xref: /llvm-project/clang/lib/CodeGen/CGObjC.cpp (revision 55b587506e5dccb436e5405b7236671112b36244)
1 //===---- CGObjC.cpp - Emit LLVM Code for Objective-C ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Objective-C code as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGDebugInfo.h"
14 #include "CGObjCRuntime.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "ConstantEmitter.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/StmtObjC.h"
23 #include "clang/Basic/Diagnostic.h"
24 #include "clang/CodeGen/CGFunctionInfo.h"
25 #include "clang/CodeGen/CodeGenABITypes.h"
26 #include "llvm/Analysis/ObjCARCUtil.h"
27 #include "llvm/BinaryFormat/MachO.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/InlineAsm.h"
31 #include <optional>
32 using namespace clang;
33 using namespace CodeGen;
34 
35 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult;
36 static TryEmitResult
37 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e);
38 static RValue AdjustObjCObjectType(CodeGenFunction &CGF,
39                                    QualType ET,
40                                    RValue Result);
41 
42 /// Given the address of a variable of pointer type, find the correct
43 /// null to store into it.
44 static llvm::Constant *getNullForVariable(Address addr) {
45   llvm::Type *type = addr.getElementType();
46   return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type));
47 }
48 
49 /// Emits an instance of NSConstantString representing the object.
50 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E)
51 {
52   llvm::Constant *C =
53       CGM.getObjCRuntime().GenerateConstantString(E->getString()).getPointer();
54   return C;
55 }
56 
57 /// EmitObjCBoxedExpr - This routine generates code to call
58 /// the appropriate expression boxing method. This will either be
59 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:],
60 /// or [NSValue valueWithBytes:objCType:].
61 ///
62 llvm::Value *
63 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) {
64   // Generate the correct selector for this literal's concrete type.
65   // Get the method.
66   const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod();
67   const Expr *SubExpr = E->getSubExpr();
68 
69   if (E->isExpressibleAsConstantInitializer()) {
70     ConstantEmitter ConstEmitter(CGM);
71     return ConstEmitter.tryEmitAbstract(E, E->getType());
72   }
73 
74   assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method");
75   Selector Sel = BoxingMethod->getSelector();
76 
77   // Generate a reference to the class pointer, which will be the receiver.
78   // Assumes that the method was introduced in the class that should be
79   // messaged (avoids pulling it out of the result type).
80   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
81   const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface();
82   llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl);
83 
84   CallArgList Args;
85   const ParmVarDecl *ArgDecl = *BoxingMethod->param_begin();
86   QualType ArgQT = ArgDecl->getType().getUnqualifiedType();
87 
88   // ObjCBoxedExpr supports boxing of structs and unions
89   // via [NSValue valueWithBytes:objCType:]
90   const QualType ValueType(SubExpr->getType().getCanonicalType());
91   if (ValueType->isObjCBoxableRecordType()) {
92     // Emit CodeGen for first parameter
93     // and cast value to correct type
94     Address Temporary = CreateMemTemp(SubExpr->getType());
95     EmitAnyExprToMem(SubExpr, Temporary, Qualifiers(), /*isInit*/ true);
96     llvm::Value *BitCast = Builder.CreateBitCast(
97         Temporary.emitRawPointer(*this), ConvertType(ArgQT));
98     Args.add(RValue::get(BitCast), ArgQT);
99 
100     // Create char array to store type encoding
101     std::string Str;
102     getContext().getObjCEncodingForType(ValueType, Str);
103     llvm::Constant *GV = CGM.GetAddrOfConstantCString(Str).getPointer();
104 
105     // Cast type encoding to correct type
106     const ParmVarDecl *EncodingDecl = BoxingMethod->parameters()[1];
107     QualType EncodingQT = EncodingDecl->getType().getUnqualifiedType();
108     llvm::Value *Cast = Builder.CreateBitCast(GV, ConvertType(EncodingQT));
109 
110     Args.add(RValue::get(Cast), EncodingQT);
111   } else {
112     Args.add(EmitAnyExpr(SubExpr), ArgQT);
113   }
114 
115   RValue result = Runtime.GenerateMessageSend(
116       *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver,
117       Args, ClassDecl, BoxingMethod);
118   return Builder.CreateBitCast(result.getScalarVal(),
119                                ConvertType(E->getType()));
120 }
121 
122 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E,
123                                     const ObjCMethodDecl *MethodWithObjects) {
124   ASTContext &Context = CGM.getContext();
125   const ObjCDictionaryLiteral *DLE = nullptr;
126   const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E);
127   if (!ALE)
128     DLE = cast<ObjCDictionaryLiteral>(E);
129 
130   // Optimize empty collections by referencing constants, when available.
131   uint64_t NumElements =
132     ALE ? ALE->getNumElements() : DLE->getNumElements();
133   if (NumElements == 0 && CGM.getLangOpts().ObjCRuntime.hasEmptyCollections()) {
134     StringRef ConstantName = ALE ? "__NSArray0__" : "__NSDictionary0__";
135     QualType IdTy(CGM.getContext().getObjCIdType());
136     llvm::Constant *Constant =
137         CGM.CreateRuntimeVariable(ConvertType(IdTy), ConstantName);
138     LValue LV = MakeNaturalAlignAddrLValue(Constant, IdTy);
139     llvm::Value *Ptr = EmitLoadOfScalar(LV, E->getBeginLoc());
140     cast<llvm::LoadInst>(Ptr)->setMetadata(
141         llvm::LLVMContext::MD_invariant_load,
142         llvm::MDNode::get(getLLVMContext(), {}));
143     return Builder.CreateBitCast(Ptr, ConvertType(E->getType()));
144   }
145 
146   // Compute the type of the array we're initializing.
147   llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()),
148                             NumElements);
149   QualType ElementType = Context.getObjCIdType().withConst();
150   QualType ElementArrayType = Context.getConstantArrayType(
151       ElementType, APNumElements, nullptr, ArraySizeModifier::Normal,
152       /*IndexTypeQuals=*/0);
153 
154   // Allocate the temporary array(s).
155   Address Objects = CreateMemTemp(ElementArrayType, "objects");
156   Address Keys = Address::invalid();
157   if (DLE)
158     Keys = CreateMemTemp(ElementArrayType, "keys");
159 
160   // In ARC, we may need to do extra work to keep all the keys and
161   // values alive until after the call.
162   SmallVector<llvm::Value *, 16> NeededObjects;
163   bool TrackNeededObjects =
164     (getLangOpts().ObjCAutoRefCount &&
165     CGM.getCodeGenOpts().OptimizationLevel != 0);
166 
167   // Perform the actual initialialization of the array(s).
168   for (uint64_t i = 0; i < NumElements; i++) {
169     if (ALE) {
170       // Emit the element and store it to the appropriate array slot.
171       const Expr *Rhs = ALE->getElement(i);
172       LValue LV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i),
173                                  ElementType, AlignmentSource::Decl);
174 
175       llvm::Value *value = EmitScalarExpr(Rhs);
176       EmitStoreThroughLValue(RValue::get(value), LV, true);
177       if (TrackNeededObjects) {
178         NeededObjects.push_back(value);
179       }
180     } else {
181       // Emit the key and store it to the appropriate array slot.
182       const Expr *Key = DLE->getKeyValueElement(i).Key;
183       LValue KeyLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Keys, i),
184                                     ElementType, AlignmentSource::Decl);
185       llvm::Value *keyValue = EmitScalarExpr(Key);
186       EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true);
187 
188       // Emit the value and store it to the appropriate array slot.
189       const Expr *Value = DLE->getKeyValueElement(i).Value;
190       LValue ValueLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i),
191                                       ElementType, AlignmentSource::Decl);
192       llvm::Value *valueValue = EmitScalarExpr(Value);
193       EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true);
194       if (TrackNeededObjects) {
195         NeededObjects.push_back(keyValue);
196         NeededObjects.push_back(valueValue);
197       }
198     }
199   }
200 
201   // Generate the argument list.
202   CallArgList Args;
203   ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin();
204   const ParmVarDecl *argDecl = *PI++;
205   QualType ArgQT = argDecl->getType().getUnqualifiedType();
206   Args.add(RValue::get(Objects, *this), ArgQT);
207   if (DLE) {
208     argDecl = *PI++;
209     ArgQT = argDecl->getType().getUnqualifiedType();
210     Args.add(RValue::get(Keys, *this), ArgQT);
211   }
212   argDecl = *PI;
213   ArgQT = argDecl->getType().getUnqualifiedType();
214   llvm::Value *Count =
215     llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements);
216   Args.add(RValue::get(Count), ArgQT);
217 
218   // Generate a reference to the class pointer, which will be the receiver.
219   Selector Sel = MethodWithObjects->getSelector();
220   QualType ResultType = E->getType();
221   const ObjCObjectPointerType *InterfacePointerType
222     = ResultType->getAsObjCInterfacePointerType();
223   assert(InterfacePointerType && "Unexpected InterfacePointerType - null");
224   ObjCInterfaceDecl *Class
225     = InterfacePointerType->getObjectType()->getInterface();
226   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
227   llvm::Value *Receiver = Runtime.GetClass(*this, Class);
228 
229   // Generate the message send.
230   RValue result = Runtime.GenerateMessageSend(
231       *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel,
232       Receiver, Args, Class, MethodWithObjects);
233 
234   // The above message send needs these objects, but in ARC they are
235   // passed in a buffer that is essentially __unsafe_unretained.
236   // Therefore we must prevent the optimizer from releasing them until
237   // after the call.
238   if (TrackNeededObjects) {
239     EmitARCIntrinsicUse(NeededObjects);
240   }
241 
242   return Builder.CreateBitCast(result.getScalarVal(),
243                                ConvertType(E->getType()));
244 }
245 
246 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) {
247   return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod());
248 }
249 
250 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral(
251                                             const ObjCDictionaryLiteral *E) {
252   return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod());
253 }
254 
255 /// Emit a selector.
256 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) {
257   // Untyped selector.
258   // Note that this implementation allows for non-constant strings to be passed
259   // as arguments to @selector().  Currently, the only thing preventing this
260   // behaviour is the type checking in the front end.
261   return CGM.getObjCRuntime().GetSelector(*this, E->getSelector());
262 }
263 
264 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) {
265   // FIXME: This should pass the Decl not the name.
266   return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol());
267 }
268 
269 /// Adjust the type of an Objective-C object that doesn't match up due
270 /// to type erasure at various points, e.g., related result types or the use
271 /// of parameterized classes.
272 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, QualType ExpT,
273                                    RValue Result) {
274   if (!ExpT->isObjCRetainableType())
275     return Result;
276 
277   // If the converted types are the same, we're done.
278   llvm::Type *ExpLLVMTy = CGF.ConvertType(ExpT);
279   if (ExpLLVMTy == Result.getScalarVal()->getType())
280     return Result;
281 
282   // We have applied a substitution. Cast the rvalue appropriately.
283   return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(),
284                                                ExpLLVMTy));
285 }
286 
287 /// Decide whether to extend the lifetime of the receiver of a
288 /// returns-inner-pointer message.
289 static bool
290 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) {
291   switch (message->getReceiverKind()) {
292 
293   // For a normal instance message, we should extend unless the
294   // receiver is loaded from a variable with precise lifetime.
295   case ObjCMessageExpr::Instance: {
296     const Expr *receiver = message->getInstanceReceiver();
297 
298     // Look through OVEs.
299     if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
300       if (opaque->getSourceExpr())
301         receiver = opaque->getSourceExpr()->IgnoreParens();
302     }
303 
304     const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver);
305     if (!ice || ice->getCastKind() != CK_LValueToRValue) return true;
306     receiver = ice->getSubExpr()->IgnoreParens();
307 
308     // Look through OVEs.
309     if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
310       if (opaque->getSourceExpr())
311         receiver = opaque->getSourceExpr()->IgnoreParens();
312     }
313 
314     // Only __strong variables.
315     if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
316       return true;
317 
318     // All ivars and fields have precise lifetime.
319     if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver))
320       return false;
321 
322     // Otherwise, check for variables.
323     const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr());
324     if (!declRef) return true;
325     const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl());
326     if (!var) return true;
327 
328     // All variables have precise lifetime except local variables with
329     // automatic storage duration that aren't specially marked.
330     return (var->hasLocalStorage() &&
331             !var->hasAttr<ObjCPreciseLifetimeAttr>());
332   }
333 
334   case ObjCMessageExpr::Class:
335   case ObjCMessageExpr::SuperClass:
336     // It's never necessary for class objects.
337     return false;
338 
339   case ObjCMessageExpr::SuperInstance:
340     // We generally assume that 'self' lives throughout a method call.
341     return false;
342   }
343 
344   llvm_unreachable("invalid receiver kind");
345 }
346 
347 /// Given an expression of ObjC pointer type, check whether it was
348 /// immediately loaded from an ARC __weak l-value.
