1 //===--- CGVTables.cpp - Emit LLVM Code for C++ vtables -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code dealing with C++ code generation of virtual tables. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCXXABI.h" 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "clang/AST/Attr.h" 17 #include "clang/AST/CXXInheritance.h" 18 #include "clang/AST/RecordLayout.h" 19 #include "clang/Basic/CodeGenOptions.h" 20 #include "clang/CodeGen/CGFunctionInfo.h" 21 #include "clang/CodeGen/ConstantInitBuilder.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/Transforms/Utils/Cloning.h" 24 #include <algorithm> 25 #include <cstdio> 26 #include <utility> 27 28 using namespace clang; 29 using namespace CodeGen; 30 31 CodeGenVTables::CodeGenVTables(CodeGenModule &CGM) 32 : CGM(CGM), VTContext(CGM.getContext().getVTableContext()) {} 33 34 llvm::Constant *CodeGenModule::GetAddrOfThunk(StringRef Name, llvm::Type *FnTy, 35 GlobalDecl GD) { 36 return GetOrCreateLLVMFunction(Name, FnTy, GD, /*ForVTable=*/true, 37 /*DontDefer=*/true, /*IsThunk=*/true); 38 } 39 40 static void setThunkProperties(CodeGenModule &CGM, const ThunkInfo &Thunk, 41 llvm::Function *ThunkFn, bool ForVTable, 42 GlobalDecl GD) { 43 CGM.setFunctionLinkage(GD, ThunkFn); 44 CGM.getCXXABI().setThunkLinkage(ThunkFn, ForVTable, GD, 45 !Thunk.Return.isEmpty()); 46 47 // Set the right visibility. 48 CGM.setGVProperties(ThunkFn, GD); 49 50 if (!CGM.getCXXABI().exportThunk()) { 51 ThunkFn->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 52 ThunkFn->setDSOLocal(true); 53 } 54 55 if (CGM.supportsCOMDAT() && ThunkFn->isWeakForLinker()) 56 ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName())); 57 } 58 59 #ifndef NDEBUG 60 static bool similar(const ABIArgInfo &infoL, CanQualType typeL, 61 const ABIArgInfo &infoR, CanQualType typeR) { 62 return (infoL.getKind() == infoR.getKind() && 63 (typeL == typeR || 64 (isa<PointerType>(typeL) && isa<PointerType>(typeR)) || 65 (isa<ReferenceType>(typeL) && isa<ReferenceType>(typeR)))); 66 } 67 #endif 68 69 static RValue PerformReturnAdjustment(CodeGenFunction &CGF, 70 QualType ResultType, RValue RV, 71 const ThunkInfo &Thunk) { 72 // Emit the return adjustment. 73 bool NullCheckValue = !ResultType->isReferenceType(); 74 75 llvm::BasicBlock *AdjustNull = nullptr; 76 llvm::BasicBlock *AdjustNotNull = nullptr; 77 llvm::BasicBlock *AdjustEnd = nullptr; 78 79 llvm::Value *ReturnValue = RV.getScalarVal(); 80 81 if (NullCheckValue) { 82 AdjustNull = CGF.createBasicBlock("adjust.null"); 83 AdjustNotNull = CGF.createBasicBlock("adjust.notnull"); 84 AdjustEnd = CGF.createBasicBlock("adjust.end"); 85 86 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ReturnValue); 87 CGF.Builder.CreateCondBr(IsNull, AdjustNull, AdjustNotNull); 88 CGF.EmitBlock(AdjustNotNull); 89 } 90 91 auto ClassDecl = ResultType->getPointeeType()->getAsCXXRecordDecl(); 92 auto ClassAlign = CGF.CGM.getClassPointerAlignment(ClassDecl); 93 ReturnValue = CGF.CGM.getCXXABI().performReturnAdjustment( 94 CGF, 95 Address(ReturnValue, CGF.ConvertTypeForMem(ResultType->getPointeeType()), 96 ClassAlign), 97 ClassDecl, Thunk.Return); 98 99 if (NullCheckValue) { 100 CGF.Builder.CreateBr(AdjustEnd); 101 CGF.EmitBlock(AdjustNull); 102 CGF.Builder.CreateBr(AdjustEnd); 103 CGF.EmitBlock(AdjustEnd); 104 105 llvm::PHINode *PHI = CGF.Builder.CreatePHI(ReturnValue->getType(), 2); 106 PHI->addIncoming(ReturnValue, AdjustNotNull); 107 PHI->addIncoming(llvm::Constant::getNullValue(ReturnValue->getType()), 108 AdjustNull); 109 ReturnValue = PHI; 110 } 111 112 return RValue::get(ReturnValue); 113 } 114 115 /// This function clones a function's DISubprogram node and enters it into 116 /// a value map with the intent that the map can be utilized by the cloner 117 /// to short-circuit Metadata node mapping. 118 /// Furthermore, the function resolves any DILocalVariable nodes referenced 119 /// by dbg.value intrinsics so they can be properly mapped during cloning. 120 static void resolveTopLevelMetadata(llvm::Function *Fn, 121 llvm::ValueToValueMapTy &VMap) { 122 // Clone the DISubprogram node and put it into the Value map. 123 auto *DIS = Fn->getSubprogram(); 124 if (!DIS) 125 return; 126 auto *NewDIS = DIS->replaceWithDistinct(DIS->clone()); 127 VMap.MD()[DIS].reset(NewDIS); 128 129 // Find all llvm.dbg.declare intrinsics and resolve the DILocalVariable nodes 130 // they are referencing. 131 for (auto &BB : *Fn) { 132 for (auto &I : BB) { 133 for (llvm::DbgVariableRecord &DVR : 134 llvm::filterDbgVars(I.getDbgRecordRange())) { 135 auto *DILocal = DVR.getVariable(); 136 if (!DILocal->isResolved()) 137 DILocal->resolve(); 138 } 139 if (auto *DII = dyn_cast<llvm::DbgVariableIntrinsic>(&I)) { 140 auto *DILocal = DII->getVariable(); 141 if (!DILocal->isResolved()) 142 DILocal->resolve(); 143 } 144 } 145 } 146 } 147 148 // This function does roughly the same thing as GenerateThunk, but in a 149 // very different way, so that va_start and va_end work correctly. 150 // FIXME: This function assumes "this" is the first non-sret LLVM argument of 151 // a function, and that there is an alloca built in the entry block 152 // for all accesses to "this". 153 // FIXME: This function assumes there is only one "ret" statement per function. 154 // FIXME: Cloning isn't correct in the presence of indirect goto! 155 // FIXME: This implementation of thunks bloats codesize by duplicating the 156 // function definition. There are alternatives: 157 // 1. Add some sort of stub support to LLVM for cases where we can 158 // do a this adjustment, then a sibcall. 159 // 2. We could transform the definition to take a va_list instead of an 160 // actual variable argument list, then have the thunks (including a 161 // no-op thunk for the regular definition) call va_start/va_end. 162 // There's a bit of per-call overhead for this solution, but it's 163 // better for codesize if the definition is long. 164 llvm::Function * 165 CodeGenFunction::GenerateVarArgsThunk(llvm::Function *Fn, 166 const CGFunctionInfo &FnInfo, 167 GlobalDecl GD, const ThunkInfo &Thunk) { 168 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 169 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 170 QualType ResultType = FPT->getReturnType(); 171 172 // Get the original function 173 assert(FnInfo.isVariadic()); 174 llvm::Type *Ty = CGM.getTypes().GetFunctionType(FnInfo); 175 llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); 176 llvm::Function *BaseFn = cast<llvm::Function>(Callee); 177 178 // Cloning can't work if we don't have a definition. The Microsoft ABI may 179 // require thunks when a definition is not available. Emit an error in these 180 // cases. 181 if (!MD->isDefined()) { 182 CGM.ErrorUnsupported(MD, "return-adjusting thunk with variadic arguments"); 183 return Fn; 184 } 185 assert(!BaseFn->isDeclaration() && "cannot clone undefined variadic method"); 186 187 // Clone to thunk. 188 llvm::ValueToValueMapTy VMap; 189 190 // We are cloning a function while some Metadata nodes are still unresolved. 