1 //===------- CGObjCGNU.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This provides Objective-C code generation targeting the GNU runtime. The 10 // class in this file generates structures used by the GNU Objective-C runtime 11 // library. These structures are defined in objc/objc.h and objc/objc-api.h in 12 // the GNU runtime distribution. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "CGCXXABI.h" 17 #include "CGCleanup.h" 18 #include "CGObjCRuntime.h" 19 #include "CodeGenFunction.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenTypes.h" 22 #include "SanitizerMetadata.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/Attr.h" 25 #include "clang/AST/Decl.h" 26 #include "clang/AST/DeclObjC.h" 27 #include "clang/AST/RecordLayout.h" 28 #include "clang/AST/StmtObjC.h" 29 #include "clang/Basic/SourceManager.h" 30 #include "clang/CodeGen/ConstantInitBuilder.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/ADT/StringMap.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/Intrinsics.h" 35 #include "llvm/IR/LLVMContext.h" 36 #include "llvm/IR/Module.h" 37 #include "llvm/Support/Compiler.h" 38 #include "llvm/Support/ConvertUTF.h" 39 #include <cctype> 40 41 using namespace clang; 42 using namespace CodeGen; 43 44 namespace { 45 46 /// Class that lazily initialises the runtime function. Avoids inserting the 47 /// types and the function declaration into a module if they're not used, and 48 /// avoids constructing the type more than once if it's used more than once. 49 class LazyRuntimeFunction { 50 CodeGenModule *CGM = nullptr; 51 llvm::FunctionType *FTy = nullptr; 52 const char *FunctionName = nullptr; 53 llvm::FunctionCallee Function = nullptr; 54 55 public: 56 LazyRuntimeFunction() = default; 57 58 /// Initialises the lazy function with the name, return type, and the types 59 /// of the arguments. 60 template <typename... Tys> 61 void init(CodeGenModule *Mod, const char *name, llvm::Type *RetTy, 62 Tys *... Types) { 63 CGM = Mod; 64 FunctionName = name; 65 Function = nullptr; 66 if(sizeof...(Tys)) { 67 SmallVector<llvm::Type *, 8> ArgTys({Types...}); 68 FTy = llvm::FunctionType::get(RetTy, ArgTys, false); 69 } 70 else { 71 FTy = llvm::FunctionType::get(RetTy, {}, false); 72 } 73 } 74 75 llvm::FunctionType *getType() { return FTy; } 76 77 /// Overloaded cast operator, allows the class to be implicitly cast to an 78 /// LLVM constant. 79 operator llvm::FunctionCallee() { 80 if (!Function) { 81 if (!FunctionName) 82 return nullptr; 83 Function = CGM->CreateRuntimeFunction(FTy, FunctionName); 84 } 85 return Function; 86 } 87 }; 88 89 90 /// GNU Objective-C runtime code generation. This class implements the parts of 91 /// Objective-C support that are specific to the GNU family of runtimes (GCC, 92 /// GNUstep and ObjFW). 93 class CGObjCGNU : public CGObjCRuntime { 94 protected: 95 /// The LLVM module into which output is inserted 96 llvm::Module &TheModule; 97 /// strut objc_super. Used for sending messages to super. This structure 98 /// contains the receiver (object) and the expected class. 99 llvm::StructType *ObjCSuperTy; 100 /// struct objc_super*. The type of the argument to the superclass message 101 /// lookup functions. 102 llvm::PointerType *PtrToObjCSuperTy; 103 /// LLVM type for selectors. Opaque pointer (i8*) unless a header declaring 104 /// SEL is included in a header somewhere, in which case it will be whatever 105 /// type is declared in that header, most likely {i8*, i8*}. 106 llvm::PointerType *SelectorTy; 107 /// Element type of SelectorTy. 108 llvm::Type *SelectorElemTy; 109 /// LLVM i8 type. Cached here to avoid repeatedly getting it in all of the 110 /// places where it's used 111 llvm::IntegerType *Int8Ty; 112 /// Pointer to i8 - LLVM type of char*, for all of the places where the 113 /// runtime needs to deal with C strings. 114 llvm::PointerType *PtrToInt8Ty; 115 /// struct objc_protocol type 116 llvm::StructType *ProtocolTy; 117 /// Protocol * type. 118 llvm::PointerType *ProtocolPtrTy; 119 /// Instance Method Pointer type. This is a pointer to a function that takes, 120 /// at a minimum, an object and a selector, and is the generic type for 121 /// Objective-C methods. Due to differences between variadic / non-variadic 122 /// calling conventions, it must always be cast to the correct type before 123 /// actually being used. 124 llvm::PointerType *IMPTy; 125 /// Type of an untyped Objective-C object. Clang treats id as a built-in type 126 /// when compiling Objective-C code, so this may be an opaque pointer (i8*), 127 /// but if the runtime header declaring it is included then it may be a 128 /// pointer to a structure. 129 llvm::PointerType *IdTy; 130 /// Element type of IdTy. 131 llvm::Type *IdElemTy; 132 /// Pointer to a pointer to an Objective-C object. Used in the new ABI 133 /// message lookup function and some GC-related functions. 134 llvm::PointerType *PtrToIdTy; 135 /// The clang type of id. Used when using the clang CGCall infrastructure to 136 /// call Objective-C methods. 137 CanQualType ASTIdTy; 138 /// LLVM type for C int type. 139 llvm::IntegerType *IntTy; 140 /// LLVM type for an opaque pointer. This is identical to PtrToInt8Ty, but is 141 /// used in the code to document the difference between i8* meaning a pointer 142 /// to a C string and i8* meaning a pointer to some opaque type. 143 llvm::PointerType *PtrTy; 144 /// LLVM type for C long type. The runtime uses this in a lot of places where 145 /// it should be using intptr_t, but we can't fix this without breaking 146 /// compatibility with GCC... 147 llvm::IntegerType *LongTy; 148 /// LLVM type for C size_t. Used in various runtime data structures. 149 llvm::IntegerType *SizeTy; 150 /// LLVM type for C intptr_t. 151 llvm::IntegerType *IntPtrTy; 152 /// LLVM type for C ptrdiff_t. Mainly used in property accessor functions. 153 llvm::IntegerType *PtrDiffTy; 154 /// LLVM type for C int*. Used for GCC-ABI-compatible non-fragile instance 155 /// variables. 156 llvm::PointerType *PtrToIntTy; 157 /// LLVM type for Objective-C BOOL type. 158 llvm::Type *BoolTy; 159 /// 32-bit integer type, to save us needing to look it up every time it's used. 160 llvm::IntegerType *Int32Ty; 161 /// 64-bit integer type, to save us needing to look it up every time it's used. 162 llvm::IntegerType *Int64Ty; 163 /// The type of struct objc_property. 164 llvm::StructType *PropertyMetadataTy; 165 /// Metadata kind used to tie method lookups to message sends. The GNUstep 166 /// runtime provides some LLVM passes that can use this to do things like 167 /// automatic IMP caching and speculative inlining. 168 unsigned msgSendMDKind; 169 /// Does the current target use SEH-based exceptions? False implies 170 /// Itanium-style DWARF unwinding. 171 bool usesSEHExceptions; 172 /// Does the current target uses C++-based exceptions? 173 bool usesCxxExceptions; 174 175 /// Helper to check if we are targeting a specific runtime version or later. 176 bool isRuntime(ObjCRuntime::Kind kind, unsigned major, unsigned minor=0) { 177 const ObjCRuntime &R = CGM.getLangOpts().ObjCRuntime; 178 return (R.getKind() == kind) && 179 (R.getVersion() >= VersionTuple(major, minor)); 180 } 181 182 std::string ManglePublicSymbol(StringRef Name) { 183 return (StringRef(CGM.getTriple().isOSBinFormatCOFF() ? "$_" : "._") + Name).str(); 184 } 185 186 std::string SymbolForProtocol(Twine Name) { 187 return (ManglePublicSymbol("OBJC_PROTOCOL_") + Name).str(); 188 } 189 190 std::string SymbolForProtocolRef(StringRef Name) { 191 return (ManglePublicSymbol("OBJC_REF_PROTOCOL_") + Name).str(); 192 } 193 194 195 /// Helper function that generates a constant string and returns a pointer to 196 /// the start of the string. The result of this function can be used anywhere 197 /// where the C code specifies const char*. 198 llvm::Constant *MakeConstantString(StringRef Str, const char *Name = "") { 199 ConstantAddress Array = 200 CGM.GetAddrOfConstantCString(std::string(Str), Name); 201 return Array.getPointer(); 202 } 203 204 /// Emits a linkonce_odr string, whose name is the prefix followed by the 205 /// string value. This allows the linker to combine the strings between 206 /// different modules. Used for EH typeinfo names, selector strings, and a 207 /// few other things. 208 llvm::Constant *ExportUniqueString(const std::string &Str, 209 const std::string &prefix, 210 bool Private=false) { 211 std::string name = prefix + Str; 212 auto *ConstStr = TheModule.getGlobalVariable(name); 213 if (!ConstStr) { 214 llvm::Constant *value = llvm::ConstantDataArray::getString(VMContext,Str); 215 auto *GV = new llvm::GlobalVariable(TheModule, value->getType(), true, 216 llvm::GlobalValue::LinkOnceODRLinkage, value, name); 217 GV->setComdat(TheModule.getOrInsertComdat(name)); 218 if (Private) 219 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 220 ConstStr = GV; 221 } 222 return ConstStr; 223 } 224 225 /// Returns a property name and encoding string. 226 llvm::Constant *MakePropertyEncodingString(const ObjCPropertyDecl *PD, 227 const Decl *Container) { 228 assert(!isRuntime(ObjCRuntime::GNUstep, 2)); 229 if (isRuntime(ObjCRuntime::GNUstep, 1, 6)) { 230 std::string NameAndAttributes; 231 std::string TypeStr = 232 CGM.getContext().getObjCEncodingForPropertyDecl(PD, Container); 233 NameAndAttributes += '\0'; 234 NameAndAttributes += TypeStr.length() + 3; 235 NameAndAttributes += TypeStr; 236 NameAndAttributes += '\0'; 237 NameAndAttributes += PD->getNameAsString(); 238 return MakeConstantString(NameAndAttributes); 239 } 240 return MakeConstantString(PD->getNameAsString()); 241 } 242 243 /// Push the property attributes into two structure fields. 244 void PushPropertyAttributes(ConstantStructBuilder &Fields, 245 const ObjCPropertyDecl *property, bool isSynthesized=true, bool 246 isDynamic=true) { 247 int attrs = property->getPropertyAttributes(); 248 // For read-only properties, clear the copy and retain flags 249 if (attrs & ObjCPropertyAttribute::kind_readonly) { 250 attrs &= ~ObjCPropertyAttribute::kind_copy; 251 attrs &= ~ObjCPropertyAttribute::kind_retain; 252 attrs &= ~ObjCPropertyAttribute::kind_weak; 253 attrs &= ~ObjCPropertyAttribute::kind_strong; 254 } 255 // The first flags field has the same attribute values as clang uses internally 256 Fields.addInt(Int8Ty, attrs & 0xff); 257 attrs >>= 8; 258 attrs <<= 2; 259 // For protocol properties, synthesized and dynamic have no meaning, so we 260 // reuse these flags to indicate that this is a protocol property (both set 261 // has no meaning, as a property can't be both synthesized and dynamic) 262 attrs |= isSynthesized ? (1<<0) : 0; 263 attrs |= isDynamic ? (1<<1) : 0; 264 // The second field is the next four fields left shifted by two, with the 265 // low bit set to indicate whether the field is synthesized or dynamic. 266 Fields.addInt(Int8Ty, attrs & 0xff); 267 // Two padding fields 268 Fields.addInt(Int8Ty, 0); 269 Fields.addInt(Int8Ty, 0); 270 } 271 272 virtual llvm::Constant *GenerateCategoryProtocolList(const 273 ObjCCategoryDecl *OCD); 274 virtual ConstantArrayBuilder PushPropertyListHeader(ConstantStructBuilder &Fields, 275 int count) { 276 // int count; 277 Fields.addInt(IntTy, count); 278 // int size; (only in GNUstep v2 ABI. 279 if (isRuntime(ObjCRuntime::GNUstep, 2)) { 280 const llvm::DataLayout &DL = TheModule.getDataLayout(); 281 Fields.addInt(IntTy, DL.getTypeSizeInBits(PropertyMetadataTy) / 282 CGM.getContext().getCharWidth()); 283 } 284 // struct objc_property_list *next; 285 Fields.add(NULLPtr); 286 // struct objc_property properties[] 287 return Fields.beginArray(PropertyMetadataTy); 288 } 289 virtual void PushProperty(ConstantArrayBuilder &PropertiesArray, 290 const ObjCPropertyDecl *property, 291 const Decl *OCD, 292 bool isSynthesized=true, bool 293 isDynamic=true) { 294 auto Fields = PropertiesArray.beginStruct(PropertyMetadataTy); 295 ASTContext &Context = CGM.getContext(); 296 Fields.add(MakePropertyEncodingString(property, OCD)); 297 PushPropertyAttributes(Fields, property, isSynthesized, isDynamic); 298 auto addPropertyMethod = [&](const ObjCMethodDecl *accessor) { 299 if (accessor) { 300 std::string TypeStr = Context.getObjCEncodingForMethodDecl(accessor); 301 llvm::Constant *TypeEncoding = MakeConstantString(TypeStr); 302 Fields.add(MakeConstantString(accessor->getSelector().getAsString())); 303 Fields.add(TypeEncoding); 304 } else { 305 Fields.add(NULLPtr); 306 Fields.add(NULLPtr); 307 } 308 }; 309 addPropertyMethod(property->getGetterMethodDecl()); 310 addPropertyMethod(property->getSetterMethodDecl()); 311 Fields.finishAndAddTo(PropertiesArray); 312 } 313 314 /// Ensures that the value has the required type, by inserting a bitcast if 315 /// required. This function lets us avoid inserting bitcasts that are 316 /// redundant. 317 llvm::Value *EnforceType(CGBuilderTy &B, llvm::Value *V, llvm::Type *Ty) { 318 if (V->getType() == Ty) 319 return V; 320 return B.CreateBitCast(V, Ty); 321 } 322 323 // Some zeros used for GEPs in lots of places. 324 llvm::Constant *Zeros[2]; 325 /// Null pointer value. Mainly used as a terminator in various arrays. 326 llvm::Constant *NULLPtr; 327 /// LLVM context. 328 llvm::LLVMContext &VMContext; 329 330 protected: 331 332 /// Placeholder for the class. Lots of things refer to the class before we've 333 /// actually emitted it. We use this alias as a placeholder, and then replace 334 /// it with a pointer to the class structure before finally emitting the 335 /// module. 336 llvm::GlobalAlias *ClassPtrAlias; 337 /// Placeholder for the metaclass. Lots of things refer to the class before 338 /// we've / actually emitted it. We use this alias as a placeholder, and then 339 /// replace / it with a pointer to the metaclass structure before finally 340 /// emitting the / module. 341 llvm::GlobalAlias *MetaClassPtrAlias; 342 /// All of the classes that have been generated for this compilation units. 343 std::vector<llvm::Constant*> Classes; 344 /// All of the categories that have been generated for this compilation units. 345 std::vector<llvm::Constant*> Categories; 346 /// All of the Objective-C constant strings that have been generated for this 347 /// compilation units. 348 std::vector<llvm::Constant*> ConstantStrings; 349 /// Map from string values to Objective-C constant strings in the output. 350 /// Used to prevent emitting Objective-C strings more than once. This should 351 /// not be required at all - CodeGenModule should manage this list. 352 llvm::StringMap<llvm::Constant*> ObjCStrings; 353 /// All of the protocols that have been declared. 354 llvm::StringMap<llvm::Constant*> ExistingProtocols; 355 /// For each variant of a selector, we store the type encoding and a 356 /// placeholder value. For an untyped selector, the type will be the empty 357 /// string. Selector references are all done via the module's selector table, 358 /// so we create an alias as a placeholder and then replace it with the real 359 /// value later. 360 typedef std::pair<std::string, llvm::GlobalAlias*> TypedSelector; 361 /// Type of the selector map. This is roughly equivalent to the structure 362 /// used in the GNUstep runtime, which maintains a list of all of the valid 363 /// types for a selector in a table. 364 typedef llvm::DenseMap<Selector, SmallVector<TypedSelector, 2> > 365 SelectorMap; 366 /// A map from selectors to selector types. This allows us to emit all 367 /// selectors of the same name and type together. 368 SelectorMap SelectorTable; 369 370 /// Selectors related to memory management. When compiling in GC mode, we 371 /// omit these. 372 Selector RetainSel, ReleaseSel, AutoreleaseSel; 373 /// Runtime functions used for memory management in GC mode. Note that clang 374 /// supports code generation for calling these functions, but neither GNU 375 /// runtime actually supports this API properly yet. 376 LazyRuntimeFunction IvarAssignFn, StrongCastAssignFn, MemMoveFn, WeakReadFn, 377 WeakAssignFn, GlobalAssignFn; 378 379 typedef std::pair<std::string, std::string> ClassAliasPair; 380 /// All classes that have aliases set for them. 381 std::vector<ClassAliasPair> ClassAliases; 382 383 protected: 384 /// Function used for throwing Objective-C exceptions. 385 LazyRuntimeFunction ExceptionThrowFn; 386 /// Function used for rethrowing exceptions, used at the end of \@finally or 387 /// \@synchronize blocks. 388 LazyRuntimeFunction ExceptionReThrowFn; 389 /// Function called when entering a catch function. This is required for 390 /// differentiating Objective-C exceptions and foreign exceptions. 391 LazyRuntimeFunction EnterCatchFn; 392 /// Function called when exiting from a catch block. Used to do exception 393 /// cleanup. 394 LazyRuntimeFunction ExitCatchFn; 395 /// Function called when entering an \@synchronize block. Acquires the lock. 396 LazyRuntimeFunction SyncEnterFn; 397 /// Function called when exiting an \@synchronize block. Releases the lock. 398 LazyRuntimeFunction SyncExitFn; 399 400 private: 401 /// Function called if fast enumeration detects that the collection is 402 /// modified during the update. 403 LazyRuntimeFunction EnumerationMutationFn; 404 /// Function for implementing synthesized property getters that return an 405 /// object. 406 LazyRuntimeFunction GetPropertyFn; 407 /// Function for implementing synthesized property setters that return an 408 /// object. 409 LazyRuntimeFunction SetPropertyFn; 410 /// Function used for non-object declared property getters. 411 LazyRuntimeFunction GetStructPropertyFn; 412 /// Function used for non-object declared property setters. 413 LazyRuntimeFunction SetStructPropertyFn; 414 415 protected: 416 /// The version of the runtime that this class targets. Must match the 417 /// version in the runtime. 418 int RuntimeVersion; 419 /// The version of the protocol class. Used to differentiate between ObjC1 420 /// and ObjC2 protocols. Objective-C 1 protocols can not contain optional 421 /// components and can not contain declared properties. We always emit 422 /// Objective-C 2 property structures, but we have to pretend that they're 423 /// Objective-C 1 property structures when targeting the GCC runtime or it 424 /// will abort. 425 const int ProtocolVersion; 426 /// The version of the class ABI. This value is used in the class structure 427 /// and indicates how various fields should be interpreted. 428 const int ClassABIVersion; 429 /// Generates an instance variable list structure. This is a structure 430 /// containing a size and an array of structures containing instance variable 431 /// metadata. This is used purely for introspection in the fragile ABI. In 432 /// the non-fragile ABI, it's used for instance variable fixup. 433 virtual llvm::Constant *GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames, 434 ArrayRef<llvm::Constant *> IvarTypes, 435 ArrayRef<llvm::Constant *> IvarOffsets, 436 ArrayRef<llvm::Constant *> IvarAlign, 437 ArrayRef<Qualifiers::ObjCLifetime> IvarOwnership); 438 439 /// Generates a method list structure. This is a structure containing a size 440 /// and an array of structures containing method metadata. 441 /// 442 /// This structure is used by both classes and categories, and contains a next 443 /// pointer allowing them to be chained together in a linked list. 444 llvm::Constant *GenerateMethodList(StringRef ClassName, 445 StringRef CategoryName, 446 ArrayRef<const ObjCMethodDecl*> Methods, 447 bool isClassMethodList); 448 449 /// Emits an empty protocol. This is used for \@protocol() where no protocol 450 /// is found. The runtime will (hopefully) fix up the pointer to refer to the 451 /// real protocol. 452 virtual llvm::Constant *GenerateEmptyProtocol(StringRef ProtocolName); 453 454 /// Generates a list of property metadata structures. This follows the same 455 /// pattern as method and instance variable metadata lists. 456 llvm::Constant *GeneratePropertyList(const Decl *Container, 457 const ObjCContainerDecl *OCD, 458 bool isClassProperty=false, 459 bool protocolOptionalProperties=false); 460 461 /// Generates a list of referenced protocols. Classes, categories, and 462 /// protocols all use this structure. 463 llvm::Constant *GenerateProtocolList(ArrayRef<std::string> Protocols); 464 465 /// To ensure that all protocols are seen by the runtime, we add a category on 466 /// a class defined in the runtime, declaring no methods, but adopting the 467 /// protocols. This is a horribly ugly hack, but it allows us to collect all 468 /// of the protocols without changing the ABI. 469 void GenerateProtocolHolderCategory(); 470 471 /// Generates a class structure. 472 llvm::Constant *GenerateClassStructure( 473 llvm::Constant *MetaClass, 474 llvm::Constant *SuperClass, 475 unsigned info, 476 const char *Name, 477 llvm::Constant *Version, 478 llvm::Constant *InstanceSize, 479 llvm::Constant *IVars, 480 llvm::Constant *Methods, 481 llvm::Constant *Protocols, 482 llvm::Constant *IvarOffsets, 483 llvm::Constant *Properties, 484 llvm::Constant *StrongIvarBitmap, 485 llvm::Constant *WeakIvarBitmap, 486 bool isMeta=false); 487 488 /// Generates a method list. This is used by protocols to define the required 489 /// and optional methods. 490 virtual llvm::Constant *GenerateProtocolMethodList( 491 ArrayRef<const ObjCMethodDecl*> Methods); 492 /// Emits optional and required method lists. 493 template<class T> 494 void EmitProtocolMethodList(T &&Methods, llvm::Constant *&Required, 495 llvm::Constant *&Optional) { 496 SmallVector<const ObjCMethodDecl*, 16> RequiredMethods; 497 SmallVector<const ObjCMethodDecl*, 16> OptionalMethods; 498 for (const auto *I : Methods) 499 if (I->isOptional()) 500 OptionalMethods.push_back(I); 501 else 502 RequiredMethods.push_back(I); 503 Required = GenerateProtocolMethodList(RequiredMethods); 504 Optional = GenerateProtocolMethodList(OptionalMethods); 505 } 506 507 /// Returns a selector with the specified type encoding. An empty string is 508 /// used to return an untyped selector (with the types field set to NULL). 