349 static const Expr *findWeakLValue(const Expr *E) {
350   assert(E->getType()->isObjCRetainableType());
351   E = E->IgnoreParens();
352   if (auto CE = dyn_cast<CastExpr>(E)) {
353     if (CE->getCastKind() == CK_LValueToRValue) {
354       if (CE->getSubExpr()->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
355         return CE->getSubExpr();
356     }
357   }
358 
359   return nullptr;
360 }
361 
362 /// The ObjC runtime may provide entrypoints that are likely to be faster
363 /// than an ordinary message send of the appropriate selector.
364 ///
365 /// The entrypoints are guaranteed to be equivalent to just sending the
366 /// corresponding message.  If the entrypoint is implemented naively as just a
367 /// message send, using it is a trade-off: it sacrifices a few cycles of
368 /// overhead to save a small amount of code.  However, it's possible for
369 /// runtimes to detect and special-case classes that use "standard"
370 /// behavior; if that's dynamically a large proportion of all objects, using
371 /// the entrypoint will also be faster than using a message send.
372 ///
373 /// If the runtime does support a required entrypoint, then this method will
374 /// generate a call and return the resulting value.  Otherwise it will return
375 /// std::nullopt and the caller can generate a msgSend instead.
376 static std::optional<llvm::Value *> tryGenerateSpecializedMessageSend(
377     CodeGenFunction &CGF, QualType ResultType, llvm::Value *Receiver,
378     const CallArgList &Args, Selector Sel, const ObjCMethodDecl *method,
379     bool isClassMessage) {
380   auto &CGM = CGF.CGM;
381   if (!CGM.getCodeGenOpts().ObjCConvertMessagesToRuntimeCalls)
382     return std::nullopt;
383 
384   auto &Runtime = CGM.getLangOpts().ObjCRuntime;
385   switch (Sel.getMethodFamily()) {
386   case OMF_alloc:
387     if (isClassMessage &&
388         Runtime.shouldUseRuntimeFunctionsForAlloc() &&
389         ResultType->isObjCObjectPointerType()) {
390         // [Foo alloc] -> objc_alloc(Foo) or
391         // [self alloc] -> objc_alloc(self)
392         if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "alloc")
393           return CGF.EmitObjCAlloc(Receiver, CGF.ConvertType(ResultType));
394         // [Foo allocWithZone:nil] -> objc_allocWithZone(Foo) or
395         // [self allocWithZone:nil] -> objc_allocWithZone(self)
396         if (Sel.isKeywordSelector() && Sel.getNumArgs() == 1 &&
397             Args.size() == 1 && Args.front().getType()->isPointerType() &&
398             Sel.getNameForSlot(0) == "allocWithZone") {
399           const llvm::Value* arg = Args.front().getKnownRValue().getScalarVal();
400           if (isa<llvm::ConstantPointerNull>(arg))
401             return CGF.EmitObjCAllocWithZone(Receiver,
402                                              CGF.ConvertType(ResultType));
403           return std::nullopt;
404         }
405     }
406     break;
407 
408   case OMF_autorelease:
409     if (ResultType->isObjCObjectPointerType() &&
410         CGM.getLangOpts().getGC() == LangOptions::NonGC &&
411         Runtime.shouldUseARCFunctionsForRetainRelease())
412       return CGF.EmitObjCAutorelease(Receiver, CGF.ConvertType(ResultType));
413     break;
414 
415   case OMF_retain:
416     if (ResultType->isObjCObjectPointerType() &&
417         CGM.getLangOpts().getGC() == LangOptions::NonGC &&
418         Runtime.shouldUseARCFunctionsForRetainRelease())
419       return CGF.EmitObjCRetainNonBlock(Receiver, CGF.ConvertType(ResultType));
420     break;
421 
422   case OMF_release:
423     if (ResultType->isVoidType() &&
424         CGM.getLangOpts().getGC() == LangOptions::NonGC &&
425         Runtime.shouldUseARCFunctionsForRetainRelease()) {
426       CGF.EmitObjCRelease(Receiver, ARCPreciseLifetime);
427       return nullptr;
428     }
429     break;
430 
431   default:
432     break;
433   }
434   return std::nullopt;
435 }
436 
437 CodeGen::RValue CGObjCRuntime::GeneratePossiblySpecializedMessageSend(
438     CodeGenFunction &CGF, ReturnValueSlot Return, QualType ResultType,
439     Selector Sel, llvm::Value *Receiver, const CallArgList &Args,
440     const ObjCInterfaceDecl *OID, const ObjCMethodDecl *Method,
441     bool isClassMessage) {
442   if (std::optional<llvm::Value *> SpecializedResult =
443           tryGenerateSpecializedMessageSend(CGF, ResultType, Receiver, Args,
444                                             Sel, Method, isClassMessage)) {
445     return RValue::get(*SpecializedResult);
446   }
447   return GenerateMessageSend(CGF, Return, ResultType, Sel, Receiver, Args, OID,
448                              Method);
449 }
450 
451 static void AppendFirstImpliedRuntimeProtocols(
452     const ObjCProtocolDecl *PD,
453     llvm::UniqueVector<const ObjCProtocolDecl *> &PDs) {
454   if (!PD->isNonRuntimeProtocol()) {
455     const auto *Can = PD->getCanonicalDecl();
456     PDs.insert(Can);
457     return;
458   }
459 
460   for (const auto *ParentPD : PD->protocols())
461     AppendFirstImpliedRuntimeProtocols(ParentPD, PDs);
462 }
463 
464 std::vector<const ObjCProtocolDecl *>
465 CGObjCRuntime::GetRuntimeProtocolList(ObjCProtocolDecl::protocol_iterator begin,
466                                       ObjCProtocolDecl::protocol_iterator end) {
467   std::vector<const ObjCProtocolDecl *> RuntimePds;
468   llvm::DenseSet<const ObjCProtocolDecl *> NonRuntimePDs;
469 
470   for (; begin != end; ++begin) {
471     const auto *It = *begin;
472     const auto *Can = It->getCanonicalDecl();
473     if (Can->isNonRuntimeProtocol())
474       NonRuntimePDs.insert(Can);
475     else
476       RuntimePds.push_back(Can);
477   }
478 
479   // If there are no non-runtime protocols then we can just stop now.
480   if (NonRuntimePDs.empty())
481     return RuntimePds;
482 
483   // Else we have to search through the non-runtime protocol's inheritancy
484   // hierarchy DAG stopping whenever a branch either finds a runtime protocol or
485   // a non-runtime protocol without any parents. These are the "first-implied"
486   // protocols from a non-runtime protocol.
487   llvm::UniqueVector<const ObjCProtocolDecl *> FirstImpliedProtos;
488   for (const auto *PD : NonRuntimePDs)
489     AppendFirstImpliedRuntimeProtocols(PD, FirstImpliedProtos);
490 
491   // Walk the Runtime list to get all protocols implied via the inclusion of
492   // this protocol, e.g. all protocols it inherits from including itself.
493   llvm::DenseSet<const ObjCProtocolDecl *> AllImpliedProtocols;
494   for (const auto *PD : RuntimePds) {
495     const auto *Can = PD->getCanonicalDecl();
496     AllImpliedProtocols.insert(Can);
497     Can->getImpliedProtocols(AllImpliedProtocols);
498   }
499 
500   // Similar to above, walk the list of first-implied protocols to find the set
501   // all the protocols implied excluding the listed protocols themselves since
502   // they are not yet a part of the `RuntimePds` list.
503   for (const auto *PD : FirstImpliedProtos) {
504     PD->getImpliedProtocols(AllImpliedProtocols);
505   }
506 
507   // From the first-implied list we have to finish building the final protocol
508   // list. If a protocol in the first-implied list was already implied via some
509   // inheritance path through some other protocols then it would be redundant to
510   // add it here and so we skip over it.
511   for (const auto *PD : FirstImpliedProtos) {
512     if (!AllImpliedProtocols.contains(PD)) {
513       RuntimePds.push_back(PD);
514     }
515   }
516 
517   return RuntimePds;
518 }
519 
520 /// Instead of '[[MyClass alloc] init]', try to generate
521 /// 'objc_alloc_init(MyClass)'. This provides a code size improvement on the
522 /// caller side, as well as the optimized objc_alloc.
523 static std::optional<llvm::Value *>
524 tryEmitSpecializedAllocInit(CodeGenFunction &CGF, const ObjCMessageExpr *OME) {
525   auto &Runtime = CGF.getLangOpts().ObjCRuntime;
526   if (!Runtime.shouldUseRuntimeFunctionForCombinedAllocInit())
527     return std::nullopt;
528 
529   // Match the exact pattern '[[MyClass alloc] init]'.
530   Selector Sel = OME->getSelector();
531   if (OME->getReceiverKind() != ObjCMessageExpr::Instance ||
532       !OME->getType()->isObjCObjectPointerType() || !Sel.isUnarySelector() ||
533       Sel.getNameForSlot(0) != "init")
534     return std::nullopt;
535 
536   // Okay, this is '[receiver init]', check if 'receiver' is '[cls alloc]'
537   // with 'cls' a Class.
538   auto *SubOME =
539       dyn_cast<ObjCMessageExpr>(OME->getInstanceReceiver()->IgnoreParenCasts());
540   if (!SubOME)
541     return std::nullopt;
542   Selector SubSel = SubOME->getSelector();
543 
544   if (!SubOME->getType()->isObjCObjectPointerType() ||
545       !SubSel.isUnarySelector() || SubSel.getNameForSlot(0) != "alloc")
546     return std::nullopt;
547 
548   llvm::Value *Receiver = nullptr;
549   switch (SubOME->getReceiverKind()) {
550   case ObjCMessageExpr::Instance:
551     if (!SubOME->getInstanceReceiver()->getType()->isObjCClassType())
552       return std::nullopt;
553     Receiver = CGF.EmitScalarExpr(SubOME->getInstanceReceiver());
554     break;
555 
556   case ObjCMessageExpr::Class: {
557     QualType ReceiverType = SubOME->getClassReceiver();
558     const ObjCObjectType *ObjTy = ReceiverType->castAs<ObjCObjectType>();
559     const ObjCInterfaceDecl *ID = ObjTy->getInterface();
560     assert(ID && "null interface should be impossible here");
561     Receiver = CGF.CGM.getObjCRuntime().GetClass(CGF, ID);
562     break;
563   }
564   case ObjCMessageExpr::SuperInstance:
565   case ObjCMessageExpr::SuperClass:
566     return std::nullopt;
567   }
568 
569   return CGF.EmitObjCAllocInit(Receiver, CGF.ConvertType(OME->getType()));
570 }
571 
572 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E,
573                                             ReturnValueSlot Return) {
574   // Only the lookup mechanism and first two arguments of the method
575   // implementation vary between runtimes.  We can get the receiver and
576   // arguments in generic code.
577 
578   bool isDelegateInit = E->isDelegateInitCall();
579 
580   const ObjCMethodDecl *method = E->getMethodDecl();
581 
582   // If the method is -retain, and the receiver's being loaded from
583   // a __weak variable, peephole the entire operation to objc_loadWeakRetained.
584   if (method && E->getReceiverKind() == ObjCMessageExpr::Instance &&
585       method->getMethodFamily() == OMF_retain) {
586     if (auto lvalueExpr = findWeakLValue(E->getInstanceReceiver())) {
587       LValue lvalue = EmitLValue(lvalueExpr);
588       llvm::Value *result = EmitARCLoadWeakRetained(lvalue.getAddress());
589       return AdjustObjCObjectType(*this, E->getType(), RValue::get(result));
590     }
591   }
592 
593   if (std::optional<llvm::Value *> Val = tryEmitSpecializedAllocInit(*this, E))
594     return AdjustObjCObjectType(*this, E->getType(), RValue::get(*Val));
595 
596   // We don't retain the receiver in delegate init calls, and this is
597   // safe because the receiver value is always loaded from 'self',
598   // which we zero out.  We don't want to Block_copy block receivers,
599   // though.
