1 //===--- PPMacroExpansion.cpp - Top level Macro Expansion -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the top level handling of macro expansion for the 10 // preprocessor. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Basic/AttributeCommonInfo.h" 15 #include "clang/Basic/Attributes.h" 16 #include "clang/Basic/Builtins.h" 17 #include "clang/Basic/IdentifierTable.h" 18 #include "clang/Basic/LLVM.h" 19 #include "clang/Basic/LangOptions.h" 20 #include "clang/Basic/SourceLocation.h" 21 #include "clang/Basic/TargetInfo.h" 22 #include "clang/Lex/CodeCompletionHandler.h" 23 #include "clang/Lex/DirectoryLookup.h" 24 #include "clang/Lex/ExternalPreprocessorSource.h" 25 #include "clang/Lex/HeaderSearch.h" 26 #include "clang/Lex/LexDiagnostic.h" 27 #include "clang/Lex/LiteralSupport.h" 28 #include "clang/Lex/MacroArgs.h" 29 #include "clang/Lex/MacroInfo.h" 30 #include "clang/Lex/Preprocessor.h" 31 #include "clang/Lex/PreprocessorLexer.h" 32 #include "clang/Lex/PreprocessorOptions.h" 33 #include "clang/Lex/Token.h" 34 #include "llvm/ADT/ArrayRef.h" 35 #include "llvm/ADT/DenseMap.h" 36 #include "llvm/ADT/DenseSet.h" 37 #include "llvm/ADT/FoldingSet.h" 38 #include "llvm/ADT/STLExtras.h" 39 #include "llvm/ADT/SmallVector.h" 40 #include "llvm/ADT/StringRef.h" 41 #include "llvm/ADT/StringSwitch.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/Format.h" 44 #include "llvm/Support/Path.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include <algorithm> 47 #include <cassert> 48 #include <cstddef> 49 #include <cstring> 50 #include <ctime> 51 #include <iomanip> 52 #include <optional> 53 #include <sstream> 54 #include <string> 55 #include <tuple> 56 #include <utility> 57 58 using namespace clang; 59 60 MacroDirective * 61 Preprocessor::getLocalMacroDirectiveHistory(const IdentifierInfo *II) const { 62 if (!II->hadMacroDefinition()) 63 return nullptr; 64 auto Pos = CurSubmoduleState->Macros.find(II); 65 return Pos == CurSubmoduleState->Macros.end() ? nullptr 66 : Pos->second.getLatest(); 67 } 68 69 void Preprocessor::appendMacroDirective(IdentifierInfo *II, MacroDirective *MD){ 70 assert(MD && "MacroDirective should be non-zero!"); 71 assert(!MD->getPrevious() && "Already attached to a MacroDirective history."); 72 73 MacroState &StoredMD = CurSubmoduleState->Macros[II]; 74 auto *OldMD = StoredMD.getLatest(); 75 MD->setPrevious(OldMD); 76 StoredMD.setLatest(MD); 77 StoredMD.overrideActiveModuleMacros(*this, II); 78 79 if (needModuleMacros()) { 80 // Track that we created a new macro directive, so we know we should 81 // consider building a ModuleMacro for it when we get to the end of 82 // the module. 83 PendingModuleMacroNames.push_back(II); 84 } 85 86 // Set up the identifier as having associated macro history. 87 II->setHasMacroDefinition(true); 88 if (!MD->isDefined() && !LeafModuleMacros.contains(II)) 89 II->setHasMacroDefinition(false); 90 if (II->isFromAST()) 91 II->setChangedSinceDeserialization(); 92 } 93 94 void Preprocessor::setLoadedMacroDirective(IdentifierInfo *II, 95 MacroDirective *ED, 96 MacroDirective *MD) { 97 // Normally, when a macro is defined, it goes through appendMacroDirective() 98 // above, which chains a macro to previous defines, undefs, etc. 99 // However, in a pch, the whole macro history up to the end of the pch is 100 // stored, so ASTReader goes through this function instead. 101 // However, built-in macros are already registered in the Preprocessor 102 // ctor, and ASTWriter stops writing the macro chain at built-in macros, 103 // so in that case the chain from the pch needs to be spliced to the existing 104 // built-in. 105 106 assert(II && MD); 107 MacroState &StoredMD = CurSubmoduleState->Macros[II]; 108 109 if (auto *OldMD = StoredMD.getLatest()) { 110 // shouldIgnoreMacro() in ASTWriter also stops at macros from the 111 // predefines buffer in module builds. However, in module builds, modules 112 // are loaded completely before predefines are processed, so StoredMD 113 // will be nullptr for them when they're loaded. StoredMD should only be 114 // non-nullptr for builtins read from a pch file. 115 assert(OldMD->getMacroInfo()->isBuiltinMacro() && 116 "only built-ins should have an entry here"); 117 assert(!OldMD->getPrevious() && "builtin should only have a single entry"); 118 ED->setPrevious(OldMD); 119 StoredMD.setLatest(MD); 120 } else { 121 StoredMD = MD; 122 } 123 124 // Setup the identifier as having associated macro history. 125 II->setHasMacroDefinition(true); 126 if (!MD->isDefined() && !LeafModuleMacros.contains(II)) 127 II->setHasMacroDefinition(false); 128 } 129 130 ModuleMacro *Preprocessor::addModuleMacro(Module *Mod, IdentifierInfo *II, 131 MacroInfo *Macro, 132 ArrayRef<ModuleMacro *> Overrides, 133 bool &New) { 134 llvm::FoldingSetNodeID ID; 135 ModuleMacro::Profile(ID, Mod, II); 136 137 void *InsertPos; 138 if (auto *MM = ModuleMacros.FindNodeOrInsertPos(ID, InsertPos)) { 139 New = false; 140 return MM; 141 } 142 143 auto *MM = ModuleMacro::create(*this, Mod, II, Macro, Overrides); 144 ModuleMacros.InsertNode(MM, InsertPos); 145 146 // Each overridden macro is now overridden by one more macro. 147 bool HidAny = false; 148 for (auto *O : Overrides) { 149 HidAny |= (O->NumOverriddenBy == 0); 150 ++O->NumOverriddenBy; 151 } 152 153 // If we were the first overrider for any macro, it's no longer a leaf. 154 auto &LeafMacros = LeafModuleMacros[II]; 155 if (HidAny) { 156 llvm::erase_if(LeafMacros, 157 [](ModuleMacro *MM) { return MM->NumOverriddenBy != 0; }); 158 } 159 160 // The new macro is always a leaf macro. 161 LeafMacros.push_back(MM); 162 // The identifier now has defined macros (that may or may not be visible). 163 II->setHasMacroDefinition(true); 164 165 New = true; 166 return MM; 167 } 168 169 ModuleMacro *Preprocessor::getModuleMacro(Module *Mod, 170 const IdentifierInfo *II) { 171 llvm::FoldingSetNodeID ID; 172 ModuleMacro::Profile(ID, Mod, II); 173 174 void *InsertPos; 175 return ModuleMacros.FindNodeOrInsertPos(ID, InsertPos); 176 } 177 178 void Preprocessor::updateModuleMacroInfo(const IdentifierInfo *II, 179 ModuleMacroInfo &Info) { 180 assert(Info.ActiveModuleMacrosGeneration != 181 CurSubmoduleState->VisibleModules.getGeneration() && 182 "don't need to update this macro name info"); 183 Info.ActiveModuleMacrosGeneration = 184 CurSubmoduleState->VisibleModules.getGeneration(); 185 186 auto Leaf = LeafModuleMacros.find(II); 187 if (Leaf == LeafModuleMacros.end()) { 188 // No imported macros at all: nothing to do. 189 return; 190 } 191 192 Info.ActiveModuleMacros.clear(); 193 194 // Every macro that's locally overridden is overridden by a visible macro. 195 llvm::DenseMap<ModuleMacro *, int> NumHiddenOverrides; 196 for (auto *O : Info.OverriddenMacros) 197 NumHiddenOverrides[O] = -1; 198 199 // Collect all macros that are not overridden by a visible macro. 200 llvm::SmallVector<ModuleMacro *, 16> Worklist; 201 for (auto *LeafMM : Leaf->second) { 202 assert(LeafMM->getNumOverridingMacros() == 0 && "leaf macro overridden"); 203 if (NumHiddenOverrides.lookup(LeafMM) == 0) 204 Worklist.push_back(LeafMM); 205 } 206 while (!Worklist.empty()) { 207 auto *MM = Worklist.pop_back_val(); 208 if (CurSubmoduleState->VisibleModules.isVisible(MM->getOwningModule())) { 209 // We only care about collecting definitions; undefinitions only act 210 // to override other definitions. 211 if (MM->getMacroInfo()) 212 Info.ActiveModuleMacros.push_back(MM); 213 } else { 214 for (auto *O : MM->overrides()) 215 if ((unsigned)++NumHiddenOverrides[O] == O->getNumOverridingMacros()) 216 Worklist.push_back(O); 217 } 218 } 219 // Our reverse postorder walk found the macros in reverse order. 220 std::reverse(Info.ActiveModuleMacros.begin(), Info.ActiveModuleMacros.end()); 221 222 // Determine whether the macro name is ambiguous. 223 MacroInfo *MI = nullptr; 224 bool IsSystemMacro = true; 225 bool IsAmbiguous = false; 226 if (auto *MD = Info.MD) { 227 while (isa_and_nonnull<VisibilityMacroDirective>(MD)) 228 MD = MD->getPrevious(); 229 if (auto *DMD = dyn_cast_or_null<DefMacroDirective>(MD)) { 230 MI = DMD->getInfo(); 231 IsSystemMacro &= SourceMgr.isInSystemHeader(DMD->getLocation()); 232 } 233 } 234 for (auto *Active : Info.ActiveModuleMacros) { 235 auto *NewMI = Active->getMacroInfo(); 236 237 // Before marking the macro as ambiguous, check if this is a case where 238 // both macros are in system headers. If so, we trust that the system 239 // did not get it wrong. This also handles cases where Clang's own 240 // headers have a different spelling of certain system macros: 241 // #define LONG_MAX __LONG_MAX__ (clang's limits.h) 242 // #define LONG_MAX 0x7fffffffffffffffL (system's limits.h) 243 // 244 // FIXME: Remove the defined-in-system-headers check. clang's limits.h 245 // overrides the system limits.h's macros, so there's no conflict here. 246 if (MI && NewMI != MI && 247 !MI->isIdenticalTo(*NewMI, *this, /*Syntactically=*/true)) 248 IsAmbiguous = true; 249 IsSystemMacro &= Active->getOwningModule()->IsSystem || 250 SourceMgr.isInSystemHeader(NewMI->getDefinitionLoc()); 251 MI = NewMI; 252 } 253 Info.IsAmbiguous = IsAmbiguous && !IsSystemMacro; 254 } 255 256 void Preprocessor::dumpMacroInfo(const IdentifierInfo *II) { 257 ArrayRef<ModuleMacro*> Leaf; 258 auto LeafIt = LeafModuleMacros.find(II); 259 if (LeafIt != LeafModuleMacros.end()) 260 Leaf = LeafIt->second; 261 const MacroState *State = nullptr; 262 auto Pos = CurSubmoduleState->Macros.find(II); 263 if (Pos != CurSubmoduleState->Macros.end()) 264 State = &Pos->second; 265 266 llvm::errs() << "MacroState " << State << " " << II->getNameStart(); 267 if (State && State->isAmbiguous(*this, II)) 268 llvm::errs() << " ambiguous"; 269 if (State && !State->getOverriddenMacros().empty()) { 270 llvm::errs() << " overrides"; 271 for (auto *O : State->getOverriddenMacros()) 272 llvm::errs() << " " << O->getOwningModule()->getFullModuleName(); 273 } 274 llvm::errs() << "\n"; 275 276 // Dump local macro directives. 