509 virtual llvm::Value *GetTypedSelector(CodeGenFunction &CGF, Selector Sel, 510 const std::string &TypeEncoding); 511 512 /// Returns the name of ivar offset variables. In the GNUstep v1 ABI, this 513 /// contains the class and ivar names, in the v2 ABI this contains the type 514 /// encoding as well. 515 virtual std::string GetIVarOffsetVariableName(const ObjCInterfaceDecl *ID, 516 const ObjCIvarDecl *Ivar) { 517 const std::string Name = "__objc_ivar_offset_" + ID->getNameAsString() 518 + '.' + Ivar->getNameAsString(); 519 return Name; 520 } 521 /// Returns the variable used to store the offset of an instance variable. 522 llvm::GlobalVariable *ObjCIvarOffsetVariable(const ObjCInterfaceDecl *ID, 523 const ObjCIvarDecl *Ivar); 524 /// Emits a reference to a class. This allows the linker to object if there 525 /// is no class of the matching name. 526 void EmitClassRef(const std::string &className); 527 528 /// Emits a pointer to the named class 529 virtual llvm::Value *GetClassNamed(CodeGenFunction &CGF, 530 const std::string &Name, bool isWeak); 531 532 /// Looks up the method for sending a message to the specified object. This 533 /// mechanism differs between the GCC and GNU runtimes, so this method must be 534 /// overridden in subclasses. 535 virtual llvm::Value *LookupIMP(CodeGenFunction &CGF, 536 llvm::Value *&Receiver, 537 llvm::Value *cmd, 538 llvm::MDNode *node, 539 MessageSendInfo &MSI) = 0; 540 541 /// Looks up the method for sending a message to a superclass. This 542 /// mechanism differs between the GCC and GNU runtimes, so this method must 543 /// be overridden in subclasses. 544 virtual llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, 545 Address ObjCSuper, 546 llvm::Value *cmd, 547 MessageSendInfo &MSI) = 0; 548 549 /// Libobjc2 uses a bitfield representation where small(ish) bitfields are 550 /// stored in a 64-bit value with the low bit set to 1 and the remaining 63 551 /// bits set to their values, LSB first, while larger ones are stored in a 552 /// structure of this / form: 553 /// 554 /// struct { int32_t length; int32_t values[length]; }; 555 /// 556 /// The values in the array are stored in host-endian format, with the least 557 /// significant bit being assumed to come first in the bitfield. Therefore, 558 /// a bitfield with the 64th bit set will be (int64_t)&{ 2, [0, 1<<31] }, 559 /// while a bitfield / with the 63rd bit set will be 1<<64. 560 llvm::Constant *MakeBitField(ArrayRef<bool> bits); 561 562 public: 563 CGObjCGNU(CodeGenModule &cgm, unsigned runtimeABIVersion, 564 unsigned protocolClassVersion, unsigned classABI=1); 565 566 ConstantAddress GenerateConstantString(const StringLiteral *) override; 567 568 RValue 569 GenerateMessageSend(CodeGenFunction &CGF, ReturnValueSlot Return, 570 QualType ResultType, Selector Sel, 571 llvm::Value *Receiver, const CallArgList &CallArgs, 572 const ObjCInterfaceDecl *Class, 573 const ObjCMethodDecl *Method) override; 574 RValue 575 GenerateMessageSendSuper(CodeGenFunction &CGF, ReturnValueSlot Return, 576 QualType ResultType, Selector Sel, 577 const ObjCInterfaceDecl *Class, 578 bool isCategoryImpl, llvm::Value *Receiver, 579 bool IsClassMessage, const CallArgList &CallArgs, 580 const ObjCMethodDecl *Method) override; 581 llvm::Value *GetClass(CodeGenFunction &CGF, 582 const ObjCInterfaceDecl *OID) override; 583 llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override; 584 Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override; 585 llvm::Value *GetSelector(CodeGenFunction &CGF, 586 const ObjCMethodDecl *Method) override; 587 virtual llvm::Constant *GetConstantSelector(Selector Sel, 588 const std::string &TypeEncoding) { 589 llvm_unreachable("Runtime unable to generate constant selector"); 590 } 591 llvm::Constant *GetConstantSelector(const ObjCMethodDecl *M) { 592 return GetConstantSelector(M->getSelector(), 593 CGM.getContext().getObjCEncodingForMethodDecl(M)); 594 } 595 llvm::Constant *GetEHType(QualType T) override; 596 597 llvm::Function *GenerateMethod(const ObjCMethodDecl *OMD, 598 const ObjCContainerDecl *CD) override; 599 600 // Map to unify direct method definitions. 601 llvm::DenseMap<const ObjCMethodDecl *, llvm::Function *> 602 DirectMethodDefinitions; 603 void GenerateDirectMethodPrologue(CodeGenFunction &CGF, llvm::Function *Fn, 604 const ObjCMethodDecl *OMD, 605 const ObjCContainerDecl *CD) override; 606 void GenerateCategory(const ObjCCategoryImplDecl *CMD) override; 607 void GenerateClass(const ObjCImplementationDecl *ClassDecl) override; 608 void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override; 609 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF, 610 const ObjCProtocolDecl *PD) override; 611 void GenerateProtocol(const ObjCProtocolDecl *PD) override; 612 613 virtual llvm::Constant *GenerateProtocolRef(const ObjCProtocolDecl *PD); 614 615 llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override { 616 return GenerateProtocolRef(PD); 617 } 618 619 llvm::Function *ModuleInitFunction() override; 620 llvm::FunctionCallee GetPropertyGetFunction() override; 621 llvm::FunctionCallee GetPropertySetFunction() override; 622 llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic, 623 bool copy) override; 624 llvm::FunctionCallee GetSetStructFunction() override; 625 llvm::FunctionCallee GetGetStructFunction() override; 626 llvm::FunctionCallee GetCppAtomicObjectGetFunction() override; 627 llvm::FunctionCallee GetCppAtomicObjectSetFunction() override; 628 llvm::FunctionCallee EnumerationMutationFunction() override; 629 630 void EmitTryStmt(CodeGenFunction &CGF, 631 const ObjCAtTryStmt &S) override; 632 void EmitSynchronizedStmt(CodeGenFunction &CGF, 633 const ObjCAtSynchronizedStmt &S) override; 634 void EmitThrowStmt(CodeGenFunction &CGF, 635 const ObjCAtThrowStmt &S, 636 bool ClearInsertionPoint=true) override; 637 llvm::Value * EmitObjCWeakRead(CodeGenFunction &CGF, 638 Address AddrWeakObj) override; 639 void EmitObjCWeakAssign(CodeGenFunction &CGF, 640 llvm::Value *src, Address dst) override; 641 void EmitObjCGlobalAssign(CodeGenFunction &CGF, 642 llvm::Value *src, Address dest, 643 bool threadlocal=false) override; 644 void EmitObjCIvarAssign(CodeGenFunction &CGF, llvm::Value *src, 645 Address dest, llvm::Value *ivarOffset) override; 646 void EmitObjCStrongCastAssign(CodeGenFunction &CGF, 647 llvm::Value *src, Address dest) override; 648 void EmitGCMemmoveCollectable(CodeGenFunction &CGF, Address DestPtr, 649 Address SrcPtr, 650 llvm::Value *Size) override; 651 LValue EmitObjCValueForIvar(CodeGenFunction &CGF, QualType ObjectTy, 652 llvm::Value *BaseValue, const ObjCIvarDecl *Ivar, 653 unsigned CVRQualifiers) override; 654 llvm::Value *EmitIvarOffset(CodeGenFunction &CGF, 655 const ObjCInterfaceDecl *Interface, 656 const ObjCIvarDecl *Ivar) override; 657 llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override; 658 llvm::Constant *BuildGCBlockLayout(CodeGenModule &CGM, 659 const CGBlockInfo &blockInfo) override { 660 return NULLPtr; 661 } 662 llvm::Constant *BuildRCBlockLayout(CodeGenModule &CGM, 663 const CGBlockInfo &blockInfo) override { 664 return NULLPtr; 665 } 666 667 llvm::Constant *BuildByrefLayout(CodeGenModule &CGM, QualType T) override { 668 return NULLPtr; 669 } 670 }; 671 672 /// Class representing the legacy GCC Objective-C ABI. This is the default when 673 /// -fobjc-nonfragile-abi is not specified. 674 /// 675 /// The GCC ABI target actually generates code that is approximately compatible 676 /// with the new GNUstep runtime ABI, but refrains from using any features that 677 /// would not work with the GCC runtime. For example, clang always generates 678 /// the extended form of the class structure, and the extra fields are simply 679 /// ignored by GCC libobjc. 680 class CGObjCGCC : public CGObjCGNU { 681 /// The GCC ABI message lookup function. Returns an IMP pointing to the 682 /// method implementation for this message. 683 LazyRuntimeFunction MsgLookupFn; 684 /// The GCC ABI superclass message lookup function. Takes a pointer to a 685 /// structure describing the receiver and the class, and a selector as 686 /// arguments. Returns the IMP for the corresponding method. 687 LazyRuntimeFunction MsgLookupSuperFn; 688 689 protected: 690 llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver, 691 llvm::Value *cmd, llvm::MDNode *node, 692 MessageSendInfo &MSI) override { 693 CGBuilderTy &Builder = CGF.Builder; 694 llvm::Value *args[] = { 695 EnforceType(Builder, Receiver, IdTy), 696 EnforceType(Builder, cmd, SelectorTy) }; 697 llvm::CallBase *imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFn, args); 698 imp->setMetadata(msgSendMDKind, node); 699 return imp; 700 } 701 702 llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper, 703 llvm::Value *cmd, MessageSendInfo &MSI) override { 704 CGBuilderTy &Builder = CGF.Builder; 705 llvm::Value *lookupArgs[] = { 706 EnforceType(Builder, ObjCSuper.emitRawPointer(CGF), PtrToObjCSuperTy), 707 cmd}; 708 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs); 709 } 710 711 public: 712 CGObjCGCC(CodeGenModule &Mod) : CGObjCGNU(Mod, 8, 2) { 713 // IMP objc_msg_lookup(id, SEL); 714 MsgLookupFn.init(&CGM, "objc_msg_lookup", IMPTy, IdTy, SelectorTy); 715 // IMP objc_msg_lookup_super(struct objc_super*, SEL); 716 MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy, 717 PtrToObjCSuperTy, SelectorTy); 718 } 719 }; 720 721 /// Class used when targeting the new GNUstep runtime ABI. 722 class CGObjCGNUstep : public CGObjCGNU { 723 /// The slot lookup function. Returns a pointer to a cacheable structure 724 /// that contains (among other things) the IMP. 725 LazyRuntimeFunction SlotLookupFn; 726 /// The GNUstep ABI superclass message lookup function. Takes a pointer to 727 /// a structure describing the receiver and the class, and a selector as 728 /// arguments. Returns the slot for the corresponding method. Superclass 729 /// message lookup rarely changes, so this is a good caching opportunity. 730 LazyRuntimeFunction SlotLookupSuperFn; 731 /// Specialised function for setting atomic retain properties 732 LazyRuntimeFunction SetPropertyAtomic; 733 /// Specialised function for setting atomic copy properties 734 LazyRuntimeFunction SetPropertyAtomicCopy; 735 /// Specialised function for setting nonatomic retain properties 736 LazyRuntimeFunction SetPropertyNonAtomic; 737 /// Specialised function for setting nonatomic copy properties 738 LazyRuntimeFunction SetPropertyNonAtomicCopy; 739 /// Function to perform atomic copies of C++ objects with nontrivial copy 740 /// constructors from Objective-C ivars. 741 LazyRuntimeFunction CxxAtomicObjectGetFn; 742 /// Function to perform atomic copies of C++ objects with nontrivial copy 743 /// constructors to Objective-C ivars. 744 LazyRuntimeFunction CxxAtomicObjectSetFn; 745 /// Type of a slot structure pointer. This is returned by the various 746 /// lookup functions. 747 llvm::Type *SlotTy; 748 /// Type of a slot structure. 749 llvm::Type *SlotStructTy; 750 751 public: 752 llvm::Constant *GetEHType(QualType T) override; 753 754 protected: 755 llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver, 756 llvm::Value *cmd, llvm::MDNode *node, 757 MessageSendInfo &MSI) override { 758 CGBuilderTy &Builder = CGF.Builder; 759 llvm::FunctionCallee LookupFn = SlotLookupFn; 760 761 // Store the receiver on the stack so that we can reload it later 762 RawAddress ReceiverPtr = 763 CGF.CreateTempAlloca(Receiver->getType(), CGF.getPointerAlign()); 764 Builder.CreateStore(Receiver, ReceiverPtr); 765 766 llvm::Value *self; 767 768 if (isa<ObjCMethodDecl>(CGF.CurCodeDecl)) { 769 self = CGF.LoadObjCSelf(); 770 } else { 771 self = llvm::ConstantPointerNull::get(IdTy); 772 } 773 774 // The lookup function is guaranteed not to capture the receiver pointer. 775 if (auto *LookupFn2 = dyn_cast<llvm::Function>(LookupFn.getCallee())) 776 LookupFn2->addParamAttr( 777 0, llvm::Attribute::getWithCaptureInfo(CGF.getLLVMContext(), 778 llvm::CaptureInfo::none())); 779 780 llvm::Value *args[] = { 781 EnforceType(Builder, ReceiverPtr.getPointer(), PtrToIdTy), 782 EnforceType(Builder, cmd, SelectorTy), 783 EnforceType(Builder, self, IdTy)}; 784 llvm::CallBase *slot = CGF.EmitRuntimeCallOrInvoke(LookupFn, args); 785 slot->setOnlyReadsMemory(); 786 slot->setMetadata(msgSendMDKind, node); 787 788 // Load the imp from the slot 789 llvm::Value *imp = Builder.CreateAlignedLoad( 790 IMPTy, Builder.CreateStructGEP(SlotStructTy, slot, 4), 791 CGF.getPointerAlign()); 792 793 // The lookup function may have changed the receiver, so make sure we use 794 // the new one. 795 Receiver = Builder.CreateLoad(ReceiverPtr, true); 796 return imp; 797 } 798 799 llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper, 800 llvm::Value *cmd, 801 MessageSendInfo &MSI) override { 802 CGBuilderTy &Builder = CGF.Builder; 803 llvm::Value *lookupArgs[] = {ObjCSuper.emitRawPointer(CGF), cmd}; 804 805 llvm::CallInst *slot = 806 CGF.EmitNounwindRuntimeCall(SlotLookupSuperFn, lookupArgs); 807 slot->setOnlyReadsMemory(); 808 809 return Builder.CreateAlignedLoad( 810 IMPTy, Builder.CreateStructGEP(SlotStructTy, slot, 4), 811 CGF.getPointerAlign()); 812 } 813 814 public: 815 CGObjCGNUstep(CodeGenModule &Mod) : CGObjCGNUstep(Mod, 9, 3, 1) {} 816 CGObjCGNUstep(CodeGenModule &Mod, unsigned ABI, unsigned ProtocolABI, 817 unsigned ClassABI) : 818 CGObjCGNU(Mod, ABI, ProtocolABI, ClassABI) { 819 const ObjCRuntime &R = CGM.getLangOpts().ObjCRuntime; 820 821 SlotStructTy = llvm::StructType::get(PtrTy, PtrTy, PtrTy, IntTy, IMPTy); 822 SlotTy = llvm::PointerType::getUnqual(SlotStructTy); 823 // Slot_t objc_msg_lookup_sender(id *receiver, SEL selector, id sender); 824 SlotLookupFn.init(&CGM, "objc_msg_lookup_sender", SlotTy, PtrToIdTy, 825 SelectorTy, IdTy); 826 // Slot_t objc_slot_lookup_super(struct objc_super*, SEL); 827 SlotLookupSuperFn.init(&CGM, "objc_slot_lookup_super", SlotTy, 828 PtrToObjCSuperTy, SelectorTy); 829 // If we're in ObjC++ mode, then we want to make 830 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext); 831 if (usesCxxExceptions) { 832 // void *__cxa_begin_catch(void *e) 833 EnterCatchFn.init(&CGM, "__cxa_begin_catch", PtrTy, PtrTy); 834 // void __cxa_end_catch(void) 835 ExitCatchFn.init(&CGM, "__cxa_end_catch", VoidTy); 836 // void objc_exception_rethrow(void*) 837 ExceptionReThrowFn.init(&CGM, "__cxa_rethrow", PtrTy); 838 } else if (usesSEHExceptions) { 839 // void objc_exception_rethrow(void) 840 ExceptionReThrowFn.init(&CGM, "objc_exception_rethrow", VoidTy); 841 } else if (CGM.getLangOpts().CPlusPlus) { 842 // void *__cxa_begin_catch(void *e) 843 EnterCatchFn.init(&CGM, "__cxa_begin_catch", PtrTy, PtrTy); 844 // void __cxa_end_catch(void) 845 ExitCatchFn.init(&CGM, "__cxa_end_catch", VoidTy); 846 // void _Unwind_Resume_or_Rethrow(void*) 847 ExceptionReThrowFn.init(&CGM, "_Unwind_Resume_or_Rethrow", VoidTy, 848 PtrTy); 849 } else if (R.getVersion() >= VersionTuple(1, 7)) { 850 // id objc_begin_catch(void *e) 851 EnterCatchFn.init(&CGM, "objc_begin_catch", IdTy, PtrTy); 852 // void objc_end_catch(void) 853 ExitCatchFn.init(&CGM, "objc_end_catch", VoidTy); 854 // void _Unwind_Resume_or_Rethrow(void*) 855 ExceptionReThrowFn.init(&CGM, "objc_exception_rethrow", VoidTy, PtrTy); 856 } 857 SetPropertyAtomic.init(&CGM, "objc_setProperty_atomic", VoidTy, IdTy, 858 SelectorTy, IdTy, PtrDiffTy); 859 SetPropertyAtomicCopy.init(&CGM, "objc_setProperty_atomic_copy", VoidTy, 860 IdTy, SelectorTy, IdTy, PtrDiffTy); 861 SetPropertyNonAtomic.init(&CGM, "objc_setProperty_nonatomic", VoidTy, 862 IdTy, SelectorTy, IdTy, PtrDiffTy); 863 SetPropertyNonAtomicCopy.init(&CGM, "objc_setProperty_nonatomic_copy", 864 VoidTy, IdTy, SelectorTy, IdTy, PtrDiffTy); 865 // void objc_setCppObjectAtomic(void *dest, const void *src, void 866 // *helper); 867 CxxAtomicObjectSetFn.init(&CGM, "objc_setCppObjectAtomic", VoidTy, PtrTy, 868 PtrTy, PtrTy); 869 // void objc_getCppObjectAtomic(void *dest, const void *src, void 870 // *helper); 871 CxxAtomicObjectGetFn.init(&CGM, "objc_getCppObjectAtomic", VoidTy, PtrTy, 872 PtrTy, PtrTy); 873 } 874 875 llvm::FunctionCallee GetCppAtomicObjectGetFunction() override { 876 // The optimised functions were added in version 1.7 of the GNUstep 877 // runtime. 878 assert (CGM.getLangOpts().ObjCRuntime.getVersion() >= 879 VersionTuple(1, 7)); 880 return CxxAtomicObjectGetFn; 881 } 882 883 llvm::FunctionCallee GetCppAtomicObjectSetFunction() override { 884 // The optimised functions were added in version 1.7 of the GNUstep 885 // runtime. 886 assert (CGM.getLangOpts().ObjCRuntime.getVersion() >= 887 VersionTuple(1, 7)); 888 return CxxAtomicObjectSetFn; 889 } 890 891 llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic, 892 bool copy) override { 893 // The optimised property functions omit the GC check, and so are not 894 // safe to use in GC mode. The standard functions are fast in GC mode, 895 // so there is less advantage in using them. 896 assert ((CGM.getLangOpts().getGC() == LangOptions::NonGC)); 897 // The optimised functions were added in version 1.7 of the GNUstep 898 // runtime. 899 assert (CGM.getLangOpts().ObjCRuntime.getVersion() >= 900 VersionTuple(1, 7)); 901 902 if (atomic) { 903 if (copy) return SetPropertyAtomicCopy; 904 return SetPropertyAtomic; 905 } 906 907 return copy ? SetPropertyNonAtomicCopy : SetPropertyNonAtomic; 908 } 909 }; 910 911 /// GNUstep Objective-C ABI version 2 implementation. 912 /// This is the ABI that provides a clean break with the legacy GCC ABI and 913 /// cleans up a number of things that were added to work around 1980s linkers. 914 class CGObjCGNUstep2 : public CGObjCGNUstep { 915 enum SectionKind 916 { 917 SelectorSection = 0, 918 ClassSection, 919 ClassReferenceSection, 920 CategorySection, 921 ProtocolSection, 922 ProtocolReferenceSection, 923 ClassAliasSection, 924 ConstantStringSection 925 }; 926 /// The subset of `objc_class_flags` used at compile time. 927 enum ClassFlags { 928 /// This is a metaclass 929 ClassFlagMeta = (1 << 0), 930 /// This class has been initialised by the runtime (+initialize has been 931 /// sent if necessary). 932 ClassFlagInitialized = (1 << 8), 933 }; 934 static const char *const SectionsBaseNames[8]; 935 static const char *const PECOFFSectionsBaseNames[8]; 936 template<SectionKind K> 937 std::string sectionName() { 938 if (CGM.getTriple().isOSBinFormatCOFF()) { 939 std::string name(PECOFFSectionsBaseNames[K]); 940 name += "$m"; 941 return name; 942 } 943 return SectionsBaseNames[K]; 944 } 945 /// The GCC ABI superclass message lookup function. Takes a pointer to a 946 /// structure describing the receiver and the class, and a selector as 947 /// arguments. Returns the IMP for the corresponding method. 948 LazyRuntimeFunction MsgLookupSuperFn; 949 /// Function to ensure that +initialize is sent to a class. 950 LazyRuntimeFunction SentInitializeFn; 951 /// A flag indicating if we've emitted at least one protocol. 952 /// If we haven't, then we need to emit an empty protocol, to ensure that the 953 /// __start__objc_protocols and __stop__objc_protocols sections exist. 954 bool EmittedProtocol = false; 955 /// A flag indicating if we've emitted at least one protocol reference. 956 /// If we haven't, then we need to emit an empty protocol, to ensure that the 957 /// __start__objc_protocol_refs and __stop__objc_protocol_refs sections 958 /// exist. 959 bool EmittedProtocolRef = false; 960 /// A flag indicating if we've emitted at least one class. 961 /// If we haven't, then we need to emit an empty protocol, to ensure that the 962 /// __start__objc_classes and __stop__objc_classes sections / exist. 963 bool EmittedClass = false; 964 /// Generate the name of a symbol for a reference to a class. Accesses to 965 /// classes should be indirected via this. 966 967 typedef std::pair<std::string, std::pair<llvm::GlobalVariable*, int>> 968 EarlyInitPair; 969 std::vector<EarlyInitPair> EarlyInitList; 970 971 std::string SymbolForClassRef(StringRef Name, bool isWeak) { 972 if (isWeak) 973 return (ManglePublicSymbol("OBJC_WEAK_REF_CLASS_") + Name).str(); 974 else 975 return (ManglePublicSymbol("OBJC_REF_CLASS_") + Name).str(); 976 } 977 /// Generate the name of a class symbol. 978 std::string SymbolForClass(StringRef Name) { 979 return (ManglePublicSymbol("OBJC_CLASS_") + Name).str(); 980 } 981 void CallRuntimeFunction(CGBuilderTy &B, StringRef FunctionName, 982 ArrayRef<llvm::Value*> Args) { 983 SmallVector<llvm::Type *,8> Types; 984 for (auto *Arg : Args) 985 Types.push_back(Arg->getType()); 986 llvm::FunctionType *FT = llvm::FunctionType::get(B.getVoidTy(), Types, 987 false); 988 llvm::FunctionCallee Fn = CGM.CreateRuntimeFunction(FT, FunctionName); 989 B.CreateCall(Fn, Args); 990 } 991 992 ConstantAddress GenerateConstantString(const StringLiteral *SL) override { 993 994 auto Str = SL->getString(); 995 CharUnits Align = CGM.getPointerAlign(); 996 997 // Look for an existing one 998 llvm::StringMap<llvm::Constant*>::iterator old = ObjCStrings.find(Str); 999 if (old != ObjCStrings.end()) 1000 return ConstantAddress(old->getValue(), IdElemTy, Align); 1001 1002 bool isNonASCII = SL->containsNonAscii(); 1003 1004 auto LiteralLength = SL->getLength(); 1005 1006 if ((CGM.getTarget().getPointerWidth(LangAS::Default) == 64) && 1007 (LiteralLength < 9) && !isNonASCII) { 1008 // Tiny strings are only used on 64-bit platforms. They store 8 7-bit 1009 // ASCII characters in the high 56 bits, followed by a 4-bit length and a 1010 // 3-bit tag (which is always 4). 1011 uint64_t str = 0; 1012 // Fill in the characters 1013 for (unsigned i=0 ; i<LiteralLength ; i++) 1014 str |= ((uint64_t)SL->getCodeUnit(i)) << ((64 - 4 - 3) - (i*7)); 1015 // Fill in the length 1016 str |= LiteralLength << 3; 1017 // Set the tag 1018 str |= 4; 1019 auto *ObjCStr = llvm::ConstantExpr::getIntToPtr( 1020 llvm::ConstantInt::get(Int64Ty, str), IdTy); 1021 ObjCStrings[Str] = ObjCStr; 1022 return ConstantAddress(ObjCStr, IdElemTy, Align); 1023 } 1024 1025 StringRef StringClass = CGM.getLangOpts().ObjCConstantStringClass; 1026 1027 if (StringClass.empty()) StringClass = "NSConstantString"; 1028 1029 std::string Sym = SymbolForClass(StringClass); 1030 1031 llvm::Constant *isa = TheModule.getNamedGlobal(Sym); 1032 1033 if (!isa) { 1034 isa = new llvm::GlobalVariable(TheModule, IdTy, /* isConstant */false, 1035 llvm::GlobalValue::ExternalLinkage, nullptr, Sym); 1036 if (CGM.getTriple().isOSBinFormatCOFF()) { 1037 cast<llvm::GlobalValue>(isa)->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 1038 } 1039 } 1040 1041 // struct 1042 // { 1043 // Class isa; 1044 // uint32_t flags; 1045 // uint32_t length; // Number of codepoints 1046 // uint32_t size; // Number of bytes 1047 // uint32_t hash; 1048 // const char *data; 1049 // }; 1050 1051 ConstantInitBuilder Builder(CGM); 1052 auto Fields = Builder.beginStruct(); 1053 if (!CGM.getTriple().isOSBinFormatCOFF()) { 1054 Fields.add(isa); 1055 } else { 1056 Fields.addNullPointer(PtrTy); 1057 } 1058 // For now, all non-ASCII strings are represented as UTF-16. As such, the 1059 // number of bytes is simply double the number of UTF-16 codepoints. In 1060 // ASCII strings, the number of bytes is equal to the number of non-ASCII 1061 // codepoints. 