600   bool retainSelf =
601     (!isDelegateInit &&
602      CGM.getLangOpts().ObjCAutoRefCount &&
603      method &&
604      method->hasAttr<NSConsumesSelfAttr>());
605 
606   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
607   bool isSuperMessage = false;
608   bool isClassMessage = false;
609   ObjCInterfaceDecl *OID = nullptr;
610   // Find the receiver
611   QualType ReceiverType;
612   llvm::Value *Receiver = nullptr;
613   switch (E->getReceiverKind()) {
614   case ObjCMessageExpr::Instance:
615     ReceiverType = E->getInstanceReceiver()->getType();
616     isClassMessage = ReceiverType->isObjCClassType();
617     if (retainSelf) {
618       TryEmitResult ter = tryEmitARCRetainScalarExpr(*this,
619                                                    E->getInstanceReceiver());
620       Receiver = ter.getPointer();
621       if (ter.getInt()) retainSelf = false;
622     } else
623       Receiver = EmitScalarExpr(E->getInstanceReceiver());
624     break;
625 
626   case ObjCMessageExpr::Class: {
627     ReceiverType = E->getClassReceiver();
628     OID = ReceiverType->castAs<ObjCObjectType>()->getInterface();
629     assert(OID && "Invalid Objective-C class message send");
630     Receiver = Runtime.GetClass(*this, OID);
631     isClassMessage = true;
632     break;
633   }
634 
635   case ObjCMessageExpr::SuperInstance:
636     ReceiverType = E->getSuperType();
637     Receiver = LoadObjCSelf();
638     isSuperMessage = true;
639     break;
640 
641   case ObjCMessageExpr::SuperClass:
642     ReceiverType = E->getSuperType();
643     Receiver = LoadObjCSelf();
644     isSuperMessage = true;
645     isClassMessage = true;
646     break;
647   }
648 
649   if (retainSelf)
650     Receiver = EmitARCRetainNonBlock(Receiver);
651 
652   // In ARC, we sometimes want to "extend the lifetime"
653   // (i.e. retain+autorelease) of receivers of returns-inner-pointer
654   // messages.
655   if (getLangOpts().ObjCAutoRefCount && method &&
656       method->hasAttr<ObjCReturnsInnerPointerAttr>() &&
657       shouldExtendReceiverForInnerPointerMessage(E))
658     Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver);
659 
660   QualType ResultType = method ? method->getReturnType() : E->getType();
661 
662   CallArgList Args;
663   EmitCallArgs(Args, method, E->arguments(), /*AC*/AbstractCallee(method));
664 
665   // For delegate init calls in ARC, do an unsafe store of null into
666   // self.  This represents the call taking direct ownership of that
667   // value.  We have to do this after emitting the other call
668   // arguments because they might also reference self, but we don't
669   // have to worry about any of them modifying self because that would
670   // be an undefined read and write of an object in unordered
671   // expressions.
672   if (isDelegateInit) {
673     assert(getLangOpts().ObjCAutoRefCount &&
674            "delegate init calls should only be marked in ARC");
675 
676     // Do an unsafe store of null into self.
677     Address selfAddr =
678       GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
679     Builder.CreateStore(getNullForVariable(selfAddr), selfAddr);
680   }
681 
682   RValue result;
683   if (isSuperMessage) {
684     // super is only valid in an Objective-C method
685     const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
686     bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
687     result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType,
688                                               E->getSelector(),
689                                               OMD->getClassInterface(),
690                                               isCategoryImpl,
691                                               Receiver,
692                                               isClassMessage,
693                                               Args,
694                                               method);
695   } else {
696     // Call runtime methods directly if we can.
697     result = Runtime.GeneratePossiblySpecializedMessageSend(
698         *this, Return, ResultType, E->getSelector(), Receiver, Args, OID,
699         method, isClassMessage);
700   }
701 
702   // For delegate init calls in ARC, implicitly store the result of
703   // the call back into self.  This takes ownership of the value.
704   if (isDelegateInit) {
705     Address selfAddr =
706       GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
707     llvm::Value *newSelf = result.getScalarVal();
708 
709     // The delegate return type isn't necessarily a matching type; in
710     // fact, it's quite likely to be 'id'.
711     llvm::Type *selfTy = selfAddr.getElementType();
712     newSelf = Builder.CreateBitCast(newSelf, selfTy);
713 
714     Builder.CreateStore(newSelf, selfAddr);
715   }
716 
717   return AdjustObjCObjectType(*this, E->getType(), result);
718 }
719 
720 namespace {
721 struct FinishARCDealloc final : EHScopeStack::Cleanup {
722   void Emit(CodeGenFunction &CGF, Flags flags) override {
723     const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl);
724 
725     const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext());
726     const ObjCInterfaceDecl *iface = impl->getClassInterface();
727     if (!iface->getSuperClass()) return;
728 
729     bool isCategory = isa<ObjCCategoryImplDecl>(impl);
730 
731     // Call [super dealloc] if we have a superclass.
732     llvm::Value *self = CGF.LoadObjCSelf();
733 
734     CallArgList args;
735     CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(),
736                                                       CGF.getContext().VoidTy,
737                                                       method->getSelector(),
738                                                       iface,
739                                                       isCategory,
740                                                       self,
741                                                       /*is class msg*/ false,
742                                                       args,
743                                                       method);
744   }
745 };
746 }
747 
748 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates
749 /// the LLVM function and sets the other context used by
750 /// CodeGenFunction.
751 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD,
752                                       const ObjCContainerDecl *CD) {
753   SourceLocation StartLoc = OMD->getBeginLoc();
754   FunctionArgList args;
755   // Check if we should generate debug info for this method.
756   if (OMD->hasAttr<NoDebugAttr>())
757     DebugInfo = nullptr; // disable debug info indefinitely for this function
758 
759   llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD);
760 
761   const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD);
762   if (OMD->isDirectMethod()) {
763     Fn->setVisibility(llvm::Function::HiddenVisibility);
764     CGM.SetLLVMFunctionAttributes(OMD, FI, Fn, /*IsThunk=*/false);
765     CGM.SetLLVMFunctionAttributesForDefinition(OMD, Fn);
766   } else {
767     CGM.SetInternalFunctionAttributes(OMD, Fn, FI);
768   }
769 
770   args.push_back(OMD->getSelfDecl());
771   if (!OMD->isDirectMethod())
772     args.push_back(OMD->getCmdDecl());
773 
774   args.append(OMD->param_begin(), OMD->param_end());
775 
776   CurGD = OMD;
777   CurEHLocation = OMD->getEndLoc();
778 
779   StartFunction(OMD, OMD->getReturnType(), Fn, FI, args,
780                 OMD->getLocation(), StartLoc);
781 
782   if (OMD->isDirectMethod()) {
783     // This function is a direct call, it has to implement a nil check
784     // on entry.
785     //
786     // TODO: possibly have several entry points to elide the check
787     CGM.getObjCRuntime().GenerateDirectMethodPrologue(*this, Fn, OMD, CD);
788   }
789 
790   // In ARC, certain methods get an extra cleanup.
791   if (CGM.getLangOpts().ObjCAutoRefCount &&
792       OMD->isInstanceMethod() &&
793       OMD->getSelector().isUnarySelector()) {
794     const IdentifierInfo *ident =
795       OMD->getSelector().getIdentifierInfoForSlot(0);
796     if (ident->isStr("dealloc"))
797       EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind());
798   }
799 }
800 
801 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
802                                               LValue lvalue, QualType type);
803 
804 /// Generate an Objective-C method.  An Objective-C method is a C function with
805 /// its pointer, name, and types registered in the class structure.
806 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) {
807   StartObjCMethod(OMD, OMD->getClassInterface());
808   PGO.assignRegionCounters(GlobalDecl(OMD), CurFn);
809   assert(isa<CompoundStmt>(OMD->getBody()));
810   incrementProfileCounter(OMD->getBody());
811   EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody()));
812   FinishFunction(OMD->getBodyRBrace());
813 }
814 
815 /// emitStructGetterCall - Call the runtime function to load a property
816 /// into the return value slot.
817 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar,
818                                  bool isAtomic, bool hasStrong) {
819   ASTContext &Context = CGF.getContext();
820 
821   llvm::Value *src =
822       CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
823           .getPointer(CGF);
824 
825   // objc_copyStruct (ReturnValue, &structIvar,
826   //                  sizeof (Type of Ivar), isAtomic, false);
827   CallArgList args;
828 
829   llvm::Value *dest = CGF.ReturnValue.emitRawPointer(CGF);
830   args.add(RValue::get(dest), Context.VoidPtrTy);
831   args.add(RValue::get(src), Context.VoidPtrTy);
832 
833   CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType());
834   args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType());
835   args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy);
836   args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy);
837 
838   llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetGetStructFunction();
839   CGCallee callee = CGCallee::forDirect(fn);
840   CGF.EmitCall(CGF.getTypes().arrangeBuiltinFunctionCall(Context.VoidTy, args),
841                callee, ReturnValueSlot(), args);
842 }
843 
844 /// Determine whether the given architecture supports unaligned atomic
845 /// accesses.  They don't have to be fast, just faster than a function
846 /// call and a mutex.
847 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) {
848   // FIXME: Allow unaligned atomic load/store on x86.  (It is not
849   // currently supported by the backend.)
850   return false;
851 }
852 
853 /// Return the maximum size that permits atomic accesses for the given
854 /// architecture.
855 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM,
856                                         llvm::Triple::ArchType arch) {
857   // ARM has 8-byte atomic accesses, but it's not clear whether we
858   // want to rely on them here.
859 
860   // In the default case, just assume that any size up to a pointer is
861   // fine given adequate alignment.
862   return CharUnits::fromQuantity(CGM.PointerSizeInBytes);
863 }
864 
865 namespace {
866   class PropertyImplStrategy {
867   public:
868     enum StrategyKind {
869       /// The 'native' strategy is to use the architecture's provided
870       /// reads and writes.
871       Native,
872 
873       /// Use objc_setProperty and objc_getProperty.
874       GetSetProperty,
875 
876       /// Use objc_setProperty for the setter, but use expression
877       /// evaluation for the getter.
878       SetPropertyAndExpressionGet,
879 
880       /// Use objc_copyStruct.
881       CopyStruct,
882 
883       /// The 'expression' strategy is to emit normal assignment or
884       /// lvalue-to-rvalue expressions.
885       Expression
886     };
887 
888     StrategyKind getKind() const { return StrategyKind(Kind); }
889 
890     bool hasStrongMember() const { return HasStrong; }
891     bool isAtomic() const { return IsAtomic; }
892     bool isCopy() const { return IsCopy; }
893 
894     CharUnits getIvarSize() const { return IvarSize; }
895     CharUnits getIvarAlignment() const { return IvarAlignment; }
896 
897     PropertyImplStrategy(CodeGenModule &CGM,
898                          const ObjCPropertyImplDecl *propImpl);
899 
900   private:
901     LLVM_PREFERRED_TYPE(StrategyKind)
902     unsigned Kind : 8;
903     LLVM_PREFERRED_TYPE(bool)
904     unsigned IsAtomic : 1;
905     LLVM_PREFERRED_TYPE(bool)
906     unsigned IsCopy : 1;
907     LLVM_PREFERRED_TYPE(bool)
908     unsigned HasStrong : 1;
909 
910     CharUnits IvarSize;
911     CharUnits IvarAlignment;
912   };
913 }
914 
915 /// Pick an implementation strategy for the given property synthesis.
916 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM,
917                                      const ObjCPropertyImplDecl *propImpl) {
918   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
919   ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind();
920 
921   IsCopy = (setterKind == ObjCPropertyDecl::Copy);
922   IsAtomic = prop->isAtomic();
923   HasStrong = false; // doesn't matter here.
924 
925   // Evaluate the ivar's size and alignment.
926   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
927   QualType ivarType = ivar->getType();
928   auto TInfo = CGM.getContext().getTypeInfoInChars(ivarType);
929   IvarSize = TInfo.Width;
930   IvarAlignment = TInfo.Align;
931 
932   // If we have a copy property, we always have to use setProperty.
933   // If the property is atomic we need to use getProperty, but in
934   // the nonatomic case we can just use expression.
935   if (IsCopy) {
936     Kind = IsAtomic ? GetSetProperty : SetPropertyAndExpressionGet;
937     return;
938   }
939 
940   // Handle retain.
941   if (setterKind == ObjCPropertyDecl::Retain) {
942     // In GC-only, there's nothing special that needs to be done.
943     if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
944       // fallthrough
945 
946     // In ARC, if the property is non-atomic, use expression emission,
947     // which translates to objc_storeStrong.  This isn't required, but
948     // it's slightly nicer.
949     } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) {
950       // Using standard expression emission for the setter is only
951       // acceptable if the ivar is __strong, which won't be true if
952       // the property is annotated with __attribute__((NSObject)).
953       // TODO: falling all the way back to objc_setProperty here is
954       // just laziness, though;  we could still use objc_storeStrong
955       // if we hacked it right.
956       if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong)
957         Kind = Expression;
958       else
959         Kind = SetPropertyAndExpressionGet;
960       return;
961 
962     // Otherwise, we need to at least use setProperty.  However, if
963     // the property isn't atomic, we can use normal expression
964     // emission for the getter.
965     } else if (!IsAtomic) {
966       Kind = SetPropertyAndExpressionGet;
967       return;
968 
969     // Otherwise, we have to use both setProperty and getProperty.