277 for (auto *MD = State ? State->getLatest() : nullptr; MD; 278 MD = MD->getPrevious()) { 279 llvm::errs() << " "; 280 MD->dump(); 281 } 282 283 // Dump module macros. 284 llvm::DenseSet<ModuleMacro*> Active; 285 for (auto *MM : State ? State->getActiveModuleMacros(*this, II) 286 : ArrayRef<ModuleMacro *>()) 287 Active.insert(MM); 288 llvm::DenseSet<ModuleMacro*> Visited; 289 llvm::SmallVector<ModuleMacro *, 16> Worklist(Leaf); 290 while (!Worklist.empty()) { 291 auto *MM = Worklist.pop_back_val(); 292 llvm::errs() << " ModuleMacro " << MM << " " 293 << MM->getOwningModule()->getFullModuleName(); 294 if (!MM->getMacroInfo()) 295 llvm::errs() << " undef"; 296 297 if (Active.count(MM)) 298 llvm::errs() << " active"; 299 else if (!CurSubmoduleState->VisibleModules.isVisible( 300 MM->getOwningModule())) 301 llvm::errs() << " hidden"; 302 else if (MM->getMacroInfo()) 303 llvm::errs() << " overridden"; 304 305 if (!MM->overrides().empty()) { 306 llvm::errs() << " overrides"; 307 for (auto *O : MM->overrides()) { 308 llvm::errs() << " " << O->getOwningModule()->getFullModuleName(); 309 if (Visited.insert(O).second) 310 Worklist.push_back(O); 311 } 312 } 313 llvm::errs() << "\n"; 314 if (auto *MI = MM->getMacroInfo()) { 315 llvm::errs() << " "; 316 MI->dump(); 317 llvm::errs() << "\n"; 318 } 319 } 320 } 321 322 /// RegisterBuiltinMacros - Register builtin macros, such as __LINE__ with the 323 /// identifier table. 324 void Preprocessor::RegisterBuiltinMacros() { 325 Ident__LINE__ = RegisterBuiltinMacro("__LINE__"); 326 Ident__FILE__ = RegisterBuiltinMacro("__FILE__"); 327 Ident__DATE__ = RegisterBuiltinMacro("__DATE__"); 328 Ident__TIME__ = RegisterBuiltinMacro("__TIME__"); 329 Ident__COUNTER__ = RegisterBuiltinMacro("__COUNTER__"); 330 Ident_Pragma = RegisterBuiltinMacro("_Pragma"); 331 Ident__FLT_EVAL_METHOD__ = RegisterBuiltinMacro("__FLT_EVAL_METHOD__"); 332 333 // C++ Standing Document Extensions. 334 if (getLangOpts().CPlusPlus) 335 Ident__has_cpp_attribute = RegisterBuiltinMacro("__has_cpp_attribute"); 336 else 337 Ident__has_cpp_attribute = nullptr; 338 339 // GCC Extensions. 340 Ident__BASE_FILE__ = RegisterBuiltinMacro("__BASE_FILE__"); 341 Ident__INCLUDE_LEVEL__ = RegisterBuiltinMacro("__INCLUDE_LEVEL__"); 342 Ident__TIMESTAMP__ = RegisterBuiltinMacro("__TIMESTAMP__"); 343 344 // Microsoft Extensions. 345 if (getLangOpts().MicrosoftExt) { 346 Ident__identifier = RegisterBuiltinMacro("__identifier"); 347 Ident__pragma = RegisterBuiltinMacro("__pragma"); 348 } else { 349 Ident__identifier = nullptr; 350 Ident__pragma = nullptr; 351 } 352 353 // Clang Extensions. 354 Ident__FILE_NAME__ = RegisterBuiltinMacro("__FILE_NAME__"); 355 Ident__has_feature = RegisterBuiltinMacro("__has_feature"); 356 Ident__has_extension = RegisterBuiltinMacro("__has_extension"); 357 Ident__has_builtin = RegisterBuiltinMacro("__has_builtin"); 358 Ident__has_constexpr_builtin = 359 RegisterBuiltinMacro("__has_constexpr_builtin"); 360 Ident__has_attribute = RegisterBuiltinMacro("__has_attribute"); 361 if (!getLangOpts().CPlusPlus) 362 Ident__has_c_attribute = RegisterBuiltinMacro("__has_c_attribute"); 363 else 364 Ident__has_c_attribute = nullptr; 365 366 Ident__has_declspec = RegisterBuiltinMacro("__has_declspec_attribute"); 367 Ident__has_embed = RegisterBuiltinMacro("__has_embed"); 368 Ident__has_include = RegisterBuiltinMacro("__has_include"); 369 Ident__has_include_next = RegisterBuiltinMacro("__has_include_next"); 370 Ident__has_warning = RegisterBuiltinMacro("__has_warning"); 371 Ident__is_identifier = RegisterBuiltinMacro("__is_identifier"); 372 Ident__is_target_arch = RegisterBuiltinMacro("__is_target_arch"); 373 Ident__is_target_vendor = RegisterBuiltinMacro("__is_target_vendor"); 374 Ident__is_target_os = RegisterBuiltinMacro("__is_target_os"); 375 Ident__is_target_environment = 376 RegisterBuiltinMacro("__is_target_environment"); 377 Ident__is_target_variant_os = RegisterBuiltinMacro("__is_target_variant_os"); 378 Ident__is_target_variant_environment = 379 RegisterBuiltinMacro("__is_target_variant_environment"); 380 381 // Modules. 382 Ident__building_module = RegisterBuiltinMacro("__building_module"); 383 if (!getLangOpts().CurrentModule.empty()) 384 Ident__MODULE__ = RegisterBuiltinMacro("__MODULE__"); 385 else 386 Ident__MODULE__ = nullptr; 387 } 388 389 /// isTrivialSingleTokenExpansion - Return true if MI, which has a single token 390 /// in its expansion, currently expands to that token literally. 391 static bool isTrivialSingleTokenExpansion(const MacroInfo *MI, 392 const IdentifierInfo *MacroIdent, 393 Preprocessor &PP) { 394 IdentifierInfo *II = MI->getReplacementToken(0).getIdentifierInfo(); 395 396 // If the token isn't an identifier, it's always literally expanded. 397 if (!II) return true; 398 399 // If the information about this identifier is out of date, update it from 400 // the external source. 401 if (II->isOutOfDate()) 402 PP.getExternalSource()->updateOutOfDateIdentifier(*II); 403 404 // If the identifier is a macro, and if that macro is enabled, it may be 405 // expanded so it's not a trivial expansion. 406 if (auto *ExpansionMI = PP.getMacroInfo(II)) 407 if (ExpansionMI->isEnabled() && 408 // Fast expanding "#define X X" is ok, because X would be disabled. 409 II != MacroIdent) 410 return false; 411 412 // If this is an object-like macro invocation, it is safe to trivially expand 413 // it. 414 if (MI->isObjectLike()) return true; 415 416 // If this is a function-like macro invocation, it's safe to trivially expand 417 // as long as the identifier is not a macro argument. 418 return !llvm::is_contained(MI->params(), II); 419 } 420 421 /// isNextPPTokenLParen - Determine whether the next preprocessor token to be 422 /// lexed is a '('. If so, consume the token and return true, if not, this 423 /// method should have no observable side-effect on the lexed tokens. 424 bool Preprocessor::isNextPPTokenLParen() { 425 // Do some quick tests for rejection cases. 426 unsigned Val; 427 if (CurLexer) 428 Val = CurLexer->isNextPPTokenLParen(); 429 else 430 Val = CurTokenLexer->isNextTokenLParen(); 431 432 if (Val == 2) { 433 // We have run off the end. If it's a source file we don't 434 // examine enclosing ones (C99 5.1.1.2p4). Otherwise walk up the 435 // macro stack. 436 if (CurPPLexer) 437 return false; 438 for (const IncludeStackInfo &Entry : llvm::reverse(IncludeMacroStack)) { 439 if (Entry.TheLexer) 440 Val = Entry.TheLexer->isNextPPTokenLParen(); 441 else 442 Val = Entry.TheTokenLexer->isNextTokenLParen(); 443 444 if (Val != 2) 445 break; 446 447 // Ran off the end of a source file? 448 if (Entry.ThePPLexer) 449 return false; 450 } 451 } 452 453 // Okay, if we know that the token is a '(', lex it and return. Otherwise we 454 // have found something that isn't a '(' or we found the end of the 455 // translation unit. In either case, return false. 456 return Val == 1; 457 } 458 459 /// HandleMacroExpandedIdentifier - If an identifier token is read that is to be 460 /// expanded as a macro, handle it and return the next token as 'Identifier'. 461 bool Preprocessor::HandleMacroExpandedIdentifier(Token &Identifier, 462 const MacroDefinition &M) { 463 emitMacroExpansionWarnings(Identifier); 464 465 MacroInfo *MI = M.getMacroInfo(); 466 467 // If this is a macro expansion in the "#if !defined(x)" line for the file, 468 // then the macro could expand to different things in other contexts, we need 469 // to disable the optimization in this case. 470 if (CurPPLexer) CurPPLexer->MIOpt.ExpandedMacro(); 471 472 // If this is a builtin macro, like __LINE__ or _Pragma, handle it specially. 473 if (MI->isBuiltinMacro()) { 474 if (Callbacks) 475 Callbacks->MacroExpands(Identifier, M, Identifier.getLocation(), 476 /*Args=*/nullptr); 477 ExpandBuiltinMacro(Identifier); 478 return true; 479 } 480 481 /// Args - If this is a function-like macro expansion, this contains, 482 /// for each macro argument, the list of tokens that were provided to the 483 /// invocation. 484 MacroArgs *Args = nullptr; 485 486 // Remember where the end of the expansion occurred. For an object-like 487 // macro, this is the identifier. For a function-like macro, this is the ')'. 488 SourceLocation ExpansionEnd = Identifier.getLocation(); 489 490 // If this is a function-like macro, read the arguments. 491 if (MI->isFunctionLike()) { 492 // Remember that we are now parsing the arguments to a macro invocation. 493 // Preprocessor directives used inside macro arguments are not portable, and 494 // this enables the warning. 495 InMacroArgs = true; 496 ArgMacro = &Identifier; 497 498 Args = ReadMacroCallArgumentList(Identifier, MI, ExpansionEnd); 499 500 // Finished parsing args. 501 InMacroArgs = false; 502 ArgMacro = nullptr; 503 504 // If there was an error parsing the arguments, bail out. 505 if (!Args) return true; 506 507 ++NumFnMacroExpanded; 508 } else { 509 ++NumMacroExpanded; 510 } 511 512 // Notice that this macro has been used. 513 markMacroAsUsed(MI); 514 515 // Remember where the token is expanded. 516 SourceLocation ExpandLoc = Identifier.getLocation(); 517 SourceRange ExpansionRange(ExpandLoc, ExpansionEnd); 518 519 if (Callbacks) { 520 if (InMacroArgs) { 521 // We can have macro expansion inside a conditional directive while 522 // reading the function macro arguments. To ensure, in that case, that 523 // MacroExpands callbacks still happen in source order, queue this 524 // callback to have it happen after the function macro callback. 525 DelayedMacroExpandsCallbacks.push_back( 526 MacroExpandsInfo(Identifier, M, ExpansionRange)); 527 } else { 528 Callbacks->MacroExpands(Identifier, M, ExpansionRange, Args); 529 if (!DelayedMacroExpandsCallbacks.empty()) { 530 for (const MacroExpandsInfo &Info : DelayedMacroExpandsCallbacks) { 531 // FIXME: We lose macro args info with delayed callback. 532 Callbacks->MacroExpands(Info.Tok, Info.MD, Info.Range, 533 /*Args=*/nullptr); 534 } 535 DelayedMacroExpandsCallbacks.clear(); 536 } 537 } 538 } 539 540 // If the macro definition is ambiguous, complain. 