1062 if (isNonASCII) { 1063 unsigned NumU8CodeUnits = Str.size(); 1064 // A UTF-16 representation of a unicode string contains at most the same 1065 // number of code units as a UTF-8 representation. Allocate that much 1066 // space, plus one for the final null character. 1067 SmallVector<llvm::UTF16, 128> ToBuf(NumU8CodeUnits + 1); 1068 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)Str.data(); 1069 llvm::UTF16 *ToPtr = &ToBuf[0]; 1070 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumU8CodeUnits, 1071 &ToPtr, ToPtr + NumU8CodeUnits, llvm::strictConversion); 1072 uint32_t StringLength = ToPtr - &ToBuf[0]; 1073 // Add null terminator 1074 *ToPtr = 0; 1075 // Flags: 2 indicates UTF-16 encoding 1076 Fields.addInt(Int32Ty, 2); 1077 // Number of UTF-16 codepoints 1078 Fields.addInt(Int32Ty, StringLength); 1079 // Number of bytes 1080 Fields.addInt(Int32Ty, StringLength * 2); 1081 // Hash. Not currently initialised by the compiler. 1082 Fields.addInt(Int32Ty, 0); 1083 // pointer to the data string. 1084 auto Arr = llvm::ArrayRef(&ToBuf[0], ToPtr + 1); 1085 auto *C = llvm::ConstantDataArray::get(VMContext, Arr); 1086 auto *Buffer = new llvm::GlobalVariable(TheModule, C->getType(), 1087 /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, C, ".str"); 1088 Buffer->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1089 Fields.add(Buffer); 1090 } else { 1091 // Flags: 0 indicates ASCII encoding 1092 Fields.addInt(Int32Ty, 0); 1093 // Number of UTF-16 codepoints, each ASCII byte is a UTF-16 codepoint 1094 Fields.addInt(Int32Ty, Str.size()); 1095 // Number of bytes 1096 Fields.addInt(Int32Ty, Str.size()); 1097 // Hash. Not currently initialised by the compiler. 1098 Fields.addInt(Int32Ty, 0); 1099 // Data pointer 1100 Fields.add(MakeConstantString(Str)); 1101 } 1102 std::string StringName; 1103 bool isNamed = !isNonASCII; 1104 if (isNamed) { 1105 StringName = ".objc_str_"; 1106 for (int i=0,e=Str.size() ; i<e ; ++i) { 1107 unsigned char c = Str[i]; 1108 if (isalnum(c)) 1109 StringName += c; 1110 else if (c == ' ') 1111 StringName += '_'; 1112 else { 1113 isNamed = false; 1114 break; 1115 } 1116 } 1117 } 1118 llvm::GlobalVariable *ObjCStrGV = 1119 Fields.finishAndCreateGlobal( 1120 isNamed ? StringRef(StringName) : ".objc_string", 1121 Align, false, isNamed ? llvm::GlobalValue::LinkOnceODRLinkage 1122 : llvm::GlobalValue::PrivateLinkage); 1123 ObjCStrGV->setSection(sectionName<ConstantStringSection>()); 1124 if (isNamed) { 1125 ObjCStrGV->setComdat(TheModule.getOrInsertComdat(StringName)); 1126 ObjCStrGV->setVisibility(llvm::GlobalValue::HiddenVisibility); 1127 } 1128 if (CGM.getTriple().isOSBinFormatCOFF()) { 1129 std::pair<llvm::GlobalVariable*, int> v{ObjCStrGV, 0}; 1130 EarlyInitList.emplace_back(Sym, v); 1131 } 1132 ObjCStrings[Str] = ObjCStrGV; 1133 ConstantStrings.push_back(ObjCStrGV); 1134 return ConstantAddress(ObjCStrGV, IdElemTy, Align); 1135 } 1136 1137 void PushProperty(ConstantArrayBuilder &PropertiesArray, 1138 const ObjCPropertyDecl *property, 1139 const Decl *OCD, 1140 bool isSynthesized=true, bool 1141 isDynamic=true) override { 1142 // struct objc_property 1143 // { 1144 // const char *name; 1145 // const char *attributes; 1146 // const char *type; 1147 // SEL getter; 1148 // SEL setter; 1149 // }; 1150 auto Fields = PropertiesArray.beginStruct(PropertyMetadataTy); 1151 ASTContext &Context = CGM.getContext(); 1152 Fields.add(MakeConstantString(property->getNameAsString())); 1153 std::string TypeStr = 1154 CGM.getContext().getObjCEncodingForPropertyDecl(property, OCD); 1155 Fields.add(MakeConstantString(TypeStr)); 1156 std::string typeStr; 1157 Context.getObjCEncodingForType(property->getType(), typeStr); 1158 Fields.add(MakeConstantString(typeStr)); 1159 auto addPropertyMethod = [&](const ObjCMethodDecl *accessor) { 1160 if (accessor) { 1161 std::string TypeStr = Context.getObjCEncodingForMethodDecl(accessor); 1162 Fields.add(GetConstantSelector(accessor->getSelector(), TypeStr)); 1163 } else { 1164 Fields.add(NULLPtr); 1165 } 1166 }; 1167 addPropertyMethod(property->getGetterMethodDecl()); 1168 addPropertyMethod(property->getSetterMethodDecl()); 1169 Fields.finishAndAddTo(PropertiesArray); 1170 } 1171 1172 llvm::Constant * 1173 GenerateProtocolMethodList(ArrayRef<const ObjCMethodDecl*> Methods) override { 1174 // struct objc_protocol_method_description 1175 // { 1176 // SEL selector; 1177 // const char *types; 1178 // }; 1179 llvm::StructType *ObjCMethodDescTy = 1180 llvm::StructType::get(CGM.getLLVMContext(), 1181 { PtrToInt8Ty, PtrToInt8Ty }); 1182 ASTContext &Context = CGM.getContext(); 1183 ConstantInitBuilder Builder(CGM); 1184 // struct objc_protocol_method_description_list 1185 // { 1186 // int count; 1187 // int size; 1188 // struct objc_protocol_method_description methods[]; 1189 // }; 1190 auto MethodList = Builder.beginStruct(); 1191 // int count; 1192 MethodList.addInt(IntTy, Methods.size()); 1193 // int size; // sizeof(struct objc_method_description) 1194 const llvm::DataLayout &DL = TheModule.getDataLayout(); 1195 MethodList.addInt(IntTy, DL.getTypeSizeInBits(ObjCMethodDescTy) / 1196 CGM.getContext().getCharWidth()); 1197 // struct objc_method_description[] 1198 auto MethodArray = MethodList.beginArray(ObjCMethodDescTy); 1199 for (auto *M : Methods) { 1200 auto Method = MethodArray.beginStruct(ObjCMethodDescTy); 1201 Method.add(CGObjCGNU::GetConstantSelector(M)); 1202 Method.add(GetTypeString(Context.getObjCEncodingForMethodDecl(M, true))); 1203 Method.finishAndAddTo(MethodArray); 1204 } 1205 MethodArray.finishAndAddTo(MethodList); 1206 return MethodList.finishAndCreateGlobal(".objc_protocol_method_list", 1207 CGM.getPointerAlign()); 1208 } 1209 llvm::Constant *GenerateCategoryProtocolList(const ObjCCategoryDecl *OCD) 1210 override { 1211 const auto &ReferencedProtocols = OCD->getReferencedProtocols(); 1212 auto RuntimeProtocols = GetRuntimeProtocolList(ReferencedProtocols.begin(), 1213 ReferencedProtocols.end()); 1214 SmallVector<llvm::Constant *, 16> Protocols; 1215 for (const auto *PI : RuntimeProtocols) 1216 Protocols.push_back(GenerateProtocolRef(PI)); 1217 return GenerateProtocolList(Protocols); 1218 } 1219 1220 llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper, 1221 llvm::Value *cmd, MessageSendInfo &MSI) override { 1222 // Don't access the slot unless we're trying to cache the result. 1223 CGBuilderTy &Builder = CGF.Builder; 1224 llvm::Value *lookupArgs[] = { 1225 CGObjCGNU::EnforceType(Builder, ObjCSuper.emitRawPointer(CGF), 1226 PtrToObjCSuperTy), 1227 cmd}; 1228 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs); 1229 } 1230 1231 llvm::GlobalVariable *GetClassVar(StringRef Name, bool isWeak=false) { 1232 std::string SymbolName = SymbolForClassRef(Name, isWeak); 1233 auto *ClassSymbol = TheModule.getNamedGlobal(SymbolName); 1234 if (ClassSymbol) 1235 return ClassSymbol; 1236 ClassSymbol = new llvm::GlobalVariable(TheModule, 1237 IdTy, false, llvm::GlobalValue::ExternalLinkage, 1238 nullptr, SymbolName); 1239 // If this is a weak symbol, then we are creating a valid definition for 1240 // the symbol, pointing to a weak definition of the real class pointer. If 1241 // this is not a weak reference, then we are expecting another compilation 1242 // unit to provide the real indirection symbol. 1243 if (isWeak) 1244 ClassSymbol->setInitializer(new llvm::GlobalVariable(TheModule, 1245 Int8Ty, false, llvm::GlobalValue::ExternalWeakLinkage, 1246 nullptr, SymbolForClass(Name))); 1247 else { 1248 if (CGM.getTriple().isOSBinFormatCOFF()) { 1249 IdentifierInfo &II = CGM.getContext().Idents.get(Name); 1250 TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl(); 1251 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 1252 1253 const ObjCInterfaceDecl *OID = nullptr; 1254 for (const auto *Result : DC->lookup(&II)) 1255 if ((OID = dyn_cast<ObjCInterfaceDecl>(Result))) 1256 break; 1257 1258 // The first Interface we find may be a @class, 1259 // which should only be treated as the source of 1260 // truth in the absence of a true declaration. 1261 assert(OID && "Failed to find ObjCInterfaceDecl"); 1262 const ObjCInterfaceDecl *OIDDef = OID->getDefinition(); 1263 if (OIDDef != nullptr) 1264 OID = OIDDef; 1265 1266 auto Storage = llvm::GlobalValue::DefaultStorageClass; 1267 if (OID->hasAttr<DLLImportAttr>()) 1268 Storage = llvm::GlobalValue::DLLImportStorageClass; 1269 else if (OID->hasAttr<DLLExportAttr>()) 1270 Storage = llvm::GlobalValue::DLLExportStorageClass; 1271 1272 cast<llvm::GlobalValue>(ClassSymbol)->setDLLStorageClass(Storage); 1273 } 1274 } 1275 assert(ClassSymbol->getName() == SymbolName); 1276 return ClassSymbol; 1277 } 1278 llvm::Value *GetClassNamed(CodeGenFunction &CGF, 1279 const std::string &Name, 1280 bool isWeak) override { 1281 return CGF.Builder.CreateLoad( 1282 Address(GetClassVar(Name, isWeak), IdTy, CGM.getPointerAlign())); 1283 } 1284 int32_t FlagsForOwnership(Qualifiers::ObjCLifetime Ownership) { 1285 // typedef enum { 1286 // ownership_invalid = 0, 1287 // ownership_strong = 1, 1288 // ownership_weak = 2, 1289 // ownership_unsafe = 3 1290 // } ivar_ownership; 1291 int Flag; 1292 switch (Ownership) { 1293 case Qualifiers::OCL_Strong: 1294 Flag = 1; 1295 break; 1296 case Qualifiers::OCL_Weak: 1297 Flag = 2; 1298 break; 1299 case Qualifiers::OCL_ExplicitNone: 1300 Flag = 3; 1301 break; 1302 case Qualifiers::OCL_None: 1303 case Qualifiers::OCL_Autoreleasing: 1304 assert(Ownership != Qualifiers::OCL_Autoreleasing); 1305 Flag = 0; 1306 } 1307 return Flag; 1308 } 1309 llvm::Constant *GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames, 1310 ArrayRef<llvm::Constant *> IvarTypes, 1311 ArrayRef<llvm::Constant *> IvarOffsets, 1312 ArrayRef<llvm::Constant *> IvarAlign, 1313 ArrayRef<Qualifiers::ObjCLifetime> IvarOwnership) override { 1314 llvm_unreachable("Method should not be called!"); 1315 } 1316 1317 llvm::Constant *GenerateEmptyProtocol(StringRef ProtocolName) override { 1318 std::string Name = SymbolForProtocol(ProtocolName); 1319 auto *GV = TheModule.getGlobalVariable(Name); 1320 if (!GV) { 1321 // Emit a placeholder symbol. 1322 GV = new llvm::GlobalVariable(TheModule, ProtocolTy, false, 1323 llvm::GlobalValue::ExternalLinkage, nullptr, Name); 1324 GV->setAlignment(CGM.getPointerAlign().getAsAlign()); 1325 } 1326 return GV; 1327 } 1328 1329 /// Existing protocol references. 1330 llvm::StringMap<llvm::Constant*> ExistingProtocolRefs; 1331 1332 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF, 1333 const ObjCProtocolDecl *PD) override { 1334 auto Name = PD->getNameAsString(); 1335 auto *&Ref = ExistingProtocolRefs[Name]; 1336 if (!Ref) { 1337 auto *&Protocol = ExistingProtocols[Name]; 1338 if (!Protocol) 1339 Protocol = GenerateProtocolRef(PD); 1340 std::string RefName = SymbolForProtocolRef(Name); 1341 assert(!TheModule.getGlobalVariable(RefName)); 1342 // Emit a reference symbol. 1343 auto GV = new llvm::GlobalVariable(TheModule, ProtocolPtrTy, false, 1344 llvm::GlobalValue::LinkOnceODRLinkage, 1345 Protocol, RefName); 1346 GV->setComdat(TheModule.getOrInsertComdat(RefName)); 1347 GV->setSection(sectionName<ProtocolReferenceSection>()); 1348 GV->setAlignment(CGM.getPointerAlign().getAsAlign()); 1349 Ref = GV; 1350 } 1351 EmittedProtocolRef = true; 1352 return CGF.Builder.CreateAlignedLoad(ProtocolPtrTy, Ref, 1353 CGM.getPointerAlign()); 1354 } 1355 1356 llvm::Constant *GenerateProtocolList(ArrayRef<llvm::Constant*> Protocols) { 1357 llvm::ArrayType *ProtocolArrayTy = llvm::ArrayType::get(ProtocolPtrTy, 1358 Protocols.size()); 1359 llvm::Constant * ProtocolArray = llvm::ConstantArray::get(ProtocolArrayTy, 1360 Protocols); 1361 ConstantInitBuilder builder(CGM); 1362 auto ProtocolBuilder = builder.beginStruct(); 1363 ProtocolBuilder.addNullPointer(PtrTy); 1364 ProtocolBuilder.addInt(SizeTy, Protocols.size()); 1365 ProtocolBuilder.add(ProtocolArray); 1366 return ProtocolBuilder.finishAndCreateGlobal(".objc_protocol_list", 1367 CGM.getPointerAlign(), false, llvm::GlobalValue::InternalLinkage); 1368 } 1369 1370 void GenerateProtocol(const ObjCProtocolDecl *PD) override { 1371 // Do nothing - we only emit referenced protocols. 1372 } 1373 llvm::Constant *GenerateProtocolRef(const ObjCProtocolDecl *PD) override { 1374 std::string ProtocolName = PD->getNameAsString(); 1375 auto *&Protocol = ExistingProtocols[ProtocolName]; 1376 if (Protocol) 1377 return Protocol; 1378 1379 EmittedProtocol = true; 1380 1381 auto SymName = SymbolForProtocol(ProtocolName); 1382 auto *OldGV = TheModule.getGlobalVariable(SymName); 1383 1384 // Use the protocol definition, if there is one. 1385 if (const ObjCProtocolDecl *Def = PD->getDefinition()) 1386 PD = Def; 1387 else { 1388 // If there is no definition, then create an external linkage symbol and 1389 // hope that someone else fills it in for us (and fail to link if they 1390 // don't). 1391 assert(!OldGV); 1392 Protocol = new llvm::GlobalVariable(TheModule, ProtocolTy, 1393 /*isConstant*/false, 1394 llvm::GlobalValue::ExternalLinkage, nullptr, SymName); 1395 return Protocol; 1396 } 1397 1398 SmallVector<llvm::Constant*, 16> Protocols; 1399 auto RuntimeProtocols = 1400 GetRuntimeProtocolList(PD->protocol_begin(), PD->protocol_end()); 1401 for (const auto *PI : RuntimeProtocols) 1402 Protocols.push_back(GenerateProtocolRef(PI)); 1403 llvm::Constant *ProtocolList = GenerateProtocolList(Protocols); 1404 1405 // Collect information about methods 1406 llvm::Constant *InstanceMethodList, *OptionalInstanceMethodList; 1407 llvm::Constant *ClassMethodList, *OptionalClassMethodList; 1408 EmitProtocolMethodList(PD->instance_methods(), InstanceMethodList, 1409 OptionalInstanceMethodList); 1410 EmitProtocolMethodList(PD->class_methods(), ClassMethodList, 1411 OptionalClassMethodList); 1412 1413 // The isa pointer must be set to a magic number so the runtime knows it's 1414 // the correct layout. 1415 ConstantInitBuilder builder(CGM); 1416 auto ProtocolBuilder = builder.beginStruct(); 1417 ProtocolBuilder.add(llvm::ConstantExpr::getIntToPtr( 1418 llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy)); 1419 ProtocolBuilder.add(MakeConstantString(ProtocolName)); 1420 ProtocolBuilder.add(ProtocolList); 1421 ProtocolBuilder.add(InstanceMethodList); 1422 ProtocolBuilder.add(ClassMethodList); 1423 ProtocolBuilder.add(OptionalInstanceMethodList); 1424 ProtocolBuilder.add(OptionalClassMethodList); 1425 // Required instance properties 1426 ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, false, false)); 1427 // Optional instance properties 1428 ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, false, true)); 1429 // Required class properties 1430 ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, true, false)); 1431 // Optional class properties 1432 ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, true, true)); 1433 1434 auto *GV = ProtocolBuilder.finishAndCreateGlobal(SymName, 1435 CGM.getPointerAlign(), false, llvm::GlobalValue::ExternalLinkage); 1436 GV->setSection(sectionName<ProtocolSection>()); 1437 GV->setComdat(TheModule.getOrInsertComdat(SymName)); 1438 if (OldGV) { 1439 OldGV->replaceAllUsesWith(GV); 1440 OldGV->removeFromParent(); 1441 GV->setName(SymName); 1442 } 1443 Protocol = GV; 1444 return GV; 1445 } 1446 llvm::Value *GetTypedSelector(CodeGenFunction &CGF, Selector Sel, 1447 const std::string &TypeEncoding) override { 1448 return GetConstantSelector(Sel, TypeEncoding); 1449 } 1450 std::string GetSymbolNameForTypeEncoding(const std::string &TypeEncoding) { 1451 std::string MangledTypes = std::string(TypeEncoding); 1452 // @ is used as a special character in ELF symbol names (used for symbol 1453 // versioning), so mangle the name to not include it. Replace it with a 1454 // character that is not a valid type encoding character (and, being 1455 // non-printable, never will be!) 1456 if (CGM.getTriple().isOSBinFormatELF()) 1457 std::replace(MangledTypes.begin(), MangledTypes.end(), '@', '\1'); 1458 // = in dll exported names causes lld to fail when linking on Windows. 1459 if (CGM.getTriple().isOSWindows()) 1460 std::replace(MangledTypes.begin(), MangledTypes.end(), '=', '\2'); 1461 return MangledTypes; 1462 } 1463 llvm::Constant *GetTypeString(llvm::StringRef TypeEncoding) { 1464 if (TypeEncoding.empty()) 1465 return NULLPtr; 1466 std::string MangledTypes = 1467 GetSymbolNameForTypeEncoding(std::string(TypeEncoding)); 1468 std::string TypesVarName = ".objc_sel_types_" + MangledTypes; 1469 auto *TypesGlobal = TheModule.getGlobalVariable(TypesVarName); 1470 if (!TypesGlobal) { 1471 llvm::Constant *Init = llvm::ConstantDataArray::getString(VMContext, 1472 TypeEncoding); 1473 auto *GV = new llvm::GlobalVariable(TheModule, Init->getType(), 1474 true, llvm::GlobalValue::LinkOnceODRLinkage, Init, TypesVarName); 1475 GV->setComdat(TheModule.getOrInsertComdat(TypesVarName)); 1476 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 1477 TypesGlobal = GV; 1478 } 1479 return TypesGlobal; 1480 } 1481 llvm::Constant *GetConstantSelector(Selector Sel, 1482 const std::string &TypeEncoding) override { 1483 std::string MangledTypes = GetSymbolNameForTypeEncoding(TypeEncoding); 1484 auto SelVarName = (StringRef(".objc_selector_") + Sel.getAsString() + "_" + 1485 MangledTypes).str(); 1486 if (auto *GV = TheModule.getNamedGlobal(SelVarName)) 1487 return GV; 1488 ConstantInitBuilder builder(CGM); 1489 auto SelBuilder = builder.beginStruct(); 1490 SelBuilder.add(ExportUniqueString(Sel.getAsString(), ".objc_sel_name_", 1491 true)); 1492 SelBuilder.add(GetTypeString(TypeEncoding)); 1493 auto *GV = SelBuilder.finishAndCreateGlobal(SelVarName, 1494 CGM.getPointerAlign(), false, llvm::GlobalValue::LinkOnceODRLinkage); 1495 GV->setComdat(TheModule.getOrInsertComdat(SelVarName)); 1496 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 1497 GV->setSection(sectionName<SelectorSection>()); 1498 return GV; 1499 } 1500 llvm::StructType *emptyStruct = nullptr; 1501 1502 /// Return pointers to the start and end of a section. On ELF platforms, we 1503 /// use the __start_ and __stop_ symbols that GNU-compatible linkers will set 1504 /// to the start and end of section names, as long as those section names are 1505 /// valid identifiers and the symbols are referenced but not defined. On 1506 /// Windows, we use the fact that MSVC-compatible linkers will lexically sort 1507 /// by subsections and place everything that we want to reference in a middle 1508 /// subsection and then insert zero-sized symbols in subsections a and z. 1509 std::pair<llvm::Constant*,llvm::Constant*> 1510 GetSectionBounds(StringRef Section) { 1511 if (CGM.getTriple().isOSBinFormatCOFF()) { 1512 if (emptyStruct == nullptr) { 1513 emptyStruct = llvm::StructType::create( 1514 VMContext, {}, ".objc_section_sentinel", /*isPacked=*/true); 1515 } 1516 auto ZeroInit = llvm::Constant::getNullValue(emptyStruct); 1517 auto Sym = [&](StringRef Prefix, StringRef SecSuffix) { 1518 auto *Sym = new llvm::GlobalVariable(TheModule, emptyStruct, 1519 /*isConstant*/false, 1520 llvm::GlobalValue::LinkOnceODRLinkage, ZeroInit, Prefix + 1521 Section); 1522 Sym->setVisibility(llvm::GlobalValue::HiddenVisibility); 1523 Sym->setSection((Section + SecSuffix).str()); 1524 Sym->setComdat(TheModule.getOrInsertComdat((Prefix + 1525 Section).str())); 1526 Sym->setAlignment(CGM.getPointerAlign().getAsAlign()); 1527 return Sym; 1528 }; 1529 return { Sym("__start_", "$a"), Sym("__stop", "$z") }; 1530 } 1531 auto *Start = new llvm::GlobalVariable(TheModule, PtrTy, 1532 /*isConstant*/false, 1533 llvm::GlobalValue::ExternalLinkage, nullptr, StringRef("__start_") + 1534 Section); 1535 Start->setVisibility(llvm::GlobalValue::HiddenVisibility); 1536 auto *Stop = new llvm::GlobalVariable(TheModule, PtrTy, 1537 /*isConstant*/false, 1538 llvm::GlobalValue::ExternalLinkage, nullptr, StringRef("__stop_") + 1539 Section); 1540 Stop->setVisibility(llvm::GlobalValue::HiddenVisibility); 1541 return { Start, Stop }; 1542 } 1543 CatchTypeInfo getCatchAllTypeInfo() override { 1544 return CGM.getCXXABI().getCatchAllTypeInfo(); 1545 } 1546 llvm::Function *ModuleInitFunction() override { 1547 llvm::Function *LoadFunction = llvm::Function::Create( 1548 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false), 1549 llvm::GlobalValue::LinkOnceODRLinkage, ".objcv2_load_function", 1550 &TheModule); 1551 LoadFunction->setVisibility(llvm::GlobalValue::HiddenVisibility); 1552 LoadFunction->setComdat(TheModule.getOrInsertComdat(".objcv2_load_function")); 1553 1554 llvm::BasicBlock *EntryBB = 1555 llvm::BasicBlock::Create(VMContext, "entry", LoadFunction); 1556 CGBuilderTy B(CGM, VMContext); 1557 B.SetInsertPoint(EntryBB); 1558 ConstantInitBuilder builder(CGM); 1559 auto InitStructBuilder = builder.beginStruct(); 1560 InitStructBuilder.addInt(Int64Ty, 0); 1561 auto §ionVec = CGM.getTriple().isOSBinFormatCOFF() ? PECOFFSectionsBaseNames : SectionsBaseNames; 1562 for (auto *s : sectionVec) { 1563 auto bounds = GetSectionBounds(s); 1564 InitStructBuilder.add(bounds.first); 1565 InitStructBuilder.add(bounds.second); 1566 } 1567 auto *InitStruct = InitStructBuilder.finishAndCreateGlobal(".objc_init", 1568 CGM.getPointerAlign(), false, llvm::GlobalValue::LinkOnceODRLinkage); 1569 InitStruct->setVisibility(llvm::GlobalValue::HiddenVisibility); 1570 InitStruct->setComdat(TheModule.getOrInsertComdat(".objc_init")); 1571 1572 CallRuntimeFunction(B, "__objc_load", {InitStruct});; 1573 B.CreateRetVoid(); 1574 // Make sure that the optimisers don't delete this function. 