9079       auto FI = find(TypoExprs, TE);
9080       if (FI != TypoExprs.end()) {
9081         Iterator++;
9082         continue;
9083       }
9084       SemaRef.clearDelayedTypo(TE);
9085       Iterator = SemaTypoExprs.erase(Iterator);
9086     }
9087     SemaRef.TypoExprs = std::move(SavedTypoExprs);
9088 
9089     return Res;
9090   }
9091 
9092 public:
9093   TransformTypos(Sema &SemaRef, VarDecl *InitDecl, llvm::function_ref<ExprResult(Expr *)> Filter)
9094       : BaseTransform(SemaRef), InitDecl(InitDecl), ExprFilter(Filter) {}
9095 
9096   ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc,
9097                                    MultiExprArg Args,
9098                                    SourceLocation RParenLoc,
9099                                    Expr *ExecConfig = nullptr) {
9100     auto Result = BaseTransform::RebuildCallExpr(Callee, LParenLoc, Args,
9101                                                  RParenLoc, ExecConfig);
9102     if (auto *OE = dyn_cast<OverloadExpr>(Callee)) {
9103       if (Result.isUsable()) {
9104         Expr *ResultCall = Result.get();
9105         if (auto *BE = dyn_cast<CXXBindTemporaryExpr>(ResultCall))
9106           ResultCall = BE->getSubExpr();
9107         if (auto *CE = dyn_cast<CallExpr>(ResultCall))
9108           OverloadResolution[OE] = CE->getCallee();
9109       }
9110     }
9111     return Result;
9112   }
9113 
9114   ExprResult TransformLambdaExpr(LambdaExpr *E) { return Owned(E); }
9115 
9116   ExprResult TransformBlockExpr(BlockExpr *E) { return Owned(E); }
9117 
9118   ExprResult Transform(Expr *E) {
9119     bool IsAmbiguous = false;
9120     ExprResult Res = RecursiveTransformLoop(E, IsAmbiguous);
9121 
9122     if (!Res.isUsable())
9123       FindTypoExprs(TypoExprs).TraverseStmt(E);
9124 
9125     EmitAllDiagnostics(IsAmbiguous);
9126 
9127     return Res;
9128   }
9129 
9130   ExprResult TransformTypoExpr(TypoExpr *E) {
9131     // If the TypoExpr hasn't been seen before, record it. Otherwise, return the
9132     // cached transformation result if there is one and the TypoExpr isn't the
9133     // first one that was encountered.
9134     auto &CacheEntry = TransformCache[E];
9135     if (!TypoExprs.insert(E) && !CacheEntry.isUnset()) {
9136       return CacheEntry;
9137     }
9138 
9139     auto &State = SemaRef.getTypoExprState(E);
9140     assert(State.Consumer && "Cannot transform a cleared TypoExpr");
9141 
9142     // For the first TypoExpr and an uncached TypoExpr, find the next likely
9143     // typo correction and return it.
9144     while (TypoCorrection TC = State.Consumer->getNextCorrection()) {
9145       if (InitDecl && TC.getFoundDecl() == InitDecl)
9146         continue;
9147       // FIXME: If we would typo-correct to an invalid declaration, it's
9148       // probably best to just suppress all errors from this typo correction.
9149       ExprResult NE = State.RecoveryHandler ?
9150           State.RecoveryHandler(SemaRef, E, TC) :
9151           attemptRecovery(SemaRef, *State.Consumer, TC);
9152       if (!NE.isInvalid()) {
9153         // Check whether there may be a second viable correction with the same
9154         // edit distance; if so, remember this TypoExpr may have an ambiguous
9155         // correction so it can be more thoroughly vetted later.
9156         TypoCorrection Next;
9157         if ((Next = State.Consumer->peekNextCorrection()) &&
9158             Next.getEditDistance(false) == TC.getEditDistance(false)) {
9159           AmbiguousTypoExprs.insert(E);
9160         } else {
9161           AmbiguousTypoExprs.remove(E);
9162         }
9163         assert(!NE.isUnset() &&
9164                "Typo was transformed into a valid-but-null ExprResult");
9165         return CacheEntry = NE;
9166       }
9167     }
9168     return CacheEntry = ExprError();
9169   }
9170 };
9171 }
9172 
9173 ExprResult
9174 Sema::CorrectDelayedTyposInExpr(Expr *E, VarDecl *InitDecl,
9175                                 bool RecoverUncorrectedTypos,
9176                                 llvm::function_ref<ExprResult(Expr *)> Filter) {
9177   // If the current evaluation context indicates there are uncorrected typos
9178   // and the current expression isn't guaranteed to not have typos, try to
9179   // resolve any TypoExpr nodes that might be in the expression.