191 // Ensure that the value mapper does not encounter any of them. 192 resolveTopLevelMetadata(BaseFn, VMap); 193 llvm::Function *NewFn = llvm::CloneFunction(BaseFn, VMap); 194 Fn->replaceAllUsesWith(NewFn); 195 NewFn->takeName(Fn); 196 Fn->eraseFromParent(); 197 Fn = NewFn; 198 199 // "Initialize" CGF (minimally). 200 CurFn = Fn; 201 202 // Get the "this" value 203 llvm::Function::arg_iterator AI = Fn->arg_begin(); 204 if (CGM.ReturnTypeUsesSRet(FnInfo)) 205 ++AI; 206 207 // Find the first store of "this", which will be to the alloca associated 208 // with "this". 209 Address ThisPtr = makeNaturalAddressForPointer( 210 &*AI, MD->getFunctionObjectParameterType(), 211 CGM.getClassPointerAlignment(MD->getParent())); 212 llvm::BasicBlock *EntryBB = &Fn->front(); 213 llvm::BasicBlock::iterator ThisStore = 214 llvm::find_if(*EntryBB, [&](llvm::Instruction &I) { 215 return isa<llvm::StoreInst>(I) && I.getOperand(0) == &*AI; 216 }); 217 assert(ThisStore != EntryBB->end() && 218 "Store of this should be in entry block?"); 219 // Adjust "this", if necessary. 220 Builder.SetInsertPoint(&*ThisStore); 221 222 const CXXRecordDecl *ThisValueClass = Thunk.ThisType->getPointeeCXXRecordDecl(); 223 llvm::Value *AdjustedThisPtr = CGM.getCXXABI().performThisAdjustment( 224 *this, ThisPtr, ThisValueClass, Thunk); 225 AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, 226 ThisStore->getOperand(0)->getType()); 227 ThisStore->setOperand(0, AdjustedThisPtr); 228 229 if (!Thunk.Return.isEmpty()) { 230 // Fix up the returned value, if necessary. 231 for (llvm::BasicBlock &BB : *Fn) { 232 llvm::Instruction *T = BB.getTerminator(); 233 if (isa<llvm::ReturnInst>(T)) { 234 RValue RV = RValue::get(T->getOperand(0)); 235 T->eraseFromParent(); 236 Builder.SetInsertPoint(&BB); 237 RV = PerformReturnAdjustment(*this, ResultType, RV, Thunk); 238 Builder.CreateRet(RV.getScalarVal()); 239 break; 240 } 241 } 242 } 243 244 return Fn; 245 } 246 247 void CodeGenFunction::StartThunk(llvm::Function *Fn, GlobalDecl GD, 248 const CGFunctionInfo &FnInfo, 249 bool IsUnprototyped) { 250 assert(!CurGD.getDecl() && "CurGD was already set!"); 251 CurGD = GD; 252 CurFuncIsThunk = true; 253 254 // Build FunctionArgs. 255 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 256 QualType ThisType = MD->getThisType(); 257 QualType ResultType; 258 if (IsUnprototyped) 259 ResultType = CGM.getContext().VoidTy; 260 else if (CGM.getCXXABI().HasThisReturn(GD)) 261 ResultType = ThisType; 262 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 263 ResultType = CGM.getContext().VoidPtrTy; 264 else 265 ResultType = MD->getType()->castAs<FunctionProtoType>()->getReturnType(); 266 FunctionArgList FunctionArgs; 267 268 // Create the implicit 'this' parameter declaration. 269 CGM.getCXXABI().buildThisParam(*this, FunctionArgs); 270 271 // Add the rest of the parameters, if we have a prototype to work with. 272 if (!IsUnprototyped) { 273 FunctionArgs.append(MD->param_begin(), MD->param_end()); 274 275 if (isa<CXXDestructorDecl>(MD)) 276 CGM.getCXXABI().addImplicitStructorParams(*this, ResultType, 277 FunctionArgs); 278 } 279 280 // Start defining the function. 281 auto NL = ApplyDebugLocation::CreateEmpty(*this); 282 StartFunction(GlobalDecl(), ResultType, Fn, FnInfo, FunctionArgs, 283 MD->getLocation()); 284 // Create a scope with an artificial location for the body of this function. 285 auto AL = ApplyDebugLocation::CreateArtificial(*this); 286 287 // Since we didn't pass a GlobalDecl to StartFunction, do this ourselves. 288 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 289 CXXThisValue = CXXABIThisValue; 290 CurCodeDecl = MD; 291 CurFuncDecl = MD; 292 } 293 294 void CodeGenFunction::FinishThunk() { 295 // Clear these to restore the invariants expected by 296 // StartFunction/FinishFunction. 297 CurCodeDecl = nullptr; 298 CurFuncDecl = nullptr; 299 300 FinishFunction(); 301 } 302 303 void CodeGenFunction::EmitCallAndReturnForThunk(llvm::FunctionCallee Callee, 304 const ThunkInfo *Thunk, 305 bool IsUnprototyped) { 306 assert(isa<CXXMethodDecl>(CurGD.getDecl()) && 307 "Please use a new CGF for this thunk"); 308 const CXXMethodDecl *MD = cast<CXXMethodDecl>(CurGD.getDecl()); 309 310 // Adjust the 'this' pointer if necessary 311 const CXXRecordDecl *ThisValueClass = 312 MD->getThisType()->getPointeeCXXRecordDecl(); 313 if (Thunk) 314 ThisValueClass = Thunk->ThisType->getPointeeCXXRecordDecl(); 315 316 llvm::Value *AdjustedThisPtr = 317 Thunk ? CGM.getCXXABI().performThisAdjustment(*this, LoadCXXThisAddress(), 318 ThisValueClass, *Thunk) 319 : LoadCXXThis(); 320 321 // If perfect forwarding is required a variadic method, a method using 322 // inalloca, or an unprototyped thunk, use musttail. Emit an error if this 323 // thunk requires a return adjustment, since that is impossible with musttail. 324 if (CurFnInfo->usesInAlloca() || CurFnInfo->isVariadic() || IsUnprototyped) { 325 if (Thunk && !Thunk->Return.isEmpty()) { 326 if (IsUnprototyped) 327 CGM.ErrorUnsupported( 328 MD, "return-adjusting thunk with incomplete parameter type"); 329 else if (CurFnInfo->isVariadic()) 330 llvm_unreachable("shouldn't try to emit musttail return-adjusting " 331 "thunks for variadic functions"); 332 else 333 CGM.ErrorUnsupported( 334 MD, "non-trivial argument copy for return-adjusting thunk"); 335 } 336 EmitMustTailThunk(CurGD, AdjustedThisPtr, Callee); 337 return; 338 } 339 340 // Start building CallArgs. 341 CallArgList CallArgs; 342 QualType ThisType = MD->getThisType(); 343 CallArgs.add(RValue::get(AdjustedThisPtr), ThisType); 344 345 if (isa<CXXDestructorDecl>(MD)) 346 CGM.getCXXABI().adjustCallArgsForDestructorThunk(*this, CurGD, CallArgs); 347 348 #ifndef NDEBUG 349 unsigned PrefixArgs = CallArgs.size() - 1; 350 #endif 351 // Add the rest of the arguments. 352 for (const ParmVarDecl *PD : MD->parameters()) 353 EmitDelegateCallArg(CallArgs, PD, SourceLocation()); 354 355 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 356 357 #ifndef NDEBUG 358 const CGFunctionInfo &CallFnInfo = CGM.getTypes().arrangeCXXMethodCall( 359 CallArgs, FPT, RequiredArgs::forPrototypePlus(FPT, 1), PrefixArgs); 360 assert(CallFnInfo.getRegParm() == CurFnInfo->getRegParm() && 361 CallFnInfo.isNoReturn() == CurFnInfo->isNoReturn() && 362 CallFnInfo.getCallingConvention() == CurFnInfo->getCallingConvention()); 363 assert(isa<CXXDestructorDecl>(MD) || // ignore dtor return types 364 similar(CallFnInfo.getReturnInfo(), CallFnInfo.getReturnType(), 365 CurFnInfo->getReturnInfo(), CurFnInfo->getReturnType())); 366 assert(CallFnInfo.arg_size() == CurFnInfo->arg_size()); 367 for (unsigned i = 0, e = CurFnInfo->arg_size(); i != e; ++i) 368 assert(similar(CallFnInfo.arg_begin()[i].info, 369 CallFnInfo.arg_begin()[i].type, 370 CurFnInfo->arg_begin()[i].info, 371 CurFnInfo->arg_begin()[i].type)); 372 #endif 373 374 // Determine whether we have a return value slot to use. 375 QualType ResultType = CGM.getCXXABI().HasThisReturn(CurGD) 376 ? ThisType 377 : CGM.getCXXABI().hasMostDerivedReturn(CurGD) 378 ? CGM.getContext().VoidPtrTy 379 : FPT->getReturnType(); 380 ReturnValueSlot Slot; 381 if (!ResultType->isVoidType() && 382 (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect || 383 hasAggregateEvaluationKind(ResultType))) 384 Slot = ReturnValueSlot(ReturnValue, ResultType.isVolatileQualified(), 385 /*IsUnused=*/false, /*IsExternallyDestructed=*/true); 386 387 // Now emit our call. 388 llvm::CallBase *CallOrInvoke; 389 RValue RV = EmitCall(*CurFnInfo, CGCallee::forDirect(Callee, CurGD), Slot, 390 CallArgs, &CallOrInvoke); 391 392 // Consider return adjustment if we have ThunkInfo. 