970     } else {
971       Kind = GetSetProperty;
972       return;
973     }
974   }
975 
976   // If we're not atomic, just use expression accesses.
977   if (!IsAtomic) {
978     Kind = Expression;
979     return;
980   }
981 
982   // Properties on bitfield ivars need to be emitted using expression
983   // accesses even if they're nominally atomic.
984   if (ivar->isBitField()) {
985     Kind = Expression;
986     return;
987   }
988 
989   // GC-qualified or ARC-qualified ivars need to be emitted as
990   // expressions.  This actually works out to being atomic anyway,
991   // except for ARC __strong, but that should trigger the above code.
992   if (ivarType.hasNonTrivialObjCLifetime() ||
993       (CGM.getLangOpts().getGC() &&
994        CGM.getContext().getObjCGCAttrKind(ivarType))) {
995     Kind = Expression;
996     return;
997   }
998 
999   // Compute whether the ivar has strong members.
1000   if (CGM.getLangOpts().getGC())
1001     if (const RecordType *recordType = ivarType->getAs<RecordType>())
1002       HasStrong = recordType->getDecl()->hasObjectMember();
1003 
1004   // We can never access structs with object members with a native
1005   // access, because we need to use write barriers.  This is what
1006   // objc_copyStruct is for.
1007   if (HasStrong) {
1008     Kind = CopyStruct;
1009     return;
1010   }
1011 
1012   // Otherwise, this is target-dependent and based on the size and
1013   // alignment of the ivar.
1014 
1015   // If the size of the ivar is not a power of two, give up.  We don't
1016   // want to get into the business of doing compare-and-swaps.
1017   if (!IvarSize.isPowerOfTwo()) {
1018     Kind = CopyStruct;
1019     return;
1020   }
1021 
1022   llvm::Triple::ArchType arch =
1023     CGM.getTarget().getTriple().getArch();
1024 
1025   // Most architectures require memory to fit within a single cache
1026   // line, so the alignment has to be at least the size of the access.
1027   // Otherwise we have to grab a lock.
1028   if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) {
1029     Kind = CopyStruct;
1030     return;
1031   }
1032 
1033   // If the ivar's size exceeds the architecture's maximum atomic
1034   // access size, we have to use CopyStruct.
1035   if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) {
1036     Kind = CopyStruct;
1037     return;
1038   }
1039 
1040   // Otherwise, we can use native loads and stores.
1041   Kind = Native;
1042 }
1043 
1044 /// Generate an Objective-C property getter function.
1045 ///
1046 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
1047 /// is illegal within a category.
1048 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP,
1049                                          const ObjCPropertyImplDecl *PID) {
1050   llvm::Constant *AtomicHelperFn =
1051       CodeGenFunction(CGM).GenerateObjCAtomicGetterCopyHelperFunction(PID);
1052   ObjCMethodDecl *OMD = PID->getGetterMethodDecl();
1053   assert(OMD && "Invalid call to generate getter (empty method)");
1054   StartObjCMethod(OMD, IMP->getClassInterface());
1055 
1056   generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn);
1057 
1058   FinishFunction(OMD->getEndLoc());
1059 }
1060 
1061 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) {
1062   const Expr *getter = propImpl->getGetterCXXConstructor();
1063   if (!getter) return true;
1064 
1065   // Sema only makes only of these when the ivar has a C++ class type,
1066   // so the form is pretty constrained.
1067 
1068   // If the property has a reference type, we might just be binding a
1069   // reference, in which case the result will be a gl-value.  We should
1070   // treat this as a non-trivial operation.
1071   if (getter->isGLValue())
1072     return false;
1073 
1074   // If we selected a trivial copy-constructor, we're okay.
1075   if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter))
1076     return (construct->getConstructor()->isTrivial());
1077 
1078   // The constructor might require cleanups (in which case it's never
1079   // trivial).
1080   assert(isa<ExprWithCleanups>(getter));
1081   return false;
1082 }
1083 
1084 /// emitCPPObjectAtomicGetterCall - Call the runtime function to
1085 /// copy the ivar into the resturn slot.
1086 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF,
1087                                           llvm::Value *returnAddr,
1088                                           ObjCIvarDecl *ivar,
1089                                           llvm::Constant *AtomicHelperFn) {
1090   // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar,
1091   //                           AtomicHelperFn);
1092   CallArgList args;
1093 
1094   // The 1st argument is the return Slot.
1095   args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy);
1096 
1097   // The 2nd argument is the address of the ivar.
1098   llvm::Value *ivarAddr =
1099       CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1100           .getPointer(CGF);
1101   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1102 
1103   // Third argument is the helper function.
1104   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1105 
1106   llvm::FunctionCallee copyCppAtomicObjectFn =
1107       CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction();
1108   CGCallee callee = CGCallee::forDirect(copyCppAtomicObjectFn);
1109   CGF.EmitCall(
1110       CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1111                callee, ReturnValueSlot(), args);
1112 }
1113 
1114 // emitCmdValueForGetterSetterBody - Handle emitting the load necessary for
1115 // the `_cmd` selector argument for getter/setter bodies. For direct methods,
1116 // this returns an undefined/poison value; this matches behavior prior to `_cmd`
1117 // being removed from the direct method ABI as the getter/setter caller would
1118 // never load one. For non-direct methods, this emits a load of the implicit
1119 // `_cmd` storage.
1120 static llvm::Value *emitCmdValueForGetterSetterBody(CodeGenFunction &CGF,
1121                                                    ObjCMethodDecl *MD) {
1122   if (MD->isDirectMethod()) {
1123     // Direct methods do not have a `_cmd` argument. Emit an undefined/poison
1124     // value. This will be passed to objc_getProperty/objc_setProperty, which
1125     // has not appeared bothered by the `_cmd` argument being undefined before.
1126     llvm::Type *selType = CGF.ConvertType(CGF.getContext().getObjCSelType());
1127     return llvm::PoisonValue::get(selType);
1128   }
1129 
1130   return CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(MD->getCmdDecl()), "cmd");
1131 }
1132 
1133 void
1134 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1135                                         const ObjCPropertyImplDecl *propImpl,
1136                                         const ObjCMethodDecl *GetterMethodDecl,
1137                                         llvm::Constant *AtomicHelperFn) {
1138 
1139   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1140 
1141   if (ivar->getType().isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) {
1142     if (!AtomicHelperFn) {
1143       LValue Src =
1144           EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
1145       LValue Dst = MakeAddrLValue(ReturnValue, ivar->getType());
1146       callCStructCopyConstructor(Dst, Src);
1147     } else {
1148       ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1149       emitCPPObjectAtomicGetterCall(*this, ReturnValue.emitRawPointer(*this),
1150                                     ivar, AtomicHelperFn);
1151     }
1152     return;
1153   }
1154 
1155   // If there's a non-trivial 'get' expression, we just have to emit that.
1156   if (!hasTrivialGetExpr(propImpl)) {
1157     if (!AtomicHelperFn) {
1158       auto *ret = ReturnStmt::Create(getContext(), SourceLocation(),
1159                                      propImpl->getGetterCXXConstructor(),
1160                                      /* NRVOCandidate=*/nullptr);
1161       EmitReturnStmt(*ret);
1162     }
1163     else {
1164       ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1165       emitCPPObjectAtomicGetterCall(*this, ReturnValue.emitRawPointer(*this),
1166                                     ivar, AtomicHelperFn);
1167     }
1168     return;
1169   }
1170 
1171   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
1172   QualType propType = prop->getType();
1173   ObjCMethodDecl *getterMethod = propImpl->getGetterMethodDecl();
1174 
1175   // Pick an implementation strategy.
1176   PropertyImplStrategy strategy(CGM, propImpl);
1177   switch (strategy.getKind()) {
1178   case PropertyImplStrategy::Native: {
1179     // We don't need to do anything for a zero-size struct.
1180     if (strategy.getIvarSize().isZero())
1181       return;
1182 
1183     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
1184 
1185     // Currently, all atomic accesses have to be through integer
1186     // types, so there's no point in trying to pick a prettier type.
1187     uint64_t ivarSize = getContext().toBits(strategy.getIvarSize());
1188     llvm::Type *bitcastType = llvm::Type::getIntNTy(getLLVMContext(), ivarSize);
1189 
1190     // Perform an atomic load.  This does not impose ordering constraints.
1191     Address ivarAddr = LV.getAddress();
1192     ivarAddr = ivarAddr.withElementType(bitcastType);
1193     llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load");
1194     load->setAtomic(llvm::AtomicOrdering::Unordered);
1195 
1196     // Store that value into the return address.  Doing this with a
1197     // bitcast is likely to produce some pretty ugly IR, but it's not
1198     // the *most* terrible thing in the world.
1199     llvm::Type *retTy = ConvertType(getterMethod->getReturnType());
1200     uint64_t retTySize = CGM.getDataLayout().getTypeSizeInBits(retTy);
1201     llvm::Value *ivarVal = load;
1202     if (ivarSize > retTySize) {
1203       bitcastType = llvm::Type::getIntNTy(getLLVMContext(), retTySize);
1204       ivarVal = Builder.CreateTrunc(load, bitcastType);
1205     }
1206     Builder.CreateStore(ivarVal, ReturnValue.withElementType(bitcastType));
1207 
1208     // Make sure we don't do an autorelease.
1209     AutoreleaseResult = false;
1210     return;
1211   }
1212 
1213   case PropertyImplStrategy::GetSetProperty: {
1214     llvm::FunctionCallee getPropertyFn =
1215         CGM.getObjCRuntime().GetPropertyGetFunction();
1216     if (!getPropertyFn) {
1217       CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy");
1218       return;
1219     }
1220     CGCallee callee = CGCallee::forDirect(getPropertyFn);
1221 
1222     // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
1223     // FIXME: Can't this be simpler? This might even be worse than the
1224     // corresponding gcc code.
1225     llvm::Value *cmd = emitCmdValueForGetterSetterBody(*this, getterMethod);
1226     llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1227     llvm::Value *ivarOffset =
1228         EmitIvarOffsetAsPointerDiff(classImpl->getClassInterface(), ivar);
1229 
1230     CallArgList args;
1231     args.add(RValue::get(self), getContext().getObjCIdType());
1232     args.add(RValue::get(cmd), getContext().getObjCSelType());
1233     args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1234     args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1235              getContext().BoolTy);
1236 
1237     // FIXME: We shouldn't need to get the function info here, the
1238     // runtime already should have computed it to build the function.
1239     llvm::CallBase *CallInstruction;
1240     RValue RV = EmitCall(getTypes().arrangeBuiltinFunctionCall(
1241                              getContext().getObjCIdType(), args),
1242                          callee, ReturnValueSlot(), args, &CallInstruction);
1243     if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction))
1244       call->setTailCall();
1245 
1246     // We need to fix the type here. Ivars with copy & retain are
1247     // always objects so we don't need to worry about complex or
1248     // aggregates.
1249     RV = RValue::get(Builder.CreateBitCast(
1250         RV.getScalarVal(),
1251         getTypes().ConvertType(getterMethod->getReturnType())));
1252 
1253     EmitReturnOfRValue(RV, propType);
1254 
1255     // objc_getProperty does an autorelease, so we should suppress ours.
1256     AutoreleaseResult = false;
1257 
1258     return;
1259   }
1260 
1261   case PropertyImplStrategy::CopyStruct:
1262     emitStructGetterCall(*this, ivar, strategy.isAtomic(),
1263                          strategy.hasStrongMember());
1264     return;
1265 
1266   case PropertyImplStrategy::Expression:
1267   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1268     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
1269 
1270     QualType ivarType = ivar->getType();
1271     switch (getEvaluationKind(ivarType)) {
1272     case TEK_Complex: {
1273       ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation());
1274       EmitStoreOfComplex(pair, MakeAddrLValue(ReturnValue, ivarType),
1275                          /*init*/ true);
1276       return;
1277     }
1278     case TEK_Aggregate: {
1279       // The return value slot is guaranteed to not be aliased, but
1280       // that's not necessarily the same as "on the stack", so
1281       // we still potentially need objc_memmove_collectable.
1282       EmitAggregateCopy(/* Dest= */ MakeAddrLValue(ReturnValue, ivarType),
1283                         /* Src= */ LV, ivarType, getOverlapForReturnValue());
1284       return;
1285     }
1286     case TEK_Scalar: {
1287       llvm::Value *value;
1288       if (propType->isReferenceType()) {
1289         value = LV.getAddress().emitRawPointer(*this);
1290       } else {
1291         // We want to load and autoreleaseReturnValue ARC __weak ivars.
1292         if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1293           if (getLangOpts().ObjCAutoRefCount) {
1294             value = emitARCRetainLoadOfScalar(*this, LV, ivarType);
1295           } else {
1296             value = EmitARCLoadWeak(LV.getAddress());
1297           }
1298 
1299         // Otherwise we want to do a simple load, suppressing the
1300         // final autorelease.