9180   if (E && !ExprEvalContexts.empty() && ExprEvalContexts.back().NumTypos &&
9181       (E->isTypeDependent() || E->isValueDependent() ||
9182        E->isInstantiationDependent())) {
9183     auto TyposResolved = DelayedTypos.size();
9184     auto Result = TransformTypos(*this, InitDecl, Filter).Transform(E);
9185     TyposResolved -= DelayedTypos.size();
9186     if (Result.isInvalid() || Result.get() != E) {
9187       ExprEvalContexts.back().NumTypos -= TyposResolved;
9188       if (Result.isInvalid() && RecoverUncorrectedTypos) {
9189         struct TyposReplace : TreeTransform<TyposReplace> {
9190           TyposReplace(Sema &SemaRef) : TreeTransform(SemaRef) {}
9191           ExprResult TransformTypoExpr(clang::TypoExpr *E) {
9192             return this->SemaRef.CreateRecoveryExpr(E->getBeginLoc(),
9193                                                     E->getEndLoc(), {});
9194           }
9195         } TT(*this);
9196         return TT.TransformExpr(E);
9197       }
9198       return Result;
9199     }
9200     assert(TyposResolved == 0 && "Corrected typo but got same Expr back?");
9201   }
9202   return E;
9203 }
9204 
9205 ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC,
9206                                      bool DiscardedValue, bool IsConstexpr,
9207                                      bool IsTemplateArgument) {
9208   ExprResult FullExpr = FE;
9209 
9210   if (!FullExpr.get())
9211     return ExprError();
9212 
9213   if (!IsTemplateArgument && DiagnoseUnexpandedParameterPack(FullExpr.get()))
9214     return ExprError();
9215 
9216   if (DiscardedValue) {
9217     // Top-level expressions default to 'id' when we're in a debugger.
9218     if (getLangOpts().DebuggerCastResultToId &&
9219         FullExpr.get()->getType() == Context.UnknownAnyTy) {
9220       FullExpr = forceUnknownAnyToType(FullExpr.get(), Context.getObjCIdType());
9221       if (FullExpr.isInvalid())
9222         return ExprError();
9223     }
9224 
9225     FullExpr = CheckPlaceholderExpr(FullExpr.get());
9226     if (FullExpr.isInvalid())
9227       return ExprError();
9228 
9229     FullExpr = IgnoredValueConversions(FullExpr.get());
9230     if (FullExpr.isInvalid())
9231       return ExprError();
9232 
9233     DiagnoseUnusedExprResult(FullExpr.get(), diag::warn_unused_expr);
9234   }
9235 
9236   FullExpr = CorrectDelayedTyposInExpr(FullExpr.get(), /*InitDecl=*/nullptr,
9237                                        /*RecoverUncorrectedTypos=*/true);
9238   if (FullExpr.isInvalid())
9239     return ExprError();
9240 
9241   CheckCompletedExpr(FullExpr.get(), CC, IsConstexpr);
9242 
9243   // At the end of this full expression (which could be a deeply nested
9244   // lambda), if there is a potential capture within the nested lambda,
9245   // have the outer capture-able lambda try and capture it.
9246   // Consider the following code:
9247   // void f(int, int);
9248   // void f(const int&, double);
9249   // void foo() {
9250   //  const int x = 10, y = 20;
9251   //  auto L = [=](auto a) {
9252   //      auto M = [=](auto b) {
9253   //         f(x, b); <-- requires x to be captured by L and M
9254   //         f(y, a); <-- requires y to be captured by L, but not all Ms
9255   //      };
9256   //   };
9257   // }
9258 
9259   // FIXME: Also consider what happens for something like this that involves
9260   // the gnu-extension statement-expressions or even lambda-init-captures:
9261   //   void f() {
9262   //     const int n = 0;
9263   //     auto L =  [&](auto a) {
9264   //       +n + ({ 0; a; });
9265   //     };
9266   //   }
9267   //
9268   // Here, we see +n, and then the full-expression 0; ends, so we don't
9269   // capture n (and instead remove it from our list of potential captures),
9270   // and then the full-expression +n + ({ 0; }); ends, but it's too late
9271   // for us to see that we need to capture n after all.