1575 CGM.addCompilerUsedGlobal(LoadFunction); 1576 // FIXME: Currently ELF only! 1577 // We have to do this by hand, rather than with @llvm.ctors, so that the 1578 // linker can remove the duplicate invocations. 1579 auto *InitVar = new llvm::GlobalVariable(TheModule, LoadFunction->getType(), 1580 /*isConstant*/false, llvm::GlobalValue::LinkOnceAnyLinkage, 1581 LoadFunction, ".objc_ctor"); 1582 // Check that this hasn't been renamed. This shouldn't happen, because 1583 // this function should be called precisely once. 1584 assert(InitVar->getName() == ".objc_ctor"); 1585 // In Windows, initialisers are sorted by the suffix. XCL is for library 1586 // initialisers, which run before user initialisers. We are running 1587 // Objective-C loads at the end of library load. This means +load methods 1588 // will run before any other static constructors, but that static 1589 // constructors can see a fully initialised Objective-C state. 1590 if (CGM.getTriple().isOSBinFormatCOFF()) 1591 InitVar->setSection(".CRT$XCLz"); 1592 else 1593 { 1594 if (CGM.getCodeGenOpts().UseInitArray) 1595 InitVar->setSection(".init_array"); 1596 else 1597 InitVar->setSection(".ctors"); 1598 } 1599 InitVar->setVisibility(llvm::GlobalValue::HiddenVisibility); 1600 InitVar->setComdat(TheModule.getOrInsertComdat(".objc_ctor")); 1601 CGM.addUsedGlobal(InitVar); 1602 for (auto *C : Categories) { 1603 auto *Cat = cast<llvm::GlobalVariable>(C->stripPointerCasts()); 1604 Cat->setSection(sectionName<CategorySection>()); 1605 CGM.addUsedGlobal(Cat); 1606 } 1607 auto createNullGlobal = [&](StringRef Name, ArrayRef<llvm::Constant*> Init, 1608 StringRef Section) { 1609 auto nullBuilder = builder.beginStruct(); 1610 for (auto *F : Init) 1611 nullBuilder.add(F); 1612 auto GV = nullBuilder.finishAndCreateGlobal(Name, CGM.getPointerAlign(), 1613 false, llvm::GlobalValue::LinkOnceODRLinkage); 1614 GV->setSection(Section); 1615 GV->setComdat(TheModule.getOrInsertComdat(Name)); 1616 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 1617 CGM.addUsedGlobal(GV); 1618 return GV; 1619 }; 1620 for (auto clsAlias : ClassAliases) 1621 createNullGlobal(std::string(".objc_class_alias") + 1622 clsAlias.second, { MakeConstantString(clsAlias.second), 1623 GetClassVar(clsAlias.first) }, sectionName<ClassAliasSection>()); 1624 // On ELF platforms, add a null value for each special section so that we 1625 // can always guarantee that the _start and _stop symbols will exist and be 1626 // meaningful. This is not required on COFF platforms, where our start and 1627 // stop symbols will create the section. 1628 if (!CGM.getTriple().isOSBinFormatCOFF()) { 1629 createNullGlobal(".objc_null_selector", {NULLPtr, NULLPtr}, 1630 sectionName<SelectorSection>()); 1631 if (Categories.empty()) 1632 createNullGlobal(".objc_null_category", {NULLPtr, NULLPtr, 1633 NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr}, 1634 sectionName<CategorySection>()); 1635 if (!EmittedClass) { 1636 createNullGlobal(".objc_null_cls_init_ref", NULLPtr, 1637 sectionName<ClassSection>()); 1638 createNullGlobal(".objc_null_class_ref", { NULLPtr, NULLPtr }, 1639 sectionName<ClassReferenceSection>()); 1640 } 1641 if (!EmittedProtocol) 1642 createNullGlobal(".objc_null_protocol", {NULLPtr, NULLPtr, NULLPtr, 1643 NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr, 1644 NULLPtr}, sectionName<ProtocolSection>()); 1645 if (!EmittedProtocolRef) 1646 createNullGlobal(".objc_null_protocol_ref", {NULLPtr}, 1647 sectionName<ProtocolReferenceSection>()); 1648 if (ClassAliases.empty()) 1649 createNullGlobal(".objc_null_class_alias", { NULLPtr, NULLPtr }, 1650 sectionName<ClassAliasSection>()); 1651 if (ConstantStrings.empty()) { 1652 auto i32Zero = llvm::ConstantInt::get(Int32Ty, 0); 1653 createNullGlobal(".objc_null_constant_string", { NULLPtr, i32Zero, 1654 i32Zero, i32Zero, i32Zero, NULLPtr }, 1655 sectionName<ConstantStringSection>()); 1656 } 1657 } 1658 ConstantStrings.clear(); 1659 Categories.clear(); 1660 Classes.clear(); 1661 1662 if (EarlyInitList.size() > 0) { 1663 auto *Init = llvm::Function::Create(llvm::FunctionType::get(CGM.VoidTy, 1664 {}), llvm::GlobalValue::InternalLinkage, ".objc_early_init", 1665 &CGM.getModule()); 1666 llvm::IRBuilder<> b(llvm::BasicBlock::Create(CGM.getLLVMContext(), "entry", 1667 Init)); 1668 for (const auto &lateInit : EarlyInitList) { 1669 auto *global = TheModule.getGlobalVariable(lateInit.first); 1670 if (global) { 1671 llvm::GlobalVariable *GV = lateInit.second.first; 1672 b.CreateAlignedStore( 1673 global, 1674 b.CreateStructGEP(GV->getValueType(), GV, lateInit.second.second), 1675 CGM.getPointerAlign().getAsAlign()); 1676 } 1677 } 1678 b.CreateRetVoid(); 1679 // We can't use the normal LLVM global initialisation array, because we 1680 // need to specify that this runs early in library initialisation. 1681 auto *InitVar = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), 1682 /*isConstant*/true, llvm::GlobalValue::InternalLinkage, 1683 Init, ".objc_early_init_ptr"); 1684 InitVar->setSection(".CRT$XCLb"); 1685 CGM.addUsedGlobal(InitVar); 1686 } 1687 return nullptr; 1688 } 1689 /// In the v2 ABI, ivar offset variables use the type encoding in their name 1690 /// to trigger linker failures if the types don't match. 1691 std::string GetIVarOffsetVariableName(const ObjCInterfaceDecl *ID, 1692 const ObjCIvarDecl *Ivar) override { 1693 std::string TypeEncoding; 1694 CGM.getContext().getObjCEncodingForType(Ivar->getType(), TypeEncoding); 1695 TypeEncoding = GetSymbolNameForTypeEncoding(TypeEncoding); 1696 const std::string Name = "__objc_ivar_offset_" + ID->getNameAsString() 1697 + '.' + Ivar->getNameAsString() + '.' + TypeEncoding; 1698 return Name; 1699 } 1700 llvm::Value *EmitIvarOffset(CodeGenFunction &CGF, 1701 const ObjCInterfaceDecl *Interface, 1702 const ObjCIvarDecl *Ivar) override { 1703 const ObjCInterfaceDecl *ContainingInterface = 1704 Ivar->getContainingInterface(); 1705 const std::string Name = 1706 GetIVarOffsetVariableName(ContainingInterface, Ivar); 1707 llvm::GlobalVariable *IvarOffsetPointer = TheModule.getNamedGlobal(Name); 1708 if (!IvarOffsetPointer) { 1709 IvarOffsetPointer = new llvm::GlobalVariable(TheModule, IntTy, false, 1710 llvm::GlobalValue::ExternalLinkage, nullptr, Name); 1711 if (Ivar->getAccessControl() != ObjCIvarDecl::Private && 1712 Ivar->getAccessControl() != ObjCIvarDecl::Package) 1713 CGM.setGVProperties(IvarOffsetPointer, ContainingInterface); 1714 } 1715 CharUnits Align = CGM.getIntAlign(); 1716 llvm::Value *Offset = 1717 CGF.Builder.CreateAlignedLoad(IntTy, IvarOffsetPointer, Align); 1718 if (Offset->getType() != PtrDiffTy) 1719 Offset = CGF.Builder.CreateZExtOrBitCast(Offset, PtrDiffTy); 1720 return Offset; 1721 } 1722 void GenerateClass(const ObjCImplementationDecl *OID) override { 1723 ASTContext &Context = CGM.getContext(); 1724 bool IsCOFF = CGM.getTriple().isOSBinFormatCOFF(); 1725 1726 // Get the class name 1727 ObjCInterfaceDecl *classDecl = 1728 const_cast<ObjCInterfaceDecl *>(OID->getClassInterface()); 1729 std::string className = classDecl->getNameAsString(); 1730 auto *classNameConstant = MakeConstantString(className); 1731 1732 ConstantInitBuilder builder(CGM); 1733 auto metaclassFields = builder.beginStruct(); 1734 // struct objc_class *isa; 1735 metaclassFields.addNullPointer(PtrTy); 1736 // struct objc_class *super_class; 1737 metaclassFields.addNullPointer(PtrTy); 1738 // const char *name; 1739 metaclassFields.add(classNameConstant); 1740 // long version; 1741 metaclassFields.addInt(LongTy, 0); 1742 // unsigned long info; 1743 // objc_class_flag_meta 1744 metaclassFields.addInt(LongTy, ClassFlags::ClassFlagMeta); 1745 // long instance_size; 1746 // Setting this to zero is consistent with the older ABI, but it might be 1747 // more sensible to set this to sizeof(struct objc_class) 1748 metaclassFields.addInt(LongTy, 0); 1749 // struct objc_ivar_list *ivars; 1750 metaclassFields.addNullPointer(PtrTy); 1751 // struct objc_method_list *methods 1752 // FIXME: Almost identical code is copied and pasted below for the 1753 // class, but refactoring it cleanly requires C++14 generic lambdas. 1754 if (OID->classmeth_begin() == OID->classmeth_end()) 1755 metaclassFields.addNullPointer(PtrTy); 1756 else { 1757 SmallVector<ObjCMethodDecl*, 16> ClassMethods; 1758 ClassMethods.insert(ClassMethods.begin(), OID->classmeth_begin(), 1759 OID->classmeth_end()); 1760 metaclassFields.add( 1761 GenerateMethodList(className, "", ClassMethods, true)); 1762 } 1763 // void *dtable; 1764 metaclassFields.addNullPointer(PtrTy); 1765 // IMP cxx_construct; 1766 metaclassFields.addNullPointer(PtrTy); 1767 // IMP cxx_destruct; 1768 metaclassFields.addNullPointer(PtrTy); 1769 // struct objc_class *subclass_list 1770 metaclassFields.addNullPointer(PtrTy); 1771 // struct objc_class *sibling_class 1772 metaclassFields.addNullPointer(PtrTy); 1773 // struct objc_protocol_list *protocols; 1774 metaclassFields.addNullPointer(PtrTy); 1775 // struct reference_list *extra_data; 1776 metaclassFields.addNullPointer(PtrTy); 1777 // long abi_version; 1778 metaclassFields.addInt(LongTy, 0); 1779 // struct objc_property_list *properties 1780 metaclassFields.add(GeneratePropertyList(OID, classDecl, /*isClassProperty*/true)); 1781 1782 auto *metaclass = metaclassFields.finishAndCreateGlobal( 1783 ManglePublicSymbol("OBJC_METACLASS_") + className, 1784 CGM.getPointerAlign()); 1785 1786 auto classFields = builder.beginStruct(); 1787 // struct objc_class *isa; 1788 classFields.add(metaclass); 1789 // struct objc_class *super_class; 1790 // Get the superclass name. 1791 const ObjCInterfaceDecl * SuperClassDecl = 1792 OID->getClassInterface()->getSuperClass(); 1793 llvm::Constant *SuperClass = nullptr; 1794 if (SuperClassDecl) { 1795 auto SuperClassName = SymbolForClass(SuperClassDecl->getNameAsString()); 1796 SuperClass = TheModule.getNamedGlobal(SuperClassName); 1797 if (!SuperClass) 1798 { 1799 SuperClass = new llvm::GlobalVariable(TheModule, PtrTy, false, 1800 llvm::GlobalValue::ExternalLinkage, nullptr, SuperClassName); 1801 if (IsCOFF) { 1802 auto Storage = llvm::GlobalValue::DefaultStorageClass; 1803 if (SuperClassDecl->hasAttr<DLLImportAttr>()) 1804 Storage = llvm::GlobalValue::DLLImportStorageClass; 1805 else if (SuperClassDecl->hasAttr<DLLExportAttr>()) 1806 Storage = llvm::GlobalValue::DLLExportStorageClass; 1807 1808 cast<llvm::GlobalValue>(SuperClass)->setDLLStorageClass(Storage); 1809 } 1810 } 1811 if (!IsCOFF) 1812 classFields.add(SuperClass); 1813 else 1814 classFields.addNullPointer(PtrTy); 1815 } else 1816 classFields.addNullPointer(PtrTy); 1817 // const char *name; 1818 classFields.add(classNameConstant); 1819 // long version; 1820 classFields.addInt(LongTy, 0); 1821 // unsigned long info; 1822 // !objc_class_flag_meta 1823 classFields.addInt(LongTy, 0); 1824 // long instance_size; 1825 int superInstanceSize = !SuperClassDecl ? 0 : 1826 Context.getASTObjCInterfaceLayout(SuperClassDecl).getSize().getQuantity(); 1827 // Instance size is negative for classes that have not yet had their ivar 1828 // layout calculated. 1829 classFields.addInt(LongTy, 1830 0 - (Context.getASTObjCImplementationLayout(OID).getSize().getQuantity() - 1831 superInstanceSize)); 1832 1833 if (classDecl->all_declared_ivar_begin() == nullptr) 1834 classFields.addNullPointer(PtrTy); 1835 else { 1836 int ivar_count = 0; 1837 for (const ObjCIvarDecl *IVD = classDecl->all_declared_ivar_begin(); IVD; 1838 IVD = IVD->getNextIvar()) ivar_count++; 1839 const llvm::DataLayout &DL = TheModule.getDataLayout(); 1840 // struct objc_ivar_list *ivars; 1841 ConstantInitBuilder b(CGM); 1842 auto ivarListBuilder = b.beginStruct(); 1843 // int count; 1844 ivarListBuilder.addInt(IntTy, ivar_count); 1845 // size_t size; 1846 llvm::StructType *ObjCIvarTy = llvm::StructType::get( 1847 PtrToInt8Ty, 1848 PtrToInt8Ty, 1849 PtrToInt8Ty, 1850 Int32Ty, 1851 Int32Ty); 1852 ivarListBuilder.addInt(SizeTy, DL.getTypeSizeInBits(ObjCIvarTy) / 1853 CGM.getContext().getCharWidth()); 1854 // struct objc_ivar ivars[] 1855 auto ivarArrayBuilder = ivarListBuilder.beginArray(); 1856 for (const ObjCIvarDecl *IVD = classDecl->all_declared_ivar_begin(); IVD; 1857 IVD = IVD->getNextIvar()) { 1858 auto ivarTy = IVD->getType(); 1859 auto ivarBuilder = ivarArrayBuilder.beginStruct(); 1860 // const char *name; 1861 ivarBuilder.add(MakeConstantString(IVD->getNameAsString())); 1862 // const char *type; 1863 std::string TypeStr; 1864 //Context.getObjCEncodingForType(ivarTy, TypeStr, IVD, true); 1865 Context.getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, ivarTy, TypeStr, true); 1866 ivarBuilder.add(MakeConstantString(TypeStr)); 1867 // int *offset; 1868 uint64_t BaseOffset = ComputeIvarBaseOffset(CGM, OID, IVD); 1869 uint64_t Offset = BaseOffset - superInstanceSize; 1870 llvm::Constant *OffsetValue = llvm::ConstantInt::get(IntTy, Offset); 1871 std::string OffsetName = GetIVarOffsetVariableName(classDecl, IVD); 1872 llvm::GlobalVariable *OffsetVar = TheModule.getGlobalVariable(OffsetName); 1873 if (OffsetVar) 1874 OffsetVar->setInitializer(OffsetValue); 1875 else 1876 OffsetVar = new llvm::GlobalVariable(TheModule, IntTy, 1877 false, llvm::GlobalValue::ExternalLinkage, 1878 OffsetValue, OffsetName); 1879 auto ivarVisibility = 1880 (IVD->getAccessControl() == ObjCIvarDecl::Private || 1881 IVD->getAccessControl() == ObjCIvarDecl::Package || 1882 classDecl->getVisibility() == HiddenVisibility) ? 1883 llvm::GlobalValue::HiddenVisibility : 1884 llvm::GlobalValue::DefaultVisibility; 1885 OffsetVar->setVisibility(ivarVisibility); 1886 if (ivarVisibility != llvm::GlobalValue::HiddenVisibility) 1887 CGM.setGVProperties(OffsetVar, OID->getClassInterface()); 1888 ivarBuilder.add(OffsetVar); 1889 // Ivar size 1890 ivarBuilder.addInt(Int32Ty, 1891 CGM.getContext().getTypeSizeInChars(ivarTy).getQuantity()); 1892 // Alignment will be stored as a base-2 log of the alignment. 1893 unsigned align = 1894 llvm::Log2_32(Context.getTypeAlignInChars(ivarTy).getQuantity()); 1895 // Objects that require more than 2^64-byte alignment should be impossible! 1896 assert(align < 64); 1897 // uint32_t flags; 1898 // Bits 0-1 are ownership. 1899 // Bit 2 indicates an extended type encoding 1900 // Bits 3-8 contain log2(aligment) 1901 ivarBuilder.addInt(Int32Ty, 1902 (align << 3) | (1<<2) | 1903 FlagsForOwnership(ivarTy.getQualifiers().getObjCLifetime())); 1904 ivarBuilder.finishAndAddTo(ivarArrayBuilder); 1905 } 1906 ivarArrayBuilder.finishAndAddTo(ivarListBuilder); 1907 auto ivarList = ivarListBuilder.finishAndCreateGlobal(".objc_ivar_list", 1908 CGM.getPointerAlign(), /*constant*/ false, 1909 llvm::GlobalValue::PrivateLinkage); 1910 classFields.add(ivarList); 1911 } 1912 // struct objc_method_list *methods 1913 SmallVector<const ObjCMethodDecl*, 16> InstanceMethods; 1914 InstanceMethods.insert(InstanceMethods.begin(), OID->instmeth_begin(), 1915 OID->instmeth_end()); 1916 for (auto *propImpl : OID->property_impls()) 1917 if (propImpl->getPropertyImplementation() == 1918 ObjCPropertyImplDecl::Synthesize) { 1919 auto addIfExists = [&](const ObjCMethodDecl *OMD) { 1920 if (OMD && OMD->hasBody()) 1921 InstanceMethods.push_back(OMD); 1922 }; 1923 addIfExists(propImpl->getGetterMethodDecl()); 1924 addIfExists(propImpl->getSetterMethodDecl()); 1925 } 1926 1927 if (InstanceMethods.size() == 0) 1928 classFields.addNullPointer(PtrTy); 1929 else 1930 classFields.add( 1931 GenerateMethodList(className, "", InstanceMethods, false)); 1932 1933 // void *dtable; 1934 classFields.addNullPointer(PtrTy); 1935 // IMP cxx_construct; 1936 classFields.addNullPointer(PtrTy); 1937 // IMP cxx_destruct; 1938 classFields.addNullPointer(PtrTy); 1939 // struct objc_class *subclass_list 1940 classFields.addNullPointer(PtrTy); 1941 // struct objc_class *sibling_class 1942 classFields.addNullPointer(PtrTy); 1943 // struct objc_protocol_list *protocols; 1944 auto RuntimeProtocols = GetRuntimeProtocolList(classDecl->protocol_begin(), 1945 classDecl->protocol_end()); 1946 SmallVector<llvm::Constant *, 16> Protocols; 1947 for (const auto *I : RuntimeProtocols) 1948 Protocols.push_back(GenerateProtocolRef(I)); 1949 1950 if (Protocols.empty()) 1951 classFields.addNullPointer(PtrTy); 1952 else 1953 classFields.add(GenerateProtocolList(Protocols)); 1954 // struct reference_list *extra_data; 1955 classFields.addNullPointer(PtrTy); 1956 // long abi_version; 1957 classFields.addInt(LongTy, 0); 1958 // struct objc_property_list *properties 1959 classFields.add(GeneratePropertyList(OID, classDecl)); 1960 1961 llvm::GlobalVariable *classStruct = 1962 classFields.finishAndCreateGlobal(SymbolForClass(className), 1963 CGM.getPointerAlign(), false, llvm::GlobalValue::ExternalLinkage); 1964 1965 auto *classRefSymbol = GetClassVar(className); 1966 classRefSymbol->setSection(sectionName<ClassReferenceSection>()); 1967 classRefSymbol->setInitializer(classStruct); 1968 1969 if (IsCOFF) { 1970 // we can't import a class struct. 1971 if (OID->getClassInterface()->hasAttr<DLLExportAttr>()) { 1972 classStruct->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 1973 cast<llvm::GlobalValue>(classRefSymbol)->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 1974 } 1975 1976 if (SuperClass) { 1977 std::pair<llvm::GlobalVariable*, int> v{classStruct, 1}; 1978 EarlyInitList.emplace_back(std::string(SuperClass->getName()), 1979 std::move(v)); 1980 } 1981 1982 } 1983 1984 1985 // Resolve the class aliases, if they exist. 1986 // FIXME: Class pointer aliases shouldn't exist! 1987 if (ClassPtrAlias) { 1988 ClassPtrAlias->replaceAllUsesWith(classStruct); 1989 ClassPtrAlias->eraseFromParent(); 1990 ClassPtrAlias = nullptr; 1991 } 1992 if (auto Placeholder = 1993 TheModule.getNamedGlobal(SymbolForClass(className))) 1994 if (Placeholder != classStruct) { 1995 Placeholder->replaceAllUsesWith(classStruct); 1996 Placeholder->eraseFromParent(); 1997 classStruct->setName(SymbolForClass(className)); 1998 } 1999 if (MetaClassPtrAlias) { 2000 MetaClassPtrAlias->replaceAllUsesWith(metaclass); 2001 MetaClassPtrAlias->eraseFromParent(); 2002 MetaClassPtrAlias = nullptr; 2003 } 2004 assert(classStruct->getName() == SymbolForClass(className)); 2005 2006 auto classInitRef = new llvm::GlobalVariable(TheModule, 2007 classStruct->getType(), false, llvm::GlobalValue::ExternalLinkage, 2008 classStruct, ManglePublicSymbol("OBJC_INIT_CLASS_") + className); 2009 classInitRef->setSection(sectionName<ClassSection>()); 2010 CGM.addUsedGlobal(classInitRef); 2011 2012 EmittedClass = true; 2013 } 2014 public: 2015 CGObjCGNUstep2(CodeGenModule &Mod) : CGObjCGNUstep(Mod, 10, 4, 2) { 2016 MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy, 2017 PtrToObjCSuperTy, SelectorTy); 2018 SentInitializeFn.init(&CGM, "objc_send_initialize", 2019 llvm::Type::getVoidTy(VMContext), IdTy); 2020 // struct objc_property 2021 // { 2022 // const char *name; 2023 // const char *attributes; 2024 // const char *type; 2025 // SEL getter; 2026 // SEL setter; 2027 // } 2028 PropertyMetadataTy = 2029 llvm::StructType::get(CGM.getLLVMContext(), 2030 { PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty }); 2031 } 2032 2033 void GenerateDirectMethodPrologue(CodeGenFunction &CGF, llvm::Function *Fn, 2034 const ObjCMethodDecl *OMD, 2035 const ObjCContainerDecl *CD) override { 2036 auto &Builder = CGF.Builder; 2037 bool ReceiverCanBeNull = true; 2038 auto selfAddr = CGF.GetAddrOfLocalVar(OMD->getSelfDecl()); 2039 auto selfValue = Builder.CreateLoad(selfAddr); 2040 2041 // Generate: 2042 // 2043 // /* unless the receiver is never NULL */ 2044 // if (self == nil) { 2045 // return (ReturnType){ }; 2046 // } 2047 // 2048 // /* for class methods only to force class lazy initialization */ 2049 // if (!__objc_{class}_initialized) 2050 // { 2051 // objc_send_initialize(class); 2052 // __objc_{class}_initialized = 1; 2053 // } 2054 // 2055 // _cmd = @selector(...) 2056 // ... 2057 2058 if (OMD->isClassMethod()) { 2059 const ObjCInterfaceDecl *OID = cast<ObjCInterfaceDecl>(CD); 2060 2061 // Nullable `Class` expressions cannot be messaged with a direct method 2062 // so the only reason why the receive can be null would be because 2063 // of weak linking. 2064 ReceiverCanBeNull = isWeakLinkedClass(OID); 2065 } 2066 2067 llvm::MDBuilder MDHelper(CGM.getLLVMContext()); 2068 if (ReceiverCanBeNull) { 2069 llvm::BasicBlock *SelfIsNilBlock = 2070 CGF.createBasicBlock("objc_direct_method.self_is_nil"); 2071 llvm::BasicBlock *ContBlock = 2072 CGF.createBasicBlock("objc_direct_method.cont"); 2073 2074 // if (self == nil) { 2075 auto selfTy = cast<llvm::PointerType>(selfValue->getType()); 2076 auto Zero = llvm::ConstantPointerNull::get(selfTy); 2077 2078 Builder.CreateCondBr(Builder.CreateICmpEQ(selfValue, Zero), 2079 SelfIsNilBlock, ContBlock, 2080 MDHelper.createUnlikelyBranchWeights()); 2081 2082 CGF.EmitBlock(SelfIsNilBlock); 2083 2084 // return (ReturnType){ }; 2085 auto retTy = OMD->getReturnType(); 2086 Builder.SetInsertPoint(SelfIsNilBlock); 2087 if (!retTy->isVoidType()) { 2088 CGF.EmitNullInitialization(CGF.ReturnValue, retTy); 2089 } 2090 CGF.EmitBranchThroughCleanup(CGF.ReturnBlock); 2091 // } 2092 2093 // rest of the body 2094 CGF.EmitBlock(ContBlock); 2095 Builder.SetInsertPoint(ContBlock); 2096 } 2097 2098 if (OMD->isClassMethod()) { 2099 // Prefix of the class type. 2100 auto *classStart = 2101 llvm::StructType::get(PtrTy, PtrTy, PtrTy, LongTy, LongTy); 2102 auto &astContext = CGM.getContext(); 2103 // FIXME: The following few lines up to and including the call to 2104 // `CreateLoad` were known to miscompile when MSVC 19.40.33813 is used 2105 // to build Clang. When the bug is fixed in future MSVC releases, we 2106 // should revert these lines to their previous state. See discussion in 2107 // https://github.com/llvm/llvm-project/pull/102681 2108 llvm::Value *Val = Builder.CreateStructGEP(classStart, selfValue, 4); 2109 auto Align = CharUnits::fromQuantity( 2110 astContext.getTypeAlign(astContext.UnsignedLongTy)); 2111 auto flags = Builder.CreateLoad(Address{Val, LongTy, Align}); 2112 auto isInitialized = 2113 Builder.CreateAnd(flags, ClassFlags::ClassFlagInitialized); 2114 llvm::BasicBlock *notInitializedBlock = 2115 CGF.createBasicBlock("objc_direct_method.class_uninitialized"); 2116 llvm::BasicBlock *initializedBlock = 2117 CGF.createBasicBlock("objc_direct_method.class_initialized"); 2118 Builder.CreateCondBr(Builder.CreateICmpEQ(isInitialized, Zeros[0]), 2119 notInitializedBlock, initializedBlock, 2120 MDHelper.createUnlikelyBranchWeights()); 2121 CGF.EmitBlock(notInitializedBlock); 2122 Builder.SetInsertPoint(notInitializedBlock); 2123 CGF.EmitRuntimeCall(SentInitializeFn, selfValue); 2124 Builder.CreateBr(initializedBlock); 2125 CGF.EmitBlock(initializedBlock); 2126 Builder.SetInsertPoint(initializedBlock); 2127 } 2128 2129 // only synthesize _cmd if it's referenced 2130 if (OMD->getCmdDecl()->isUsed()) { 2131 // `_cmd` is not a parameter to direct methods, so storage must be 2132 // explicitly declared for it. 2133 CGF.EmitVarDecl(*OMD->getCmdDecl()); 2134 Builder.CreateStore(GetSelector(CGF, OMD), 2135 CGF.GetAddrOfLocalVar(OMD->getCmdDecl())); 2136 } 2137 } 2138 }; 2139 2140 const char *const CGObjCGNUstep2::SectionsBaseNames[8] = 2141 { 2142 "__objc_selectors", 2143 "__objc_classes", 2144 "__objc_class_refs", 2145 "__objc_cats", 2146 "__objc_protocols", 2147 "__objc_protocol_refs", 2148 "__objc_class_aliases", 2149 "__objc_constant_string" 2150 }; 2151 2152 const char *const CGObjCGNUstep2::PECOFFSectionsBaseNames[8] = 2153 { 2154 ".objcrt$SEL", 2155 ".objcrt$CLS", 2156 ".objcrt$CLR", 2157 ".objcrt$CAT", 2158 ".objcrt$PCL", 2159 ".objcrt$PCR", 2160 ".objcrt$CAL", 2161 ".objcrt$STR" 2162 }; 2163 2164 /// Support for the ObjFW runtime. 