1301         } else {
1302           value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal();
1303           AutoreleaseResult = false;
1304         }
1305 
1306         value = Builder.CreateBitCast(
1307             value, ConvertType(GetterMethodDecl->getReturnType()));
1308       }
1309 
1310       EmitReturnOfRValue(RValue::get(value), propType);
1311       return;
1312     }
1313     }
1314     llvm_unreachable("bad evaluation kind");
1315   }
1316 
1317   }
1318   llvm_unreachable("bad @property implementation strategy!");
1319 }
1320 
1321 /// emitStructSetterCall - Call the runtime function to store the value
1322 /// from the first formal parameter into the given ivar.
1323 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD,
1324                                  ObjCIvarDecl *ivar) {
1325   // objc_copyStruct (&structIvar, &Arg,
1326   //                  sizeof (struct something), true, false);
1327   CallArgList args;
1328 
1329   // The first argument is the address of the ivar.
1330   llvm::Value *ivarAddr =
1331       CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1332           .getPointer(CGF);
1333   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1334   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1335 
1336   // The second argument is the address of the parameter variable.
1337   ParmVarDecl *argVar = *OMD->param_begin();
1338   DeclRefExpr argRef(CGF.getContext(), argVar, false,
1339                      argVar->getType().getNonReferenceType(), VK_LValue,
1340                      SourceLocation());
1341   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF);
1342   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1343 
1344   // The third argument is the sizeof the type.
1345   llvm::Value *size =
1346     CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType()));
1347   args.add(RValue::get(size), CGF.getContext().getSizeType());
1348 
1349   // The fourth argument is the 'isAtomic' flag.
1350   args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy);
1351 
1352   // The fifth argument is the 'hasStrong' flag.
1353   // FIXME: should this really always be false?
1354   args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy);
1355 
1356   llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetSetStructFunction();
1357   CGCallee callee = CGCallee::forDirect(fn);
1358   CGF.EmitCall(
1359       CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1360                callee, ReturnValueSlot(), args);
1361 }
1362 
1363 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store
1364 /// the value from the first formal parameter into the given ivar, using
1365 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment.
1366 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF,
1367                                           ObjCMethodDecl *OMD,
1368                                           ObjCIvarDecl *ivar,
1369                                           llvm::Constant *AtomicHelperFn) {
1370   // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg,
1371   //                           AtomicHelperFn);
1372   CallArgList args;
1373 
1374   // The first argument is the address of the ivar.
1375   llvm::Value *ivarAddr =
1376       CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1377           .getPointer(CGF);
1378   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1379 
1380   // The second argument is the address of the parameter variable.
1381   ParmVarDecl *argVar = *OMD->param_begin();
1382   DeclRefExpr argRef(CGF.getContext(), argVar, false,
1383                      argVar->getType().getNonReferenceType(), VK_LValue,
1384                      SourceLocation());
1385   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF);
1386   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1387 
1388   // Third argument is the helper function.
1389   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1390 
1391   llvm::FunctionCallee fn =
1392       CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction();
1393   CGCallee callee = CGCallee::forDirect(fn);
1394   CGF.EmitCall(
1395       CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1396                callee, ReturnValueSlot(), args);
1397 }
1398 
1399 
1400 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) {
1401   Expr *setter = PID->getSetterCXXAssignment();
1402   if (!setter) return true;
1403 
1404   // Sema only makes only of these when the ivar has a C++ class type,
1405   // so the form is pretty constrained.
1406 
1407   // An operator call is trivial if the function it calls is trivial.
1408   // This also implies that there's nothing non-trivial going on with
1409   // the arguments, because operator= can only be trivial if it's a
1410   // synthesized assignment operator and therefore both parameters are
1411   // references.
1412   if (CallExpr *call = dyn_cast<CallExpr>(setter)) {
1413     if (const FunctionDecl *callee
1414           = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl()))
1415       if (callee->isTrivial())
1416         return true;
1417     return false;
1418   }
1419 
1420   assert(isa<ExprWithCleanups>(setter));
1421   return false;
1422 }
1423 
1424 static bool UseOptimizedSetter(CodeGenModule &CGM) {
1425   if (CGM.getLangOpts().getGC() != LangOptions::NonGC)
1426     return false;
1427   return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter();
1428 }
1429 
1430 void
1431 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1432                                         const ObjCPropertyImplDecl *propImpl,
1433                                         llvm::Constant *AtomicHelperFn) {
1434   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1435   ObjCMethodDecl *setterMethod = propImpl->getSetterMethodDecl();
1436 
1437   if (ivar->getType().isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) {
1438     ParmVarDecl *PVD = *setterMethod->param_begin();
1439     if (!AtomicHelperFn) {
1440       // Call the move assignment operator instead of calling the copy
1441       // assignment operator and destructor.
1442       LValue Dst = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar,
1443                                      /*quals*/ 0);
1444       LValue Src = MakeAddrLValue(GetAddrOfLocalVar(PVD), ivar->getType());
1445       callCStructMoveAssignmentOperator(Dst, Src);
1446     } else {
1447       // If atomic, assignment is called via a locking api.
1448       emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar, AtomicHelperFn);
1449     }
1450     // Decativate the destructor for the setter parameter.
1451     DeactivateCleanupBlock(CalleeDestructedParamCleanups[PVD], AllocaInsertPt);
1452     return;
1453   }
1454 
1455   // Just use the setter expression if Sema gave us one and it's
1456   // non-trivial.
1457   if (!hasTrivialSetExpr(propImpl)) {
1458     if (!AtomicHelperFn)
1459       // If non-atomic, assignment is called directly.
1460       EmitStmt(propImpl->getSetterCXXAssignment());
1461     else
1462       // If atomic, assignment is called via a locking api.
1463       emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar,
1464                                     AtomicHelperFn);
1465     return;
1466   }
1467 
1468   PropertyImplStrategy strategy(CGM, propImpl);
1469   switch (strategy.getKind()) {
1470   case PropertyImplStrategy::Native: {
1471     // We don't need to do anything for a zero-size struct.
1472     if (strategy.getIvarSize().isZero())
1473       return;
1474 
1475     Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1476 
1477     LValue ivarLValue =
1478       EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0);
1479     Address ivarAddr = ivarLValue.getAddress();
1480 
1481     // Currently, all atomic accesses have to be through integer
1482     // types, so there's no point in trying to pick a prettier type.
1483     llvm::Type *castType = llvm::Type::getIntNTy(
1484         getLLVMContext(), getContext().toBits(strategy.getIvarSize()));
1485 
1486     // Cast both arguments to the chosen operation type.
1487     argAddr = argAddr.withElementType(castType);
1488     ivarAddr = ivarAddr.withElementType(castType);
1489 
1490     llvm::Value *load = Builder.CreateLoad(argAddr);
1491 
1492     // Perform an atomic store.  There are no memory ordering requirements.
1493     llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr);
1494     store->setAtomic(llvm::AtomicOrdering::Unordered);
1495     return;
1496   }
1497 
1498   case PropertyImplStrategy::GetSetProperty:
1499   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1500 
1501     llvm::FunctionCallee setOptimizedPropertyFn = nullptr;
1502     llvm::FunctionCallee setPropertyFn = nullptr;
1503     if (UseOptimizedSetter(CGM)) {
1504       // 10.8 and iOS 6.0 code and GC is off
1505       setOptimizedPropertyFn =
1506           CGM.getObjCRuntime().GetOptimizedPropertySetFunction(
1507               strategy.isAtomic(), strategy.isCopy());
1508       if (!setOptimizedPropertyFn) {
1509         CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI");
1510         return;
1511       }
1512     }
1513     else {
1514       setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction();
1515       if (!setPropertyFn) {
1516         CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy");
1517         return;
1518       }
1519     }
1520 
1521     // Emit objc_setProperty((id) self, _cmd, offset, arg,
1522     //                       <is-atomic>, <is-copy>).
1523     llvm::Value *cmd = emitCmdValueForGetterSetterBody(*this, setterMethod);
1524     llvm::Value *self =
1525       Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1526     llvm::Value *ivarOffset =
1527         EmitIvarOffsetAsPointerDiff(classImpl->getClassInterface(), ivar);
1528     Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1529     llvm::Value *arg = Builder.CreateLoad(argAddr, "arg");
1530     arg = Builder.CreateBitCast(arg, VoidPtrTy);
1531 
1532     CallArgList args;
1533     args.add(RValue::get(self), getContext().getObjCIdType());
1534     args.add(RValue::get(cmd), getContext().getObjCSelType());
1535     if (setOptimizedPropertyFn) {
1536       args.add(RValue::get(arg), getContext().getObjCIdType());
1537       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1538       CGCallee callee = CGCallee::forDirect(setOptimizedPropertyFn);
1539       EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
1540                callee, ReturnValueSlot(), args);
1541     } else {
1542       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1543       args.add(RValue::get(arg), getContext().getObjCIdType());
1544       args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1545                getContext().BoolTy);
1546       args.add(RValue::get(Builder.getInt1(strategy.isCopy())),
1547                getContext().BoolTy);
1548       // FIXME: We shouldn't need to get the function info here, the runtime
1549       // already should have computed it to build the function.
1550       CGCallee callee = CGCallee::forDirect(setPropertyFn);
1551       EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
1552                callee, ReturnValueSlot(), args);
1553     }
1554 
1555     return;
1556   }
1557 
1558   case PropertyImplStrategy::CopyStruct:
1559     emitStructSetterCall(*this, setterMethod, ivar);
1560     return;
1561 
1562   case PropertyImplStrategy::Expression:
1563     break;
1564   }
1565 
1566   // Otherwise, fake up some ASTs and emit a normal assignment.
1567   ValueDecl *selfDecl = setterMethod->getSelfDecl();
1568   DeclRefExpr self(getContext(), selfDecl, false, selfDecl->getType(),
1569                    VK_LValue, SourceLocation());
1570   ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack, selfDecl->getType(),
1571                             CK_LValueToRValue, &self, VK_PRValue,
1572                             FPOptionsOverride());
1573   ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(),
1574                           SourceLocation(), SourceLocation(),
1575                           &selfLoad, true, true);
1576 
1577   ParmVarDecl *argDecl = *setterMethod->param_begin();
1578   QualType argType = argDecl->getType().getNonReferenceType();
1579   DeclRefExpr arg(getContext(), argDecl, false, argType, VK_LValue,
1580                   SourceLocation());
1581   ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack,
1582                            argType.getUnqualifiedType(), CK_LValueToRValue,
1583                            &arg, VK_PRValue, FPOptionsOverride());
1584 
1585   // The property type can differ from the ivar type in some situations with
1586   // Objective-C pointer types, we can always bit cast the RHS in these cases.
1587   // The following absurdity is just to ensure well-formed IR.
1588   CastKind argCK = CK_NoOp;
1589   if (ivarRef.getType()->isObjCObjectPointerType()) {
1590     if (argLoad.getType()->isObjCObjectPointerType())
1591       argCK = CK_BitCast;
1592     else if (argLoad.getType()->isBlockPointerType())
1593       argCK = CK_BlockPointerToObjCPointerCast;
1594     else
1595       argCK = CK_CPointerToObjCPointerCast;
1596   } else if (ivarRef.getType()->isBlockPointerType()) {
1597      if (argLoad.getType()->isBlockPointerType())
1598       argCK = CK_BitCast;
1599     else
1600       argCK = CK_AnyPointerToBlockPointerCast;
1601   } else if (ivarRef.getType()->isPointerType()) {
1602     argCK = CK_BitCast;
1603   } else if (argLoad.getType()->isAtomicType() &&
1604              !ivarRef.getType()->isAtomicType()) {
1605     argCK = CK_AtomicToNonAtomic;
1606   } else if (!argLoad.getType()->isAtomicType() &&
1607              ivarRef.getType()->isAtomicType()) {
1608     argCK = CK_NonAtomicToAtomic;
1609   }
1610   ImplicitCastExpr argCast(ImplicitCastExpr::OnStack, ivarRef.getType(), argCK,
1611                            &argLoad, VK_PRValue, FPOptionsOverride());
1612   Expr *finalArg = &argLoad;
1613   if (!getContext().hasSameUnqualifiedType(ivarRef.getType(),
1614                                            argLoad.getType()))
1615     finalArg = &argCast;
1616 
1617   BinaryOperator *assign = BinaryOperator::Create(
1618       getContext(), &ivarRef, finalArg, BO_Assign, ivarRef.getType(),
1619       VK_PRValue, OK_Ordinary, SourceLocation(), FPOptionsOverride());
1620   EmitStmt(assign);
1621 }
1622 
1623 /// Generate an Objective-C property setter function.
1624 ///
1625 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
1626 /// is illegal within a category.