9272 
9273   LambdaScopeInfo *const CurrentLSI =
9274       getCurLambda(/*IgnoreCapturedRegions=*/true);
9275   // FIXME: PR 17877 showed that getCurLambda() can return a valid pointer
9276   // even if CurContext is not a lambda call operator. Refer to that Bug Report
9277   // for an example of the code that might cause this asynchrony.
9278   // By ensuring we are in the context of a lambda's call operator
9279   // we can fix the bug (we only need to check whether we need to capture
9280   // if we are within a lambda's body); but per the comments in that
9281   // PR, a proper fix would entail :
9282   //   "Alternative suggestion:
9283   //   - Add to Sema an integer holding the smallest (outermost) scope
9284   //     index that we are *lexically* within, and save/restore/set to
9285   //     FunctionScopes.size() in InstantiatingTemplate's
9286   //     constructor/destructor.
9287   //  - Teach the handful of places that iterate over FunctionScopes to
9288   //    stop at the outermost enclosing lexical scope."
9289   DeclContext *DC = CurContext;
9290   while (isa_and_nonnull<CapturedDecl>(DC))
9291     DC = DC->getParent();
9292   const bool IsInLambdaDeclContext = isLambdaCallOperator(DC);
9293   if (IsInLambdaDeclContext && CurrentLSI &&
9294       CurrentLSI->hasPotentialCaptures() && !FullExpr.isInvalid())
9295     CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(FE, CurrentLSI,
9296                                                               *this);
9297   return MaybeCreateExprWithCleanups(FullExpr);
9298 }
9299 
9300 StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
9301   if (!FullStmt) return StmtError();
9302 
9303   return MaybeCreateStmtWithCleanups(FullStmt);
9304 }
9305 
9306 Sema::IfExistsResult
9307 Sema::CheckMicrosoftIfExistsSymbol(Scope *S,
9308                                    CXXScopeSpec &SS,
9309                                    const DeclarationNameInfo &TargetNameInfo) {
9310   DeclarationName TargetName = TargetNameInfo.getName();
9311   if (!TargetName)
9312     return IER_DoesNotExist;
9313 
9314   // If the name itself is dependent, then the result is dependent.
9315   if (TargetName.isDependentName())
9316     return IER_Dependent;
9317 
9318   // Do the redeclaration lookup in the current scope.
9319   LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName,
9320                  RedeclarationKind::NotForRedeclaration);
9321   LookupParsedName(R, S, &SS, /*ObjectType=*/QualType());
9322   R.suppressDiagnostics();
9323 
9324   switch (R.getResultKind()) {
9325   case LookupResult::Found:
9326   case LookupResult::FoundOverloaded:
9327   case LookupResult::FoundUnresolvedValue:
9328   case LookupResult::Ambiguous:
9329     return IER_Exists;
9330 
9331   case LookupResult::NotFound:
9332     return IER_DoesNotExist;
9333 
9334   case LookupResult::NotFoundInCurrentInstantiation:
9335     return IER_Dependent;
9336   }
9337 
9338   llvm_unreachable("Invalid LookupResult Kind!");
9339 }
9340 
9341 Sema::IfExistsResult
9342 Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
9343                                    bool IsIfExists, CXXScopeSpec &SS,
9344                                    UnqualifiedId &Name) {
9345   DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
9346 
9347   // Check for an unexpanded parameter pack.