2165 class CGObjCObjFW: public CGObjCGNU { 2166 protected: 2167 /// The GCC ABI message lookup function. Returns an IMP pointing to the 2168 /// method implementation for this message. 2169 LazyRuntimeFunction MsgLookupFn; 2170 /// stret lookup function. While this does not seem to make sense at the 2171 /// first look, this is required to call the correct forwarding function. 2172 LazyRuntimeFunction MsgLookupFnSRet; 2173 /// The GCC ABI superclass message lookup function. Takes a pointer to a 2174 /// structure describing the receiver and the class, and a selector as 2175 /// arguments. Returns the IMP for the corresponding method. 2176 LazyRuntimeFunction MsgLookupSuperFn, MsgLookupSuperFnSRet; 2177 2178 llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver, 2179 llvm::Value *cmd, llvm::MDNode *node, 2180 MessageSendInfo &MSI) override { 2181 CGBuilderTy &Builder = CGF.Builder; 2182 llvm::Value *args[] = { 2183 EnforceType(Builder, Receiver, IdTy), 2184 EnforceType(Builder, cmd, SelectorTy) }; 2185 2186 llvm::CallBase *imp; 2187 if (CGM.ReturnTypeUsesSRet(MSI.CallInfo)) 2188 imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFnSRet, args); 2189 else 2190 imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFn, args); 2191 2192 imp->setMetadata(msgSendMDKind, node); 2193 return imp; 2194 } 2195 2196 llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper, 2197 llvm::Value *cmd, MessageSendInfo &MSI) override { 2198 CGBuilderTy &Builder = CGF.Builder; 2199 llvm::Value *lookupArgs[] = { 2200 EnforceType(Builder, ObjCSuper.emitRawPointer(CGF), PtrToObjCSuperTy), 2201 cmd, 2202 }; 2203 2204 if (CGM.ReturnTypeUsesSRet(MSI.CallInfo)) 2205 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFnSRet, lookupArgs); 2206 else 2207 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs); 2208 } 2209 2210 llvm::Value *GetClassNamed(CodeGenFunction &CGF, const std::string &Name, 2211 bool isWeak) override { 2212 if (isWeak) 2213 return CGObjCGNU::GetClassNamed(CGF, Name, isWeak); 2214 2215 EmitClassRef(Name); 2216 std::string SymbolName = "_OBJC_CLASS_" + Name; 2217 llvm::GlobalVariable *ClassSymbol = TheModule.getGlobalVariable(SymbolName); 2218 if (!ClassSymbol) 2219 ClassSymbol = new llvm::GlobalVariable(TheModule, LongTy, false, 2220 llvm::GlobalValue::ExternalLinkage, 2221 nullptr, SymbolName); 2222 return ClassSymbol; 2223 } 2224 2225 public: 2226 CGObjCObjFW(CodeGenModule &Mod): CGObjCGNU(Mod, 9, 3) { 2227 // IMP objc_msg_lookup(id, SEL); 2228 MsgLookupFn.init(&CGM, "objc_msg_lookup", IMPTy, IdTy, SelectorTy); 2229 MsgLookupFnSRet.init(&CGM, "objc_msg_lookup_stret", IMPTy, IdTy, 2230 SelectorTy); 2231 // IMP objc_msg_lookup_super(struct objc_super*, SEL); 2232 MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy, 2233 PtrToObjCSuperTy, SelectorTy); 2234 MsgLookupSuperFnSRet.init(&CGM, "objc_msg_lookup_super_stret", IMPTy, 2235 PtrToObjCSuperTy, SelectorTy); 2236 } 2237 }; 2238 } // end anonymous namespace 2239 2240 /// Emits a reference to a dummy variable which is emitted with each class. 2241 /// This ensures that a linker error will be generated when trying to link 2242 /// together modules where a referenced class is not defined. 2243 void CGObjCGNU::EmitClassRef(const std::string &className) { 2244 std::string symbolRef = "__objc_class_ref_" + className; 2245 // Don't emit two copies of the same symbol 2246 if (TheModule.getGlobalVariable(symbolRef)) 2247 return; 2248 std::string symbolName = "__objc_class_name_" + className; 2249 llvm::GlobalVariable *ClassSymbol = TheModule.getGlobalVariable(symbolName); 2250 if (!ClassSymbol) { 2251 ClassSymbol = new llvm::GlobalVariable(TheModule, LongTy, false, 2252 llvm::GlobalValue::ExternalLinkage, 2253 nullptr, symbolName); 2254 } 2255 new llvm::GlobalVariable(TheModule, ClassSymbol->getType(), true, 2256 llvm::GlobalValue::WeakAnyLinkage, ClassSymbol, symbolRef); 2257 } 2258 2259 CGObjCGNU::CGObjCGNU(CodeGenModule &cgm, unsigned runtimeABIVersion, 2260 unsigned protocolClassVersion, unsigned classABI) 2261 : CGObjCRuntime(cgm), TheModule(CGM.getModule()), 2262 VMContext(cgm.getLLVMContext()), ClassPtrAlias(nullptr), 2263 MetaClassPtrAlias(nullptr), RuntimeVersion(runtimeABIVersion), 2264 ProtocolVersion(protocolClassVersion), ClassABIVersion(classABI) { 2265 2266 msgSendMDKind = VMContext.getMDKindID("GNUObjCMessageSend"); 2267 usesSEHExceptions = 2268 cgm.getContext().getTargetInfo().getTriple().isWindowsMSVCEnvironment(); 2269 usesCxxExceptions = 2270 cgm.getContext().getTargetInfo().getTriple().isOSCygMing() && 2271 isRuntime(ObjCRuntime::GNUstep, 2); 2272 2273 CodeGenTypes &Types = CGM.getTypes(); 2274 IntTy = cast<llvm::IntegerType>( 2275 Types.ConvertType(CGM.getContext().IntTy)); 2276 LongTy = cast<llvm::IntegerType>( 2277 Types.ConvertType(CGM.getContext().LongTy)); 2278 SizeTy = cast<llvm::IntegerType>( 2279 Types.ConvertType(CGM.getContext().getSizeType())); 2280 PtrDiffTy = cast<llvm::IntegerType>( 2281 Types.ConvertType(CGM.getContext().getPointerDiffType())); 2282 BoolTy = CGM.getTypes().ConvertType(CGM.getContext().BoolTy); 2283 2284 Int8Ty = llvm::Type::getInt8Ty(VMContext); 2285 // C string type. Used in lots of places. 2286 PtrToInt8Ty = llvm::PointerType::getUnqual(Int8Ty); 2287 ProtocolPtrTy = llvm::PointerType::getUnqual( 2288 Types.ConvertType(CGM.getContext().getObjCProtoType())); 2289 2290 Zeros[0] = llvm::ConstantInt::get(LongTy, 0); 2291 Zeros[1] = Zeros[0]; 2292 NULLPtr = llvm::ConstantPointerNull::get(PtrToInt8Ty); 2293 // Get the selector Type. 2294 QualType selTy = CGM.getContext().getObjCSelType(); 2295 if (QualType() == selTy) { 2296 SelectorTy = PtrToInt8Ty; 2297 SelectorElemTy = Int8Ty; 2298 } else { 2299 SelectorTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(selTy)); 2300 SelectorElemTy = CGM.getTypes().ConvertTypeForMem(selTy->getPointeeType()); 2301 } 2302 2303 PtrToIntTy = llvm::PointerType::getUnqual(IntTy); 2304 PtrTy = PtrToInt8Ty; 2305 2306 Int32Ty = llvm::Type::getInt32Ty(VMContext); 2307 Int64Ty = llvm::Type::getInt64Ty(VMContext); 2308 2309 IntPtrTy = 2310 CGM.getDataLayout().getPointerSizeInBits() == 32 ? Int32Ty : Int64Ty; 2311 2312 // Object type 2313 QualType UnqualIdTy = CGM.getContext().getObjCIdType(); 2314 ASTIdTy = CanQualType(); 2315 if (UnqualIdTy != QualType()) { 2316 ASTIdTy = CGM.getContext().getCanonicalType(UnqualIdTy); 2317 IdTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(ASTIdTy)); 2318 IdElemTy = CGM.getTypes().ConvertTypeForMem( 2319 ASTIdTy.getTypePtr()->getPointeeType()); 2320 } else { 2321 IdTy = PtrToInt8Ty; 2322 IdElemTy = Int8Ty; 2323 } 2324 PtrToIdTy = llvm::PointerType::getUnqual(IdTy); 2325 ProtocolTy = llvm::StructType::get(IdTy, 2326 PtrToInt8Ty, // name 2327 PtrToInt8Ty, // protocols 2328 PtrToInt8Ty, // instance methods 2329 PtrToInt8Ty, // class methods 2330 PtrToInt8Ty, // optional instance methods 2331 PtrToInt8Ty, // optional class methods 2332 PtrToInt8Ty, // properties 2333 PtrToInt8Ty);// optional properties 2334 2335 // struct objc_property_gsv1 2336 // { 2337 // const char *name; 2338 // char attributes; 2339 // char attributes2; 2340 // char unused1; 2341 // char unused2; 2342 // const char *getter_name; 2343 // const char *getter_types; 2344 // const char *setter_name; 2345 // const char *setter_types; 2346 // } 2347 PropertyMetadataTy = llvm::StructType::get(CGM.getLLVMContext(), { 2348 PtrToInt8Ty, Int8Ty, Int8Ty, Int8Ty, Int8Ty, PtrToInt8Ty, PtrToInt8Ty, 2349 PtrToInt8Ty, PtrToInt8Ty }); 2350 2351 ObjCSuperTy = llvm::StructType::get(IdTy, IdTy); 2352 PtrToObjCSuperTy = llvm::PointerType::getUnqual(ObjCSuperTy); 2353 2354 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext); 2355 2356 // void objc_exception_throw(id); 2357 ExceptionThrowFn.init(&CGM, "objc_exception_throw", VoidTy, IdTy); 2358 ExceptionReThrowFn.init(&CGM, 2359 usesCxxExceptions ? "objc_exception_rethrow" 2360 : "objc_exception_throw", 2361 VoidTy, IdTy); 2362 // int objc_sync_enter(id); 2363 SyncEnterFn.init(&CGM, "objc_sync_enter", IntTy, IdTy); 2364 // int objc_sync_exit(id); 2365 SyncExitFn.init(&CGM, "objc_sync_exit", IntTy, IdTy); 2366 2367 // void objc_enumerationMutation (id) 2368 EnumerationMutationFn.init(&CGM, "objc_enumerationMutation", VoidTy, IdTy); 2369 2370 // id objc_getProperty(id, SEL, ptrdiff_t, BOOL) 2371 GetPropertyFn.init(&CGM, "objc_getProperty", IdTy, IdTy, SelectorTy, 2372 PtrDiffTy, BoolTy); 2373 // void objc_setProperty(id, SEL, ptrdiff_t, id, BOOL, BOOL) 2374 SetPropertyFn.init(&CGM, "objc_setProperty", VoidTy, IdTy, SelectorTy, 2375 PtrDiffTy, IdTy, BoolTy, BoolTy); 2376 // void objc_setPropertyStruct(void*, void*, ptrdiff_t, BOOL, BOOL) 2377 GetStructPropertyFn.init(&CGM, "objc_getPropertyStruct", VoidTy, PtrTy, PtrTy, 2378 PtrDiffTy, BoolTy, BoolTy); 2379 // void objc_setPropertyStruct(void*, void*, ptrdiff_t, BOOL, BOOL) 2380 SetStructPropertyFn.init(&CGM, "objc_setPropertyStruct", VoidTy, PtrTy, PtrTy, 2381 PtrDiffTy, BoolTy, BoolTy); 2382 2383 // IMP type 2384 llvm::Type *IMPArgs[] = { IdTy, SelectorTy }; 2385 IMPTy = llvm::PointerType::getUnqual(llvm::FunctionType::get(IdTy, IMPArgs, 2386 true)); 2387 2388 const LangOptions &Opts = CGM.getLangOpts(); 2389 if ((Opts.getGC() != LangOptions::NonGC) || Opts.ObjCAutoRefCount) 2390 RuntimeVersion = 10; 2391 2392 // Don't bother initialising the GC stuff unless we're compiling in GC mode 2393 if (Opts.getGC() != LangOptions::NonGC) { 2394 // This is a bit of an hack. We should sort this out by having a proper 2395 // CGObjCGNUstep subclass for GC, but we may want to really support the old 2396 // ABI and GC added in ObjectiveC2.framework, so we fudge it a bit for now 2397 // Get selectors needed in GC mode 2398 RetainSel = GetNullarySelector("retain", CGM.getContext()); 2399 ReleaseSel = GetNullarySelector("release", CGM.getContext()); 2400 AutoreleaseSel = GetNullarySelector("autorelease", CGM.getContext()); 2401 2402 // Get functions needed in GC mode 2403 2404 // id objc_assign_ivar(id, id, ptrdiff_t); 2405 IvarAssignFn.init(&CGM, "objc_assign_ivar", IdTy, IdTy, IdTy, PtrDiffTy); 2406 // id objc_assign_strongCast (id, id*) 2407 StrongCastAssignFn.init(&CGM, "objc_assign_strongCast", IdTy, IdTy, 2408 PtrToIdTy); 2409 // id objc_assign_global(id, id*); 2410 GlobalAssignFn.init(&CGM, "objc_assign_global", IdTy, IdTy, PtrToIdTy); 2411 // id objc_assign_weak(id, id*); 2412 WeakAssignFn.init(&CGM, "objc_assign_weak", IdTy, IdTy, PtrToIdTy); 2413 // id objc_read_weak(id*); 2414 WeakReadFn.init(&CGM, "objc_read_weak", IdTy, PtrToIdTy); 2415 // void *objc_memmove_collectable(void*, void *, size_t); 2416 MemMoveFn.init(&CGM, "objc_memmove_collectable", PtrTy, PtrTy, PtrTy, 2417 SizeTy); 2418 } 2419 } 2420 2421 llvm::Value *CGObjCGNU::GetClassNamed(CodeGenFunction &CGF, 2422 const std::string &Name, bool isWeak) { 2423 llvm::Constant *ClassName = MakeConstantString(Name); 2424 // With the incompatible ABI, this will need to be replaced with a direct 2425 // reference to the class symbol. For the compatible nonfragile ABI we are 2426 // still performing this lookup at run time but emitting the symbol for the 2427 // class externally so that we can make the switch later. 2428 // 2429 // Libobjc2 contains an LLVM pass that replaces calls to objc_lookup_class 2430 // with memoized versions or with static references if it's safe to do so. 2431 if (!isWeak) 2432 EmitClassRef(Name); 2433 2434 llvm::FunctionCallee ClassLookupFn = CGM.CreateRuntimeFunction( 2435 llvm::FunctionType::get(IdTy, PtrToInt8Ty, true), "objc_lookup_class"); 2436 return CGF.EmitNounwindRuntimeCall(ClassLookupFn, ClassName); 2437 } 2438 2439 // This has to perform the lookup every time, since posing and related 2440 // techniques can modify the name -> class mapping. 2441 llvm::Value *CGObjCGNU::GetClass(CodeGenFunction &CGF, 2442 const ObjCInterfaceDecl *OID) { 2443 auto *Value = 2444 GetClassNamed(CGF, OID->getNameAsString(), OID->isWeakImported()); 2445 if (auto *ClassSymbol = dyn_cast<llvm::GlobalVariable>(Value)) 2446 CGM.setGVProperties(ClassSymbol, OID); 2447 return Value; 2448 } 2449 2450 llvm::Value *CGObjCGNU::EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) { 2451 auto *Value = GetClassNamed(CGF, "NSAutoreleasePool", false); 2452 if (CGM.getTriple().isOSBinFormatCOFF()) { 2453 if (auto *ClassSymbol = dyn_cast<llvm::GlobalVariable>(Value)) { 2454 IdentifierInfo &II = CGF.CGM.getContext().Idents.get("NSAutoreleasePool"); 2455 TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl(); 2456 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 2457 2458 const VarDecl *VD = nullptr; 2459 for (const auto *Result : DC->lookup(&II)) 2460 if ((VD = dyn_cast<VarDecl>(Result))) 2461 break; 2462 2463 CGM.setGVProperties(ClassSymbol, VD); 2464 } 2465 } 2466 return Value; 2467 } 2468 2469 llvm::Value *CGObjCGNU::GetTypedSelector(CodeGenFunction &CGF, Selector Sel, 2470 const std::string &TypeEncoding) { 2471 SmallVectorImpl<TypedSelector> &Types = SelectorTable[Sel]; 2472 llvm::GlobalAlias *SelValue = nullptr; 2473 2474 for (SmallVectorImpl<TypedSelector>::iterator i = Types.begin(), 2475 e = Types.end() ; i!=e ; i++) { 2476 if (i->first == TypeEncoding) { 2477 SelValue = i->second; 2478 break; 2479 } 2480 } 2481 if (!SelValue) { 2482 SelValue = llvm::GlobalAlias::create(SelectorElemTy, 0, 2483 llvm::GlobalValue::PrivateLinkage, 2484 ".objc_selector_" + Sel.getAsString(), 2485 &TheModule); 2486 Types.emplace_back(TypeEncoding, SelValue); 2487 } 2488 2489 return SelValue; 2490 } 2491 2492 Address CGObjCGNU::GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) { 2493 llvm::Value *SelValue = GetSelector(CGF, Sel); 2494 2495 // Store it to a temporary. Does this satisfy the semantics of 2496 // GetAddrOfSelector? Hopefully. 2497 Address tmp = CGF.CreateTempAlloca(SelValue->getType(), 2498 CGF.getPointerAlign()); 2499 CGF.Builder.CreateStore(SelValue, tmp); 2500 return tmp; 2501 } 2502 2503 llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF, Selector Sel) { 2504 return GetTypedSelector(CGF, Sel, std::string()); 2505 } 2506 2507 llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF, 2508 const ObjCMethodDecl *Method) { 2509 std::string SelTypes = CGM.getContext().getObjCEncodingForMethodDecl(Method); 2510 return GetTypedSelector(CGF, Method->getSelector(), SelTypes); 2511 } 2512 2513 llvm::Constant *CGObjCGNU::GetEHType(QualType T) { 2514 if (T->isObjCIdType() || T->isObjCQualifiedIdType()) { 2515 // With the old ABI, there was only one kind of catchall, which broke 2516 // foreign exceptions. With the new ABI, we use __objc_id_typeinfo as 2517 // a pointer indicating object catchalls, and NULL to indicate real 2518 // catchalls 2519 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) { 2520 return MakeConstantString("@id"); 2521 } else { 2522 return nullptr; 2523 } 2524 } 2525 2526 // All other types should be Objective-C interface pointer types. 2527 const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>(); 2528 assert(OPT && "Invalid @catch type."); 2529 const ObjCInterfaceDecl *IDecl = OPT->getObjectType()->getInterface(); 2530 assert(IDecl && "Invalid @catch type."); 2531 return MakeConstantString(IDecl->getIdentifier()->getName()); 2532 } 2533 2534 llvm::Constant *CGObjCGNUstep::GetEHType(QualType T) { 2535 if (usesSEHExceptions) 2536 return CGM.getCXXABI().getAddrOfRTTIDescriptor(T); 2537 2538 if (!CGM.getLangOpts().CPlusPlus && !usesCxxExceptions) 2539 return CGObjCGNU::GetEHType(T); 2540 2541 // For Objective-C++, we want to provide the ability to catch both C++ and 2542 // Objective-C objects in the same function. 2543 2544 // There's a particular fixed type info for 'id'. 2545 if (T->isObjCIdType() || 2546 T->isObjCQualifiedIdType()) { 2547 llvm::Constant *IDEHType = 2548 CGM.getModule().getGlobalVariable("__objc_id_type_info"); 2549 if (!IDEHType) 2550 IDEHType = 2551 new llvm::GlobalVariable(CGM.getModule(), PtrToInt8Ty, 2552 false, 2553 llvm::GlobalValue::ExternalLinkage, 2554 nullptr, "__objc_id_type_info"); 2555 return IDEHType; 2556 } 2557 2558 const ObjCObjectPointerType *PT = 2559 T->getAs<ObjCObjectPointerType>(); 2560 assert(PT && "Invalid @catch type."); 2561 const ObjCInterfaceType *IT = PT->getInterfaceType(); 2562 assert(IT && "Invalid @catch type."); 2563 std::string className = 2564 std::string(IT->getDecl()->getIdentifier()->getName()); 2565 2566 std::string typeinfoName = "__objc_eh_typeinfo_" + className; 2567 2568 // Return the existing typeinfo if it exists 2569 if (llvm::Constant *typeinfo = TheModule.getGlobalVariable(typeinfoName)) 2570 return typeinfo; 2571 2572 // Otherwise create it. 2573 2574 // vtable for gnustep::libobjc::__objc_class_type_info 2575 // It's quite ugly hard-coding this. Ideally we'd generate it using the host 2576 // platform's name mangling. 2577 const char *vtableName = "_ZTVN7gnustep7libobjc22__objc_class_type_infoE"; 2578 auto *Vtable = TheModule.getGlobalVariable(vtableName); 2579 if (!Vtable) { 2580 Vtable = new llvm::GlobalVariable(TheModule, PtrToInt8Ty, true, 2581 llvm::GlobalValue::ExternalLinkage, 2582 nullptr, vtableName); 2583 } 2584 llvm::Constant *Two = llvm::ConstantInt::get(IntTy, 2); 2585 auto *BVtable = 2586 llvm::ConstantExpr::getGetElementPtr(Vtable->getValueType(), Vtable, Two); 2587 2588 llvm::Constant *typeName = 2589 ExportUniqueString(className, "__objc_eh_typename_"); 2590 2591 ConstantInitBuilder builder(CGM); 2592 auto fields = builder.beginStruct(); 2593 fields.add(BVtable); 2594 fields.add(typeName); 2595 llvm::Constant *TI = 2596 fields.finishAndCreateGlobal("__objc_eh_typeinfo_" + className, 2597 CGM.getPointerAlign(), 2598 /*constant*/ false, 2599 llvm::GlobalValue::LinkOnceODRLinkage); 2600 return TI; 2601 } 2602 2603 /// Generate an NSConstantString object. 2604 ConstantAddress CGObjCGNU::GenerateConstantString(const StringLiteral *SL) { 2605 2606 std::string Str = SL->getString().str(); 2607 CharUnits Align = CGM.getPointerAlign(); 2608 2609 // Look for an existing one 2610 llvm::StringMap<llvm::Constant*>::iterator old = ObjCStrings.find(Str); 2611 if (old != ObjCStrings.end()) 2612 return ConstantAddress(old->getValue(), Int8Ty, Align); 2613 2614 StringRef StringClass = CGM.getLangOpts().ObjCConstantStringClass; 2615 2616 if (StringClass.empty()) StringClass = "NSConstantString"; 2617 2618 std::string Sym = "_OBJC_CLASS_"; 2619 Sym += StringClass; 2620 2621 llvm::Constant *isa = TheModule.getNamedGlobal(Sym); 2622 2623 if (!isa) 2624 isa = new llvm::GlobalVariable(TheModule, IdTy, /* isConstant */ false, 2625 llvm::GlobalValue::ExternalWeakLinkage, 2626 nullptr, Sym); 2627 2628 ConstantInitBuilder Builder(CGM); 2629 auto Fields = Builder.beginStruct(); 2630 Fields.add(isa); 2631 Fields.add(MakeConstantString(Str)); 2632 Fields.addInt(IntTy, Str.size()); 2633 llvm::Constant *ObjCStr = Fields.finishAndCreateGlobal(".objc_str", Align); 2634 ObjCStrings[Str] = ObjCStr; 2635 ConstantStrings.push_back(ObjCStr); 2636 return ConstantAddress(ObjCStr, Int8Ty, Align); 2637 } 2638 2639 ///Generates a message send where the super is the receiver. This is a message 2640 ///send to self with special delivery semantics indicating which class's method 2641 ///should be called. 2642 RValue 2643 CGObjCGNU::GenerateMessageSendSuper(CodeGenFunction &CGF, 2644 ReturnValueSlot Return, 2645 QualType ResultType, 2646 Selector Sel, 2647 const ObjCInterfaceDecl *Class, 2648 bool isCategoryImpl, 2649 llvm::Value *Receiver, 2650 bool IsClassMessage, 2651 const CallArgList &CallArgs, 2652 const ObjCMethodDecl *Method) { 2653 CGBuilderTy &Builder = CGF.Builder; 2654 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { 2655 if (Sel == RetainSel || Sel == AutoreleaseSel) { 2656 return RValue::get(EnforceType(Builder, Receiver, 2657 CGM.getTypes().ConvertType(ResultType))); 2658 } 2659 if (Sel == ReleaseSel) { 2660 return RValue::get(nullptr); 2661 } 2662 } 2663 2664 llvm::Value *cmd = GetSelector(CGF, Sel); 2665 CallArgList ActualArgs; 2666 2667 ActualArgs.add(RValue::get(EnforceType(Builder, Receiver, IdTy)), ASTIdTy); 2668 ActualArgs.add(RValue::get(cmd), CGF.getContext().getObjCSelType()); 2669 ActualArgs.addFrom(CallArgs); 2670 2671 MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs); 2672 2673 llvm::Value *ReceiverClass = nullptr; 2674 bool isV2ABI = isRuntime(ObjCRuntime::GNUstep, 2); 2675 if (isV2ABI) { 2676 ReceiverClass = GetClassNamed(CGF, 2677 Class->getSuperClass()->getNameAsString(), /*isWeak*/false); 2678 if (IsClassMessage) { 2679 // Load the isa pointer of the superclass is this is a class method. 