393 if (Thunk && !Thunk->Return.isEmpty()) 394 RV = PerformReturnAdjustment(*this, ResultType, RV, *Thunk); 395 else if (llvm::CallInst* Call = dyn_cast<llvm::CallInst>(CallOrInvoke)) 396 Call->setTailCallKind(llvm::CallInst::TCK_Tail); 397 398 // Emit return. 399 if (!ResultType->isVoidType() && Slot.isNull()) 400 CGM.getCXXABI().EmitReturnFromThunk(*this, RV, ResultType); 401 402 // Disable the final ARC autorelease. 403 AutoreleaseResult = false; 404 405 FinishThunk(); 406 } 407 408 void CodeGenFunction::EmitMustTailThunk(GlobalDecl GD, 409 llvm::Value *AdjustedThisPtr, 410 llvm::FunctionCallee Callee) { 411 // Emitting a musttail call thunk doesn't use any of the CGCall.cpp machinery 412 // to translate AST arguments into LLVM IR arguments. For thunks, we know 413 // that the caller prototype more or less matches the callee prototype with 414 // the exception of 'this'. 415 SmallVector<llvm::Value *, 8> Args(llvm::make_pointer_range(CurFn->args())); 416 417 // Set the adjusted 'this' pointer. 418 const ABIArgInfo &ThisAI = CurFnInfo->arg_begin()->info; 419 if (ThisAI.isDirect()) { 420 const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo(); 421 int ThisArgNo = RetAI.isIndirect() && !RetAI.isSRetAfterThis() ? 1 : 0; 422 llvm::Type *ThisType = Args[ThisArgNo]->getType(); 423 if (ThisType != AdjustedThisPtr->getType()) 424 AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType); 425 Args[ThisArgNo] = AdjustedThisPtr; 426 } else { 427 assert(ThisAI.isInAlloca() && "this is passed directly or inalloca"); 428 Address ThisAddr = GetAddrOfLocalVar(CXXABIThisDecl); 429 llvm::Type *ThisType = ThisAddr.getElementType(); 430 if (ThisType != AdjustedThisPtr->getType()) 431 AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType); 432 Builder.CreateStore(AdjustedThisPtr, ThisAddr); 433 } 434 435 // Emit the musttail call manually. Even if the prologue pushed cleanups, we 436 // don't actually want to run them. 437 llvm::CallInst *Call = Builder.CreateCall(Callee, Args); 438 Call->setTailCallKind(llvm::CallInst::TCK_MustTail); 439 440 // Apply the standard set of call attributes. 441 unsigned CallingConv; 442 llvm::AttributeList Attrs; 443 CGM.ConstructAttributeList(Callee.getCallee()->getName(), *CurFnInfo, GD, 444 Attrs, CallingConv, /*AttrOnCallSite=*/true, 445 /*IsThunk=*/false); 446 Call->setAttributes(Attrs); 447 Call->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 448 449 if (Call->getType()->isVoidTy()) 450 Builder.CreateRetVoid(); 451 else 452 Builder.CreateRet(Call); 453 454 // Finish the function to maintain CodeGenFunction invariants. 455 // FIXME: Don't emit unreachable code. 456 EmitBlock(createBasicBlock()); 457 458 FinishThunk(); 459 } 460 461 void CodeGenFunction::generateThunk(llvm::Function *Fn, 462 const CGFunctionInfo &FnInfo, GlobalDecl GD, 463 const ThunkInfo &Thunk, 464 bool IsUnprototyped) { 465 StartThunk(Fn, GD, FnInfo, IsUnprototyped); 466 // Create a scope with an artificial location for the body of this function. 467 auto AL = ApplyDebugLocation::CreateArtificial(*this); 468 469 // Get our callee. Use a placeholder type if this method is unprototyped so 470 // that CodeGenModule doesn't try to set attributes. 471 llvm::Type *Ty; 472 if (IsUnprototyped) 473 Ty = llvm::StructType::get(getLLVMContext()); 474 else 475 Ty = CGM.getTypes().GetFunctionType(FnInfo); 476 477 llvm::Constant *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); 478 479 // Make the call and return the result. 480 EmitCallAndReturnForThunk(llvm::FunctionCallee(Fn->getFunctionType(), Callee), 481 &Thunk, IsUnprototyped); 482 } 483 484 static bool shouldEmitVTableThunk(CodeGenModule &CGM, const CXXMethodDecl *MD, 485 bool IsUnprototyped, bool ForVTable) { 486 // Always emit thunks in the MS C++ ABI. We cannot rely on other TUs to 487 // provide thunks for us. 488 if (CGM.getTarget().getCXXABI().isMicrosoft()) 489 return true; 490 491 // In the Itanium C++ ABI, vtable thunks are provided by TUs that provide 492 // definitions of the main method. Therefore, emitting thunks with the vtable 493 // is purely an optimization. Emit the thunk if optimizations are enabled and 494 // all of the parameter types are complete. 495 if (ForVTable) 496 return CGM.getCodeGenOpts().OptimizationLevel && !IsUnprototyped; 497 498 // Always emit thunks along with the method definition. 499 return true; 500 } 501 502 llvm::Constant *CodeGenVTables::maybeEmitThunk(GlobalDecl GD, 503 const ThunkInfo &TI, 504 bool ForVTable) { 505 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 506 507 // First, get a declaration. Compute the mangled name. Don't worry about 508 // getting the function prototype right, since we may only need this 509 // declaration to fill in a vtable slot. 510 SmallString<256> Name; 511 MangleContext &MCtx = CGM.getCXXABI().getMangleContext(); 512 llvm::raw_svector_ostream Out(Name); 513 514 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) { 515 MCtx.mangleCXXDtorThunk(DD, GD.getDtorType(), TI, 516 /* elideOverrideInfo */ false, Out); 517 } else 518 MCtx.mangleThunk(MD, TI, /* elideOverrideInfo */ false, Out); 519 520 if (CGM.getContext().useAbbreviatedThunkName(GD, Name.str())) { 521 Name = ""; 522 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) 523 MCtx.mangleCXXDtorThunk(DD, GD.getDtorType(), TI, 524 /* elideOverrideInfo */ true, Out); 525 else 526 MCtx.mangleThunk(MD, TI, /* elideOverrideInfo */ true, Out); 527 } 528 529 llvm::Type *ThunkVTableTy = CGM.getTypes().GetFunctionTypeForVTable(GD); 530 llvm::Constant *Thunk = CGM.GetAddrOfThunk(Name, ThunkVTableTy, GD); 531 532 // If we don't need to emit a definition, return this declaration as is. 533 bool IsUnprototyped = !CGM.getTypes().isFuncTypeConvertible( 534 MD->getType()->castAs<FunctionType>()); 535 if (!shouldEmitVTableThunk(CGM, MD, IsUnprototyped, ForVTable)) 536 return Thunk; 537 538 // Arrange a function prototype appropriate for a function definition. In some 539 // cases in the MS ABI, we may need to build an unprototyped musttail thunk. 540 const CGFunctionInfo &FnInfo = 541 IsUnprototyped ? CGM.getTypes().arrangeUnprototypedMustTailThunk(MD) 542 : CGM.getTypes().arrangeGlobalDeclaration(GD); 543 llvm::FunctionType *ThunkFnTy = CGM.getTypes().GetFunctionType(FnInfo); 544 545 // If the type of the underlying GlobalValue is wrong, we'll have to replace 546 // it. It should be a declaration. 