9348   auto UPPC = IsIfExists ? UPPC_IfExists : UPPC_IfNotExists;
9349   if (DiagnoseUnexpandedParameterPack(SS, UPPC) ||
9350       DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC))
9351     return IER_Error;
9352 
9353   return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo);
9354 }
9355 
9356 concepts::Requirement *Sema::ActOnSimpleRequirement(Expr *E) {
9357   return BuildExprRequirement(E, /*IsSimple=*/true,
9358                               /*NoexceptLoc=*/SourceLocation(),
9359                               /*ReturnTypeRequirement=*/{});
9360 }
9361 
9362 concepts::Requirement *Sema::ActOnTypeRequirement(
9363     SourceLocation TypenameKWLoc, CXXScopeSpec &SS, SourceLocation NameLoc,
9364     const IdentifierInfo *TypeName, TemplateIdAnnotation *TemplateId) {
9365   assert(((!TypeName && TemplateId) || (TypeName && !TemplateId)) &&
9366          "Exactly one of TypeName and TemplateId must be specified.");
9367   TypeSourceInfo *TSI = nullptr;
9368   if (TypeName) {
9369     QualType T =
9370         CheckTypenameType(ElaboratedTypeKeyword::Typename, TypenameKWLoc,
9371                           SS.getWithLocInContext(Context), *TypeName, NameLoc,
9372                           &TSI, /*DeducedTSTContext=*/false);
9373     if (T.isNull())
9374       return nullptr;
9375   } else {
9376     ASTTemplateArgsPtr ArgsPtr(TemplateId->getTemplateArgs(),
9377                                TemplateId->NumArgs);
9378     TypeResult T = ActOnTypenameType(CurScope, TypenameKWLoc, SS,
9379                                      TemplateId->TemplateKWLoc,
9380                                      TemplateId->Template, TemplateId->Name,
9381                                      TemplateId->TemplateNameLoc,
9382                                      TemplateId->LAngleLoc, ArgsPtr,
9383                                      TemplateId->RAngleLoc);
9384     if (T.isInvalid())
9385       return nullptr;
9386     if (GetTypeFromParser(T.get(), &TSI).isNull())
9387       return nullptr;
9388   }
9389   return BuildTypeRequirement(TSI);
9390 }
9391 
9392 concepts::Requirement *
9393 Sema::ActOnCompoundRequirement(Expr *E, SourceLocation NoexceptLoc) {
9394   return BuildExprRequirement(E, /*IsSimple=*/false, NoexceptLoc,
9395                               /*ReturnTypeRequirement=*/{});
9396 }
9397 
9398 concepts::Requirement *
9399 Sema::ActOnCompoundRequirement(
9400     Expr *E, SourceLocation NoexceptLoc, CXXScopeSpec &SS,
9401     TemplateIdAnnotation *TypeConstraint, unsigned Depth) {
9402   // C++2a [expr.prim.req.compound] p1.3.3
9403   //   [..] the expression is deduced against an invented function template
9404   //   F [...] F is a void function template with a single type template
9405   //   parameter T declared with the constrained-parameter. Form a new
9406   //   cv-qualifier-seq cv by taking the union of const and volatile specifiers
9407   //   around the constrained-parameter. F has a single parameter whose
9408   //   type-specifier is cv T followed by the abstract-declarator. [...]
9409   //
9410   // The cv part is done in the calling function - we get the concept with
9411   // arguments and the abstract declarator with the correct CV qualification and
9412   // have to synthesize T and the single parameter of F.
9413   auto &II = Context.Idents.get("expr-type");
9414   auto *TParam = TemplateTypeParmDecl::Create(Context, CurContext,
9415                                               SourceLocation(),
9416                                               SourceLocation(), Depth,
9417                                               /*Index=*/0, &II,
9418                                               /*Typename=*/true,
9419                                               /*ParameterPack=*/false,
9420                                               /*HasTypeConstraint=*/true);
9421 
9422   if (BuildTypeConstraint(SS, TypeConstraint, TParam,
9423                           /*EllipsisLoc=*/SourceLocation(),
9424                           /*AllowUnexpandedPack=*/true))
9425     // Just produce a requirement with no type requirements.
9426     return BuildExprRequirement(E, /*IsSimple=*/false, NoexceptLoc, {});
9427 
9428   auto *TPL = TemplateParameterList::Create(Context, SourceLocation(),
9429                                             SourceLocation(),
9430                                             ArrayRef<NamedDecl *>(TParam),
9431                                             SourceLocation(),
9432                                             /*RequiresClause=*/nullptr);
9433   return BuildExprRequirement(
9434       E, /*IsSimple=*/false, NoexceptLoc,
9435       concepts::ExprRequirement::ReturnTypeRequirement(TPL));
9436 }
9437 
9438 concepts::ExprRequirement *
9439 Sema::BuildExprRequirement(
9440     Expr *E, bool IsSimple, SourceLocation NoexceptLoc,
9441     concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement) {
9442   auto Status = concepts::ExprRequirement::SS_Satisfied;
9443   ConceptSpecializationExpr *SubstitutedConstraintExpr = nullptr;
9444   if (E->isInstantiationDependent() || E->getType()->isPlaceholderType() ||
9445       ReturnTypeRequirement.isDependent())
9446     Status = concepts::ExprRequirement::SS_Dependent;
9447   else if (NoexceptLoc.isValid() && canThrow(E) == CanThrowResult::CT_Can)
9448     Status = concepts::ExprRequirement::SS_NoexceptNotMet;
9449   else if (ReturnTypeRequirement.isSubstitutionFailure())
9450     Status = concepts::ExprRequirement::SS_TypeRequirementSubstitutionFailure;
9451   else if (ReturnTypeRequirement.isTypeConstraint()) {
9452     // C++2a [expr.prim.req]p1.3.3
9453     //     The immediately-declared constraint ([temp]) of decltype((E)) shall
9454     //     be satisfied.