2680 ReceiverClass = Builder.CreateBitCast(ReceiverClass, 2681 llvm::PointerType::getUnqual(IdTy)); 2682 ReceiverClass = 2683 Builder.CreateAlignedLoad(IdTy, ReceiverClass, CGF.getPointerAlign()); 2684 } 2685 ReceiverClass = EnforceType(Builder, ReceiverClass, IdTy); 2686 } else { 2687 if (isCategoryImpl) { 2688 llvm::FunctionCallee classLookupFunction = nullptr; 2689 if (IsClassMessage) { 2690 classLookupFunction = CGM.CreateRuntimeFunction(llvm::FunctionType::get( 2691 IdTy, PtrTy, true), "objc_get_meta_class"); 2692 } else { 2693 classLookupFunction = CGM.CreateRuntimeFunction(llvm::FunctionType::get( 2694 IdTy, PtrTy, true), "objc_get_class"); 2695 } 2696 ReceiverClass = Builder.CreateCall(classLookupFunction, 2697 MakeConstantString(Class->getNameAsString())); 2698 } else { 2699 // Set up global aliases for the metaclass or class pointer if they do not 2700 // already exist. These will are forward-references which will be set to 2701 // pointers to the class and metaclass structure created for the runtime 2702 // load function. To send a message to super, we look up the value of the 2703 // super_class pointer from either the class or metaclass structure. 2704 if (IsClassMessage) { 2705 if (!MetaClassPtrAlias) { 2706 MetaClassPtrAlias = llvm::GlobalAlias::create( 2707 IdElemTy, 0, llvm::GlobalValue::InternalLinkage, 2708 ".objc_metaclass_ref" + Class->getNameAsString(), &TheModule); 2709 } 2710 ReceiverClass = MetaClassPtrAlias; 2711 } else { 2712 if (!ClassPtrAlias) { 2713 ClassPtrAlias = llvm::GlobalAlias::create( 2714 IdElemTy, 0, llvm::GlobalValue::InternalLinkage, 2715 ".objc_class_ref" + Class->getNameAsString(), &TheModule); 2716 } 2717 ReceiverClass = ClassPtrAlias; 2718 } 2719 } 2720 // Cast the pointer to a simplified version of the class structure 2721 llvm::Type *CastTy = llvm::StructType::get(IdTy, IdTy); 2722 ReceiverClass = Builder.CreateBitCast(ReceiverClass, 2723 llvm::PointerType::getUnqual(CastTy)); 2724 // Get the superclass pointer 2725 ReceiverClass = Builder.CreateStructGEP(CastTy, ReceiverClass, 1); 2726 // Load the superclass pointer 2727 ReceiverClass = 2728 Builder.CreateAlignedLoad(IdTy, ReceiverClass, CGF.getPointerAlign()); 2729 } 2730 // Construct the structure used to look up the IMP 2731 llvm::StructType *ObjCSuperTy = 2732 llvm::StructType::get(Receiver->getType(), IdTy); 2733 2734 Address ObjCSuper = CGF.CreateTempAlloca(ObjCSuperTy, 2735 CGF.getPointerAlign()); 2736 2737 Builder.CreateStore(Receiver, Builder.CreateStructGEP(ObjCSuper, 0)); 2738 Builder.CreateStore(ReceiverClass, Builder.CreateStructGEP(ObjCSuper, 1)); 2739 2740 // Get the IMP 2741 llvm::Value *imp = LookupIMPSuper(CGF, ObjCSuper, cmd, MSI); 2742 imp = EnforceType(Builder, imp, MSI.MessengerType); 2743 2744 llvm::Metadata *impMD[] = { 2745 llvm::MDString::get(VMContext, Sel.getAsString()), 2746 llvm::MDString::get(VMContext, Class->getSuperClass()->getNameAsString()), 2747 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 2748 llvm::Type::getInt1Ty(VMContext), IsClassMessage))}; 2749 llvm::MDNode *node = llvm::MDNode::get(VMContext, impMD); 2750 2751 CGCallee callee(CGCalleeInfo(), imp); 2752 2753 llvm::CallBase *call; 2754 RValue msgRet = CGF.EmitCall(MSI.CallInfo, callee, Return, ActualArgs, &call); 2755 call->setMetadata(msgSendMDKind, node); 2756 return msgRet; 2757 } 2758 2759 /// Generate code for a message send expression. 2760 RValue 2761 CGObjCGNU::GenerateMessageSend(CodeGenFunction &CGF, 2762 ReturnValueSlot Return, 2763 QualType ResultType, 2764 Selector Sel, 2765 llvm::Value *Receiver, 2766 const CallArgList &CallArgs, 2767 const ObjCInterfaceDecl *Class, 2768 const ObjCMethodDecl *Method) { 2769 CGBuilderTy &Builder = CGF.Builder; 2770 2771 // Strip out message sends to retain / release in GC mode 2772 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { 2773 if (Sel == RetainSel || Sel == AutoreleaseSel) { 2774 return RValue::get(EnforceType(Builder, Receiver, 2775 CGM.getTypes().ConvertType(ResultType))); 2776 } 2777 if (Sel == ReleaseSel) { 2778 return RValue::get(nullptr); 2779 } 2780 } 2781 2782 bool isDirect = Method && Method->isDirectMethod(); 2783 2784 IdTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(ASTIdTy)); 2785 llvm::Value *cmd; 2786 if (!isDirect) { 2787 if (Method) 2788 cmd = GetSelector(CGF, Method); 2789 else 2790 cmd = GetSelector(CGF, Sel); 2791 cmd = EnforceType(Builder, cmd, SelectorTy); 2792 } 2793 2794 Receiver = EnforceType(Builder, Receiver, IdTy); 2795 2796 llvm::Metadata *impMD[] = { 2797 llvm::MDString::get(VMContext, Sel.getAsString()), 2798 llvm::MDString::get(VMContext, Class ? Class->getNameAsString() : ""), 2799 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 2800 llvm::Type::getInt1Ty(VMContext), Class != nullptr))}; 2801 llvm::MDNode *node = llvm::MDNode::get(VMContext, impMD); 2802 2803 CallArgList ActualArgs; 2804 ActualArgs.add(RValue::get(Receiver), ASTIdTy); 2805 if (!isDirect) 2806 ActualArgs.add(RValue::get(cmd), CGF.getContext().getObjCSelType()); 2807 ActualArgs.addFrom(CallArgs); 2808 2809 MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs); 2810 2811 // Message sends are expected to return a zero value when the 2812 // receiver is nil. At one point, this was only guaranteed for 2813 // simple integer and pointer types, but expectations have grown 2814 // over time. 2815 // 2816 // Given a nil receiver, the GNU runtime's message lookup will 2817 // return a stub function that simply sets various return-value 2818 // registers to zero and then returns. That's good enough for us 2819 // if and only if (1) the calling conventions of that stub are 2820 // compatible with the signature we're using and (2) the registers 2821 // it sets are sufficient to produce a zero value of the return type. 2822 // Rather than doing a whole target-specific analysis, we assume it 2823 // only works for void, integer, and pointer types, and in all 2824 // other cases we do an explicit nil check is emitted code. In 2825 // addition to ensuring we produce a zero value for other types, this 2826 // sidesteps the few outright CC incompatibilities we know about that 2827 // could otherwise lead to crashes, like when a method is expected to 2828 // return on the x87 floating point stack or adjust the stack pointer 2829 // because of an indirect return. 2830 bool hasParamDestroyedInCallee = false; 2831 bool requiresExplicitZeroResult = false; 2832 bool requiresNilReceiverCheck = [&] { 2833 // We never need a check if we statically know the receiver isn't nil. 2834 if (!canMessageReceiverBeNull(CGF, Method, /*IsSuper*/ false, 2835 Class, Receiver)) 2836 return false; 2837 2838 // If there's a consumed argument, we need a nil check. 2839 if (Method && Method->hasParamDestroyedInCallee()) { 2840 hasParamDestroyedInCallee = true; 2841 } 2842 2843 // If the return value isn't flagged as unused, and the result 2844 // type isn't in our narrow set where we assume compatibility, 2845 // we need a nil check to ensure a nil value. 2846 if (!Return.isUnused()) { 2847 if (ResultType->isVoidType()) { 2848 // void results are definitely okay. 2849 } else if (ResultType->hasPointerRepresentation() && 2850 CGM.getTypes().isZeroInitializable(ResultType)) { 2851 // Pointer types should be fine as long as they have 2852 // bitwise-zero null pointers. But do we need to worry 2853 // about unusual address spaces? 2854 } else if (ResultType->isIntegralOrEnumerationType()) { 2855 // Bitwise zero should always be zero for integral types. 2856 // FIXME: we probably need a size limit here, but we've 2857 // never imposed one before 2858 } else { 2859 // Otherwise, use an explicit check just to be sure, unless we're 2860 // calling a direct method, where the implementation does this for us. 2861 requiresExplicitZeroResult = !isDirect; 2862 } 2863 } 2864 2865 return hasParamDestroyedInCallee || requiresExplicitZeroResult; 2866 }(); 2867 2868 // We will need to explicitly zero-initialize an aggregate result slot 2869 // if we generally require explicit zeroing and we have an aggregate 2870 // result. 2871 bool requiresExplicitAggZeroing = 2872 requiresExplicitZeroResult && CGF.hasAggregateEvaluationKind(ResultType); 2873 2874 // The block we're going to end up in after any message send or nil path. 2875 llvm::BasicBlock *continueBB = nullptr; 2876 // The block that eventually branched to continueBB along the nil path. 2877 llvm::BasicBlock *nilPathBB = nullptr; 2878 // The block to do explicit work in along the nil path, if necessary. 2879 llvm::BasicBlock *nilCleanupBB = nullptr; 2880 2881 // Emit the nil-receiver check. 2882 if (requiresNilReceiverCheck) { 2883 llvm::BasicBlock *messageBB = CGF.createBasicBlock("msgSend"); 2884 continueBB = CGF.createBasicBlock("continue"); 2885 2886 // If we need to zero-initialize an aggregate result or destroy 2887 // consumed arguments, we'll need a separate cleanup block. 2888 // Otherwise we can just branch directly to the continuation block. 2889 if (requiresExplicitAggZeroing || hasParamDestroyedInCallee) { 2890 nilCleanupBB = CGF.createBasicBlock("nilReceiverCleanup"); 2891 } else { 2892 nilPathBB = Builder.GetInsertBlock(); 2893 } 2894 2895 llvm::Value *isNil = Builder.CreateICmpEQ(Receiver, 2896 llvm::Constant::getNullValue(Receiver->getType())); 2897 Builder.CreateCondBr(isNil, nilCleanupBB ? nilCleanupBB : continueBB, 2898 messageBB); 2899 CGF.EmitBlock(messageBB); 2900 } 2901 2902 // Get the IMP to call 2903 llvm::Value *imp; 2904 2905 // If this is a direct method, just emit it here. 2906 if (isDirect) 2907 imp = GenerateMethod(Method, Method->getClassInterface()); 2908 else 2909 // If we have non-legacy dispatch specified, we try using the 2910 // objc_msgSend() functions. These are not supported on all platforms 2911 // (or all runtimes on a given platform), so we 2912 switch (CGM.getCodeGenOpts().getObjCDispatchMethod()) { 2913 case CodeGenOptions::Legacy: 2914 imp = LookupIMP(CGF, Receiver, cmd, node, MSI); 2915 break; 2916 case CodeGenOptions::Mixed: 2917 case CodeGenOptions::NonLegacy: 2918 StringRef name = "objc_msgSend"; 2919 if (CGM.ReturnTypeUsesFPRet(ResultType)) { 2920 name = "objc_msgSend_fpret"; 2921 } else if (CGM.ReturnTypeUsesSRet(MSI.CallInfo)) { 2922 name = "objc_msgSend_stret"; 2923 2924 // The address of the memory block is be passed in x8 for POD type, 2925 // or in x0 for non-POD type (marked as inreg). 2926 bool shouldCheckForInReg = 2927 CGM.getContext() 2928 .getTargetInfo() 2929 .getTriple() 2930 .isWindowsMSVCEnvironment() && 2931 CGM.getContext().getTargetInfo().getTriple().isAArch64(); 2932 if (shouldCheckForInReg && CGM.ReturnTypeHasInReg(MSI.CallInfo)) { 2933 name = "objc_msgSend_stret2"; 2934 } 2935 } 2936 // The actual types here don't matter - we're going to bitcast the 2937 // function anyway 2938 imp = CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true), 2939 name) 2940 .getCallee(); 2941 } 2942 2943 // Reset the receiver in case the lookup modified it 2944 ActualArgs[0] = CallArg(RValue::get(Receiver), ASTIdTy); 2945 2946 imp = EnforceType(Builder, imp, MSI.MessengerType); 2947 2948 llvm::CallBase *call; 2949 CGCallee callee(CGCalleeInfo(), imp); 2950 RValue msgRet = CGF.EmitCall(MSI.CallInfo, callee, Return, ActualArgs, &call); 2951 if (!isDirect) 2952 call->setMetadata(msgSendMDKind, node); 2953 2954 if (requiresNilReceiverCheck) { 2955 llvm::BasicBlock *nonNilPathBB = CGF.Builder.GetInsertBlock(); 2956 CGF.Builder.CreateBr(continueBB); 2957 2958 // Emit the nil path if we decided it was necessary above. 2959 if (nilCleanupBB) { 2960 CGF.EmitBlock(nilCleanupBB); 2961 2962 if (hasParamDestroyedInCallee) { 2963 destroyCalleeDestroyedArguments(CGF, Method, CallArgs); 2964 } 2965 2966 if (requiresExplicitAggZeroing) { 2967 assert(msgRet.isAggregate()); 2968 Address addr = msgRet.getAggregateAddress(); 2969 CGF.EmitNullInitialization(addr, ResultType); 2970 } 2971 2972 nilPathBB = CGF.Builder.GetInsertBlock(); 2973 CGF.Builder.CreateBr(continueBB); 2974 } 2975 2976 // Enter the continuation block and emit a phi if required. 2977 CGF.EmitBlock(continueBB); 2978 if (msgRet.isScalar()) { 2979 // If the return type is void, do nothing 2980 if (llvm::Value *v = msgRet.getScalarVal()) { 2981 llvm::PHINode *phi = Builder.CreatePHI(v->getType(), 2); 2982 phi->addIncoming(v, nonNilPathBB); 2983 phi->addIncoming(CGM.EmitNullConstant(ResultType), nilPathBB); 2984 msgRet = RValue::get(phi); 2985 } 2986 } else if (msgRet.isAggregate()) { 2987 // Aggregate zeroing is handled in nilCleanupBB when it's required. 2988 } else /* isComplex() */ { 2989 std::pair<llvm::Value*,llvm::Value*> v = msgRet.getComplexVal(); 2990 llvm::PHINode *phi = Builder.CreatePHI(v.first->getType(), 2); 2991 phi->addIncoming(v.first, nonNilPathBB); 2992 phi->addIncoming(llvm::Constant::getNullValue(v.first->getType()), 2993 nilPathBB); 2994 llvm::PHINode *phi2 = Builder.CreatePHI(v.second->getType(), 2); 2995 phi2->addIncoming(v.second, nonNilPathBB); 2996 phi2->addIncoming(llvm::Constant::getNullValue(v.second->getType()), 2997 nilPathBB); 2998 msgRet = RValue::getComplex(phi, phi2); 2999 } 3000 } 3001 return msgRet; 3002 } 3003 3004 /// Generates a MethodList. Used in construction of a objc_class and 3005 /// objc_category structures. 3006 llvm::Constant *CGObjCGNU:: 3007 GenerateMethodList(StringRef ClassName, 3008 StringRef CategoryName, 3009 ArrayRef<const ObjCMethodDecl*> Methods, 3010 bool isClassMethodList) { 3011 if (Methods.empty()) 3012 return NULLPtr; 3013 3014 ConstantInitBuilder Builder(CGM); 3015 3016 auto MethodList = Builder.beginStruct(); 3017 MethodList.addNullPointer(CGM.Int8PtrTy); 3018 MethodList.addInt(Int32Ty, Methods.size()); 3019 3020 // Get the method structure type. 3021 llvm::StructType *ObjCMethodTy = 3022 llvm::StructType::get(CGM.getLLVMContext(), { 3023 PtrToInt8Ty, // Really a selector, but the runtime creates it us. 3024 PtrToInt8Ty, // Method types 3025 IMPTy // Method pointer 3026 }); 3027 bool isV2ABI = isRuntime(ObjCRuntime::GNUstep, 2); 3028 if (isV2ABI) { 3029 // size_t size; 3030 const llvm::DataLayout &DL = TheModule.getDataLayout(); 3031 MethodList.addInt(SizeTy, DL.getTypeSizeInBits(ObjCMethodTy) / 3032 CGM.getContext().getCharWidth()); 3033 ObjCMethodTy = 3034 llvm::StructType::get(CGM.getLLVMContext(), { 3035 IMPTy, // Method pointer 3036 PtrToInt8Ty, // Selector 3037 PtrToInt8Ty // Extended type encoding 3038 }); 3039 } else { 3040 ObjCMethodTy = 3041 llvm::StructType::get(CGM.getLLVMContext(), { 3042 PtrToInt8Ty, // Really a selector, but the runtime creates it us. 3043 PtrToInt8Ty, // Method types 3044 IMPTy // Method pointer 3045 }); 3046 } 3047 auto MethodArray = MethodList.beginArray(); 3048 ASTContext &Context = CGM.getContext(); 3049 for (const auto *OMD : Methods) { 3050 llvm::Constant *FnPtr = 3051 TheModule.getFunction(getSymbolNameForMethod(OMD)); 3052 assert(FnPtr && "Can't generate metadata for method that doesn't exist"); 3053 auto Method = MethodArray.beginStruct(ObjCMethodTy); 3054 if (isV2ABI) { 3055 Method.add(FnPtr); 3056 Method.add(GetConstantSelector(OMD->getSelector(), 3057 Context.getObjCEncodingForMethodDecl(OMD))); 3058 Method.add(MakeConstantString(Context.getObjCEncodingForMethodDecl(OMD, true))); 3059 } else { 3060 Method.add(MakeConstantString(OMD->getSelector().getAsString())); 3061 Method.add(MakeConstantString(Context.getObjCEncodingForMethodDecl(OMD))); 3062 Method.add(FnPtr); 3063 } 3064 Method.finishAndAddTo(MethodArray); 3065 } 3066 MethodArray.finishAndAddTo(MethodList); 3067 3068 // Create an instance of the structure 3069 return MethodList.finishAndCreateGlobal(".objc_method_list", 3070 CGM.getPointerAlign()); 3071 } 3072 3073 /// Generates an IvarList. Used in construction of a objc_class. 3074 llvm::Constant *CGObjCGNU:: 3075 GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames, 3076 ArrayRef<llvm::Constant *> IvarTypes, 3077 ArrayRef<llvm::Constant *> IvarOffsets, 3078 ArrayRef<llvm::Constant *> IvarAlign, 3079 ArrayRef<Qualifiers::ObjCLifetime> IvarOwnership) { 3080 if (IvarNames.empty()) 3081 return NULLPtr; 3082 3083 ConstantInitBuilder Builder(CGM); 3084 3085 // Structure containing array count followed by array. 3086 auto IvarList = Builder.beginStruct(); 3087 IvarList.addInt(IntTy, (int)IvarNames.size()); 3088 3089 // Get the ivar structure type. 3090 llvm::StructType *ObjCIvarTy = 3091 llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty, IntTy); 3092 3093 // Array of ivar structures. 3094 auto Ivars = IvarList.beginArray(ObjCIvarTy); 3095 for (unsigned int i = 0, e = IvarNames.size() ; i < e ; i++) { 3096 auto Ivar = Ivars.beginStruct(ObjCIvarTy); 3097 Ivar.add(IvarNames[i]); 3098 Ivar.add(IvarTypes[i]); 3099 Ivar.add(IvarOffsets[i]); 3100 Ivar.finishAndAddTo(Ivars); 3101 } 3102 Ivars.finishAndAddTo(IvarList); 3103 3104 // Create an instance of the structure 3105 return IvarList.finishAndCreateGlobal(".objc_ivar_list", 3106 CGM.getPointerAlign()); 3107 } 3108 3109 /// Generate a class structure 3110 llvm::Constant *CGObjCGNU::GenerateClassStructure( 3111 llvm::Constant *MetaClass, 3112 llvm::Constant *SuperClass, 3113 unsigned info, 3114 const char *Name, 3115 llvm::Constant *Version, 3116 llvm::Constant *InstanceSize, 3117 llvm::Constant *IVars, 3118 llvm::Constant *Methods, 3119 llvm::Constant *Protocols, 3120 llvm::Constant *IvarOffsets, 3121 llvm::Constant *Properties, 3122 llvm::Constant *StrongIvarBitmap, 3123 llvm::Constant *WeakIvarBitmap, 3124 bool isMeta) { 3125 // Set up the class structure 3126 // Note: Several of these are char*s when they should be ids. This is 3127 // because the runtime performs this translation on load. 3128 // 3129 // Fields marked New ABI are part of the GNUstep runtime. We emit them 3130 // anyway; the classes will still work with the GNU runtime, they will just 3131 // be ignored. 3132 llvm::StructType *ClassTy = llvm::StructType::get( 3133 PtrToInt8Ty, // isa 3134 PtrToInt8Ty, // super_class 3135 PtrToInt8Ty, // name 3136 LongTy, // version 3137 LongTy, // info 3138 LongTy, // instance_size 3139 IVars->getType(), // ivars 3140 Methods->getType(), // methods 3141 // These are all filled in by the runtime, so we pretend 3142 PtrTy, // dtable 3143 PtrTy, // subclass_list 3144 PtrTy, // sibling_class 3145 PtrTy, // protocols 3146 PtrTy, // gc_object_type 3147 // New ABI: 3148 LongTy, // abi_version 3149 IvarOffsets->getType(), // ivar_offsets 3150 Properties->getType(), // properties 3151 IntPtrTy, // strong_pointers 3152 IntPtrTy // weak_pointers 3153 ); 3154 3155 ConstantInitBuilder Builder(CGM); 3156 auto Elements = Builder.beginStruct(ClassTy); 3157 3158 // Fill in the structure 3159 3160 // isa 3161 Elements.add(MetaClass); 3162 // super_class 3163 Elements.add(SuperClass); 3164 // name 3165 Elements.add(MakeConstantString(Name, ".class_name")); 3166 // version 3167 Elements.addInt(LongTy, 0); 3168 // info 3169 Elements.addInt(LongTy, info); 3170 // instance_size 3171 if (isMeta) { 3172 const llvm::DataLayout &DL = TheModule.getDataLayout(); 3173 Elements.addInt(LongTy, DL.getTypeSizeInBits(ClassTy) / 3174 CGM.getContext().getCharWidth()); 3175 } else 3176 Elements.add(InstanceSize); 3177 // ivars 3178 Elements.add(IVars); 3179 // methods 3180 Elements.add(Methods); 3181 // These are all filled in by the runtime, so we pretend 3182 // dtable 3183 Elements.add(NULLPtr); 3184 // subclass_list 3185 Elements.add(NULLPtr); 3186 // sibling_class 3187 Elements.add(NULLPtr); 3188 // protocols 3189 Elements.add(Protocols); 3190 // gc_object_type 3191 Elements.add(NULLPtr); 3192 // abi_version 3193 Elements.addInt(LongTy, ClassABIVersion); 3194 // ivar_offsets 3195 Elements.add(IvarOffsets); 3196 // properties 3197 Elements.add(Properties); 3198 // strong_pointers 3199 Elements.add(StrongIvarBitmap); 3200 // weak_pointers 3201 Elements.add(WeakIvarBitmap); 3202 // Create an instance of the structure 3203 // This is now an externally visible symbol, so that we can speed up class 3204 // messages in the next ABI. We may already have some weak references to 3205 // this, so check and fix them properly. 3206 std::string ClassSym((isMeta ? "_OBJC_METACLASS_": "_OBJC_CLASS_") + 3207 std::string(Name)); 3208 llvm::GlobalVariable *ClassRef = TheModule.getNamedGlobal(ClassSym); 3209 llvm::Constant *Class = 3210 Elements.finishAndCreateGlobal(ClassSym, CGM.getPointerAlign(), false, 3211 llvm::GlobalValue::ExternalLinkage); 3212 if (ClassRef) { 3213 ClassRef->replaceAllUsesWith(Class); 3214 ClassRef->removeFromParent(); 3215 Class->setName(ClassSym); 3216 } 3217 return Class; 3218 } 3219 3220 llvm::Constant *CGObjCGNU:: 3221 GenerateProtocolMethodList(ArrayRef<const ObjCMethodDecl*> Methods) { 3222 // Get the method structure type. 3223 llvm::StructType *ObjCMethodDescTy = 3224 llvm::StructType::get(CGM.getLLVMContext(), { PtrToInt8Ty, PtrToInt8Ty }); 3225 ASTContext &Context = CGM.getContext(); 3226 ConstantInitBuilder Builder(CGM); 3227 auto MethodList = Builder.beginStruct(); 3228 MethodList.addInt(IntTy, Methods.size()); 3229 auto MethodArray = MethodList.beginArray(ObjCMethodDescTy); 3230 for (auto *M : Methods) { 3231 auto Method = MethodArray.beginStruct(ObjCMethodDescTy); 3232 Method.add(MakeConstantString(M->getSelector().getAsString())); 3233 Method.add(MakeConstantString(Context.getObjCEncodingForMethodDecl(M))); 3234 Method.finishAndAddTo(MethodArray); 3235 } 3236 MethodArray.finishAndAddTo(MethodList); 3237 return MethodList.finishAndCreateGlobal(".objc_method_list", 3238 CGM.getPointerAlign()); 3239 } 3240 3241 // Create the protocol list structure used in classes, categories and so on 3242 llvm::Constant * 3243 CGObjCGNU::GenerateProtocolList(ArrayRef<std::string> Protocols) { 3244 3245 ConstantInitBuilder Builder(CGM); 3246 auto ProtocolList = Builder.beginStruct(); 3247 ProtocolList.add(NULLPtr); 3248 ProtocolList.addInt(LongTy, Protocols.size()); 3249 3250 auto Elements = ProtocolList.beginArray(PtrToInt8Ty); 3251 for (const std::string *iter = Protocols.begin(), *endIter = Protocols.end(); 3252 iter != endIter ; iter++) { 3253 llvm::Constant *protocol = nullptr; 3254 llvm::StringMap<llvm::Constant*>::iterator value = 3255 ExistingProtocols.find(*iter); 3256 if (value == ExistingProtocols.end()) { 3257 protocol = GenerateEmptyProtocol(*iter); 3258 } else { 3259 protocol = value->getValue(); 3260 } 3261 Elements.add(protocol); 3262 } 3263 Elements.finishAndAddTo(ProtocolList); 3264 return ProtocolList.finishAndCreateGlobal(".objc_protocol_list", 3265 CGM.getPointerAlign()); 3266 } 3267 3268 llvm::Value *CGObjCGNU::GenerateProtocolRef(CodeGenFunction &CGF, 3269 const ObjCProtocolDecl *PD) { 3270 auto protocol = GenerateProtocolRef(PD); 3271 llvm::Type *T = 3272 CGM.getTypes().ConvertType(CGM.getContext().getObjCProtoType()); 3273 return CGF.Builder.CreateBitCast(protocol, llvm::PointerType::getUnqual(T)); 3274 } 3275 3276 llvm::Constant *CGObjCGNU::GenerateProtocolRef(const ObjCProtocolDecl *PD) { 3277 llvm::Constant *&protocol = ExistingProtocols[PD->getNameAsString()]; 3278 if (!protocol) 3279 GenerateProtocol(PD); 3280 assert(protocol && "Unknown protocol"); 3281 return protocol; 3282 } 3283 3284 llvm::Constant * 3285 CGObjCGNU::GenerateEmptyProtocol(StringRef ProtocolName) { 3286 llvm::Constant *ProtocolList = GenerateProtocolList({}); 3287 llvm::Constant *MethodList = GenerateProtocolMethodList({}); 3288 // Protocols are objects containing lists of the methods implemented and 3289 // protocols adopted. 