541 if (M.isAmbiguous()) { 542 Diag(Identifier, diag::warn_pp_ambiguous_macro) 543 << Identifier.getIdentifierInfo(); 544 Diag(MI->getDefinitionLoc(), diag::note_pp_ambiguous_macro_chosen) 545 << Identifier.getIdentifierInfo(); 546 M.forAllDefinitions([&](const MacroInfo *OtherMI) { 547 if (OtherMI != MI) 548 Diag(OtherMI->getDefinitionLoc(), diag::note_pp_ambiguous_macro_other) 549 << Identifier.getIdentifierInfo(); 550 }); 551 } 552 553 // If we started lexing a macro, enter the macro expansion body. 554 555 // If this macro expands to no tokens, don't bother to push it onto the 556 // expansion stack, only to take it right back off. 557 if (MI->getNumTokens() == 0) { 558 // No need for arg info. 559 if (Args) Args->destroy(*this); 560 561 // Propagate whitespace info as if we had pushed, then popped, 562 // a macro context. 563 Identifier.setFlag(Token::LeadingEmptyMacro); 564 PropagateLineStartLeadingSpaceInfo(Identifier); 565 ++NumFastMacroExpanded; 566 return false; 567 } else if (MI->getNumTokens() == 1 && 568 isTrivialSingleTokenExpansion(MI, Identifier.getIdentifierInfo(), 569 *this)) { 570 // Otherwise, if this macro expands into a single trivially-expanded 571 // token: expand it now. This handles common cases like 572 // "#define VAL 42". 573 574 // No need for arg info. 575 if (Args) Args->destroy(*this); 576 577 // Propagate the isAtStartOfLine/hasLeadingSpace markers of the macro 578 // identifier to the expanded token. 579 bool isAtStartOfLine = Identifier.isAtStartOfLine(); 580 bool hasLeadingSpace = Identifier.hasLeadingSpace(); 581 582 // Replace the result token. 583 Identifier = MI->getReplacementToken(0); 584 585 // Restore the StartOfLine/LeadingSpace markers. 586 Identifier.setFlagValue(Token::StartOfLine , isAtStartOfLine); 587 Identifier.setFlagValue(Token::LeadingSpace, hasLeadingSpace); 588 589 // Update the tokens location to include both its expansion and physical 590 // locations. 591 SourceLocation Loc = 592 SourceMgr.createExpansionLoc(Identifier.getLocation(), ExpandLoc, 593 ExpansionEnd,Identifier.getLength()); 594 Identifier.setLocation(Loc); 595 596 // If this is a disabled macro or #define X X, we must mark the result as 597 // unexpandable. 598 if (IdentifierInfo *NewII = Identifier.getIdentifierInfo()) { 599 if (MacroInfo *NewMI = getMacroInfo(NewII)) 600 if (!NewMI->isEnabled() || NewMI == MI) { 601 Identifier.setFlag(Token::DisableExpand); 602 // Don't warn for "#define X X" like "#define bool bool" from 603 // stdbool.h. 604 if (NewMI != MI || MI->isFunctionLike()) 605 Diag(Identifier, diag::pp_disabled_macro_expansion); 606 } 607 } 608 609 // Since this is not an identifier token, it can't be macro expanded, so 610 // we're done. 611 ++NumFastMacroExpanded; 612 return true; 613 } 614 615 // Start expanding the macro. 616 EnterMacro(Identifier, ExpansionEnd, MI, Args); 617 return false; 618 } 619 620 enum Bracket { 621 Brace, 622 Paren 623 }; 624 625 /// CheckMatchedBrackets - Returns true if the braces and parentheses in the 626 /// token vector are properly nested. 627 static bool CheckMatchedBrackets(const SmallVectorImpl<Token> &Tokens) { 628 SmallVector<Bracket, 8> Brackets; 629 for (SmallVectorImpl<Token>::const_iterator I = Tokens.begin(), 630 E = Tokens.end(); 631 I != E; ++I) { 632 if (I->is(tok::l_paren)) { 633 Brackets.push_back(Paren); 634 } else if (I->is(tok::r_paren)) { 635 if (Brackets.empty() || Brackets.back() == Brace) 636 return false; 637 Brackets.pop_back(); 638 } else if (I->is(tok::l_brace)) { 639 Brackets.push_back(Brace); 640 } else if (I->is(tok::r_brace)) { 641 if (Brackets.empty() || Brackets.back() == Paren) 642 return false; 643 Brackets.pop_back(); 644 } 645 } 646 return Brackets.empty(); 647 } 648 649 /// GenerateNewArgTokens - Returns true if OldTokens can be converted to a new 650 /// vector of tokens in NewTokens. The new number of arguments will be placed 651 /// in NumArgs and the ranges which need to surrounded in parentheses will be 652 /// in ParenHints. 653 /// Returns false if the token stream cannot be changed. If this is because 654 /// of an initializer list starting a macro argument, the range of those 655 /// initializer lists will be place in InitLists. 656 static bool GenerateNewArgTokens(Preprocessor &PP, 657 SmallVectorImpl<Token> &OldTokens, 658 SmallVectorImpl<Token> &NewTokens, 659 unsigned &NumArgs, 660 SmallVectorImpl<SourceRange> &ParenHints, 661 SmallVectorImpl<SourceRange> &InitLists) { 662 if (!CheckMatchedBrackets(OldTokens)) 663 return false; 664 665 // Once it is known that the brackets are matched, only a simple count of the 666 // braces is needed. 667 unsigned Braces = 0; 668 669 // First token of a new macro argument. 670 SmallVectorImpl<Token>::iterator ArgStartIterator = OldTokens.begin(); 671 672 // First closing brace in a new macro argument. Used to generate 673 // SourceRanges for InitLists. 674 SmallVectorImpl<Token>::iterator ClosingBrace = OldTokens.end(); 675 NumArgs = 0; 676 Token TempToken; 677 // Set to true when a macro separator token is found inside a braced list. 678 // If true, the fixed argument spans multiple old arguments and ParenHints 679 // will be updated. 680 bool FoundSeparatorToken = false; 681 for (SmallVectorImpl<Token>::iterator I = OldTokens.begin(), 682 E = OldTokens.end(); 683 I != E; ++I) { 684 if (I->is(tok::l_brace)) { 685 ++Braces; 686 } else if (I->is(tok::r_brace)) { 687 --Braces; 688 if (Braces == 0 && ClosingBrace == E && FoundSeparatorToken) 689 ClosingBrace = I; 690 } else if (I->is(tok::eof)) { 691 // EOF token is used to separate macro arguments 692 if (Braces != 0) { 693 // Assume comma separator is actually braced list separator and change 694 // it back to a comma. 695 FoundSeparatorToken = true; 696 I->setKind(tok::comma); 697 I->setLength(1); 698 } else { // Braces == 0 699 // Separator token still separates arguments. 700 ++NumArgs; 701 702 // If the argument starts with a brace, it can't be fixed with 703 // parentheses. A different diagnostic will be given. 704 if (FoundSeparatorToken && ArgStartIterator->is(tok::l_brace)) { 705 InitLists.push_back( 706 SourceRange(ArgStartIterator->getLocation(), 707 PP.getLocForEndOfToken(ClosingBrace->getLocation()))); 708 ClosingBrace = E; 709 } 710 711 // Add left paren 712 if (FoundSeparatorToken) { 713 TempToken.startToken(); 714 TempToken.setKind(tok::l_paren); 715 TempToken.setLocation(ArgStartIterator->getLocation()); 716 TempToken.setLength(0); 717 NewTokens.push_back(TempToken); 718 } 719 720 // Copy over argument tokens 721 NewTokens.insert(NewTokens.end(), ArgStartIterator, I); 722 723 // Add right paren and store the paren locations in ParenHints 724 if (FoundSeparatorToken) { 725 SourceLocation Loc = PP.getLocForEndOfToken((I - 1)->getLocation()); 726 TempToken.startToken(); 727 TempToken.setKind(tok::r_paren); 728 TempToken.setLocation(Loc); 729 TempToken.setLength(0); 730 NewTokens.push_back(TempToken); 731 ParenHints.push_back(SourceRange(ArgStartIterator->getLocation(), 732 Loc)); 733 } 734 735 // Copy separator token 736 NewTokens.push_back(*I); 737 738 // Reset values 739 ArgStartIterator = I + 1; 740 FoundSeparatorToken = false; 741 } 742 } 743 } 744 745 return !ParenHints.empty() && InitLists.empty(); 746 } 747 748 /// ReadFunctionLikeMacroArgs - After reading "MACRO" and knowing that the next 749 /// token is the '(' of the macro, this method is invoked to read all of the 750 /// actual arguments specified for the macro invocation. This returns null on 751 /// error. 752 MacroArgs *Preprocessor::ReadMacroCallArgumentList(Token &MacroName, 753 MacroInfo *MI, 754 SourceLocation &MacroEnd) { 755 // The number of fixed arguments to parse. 756 unsigned NumFixedArgsLeft = MI->getNumParams(); 757 bool isVariadic = MI->isVariadic(); 758 759 // Outer loop, while there are more arguments, keep reading them. 760 Token Tok; 761 762 // Read arguments as unexpanded tokens. This avoids issues, e.g., where 763 // an argument value in a macro could expand to ',' or '(' or ')'. 764 LexUnexpandedToken(Tok); 765 assert(Tok.is(tok::l_paren) && "Error computing l-paren-ness?"); 766 767 // ArgTokens - Build up a list of tokens that make up each argument. Each 768 // argument is separated by an EOF token. Use a SmallVector so we can avoid 769 // heap allocations in the common case. 770 SmallVector<Token, 64> ArgTokens; 771 bool ContainsCodeCompletionTok = false; 772 bool FoundElidedComma = false; 773 774 SourceLocation TooManyArgsLoc; 775 776 unsigned NumActuals = 0; 777 while (Tok.isNot(tok::r_paren)) { 778 if (ContainsCodeCompletionTok && Tok.isOneOf(tok::eof, tok::eod)) 779 break; 780 781 assert(Tok.isOneOf(tok::l_paren, tok::comma) && 782 "only expect argument separators here"); 783 784 size_t ArgTokenStart = ArgTokens.size(); 785 SourceLocation ArgStartLoc = Tok.getLocation(); 786 787 // C99 6.10.3p11: Keep track of the number of l_parens we have seen. Note 788 // that we already consumed the first one. 789 unsigned NumParens = 0; 790 791 while (true) { 792 // Read arguments as unexpanded tokens. This avoids issues, e.g., where 793 // an argument value in a macro could expand to ',' or '(' or ')'. 794 LexUnexpandedToken(Tok); 795 796 if (Tok.isOneOf(tok::eof, tok::eod)) { // "#if f(<eof>" & "#if f(\n" 797 if (!ContainsCodeCompletionTok) { 798 Diag(MacroName, diag::err_unterm_macro_invoc); 799 Diag(MI->getDefinitionLoc(), diag::note_macro_here) 800 << MacroName.getIdentifierInfo(); 801 // Do not lose the EOF/EOD. Return it to the client. 