9455     TemplateParameterList *TPL =
9456         ReturnTypeRequirement.getTypeConstraintTemplateParameterList();
9457     QualType MatchedType =
9458         Context.getReferenceQualifiedType(E).getCanonicalType();
9459     llvm::SmallVector<TemplateArgument, 1> Args;
9460     Args.push_back(TemplateArgument(MatchedType));
9461 
9462     auto *Param = cast<TemplateTypeParmDecl>(TPL->getParam(0));
9463 
9464     MultiLevelTemplateArgumentList MLTAL(Param, Args, /*Final=*/false);
9465     MLTAL.addOuterRetainedLevels(TPL->getDepth());
9466     const TypeConstraint *TC = Param->getTypeConstraint();
9467     assert(TC && "Type Constraint cannot be null here");
9468     auto *IDC = TC->getImmediatelyDeclaredConstraint();
9469     assert(IDC && "ImmediatelyDeclaredConstraint can't be null here.");
9470     ExprResult Constraint = SubstExpr(IDC, MLTAL);
9471     if (Constraint.isInvalid()) {
9472       return new (Context) concepts::ExprRequirement(
9473           createSubstDiagAt(IDC->getExprLoc(),
9474                             [&](llvm::raw_ostream &OS) {
9475                               IDC->printPretty(OS, /*Helper=*/nullptr,
9476                                                getPrintingPolicy());
9477                             }),
9478           IsSimple, NoexceptLoc, ReturnTypeRequirement);
9479     }
9480     SubstitutedConstraintExpr =
9481         cast<ConceptSpecializationExpr>(Constraint.get());
9482     if (!SubstitutedConstraintExpr->isSatisfied())
9483       Status = concepts::ExprRequirement::SS_ConstraintsNotSatisfied;
9484   }
9485   return new (Context) concepts::ExprRequirement(E, IsSimple, NoexceptLoc,
9486                                                  ReturnTypeRequirement, Status,
9487                                                  SubstitutedConstraintExpr);
9488 }
9489 
9490 concepts::ExprRequirement *
9491 Sema::BuildExprRequirement(
9492     concepts::Requirement::SubstitutionDiagnostic *ExprSubstitutionDiagnostic,
9493     bool IsSimple, SourceLocation NoexceptLoc,
9494     concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement) {
9495   return new (Context) concepts::ExprRequirement(ExprSubstitutionDiagnostic,
9496                                                  IsSimple, NoexceptLoc,
9497                                                  ReturnTypeRequirement);
9498 }
9499 
9500 concepts::TypeRequirement *
9501 Sema::BuildTypeRequirement(TypeSourceInfo *Type) {
9502   return new (Context) concepts::TypeRequirement(Type);
9503 }
9504 
9505 concepts::TypeRequirement *
9506 Sema::BuildTypeRequirement(
9507     concepts::Requirement::SubstitutionDiagnostic *SubstDiag) {
9508   return new (Context) concepts::TypeRequirement(SubstDiag);
9509 }
9510 
9511 concepts::Requirement *Sema::ActOnNestedRequirement(Expr *Constraint) {
9512   return BuildNestedRequirement(Constraint);
9513 }
9514 
9515 concepts::NestedRequirement *
9516 Sema::BuildNestedRequirement(Expr *Constraint) {
9517   ConstraintSatisfaction Satisfaction;
9518   if (!Constraint->isInstantiationDependent() &&
9519       CheckConstraintSatisfaction(nullptr, {Constraint}, /*TemplateArgs=*/{},
9520                                   Constraint->getSourceRange(), Satisfaction))
9521     return nullptr;
9522   return new (Context) concepts::NestedRequirement(Context, Constraint,
9523                                                    Satisfaction);
9524 }
9525 
9526 concepts::NestedRequirement *
9527 Sema::BuildNestedRequirement(StringRef InvalidConstraintEntity,
9528                        const ASTConstraintSatisfaction &Satisfaction) {