3290 ConstantInitBuilder Builder(CGM); 3291 auto Elements = Builder.beginStruct(); 3292 3293 // The isa pointer must be set to a magic number so the runtime knows it's 3294 // the correct layout. 3295 Elements.add(llvm::ConstantExpr::getIntToPtr( 3296 llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy)); 3297 3298 Elements.add(MakeConstantString(ProtocolName, ".objc_protocol_name")); 3299 Elements.add(ProtocolList); /* .protocol_list */ 3300 Elements.add(MethodList); /* .instance_methods */ 3301 Elements.add(MethodList); /* .class_methods */ 3302 Elements.add(MethodList); /* .optional_instance_methods */ 3303 Elements.add(MethodList); /* .optional_class_methods */ 3304 Elements.add(NULLPtr); /* .properties */ 3305 Elements.add(NULLPtr); /* .optional_properties */ 3306 return Elements.finishAndCreateGlobal(SymbolForProtocol(ProtocolName), 3307 CGM.getPointerAlign()); 3308 } 3309 3310 void CGObjCGNU::GenerateProtocol(const ObjCProtocolDecl *PD) { 3311 if (PD->isNonRuntimeProtocol()) 3312 return; 3313 3314 std::string ProtocolName = PD->getNameAsString(); 3315 3316 // Use the protocol definition, if there is one. 3317 if (const ObjCProtocolDecl *Def = PD->getDefinition()) 3318 PD = Def; 3319 3320 SmallVector<std::string, 16> Protocols; 3321 for (const auto *PI : PD->protocols()) 3322 Protocols.push_back(PI->getNameAsString()); 3323 SmallVector<const ObjCMethodDecl*, 16> InstanceMethods; 3324 SmallVector<const ObjCMethodDecl*, 16> OptionalInstanceMethods; 3325 for (const auto *I : PD->instance_methods()) 3326 if (I->isOptional()) 3327 OptionalInstanceMethods.push_back(I); 3328 else 3329 InstanceMethods.push_back(I); 3330 // Collect information about class methods: 3331 SmallVector<const ObjCMethodDecl*, 16> ClassMethods; 3332 SmallVector<const ObjCMethodDecl*, 16> OptionalClassMethods; 3333 for (const auto *I : PD->class_methods()) 3334 if (I->isOptional()) 3335 OptionalClassMethods.push_back(I); 3336 else 3337 ClassMethods.push_back(I); 3338 3339 llvm::Constant *ProtocolList = GenerateProtocolList(Protocols); 3340 llvm::Constant *InstanceMethodList = 3341 GenerateProtocolMethodList(InstanceMethods); 3342 llvm::Constant *ClassMethodList = 3343 GenerateProtocolMethodList(ClassMethods); 3344 llvm::Constant *OptionalInstanceMethodList = 3345 GenerateProtocolMethodList(OptionalInstanceMethods); 3346 llvm::Constant *OptionalClassMethodList = 3347 GenerateProtocolMethodList(OptionalClassMethods); 3348 3349 // Property metadata: name, attributes, isSynthesized, setter name, setter 3350 // types, getter name, getter types. 3351 // The isSynthesized value is always set to 0 in a protocol. It exists to 3352 // simplify the runtime library by allowing it to use the same data 3353 // structures for protocol metadata everywhere. 3354 3355 llvm::Constant *PropertyList = 3356 GeneratePropertyList(nullptr, PD, false, false); 3357 llvm::Constant *OptionalPropertyList = 3358 GeneratePropertyList(nullptr, PD, false, true); 3359 3360 // Protocols are objects containing lists of the methods implemented and 3361 // protocols adopted. 3362 // The isa pointer must be set to a magic number so the runtime knows it's 3363 // the correct layout. 3364 ConstantInitBuilder Builder(CGM); 3365 auto Elements = Builder.beginStruct(); 3366 Elements.add( 3367 llvm::ConstantExpr::getIntToPtr( 3368 llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy)); 3369 Elements.add(MakeConstantString(ProtocolName)); 3370 Elements.add(ProtocolList); 3371 Elements.add(InstanceMethodList); 3372 Elements.add(ClassMethodList); 3373 Elements.add(OptionalInstanceMethodList); 3374 Elements.add(OptionalClassMethodList); 3375 Elements.add(PropertyList); 3376 Elements.add(OptionalPropertyList); 3377 ExistingProtocols[ProtocolName] = 3378 Elements.finishAndCreateGlobal(".objc_protocol", CGM.getPointerAlign()); 3379 } 3380 void CGObjCGNU::GenerateProtocolHolderCategory() { 3381 // Collect information about instance methods 3382 3383 ConstantInitBuilder Builder(CGM); 3384 auto Elements = Builder.beginStruct(); 3385 3386 const std::string ClassName = "__ObjC_Protocol_Holder_Ugly_Hack"; 3387 const std::string CategoryName = "AnotherHack"; 3388 Elements.add(MakeConstantString(CategoryName)); 3389 Elements.add(MakeConstantString(ClassName)); 3390 // Instance method list 3391 Elements.add(GenerateMethodList(ClassName, CategoryName, {}, false)); 3392 // Class method list 3393 Elements.add(GenerateMethodList(ClassName, CategoryName, {}, true)); 3394 3395 // Protocol list 3396 ConstantInitBuilder ProtocolListBuilder(CGM); 3397 auto ProtocolList = ProtocolListBuilder.beginStruct(); 3398 ProtocolList.add(NULLPtr); 3399 ProtocolList.addInt(LongTy, ExistingProtocols.size()); 3400 auto ProtocolElements = ProtocolList.beginArray(PtrTy); 3401 for (auto iter = ExistingProtocols.begin(), endIter = ExistingProtocols.end(); 3402 iter != endIter ; iter++) { 3403 ProtocolElements.add(iter->getValue()); 3404 } 3405 ProtocolElements.finishAndAddTo(ProtocolList); 3406 Elements.add(ProtocolList.finishAndCreateGlobal(".objc_protocol_list", 3407 CGM.getPointerAlign())); 3408 Categories.push_back( 3409 Elements.finishAndCreateGlobal("", CGM.getPointerAlign())); 3410 } 3411 3412 /// Libobjc2 uses a bitfield representation where small(ish) bitfields are 3413 /// stored in a 64-bit value with the low bit set to 1 and the remaining 63 3414 /// bits set to their values, LSB first, while larger ones are stored in a 3415 /// structure of this / form: 3416 /// 3417 /// struct { int32_t length; int32_t values[length]; }; 3418 /// 3419 /// The values in the array are stored in host-endian format, with the least 3420 /// significant bit being assumed to come first in the bitfield. Therefore, a 3421 /// bitfield with the 64th bit set will be (int64_t)&{ 2, [0, 1<<31] }, while a 3422 /// bitfield / with the 63rd bit set will be 1<<64. 3423 llvm::Constant *CGObjCGNU::MakeBitField(ArrayRef<bool> bits) { 3424 int bitCount = bits.size(); 3425 int ptrBits = CGM.getDataLayout().getPointerSizeInBits(); 3426 if (bitCount < ptrBits) { 3427 uint64_t val = 1; 3428 for (int i=0 ; i<bitCount ; ++i) { 3429 if (bits[i]) val |= 1ULL<<(i+1); 3430 } 3431 return llvm::ConstantInt::get(IntPtrTy, val); 3432 } 3433 SmallVector<llvm::Constant *, 8> values; 3434 int v=0; 3435 while (v < bitCount) { 3436 int32_t word = 0; 3437 for (int i=0 ; (i<32) && (v<bitCount) ; ++i) { 3438 if (bits[v]) word |= 1<<i; 3439 v++; 3440 } 3441 values.push_back(llvm::ConstantInt::get(Int32Ty, word)); 3442 } 3443 3444 ConstantInitBuilder builder(CGM); 3445 auto fields = builder.beginStruct(); 3446 fields.addInt(Int32Ty, values.size()); 3447 auto array = fields.beginArray(); 3448 for (auto *v : values) array.add(v); 3449 array.finishAndAddTo(fields); 3450 3451 llvm::Constant *GS = 3452 fields.finishAndCreateGlobal("", CharUnits::fromQuantity(4)); 3453 llvm::Constant *ptr = llvm::ConstantExpr::getPtrToInt(GS, IntPtrTy); 3454 return ptr; 3455 } 3456 3457 llvm::Constant *CGObjCGNU::GenerateCategoryProtocolList(const 3458 ObjCCategoryDecl *OCD) { 3459 const auto &RefPro = OCD->getReferencedProtocols(); 3460 const auto RuntimeProtos = 3461 GetRuntimeProtocolList(RefPro.begin(), RefPro.end()); 3462 SmallVector<std::string, 16> Protocols; 3463 for (const auto *PD : RuntimeProtos) 3464 Protocols.push_back(PD->getNameAsString()); 3465 return GenerateProtocolList(Protocols); 3466 } 3467 3468 void CGObjCGNU::GenerateCategory(const ObjCCategoryImplDecl *OCD) { 3469 const ObjCInterfaceDecl *Class = OCD->getClassInterface(); 3470 std::string ClassName = Class->getNameAsString(); 3471 std::string CategoryName = OCD->getNameAsString(); 3472 3473 // Collect the names of referenced protocols 3474 const ObjCCategoryDecl *CatDecl = OCD->getCategoryDecl(); 3475 3476 ConstantInitBuilder Builder(CGM); 3477 auto Elements = Builder.beginStruct(); 3478 Elements.add(MakeConstantString(CategoryName)); 3479 Elements.add(MakeConstantString(ClassName)); 3480 // Instance method list 3481 SmallVector<ObjCMethodDecl*, 16> InstanceMethods; 3482 InstanceMethods.insert(InstanceMethods.begin(), OCD->instmeth_begin(), 3483 OCD->instmeth_end()); 3484 Elements.add( 3485 GenerateMethodList(ClassName, CategoryName, InstanceMethods, false)); 3486 3487 // Class method list 3488 3489 SmallVector<ObjCMethodDecl*, 16> ClassMethods; 3490 ClassMethods.insert(ClassMethods.begin(), OCD->classmeth_begin(), 3491 OCD->classmeth_end()); 3492 Elements.add(GenerateMethodList(ClassName, CategoryName, ClassMethods, true)); 3493 3494 // Protocol list 3495 Elements.add(GenerateCategoryProtocolList(CatDecl)); 3496 if (isRuntime(ObjCRuntime::GNUstep, 2)) { 3497 const ObjCCategoryDecl *Category = 3498 Class->FindCategoryDeclaration(OCD->getIdentifier()); 3499 if (Category) { 3500 // Instance properties 3501 Elements.add(GeneratePropertyList(OCD, Category, false)); 3502 // Class properties 3503 Elements.add(GeneratePropertyList(OCD, Category, true)); 3504 } else { 3505 Elements.addNullPointer(PtrTy); 3506 Elements.addNullPointer(PtrTy); 3507 } 3508 } 3509 3510 Categories.push_back(Elements.finishAndCreateGlobal( 3511 std::string(".objc_category_") + ClassName + CategoryName, 3512 CGM.getPointerAlign())); 3513 } 3514 3515 llvm::Constant *CGObjCGNU::GeneratePropertyList(const Decl *Container, 3516 const ObjCContainerDecl *OCD, 3517 bool isClassProperty, 3518 bool protocolOptionalProperties) { 3519 3520 SmallVector<const ObjCPropertyDecl *, 16> Properties; 3521 llvm::SmallPtrSet<const IdentifierInfo*, 16> PropertySet; 3522 bool isProtocol = isa<ObjCProtocolDecl>(OCD); 3523 ASTContext &Context = CGM.getContext(); 3524 3525 std::function<void(const ObjCProtocolDecl *Proto)> collectProtocolProperties 3526 = [&](const ObjCProtocolDecl *Proto) { 3527 for (const auto *P : Proto->protocols()) 3528 collectProtocolProperties(P); 3529 for (const auto *PD : Proto->properties()) { 3530 if (isClassProperty != PD->isClassProperty()) 3531 continue; 3532 // Skip any properties that are declared in protocols that this class 3533 // conforms to but are not actually implemented by this class. 3534 if (!isProtocol && !Context.getObjCPropertyImplDeclForPropertyDecl(PD, Container)) 3535 continue; 3536 if (!PropertySet.insert(PD->getIdentifier()).second) 3537 continue; 3538 Properties.push_back(PD); 3539 } 3540 }; 3541 3542 if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD)) 3543 for (const ObjCCategoryDecl *ClassExt : OID->known_extensions()) 3544 for (auto *PD : ClassExt->properties()) { 3545 if (isClassProperty != PD->isClassProperty()) 3546 continue; 3547 PropertySet.insert(PD->getIdentifier()); 3548 Properties.push_back(PD); 3549 } 3550 3551 for (const auto *PD : OCD->properties()) { 3552 if (isClassProperty != PD->isClassProperty()) 3553 continue; 3554 // If we're generating a list for a protocol, skip optional / required ones 3555 // when generating the other list. 3556 if (isProtocol && (protocolOptionalProperties != PD->isOptional())) 3557 continue; 3558 // Don't emit duplicate metadata for properties that were already in a 3559 // class extension. 3560 if (!PropertySet.insert(PD->getIdentifier()).second) 3561 continue; 3562 3563 Properties.push_back(PD); 3564 } 3565 3566 if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD)) 3567 for (const auto *P : OID->all_referenced_protocols()) 3568 collectProtocolProperties(P); 3569 else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(OCD)) 3570 for (const auto *P : CD->protocols()) 3571 collectProtocolProperties(P); 3572 3573 auto numProperties = Properties.size(); 3574 3575 if (numProperties == 0) 3576 return NULLPtr; 3577 3578 ConstantInitBuilder builder(CGM); 3579 auto propertyList = builder.beginStruct(); 3580 auto properties = PushPropertyListHeader(propertyList, numProperties); 3581 3582 // Add all of the property methods need adding to the method list and to the 3583 // property metadata list. 3584 for (auto *property : Properties) { 3585 bool isSynthesized = false; 3586 bool isDynamic = false; 3587 if (!isProtocol) { 3588 auto *propertyImpl = Context.getObjCPropertyImplDeclForPropertyDecl(property, Container); 3589 if (propertyImpl) { 3590 isSynthesized = (propertyImpl->getPropertyImplementation() == 3591 ObjCPropertyImplDecl::Synthesize); 3592 isDynamic = (propertyImpl->getPropertyImplementation() == 3593 ObjCPropertyImplDecl::Dynamic); 3594 } 3595 } 3596 PushProperty(properties, property, Container, isSynthesized, isDynamic); 3597 } 3598 properties.finishAndAddTo(propertyList); 3599 3600 return propertyList.finishAndCreateGlobal(".objc_property_list", 3601 CGM.getPointerAlign()); 3602 } 3603 3604 void CGObjCGNU::RegisterAlias(const ObjCCompatibleAliasDecl *OAD) { 3605 // Get the class declaration for which the alias is specified. 3606 ObjCInterfaceDecl *ClassDecl = 3607 const_cast<ObjCInterfaceDecl *>(OAD->getClassInterface()); 3608 ClassAliases.emplace_back(ClassDecl->getNameAsString(), 3609 OAD->getNameAsString()); 3610 } 3611 3612 void CGObjCGNU::GenerateClass(const ObjCImplementationDecl *OID) { 3613 ASTContext &Context = CGM.getContext(); 3614 3615 // Get the superclass name. 3616 const ObjCInterfaceDecl * SuperClassDecl = 3617 OID->getClassInterface()->getSuperClass(); 3618 std::string SuperClassName; 3619 if (SuperClassDecl) { 3620 SuperClassName = SuperClassDecl->getNameAsString(); 3621 EmitClassRef(SuperClassName); 3622 } 3623 3624 // Get the class name 3625 ObjCInterfaceDecl *ClassDecl = 3626 const_cast<ObjCInterfaceDecl *>(OID->getClassInterface()); 3627 std::string ClassName = ClassDecl->getNameAsString(); 3628 3629 // Emit the symbol that is used to generate linker errors if this class is 3630 // referenced in other modules but not declared. 3631 std::string classSymbolName = "__objc_class_name_" + ClassName; 3632 if (auto *symbol = TheModule.getGlobalVariable(classSymbolName)) { 3633 symbol->setInitializer(llvm::ConstantInt::get(LongTy, 0)); 3634 } else { 3635 new llvm::GlobalVariable(TheModule, LongTy, false, 3636 llvm::GlobalValue::ExternalLinkage, 3637 llvm::ConstantInt::get(LongTy, 0), 3638 classSymbolName); 3639 } 3640 3641 // Get the size of instances. 3642 int instanceSize = 3643 Context.getASTObjCImplementationLayout(OID).getSize().getQuantity(); 3644 3645 // Collect information about instance variables. 3646 SmallVector<llvm::Constant*, 16> IvarNames; 3647 SmallVector<llvm::Constant*, 16> IvarTypes; 3648 SmallVector<llvm::Constant*, 16> IvarOffsets; 3649 SmallVector<llvm::Constant*, 16> IvarAligns; 3650 SmallVector<Qualifiers::ObjCLifetime, 16> IvarOwnership; 3651 3652 ConstantInitBuilder IvarOffsetBuilder(CGM); 3653 auto IvarOffsetValues = IvarOffsetBuilder.beginArray(PtrToIntTy); 3654 SmallVector<bool, 16> WeakIvars; 3655 SmallVector<bool, 16> StrongIvars; 3656 3657 int superInstanceSize = !SuperClassDecl ? 0 : 3658 Context.getASTObjCInterfaceLayout(SuperClassDecl).getSize().getQuantity(); 3659 // For non-fragile ivars, set the instance size to 0 - {the size of just this 3660 // class}. The runtime will then set this to the correct value on load. 3661 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) { 3662 instanceSize = 0 - (instanceSize - superInstanceSize); 3663 } 3664 3665 for (const ObjCIvarDecl *IVD = ClassDecl->all_declared_ivar_begin(); IVD; 3666 IVD = IVD->getNextIvar()) { 3667 // Store the name 3668 IvarNames.push_back(MakeConstantString(IVD->getNameAsString())); 3669 // Get the type encoding for this ivar 3670 std::string TypeStr; 3671 Context.getObjCEncodingForType(IVD->getType(), TypeStr, IVD); 3672 IvarTypes.push_back(MakeConstantString(TypeStr)); 3673 IvarAligns.push_back(llvm::ConstantInt::get(IntTy, 3674 Context.getTypeSize(IVD->getType()))); 3675 // Get the offset 3676 uint64_t BaseOffset = ComputeIvarBaseOffset(CGM, OID, IVD); 3677 uint64_t Offset = BaseOffset; 3678 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) { 3679 Offset = BaseOffset - superInstanceSize; 3680 } 3681 llvm::Constant *OffsetValue = llvm::ConstantInt::get(IntTy, Offset); 3682 // Create the direct offset value 3683 std::string OffsetName = "__objc_ivar_offset_value_" + ClassName +"." + 3684 IVD->getNameAsString(); 3685 3686 llvm::GlobalVariable *OffsetVar = TheModule.getGlobalVariable(OffsetName); 3687 if (OffsetVar) { 3688 OffsetVar->setInitializer(OffsetValue); 3689 // If this is the real definition, change its linkage type so that 3690 // different modules will use this one, rather than their private 3691 // copy. 3692 OffsetVar->setLinkage(llvm::GlobalValue::ExternalLinkage); 3693 } else 3694 OffsetVar = new llvm::GlobalVariable(TheModule, Int32Ty, 3695 false, llvm::GlobalValue::ExternalLinkage, 3696 OffsetValue, OffsetName); 3697 IvarOffsets.push_back(OffsetValue); 3698 IvarOffsetValues.add(OffsetVar); 3699 Qualifiers::ObjCLifetime lt = IVD->getType().getQualifiers().getObjCLifetime(); 3700 IvarOwnership.push_back(lt); 3701 switch (lt) { 3702 case Qualifiers::OCL_Strong: 3703 StrongIvars.push_back(true); 3704 WeakIvars.push_back(false); 3705 break; 3706 case Qualifiers::OCL_Weak: 3707 StrongIvars.push_back(false); 3708 WeakIvars.push_back(true); 3709 break; 3710 default: 3711 StrongIvars.push_back(false); 3712 WeakIvars.push_back(false); 3713 } 3714 } 3715 llvm::Constant *StrongIvarBitmap = MakeBitField(StrongIvars); 3716 llvm::Constant *WeakIvarBitmap = MakeBitField(WeakIvars); 3717 llvm::GlobalVariable *IvarOffsetArray = 3718 IvarOffsetValues.finishAndCreateGlobal(".ivar.offsets", 3719 CGM.getPointerAlign()); 3720 3721 // Collect information about instance methods 3722 SmallVector<const ObjCMethodDecl*, 16> InstanceMethods; 3723 InstanceMethods.insert(InstanceMethods.begin(), OID->instmeth_begin(), 3724 OID->instmeth_end()); 3725 3726 SmallVector<const ObjCMethodDecl*, 16> ClassMethods; 3727 ClassMethods.insert(ClassMethods.begin(), OID->classmeth_begin(), 3728 OID->classmeth_end()); 3729 3730 llvm::Constant *Properties = GeneratePropertyList(OID, ClassDecl); 3731 3732 // Collect the names of referenced protocols 3733 auto RefProtocols = ClassDecl->protocols(); 3734 auto RuntimeProtocols = 3735 GetRuntimeProtocolList(RefProtocols.begin(), RefProtocols.end()); 3736 SmallVector<std::string, 16> Protocols; 3737 for (const auto *I : RuntimeProtocols) 3738 Protocols.push_back(I->getNameAsString()); 3739 3740 // Get the superclass pointer. 3741 llvm::Constant *SuperClass; 3742 if (!SuperClassName.empty()) { 3743 SuperClass = MakeConstantString(SuperClassName, ".super_class_name"); 3744 } else { 3745 SuperClass = llvm::ConstantPointerNull::get(PtrToInt8Ty); 3746 } 3747 // Empty vector used to construct empty method lists 3748 SmallVector<llvm::Constant*, 1> empty; 3749 // Generate the method and instance variable lists 3750 llvm::Constant *MethodList = GenerateMethodList(ClassName, "", 3751 InstanceMethods, false); 3752 llvm::Constant *ClassMethodList = GenerateMethodList(ClassName, "", 3753 ClassMethods, true); 3754 llvm::Constant *IvarList = GenerateIvarList(IvarNames, IvarTypes, 3755 IvarOffsets, IvarAligns, IvarOwnership); 3756 // Irrespective of whether we are compiling for a fragile or non-fragile ABI, 3757 // we emit a symbol containing the offset for each ivar in the class. This 3758 // allows code compiled for the non-Fragile ABI to inherit from code compiled 3759 // for the legacy ABI, without causing problems. The converse is also 3760 // possible, but causes all ivar accesses to be fragile. 3761 3762 // Offset pointer for getting at the correct field in the ivar list when 3763 // setting up the alias. These are: The base address for the global, the 3764 // ivar array (second field), the ivar in this list (set for each ivar), and 3765 // the offset (third field in ivar structure) 3766 llvm::Type *IndexTy = Int32Ty; 3767 llvm::Constant *offsetPointerIndexes[] = {Zeros[0], 3768 llvm::ConstantInt::get(IndexTy, ClassABIVersion > 1 ? 2 : 1), nullptr, 3769 llvm::ConstantInt::get(IndexTy, ClassABIVersion > 1 ? 3 : 2) }; 3770 3771 unsigned ivarIndex = 0; 3772 for (const ObjCIvarDecl *IVD = ClassDecl->all_declared_ivar_begin(); IVD; 3773 IVD = IVD->getNextIvar()) { 3774 const std::string Name = GetIVarOffsetVariableName(ClassDecl, IVD); 3775 offsetPointerIndexes[2] = llvm::ConstantInt::get(IndexTy, ivarIndex); 3776 // Get the correct ivar field 3777 llvm::Constant *offsetValue = llvm::ConstantExpr::getGetElementPtr( 3778 cast<llvm::GlobalVariable>(IvarList)->getValueType(), IvarList, 3779 offsetPointerIndexes); 3780 // Get the existing variable, if one exists. 3781 llvm::GlobalVariable *offset = TheModule.getNamedGlobal(Name); 3782 if (offset) { 3783 offset->setInitializer(offsetValue); 3784 // If this is the real definition, change its linkage type so that 3785 // different modules will use this one, rather than their private 3786 // copy. 3787 offset->setLinkage(llvm::GlobalValue::ExternalLinkage); 3788 } else 3789 // Add a new alias if there isn't one already. 