547 llvm::Function *ThunkFn = cast<llvm::Function>(Thunk->stripPointerCasts()); 548 if (ThunkFn->getFunctionType() != ThunkFnTy) { 549 llvm::GlobalValue *OldThunkFn = ThunkFn; 550 551 assert(OldThunkFn->isDeclaration() && "Shouldn't replace non-declaration"); 552 553 // Remove the name from the old thunk function and get a new thunk. 554 OldThunkFn->setName(StringRef()); 555 ThunkFn = llvm::Function::Create(ThunkFnTy, llvm::Function::ExternalLinkage, 556 Name.str(), &CGM.getModule()); 557 CGM.SetLLVMFunctionAttributes(MD, FnInfo, ThunkFn, /*IsThunk=*/false); 558 559 if (!OldThunkFn->use_empty()) { 560 OldThunkFn->replaceAllUsesWith(ThunkFn); 561 } 562 563 // Remove the old thunk. 564 OldThunkFn->eraseFromParent(); 565 } 566 567 bool ABIHasKeyFunctions = CGM.getTarget().getCXXABI().hasKeyFunctions(); 568 bool UseAvailableExternallyLinkage = ForVTable && ABIHasKeyFunctions; 569 570 if (!ThunkFn->isDeclaration()) { 571 if (!ABIHasKeyFunctions || UseAvailableExternallyLinkage) { 572 // There is already a thunk emitted for this function, do nothing. 573 return ThunkFn; 574 } 575 576 setThunkProperties(CGM, TI, ThunkFn, ForVTable, GD); 577 return ThunkFn; 578 } 579 580 // If this will be unprototyped, add the "thunk" attribute so that LLVM knows 581 // that the return type is meaningless. These thunks can be used to call 582 // functions with differing return types, and the caller is required to cast 583 // the prototype appropriately to extract the correct value. 584 if (IsUnprototyped) 585 ThunkFn->addFnAttr("thunk"); 586 587 CGM.SetLLVMFunctionAttributesForDefinition(GD.getDecl(), ThunkFn); 588 589 // Thunks for variadic methods are special because in general variadic 590 // arguments cannot be perfectly forwarded. In the general case, clang 591 // implements such thunks by cloning the original function body. However, for 592 // thunks with no return adjustment on targets that support musttail, we can 593 // use musttail to perfectly forward the variadic arguments. 594 bool ShouldCloneVarArgs = false; 595 if (!IsUnprototyped && ThunkFn->isVarArg()) { 596 ShouldCloneVarArgs = true; 597 if (TI.Return.isEmpty()) { 598 switch (CGM.getTriple().getArch()) { 599 case llvm::Triple::x86_64: 600 case llvm::Triple::x86: 601 case llvm::Triple::aarch64: 602 ShouldCloneVarArgs = false; 603 break; 604 default: 605 break; 606 } 607 } 608 } 609 610 if (ShouldCloneVarArgs) { 611 if (UseAvailableExternallyLinkage) 612 return ThunkFn; 613 ThunkFn = 614 CodeGenFunction(CGM).GenerateVarArgsThunk(ThunkFn, FnInfo, GD, TI); 615 } else { 616 // Normal thunk body generation. 617 CodeGenFunction(CGM).generateThunk(ThunkFn, FnInfo, GD, TI, IsUnprototyped); 618 } 619 620 setThunkProperties(CGM, TI, ThunkFn, ForVTable, GD); 621 return ThunkFn; 622 } 623 624 void CodeGenVTables::EmitThunks(GlobalDecl GD) { 625 const CXXMethodDecl *MD = 626 cast<CXXMethodDecl>(GD.getDecl())->getCanonicalDecl(); 627 628 // We don't need to generate thunks for the base destructor. 629 if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base) 630 return; 631 632 const VTableContextBase::ThunkInfoVectorTy *ThunkInfoVector = 633 VTContext->getThunkInfo(GD); 634 635 if (!ThunkInfoVector) 636 return; 637 638 for (const ThunkInfo& Thunk : *ThunkInfoVector) 639 maybeEmitThunk(GD, Thunk, /*ForVTable=*/false); 640 } 641 642 void CodeGenVTables::addRelativeComponent(ConstantArrayBuilder &builder, 643 llvm::Constant *component, 644 unsigned vtableAddressPoint, 645 bool vtableHasLocalLinkage, 646 bool isCompleteDtor) const { 647 // No need to get the offset of a nullptr. 648 if (component->isNullValue()) 649 return builder.add(llvm::ConstantInt::get(CGM.Int32Ty, 0)); 650 651 auto *globalVal = 652 cast<llvm::GlobalValue>(component->stripPointerCastsAndAliases()); 653 llvm::Module &module = CGM.getModule(); 654 655 // We don't want to copy the linkage of the vtable exactly because we still 656 // want the stub/proxy to be emitted for properly calculating the offset. 657 // Examples where there would be no symbol emitted are available_externally 658 // and private linkages. 659 // 660 // `internal` linkage results in STB_LOCAL Elf binding while still manifesting a 661 // local symbol. 662 // 663 // `linkonce_odr` linkage results in a STB_DEFAULT Elf binding but also allows for 664 // the rtti_proxy to be transparently replaced with a GOTPCREL reloc by a 665 // target that supports this replacement. 666 auto stubLinkage = vtableHasLocalLinkage 667 ? llvm::GlobalValue::InternalLinkage 668 : llvm::GlobalValue::LinkOnceODRLinkage; 669 670 llvm::Constant *target; 671 if (auto *func = dyn_cast<llvm::Function>(globalVal)) { 672 target = llvm::DSOLocalEquivalent::get(func); 673 } else { 674 llvm::SmallString<16> rttiProxyName(globalVal->getName()); 675 rttiProxyName.append(".rtti_proxy"); 676 677 // The RTTI component may not always be emitted in the same linkage unit as 678 // the vtable. As a general case, we can make a dso_local proxy to the RTTI 679 // that points to the actual RTTI struct somewhere. This will result in a 680 // GOTPCREL relocation when taking the relative offset to the proxy. 681 llvm::GlobalVariable *proxy = module.getNamedGlobal(rttiProxyName); 682 if (!proxy) { 683 proxy = new llvm::GlobalVariable(module, globalVal->getType(), 684 /*isConstant=*/true, stubLinkage, 685 globalVal, rttiProxyName); 686 proxy->setDSOLocal(true); 687 proxy->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 688 if (!proxy->hasLocalLinkage()) { 689 proxy->setVisibility(llvm::GlobalValue::HiddenVisibility); 690 proxy->setComdat(module.getOrInsertComdat(rttiProxyName)); 691 } 692 // Do not instrument the rtti proxies with hwasan to avoid a duplicate 693 // symbol error. Aliases generated by hwasan will retain the same namebut 694 // the addresses they are set to may have different tags from different 695 // compilation units. We don't run into this without hwasan because the 696 // proxies are in comdat groups, but those aren't propagated to the alias. 697 RemoveHwasanMetadata(proxy); 698 } 699 target = proxy; 700 } 701 702 builder.addRelativeOffsetToPosition(CGM.Int32Ty, target, 703 /*position=*/vtableAddressPoint); 704 } 705 706 static bool UseRelativeLayout(const CodeGenModule &CGM) { 707 return CGM.getTarget().getCXXABI().isItaniumFamily() && 708 CGM.getItaniumVTableContext().isRelativeLayout(); 709 } 710 711 bool CodeGenVTables::useRelativeLayout() const { 712 return UseRelativeLayout(CGM); 713 } 714 715 llvm::Type *CodeGenModule::getVTableComponentType() const { 716 if (UseRelativeLayout(*this)) 717 return Int32Ty; 718 return GlobalsInt8PtrTy; 719 } 720 721 llvm::Type *CodeGenVTables::getVTableComponentType() const { 722 return CGM.getVTableComponentType(); 723 } 724 725 static void AddPointerLayoutOffset(const CodeGenModule &CGM, 726 ConstantArrayBuilder &builder, 727 CharUnits offset) { 728 builder.add(llvm::ConstantExpr::getIntToPtr( 729 llvm::ConstantInt::get(CGM.PtrDiffTy, offset.getQuantity()), 730 CGM.GlobalsInt8PtrTy)); 731 } 732 733 static void AddRelativeLayoutOffset(const CodeGenModule &CGM, 734 ConstantArrayBuilder &builder, 735 CharUnits offset) { 736 