1627 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP,
1628                                          const ObjCPropertyImplDecl *PID) {
1629   llvm::Constant *AtomicHelperFn =
1630       CodeGenFunction(CGM).GenerateObjCAtomicSetterCopyHelperFunction(PID);
1631   ObjCMethodDecl *OMD = PID->getSetterMethodDecl();
1632   assert(OMD && "Invalid call to generate setter (empty method)");
1633   StartObjCMethod(OMD, IMP->getClassInterface());
1634 
1635   generateObjCSetterBody(IMP, PID, AtomicHelperFn);
1636 
1637   FinishFunction(OMD->getEndLoc());
1638 }
1639 
1640 namespace {
1641   struct DestroyIvar final : EHScopeStack::Cleanup {
1642   private:
1643     llvm::Value *addr;
1644     const ObjCIvarDecl *ivar;
1645     CodeGenFunction::Destroyer *destroyer;
1646     bool useEHCleanupForArray;
1647   public:
1648     DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar,
1649                 CodeGenFunction::Destroyer *destroyer,
1650                 bool useEHCleanupForArray)
1651       : addr(addr), ivar(ivar), destroyer(destroyer),
1652         useEHCleanupForArray(useEHCleanupForArray) {}
1653 
1654     void Emit(CodeGenFunction &CGF, Flags flags) override {
1655       LValue lvalue
1656         = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0);
1657       CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer,
1658                       flags.isForNormalCleanup() && useEHCleanupForArray);
1659     }
1660   };
1661 }
1662 
1663 /// Like CodeGenFunction::destroyARCStrong, but do it with a call.
1664 static void destroyARCStrongWithStore(CodeGenFunction &CGF,
1665                                       Address addr,
1666                                       QualType type) {
1667   llvm::Value *null = getNullForVariable(addr);
1668   CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
1669 }
1670 
1671 static void emitCXXDestructMethod(CodeGenFunction &CGF,
1672                                   ObjCImplementationDecl *impl) {
1673   CodeGenFunction::RunCleanupsScope scope(CGF);
1674 
1675   llvm::Value *self = CGF.LoadObjCSelf();
1676 
1677   const ObjCInterfaceDecl *iface = impl->getClassInterface();
1678   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
1679        ivar; ivar = ivar->getNextIvar()) {
1680     QualType type = ivar->getType();
1681 
1682     // Check whether the ivar is a destructible type.
1683     QualType::DestructionKind dtorKind = type.isDestructedType();
1684     if (!dtorKind) continue;
1685 
1686     CodeGenFunction::Destroyer *destroyer = nullptr;
1687 
1688     // Use a call to objc_storeStrong to destroy strong ivars, for the
1689     // general benefit of the tools.
1690     if (dtorKind == QualType::DK_objc_strong_lifetime) {
1691       destroyer = destroyARCStrongWithStore;
1692 
1693     // Otherwise use the default for the destruction kind.
1694     } else {
1695       destroyer = CGF.getDestroyer(dtorKind);
1696     }
1697 
1698     CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind);
1699 
1700     CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer,
1701                                          cleanupKind & EHCleanup);
1702   }
1703 
1704   assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?");
1705 }
1706 
1707 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1708                                                  ObjCMethodDecl *MD,
1709                                                  bool ctor) {
1710   MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface());
1711   StartObjCMethod(MD, IMP->getClassInterface());
1712 
1713   // Emit .cxx_construct.
1714   if (ctor) {
1715     // Suppress the final autorelease in ARC.
1716     AutoreleaseResult = false;
1717 
1718     for (const auto *IvarInit : IMP->inits()) {
1719       FieldDecl *Field = IvarInit->getAnyMember();
1720       ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field);
1721       LValue LV = EmitLValueForIvar(TypeOfSelfObject(),
1722                                     LoadObjCSelf(), Ivar, 0);
1723       EmitAggExpr(IvarInit->getInit(),
1724                   AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed,
1725                                           AggValueSlot::DoesNotNeedGCBarriers,
1726                                           AggValueSlot::IsNotAliased,
1727                                           AggValueSlot::DoesNotOverlap));
1728     }
1729     // constructor returns 'self'.
1730     CodeGenTypes &Types = CGM.getTypes();
1731     QualType IdTy(CGM.getContext().getObjCIdType());
1732     llvm::Value *SelfAsId =
1733       Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
1734     EmitReturnOfRValue(RValue::get(SelfAsId), IdTy);
1735 
1736   // Emit .cxx_destruct.
1737   } else {
1738     emitCXXDestructMethod(*this, IMP);
1739   }
1740   FinishFunction();
1741 }
1742 
1743 llvm::Value *CodeGenFunction::LoadObjCSelf() {
1744   VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl();
1745   DeclRefExpr DRE(getContext(), Self,
1746                   /*is enclosing local*/ (CurFuncDecl != CurCodeDecl),
1747                   Self->getType(), VK_LValue, SourceLocation());
1748   return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation());
1749 }
1750 
1751 QualType CodeGenFunction::TypeOfSelfObject() {
1752   const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
1753   ImplicitParamDecl *selfDecl = OMD->getSelfDecl();
1754   const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>(
1755     getContext().getCanonicalType(selfDecl->getType()));
1756   return PTy->getPointeeType();
1757 }
1758 
1759 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){
1760   llvm::FunctionCallee EnumerationMutationFnPtr =
1761       CGM.getObjCRuntime().EnumerationMutationFunction();
1762   if (!EnumerationMutationFnPtr) {
1763     CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime");
1764     return;
1765   }
1766   CGCallee EnumerationMutationFn =
1767     CGCallee::forDirect(EnumerationMutationFnPtr);
1768 
1769   CGDebugInfo *DI = getDebugInfo();
1770   if (DI)
1771     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
1772 
1773   RunCleanupsScope ForScope(*this);
1774 
1775   // The local variable comes into scope immediately.
1776   AutoVarEmission variable = AutoVarEmission::invalid();
1777   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement()))
1778     variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl()));
1779 
1780   JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end");
1781 
1782   // Fast enumeration state.
1783   QualType StateTy = CGM.getObjCFastEnumerationStateType();
1784   Address StatePtr = CreateMemTemp(StateTy, "state.ptr");
1785   EmitNullInitialization(StatePtr, StateTy);
1786 
1787   // Number of elements in the items array.
1788   static const unsigned NumItems = 16;
1789 
1790   // Fetch the countByEnumeratingWithState:objects:count: selector.
1791   const IdentifierInfo *II[] = {
1792       &CGM.getContext().Idents.get("countByEnumeratingWithState"),
1793       &CGM.getContext().Idents.get("objects"),
1794       &CGM.getContext().Idents.get("count")};
1795   Selector FastEnumSel =
1796       CGM.getContext().Selectors.getSelector(std::size(II), &II[0]);
1797 
1798   QualType ItemsTy = getContext().getConstantArrayType(
1799       getContext().getObjCIdType(), llvm::APInt(32, NumItems), nullptr,
1800       ArraySizeModifier::Normal, 0);
1801   Address ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr");
1802 
1803   // Emit the collection pointer.  In ARC, we do a retain.
1804   llvm::Value *Collection;
1805   if (getLangOpts().ObjCAutoRefCount) {
1806     Collection = EmitARCRetainScalarExpr(S.getCollection());
1807 
1808     // Enter a cleanup to do the release.
1809     EmitObjCConsumeObject(S.getCollection()->getType(), Collection);
1810   } else {
1811     Collection = EmitScalarExpr(S.getCollection());
1812   }
1813 
1814   // The 'continue' label needs to appear within the cleanup for the
1815   // collection object.
1816   JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next");
1817 
1818   // Send it our message:
1819   CallArgList Args;
1820 
1821   // The first argument is a temporary of the enumeration-state type.
1822   Args.add(RValue::get(StatePtr, *this), getContext().getPointerType(StateTy));
1823 
1824   // The second argument is a temporary array with space for NumItems
1825   // pointers.  We'll actually be loading elements from the array
1826   // pointer written into the control state; this buffer is so that
1827   // collections that *aren't* backed by arrays can still queue up
1828   // batches of elements.
1829   Args.add(RValue::get(ItemsPtr, *this), getContext().getPointerType(ItemsTy));
1830 
1831   // The third argument is the capacity of that temporary array.
1832   llvm::Type *NSUIntegerTy = ConvertType(getContext().getNSUIntegerType());
1833   llvm::Constant *Count = llvm::ConstantInt::get(NSUIntegerTy, NumItems);
1834   Args.add(RValue::get(Count), getContext().getNSUIntegerType());
1835 
1836   // Start the enumeration.
1837   RValue CountRV =
1838       CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1839                                                getContext().getNSUIntegerType(),
1840                                                FastEnumSel, Collection, Args);
1841 
1842   // The initial number of objects that were returned in the buffer.
1843   llvm::Value *initialBufferLimit = CountRV.getScalarVal();
1844 
1845   llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty");
1846   llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit");
1847 
1848   llvm::Value *zero = llvm::Constant::getNullValue(NSUIntegerTy);
1849 
1850   // If the limit pointer was zero to begin with, the collection is
1851   // empty; skip all this. Set the branch weight assuming this has the same
1852   // probability of exiting the loop as any other loop exit.
1853   uint64_t EntryCount = getCurrentProfileCount();
1854   Builder.CreateCondBr(
1855       Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), EmptyBB,
1856       LoopInitBB,
1857       createProfileWeights(EntryCount, getProfileCount(S.getBody())));
1858 
1859   // Otherwise, initialize the loop.
1860   EmitBlock(LoopInitBB);
1861 
1862   // Save the initial mutations value.  This is the value at an
1863   // address that was written into the state object by
1864   // countByEnumeratingWithState:objects:count:.
1865   Address StateMutationsPtrPtr =
1866       Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr");
1867   llvm::Value *StateMutationsPtr
1868     = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1869 
1870   llvm::Type *UnsignedLongTy = ConvertType(getContext().UnsignedLongTy);
1871   llvm::Value *initialMutations =
1872     Builder.CreateAlignedLoad(UnsignedLongTy, StateMutationsPtr,
1873                               getPointerAlign(), "forcoll.initial-mutations");
1874 
1875   // Start looping.  This is the point we return to whenever we have a
1876   // fresh, non-empty batch of objects.
1877   llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody");
1878   EmitBlock(LoopBodyBB);
1879 
1880   // The current index into the buffer.
1881   llvm::PHINode *index = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.index");
1882   index->addIncoming(zero, LoopInitBB);
1883 
1884   // The current buffer size.
1885   llvm::PHINode *count = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.count");
1886   count->addIncoming(initialBufferLimit, LoopInitBB);
1887 
1888   incrementProfileCounter(&S);
1889 
1890   // Check whether the mutations value has changed from where it was
1891   // at start.  StateMutationsPtr should actually be invariant between
1892   // refreshes.
1893   StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1894   llvm::Value *currentMutations
1895     = Builder.CreateAlignedLoad(UnsignedLongTy, StateMutationsPtr,
1896                                 getPointerAlign(), "statemutations");
1897 
1898   llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated");
1899   llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated");
1900 
1901   Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations),
1902                        WasNotMutatedBB, WasMutatedBB);
1903 
1904   // If so, call the enumeration-mutation function.
1905   EmitBlock(WasMutatedBB);
1906   llvm::Type *ObjCIdType = ConvertType(getContext().getObjCIdType());
1907   llvm::Value *V =
1908     Builder.CreateBitCast(Collection, ObjCIdType);
1909   CallArgList Args2;
1910   Args2.add(RValue::get(V), getContext().getObjCIdType());
1911   // FIXME: We shouldn't need to get the function info here, the runtime already
1912   // should have computed it to build the function.
1913   EmitCall(
1914           CGM.getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, Args2),
1915            EnumerationMutationFn, ReturnValueSlot(), Args2);
1916 
1917   // Otherwise, or if the mutation function returns, just continue.
1918   EmitBlock(WasNotMutatedBB);
1919 
1920   // Initialize the element variable.
1921   RunCleanupsScope elementVariableScope(*this);
1922   bool elementIsVariable;
1923   LValue elementLValue;
1924   QualType elementType;
1925   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) {
1926     // Initialize the variable, in case it's a __block variable or something.
1927     EmitAutoVarInit(variable);
1928 
1929     const VarDecl *D = cast<VarDecl>(SD->getSingleDecl());
1930     DeclRefExpr tempDRE(getContext(), const_cast<VarDecl *>(D), false,
1931                         D->getType(), VK_LValue, SourceLocation());
1932     elementLValue = EmitLValue(&tempDRE);
1933     elementType = D->getType();
1934     elementIsVariable = true;
1935 
1936     if (D->isARCPseudoStrong())
1937       elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone);
1938   } else {
1939     elementLValue = LValue(); // suppress warning
1940     elementType = cast<Expr>(S.getElement())->getType();
1941     elementIsVariable = false;
1942   }
1943   llvm::Type *convertedElementType = ConvertType(elementType);
1944 
1945   // Fetch the buffer out of the enumeration state.