3790 new llvm::GlobalVariable(TheModule, offsetValue->getType(), 3791 false, llvm::GlobalValue::ExternalLinkage, offsetValue, Name); 3792 ++ivarIndex; 3793 } 3794 llvm::Constant *ZeroPtr = llvm::ConstantInt::get(IntPtrTy, 0); 3795 3796 //Generate metaclass for class methods 3797 llvm::Constant *MetaClassStruct = GenerateClassStructure( 3798 NULLPtr, NULLPtr, 0x12L, ClassName.c_str(), nullptr, Zeros[0], 3799 NULLPtr, ClassMethodList, NULLPtr, NULLPtr, 3800 GeneratePropertyList(OID, ClassDecl, true), ZeroPtr, ZeroPtr, true); 3801 CGM.setGVProperties(cast<llvm::GlobalValue>(MetaClassStruct), 3802 OID->getClassInterface()); 3803 3804 // Generate the class structure 3805 llvm::Constant *ClassStruct = GenerateClassStructure( 3806 MetaClassStruct, SuperClass, 0x11L, ClassName.c_str(), nullptr, 3807 llvm::ConstantInt::get(LongTy, instanceSize), IvarList, MethodList, 3808 GenerateProtocolList(Protocols), IvarOffsetArray, Properties, 3809 StrongIvarBitmap, WeakIvarBitmap); 3810 CGM.setGVProperties(cast<llvm::GlobalValue>(ClassStruct), 3811 OID->getClassInterface()); 3812 3813 // Resolve the class aliases, if they exist. 3814 if (ClassPtrAlias) { 3815 ClassPtrAlias->replaceAllUsesWith(ClassStruct); 3816 ClassPtrAlias->eraseFromParent(); 3817 ClassPtrAlias = nullptr; 3818 } 3819 if (MetaClassPtrAlias) { 3820 MetaClassPtrAlias->replaceAllUsesWith(MetaClassStruct); 3821 MetaClassPtrAlias->eraseFromParent(); 3822 MetaClassPtrAlias = nullptr; 3823 } 3824 3825 // Add class structure to list to be added to the symtab later 3826 Classes.push_back(ClassStruct); 3827 } 3828 3829 llvm::Function *CGObjCGNU::ModuleInitFunction() { 3830 // Only emit an ObjC load function if no Objective-C stuff has been called 3831 if (Classes.empty() && Categories.empty() && ConstantStrings.empty() && 3832 ExistingProtocols.empty() && SelectorTable.empty()) 3833 return nullptr; 3834 3835 // Add all referenced protocols to a category. 3836 GenerateProtocolHolderCategory(); 3837 3838 llvm::StructType *selStructTy = dyn_cast<llvm::StructType>(SelectorElemTy); 3839 if (!selStructTy) { 3840 selStructTy = llvm::StructType::get(CGM.getLLVMContext(), 3841 { PtrToInt8Ty, PtrToInt8Ty }); 3842 } 3843 3844 // Generate statics list: 3845 llvm::Constant *statics = NULLPtr; 3846 if (!ConstantStrings.empty()) { 3847 llvm::GlobalVariable *fileStatics = [&] { 3848 ConstantInitBuilder builder(CGM); 3849 auto staticsStruct = builder.beginStruct(); 3850 3851 StringRef stringClass = CGM.getLangOpts().ObjCConstantStringClass; 3852 if (stringClass.empty()) stringClass = "NXConstantString"; 3853 staticsStruct.add(MakeConstantString(stringClass, 3854 ".objc_static_class_name")); 3855 3856 auto array = staticsStruct.beginArray(); 3857 array.addAll(ConstantStrings); 3858 array.add(NULLPtr); 3859 array.finishAndAddTo(staticsStruct); 3860 3861 return staticsStruct.finishAndCreateGlobal(".objc_statics", 3862 CGM.getPointerAlign()); 3863 }(); 3864 3865 ConstantInitBuilder builder(CGM); 3866 auto allStaticsArray = builder.beginArray(fileStatics->getType()); 3867 allStaticsArray.add(fileStatics); 3868 allStaticsArray.addNullPointer(fileStatics->getType()); 3869 3870 statics = allStaticsArray.finishAndCreateGlobal(".objc_statics_ptr", 3871 CGM.getPointerAlign()); 3872 } 3873 3874 // Array of classes, categories, and constant objects. 3875 3876 SmallVector<llvm::GlobalAlias*, 16> selectorAliases; 3877 unsigned selectorCount; 3878 3879 // Pointer to an array of selectors used in this module. 3880 llvm::GlobalVariable *selectorList = [&] { 3881 ConstantInitBuilder builder(CGM); 3882 auto selectors = builder.beginArray(selStructTy); 3883 auto &table = SelectorTable; // MSVC workaround 3884 std::vector<Selector> allSelectors; 3885 for (auto &entry : table) 3886 allSelectors.push_back(entry.first); 3887 llvm::sort(allSelectors); 3888 3889 for (auto &untypedSel : allSelectors) { 3890 std::string selNameStr = untypedSel.getAsString(); 3891 llvm::Constant *selName = ExportUniqueString(selNameStr, ".objc_sel_name"); 3892 3893 for (TypedSelector &sel : table[untypedSel]) { 3894 llvm::Constant *selectorTypeEncoding = NULLPtr; 3895 if (!sel.first.empty()) 3896 selectorTypeEncoding = 3897 MakeConstantString(sel.first, ".objc_sel_types"); 3898 3899 auto selStruct = selectors.beginStruct(selStructTy); 3900 selStruct.add(selName); 3901 selStruct.add(selectorTypeEncoding); 3902 selStruct.finishAndAddTo(selectors); 3903 3904 // Store the selector alias for later replacement 3905 selectorAliases.push_back(sel.second); 3906 } 3907 } 3908 3909 // Remember the number of entries in the selector table. 3910 selectorCount = selectors.size(); 3911 3912 // NULL-terminate the selector list. This should not actually be required, 3913 // because the selector list has a length field. Unfortunately, the GCC 3914 // runtime decides to ignore the length field and expects a NULL terminator, 3915 // and GCC cooperates with this by always setting the length to 0. 3916 auto selStruct = selectors.beginStruct(selStructTy); 3917 selStruct.add(NULLPtr); 3918 selStruct.add(NULLPtr); 3919 selStruct.finishAndAddTo(selectors); 3920 3921 return selectors.finishAndCreateGlobal(".objc_selector_list", 3922 CGM.getPointerAlign()); 3923 }(); 3924 3925 // Now that all of the static selectors exist, create pointers to them. 3926 for (unsigned i = 0; i < selectorCount; ++i) { 3927 llvm::Constant *idxs[] = { 3928 Zeros[0], 3929 llvm::ConstantInt::get(Int32Ty, i) 3930 }; 3931 // FIXME: We're generating redundant loads and stores here! 3932 llvm::Constant *selPtr = llvm::ConstantExpr::getGetElementPtr( 3933 selectorList->getValueType(), selectorList, idxs); 3934 selectorAliases[i]->replaceAllUsesWith(selPtr); 3935 selectorAliases[i]->eraseFromParent(); 3936 } 3937 3938 llvm::GlobalVariable *symtab = [&] { 3939 ConstantInitBuilder builder(CGM); 3940 auto symtab = builder.beginStruct(); 3941 3942 // Number of static selectors 3943 symtab.addInt(LongTy, selectorCount); 3944 3945 symtab.add(selectorList); 3946 3947 // Number of classes defined. 3948 symtab.addInt(CGM.Int16Ty, Classes.size()); 3949 // Number of categories defined 3950 symtab.addInt(CGM.Int16Ty, Categories.size()); 3951 3952 // Create an array of classes, then categories, then static object instances 3953 auto classList = symtab.beginArray(PtrToInt8Ty); 3954 classList.addAll(Classes); 3955 classList.addAll(Categories); 3956 // NULL-terminated list of static object instances (mainly constant strings) 3957 classList.add(statics); 3958 classList.add(NULLPtr); 3959 classList.finishAndAddTo(symtab); 3960 3961 // Construct the symbol table. 3962 return symtab.finishAndCreateGlobal("", CGM.getPointerAlign()); 3963 }(); 3964 3965 // The symbol table is contained in a module which has some version-checking 3966 // constants 3967 llvm::Constant *module = [&] { 3968 llvm::Type *moduleEltTys[] = { 3969 LongTy, LongTy, PtrToInt8Ty, symtab->getType(), IntTy 3970 }; 3971 llvm::StructType *moduleTy = llvm::StructType::get( 3972 CGM.getLLVMContext(), 3973 ArrayRef(moduleEltTys).drop_back(unsigned(RuntimeVersion < 10))); 3974 3975 ConstantInitBuilder builder(CGM); 3976 auto module = builder.beginStruct(moduleTy); 3977 // Runtime version, used for ABI compatibility checking. 3978 module.addInt(LongTy, RuntimeVersion); 3979 // sizeof(ModuleTy) 3980 module.addInt(LongTy, CGM.getDataLayout().getTypeStoreSize(moduleTy)); 3981 3982 // The path to the source file where this module was declared 3983 SourceManager &SM = CGM.getContext().getSourceManager(); 3984 OptionalFileEntryRef mainFile = SM.getFileEntryRefForID(SM.getMainFileID()); 3985 std::string path = 3986 (mainFile->getDir().getName() + "/" + mainFile->getName()).str(); 3987 module.add(MakeConstantString(path, ".objc_source_file_name")); 3988 module.add(symtab); 3989 3990 if (RuntimeVersion >= 10) { 3991 switch (CGM.getLangOpts().getGC()) { 3992 case LangOptions::GCOnly: 3993 module.addInt(IntTy, 2); 3994 break; 3995 case LangOptions::NonGC: 3996 if (CGM.getLangOpts().ObjCAutoRefCount) 3997 module.addInt(IntTy, 1); 3998 else 3999 module.addInt(IntTy, 0); 4000 break; 4001 case LangOptions::HybridGC: 4002 module.addInt(IntTy, 1); 4003 break; 4004 } 4005 } 4006 4007 return module.finishAndCreateGlobal("", CGM.getPointerAlign()); 4008 }(); 4009 4010 // Create the load function calling the runtime entry point with the module 4011 // structure 4012 llvm::Function * LoadFunction = llvm::Function::Create( 4013 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false), 4014 llvm::GlobalValue::InternalLinkage, ".objc_load_function", 4015 &TheModule); 4016 llvm::BasicBlock *EntryBB = 4017 llvm::BasicBlock::Create(VMContext, "entry", LoadFunction); 4018 CGBuilderTy Builder(CGM, VMContext); 4019 Builder.SetInsertPoint(EntryBB); 4020 4021 llvm::FunctionType *FT = 4022 llvm::FunctionType::get(Builder.getVoidTy(), module->getType(), true); 4023 llvm::FunctionCallee Register = 4024 CGM.CreateRuntimeFunction(FT, "__objc_exec_class"); 4025 Builder.CreateCall(Register, module); 4026 4027 if (!ClassAliases.empty()) { 4028 llvm::Type *ArgTypes[2] = {PtrTy, PtrToInt8Ty}; 4029 llvm::FunctionType *RegisterAliasTy = 4030 llvm::FunctionType::get(Builder.getVoidTy(), 4031 ArgTypes, false); 4032 llvm::Function *RegisterAlias = llvm::Function::Create( 4033 RegisterAliasTy, 4034 llvm::GlobalValue::ExternalWeakLinkage, "class_registerAlias_np", 4035 &TheModule); 4036 llvm::BasicBlock *AliasBB = 4037 llvm::BasicBlock::Create(VMContext, "alias", LoadFunction); 4038 llvm::BasicBlock *NoAliasBB = 4039 llvm::BasicBlock::Create(VMContext, "no_alias", LoadFunction); 4040 4041 // Branch based on whether the runtime provided class_registerAlias_np() 4042 llvm::Value *HasRegisterAlias = Builder.CreateICmpNE(RegisterAlias, 4043 llvm::Constant::getNullValue(RegisterAlias->getType())); 4044 Builder.CreateCondBr(HasRegisterAlias, AliasBB, NoAliasBB); 4045 4046 // The true branch (has alias registration function): 4047 Builder.SetInsertPoint(AliasBB); 4048 // Emit alias registration calls: 4049 for (std::vector<ClassAliasPair>::iterator iter = ClassAliases.begin(); 4050 iter != ClassAliases.end(); ++iter) { 4051 llvm::Constant *TheClass = 4052 TheModule.getGlobalVariable("_OBJC_CLASS_" + iter->first, true); 4053 if (TheClass) { 4054 Builder.CreateCall(RegisterAlias, 4055 {TheClass, MakeConstantString(iter->second)}); 4056 } 4057 } 4058 // Jump to end: 4059 Builder.CreateBr(NoAliasBB); 4060 4061 // Missing alias registration function, just return from the function: 4062 Builder.SetInsertPoint(NoAliasBB); 4063 } 4064 Builder.CreateRetVoid(); 4065 4066 return LoadFunction; 4067 } 4068 4069 llvm::Function *CGObjCGNU::GenerateMethod(const ObjCMethodDecl *OMD, 4070 const ObjCContainerDecl *CD) { 4071 CodeGenTypes &Types = CGM.getTypes(); 4072 llvm::FunctionType *MethodTy = 4073 Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD)); 4074 4075 bool isDirect = OMD->isDirectMethod(); 4076 std::string FunctionName = 4077 getSymbolNameForMethod(OMD, /*include category*/ !isDirect); 4078 4079 if (!isDirect) 4080 return llvm::Function::Create(MethodTy, 4081 llvm::GlobalVariable::InternalLinkage, 4082 FunctionName, &TheModule); 4083 4084 auto *COMD = OMD->getCanonicalDecl(); 4085 auto I = DirectMethodDefinitions.find(COMD); 4086 llvm::Function *OldFn = nullptr, *Fn = nullptr; 4087 4088 if (I == DirectMethodDefinitions.end()) { 4089 auto *F = 4090 llvm::Function::Create(MethodTy, llvm::GlobalVariable::ExternalLinkage, 4091 FunctionName, &TheModule); 4092 DirectMethodDefinitions.insert(std::make_pair(COMD, F)); 4093 return F; 4094 } 4095 4096 // Objective-C allows for the declaration and implementation types 4097 // to differ slightly. 4098 // 4099 // If we're being asked for the Function associated for a method 4100 // implementation, a previous value might have been cached 4101 // based on the type of the canonical declaration. 4102 // 4103 // If these do not match, then we'll replace this function with 4104 // a new one that has the proper type below. 4105 if (!OMD->getBody() || COMD->getReturnType() == OMD->getReturnType()) 4106 return I->second; 4107 4108 OldFn = I->second; 4109 Fn = llvm::Function::Create(MethodTy, llvm::GlobalValue::ExternalLinkage, "", 4110 &CGM.getModule()); 4111 Fn->takeName(OldFn); 4112 OldFn->replaceAllUsesWith(Fn); 4113 OldFn->eraseFromParent(); 4114 4115 // Replace the cached function in the map. 4116 I->second = Fn; 4117 return Fn; 4118 } 4119 4120 void CGObjCGNU::GenerateDirectMethodPrologue(CodeGenFunction &CGF, 4121 llvm::Function *Fn, 4122 const ObjCMethodDecl *OMD, 4123 const ObjCContainerDecl *CD) { 4124 // GNU runtime doesn't support direct calls at this time 4125 } 4126 4127 llvm::FunctionCallee CGObjCGNU::GetPropertyGetFunction() { 4128 return GetPropertyFn; 4129 } 4130 4131 llvm::FunctionCallee CGObjCGNU::GetPropertySetFunction() { 4132 return SetPropertyFn; 4133 } 4134 4135 llvm::FunctionCallee CGObjCGNU::GetOptimizedPropertySetFunction(bool atomic, 4136 bool copy) { 4137 return nullptr; 4138 } 4139 4140 llvm::FunctionCallee CGObjCGNU::GetGetStructFunction() { 4141 return GetStructPropertyFn; 4142 } 4143 4144 llvm::FunctionCallee CGObjCGNU::GetSetStructFunction() { 4145 return SetStructPropertyFn; 4146 } 4147 4148 llvm::FunctionCallee CGObjCGNU::GetCppAtomicObjectGetFunction() { 4149 return nullptr; 4150 } 4151 4152 llvm::FunctionCallee CGObjCGNU::GetCppAtomicObjectSetFunction() { 4153 return nullptr; 4154 } 4155 4156 llvm::FunctionCallee CGObjCGNU::EnumerationMutationFunction() { 4157 return EnumerationMutationFn; 4158 } 4159 4160 void CGObjCGNU::EmitSynchronizedStmt(CodeGenFunction &CGF, 4161 const ObjCAtSynchronizedStmt &S) { 4162 EmitAtSynchronizedStmt(CGF, S, SyncEnterFn, SyncExitFn); 4163 } 4164 4165 4166 void CGObjCGNU::EmitTryStmt(CodeGenFunction &CGF, 4167 const ObjCAtTryStmt &S) { 4168 // Unlike the Apple non-fragile runtimes, which also uses 4169 // unwind-based zero cost exceptions, the GNU Objective C runtime's 4170 // EH support isn't a veneer over C++ EH. Instead, exception 4171 // objects are created by objc_exception_throw and destroyed by 4172 // the personality function; this avoids the need for bracketing 4173 // catch handlers with calls to __blah_begin_catch/__blah_end_catch 4174 // (or even _Unwind_DeleteException), but probably doesn't 4175 // interoperate very well with foreign exceptions. 4176 // 4177 // In Objective-C++ mode, we actually emit something equivalent to the C++ 4178 // exception handler. 4179 EmitTryCatchStmt(CGF, S, EnterCatchFn, ExitCatchFn, ExceptionReThrowFn); 4180 } 4181 4182 void CGObjCGNU::EmitThrowStmt(CodeGenFunction &CGF, 4183 const ObjCAtThrowStmt &S, 4184 bool ClearInsertionPoint) { 4185 llvm::Value *ExceptionAsObject; 4186 bool isRethrow = false; 4187 4188 if (const Expr *ThrowExpr = S.getThrowExpr()) { 4189 llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr); 4190 ExceptionAsObject = Exception; 4191 } else { 4192 assert((!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack.back()) && 4193 "Unexpected rethrow outside @catch block."); 4194 ExceptionAsObject = CGF.ObjCEHValueStack.back(); 4195 isRethrow = true; 4196 } 4197 if (isRethrow && (usesSEHExceptions || usesCxxExceptions)) { 4198 // For SEH, ExceptionAsObject may be undef, because the catch handler is 4199 // not passed it for catchalls and so it is not visible to the catch 4200 // funclet. The real thrown object will still be live on the stack at this 4201 // point and will be rethrown. If we are explicitly rethrowing the object 4202 // that was passed into the `@catch` block, then this code path is not 4203 // reached and we will instead call `objc_exception_throw` with an explicit 4204 // argument. 4205 llvm::CallBase *Throw = CGF.EmitRuntimeCallOrInvoke(ExceptionReThrowFn); 4206 Throw->setDoesNotReturn(); 4207 } else { 4208 ExceptionAsObject = CGF.Builder.CreateBitCast(ExceptionAsObject, IdTy); 4209 llvm::CallBase *Throw = 4210 CGF.EmitRuntimeCallOrInvoke(ExceptionThrowFn, ExceptionAsObject); 4211 Throw->setDoesNotReturn(); 4212 } 4213 CGF.Builder.CreateUnreachable(); 4214 if (ClearInsertionPoint) 4215 CGF.Builder.ClearInsertionPoint(); 4216 } 4217 4218 llvm::Value * CGObjCGNU::EmitObjCWeakRead(CodeGenFunction &CGF, 4219 Address AddrWeakObj) { 4220 CGBuilderTy &B = CGF.Builder; 4221 return B.CreateCall( 4222 WeakReadFn, EnforceType(B, AddrWeakObj.emitRawPointer(CGF), PtrToIdTy)); 4223 } 4224 4225 void CGObjCGNU::EmitObjCWeakAssign(CodeGenFunction &CGF, 4226 llvm::Value *src, Address dst) { 4227 CGBuilderTy &B = CGF.Builder; 4228 src = EnforceType(B, src, IdTy); 4229 llvm::Value *dstVal = EnforceType(B, dst.emitRawPointer(CGF), PtrToIdTy); 4230 B.CreateCall(WeakAssignFn, {src, dstVal}); 4231 } 4232 4233 void CGObjCGNU::EmitObjCGlobalAssign(CodeGenFunction &CGF, 4234 llvm::Value *src, Address dst, 4235 bool threadlocal) { 4236 CGBuilderTy &B = CGF.Builder; 4237 src = EnforceType(B, src, IdTy); 4238 llvm::Value *dstVal = EnforceType(B, dst.emitRawPointer(CGF), PtrToIdTy); 4239 // FIXME. Add threadloca assign API 4240 assert(!threadlocal && "EmitObjCGlobalAssign - Threal Local API NYI"); 4241 B.CreateCall(GlobalAssignFn, {src, dstVal}); 4242 } 4243 4244 void CGObjCGNU::EmitObjCIvarAssign(CodeGenFunction &CGF, 4245 llvm::Value *src, Address dst, 4246 llvm::Value *ivarOffset) { 4247 CGBuilderTy &B = CGF.Builder; 4248 src = EnforceType(B, src, IdTy); 4249 llvm::Value *dstVal = EnforceType(B, dst.emitRawPointer(CGF), IdTy); 4250 B.CreateCall(IvarAssignFn, {src, dstVal, ivarOffset}); 4251 } 4252 4253 void CGObjCGNU::EmitObjCStrongCastAssign(CodeGenFunction &CGF, 4254 llvm::Value *src, Address dst) { 4255 CGBuilderTy &B = CGF.Builder; 4256 src = EnforceType(B, src, IdTy); 4257 llvm::Value *dstVal = EnforceType(B, dst.emitRawPointer(CGF), PtrToIdTy); 4258 B.CreateCall(StrongCastAssignFn, {src, dstVal}); 4259 } 4260 4261 void CGObjCGNU::EmitGCMemmoveCollectable(CodeGenFunction &CGF, 4262 Address DestPtr, 4263 Address SrcPtr, 4264 llvm::Value *Size) { 4265 CGBuilderTy &B = CGF.Builder; 4266 llvm::Value *DestPtrVal = EnforceType(B, DestPtr.emitRawPointer(CGF), PtrTy); 4267 llvm::Value *SrcPtrVal = EnforceType(B, SrcPtr.emitRawPointer(CGF), PtrTy); 4268 4269 B.CreateCall(MemMoveFn, {DestPtrVal, SrcPtrVal, Size}); 4270 } 4271 4272 llvm::GlobalVariable *CGObjCGNU::ObjCIvarOffsetVariable( 4273 const ObjCInterfaceDecl *ID, 4274 const ObjCIvarDecl *Ivar) { 4275 const std::string Name = GetIVarOffsetVariableName(ID, Ivar); 4276 // Emit the variable and initialize it with what we think the correct value 4277 // is. This allows code compiled with non-fragile ivars to work correctly 4278 // when linked against code which isn't (most of the time). 4279 llvm::GlobalVariable *IvarOffsetPointer = TheModule.getNamedGlobal(Name); 4280 if (!IvarOffsetPointer) 4281 IvarOffsetPointer = new llvm::GlobalVariable( 4282 TheModule, llvm::PointerType::getUnqual(VMContext), false, 4283 llvm::GlobalValue::ExternalLinkage, nullptr, Name); 4284 return IvarOffsetPointer; 4285 } 4286 4287 LValue CGObjCGNU::EmitObjCValueForIvar(CodeGenFunction &CGF, 4288 QualType ObjectTy, 4289 llvm::Value *BaseValue, 4290 const ObjCIvarDecl *Ivar, 4291 unsigned CVRQualifiers) { 4292 const ObjCInterfaceDecl *ID = 4293 ObjectTy->castAs<ObjCObjectType>()->getInterface(); 4294 return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers, 4295 EmitIvarOffset(CGF, ID, Ivar)); 4296 } 4297 4298 static const ObjCInterfaceDecl *FindIvarInterface(ASTContext &Context, 4299 const ObjCInterfaceDecl *OID, 4300 const ObjCIvarDecl *OIVD) { 4301 for (const ObjCIvarDecl *next = OID->all_declared_ivar_begin(); next; 4302 next = next->getNextIvar()) { 4303 if (OIVD == next) 4304 return OID; 4305 } 4306 4307 // Otherwise check in the super class. 4308 if (const ObjCInterfaceDecl *Super = OID->getSuperClass()) 4309 return FindIvarInterface(Context, Super, OIVD); 4310 4311 return nullptr; 4312 } 4313 4314 llvm::Value *CGObjCGNU::EmitIvarOffset(CodeGenFunction &CGF, 4315 const ObjCInterfaceDecl *Interface, 4316 const ObjCIvarDecl *Ivar) { 4317 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) { 4318 Interface = FindIvarInterface(CGM.getContext(), Interface, Ivar); 4319 4320 // The MSVC linker cannot have a single global defined as LinkOnceAnyLinkage 4321 // and ExternalLinkage, so create a reference to the ivar global and rely on 4322 // the definition being created as part of GenerateClass. 4323 if (RuntimeVersion < 10 || 4324 CGF.CGM.getTarget().getTriple().isKnownWindowsMSVCEnvironment()) 4325 return CGF.Builder.CreateZExtOrBitCast( 4326 CGF.Builder.CreateAlignedLoad( 4327 Int32Ty, 4328 CGF.Builder.CreateAlignedLoad( 4329 llvm::PointerType::getUnqual(VMContext), 4330 ObjCIvarOffsetVariable(Interface, Ivar), 4331 CGF.getPointerAlign(), "ivar"), 4332 CharUnits::fromQuantity(4)), 4333 PtrDiffTy); 4334 std::string name = "__objc_ivar_offset_value_" + 4335 Interface->getNameAsString() +"." + Ivar->getNameAsString(); 4336 CharUnits Align = CGM.getIntAlign(); 4337 llvm::Value *Offset = TheModule.getGlobalVariable(name); 4338 if (!Offset) { 4339 auto GV = new llvm::GlobalVariable(TheModule, IntTy, 4340 false, llvm::GlobalValue::LinkOnceAnyLinkage, 4341 llvm::Constant::getNullValue(IntTy), name); 4342 GV->setAlignment(Align.getAsAlign()); 4343 Offset = GV; 4344 } 4345 Offset = CGF.Builder.CreateAlignedLoad(IntTy, Offset, Align); 4346 if (Offset->getType() != PtrDiffTy) 4347 Offset = CGF.Builder.CreateZExtOrBitCast(Offset, PtrDiffTy); 4348 return Offset; 4349 } 4350 uint64_t Offset = ComputeIvarBaseOffset(CGF.CGM, Interface, Ivar); 4351 return llvm::ConstantInt::get(PtrDiffTy, Offset, /*isSigned*/true); 4352 } 4353 4354 CGObjCRuntime * 4355 clang::CodeGen::CreateGNUObjCRuntime(CodeGenModule &CGM) { 4356 auto Runtime = CGM.getLangOpts().ObjCRuntime; 4357 switch (Runtime.getKind()) { 4358 case ObjCRuntime::GNUstep: 4359 if (Runtime.getVersion() >= VersionTuple(2, 0)) 4360 return new CGObjCGNUstep2(CGM); 4361 return new CGObjCGNUstep(CGM); 4362 4363 case ObjCRuntime::GCC: 4364 return new CGObjCGCC(CGM); 4365 4366 case ObjCRuntime::ObjFW: 4367 return new CGObjCObjFW(CGM); 4368 4369 case ObjCRuntime::FragileMacOSX: 4370 case ObjCRuntime::MacOSX: 4371 case ObjCRuntime::iOS: 4372 case ObjCRuntime::WatchOS: 4373 llvm_unreachable("these runtimes are not GNU runtimes"); 4374 } 4375 llvm_unreachable("bad runtime"); 4376 } 4377