builder.add(llvm::ConstantInt::get(CGM.Int32Ty, offset.getQuantity())); 737 } 738 739 void CodeGenVTables::addVTableComponent(ConstantArrayBuilder &builder, 740 const VTableLayout &layout, 741 unsigned componentIndex, 742 llvm::Constant *rtti, 743 unsigned &nextVTableThunkIndex, 744 unsigned vtableAddressPoint, 745 bool vtableHasLocalLinkage) { 746 auto &component = layout.vtable_components()[componentIndex]; 747 748 auto addOffsetConstant = 749 useRelativeLayout() ? AddRelativeLayoutOffset : AddPointerLayoutOffset; 750 751 switch (component.getKind()) { 752 case VTableComponent::CK_VCallOffset: 753 return addOffsetConstant(CGM, builder, component.getVCallOffset()); 754 755 case VTableComponent::CK_VBaseOffset: 756 return addOffsetConstant(CGM, builder, component.getVBaseOffset()); 757 758 case VTableComponent::CK_OffsetToTop: 759 return addOffsetConstant(CGM, builder, component.getOffsetToTop()); 760 761 case VTableComponent::CK_RTTI: 762 if (useRelativeLayout()) 763 return addRelativeComponent(builder, rtti, vtableAddressPoint, 764 vtableHasLocalLinkage, 765 /*isCompleteDtor=*/false); 766 else 767 return builder.add(rtti); 768 769 case VTableComponent::CK_FunctionPointer: 770 case VTableComponent::CK_CompleteDtorPointer: 771 case VTableComponent::CK_DeletingDtorPointer: { 772 GlobalDecl GD = component.getGlobalDecl(); 773 774 if (CGM.getLangOpts().CUDA) { 775 // Emit NULL for methods we can't codegen on this 776 // side. Otherwise we'd end up with vtable with unresolved 777 // references. 778 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 779 // OK on device side: functions w/ __device__ attribute 780 // OK on host side: anything except __device__-only functions. 781 bool CanEmitMethod = 782 CGM.getLangOpts().CUDAIsDevice 783 ? MD->hasAttr<CUDADeviceAttr>() 784 : (MD->hasAttr<CUDAHostAttr>() || !MD->hasAttr<CUDADeviceAttr>()); 785 if (!CanEmitMethod) 786 return builder.add( 787 llvm::ConstantExpr::getNullValue(CGM.GlobalsInt8PtrTy)); 788 // Method is acceptable, continue processing as usual. 789 } 790 791 auto getSpecialVirtualFn = [&](StringRef name) -> llvm::Constant * { 792 // FIXME(PR43094): When merging comdat groups, lld can select a local 793 // symbol as the signature symbol even though it cannot be accessed 794 // outside that symbol's TU. The relative vtables ABI would make 795 // __cxa_pure_virtual and __cxa_deleted_virtual local symbols, and 796 // depending on link order, the comdat groups could resolve to the one 797 // with the local symbol. As a temporary solution, fill these components 798 // with zero. We shouldn't be calling these in the first place anyway. 799 if (useRelativeLayout()) 800 return llvm::ConstantPointerNull::get(CGM.GlobalsInt8PtrTy); 801 802 // For NVPTX devices in OpenMP emit special functon as null pointers, 803 // otherwise linking ends up with unresolved references. 804 if (CGM.getLangOpts().OpenMP && CGM.getLangOpts().OpenMPIsTargetDevice && 805 CGM.getTriple().isNVPTX()) 806 return llvm::ConstantPointerNull::get(CGM.GlobalsInt8PtrTy); 807 llvm::FunctionType *fnTy = 808 llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 809 llvm::Constant *fn = cast<llvm::Constant>( 810 CGM.CreateRuntimeFunction(fnTy, name).getCallee()); 811 if (auto f = dyn_cast<llvm::Function>(fn)) 812 f->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 813 return fn; 814 }; 815 816 llvm::Constant *fnPtr; 817 818 // Pure virtual member functions. 819 if (cast<CXXMethodDecl>(GD.getDecl())->isPureVirtual()) { 820 if (!PureVirtualFn) 821 PureVirtualFn = 822 getSpecialVirtualFn(CGM.getCXXABI().GetPureVirtualCallName()); 823 fnPtr = PureVirtualFn; 824 825 // Deleted virtual member functions. 826 } else if (cast<CXXMethodDecl>(GD.getDecl())->isDeleted()) { 827 if (!DeletedVirtualFn) 828 DeletedVirtualFn = 829 getSpecialVirtualFn(CGM.getCXXABI().GetDeletedVirtualCallName()); 830 fnPtr = DeletedVirtualFn; 831 832 // Thunks. 833 } else if (nextVTableThunkIndex < layout.vtable_thunks().size() && 834 layout.vtable_thunks()[nextVTableThunkIndex].first == 835 componentIndex) { 836 auto &thunkInfo = layout.vtable_thunks()[nextVTableThunkIndex].second; 837 838 nextVTableThunkIndex++; 839 fnPtr = maybeEmitThunk(GD, thunkInfo, /*ForVTable=*/true); 840 if (CGM.getCodeGenOpts().PointerAuth.CXXVirtualFunctionPointers) { 841 assert(thunkInfo.Method && "Method not set"); 842 GD = GD.getWithDecl(thunkInfo.Method); 843 } 844 845 // Otherwise we can use the method definition directly. 846 } else { 847 llvm::Type *fnTy = CGM.getTypes().GetFunctionTypeForVTable(GD); 848 fnPtr = CGM.GetAddrOfFunction(GD, fnTy, /*ForVTable=*/true); 849 if (CGM.getCodeGenOpts().PointerAuth.CXXVirtualFunctionPointers) 850 GD = getItaniumVTableContext().findOriginalMethod(GD); 851 } 852 853 if (useRelativeLayout()) { 854 return addRelativeComponent( 855 builder, fnPtr, vtableAddressPoint, vtableHasLocalLinkage, 856 component.getKind() == VTableComponent::CK_CompleteDtorPointer); 857 } else { 858 // TODO: this icky and only exists due to functions being in the generic 859 // address space, rather than the global one, even though they are 860 // globals; fixing said issue might be intrusive, and will be done 861 // later. 862 unsigned FnAS = fnPtr->getType()->getPointerAddressSpace(); 863 unsigned GVAS = CGM.GlobalsInt8PtrTy->getPointerAddressSpace(); 864 865 if (FnAS != GVAS) 866 fnPtr = 867 llvm::ConstantExpr::getAddrSpaceCast(fnPtr, CGM.GlobalsInt8PtrTy); 868 if (const auto &Schema = 869 CGM.getCodeGenOpts().PointerAuth.CXXVirtualFunctionPointers) 870 return builder.addSignedPointer(fnPtr, Schema, GD, QualType()); 871 return builder.add(fnPtr); 872 } 873 } 874 875 case VTableComponent::CK_UnusedFunctionPointer: 876 if (useRelativeLayout()) 877 return builder.add(llvm::ConstantExpr::getNullValue(CGM.Int32Ty)); 878 else 879 return builder.addNullPointer(CGM.GlobalsInt8PtrTy); 880 } 881 882 llvm_unreachable("Unexpected vtable component kind"); 883 } 884 885 llvm::Type *CodeGenVTables::getVTableType(const VTableLayout &layout) { 886 SmallVector<llvm::Type *, 4> tys; 887 llvm::Type *componentType = getVTableComponentType(); 888 for (unsigned i = 0, e = layout.getNumVTables(); i != e; ++i) 889 tys.push_back(llvm::ArrayType::get(componentType, layout.getVTableSize(i))); 890 891 return llvm::StructType::get(CGM.getLLVMContext(), tys); 892 } 893 894 void CodeGenVTables::createVTableInitializer(ConstantStructBuilder &builder, 895 const VTableLayout &layout, 896 llvm::Constant *rtti, 897 bool vtableHasLocalLinkage) { 898 llvm::Type *componentType = getVTableComponentType(); 899 900 const auto &addressPoints = layout.getAddressPointIndices(); 901 unsigned nextVTableThunkIndex = 0; 902 for (unsigned vtableIndex = 0, endIndex = layout.getNumVTables(); 903 vtableIndex != endIndex; ++vtableIndex) { 904 auto vtableElem = builder.beginArray(componentType); 905 906 size_t vtableStart = layout.getVTableOffset(vtableIndex); 907 size_t vtableEnd = vtableStart + layout.getVTableSize(vtableIndex); 908 for (size_t componentIndex = vtableStart; componentIndex < vtableEnd; 909 ++componentIndex) { 910 addVTableComponent(vtableElem, layout, componentIndex, rtti, 911 nextVTableThunkIndex, addressPoints[vtableIndex], 912 vtableHasLocalLinkage); 913 } 914 vtableElem.finishAndAddTo(builder); 915 } 916 } 917 918 llvm::GlobalVariable *CodeGenVTables::GenerateConstructionVTable( 919 const CXXRecordDecl *RD, const BaseSubobject &Base, bool BaseIsVirtual, 920 llvm::GlobalVariable::LinkageTypes Linkage, 921 VTableAddressPointsMapTy &AddressPoints) { 922 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) 923 DI->completeClassData(Base.getBase()); 924 925 std::unique_ptr<VTableLayout> VTLayout( 926 getItaniumVTableContext().createConstructionVTableLayout( 927 Base.getBase(), Base.getBaseOffset(), BaseIsVirtual, RD)); 928 929 // Add the address points. 