1946   // TODO: this pointer should actually be invariant between
1947   // refreshes, which would help us do certain loop optimizations.
1948   Address StateItemsPtr =
1949       Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr");
1950   llvm::Value *EnumStateItems =
1951     Builder.CreateLoad(StateItemsPtr, "stateitems");
1952 
1953   // Fetch the value at the current index from the buffer.
1954   llvm::Value *CurrentItemPtr = Builder.CreateInBoundsGEP(
1955       ObjCIdType, EnumStateItems, index, "currentitem.ptr");
1956   llvm::Value *CurrentItem =
1957     Builder.CreateAlignedLoad(ObjCIdType, CurrentItemPtr, getPointerAlign());
1958 
1959   if (SanOpts.has(SanitizerKind::ObjCCast)) {
1960     // Before using an item from the collection, check that the implicit cast
1961     // from id to the element type is valid. This is done with instrumentation
1962     // roughly corresponding to:
1963     //
1964     //   if (![item isKindOfClass:expectedCls]) { /* emit diagnostic */ }
1965     const ObjCObjectPointerType *ObjPtrTy =
1966         elementType->getAsObjCInterfacePointerType();
1967     const ObjCInterfaceType *InterfaceTy =
1968         ObjPtrTy ? ObjPtrTy->getInterfaceType() : nullptr;
1969     if (InterfaceTy) {
1970       SanitizerScope SanScope(this);
1971       auto &C = CGM.getContext();
1972       assert(InterfaceTy->getDecl() && "No decl for ObjC interface type");
1973       Selector IsKindOfClassSel = GetUnarySelector("isKindOfClass", C);
1974       CallArgList IsKindOfClassArgs;
1975       llvm::Value *Cls =
1976           CGM.getObjCRuntime().GetClass(*this, InterfaceTy->getDecl());
1977       IsKindOfClassArgs.add(RValue::get(Cls), C.getObjCClassType());
1978       llvm::Value *IsClass =
1979           CGM.getObjCRuntime()
1980               .GenerateMessageSend(*this, ReturnValueSlot(), C.BoolTy,
1981                                    IsKindOfClassSel, CurrentItem,
1982                                    IsKindOfClassArgs)
1983               .getScalarVal();
1984       llvm::Constant *StaticData[] = {
1985           EmitCheckSourceLocation(S.getBeginLoc()),
1986           EmitCheckTypeDescriptor(QualType(InterfaceTy, 0))};
1987       EmitCheck({{IsClass, SanitizerKind::SO_ObjCCast}},
1988                 SanitizerHandler::InvalidObjCCast,
1989                 ArrayRef<llvm::Constant *>(StaticData), CurrentItem);
1990     }
1991   }
1992 
1993   // Cast that value to the right type.
1994   CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType,
1995                                       "currentitem");
1996 
1997   // Make sure we have an l-value.  Yes, this gets evaluated every
1998   // time through the loop.
1999   if (!elementIsVariable) {
2000     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
2001     EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue);
2002   } else {
2003     EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue,
2004                            /*isInit*/ true);
2005   }
2006 
2007   // If we do have an element variable, this assignment is the end of
2008   // its initialization.
2009   if (elementIsVariable)
2010     EmitAutoVarCleanups(variable);
2011 
2012   // Perform the loop body, setting up break and continue labels.
2013   BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody));
2014   {
2015     RunCleanupsScope Scope(*this);
2016     EmitStmt(S.getBody());
2017   }
2018   BreakContinueStack.pop_back();
2019 
2020   // Destroy the element variable now.
2021   elementVariableScope.ForceCleanup();
2022 
2023   // Check whether there are more elements.
2024   EmitBlock(AfterBody.getBlock());
2025 
2026   llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch");
2027 
2028   // First we check in the local buffer.
2029   llvm::Value *indexPlusOne =
2030       Builder.CreateNUWAdd(index, llvm::ConstantInt::get(NSUIntegerTy, 1));
2031 
2032   // If we haven't overrun the buffer yet, we can continue.
2033   // Set the branch weights based on the simplifying assumption that this is
2034   // like a while-loop, i.e., ignoring that the false branch fetches more
2035   // elements and then returns to the loop.
2036   Builder.CreateCondBr(
2037       Builder.CreateICmpULT(indexPlusOne, count), LoopBodyBB, FetchMoreBB,
2038       createProfileWeights(getProfileCount(S.getBody()), EntryCount));
2039 
2040   index->addIncoming(indexPlusOne, AfterBody.getBlock());
2041   count->addIncoming(count, AfterBody.getBlock());
2042 
2043   // Otherwise, we have to fetch more elements.
2044   EmitBlock(FetchMoreBB);
2045 
2046   CountRV =
2047       CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2048                                                getContext().getNSUIntegerType(),
2049                                                FastEnumSel, Collection, Args);
2050 
2051   // If we got a zero count, we're done.
2052   llvm::Value *refetchCount = CountRV.getScalarVal();
2053 
2054   // (note that the message send might split FetchMoreBB)
2055   index->addIncoming(zero, Builder.GetInsertBlock());
2056   count->addIncoming(refetchCount, Builder.GetInsertBlock());
2057 
2058   Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero),
2059                        EmptyBB, LoopBodyBB);
2060 
2061   // No more elements.
2062   EmitBlock(EmptyBB);
2063 
2064   if (!elementIsVariable) {
2065     // If the element was not a declaration, set it to be null.
2066 
2067     llvm::Value *null = llvm::Constant::getNullValue(convertedElementType);
2068     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
2069     EmitStoreThroughLValue(RValue::get(null), elementLValue);
2070   }
2071 
2072   if (DI)
2073     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
2074 
2075   ForScope.ForceCleanup();
2076   EmitBlock(LoopEnd.getBlock());
2077 }
2078 
2079 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) {
2080   CGM.getObjCRuntime().EmitTryStmt(*this, S);
2081 }
2082 
2083 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) {
2084   CGM.getObjCRuntime().EmitThrowStmt(*this, S);
2085 }
2086 
2087 void CodeGenFunction::EmitObjCAtSynchronizedStmt(
2088                                               const ObjCAtSynchronizedStmt &S) {
2089   CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S);
2090 }
2091 
2092 namespace {
2093   struct CallObjCRelease final : EHScopeStack::Cleanup {
2094     CallObjCRelease(llvm::Value *object) : object(object) {}
2095     llvm::Value *object;
2096 
2097     void Emit(CodeGenFunction &CGF, Flags flags) override {
2098       // Releases at the end of the full-expression are imprecise.
2099       CGF.EmitARCRelease(object, ARCImpreciseLifetime);
2100     }
2101   };
2102 }
2103 
2104 /// Produce the code for a CK_ARCConsumeObject.  Does a primitive
2105 /// release at the end of the full-expression.
2106 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type,
2107                                                     llvm::Value *object) {
2108   // If we're in a conditional branch, we need to make the cleanup
2109   // conditional.
2110   pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object);
2111   return object;
2112 }
2113 
2114 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type,
2115                                                            llvm::Value *value) {
2116   return EmitARCRetainAutorelease(type, value);
2117 }
2118 
2119 /// Given a number of pointers, inform the optimizer that they're
2120 /// being intrinsically used up until this point in the program.
2121 void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) {
2122   llvm::Function *&fn = CGM.getObjCEntrypoints().clang_arc_use;
2123   if (!fn)
2124     fn = CGM.getIntrinsic(llvm::Intrinsic::objc_clang_arc_use);
2125 
2126   // This isn't really a "runtime" function, but as an intrinsic it
2127   // doesn't really matter as long as we align things up.
2128   EmitNounwindRuntimeCall(fn, values);
2129 }
2130 
2131 /// Emit a call to "clang.arc.noop.use", which consumes the result of a call
2132 /// that has operand bundle "clang.arc.attachedcall".
2133 void CodeGenFunction::EmitARCNoopIntrinsicUse(ArrayRef<llvm::Value *> values) {
2134   llvm::Function *&fn = CGM.getObjCEntrypoints().clang_arc_noop_use;
2135   if (!fn)
2136     fn = CGM.getIntrinsic(llvm::Intrinsic::objc_clang_arc_noop_use);
2137   EmitNounwindRuntimeCall(fn, values);
2138 }
2139 
2140 static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM, llvm::Value *RTF) {
2141   if (auto *F = dyn_cast<llvm::Function>(RTF)) {
2142     // If the target runtime doesn't naturally support ARC, emit weak
2143     // references to the runtime support library.  We don't really
2144     // permit this to fail, but we need a particular relocation style.
2145     if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC() &&
2146         !CGM.getTriple().isOSBinFormatCOFF()) {
2147       F->setLinkage(llvm::Function::ExternalWeakLinkage);
2148     }
2149   }
2150 }
2151 
2152 static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM,
2153                                          llvm::FunctionCallee RTF) {
2154   setARCRuntimeFunctionLinkage(CGM, RTF.getCallee());
2155 }
2156 
2157 static llvm::Function *getARCIntrinsic(llvm::Intrinsic::ID IntID,
2158                                        CodeGenModule &CGM) {
2159   llvm::Function *fn = CGM.getIntrinsic(IntID);
2160   setARCRuntimeFunctionLinkage(CGM, fn);
2161   return fn;
2162 }
2163 
2164 /// Perform an operation having the signature
2165 ///   i8* (i8*)
2166 /// where a null input causes a no-op and returns null.
2167 static llvm::Value *emitARCValueOperation(
2168     CodeGenFunction &CGF, llvm::Value *value, llvm::Type *returnType,
2169     llvm::Function *&fn, llvm::Intrinsic::ID IntID,
2170     llvm::CallInst::TailCallKind tailKind = llvm::CallInst::TCK_None) {
2171   if (isa<llvm::ConstantPointerNull>(value))
2172     return value;
2173 
2174   if (!fn)
2175     fn = getARCIntrinsic(IntID, CGF.CGM);
2176 
2177   // Cast the argument to 'id'.
2178   llvm::Type *origType = returnType ? returnType : value->getType();
2179   value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
2180 
2181   // Call the function.
2182   llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value);
2183   call->setTailCallKind(tailKind);
2184 
2185   // Cast the result back to the original type.
2186   return CGF.Builder.CreateBitCast(call, origType);
2187 }
2188 
2189 /// Perform an operation having the following signature:
2190 ///   i8* (i8**)
2191 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF, Address addr,
2192                                          llvm::Function *&fn,
2193                                          llvm::Intrinsic::ID IntID) {
2194   if (!fn)
2195     fn = getARCIntrinsic(IntID, CGF.CGM);
2196 
2197   return CGF.EmitNounwindRuntimeCall(fn, addr.emitRawPointer(CGF));
2198 }
2199 
2200 /// Perform an operation having the following signature:
2201 ///   i8* (i8**, i8*)
2202 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF, Address addr,
2203                                           llvm::Value *value,
2204                                           llvm::Function *&fn,
2205                                           llvm::Intrinsic::ID IntID,
2206                                           bool ignored) {
2207   assert(addr.getElementType() == value->getType());
2208 
2209   if (!fn)
2210     fn = getARCIntrinsic(IntID, CGF.CGM);
2211 
2212   llvm::Type *origType = value->getType();
2213 
2214   llvm::Value *args[] = {
2215       CGF.Builder.CreateBitCast(addr.emitRawPointer(CGF), CGF.Int8PtrPtrTy),
2216       CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy)};
2217   llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args);
2218 
2219   if (ignored) return nullptr;
2220 
2221   return CGF.Builder.CreateBitCast(result, origType);
2222 }
2223 
2224 /// Perform an operation having the following signature:
2225 ///   void (i8**, i8**)
2226 static void emitARCCopyOperation(CodeGenFunction &CGF, Address dst, Address src,
2227                                  llvm::Function *&fn,
2228                                  llvm::Intrinsic::ID IntID) {
2229   assert(dst.getType() == src.getType());
2230 
2231   if (!fn)
2232     fn = getARCIntrinsic(IntID, CGF.CGM);
2233 
2234   llvm::Value *args[] = {
2235       CGF.Builder.CreateBitCast(dst.emitRawPointer(CGF), CGF.Int8PtrPtrTy),
2236       CGF.Builder.CreateBitCast(src.emitRawPointer(CGF), CGF.Int8PtrPtrTy)};
2237   CGF.EmitNounwindRuntimeCall(fn, args);
2238 }
2239 
2240 /// Perform an operation having the signature
2241 ///   i8* (i8*)
2242 /// where a null input causes a no-op and returns null.