802 MacroName = Tok; 803 return nullptr; 804 } 805 // Do not lose the EOF/EOD. 806 auto Toks = std::make_unique<Token[]>(1); 807 Toks[0] = Tok; 808 EnterTokenStream(std::move(Toks), 1, true, /*IsReinject*/ false); 809 break; 810 } else if (Tok.is(tok::r_paren)) { 811 // If we found the ) token, the macro arg list is done. 812 if (NumParens-- == 0) { 813 MacroEnd = Tok.getLocation(); 814 if (!ArgTokens.empty() && 815 ArgTokens.back().commaAfterElided()) { 816 FoundElidedComma = true; 817 } 818 break; 819 } 820 } else if (Tok.is(tok::l_paren)) { 821 ++NumParens; 822 } else if (Tok.is(tok::comma)) { 823 // In Microsoft-compatibility mode, single commas from nested macro 824 // expansions should not be considered as argument separators. We test 825 // for this with the IgnoredComma token flag. 826 if (Tok.getFlags() & Token::IgnoredComma) { 827 // However, in MSVC's preprocessor, subsequent expansions do treat 828 // these commas as argument separators. This leads to a common 829 // workaround used in macros that need to work in both MSVC and 830 // compliant preprocessors. Therefore, the IgnoredComma flag can only 831 // apply once to any given token. 832 Tok.clearFlag(Token::IgnoredComma); 833 } else if (NumParens == 0) { 834 // Comma ends this argument if there are more fixed arguments 835 // expected. However, if this is a variadic macro, and this is part of 836 // the variadic part, then the comma is just an argument token. 837 if (!isVariadic) 838 break; 839 if (NumFixedArgsLeft > 1) 840 break; 841 } 842 } else if (Tok.is(tok::comment) && !KeepMacroComments) { 843 // If this is a comment token in the argument list and we're just in 844 // -C mode (not -CC mode), discard the comment. 845 continue; 846 } else if (!Tok.isAnnotation() && Tok.getIdentifierInfo() != nullptr) { 847 // Reading macro arguments can cause macros that we are currently 848 // expanding from to be popped off the expansion stack. Doing so causes 849 // them to be reenabled for expansion. Here we record whether any 850 // identifiers we lex as macro arguments correspond to disabled macros. 851 // If so, we mark the token as noexpand. This is a subtle aspect of 852 // C99 6.10.3.4p2. 853 if (MacroInfo *MI = getMacroInfo(Tok.getIdentifierInfo())) 854 if (!MI->isEnabled()) 855 Tok.setFlag(Token::DisableExpand); 856 } else if (Tok.is(tok::code_completion)) { 857 ContainsCodeCompletionTok = true; 858 if (CodeComplete) 859 CodeComplete->CodeCompleteMacroArgument(MacroName.getIdentifierInfo(), 860 MI, NumActuals); 861 // Don't mark that we reached the code-completion point because the 862 // parser is going to handle the token and there will be another 863 // code-completion callback. 864 } 865 866 ArgTokens.push_back(Tok); 867 } 868 869 // If this was an empty argument list foo(), don't add this as an empty 870 // argument. 871 if (ArgTokens.empty() && Tok.getKind() == tok::r_paren) 872 break; 873 874 // If this is not a variadic macro, and too many args were specified, emit 875 // an error. 876 if (!isVariadic && NumFixedArgsLeft == 0 && TooManyArgsLoc.isInvalid()) { 877 if (ArgTokens.size() != ArgTokenStart) 878 TooManyArgsLoc = ArgTokens[ArgTokenStart].getLocation(); 879 else 880 TooManyArgsLoc = ArgStartLoc; 881 } 882 883 // Empty arguments are standard in C99 and C++0x, and are supported as an 884 // extension in other modes. 885 if (ArgTokens.size() == ArgTokenStart && !getLangOpts().C99) 886 Diag(Tok, getLangOpts().CPlusPlus11 887 ? diag::warn_cxx98_compat_empty_fnmacro_arg 888 : diag::ext_empty_fnmacro_arg); 889 890 // Add a marker EOF token to the end of the token list for this argument. 891 Token EOFTok; 892 EOFTok.startToken(); 893 EOFTok.setKind(tok::eof); 894 EOFTok.setLocation(Tok.getLocation()); 895 EOFTok.setLength(0); 896 ArgTokens.push_back(EOFTok); 897 ++NumActuals; 898 if (!ContainsCodeCompletionTok && NumFixedArgsLeft != 0) 899 --NumFixedArgsLeft; 900 } 901 902 // Okay, we either found the r_paren. Check to see if we parsed too few 903 // arguments. 904 unsigned MinArgsExpected = MI->getNumParams(); 905 906 // If this is not a variadic macro, and too many args were specified, emit 907 // an error. 908 if (!isVariadic && NumActuals > MinArgsExpected && 909 !ContainsCodeCompletionTok) { 910 // Emit the diagnostic at the macro name in case there is a missing ). 911 // Emitting it at the , could be far away from the macro name. 912 Diag(TooManyArgsLoc, diag::err_too_many_args_in_macro_invoc); 913 Diag(MI->getDefinitionLoc(), diag::note_macro_here) 914 << MacroName.getIdentifierInfo(); 915 916 // Commas from braced initializer lists will be treated as argument 917 // separators inside macros. Attempt to correct for this with parentheses. 918 // TODO: See if this can be generalized to angle brackets for templates 919 // inside macro arguments. 920 921 SmallVector<Token, 4> FixedArgTokens; 922 unsigned FixedNumArgs = 0; 923 SmallVector<SourceRange, 4> ParenHints, InitLists; 924 if (!GenerateNewArgTokens(*this, ArgTokens, FixedArgTokens, FixedNumArgs, 925 ParenHints, InitLists)) { 926 if (!InitLists.empty()) { 927 DiagnosticBuilder DB = 928 Diag(MacroName, 929 diag::note_init_list_at_beginning_of_macro_argument); 930 for (SourceRange Range : InitLists) 931 DB << Range; 932 } 933 return nullptr; 934 } 935 if (FixedNumArgs != MinArgsExpected) 936 return nullptr; 937 938 DiagnosticBuilder DB = Diag(MacroName, diag::note_suggest_parens_for_macro); 939 for (SourceRange ParenLocation : ParenHints) { 940 DB << FixItHint::CreateInsertion(ParenLocation.getBegin(), "("); 941 DB << FixItHint::CreateInsertion(ParenLocation.getEnd(), ")"); 942 } 943 ArgTokens.swap(FixedArgTokens); 944 NumActuals = FixedNumArgs; 945 } 946 947 // See MacroArgs instance var for description of this. 948 bool isVarargsElided = false; 949 950 if (ContainsCodeCompletionTok) { 951 // Recover from not-fully-formed macro invocation during code-completion. 952 Token EOFTok; 953 EOFTok.startToken(); 954 EOFTok.setKind(tok::eof); 955 EOFTok.setLocation(Tok.getLocation()); 956 EOFTok.setLength(0); 957 for (; NumActuals < MinArgsExpected; ++NumActuals) 958 ArgTokens.push_back(EOFTok); 959 } 960 961 if (NumActuals < MinArgsExpected) { 962 // There are several cases where too few arguments is ok, handle them now. 963 if (NumActuals == 0 && MinArgsExpected == 1) { 964 // #define A(X) or #define A(...) ---> A() 965 966 // If there is exactly one argument, and that argument is missing, 967 // then we have an empty "()" argument empty list. This is fine, even if 968 // the macro expects one argument (the argument is just empty). 969 isVarargsElided = MI->isVariadic(); 970 } else if ((FoundElidedComma || MI->isVariadic()) && 971 (NumActuals+1 == MinArgsExpected || // A(x, ...) -> A(X) 972 (NumActuals == 0 && MinArgsExpected == 2))) {// A(x,...) -> A() 973 // Varargs where the named vararg parameter is missing: OK as extension. 974 // #define A(x, ...) 975 // A("blah") 976 // 977 // If the macro contains the comma pasting extension, the diagnostic 978 // is suppressed; we know we'll get another diagnostic later. 979 if (!MI->hasCommaPasting()) { 980 // C++20 [cpp.replace]p15, C23 6.10.5p12 981 // 982 // C++20 and C23 allow this construct, but standards before that 983 // do not (we allow it as an extension). 984 unsigned ID; 985 if (getLangOpts().CPlusPlus20) 986 ID = diag::warn_cxx17_compat_missing_varargs_arg; 987 else if (getLangOpts().CPlusPlus) 988 ID = diag::ext_cxx_missing_varargs_arg; 989 else if (getLangOpts().C23) 990 ID = diag::warn_c17_compat_missing_varargs_arg; 991 else 992 ID = diag::ext_c_missing_varargs_arg; 993 Diag(Tok, ID); 994 Diag(MI->getDefinitionLoc(), diag::note_macro_here) 995 << MacroName.getIdentifierInfo(); 996 } 997 998 // Remember this occurred, allowing us to elide the comma when used for 999 // cases like: 1000 // #define A(x, foo...) blah(a, ## foo) 1001 // #define B(x, ...) blah(a, ## __VA_ARGS__) 1002 // #define C(...) blah(a, ## __VA_ARGS__) 1003 // A(x) B(x) C() 1004 isVarargsElided = true; 1005 } else if (!ContainsCodeCompletionTok) { 1006 // Otherwise, emit the error. 1007 Diag(Tok, diag::err_too_few_args_in_macro_invoc); 1008 Diag(MI->getDefinitionLoc(), diag::note_macro_here) 1009 << MacroName.getIdentifierInfo(); 1010 return nullptr; 1011 } 1012 1013 // Add a marker EOF token to the end of the token list for this argument. 1014 SourceLocation EndLoc = Tok.getLocation(); 1015 Tok.startToken(); 1016 Tok.setKind(tok::eof); 1017 Tok.setLocation(EndLoc); 1018 Tok.setLength(0); 1019 ArgTokens.push_back(Tok); 1020 1021 // If we expect two arguments, add both as empty. 1022 if (NumActuals == 0 && MinArgsExpected == 2) 1023 ArgTokens.push_back(Tok); 1024 1025 } else if (NumActuals > MinArgsExpected && !MI->isVariadic() && 1026 !ContainsCodeCompletionTok) { 1027 // Emit the diagnostic at the macro name in case there is a missing ). 1028 // Emitting it at the , could be far away from the macro name. 1029 Diag(MacroName, diag::err_too_many_args_in_macro_invoc); 1030 Diag(MI->getDefinitionLoc(), diag::note_macro_here) 1031 << MacroName.getIdentifierInfo(); 1032 return nullptr; 1033 } 1034 1035 return MacroArgs::create(MI, ArgTokens, isVarargsElided, *this); 1036 } 1037 1038 /// Keeps macro expanded tokens for TokenLexers. 1039 // 1040 /// Works like a stack; a TokenLexer adds the macro expanded tokens that is 1041 /// going to lex in the cache and when it finishes the tokens are removed 1042 /// from the end of the cache. 1043 Token *Preprocessor::cacheMacroExpandedTokens(TokenLexer *tokLexer, 1044 ArrayRef<Token> tokens) { 1045 assert(tokLexer); 1046 if (tokens.empty()) 1047 return nullptr; 1048 1049 size_t newIndex = MacroExpandedTokens.size(); 1050 bool cacheNeedsToGrow = tokens.size() > 1051 MacroExpandedTokens.capacity()-MacroExpandedTokens.size(); 1052 MacroExpandedTokens.append(tokens.begin(), tokens.end()); 1053 1054 if (cacheNeedsToGrow) { 1055 // Go through all the TokenLexers whose 'Tokens' pointer points in the 1056 // buffer and update the pointers to the (potential) new buffer array. 1057 for (const auto &Lexer : MacroExpandingLexersStack) { 1058 TokenLexer *prevLexer; 1059 size_t tokIndex; 1060 std::tie(prevLexer, tokIndex) = Lexer; 1061 prevLexer->Tokens = MacroExpandedTokens.data() + tokIndex; 1062 } 1063 } 1064 1065 MacroExpandingLexersStack.push_back(std::make_pair(tokLexer, newIndex)); 1066 return MacroExpandedTokens.data() + newIndex; 1067 } 1068 1069 void Preprocessor::removeCachedMacroExpandedTokensOfLastLexer() { 1070 assert(!MacroExpandingLexersStack.empty()); 1071 size_t tokIndex = MacroExpandingLexersStack.back().second; 1072 assert(tokIndex < MacroExpandedTokens.size()); 1073 // Pop the cached macro expanded tokens from the end. 1074 MacroExpandedTokens.resize(tokIndex); 1075 MacroExpandingLexersStack.pop_back(); 1076 } 1077 1078 /// ComputeDATE_TIME - Compute the current time, enter it into the specified 1079 /// scratch buffer, then return DATELoc/TIMELoc locations with the position of 1080 /// the identifier tokens inserted. 