930 AddressPoints = VTLayout->getAddressPoints(); 931 932 // Get the mangled construction vtable name. 933 SmallString<256> OutName; 934 llvm::raw_svector_ostream Out(OutName); 935 cast<ItaniumMangleContext>(CGM.getCXXABI().getMangleContext()) 936 .mangleCXXCtorVTable(RD, Base.getBaseOffset().getQuantity(), 937 Base.getBase(), Out); 938 SmallString<256> Name(OutName); 939 940 bool UsingRelativeLayout = getItaniumVTableContext().isRelativeLayout(); 941 bool VTableAliasExists = 942 UsingRelativeLayout && CGM.getModule().getNamedAlias(Name); 943 if (VTableAliasExists) { 944 // We previously made the vtable hidden and changed its name. 945 Name.append(".local"); 946 } 947 948 llvm::Type *VTType = getVTableType(*VTLayout); 949 950 // Construction vtable symbols are not part of the Itanium ABI, so we cannot 951 // guarantee that they actually will be available externally. Instead, when 952 // emitting an available_externally VTT, we provide references to an internal 953 // linkage construction vtable. The ABI only requires complete-object vtables 954 // to be the same for all instances of a type, not construction vtables. 955 if (Linkage == llvm::GlobalVariable::AvailableExternallyLinkage) 956 Linkage = llvm::GlobalVariable::InternalLinkage; 957 958 llvm::Align Align = CGM.getDataLayout().getABITypeAlign(VTType); 959 960 // Create the variable that will hold the construction vtable. 961 llvm::GlobalVariable *VTable = 962 CGM.CreateOrReplaceCXXRuntimeVariable(Name, VTType, Linkage, Align); 963 964 // V-tables are always unnamed_addr. 965 VTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 966 967 llvm::Constant *RTTI = CGM.GetAddrOfRTTIDescriptor( 968 CGM.getContext().getTagDeclType(Base.getBase())); 969 970 // Create and set the initializer. 971 ConstantInitBuilder builder(CGM); 972 auto components = builder.beginStruct(); 973 createVTableInitializer(components, *VTLayout, RTTI, 974 VTable->hasLocalLinkage()); 975 components.finishAndSetAsInitializer(VTable); 976 977 // Set properties only after the initializer has been set to ensure that the 978 // GV is treated as definition and not declaration. 979 assert(!VTable->isDeclaration() && "Shouldn't set properties on declaration"); 980 CGM.setGVProperties(VTable, RD); 981 982 CGM.EmitVTableTypeMetadata(RD, VTable, *VTLayout.get()); 983 984 if (UsingRelativeLayout) { 985 RemoveHwasanMetadata(VTable); 986 if (!VTable->isDSOLocal()) 987 GenerateRelativeVTableAlias(VTable, OutName); 988 } 989 990 return VTable; 991 } 992 993 // Ensure this vtable is not instrumented by hwasan. That is, a global alias is 994 // not generated for it. This is mainly used by the relative-vtables ABI where 995 // vtables instead contain 32-bit offsets between the vtable and function 996 // pointers. Hwasan is disabled for these vtables for now because the tag in a 997 // vtable pointer may fail the overflow check when resolving 32-bit PLT 998 // relocations. A future alternative for this would be finding which usages of 999 // the vtable can continue to use the untagged hwasan value without any loss of 1000 // value in hwasan. 1001 void CodeGenVTables::RemoveHwasanMetadata(llvm::GlobalValue *GV) const { 1002 if (CGM.getLangOpts().Sanitize.has(SanitizerKind::HWAddress)) { 1003 llvm::GlobalValue::SanitizerMetadata Meta; 1004 if (GV->hasSanitizerMetadata()) 1005 Meta = GV->getSanitizerMetadata(); 1006 Meta.NoHWAddress = true; 1007 GV->setSanitizerMetadata(Meta); 1008 } 1009 } 1010 1011 // If the VTable is not dso_local, then we will not be able to indicate that 1012 // the VTable does not need a relocation and move into rodata. A frequent 1013 // time this can occur is for classes that should be made public from a DSO 1014 // (like in libc++). For cases like these, we can make the vtable hidden or 1015 // internal and create a public alias with the same visibility and linkage as 1016 // the original vtable type. 1017 void CodeGenVTables::GenerateRelativeVTableAlias(llvm::GlobalVariable *VTable, 1018 llvm::StringRef AliasNameRef) { 1019 assert(getItaniumVTableContext().isRelativeLayout() && 1020 "Can only use this if the relative vtable ABI is used"); 1021 assert(!VTable->isDSOLocal() && "This should be called only if the vtable is " 1022 "not guaranteed to be dso_local"); 1023 1024 // If the vtable is available_externally, we shouldn't (or need to) generate 1025 // an alias for it in the first place since the vtable won't actually by 1026 // emitted in this compilation unit. 1027 if (VTable->hasAvailableExternallyLinkage()) 1028 return; 1029 1030 // Create a new string in the event the alias is already the name of the 1031 // vtable. Using the reference directly could lead to use of an inititialized 1032 // value in the module's StringMap. 1033 llvm::SmallString<256> AliasName(AliasNameRef); 1034 VTable->setName(AliasName + ".local"); 1035 1036 auto Linkage = VTable->getLinkage(); 1037 assert(llvm::GlobalAlias::isValidLinkage(Linkage) && 1038 "Invalid vtable alias linkage"); 1039 1040 llvm::GlobalAlias *VTableAlias = CGM.getModule().getNamedAlias(AliasName); 1041 if (!VTableAlias) { 1042 VTableAlias = llvm::GlobalAlias::create(VTable->getValueType(), 1043 VTable->getAddressSpace(), Linkage, 1044 AliasName, &CGM.getModule()); 1045 } else { 1046 assert(VTableAlias->getValueType() == VTable->getValueType()); 1047 assert(VTableAlias->getLinkage() == Linkage); 1048 } 1049 VTableAlias->setVisibility(VTable->getVisibility()); 1050 VTableAlias->setUnnamedAddr(VTable->getUnnamedAddr()); 1051 1052 // Both of these will now imply dso_local for the vtable. 1053 if (!VTable->hasComdat()) { 1054 VTable->setLinkage(llvm::GlobalValue::InternalLinkage); 1055 } else { 1056 // If a relocation targets an internal linkage symbol, MC will generate the 1057 // relocation against the symbol's section instead of the symbol itself 1058 // (see ELFObjectWriter::shouldRelocateWithSymbol). If an internal symbol is 1059 // in a COMDAT section group, that section might be discarded, and then the 1060 // relocation to that section will generate a linker error. We therefore 1061 // make COMDAT vtables hidden instead of internal: they'll still not be 1062 // public, but relocations will reference the symbol instead of the section 1063 // and COMDAT deduplication will thus work as expected. 