9529   return new (Context) concepts::NestedRequirement(
9530       InvalidConstraintEntity,
9531       ASTConstraintSatisfaction::Rebuild(Context, Satisfaction));
9532 }
9533 
9534 RequiresExprBodyDecl *
9535 Sema::ActOnStartRequiresExpr(SourceLocation RequiresKWLoc,
9536                              ArrayRef<ParmVarDecl *> LocalParameters,
9537                              Scope *BodyScope) {
9538   assert(BodyScope);
9539 
9540   RequiresExprBodyDecl *Body = RequiresExprBodyDecl::Create(Context, CurContext,
9541                                                             RequiresKWLoc);
9542 
9543   PushDeclContext(BodyScope, Body);
9544 
9545   for (ParmVarDecl *Param : LocalParameters) {
9546     if (Param->getType()->isVoidType()) {
9547       if (LocalParameters.size() > 1) {
9548         Diag(Param->getBeginLoc(), diag::err_void_only_param);
9549         Param->setType(Context.IntTy);
9550       } else if (Param->getIdentifier()) {
9551         Diag(Param->getBeginLoc(), diag::err_param_with_void_type);
9552         Param->setType(Context.IntTy);
9553       } else if (Param->getType().hasQualifiers()) {
9554         Diag(Param->getBeginLoc(), diag::err_void_param_qualified);
9555       }
9556     } else if (Param->hasDefaultArg()) {
9557       // C++2a [expr.prim.req] p4
9558       //     [...] A local parameter of a requires-expression shall not have a
9559       //     default argument. [...]
9560       Diag(Param->getDefaultArgRange().getBegin(),
9561            diag::err_requires_expr_local_parameter_default_argument);
9562       // Ignore default argument and move on
9563     } else if (Param->isExplicitObjectParameter()) {
9564       // C++23 [dcl.fct]p6:
9565       //   An explicit-object-parameter-declaration is a parameter-declaration
9566       //   with a this specifier. An explicit-object-parameter-declaration
9567       //   shall appear only as the first parameter-declaration of a
9568       //   parameter-declaration-list of either:
9569       //   - a member-declarator that declares a member function, or
9570       //   - a lambda-declarator.
9571       //
9572       // The parameter-declaration-list of a requires-expression is not such
9573       // a context.
9574       Diag(Param->getExplicitObjectParamThisLoc(),
9575            diag::err_requires_expr_explicit_object_parameter);
9576       Param->setExplicitObjectParameterLoc(SourceLocation());
9577     }
9578 
9579     Param->setDeclContext(Body);
9580     // If this has an identifier, add it to the scope stack.
9581     if (Param->getIdentifier()) {
9582       CheckShadow(BodyScope, Param);
9583       PushOnScopeChains(Param, BodyScope);
9584     }
9585   }
9586   return Body;
9587 }
9588 
9589 void Sema::ActOnFinishRequiresExpr() {
9590   assert(CurContext && "DeclContext imbalance!");
9591   CurContext = CurContext->getLexicalParent();
9592   assert(CurContext && "Popped translation unit!");
9593 }
9594 
9595 ExprResult Sema::ActOnRequiresExpr(
9596     SourceLocation RequiresKWLoc, RequiresExprBodyDecl *Body,
9597     SourceLocation LParenLoc, ArrayRef<ParmVarDecl *> LocalParameters,
9598     SourceLocation RParenLoc, ArrayRef<concepts::Requirement *> Requirements,
9599     SourceLocation ClosingBraceLoc) {
9600   auto *RE = RequiresExpr::Create(Context, RequiresKWLoc, Body, LParenLoc,
9601                                   LocalParameters, RParenLoc, Requirements,
9602                                   ClosingBraceLoc);
9603   if (DiagnoseUnexpandedParameterPackInRequiresExpr(RE))
9604     return ExprError();
9605   return RE;
9606 }
9607