1081 static void ComputeDATE_TIME(SourceLocation &DATELoc, SourceLocation &TIMELoc, 1082 Preprocessor &PP) { 1083 time_t TT; 1084 std::tm *TM; 1085 if (PP.getPreprocessorOpts().SourceDateEpoch) { 1086 TT = *PP.getPreprocessorOpts().SourceDateEpoch; 1087 TM = std::gmtime(&TT); 1088 } else { 1089 TT = std::time(nullptr); 1090 TM = std::localtime(&TT); 1091 } 1092 1093 static const char * const Months[] = { 1094 "Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec" 1095 }; 1096 1097 { 1098 SmallString<32> TmpBuffer; 1099 llvm::raw_svector_ostream TmpStream(TmpBuffer); 1100 if (TM) 1101 TmpStream << llvm::format("\"%s %2d %4d\"", Months[TM->tm_mon], 1102 TM->tm_mday, TM->tm_year + 1900); 1103 else 1104 TmpStream << "??? ?? ????"; 1105 Token TmpTok; 1106 TmpTok.startToken(); 1107 PP.CreateString(TmpStream.str(), TmpTok); 1108 DATELoc = TmpTok.getLocation(); 1109 } 1110 1111 { 1112 SmallString<32> TmpBuffer; 1113 llvm::raw_svector_ostream TmpStream(TmpBuffer); 1114 if (TM) 1115 TmpStream << llvm::format("\"%02d:%02d:%02d\"", TM->tm_hour, TM->tm_min, 1116 TM->tm_sec); 1117 else 1118 TmpStream << "??:??:??"; 1119 Token TmpTok; 1120 TmpTok.startToken(); 1121 PP.CreateString(TmpStream.str(), TmpTok); 1122 TIMELoc = TmpTok.getLocation(); 1123 } 1124 } 1125 1126 /// HasFeature - Return true if we recognize and implement the feature 1127 /// specified by the identifier as a standard language feature. 1128 static bool HasFeature(const Preprocessor &PP, StringRef Feature) { 1129 const LangOptions &LangOpts = PP.getLangOpts(); 1130 1131 // Normalize the feature name, __foo__ becomes foo. 1132 if (Feature.starts_with("__") && Feature.ends_with("__") && 1133 Feature.size() >= 4) 1134 Feature = Feature.substr(2, Feature.size() - 4); 1135 1136 #define FEATURE(Name, Predicate) .Case(#Name, Predicate) 1137 return llvm::StringSwitch<bool>(Feature) 1138 #include "clang/Basic/Features.def" 1139 .Default(false); 1140 #undef FEATURE 1141 } 1142 1143 /// HasExtension - Return true if we recognize and implement the feature 1144 /// specified by the identifier, either as an extension or a standard language 1145 /// feature. 1146 static bool HasExtension(const Preprocessor &PP, StringRef Extension) { 1147 if (HasFeature(PP, Extension)) 1148 return true; 1149 1150 // If the use of an extension results in an error diagnostic, extensions are 1151 // effectively unavailable, so just return false here. 1152 if (PP.getDiagnostics().getExtensionHandlingBehavior() >= 1153 diag::Severity::Error) 1154 return false; 1155 1156 const LangOptions &LangOpts = PP.getLangOpts(); 1157 1158 // Normalize the extension name, __foo__ becomes foo. 1159 if (Extension.starts_with("__") && Extension.ends_with("__") && 1160 Extension.size() >= 4) 1161 Extension = Extension.substr(2, Extension.size() - 4); 1162 1163 // Because we inherit the feature list from HasFeature, this string switch 1164 // must be less restrictive than HasFeature's. 1165 #define EXTENSION(Name, Predicate) .Case(#Name, Predicate) 1166 return llvm::StringSwitch<bool>(Extension) 1167 #include "clang/Basic/Features.def" 1168 .Default(false); 1169 #undef EXTENSION 1170 } 1171 1172 /// EvaluateHasIncludeCommon - Process a '__has_include("path")' 1173 /// or '__has_include_next("path")' expression. 1174 /// Returns true if successful. 1175 static bool EvaluateHasIncludeCommon(Token &Tok, IdentifierInfo *II, 1176 Preprocessor &PP, 1177 ConstSearchDirIterator LookupFrom, 1178 const FileEntry *LookupFromFile) { 1179 // Save the location of the current token. If a '(' is later found, use 1180 // that location. If not, use the end of this location instead. 1181 SourceLocation LParenLoc = Tok.getLocation(); 1182 1183 // These expressions are only allowed within a preprocessor directive. 1184 if (!PP.isParsingIfOrElifDirective()) { 1185 PP.Diag(LParenLoc, diag::err_pp_directive_required) << II; 1186 // Return a valid identifier token. 1187 assert(Tok.is(tok::identifier)); 1188 Tok.setIdentifierInfo(II); 1189 return false; 1190 } 1191 1192 // Get '('. If we don't have a '(', try to form a header-name token. 1193 do { 1194 if (PP.LexHeaderName(Tok)) 1195 return false; 1196 } while (Tok.getKind() == tok::comment); 1197 1198 // Ensure we have a '('. 1199 if (Tok.isNot(tok::l_paren)) { 1200 // No '(', use end of last token. 1201 LParenLoc = PP.getLocForEndOfToken(LParenLoc); 1202 PP.Diag(LParenLoc, diag::err_pp_expected_after) << II << tok::l_paren; 1203 // If the next token looks like a filename or the start of one, 1204 // assume it is and process it as such. 1205 if (Tok.isNot(tok::header_name)) 1206 return false; 1207 } else { 1208 // Save '(' location for possible missing ')' message. 1209 LParenLoc = Tok.getLocation(); 1210 if (PP.LexHeaderName(Tok)) 1211 return false; 1212 } 1213 1214 if (Tok.isNot(tok::header_name)) { 1215 PP.Diag(Tok.getLocation(), diag::err_pp_expects_filename); 1216 return false; 1217 } 1218 1219 // Reserve a buffer to get the spelling. 1220 SmallString<128> FilenameBuffer; 1221 bool Invalid = false; 1222 StringRef Filename = PP.getSpelling(Tok, FilenameBuffer, &Invalid); 1223 if (Invalid) 1224 return false; 1225 1226 SourceLocation FilenameLoc = Tok.getLocation(); 1227 1228 // Get ')'. 1229 PP.LexNonComment(Tok); 1230 1231 // Ensure we have a trailing ). 1232 if (Tok.isNot(tok::r_paren)) { 1233 PP.Diag(PP.getLocForEndOfToken(FilenameLoc), diag::err_pp_expected_after) 1234 << II << tok::r_paren; 1235 PP.Diag(LParenLoc, diag::note_matching) << tok::l_paren; 1236 return false; 1237 } 1238 1239 bool isAngled = PP.GetIncludeFilenameSpelling(Tok.getLocation(), Filename); 1240 // If GetIncludeFilenameSpelling set the start ptr to null, there was an 1241 // error. 1242 if (Filename.empty()) 1243 return false; 1244 1245 // Passing this to LookupFile forces header search to check whether the found 1246 // file belongs to a module. Skipping that check could incorrectly mark 1247 // modular header as textual, causing issues down the line. 1248 ModuleMap::KnownHeader KH; 1249 1250 // Search include directories. 1251 OptionalFileEntryRef File = 1252 PP.LookupFile(FilenameLoc, Filename, isAngled, LookupFrom, LookupFromFile, 1253 nullptr, nullptr, nullptr, &KH, nullptr, nullptr); 1254 1255 if (PPCallbacks *Callbacks = PP.getPPCallbacks()) { 1256 SrcMgr::CharacteristicKind FileType = SrcMgr::C_User; 1257 if (File) 1258 FileType = PP.getHeaderSearchInfo().getFileDirFlavor(*File); 1259 Callbacks->HasInclude(FilenameLoc, Filename, isAngled, File, FileType); 1260 } 1261 1262 // Get the result value. A result of true means the file exists. 1263 return File.has_value(); 1264 } 1265 1266 /// EvaluateHasEmbed - Process a '__has_embed("foo" params...)' expression. 1267 /// Returns a filled optional with the value if successful; otherwise, empty. 1268 EmbedResult Preprocessor::EvaluateHasEmbed(Token &Tok, IdentifierInfo *II) { 1269 // These expressions are only allowed within a preprocessor directive. 1270 if (!this->isParsingIfOrElifDirective()) { 1271 Diag(Tok, diag::err_pp_directive_required) << II; 1272 // Return a valid identifier token. 1273 assert(Tok.is(tok::identifier)); 1274 Tok.setIdentifierInfo(II); 1275 return EmbedResult::Invalid; 1276 } 1277 1278 // Ensure we have a '('. 1279 LexUnexpandedToken(Tok); 1280 if (Tok.isNot(tok::l_paren)) { 1281 Diag(Tok, diag::err_pp_expected_after) << II << tok::l_paren; 1282 // If the next token looks like a filename or the start of one, 1283 // assume it is and process it as such. 1284 return EmbedResult::Invalid; 1285 } 1286 1287 // Save '(' location for possible missing ')' message and then lex the header 1288 // name token for the embed resource. 1289 SourceLocation LParenLoc = Tok.getLocation(); 1290 if (this->LexHeaderName(Tok)) 1291 return EmbedResult::Invalid; 1292 1293 if (Tok.isNot(tok::header_name)) { 1294 Diag(Tok.getLocation(), diag::err_pp_expects_filename); 1295 return EmbedResult::Invalid; 1296 } 1297 1298 SourceLocation FilenameLoc = Tok.getLocation(); 1299 Token FilenameTok = Tok; 1300 1301 std::optional<LexEmbedParametersResult> Params = 1302 this->LexEmbedParameters(Tok, /*ForHasEmbed=*/true); 1303 assert((Params || Tok.is(tok::eod)) && 1304 "expected success or to be at the end of the directive"); 1305 1306 if (!Params) 1307 return EmbedResult::Invalid; 1308 1309 if (Params->UnrecognizedParams > 0) 1310 return EmbedResult::NotFound; 1311 1312 if (!Tok.is(tok::r_paren)) { 1313 Diag(this->getLocForEndOfToken(FilenameLoc), diag::err_pp_expected_after) 1314 << II << tok::r_paren; 1315 Diag(LParenLoc, diag::note_matching) << tok::l_paren; 1316 if (Tok.isNot(tok::eod)) 1317 DiscardUntilEndOfDirective(); 1318 return EmbedResult::Invalid; 1319 } 1320 1321 SmallString<128> FilenameBuffer; 1322 StringRef Filename = this->getSpelling(FilenameTok, FilenameBuffer); 1323 bool isAngled = 1324 this->GetIncludeFilenameSpelling(FilenameTok.getLocation(), Filename); 1325 // If GetIncludeFilenameSpelling set the start ptr to null, there was an 1326 // error. 1327 assert(!Filename.empty()); 1328 const FileEntry *LookupFromFile = 1329 this->getCurrentFileLexer() ? *this->getCurrentFileLexer()->getFileEntry() 1330 : static_cast<FileEntry *>(nullptr); 1331 OptionalFileEntryRef MaybeFileEntry = 1332 this->LookupEmbedFile(Filename, isAngled, false, LookupFromFile); 1333 if (Callbacks) { 1334 Callbacks->HasEmbed(LParenLoc, Filename, isAngled, MaybeFileEntry); 1335 } 1336 if (!MaybeFileEntry) 1337 return EmbedResult::NotFound; 1338 1339 size_t FileSize = MaybeFileEntry->getSize(); 1340 // First, "offset" into the file (this reduces the amount of data we can read 1341 // from the file). 