1064 VTable->setVisibility(llvm::GlobalValue::HiddenVisibility); 1065 } 1066 1067 VTableAlias->setAliasee(VTable); 1068 } 1069 1070 static bool shouldEmitAvailableExternallyVTable(const CodeGenModule &CGM, 1071 const CXXRecordDecl *RD) { 1072 return CGM.getCodeGenOpts().OptimizationLevel > 0 && 1073 CGM.getCXXABI().canSpeculativelyEmitVTable(RD); 1074 } 1075 1076 /// Compute the required linkage of the vtable for the given class. 1077 /// 1078 /// Note that we only call this at the end of the translation unit. 1079 llvm::GlobalVariable::LinkageTypes 1080 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 1081 if (!RD->isExternallyVisible()) 1082 return llvm::GlobalVariable::InternalLinkage; 1083 1084 // In windows, the linkage of vtable is not related to modules. 1085 bool IsInNamedModule = !getTarget().getCXXABI().isMicrosoft() && 1086 RD->isInNamedModule(); 1087 // If the CXXRecordDecl is not in a module unit, we need to get 1088 // its key function. We're at the end of the translation unit, so the current 1089 // key function is fully correct. 1090 const CXXMethodDecl *keyFunction = 1091 IsInNamedModule ? nullptr : Context.getCurrentKeyFunction(RD); 1092 if (IsInNamedModule || (keyFunction && !RD->hasAttr<DLLImportAttr>())) { 1093 // If this class has a key function, use that to determine the 1094 // linkage of the vtable. 1095 const FunctionDecl *def = nullptr; 1096 if (keyFunction && keyFunction->hasBody(def)) 1097 keyFunction = cast<CXXMethodDecl>(def); 1098 1099 bool IsExternalDefinition = 1100 IsInNamedModule ? RD->shouldEmitInExternalSource() : !def; 1101 1102 TemplateSpecializationKind Kind = 1103 IsInNamedModule ? RD->getTemplateSpecializationKind() 1104 : keyFunction->getTemplateSpecializationKind(); 1105 1106 switch (Kind) { 1107 case TSK_Undeclared: 1108 case TSK_ExplicitSpecialization: 1109 assert( 1110 (IsInNamedModule || def || CodeGenOpts.OptimizationLevel > 0 || 1111 CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo) && 1112 "Shouldn't query vtable linkage without the class in module units, " 1113 "key function, optimizations, or debug info"); 1114 if (IsExternalDefinition && CodeGenOpts.OptimizationLevel > 0) 1115 return llvm::GlobalVariable::AvailableExternallyLinkage; 1116 1117 if (keyFunction && keyFunction->isInlined()) 1118 return !Context.getLangOpts().AppleKext 1119 ? llvm::GlobalVariable::LinkOnceODRLinkage 1120 : llvm::Function::InternalLinkage; 1121 1122 return llvm::GlobalVariable::ExternalLinkage; 1123 1124 case TSK_ImplicitInstantiation: 1125 return !Context.getLangOpts().AppleKext ? 1126 llvm::GlobalVariable::LinkOnceODRLinkage : 1127 llvm::Function::InternalLinkage; 1128 1129 case TSK_ExplicitInstantiationDefinition: 1130 return !Context.getLangOpts().AppleKext ? 1131 llvm::GlobalVariable::WeakODRLinkage : 1132 llvm::Function::InternalLinkage; 1133 1134 case TSK_ExplicitInstantiationDeclaration: 1135 llvm_unreachable("Should not have been asked to emit this"); 1136 } 1137 } 1138 1139 // -fapple-kext mode does not support weak linkage, so we must use 1140 // internal linkage. 1141 if (Context.getLangOpts().AppleKext) 1142 return llvm::Function::InternalLinkage; 1143 1144 llvm::GlobalVariable::LinkageTypes DiscardableODRLinkage = 1145 llvm::GlobalValue::LinkOnceODRLinkage; 1146 llvm::GlobalVariable::LinkageTypes NonDiscardableODRLinkage = 1147 llvm::GlobalValue::WeakODRLinkage; 1148 if (RD->hasAttr<DLLExportAttr>()) { 1149 // Cannot discard exported vtables. 1150 DiscardableODRLinkage = NonDiscardableODRLinkage; 1151 } else if (RD->hasAttr<DLLImportAttr>()) { 1152 // Imported vtables are available externally. 1153 DiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage; 1154 NonDiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage; 1155 } 1156 1157 switch (RD->getTemplateSpecializationKind()) { 1158 case TSK_Undeclared: 1159 case TSK_ExplicitSpecialization: 1160 case TSK_ImplicitInstantiation: 1161 return DiscardableODRLinkage; 1162 1163 case TSK_ExplicitInstantiationDeclaration: 1164 // Explicit instantiations in MSVC do not provide vtables, so we must emit 1165 // our own. 1166 if (getTarget().getCXXABI().isMicrosoft()) 1167 return DiscardableODRLinkage; 1168 return shouldEmitAvailableExternallyVTable(*this, RD) 1169 ? llvm::GlobalVariable::AvailableExternallyLinkage 1170 : llvm::GlobalVariable::ExternalLinkage; 1171 1172 case TSK_ExplicitInstantiationDefinition: 1173 return NonDiscardableODRLinkage; 1174 } 1175 1176 llvm_unreachable("Invalid TemplateSpecializationKind!"); 1177 } 1178 1179 /// This is a callback from Sema to tell us that a particular vtable is 1180 /// required to be emitted in this translation unit. 1181 /// 1182 /// This is only called for vtables that _must_ be emitted (mainly due to key 1183 /// functions). For weak vtables, CodeGen tracks when they are needed and 1184 /// emits them as-needed. 1185 void CodeGenModule::EmitVTable(CXXRecordDecl *theClass) { 1186 VTables.GenerateClassData(theClass); 1187 } 1188 1189 void 1190 CodeGenVTables::GenerateClassData(const CXXRecordDecl *RD) { 1191 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) 1192 DI->completeClassData(RD); 1193 1194 if (RD->getNumVBases()) 1195 CGM.getCXXABI().emitVirtualInheritanceTables(RD); 1196 1197 CGM.getCXXABI().emitVTableDefinitions(*this, RD); 1198 } 1199 1200 /// At this point in the translation unit, does it appear that can we 1201 /// rely on the vtable being defined elsewhere in the program? 1202 /// 1203 /// The response is really only definitive when called at the end of 1204 /// the translation unit. 1205 /// 1206 /// The only semantic restriction here is that the object file should 1207 /// not contain a vtable definition when that vtable is defined 1208 /// strongly elsewhere. Otherwise, we'd just like to avoid emitting 1209 /// vtables when unnecessary. 1210 bool CodeGenVTables::isVTableExternal(const CXXRecordDecl *RD) { 1211 assert(RD->isDynamicClass() && "Non-dynamic classes have no VTable."); 1212 1213 // We always synthesize vtables if they are needed in the MS ABI. MSVC doesn't 1214 // emit them even if there is an explicit template instantiation. 1215 if (CGM.getTarget().getCXXABI().isMicrosoft()) 1216 return false; 1217 1218 // If we have an explicit instantiation declaration (and not a 1219 // definition), the vtable is defined elsewhere. 1220 TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind(); 1221 if (TSK == TSK_ExplicitInstantiationDeclaration) 1222 return true; 1223 1224 // Otherwise, if the class is an instantiated template, the 1225 // vtable must be defined here. 1226 if (TSK == TSK_ImplicitInstantiation || 1227 TSK == TSK_ExplicitInstantiationDefinition) 1228 return false; 1229 1230 // Otherwise, if the class is attached to a module, the tables are uniquely 1231 // emitted in the object for the module unit in which it is defined. 