1342 if (Params->MaybeOffsetParam) { 1343 if (Params->MaybeOffsetParam->Offset > FileSize) 1344 FileSize = 0; 1345 else 1346 FileSize -= Params->MaybeOffsetParam->Offset; 1347 } 1348 1349 // Second, limit the data from the file (this also reduces the amount of data 1350 // we can read from the file). 1351 if (Params->MaybeLimitParam) { 1352 if (Params->MaybeLimitParam->Limit > FileSize) 1353 FileSize = 0; 1354 else 1355 FileSize = Params->MaybeLimitParam->Limit; 1356 } 1357 1358 // If we have no data left to read, the file is empty, otherwise we have the 1359 // expected resource. 1360 if (FileSize == 0) 1361 return EmbedResult::Empty; 1362 return EmbedResult::Found; 1363 } 1364 1365 bool Preprocessor::EvaluateHasInclude(Token &Tok, IdentifierInfo *II) { 1366 return EvaluateHasIncludeCommon(Tok, II, *this, nullptr, nullptr); 1367 } 1368 1369 bool Preprocessor::EvaluateHasIncludeNext(Token &Tok, IdentifierInfo *II) { 1370 ConstSearchDirIterator Lookup = nullptr; 1371 const FileEntry *LookupFromFile; 1372 std::tie(Lookup, LookupFromFile) = getIncludeNextStart(Tok); 1373 1374 return EvaluateHasIncludeCommon(Tok, II, *this, Lookup, LookupFromFile); 1375 } 1376 1377 /// Process single-argument builtin feature-like macros that return 1378 /// integer values. 1379 static void EvaluateFeatureLikeBuiltinMacro(llvm::raw_svector_ostream& OS, 1380 Token &Tok, IdentifierInfo *II, 1381 Preprocessor &PP, bool ExpandArgs, 1382 llvm::function_ref< 1383 int(Token &Tok, 1384 bool &HasLexedNextTok)> Op) { 1385 // Parse the initial '('. 1386 PP.LexUnexpandedToken(Tok); 1387 if (Tok.isNot(tok::l_paren)) { 1388 PP.Diag(Tok.getLocation(), diag::err_pp_expected_after) << II 1389 << tok::l_paren; 1390 1391 // Provide a dummy '0' value on output stream to elide further errors. 1392 if (!Tok.isOneOf(tok::eof, tok::eod)) { 1393 OS << 0; 1394 Tok.setKind(tok::numeric_constant); 1395 } 1396 return; 1397 } 1398 1399 unsigned ParenDepth = 1; 1400 SourceLocation LParenLoc = Tok.getLocation(); 1401 std::optional<int> Result; 1402 1403 Token ResultTok; 1404 bool SuppressDiagnostic = false; 1405 while (true) { 1406 // Parse next token. 1407 if (ExpandArgs) 1408 PP.Lex(Tok); 1409 else 1410 PP.LexUnexpandedToken(Tok); 1411 1412 already_lexed: 1413 switch (Tok.getKind()) { 1414 case tok::eof: 1415 case tok::eod: 1416 // Don't provide even a dummy value if the eod or eof marker is 1417 // reached. Simply provide a diagnostic. 1418 PP.Diag(Tok.getLocation(), diag::err_unterm_macro_invoc); 1419 return; 1420 1421 case tok::comma: 1422 if (!SuppressDiagnostic) { 1423 PP.Diag(Tok.getLocation(), diag::err_too_many_args_in_macro_invoc); 1424 SuppressDiagnostic = true; 1425 } 1426 continue; 1427 1428 case tok::l_paren: 1429 ++ParenDepth; 1430 if (Result) 1431 break; 1432 if (!SuppressDiagnostic) { 1433 PP.Diag(Tok.getLocation(), diag::err_pp_nested_paren) << II; 1434 SuppressDiagnostic = true; 1435 } 1436 continue; 1437 1438 case tok::r_paren: 1439 if (--ParenDepth > 0) 1440 continue; 1441 1442 // The last ')' has been reached; return the value if one found or 1443 // a diagnostic and a dummy value. 1444 if (Result) { 1445 OS << *Result; 1446 // For strict conformance to __has_cpp_attribute rules, use 'L' 1447 // suffix for dated literals. 1448 if (*Result > 1) 1449 OS << 'L'; 1450 } else { 1451 OS << 0; 1452 if (!SuppressDiagnostic) 1453 PP.Diag(Tok.getLocation(), diag::err_too_few_args_in_macro_invoc); 1454 } 1455 Tok.setKind(tok::numeric_constant); 1456 return; 1457 1458 default: { 1459 // Parse the macro argument, if one not found so far. 1460 if (Result) 1461 break; 1462 1463 bool HasLexedNextToken = false; 1464 Result = Op(Tok, HasLexedNextToken); 1465 ResultTok = Tok; 1466 if (HasLexedNextToken) 1467 goto already_lexed; 1468 continue; 1469 } 1470 } 1471 1472 // Diagnose missing ')'. 1473 if (!SuppressDiagnostic) { 1474 if (auto Diag = PP.Diag(Tok.getLocation(), diag::err_pp_expected_after)) { 1475 if (IdentifierInfo *LastII = ResultTok.getIdentifierInfo()) 1476 Diag << LastII; 1477 else 1478 Diag << ResultTok.getKind(); 1479 Diag << tok::r_paren << ResultTok.getLocation(); 1480 } 1481 PP.Diag(LParenLoc, diag::note_matching) << tok::l_paren; 1482 SuppressDiagnostic = true; 1483 } 1484 } 1485 } 1486 1487 /// Helper function to return the IdentifierInfo structure of a Token 1488 /// or generate a diagnostic if none available. 1489 static IdentifierInfo *ExpectFeatureIdentifierInfo(Token &Tok, 1490 Preprocessor &PP, 1491 signed DiagID) { 1492 IdentifierInfo *II; 1493 if (!Tok.isAnnotation() && (II = Tok.getIdentifierInfo())) 1494 return II; 1495 1496 PP.Diag(Tok.getLocation(), DiagID); 1497 return nullptr; 1498 } 1499 1500 /// Implements the __is_target_arch builtin macro. 1501 static bool isTargetArch(const TargetInfo &TI, const IdentifierInfo *II) { 1502 std::string ArchName = II->getName().lower() + "--"; 1503 llvm::Triple Arch(ArchName); 1504 const llvm::Triple &TT = TI.getTriple(); 1505 if (TT.isThumb()) { 1506 // arm matches thumb or thumbv7. armv7 matches thumbv7. 1507 if ((Arch.getSubArch() == llvm::Triple::NoSubArch || 1508 Arch.getSubArch() == TT.getSubArch()) && 1509 ((TT.getArch() == llvm::Triple::thumb && 1510 Arch.getArch() == llvm::Triple::arm) || 1511 (TT.getArch() == llvm::Triple::thumbeb && 1512 Arch.getArch() == llvm::Triple::armeb))) 1513 return true; 1514 } 1515 // Check the parsed arch when it has no sub arch to allow Clang to 1516 // match thumb to thumbv7 but to prohibit matching thumbv6 to thumbv7. 1517 return (Arch.getSubArch() == llvm::Triple::NoSubArch || 1518 Arch.getSubArch() == TT.getSubArch()) && 1519 Arch.getArch() == TT.getArch(); 1520 } 1521 1522 /// Implements the __is_target_vendor builtin macro. 1523 static bool isTargetVendor(const TargetInfo &TI, const IdentifierInfo *II) { 1524 StringRef VendorName = TI.getTriple().getVendorName(); 1525 if (VendorName.empty()) 1526 VendorName = "unknown"; 1527 return VendorName.equals_insensitive(II->getName()); 1528 } 1529 1530 /// Implements the __is_target_os builtin macro. 1531 static bool isTargetOS(const TargetInfo &TI, const IdentifierInfo *II) { 1532 std::string OSName = 1533 (llvm::Twine("unknown-unknown-") + II->getName().lower()).str(); 1534 llvm::Triple OS(OSName); 1535 if (OS.getOS() == llvm::Triple::Darwin) { 1536 // Darwin matches macos, ios, etc. 1537 return TI.getTriple().isOSDarwin(); 1538 } 1539 return TI.getTriple().getOS() == OS.getOS(); 1540 } 1541 1542 /// Implements the __is_target_environment builtin macro. 1543 static bool isTargetEnvironment(const TargetInfo &TI, 1544 const IdentifierInfo *II) { 1545 std::string EnvName = (llvm::Twine("---") + II->getName().lower()).str(); 1546 llvm::Triple Env(EnvName); 1547 // The unknown environment is matched only if 1548 // '__is_target_environment(unknown)' is used. 1549 if (Env.getEnvironment() == llvm::Triple::UnknownEnvironment && 1550 EnvName != "---unknown") 1551 return false; 1552 return TI.getTriple().getEnvironment() == Env.getEnvironment(); 1553 } 1554 1555 /// Implements the __is_target_variant_os builtin macro. 1556 static bool isTargetVariantOS(const TargetInfo &TI, const IdentifierInfo *II) { 1557 if (TI.getTriple().isOSDarwin()) { 1558 const llvm::Triple *VariantTriple = TI.getDarwinTargetVariantTriple(); 1559 if (!VariantTriple) 1560 return false; 1561 1562 std::string OSName = 1563 (llvm::Twine("unknown-unknown-") + II->getName().lower()).str(); 1564 llvm::Triple OS(OSName); 1565 if (OS.getOS() == llvm::Triple::Darwin) { 1566 // Darwin matches macos, ios, etc. 1567 return VariantTriple->isOSDarwin(); 1568 } 1569 return VariantTriple->getOS() == OS.getOS(); 1570 } 1571 return false; 1572 } 1573 1574 /// Implements the __is_target_variant_environment builtin macro. 1575 static bool isTargetVariantEnvironment(const TargetInfo &TI, 1576 const IdentifierInfo *II) { 1577 if (TI.getTriple().isOSDarwin()) { 1578 const llvm::Triple *VariantTriple = TI.getDarwinTargetVariantTriple(); 1579 if (!VariantTriple) 1580 return false; 1581 std::string EnvName = (llvm::Twine("---") + II->getName().lower()).str(); 1582 llvm::Triple Env(EnvName); 1583 return VariantTriple->getEnvironment() == Env.getEnvironment(); 1584 } 1585 return false; 1586 } 1587 1588 #if defined(__sun__) && defined(__svr4__) && defined(__clang__) && \ 1589 __clang__ < 20 1590 // GCC mangles std::tm as tm for binary compatibility on Solaris (Issue 1591 // #33114). We need to match this to allow the std::put_time calls to link 1592 // (PR #99075). clang 20 contains a fix, but the workaround is still needed 1593 // with older versions. 1594 asm("_ZNKSt8time_putIcSt19ostreambuf_iteratorIcSt11char_traitsIcEEE3putES3_" 1595 "RSt8ios_basecPKSt2tmPKcSB_ = " 1596 "_ZNKSt8time_putIcSt19ostreambuf_iteratorIcSt11char_traitsIcEEE3putES3_" 1597 "RSt8ios_basecPK2tmPKcSB_"); 1598 #endif 1599 1600 static bool IsBuiltinTrait(Token &Tok) { 1601 1602 #define TYPE_TRAIT_1(Spelling, Name, Key) \ 1603 case tok::kw_##Spelling: \ 1604 return true; 1605 #define TYPE_TRAIT_2(Spelling, Name, Key) \ 1606 case tok::kw_##Spelling: \ 1607 return true; 1608 #define TYPE_TRAIT_N(Spelling, Name, Key) \ 1609 case tok::kw_##Spelling: \ 1610 return true; 1611 #define ARRAY_TYPE_TRAIT(Spelling, Name, Key) \ 1612 case tok::kw_##Spelling: \ 1613 return true; 1614 #define EXPRESSION_TRAIT(Spelling, Name, Key) \ 1615 case tok::kw_##Spelling: \ 1616 return true; 1617 #define TRANSFORM_TYPE_TRAIT_DEF(K, Spelling) \ 1618 case tok::kw___##Spelling: \ 1619 return true; 1620 1621 switch (Tok.getKind()) { 1622 default: 1623 return false; 1624 #include "clang/Basic/TokenKinds.def" 1625 } 1626 } 1627 1628 /// ExpandBuiltinMacro - If an identifier token is read that is to be expanded 1629 /// as a builtin macro, handle it and return the next token as 'Tok'. 1630 void Preprocessor::ExpandBuiltinMacro(Token &Tok) { 1631 // Figure out which token this is. 1632 IdentifierInfo *II = Tok.getIdentifierInfo(); 1633 assert(II && "Can't be a macro without id info!"); 1634 1635 // If this is an _Pragma or Microsoft __pragma directive, expand it, 1636 // invoke the pragma handler, then lex the token after it. 1637 if (II == Ident_Pragma) 1638 return Handle_Pragma(Tok); 1639 else if (II == Ident__pragma) // in non-MS mode this is null 1640 return HandleMicrosoft__pragma(Tok); 1641 1642 ++NumBuiltinMacroExpanded; 1643 1644 SmallString<128> TmpBuffer; 1645 llvm::raw_svector_ostream OS(TmpBuffer); 1646 1647 // Set up the return result. 1648 Tok.setIdentifierInfo(nullptr); 1649 Tok.clearFlag(Token::NeedsCleaning); 1650 bool IsAtStartOfLine = Tok.isAtStartOfLine(); 1651 bool HasLeadingSpace = Tok.hasLeadingSpace(); 1652 1653 if (II == Ident__LINE__) { 1654 // C99 6.10.8: "__LINE__: The presumed line number (within the current 1655 // source file) of the current source line (an integer constant)". This can 1656 // be affected by #line. 1657 SourceLocation Loc = Tok.getLocation(); 1658 1659 // Advance to the location of the first _, this might not be the first byte 1660 // of the token if it starts with an escaped newline. 1661 Loc = AdvanceToTokenCharacter(Loc, 0); 1662 1663 // One wrinkle here is that GCC expands __LINE__ to location of the *end* of 1664 // a macro expansion. This doesn't matter for object-like macros, but 1665 // can matter for a function-like macro that expands to contain __LINE__. 1666 // Skip down through expansion points until we find a file loc for the 1667 // end of the expansion history. 1668 Loc = SourceMgr.getExpansionRange(Loc).getEnd(); 1669 PresumedLoc PLoc = SourceMgr.getPresumedLoc(Loc); 1670 1671 // __LINE__ expands to a simple numeric value. 1672 OS << (PLoc.isValid()? PLoc.getLine() : 1); 1673 Tok.setKind(tok::numeric_constant); 1674 } else if (II == Ident__FILE__ || II == Ident__BASE_FILE__ || 1675 II == Ident__FILE_NAME__) { 1676 // C99 6.10.8: "__FILE__: The presumed name of the current source file (a 1677 // character string literal)". This can be affected by #line. 1678 PresumedLoc PLoc = SourceMgr.getPresumedLoc(Tok.getLocation()); 1679 1680 // __BASE_FILE__ is a GNU extension that returns the top of the presumed 1681 // #include stack instead of the current file. 1682 if (II == Ident__BASE_FILE__ && PLoc.isValid()) { 1683 SourceLocation NextLoc = PLoc.getIncludeLoc(); 1684 while (NextLoc.isValid()) { 1685 PLoc = SourceMgr.getPresumedLoc(NextLoc); 1686 if (PLoc.isInvalid()) 1687 break; 1688 1689 NextLoc = PLoc.getIncludeLoc(); 1690 } 1691 } 1692 1693 // Escape this filename. Turn '\' -> '\\' '"' -> '\"' 1694 SmallString<256> FN; 1695 if (PLoc.isValid()) { 1696 // __FILE_NAME__ is a Clang-specific extension that expands to the 1697 // the last part of __FILE__. 1698 if (II == Ident__FILE_NAME__) { 1699 processPathToFileName(FN, PLoc, getLangOpts(), getTargetInfo()); 1700 } else { 1701 FN += PLoc.getFilename(); 1702 processPathForFileMacro(FN, getLangOpts(), getTargetInfo()); 1703 } 1704 Lexer::Stringify(FN); 1705 OS << '"' << FN << '"'; 1706 } 1707 Tok.setKind(tok::string_literal); 1708 } else if (II == Ident__DATE__) { 1709 Diag(Tok.getLocation(), diag::warn_pp_date_time); 1710 if (!DATELoc.isValid()) 1711 ComputeDATE_TIME(DATELoc, TIMELoc, *this); 1712 Tok.setKind(tok::string_literal); 1713 Tok.setLength(strlen("\"Mmm dd yyyy\"")); 1714 Tok.setLocation(SourceMgr.createExpansionLoc(DATELoc, Tok.getLocation(), 1715 Tok.getLocation(), 1716 Tok.getLength())); 1717 return; 1718 } else if (II == Ident__TIME__) { 1719 Diag(Tok.getLocation(), diag::warn_pp_date_time); 1720 if (!TIMELoc.isValid()) 1721 ComputeDATE_TIME(DATELoc, TIMELoc, *this); 1722 Tok.setKind(tok::string_literal); 1723 Tok.setLength(strlen("\"hh:mm:ss\"")); 1724 Tok.setLocation(SourceMgr.createExpansionLoc(TIMELoc, Tok.getLocation(), 1725 Tok.getLocation(), 1726 Tok.getLength())); 1727 return; 1728 } else if (II == Ident__INCLUDE_LEVEL__) { 1729 // Compute the presumed include depth of this token. This can be affected 1730 // by GNU line markers. 1731 unsigned Depth = 0; 1732 1733 PresumedLoc PLoc = SourceMgr.getPresumedLoc(Tok.getLocation()); 1734 if (PLoc.isValid()) { 1735 PLoc = SourceMgr.getPresumedLoc(PLoc.getIncludeLoc()); 1736 for (; PLoc.isValid(); ++Depth) 1737 PLoc = SourceMgr.getPresumedLoc(PLoc.getIncludeLoc()); 1738 } 1739 1740 // __INCLUDE_LEVEL__ expands to a simple numeric value. 1741 OS << Depth; 1742 Tok.setKind(tok::numeric_constant); 1743 } else if (II == Ident__TIMESTAMP__) { 1744 Diag(Tok.getLocation(), diag::warn_pp_date_time); 1745 // MSVC, ICC, GCC, VisualAge C++ extension. The generated string should be 1746 // of the form "Ddd Mmm dd hh::mm::ss yyyy", which is returned by asctime. 1747 std::string Result; 1748 std::stringstream TmpStream; 1749 TmpStream.imbue(std::locale("C")); 1750 if (getPreprocessorOpts().SourceDateEpoch) { 1751 time_t TT = *getPreprocessorOpts().SourceDateEpoch; 1752 std::tm *TM = std::gmtime(&TT); 1753 TmpStream << std::put_time(TM, "%a %b %e %T %Y"); 1754 } else { 1755 // Get the file that we are lexing out of. If we're currently lexing from 1756 // a macro, dig into the include stack. 1757 const FileEntry *CurFile = nullptr; 1758 if (PreprocessorLexer *TheLexer = getCurrentFileLexer()) 1759 CurFile = SourceMgr.getFileEntryForID(TheLexer->getFileID()); 1760 if (CurFile) { 1761 time_t TT = CurFile->getModificationTime(); 1762 struct tm *TM = localtime(&TT); 1763 TmpStream << std::put_time(TM, "%a %b %e %T %Y"); 1764 } 1765 } 1766 Result = TmpStream.str(); 1767 if (Result.empty()) 1768 Result = "??? ??? ?? ??:??:?? ????"; 1769 OS << '"' << Result << '"'; 1770 Tok.setKind(tok::string_literal); 1771 } else if (II == Ident__FLT_EVAL_METHOD__) { 1772 // __FLT_EVAL_METHOD__ is set to the default value. 1773 OS << getTUFPEvalMethod(); 1774 // __FLT_EVAL_METHOD__ expands to a simple numeric value. 1775 Tok.setKind(tok::numeric_constant); 1776 if (getLastFPEvalPragmaLocation().isValid()) { 1777 // The program is ill-formed. The value of __FLT_EVAL_METHOD__ is altered 1778 // by the pragma. 1779 Diag(Tok, diag::err_illegal_use_of_flt_eval_macro); 1780 Diag(getLastFPEvalPragmaLocation(), diag::note_pragma_entered_here); 1781 } 1782 } else if (II == Ident__COUNTER__) { 1783 // __COUNTER__ expands to a simple numeric value. 1784 OS << CounterValue++; 1785 Tok.setKind(tok::numeric_constant); 1786 } else if (II == Ident__has_feature) { 1787 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, false, 1788 [this](Token &Tok, bool &HasLexedNextToken) -> int { 1789 IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this, 1790 diag::err_feature_check_malformed); 1791 return II && HasFeature(*this, II->getName()); 1792 }); 1793 } else if (II == Ident__has_extension) { 1794 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, false, 1795 [this](Token &Tok, bool &HasLexedNextToken) -> int { 1796 IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this, 1797 diag::err_feature_check_malformed); 1798 return II && HasExtension(*this, II->getName()); 1799 }); 1800 } else if (II == Ident__has_builtin) { 1801 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, false, 1802 [this](Token &Tok, bool &HasLexedNextToken) -> int { 1803 IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this, 1804 diag::err_feature_check_malformed); 1805 if (!II) 1806 return false; 1807 else if (II->getBuiltinID() != 0) { 1808 switch (II->getBuiltinID()) { 1809 case Builtin::BI__builtin_cpu_is: 1810 return getTargetInfo().supportsCpuIs(); 1811 case Builtin::BI__builtin_cpu_init: 1812 return getTargetInfo().supportsCpuInit(); 1813 case Builtin::BI__builtin_cpu_supports: 1814 return getTargetInfo().supportsCpuSupports(); 1815 case Builtin::BI__builtin_operator_new: 1816 case Builtin::BI__builtin_operator_delete: 1817 // denotes date of behavior change to support calling arbitrary 1818 // usual allocation and deallocation functions. Required by libc++ 1819 return 201802; 1820 default: 1821 return Builtin::evaluateRequiredTargetFeatures( 1822 getBuiltinInfo().getRequiredFeatures(II->getBuiltinID()), 1823 getTargetInfo().getTargetOpts().FeatureMap); 1824 } 1825 return true; 1826 } else if (IsBuiltinTrait(Tok)) { 1827 return true; 1828 } else if (II->getTokenID() != tok::identifier && 1829 II->getName().starts_with("__builtin_")) { 1830 return true; 1831 } else { 1832 return llvm::StringSwitch<bool>(II->getName()) 1833 // Report builtin templates as being builtins. 1834 .Case("__make_integer_seq", getLangOpts().CPlusPlus) 1835 .Case("__type_pack_element", getLangOpts().CPlusPlus) 1836 .Case("__builtin_common_type", getLangOpts().CPlusPlus) 1837 // Likewise for some builtin preprocessor macros. 1838 // FIXME: This is inconsistent; we usually suggest detecting 1839 // builtin macros via #ifdef. Don't add more cases here. 1840 .Case("__is_target_arch", true) 1841 .Case("__is_target_vendor", true) 1842 .Case("__is_target_os", true) 1843 .Case("__is_target_environment", true) 1844 .Case("__is_target_variant_os", true) 1845 .Case("__is_target_variant_environment", true) 1846 .Default(false); 1847 } 1848 }); 1849 } else if (II == Ident__has_constexpr_builtin) { 1850 EvaluateFeatureLikeBuiltinMacro( 1851 OS, Tok, II, *this, false, 1852 [this](Token &Tok, bool &HasLexedNextToken) -> int { 1853 IdentifierInfo *II = ExpectFeatureIdentifierInfo( 1854 Tok, *this, diag::err_feature_check_malformed); 1855 if (!II) 1856 return false; 1857 unsigned BuiltinOp = II->getBuiltinID(); 1858 return BuiltinOp != 0 && 1859 this->getBuiltinInfo().isConstantEvaluated(BuiltinOp); 1860 }); 1861 } else if (II == Ident__is_identifier) { 1862 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, false, 1863 [](Token &Tok, bool &HasLexedNextToken) -> int { 1864 return Tok.is(tok::identifier); 1865 }); 1866 } else if (II == Ident__has_attribute) { 1867 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, true, 1868 [this](Token &Tok, bool &HasLexedNextToken) -> int { 1869 IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this, 1870 diag::err_feature_check_malformed); 1871 return II ? hasAttribute(AttributeCommonInfo::Syntax::AS_GNU, nullptr, 1872 II, getTargetInfo(), getLangOpts()) 1873 : 0; 1874 }); 1875 } else if (II == Ident__has_declspec) { 1876 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, true, 1877 [this](Token &Tok, bool &HasLexedNextToken) -> int { 1878 IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this, 1879 diag::err_feature_check_malformed); 1880 if (II) { 1881 const LangOptions &LangOpts = getLangOpts(); 1882 return LangOpts.DeclSpecKeyword && 1883 hasAttribute(AttributeCommonInfo::Syntax::AS_Declspec, nullptr, 1884 II, getTargetInfo(), LangOpts); 1885 } 1886 1887 return false; 1888 }); 1889 } else if (II == Ident__has_cpp_attribute || 1890 II == Ident__has_c_attribute) { 1891 bool IsCXX = II == Ident__has_cpp_attribute; 1892 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, true, 1893 [&](Token &Tok, bool &HasLexedNextToken) -> int { 1894 IdentifierInfo *ScopeII = nullptr; 1895 IdentifierInfo *II = ExpectFeatureIdentifierInfo( 1896 Tok, *this, diag::err_feature_check_malformed); 1897 if (!II) 1898 return false; 1899 1900 // It is possible to receive a scope token. Read the "::", if it is 1901 // available, and the subsequent identifier. 