1232 if (RD->isInNamedModule()) 1233 return RD->shouldEmitInExternalSource(); 1234 1235 // Otherwise, if the class doesn't have a key function (possibly 1236 // anymore), the vtable must be defined here. 1237 const CXXMethodDecl *keyFunction = CGM.getContext().getCurrentKeyFunction(RD); 1238 if (!keyFunction) 1239 return false; 1240 1241 // Otherwise, if we don't have a definition of the key function, the 1242 // vtable must be defined somewhere else. 1243 return !keyFunction->hasBody(); 1244 } 1245 1246 /// Given that we're currently at the end of the translation unit, and 1247 /// we've emitted a reference to the vtable for this class, should 1248 /// we define that vtable? 1249 static bool shouldEmitVTableAtEndOfTranslationUnit(CodeGenModule &CGM, 1250 const CXXRecordDecl *RD) { 1251 // If vtable is internal then it has to be done. 1252 if (!CGM.getVTables().isVTableExternal(RD)) 1253 return true; 1254 1255 // If it's external then maybe we will need it as available_externally. 1256 return shouldEmitAvailableExternallyVTable(CGM, RD); 1257 } 1258 1259 /// Given that at some point we emitted a reference to one or more 1260 /// vtables, and that we are now at the end of the translation unit, 1261 /// decide whether we should emit them. 1262 void CodeGenModule::EmitDeferredVTables() { 1263 #ifndef NDEBUG 1264 // Remember the size of DeferredVTables, because we're going to assume 1265 // that this entire operation doesn't modify it. 1266 size_t savedSize = DeferredVTables.size(); 1267 #endif 1268 1269 for (const CXXRecordDecl *RD : DeferredVTables) 1270 if (shouldEmitVTableAtEndOfTranslationUnit(*this, RD)) 1271 VTables.GenerateClassData(RD); 1272 else if (shouldOpportunisticallyEmitVTables()) 1273 OpportunisticVTables.push_back(RD); 1274 1275 assert(savedSize == DeferredVTables.size() && 1276 "deferred extra vtables during vtable emission?"); 1277 DeferredVTables.clear(); 1278 } 1279 1280 bool CodeGenModule::AlwaysHasLTOVisibilityPublic(const CXXRecordDecl *RD) { 1281 if (RD->hasAttr<LTOVisibilityPublicAttr>() || RD->hasAttr<UuidAttr>() || 1282 RD->hasAttr<DLLExportAttr>() || RD->hasAttr<DLLImportAttr>()) 1283 return true; 1284 1285 if (!getCodeGenOpts().LTOVisibilityPublicStd) 1286 return false; 1287 1288 const DeclContext *DC = RD; 1289 while (true) { 1290 auto *D = cast<Decl>(DC); 1291 DC = DC->getParent(); 1292 if (isa<TranslationUnitDecl>(DC->getRedeclContext())) { 1293 if (auto *ND = dyn_cast<NamespaceDecl>(D)) 1294 if (const IdentifierInfo *II = ND->getIdentifier()) 1295 if (II->isStr("std") || II->isStr("stdext")) 1296 return true; 1297 break; 1298 } 1299 } 1300 1301 return false; 1302 } 1303 1304 bool CodeGenModule::HasHiddenLTOVisibility(const CXXRecordDecl *RD) { 1305 LinkageInfo LV = RD->getLinkageAndVisibility(); 1306 if (!isExternallyVisible(LV.getLinkage())) 1307 return true; 1308 1309 if (!getTriple().isOSBinFormatCOFF() && 1310 LV.getVisibility() != HiddenVisibility) 1311 return false; 1312 1313 return !AlwaysHasLTOVisibilityPublic(RD); 1314 } 1315 1316 llvm::GlobalObject::VCallVisibility CodeGenModule::GetVCallVisibilityLevel( 1317 const CXXRecordDecl *RD, llvm::DenseSet<const CXXRecordDecl *> &Visited) { 1318 // If we have already visited this RD (which means this is a recursive call 1319 // since the initial call should have an empty Visited set), return the max 1320 // visibility. The recursive calls below compute the min between the result 1321 // of the recursive call and the current TypeVis, so returning the max here 1322 // ensures that it will have no effect on the current TypeVis. 1323 if (!Visited.insert(RD).second) 1324 return llvm::GlobalObject::VCallVisibilityTranslationUnit; 1325 1326 LinkageInfo LV = RD->getLinkageAndVisibility(); 1327 llvm::GlobalObject::VCallVisibility TypeVis; 1328 if (!isExternallyVisible(LV.getLinkage())) 1329 TypeVis = llvm::GlobalObject::VCallVisibilityTranslationUnit; 1330 else if (HasHiddenLTOVisibility(RD)) 1331 TypeVis = llvm::GlobalObject::VCallVisibilityLinkageUnit; 1332 else 1333 TypeVis = llvm::GlobalObject::VCallVisibilityPublic; 1334 1335 for (const auto &B : RD->bases()) 1336 if (B.getType()->getAsCXXRecordDecl()->isDynamicClass()) 1337 TypeVis = std::min( 1338 TypeVis, 1339 GetVCallVisibilityLevel(B.getType()->getAsCXXRecordDecl(), Visited)); 1340 1341 for (const auto &B : RD->vbases()) 1342 if (B.getType()->getAsCXXRecordDecl()->isDynamicClass()) 1343 TypeVis = std::min( 1344 TypeVis, 1345 GetVCallVisibilityLevel(B.getType()->getAsCXXRecordDecl(), Visited)); 1346 1347 return TypeVis; 1348 } 1349 1350 void CodeGenModule::EmitVTableTypeMetadata(const CXXRecordDecl *RD, 1351 llvm::GlobalVariable *VTable, 1352 const VTableLayout &VTLayout) { 1353 // Emit type metadata on vtables with LTO or IR instrumentation. 1354 // In IR instrumentation, the type metadata is used to find out vtable 1355 // definitions (for type profiling) among all global variables. 1356 if (!getCodeGenOpts().LTOUnit && !getCodeGenOpts().hasProfileIRInstr()) 1357 return; 1358 1359 CharUnits ComponentWidth = GetTargetTypeStoreSize(getVTableComponentType()); 1360 1361 struct AddressPoint { 1362 const CXXRecordDecl *Base; 1363 size_t Offset; 1364 std::string TypeName; 1365 bool operator<(const AddressPoint &RHS) const { 1366 int D = TypeName.compare(RHS.TypeName); 1367 return D < 0 || (D == 0 && Offset < RHS.Offset); 1368 } 1369 }; 1370 std::vector<AddressPoint> AddressPoints; 1371 for (auto &&AP : VTLayout.getAddressPoints()) { 1372 AddressPoint N{AP.first.getBase(), 1373 VTLayout.getVTableOffset(AP.second.VTableIndex) + 1374 AP.second.AddressPointIndex, 1375 {}}; 1376 llvm::raw_string_ostream Stream(N.TypeName); 1377 getCXXABI().getMangleContext().mangleCanonicalTypeName( 1378 QualType(N.Base->getTypeForDecl(), 0), Stream); 1379 AddressPoints.push_back(std::move(N)); 1380 } 1381 1382 // Sort the address points for determinism. 1383 llvm::sort(AddressPoints); 1384 1385 ArrayRef<VTableComponent> Comps = VTLayout.vtable_components(); 1386 for (auto AP : AddressPoints) { 1387 // Create type metadata for the address point. 1388 AddVTableTypeMetadata(VTable, ComponentWidth * AP.Offset, AP.Base); 1389 1390 // The class associated with each address point could also potentially be 1391 // used for indirect calls via a member function pointer, so we need to 1392 // annotate the address of each function pointer with the appropriate member 1393 // function pointer type. 1394 for (unsigned I = 0; I != Comps.size(); ++I) { 1395 if (Comps[I].getKind() != VTableComponent::CK_FunctionPointer) 1396 continue; 1397 llvm::Metadata *MD = CreateMetadataIdentifierForVirtualMemPtrType( 1398 Context.getMemberPointerType( 1399 Comps[I].getFunctionDecl()->getType(), 1400 Context.getRecordType(AP.Base).getTypePtr())); 1401 VTable->addTypeMetadata((ComponentWidth * I).getQuantity(), MD); 1402 } 1403 } 1404 1405 if (getCodeGenOpts().VirtualFunctionElimination || 1406 getCodeGenOpts().WholeProgramVTables) { 1407 llvm::DenseSet<const CXXRecordDecl *> Visited; 1408 llvm::GlobalObject::VCallVisibility TypeVis = 1409 GetVCallVisibilityLevel(RD, Visited); 1410 if (TypeVis != llvm::GlobalObject::VCallVisibilityPublic) 1411 VTable->setVCallVisibilityMetadata(TypeVis); 1412 } 1413 } 1414