1902 LexUnexpandedToken(Tok); 1903 if (Tok.isNot(tok::coloncolon)) 1904 HasLexedNextToken = true; 1905 else { 1906 ScopeII = II; 1907 // Lex an expanded token for the attribute name. 1908 Lex(Tok); 1909 II = ExpectFeatureIdentifierInfo(Tok, *this, 1910 diag::err_feature_check_malformed); 1911 } 1912 1913 AttributeCommonInfo::Syntax Syntax = 1914 IsCXX ? AttributeCommonInfo::Syntax::AS_CXX11 1915 : AttributeCommonInfo::Syntax::AS_C23; 1916 return II ? hasAttribute(Syntax, ScopeII, II, getTargetInfo(), 1917 getLangOpts()) 1918 : 0; 1919 }); 1920 } else if (II == Ident__has_include || 1921 II == Ident__has_include_next) { 1922 // The argument to these two builtins should be a parenthesized 1923 // file name string literal using angle brackets (<>) or 1924 // double-quotes (""). 1925 bool Value; 1926 if (II == Ident__has_include) 1927 Value = EvaluateHasInclude(Tok, II); 1928 else 1929 Value = EvaluateHasIncludeNext(Tok, II); 1930 1931 if (Tok.isNot(tok::r_paren)) 1932 return; 1933 OS << (int)Value; 1934 Tok.setKind(tok::numeric_constant); 1935 } else if (II == Ident__has_embed) { 1936 // The argument to these two builtins should be a parenthesized 1937 // file name string literal using angle brackets (<>) or 1938 // double-quotes (""), optionally followed by a series of 1939 // arguments similar to form like attributes. 1940 EmbedResult Value = EvaluateHasEmbed(Tok, II); 1941 if (Value == EmbedResult::Invalid) 1942 return; 1943 1944 Tok.setKind(tok::numeric_constant); 1945 OS << static_cast<int>(Value); 1946 } else if (II == Ident__has_warning) { 1947 // The argument should be a parenthesized string literal. 1948 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, false, 1949 [this](Token &Tok, bool &HasLexedNextToken) -> int { 1950 std::string WarningName; 1951 SourceLocation StrStartLoc = Tok.getLocation(); 1952 1953 HasLexedNextToken = Tok.is(tok::string_literal); 1954 if (!FinishLexStringLiteral(Tok, WarningName, "'__has_warning'", 1955 /*AllowMacroExpansion=*/false)) 1956 return false; 1957 1958 // FIXME: Should we accept "-R..." flags here, or should that be 1959 // handled by a separate __has_remark? 1960 if (WarningName.size() < 3 || WarningName[0] != '-' || 1961 WarningName[1] != 'W') { 1962 Diag(StrStartLoc, diag::warn_has_warning_invalid_option); 1963 return false; 1964 } 1965 1966 // Finally, check if the warning flags maps to a diagnostic group. 1967 // We construct a SmallVector here to talk to getDiagnosticIDs(). 1968 // Although we don't use the result, this isn't a hot path, and not 1969 // worth special casing. 1970 SmallVector<diag::kind, 10> Diags; 1971 return !getDiagnostics().getDiagnosticIDs()-> 1972 getDiagnosticsInGroup(diag::Flavor::WarningOrError, 1973 WarningName.substr(2), Diags); 1974 }); 1975 } else if (II == Ident__building_module) { 1976 // The argument to this builtin should be an identifier. The 1977 // builtin evaluates to 1 when that identifier names the module we are 1978 // currently building. 1979 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, false, 1980 [this](Token &Tok, bool &HasLexedNextToken) -> int { 1981 IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this, 1982 diag::err_expected_id_building_module); 1983 return getLangOpts().isCompilingModule() && II && 1984 (II->getName() == getLangOpts().CurrentModule); 1985 }); 1986 } else if (II == Ident__MODULE__) { 1987 // The current module as an identifier. 1988 OS << getLangOpts().CurrentModule; 1989 IdentifierInfo *ModuleII = getIdentifierInfo(getLangOpts().CurrentModule); 1990 Tok.setIdentifierInfo(ModuleII); 1991 Tok.setKind(ModuleII->getTokenID()); 1992 } else if (II == Ident__identifier) { 1993 SourceLocation Loc = Tok.getLocation(); 1994 1995 // We're expecting '__identifier' '(' identifier ')'. Try to recover 1996 // if the parens are missing. 1997 LexNonComment(Tok); 1998 if (Tok.isNot(tok::l_paren)) { 1999 // No '(', use end of last token. 2000 Diag(getLocForEndOfToken(Loc), diag::err_pp_expected_after) 2001 << II << tok::l_paren; 2002 // If the next token isn't valid as our argument, we can't recover. 2003 if (!Tok.isAnnotation() && Tok.getIdentifierInfo()) 2004 Tok.setKind(tok::identifier); 2005 return; 2006 } 2007 2008 SourceLocation LParenLoc = Tok.getLocation(); 2009 LexNonComment(Tok); 2010 2011 if (!Tok.isAnnotation() && Tok.getIdentifierInfo()) 2012 Tok.setKind(tok::identifier); 2013 else if (Tok.is(tok::string_literal) && !Tok.hasUDSuffix()) { 2014 StringLiteralParser Literal(Tok, *this, 2015 StringLiteralEvalMethod::Unevaluated); 2016 if (Literal.hadError) 2017 return; 2018 2019 Tok.setIdentifierInfo(getIdentifierInfo(Literal.GetString())); 2020 Tok.setKind(tok::identifier); 2021 } else { 2022 Diag(Tok.getLocation(), diag::err_pp_identifier_arg_not_identifier) 2023 << Tok.getKind(); 2024 // Don't walk past anything that's not a real token. 2025 if (Tok.isOneOf(tok::eof, tok::eod) || Tok.isAnnotation()) 2026 return; 2027 } 2028 2029 // Discard the ')', preserving 'Tok' as our result. 2030 Token RParen; 2031 LexNonComment(RParen); 2032 if (RParen.isNot(tok::r_paren)) { 2033 Diag(getLocForEndOfToken(Tok.getLocation()), diag::err_pp_expected_after) 2034 << Tok.getKind() << tok::r_paren; 2035 Diag(LParenLoc, diag::note_matching) << tok::l_paren; 2036 } 2037 return; 2038 } else if (II == Ident__is_target_arch) { 2039 EvaluateFeatureLikeBuiltinMacro( 2040 OS, Tok, II, *this, false, 2041 [this](Token &Tok, bool &HasLexedNextToken) -> int { 2042 IdentifierInfo *II = ExpectFeatureIdentifierInfo( 2043 Tok, *this, diag::err_feature_check_malformed); 2044 return II && isTargetArch(getTargetInfo(), II); 2045 }); 2046 } else if (II == Ident__is_target_vendor) { 2047 EvaluateFeatureLikeBuiltinMacro( 2048 OS, Tok, II, *this, false, 2049 [this](Token &Tok, bool &HasLexedNextToken) -> int { 2050 IdentifierInfo *II = ExpectFeatureIdentifierInfo( 2051 Tok, *this, diag::err_feature_check_malformed); 2052 return II && isTargetVendor(getTargetInfo(), II); 2053 }); 2054 } else if (II == Ident__is_target_os) { 2055 EvaluateFeatureLikeBuiltinMacro( 2056 OS, Tok, II, *this, false, 2057 [this](Token &Tok, bool &HasLexedNextToken) -> int { 2058 IdentifierInfo *II = ExpectFeatureIdentifierInfo( 2059 Tok, *this, diag::err_feature_check_malformed); 2060 return II && isTargetOS(getTargetInfo(), II); 2061 }); 2062 } else if (II == Ident__is_target_environment) { 2063 EvaluateFeatureLikeBuiltinMacro( 2064 OS, Tok, II, *this, false, 2065 [this](Token &Tok, bool &HasLexedNextToken) -> int { 2066 IdentifierInfo *II = ExpectFeatureIdentifierInfo( 2067 Tok, *this, diag::err_feature_check_malformed); 2068 return II && isTargetEnvironment(getTargetInfo(), II); 2069 }); 2070 } else if (II == Ident__is_target_variant_os) { 2071 EvaluateFeatureLikeBuiltinMacro( 2072 OS, Tok, II, *this, false, 2073 [this](Token &Tok, bool &HasLexedNextToken) -> int { 2074 IdentifierInfo *II = ExpectFeatureIdentifierInfo( 2075 Tok, *this, diag::err_feature_check_malformed); 2076 return II && isTargetVariantOS(getTargetInfo(), II); 2077 }); 2078 } else if (II == Ident__is_target_variant_environment) { 2079 EvaluateFeatureLikeBuiltinMacro( 2080 OS, Tok, II, *this, false, 2081 [this](Token &Tok, bool &HasLexedNextToken) -> int { 2082 IdentifierInfo *II = ExpectFeatureIdentifierInfo( 2083 Tok, *this, diag::err_feature_check_malformed); 2084 return II && isTargetVariantEnvironment(getTargetInfo(), II); 2085 }); 2086 } else { 2087 llvm_unreachable("Unknown identifier!"); 2088 } 2089 CreateString(OS.str(), Tok, Tok.getLocation(), Tok.getLocation()); 2090 Tok.setFlagValue(Token::StartOfLine, IsAtStartOfLine); 2091 Tok.setFlagValue(Token::LeadingSpace, HasLeadingSpace); 2092 } 2093 2094 void Preprocessor::markMacroAsUsed(MacroInfo *MI) { 2095 // If the 'used' status changed, and the macro requires 'unused' warning, 2096 // remove its SourceLocation from the warn-for-unused-macro locations. 2097 if (MI->isWarnIfUnused() && !MI->isUsed()) 2098 WarnUnusedMacroLocs.erase(MI->getDefinitionLoc()); 2099 MI->setIsUsed(true); 2100 } 2101 2102 void Preprocessor::processPathForFileMacro(SmallVectorImpl<char> &Path, 2103 const LangOptions &LangOpts, 2104 const TargetInfo &TI) { 2105 LangOpts.remapPathPrefix(Path); 2106 if (LangOpts.UseTargetPathSeparator) { 2107 if (TI.getTriple().isOSWindows()) 2108 llvm::sys::path::remove_dots(Path, false, 2109 llvm::sys::path::Style::windows_backslash); 2110 else 2111 llvm::sys::path::remove_dots(Path, false, llvm::sys::path::Style::posix); 2112 } 2113 } 2114 2115 void Preprocessor::processPathToFileName(SmallVectorImpl<char> &FileName, 2116 const PresumedLoc &PLoc, 2117 const LangOptions &LangOpts, 2118 const TargetInfo &TI) { 2119 // Try to get the last path component, failing that return the original 2120 // presumed location. 2121 StringRef PLFileName = llvm::sys::path::filename(PLoc.getFilename()); 2122 if (PLFileName.empty()) 2123 PLFileName = PLoc.getFilename(); 2124 FileName.append(PLFileName.begin(), PLFileName.end()); 2125 processPathForFileMacro(FileName, LangOpts, TI); 2126 } 2127