2243 static llvm::Value *emitObjCValueOperation(CodeGenFunction &CGF,
2244                                            llvm::Value *value,
2245                                            llvm::Type *returnType,
2246                                            llvm::FunctionCallee &fn,
2247                                            StringRef fnName) {
2248   if (isa<llvm::ConstantPointerNull>(value))
2249     return value;
2250 
2251   if (!fn) {
2252     llvm::FunctionType *fnType =
2253       llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false);
2254     fn = CGF.CGM.CreateRuntimeFunction(fnType, fnName);
2255 
2256     // We have Native ARC, so set nonlazybind attribute for performance
2257     if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee()))
2258       if (fnName == "objc_retain")
2259         f->addFnAttr(llvm::Attribute::NonLazyBind);
2260   }
2261 
2262   // Cast the argument to 'id'.
2263   llvm::Type *origType = returnType ? returnType : value->getType();
2264   value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
2265 
2266   // Call the function.
2267   llvm::CallBase *Inst = CGF.EmitCallOrInvoke(fn, value);
2268 
2269   // Mark calls to objc_autorelease as tail on the assumption that methods
2270   // overriding autorelease do not touch anything on the stack.
2271   if (fnName == "objc_autorelease")
2272     if (auto *Call = dyn_cast<llvm::CallInst>(Inst))
2273       Call->setTailCall();
2274 
2275   // Cast the result back to the original type.
2276   return CGF.Builder.CreateBitCast(Inst, origType);
2277 }
2278 
2279 /// Produce the code to do a retain.  Based on the type, calls one of:
2280 ///   call i8* \@objc_retain(i8* %value)
2281 ///   call i8* \@objc_retainBlock(i8* %value)
2282 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) {
2283   if (type->isBlockPointerType())
2284     return EmitARCRetainBlock(value, /*mandatory*/ false);
2285   else
2286     return EmitARCRetainNonBlock(value);
2287 }
2288 
2289 /// Retain the given object, with normal retain semantics.
2290 ///   call i8* \@objc_retain(i8* %value)
2291 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) {
2292   return emitARCValueOperation(*this, value, nullptr,
2293                                CGM.getObjCEntrypoints().objc_retain,
2294                                llvm::Intrinsic::objc_retain);
2295 }
2296 
2297 /// Retain the given block, with _Block_copy semantics.
2298 ///   call i8* \@objc_retainBlock(i8* %value)
2299 ///
2300 /// \param mandatory - If false, emit the call with metadata
2301 /// indicating that it's okay for the optimizer to eliminate this call
2302 /// if it can prove that the block never escapes except down the stack.
2303 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value,
2304                                                  bool mandatory) {
2305   llvm::Value *result
2306     = emitARCValueOperation(*this, value, nullptr,
2307                             CGM.getObjCEntrypoints().objc_retainBlock,
2308                             llvm::Intrinsic::objc_retainBlock);
2309 
2310   // If the copy isn't mandatory, add !clang.arc.copy_on_escape to
2311   // tell the optimizer that it doesn't need to do this copy if the
2312   // block doesn't escape, where being passed as an argument doesn't
2313   // count as escaping.
2314   if (!mandatory && isa<llvm::Instruction>(result)) {
2315     llvm::CallInst *call
2316       = cast<llvm::CallInst>(result->stripPointerCasts());
2317     assert(call->getCalledOperand() ==
2318            CGM.getObjCEntrypoints().objc_retainBlock);
2319 
2320     call->setMetadata("clang.arc.copy_on_escape",
2321                       llvm::MDNode::get(Builder.getContext(), {}));
2322   }
2323 
2324   return result;
2325 }
2326 
2327 static void emitAutoreleasedReturnValueMarker(CodeGenFunction &CGF) {
2328   // Fetch the void(void) inline asm which marks that we're going to
2329   // do something with the autoreleased return value.
2330   llvm::InlineAsm *&marker
2331     = CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker;
2332   if (!marker) {
2333     StringRef assembly
2334       = CGF.CGM.getTargetCodeGenInfo()
2335            .getARCRetainAutoreleasedReturnValueMarker();
2336 
2337     // If we have an empty assembly string, there's nothing to do.
2338     if (assembly.empty()) {
2339 
2340     // Otherwise, at -O0, build an inline asm that we're going to call
2341     // in a moment.
2342     } else if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) {
2343       llvm::FunctionType *type =
2344         llvm::FunctionType::get(CGF.VoidTy, /*variadic*/false);
2345 
2346       marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true);
2347 
2348     // If we're at -O1 and above, we don't want to litter the code
2349     // with this marker yet, so leave a breadcrumb for the ARC
2350     // optimizer to pick up.
2351     } else {
2352       const char *retainRVMarkerKey = llvm::objcarc::getRVMarkerModuleFlagStr();
2353       if (!CGF.CGM.getModule().getModuleFlag(retainRVMarkerKey)) {
2354         auto *str = llvm::MDString::get(CGF.getLLVMContext(), assembly);
2355         CGF.CGM.getModule().addModuleFlag(llvm::Module::Error,
2356                                           retainRVMarkerKey, str);
2357       }
2358     }
2359   }
2360 
2361   // Call the marker asm if we made one, which we do only at -O0.
2362   if (marker)
2363     CGF.Builder.CreateCall(marker, {}, CGF.getBundlesForFunclet(marker));
2364 }
2365 
2366 static llvm::Value *emitOptimizedARCReturnCall(llvm::Value *value,
2367                                                bool IsRetainRV,
2368                                                CodeGenFunction &CGF) {
2369   emitAutoreleasedReturnValueMarker(CGF);
2370 
2371   // Add operand bundle "clang.arc.attachedcall" to the call instead of emitting
2372   // retainRV or claimRV calls in the IR. We currently do this only when the
2373   // optimization level isn't -O0 since global-isel, which is currently run at
2374   // -O0, doesn't know about the operand bundle.
2375   ObjCEntrypoints &EPs = CGF.CGM.getObjCEntrypoints();
2376   llvm::Function *&EP = IsRetainRV
2377                             ? EPs.objc_retainAutoreleasedReturnValue
2378                             : EPs.objc_unsafeClaimAutoreleasedReturnValue;
2379   llvm::Intrinsic::ID IID =
2380       IsRetainRV ? llvm::Intrinsic::objc_retainAutoreleasedReturnValue
2381                  : llvm::Intrinsic::objc_unsafeClaimAutoreleasedReturnValue;
2382   EP = getARCIntrinsic(IID, CGF.CGM);
2383 
2384   llvm::Triple::ArchType Arch = CGF.CGM.getTriple().getArch();
2385 
2386   // FIXME: Do this on all targets and at -O0 too. This can be enabled only if
2387   // the target backend knows how to handle the operand bundle.
2388   if (CGF.CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2389       (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::x86_64)) {
2390     llvm::Value *bundleArgs[] = {EP};
2391     llvm::OperandBundleDef OB("clang.arc.attachedcall", bundleArgs);
2392     auto *oldCall = cast<llvm::CallBase>(value);
2393     llvm::CallBase *newCall = llvm::CallBase::addOperandBundle(
2394         oldCall, llvm::LLVMContext::OB_clang_arc_attachedcall, OB,
2395         oldCall->getIterator());
2396     newCall->copyMetadata(*oldCall);
2397     oldCall->replaceAllUsesWith(newCall);
2398     oldCall->eraseFromParent();
2399     CGF.EmitARCNoopIntrinsicUse(newCall);
2400     return newCall;
2401   }
2402 
2403   bool isNoTail =
2404       CGF.CGM.getTargetCodeGenInfo().markARCOptimizedReturnCallsAsNoTail();
2405   llvm::CallInst::TailCallKind tailKind =
2406       isNoTail ? llvm::CallInst::TCK_NoTail : llvm::CallInst::TCK_None;
2407   return emitARCValueOperation(CGF, value, nullptr, EP, IID, tailKind);
2408 }
2409 
2410 /// Retain the given object which is the result of a function call.
2411 ///   call i8* \@objc_retainAutoreleasedReturnValue(i8* %value)
2412 ///
2413 /// Yes, this function name is one character away from a different
2414 /// call with completely different semantics.
2415 llvm::Value *
2416 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) {
2417   return emitOptimizedARCReturnCall(value, true, *this);
2418 }
2419 
2420 /// Claim a possibly-autoreleased return value at +0.  This is only
2421 /// valid to do in contexts which do not rely on the retain to keep
2422 /// the object valid for all of its uses; for example, when
2423 /// the value is ignored, or when it is being assigned to an
2424 /// __unsafe_unretained variable.
2425 ///
2426 ///   call i8* \@objc_unsafeClaimAutoreleasedReturnValue(i8* %value)
2427 llvm::Value *
2428 CodeGenFunction::EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value) {
2429   return emitOptimizedARCReturnCall(value, false, *this);
2430 }
2431 
2432 /// Release the given object.
2433 ///   call void \@objc_release(i8* %value)
2434 void CodeGenFunction::EmitARCRelease(llvm::Value *value,
2435                                      ARCPreciseLifetime_t precise) {
2436   if (isa<llvm::ConstantPointerNull>(value)) return;
2437 
2438   llvm::Function *&fn = CGM.getObjCEntrypoints().objc_release;
2439   if (!fn)
2440     fn = getARCIntrinsic(llvm::Intrinsic::objc_release, CGM);
2441 
2442   // Cast the argument to 'id'.
2443   value = Builder.CreateBitCast(value, Int8PtrTy);
2444 
2445   // Call objc_release.
2446   llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value);
2447 
2448   if (precise == ARCImpreciseLifetime) {
2449     call->setMetadata("clang.imprecise_release",
2450                       llvm::MDNode::get(Builder.getContext(), {}));
2451   }
2452 }
2453 
2454 /// Destroy a __strong variable.
2455 ///
2456 /// At -O0, emit a call to store 'null' into the address;
2457 /// instrumenting tools prefer this because the address is exposed,
2458 /// but it's relatively cumbersome to optimize.
2459 ///
2460 /// At -O1 and above, just load and call objc_release.
2461 ///
2462 ///   call void \@objc_storeStrong(i8** %addr, i8* null)
2463 void CodeGenFunction::EmitARCDestroyStrong(Address addr,
2464                                            ARCPreciseLifetime_t precise) {
2465   if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2466     llvm::Value *null = getNullForVariable(addr);
2467     EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
2468     return;
2469   }
2470 
2471   llvm::Value *value = Builder.CreateLoad(addr);
2472   EmitARCRelease(value, precise);
2473 }
2474 
2475 /// Store into a strong object.  Always calls this:
2476 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2477 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(Address addr,
2478                                                      llvm::Value *value,
2479                                                      bool ignored) {
2480   assert(addr.getElementType() == value->getType());
2481 
2482   llvm::Function *&fn = CGM.getObjCEntrypoints().objc_storeStrong;
2483   if (!fn)
2484     fn = getARCIntrinsic(llvm::Intrinsic::objc_storeStrong, CGM);
2485 
2486   llvm::Value *args[] = {
2487       Builder.CreateBitCast(addr.emitRawPointer(*this), Int8PtrPtrTy),
2488       Builder.CreateBitCast(value, Int8PtrTy)};
2489   EmitNounwindRuntimeCall(fn, args);
2490 
2491   if (ignored) return nullptr;
2492   return value;
2493 }
2494 
2495 /// Store into a strong object.  Sometimes calls this:
2496 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2497 /// Other times, breaks it down into components.
2498 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst,
2499                                                  llvm::Value *newValue,
2500                                                  bool ignored) {
2501   QualType type = dst.getType();
2502   bool isBlock = type->isBlockPointerType();
2503 
2504   // Use a store barrier at -O0 unless this is a block type or the
2505   // lvalue is inadequately aligned.
2506   if (shouldUseFusedARCCalls() &&
2507       !isBlock &&
2508       (dst.getAlignment().isZero() ||
2509        dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) {
2510     return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored);
2511   }
2512 
2513   // Otherwise, split it out.
2514 
2515   // Retain the new value.
2516   newValue = EmitARCRetain(type, newValue);
2517 
2518   // Read the old value.
2519   llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation());
2520 
2521   // Store.  We do this before the release so that any deallocs won't
2522   // see the old value.
2523   EmitStoreOfScalar(newValue, dst);
2524 
2525   // Finally, release the old value.
2526   EmitARCRelease(oldValue, dst.isARCPreciseLifetime());
2527 
2528   return newValue;
2529 }
2530 
2531 /// Autorelease the given object.
2532 ///   call i8* \@objc_autorelease(i8* %value)
2533 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) {
2534   return emitARCValueOperation(*this, value, nullptr,
2535                                CGM.getObjCEntrypoints().objc_autorelease,
2536                                llvm::Intrinsic::objc_autorelease);
2537 }
2538 
2539 /// Autorelease the given object.
2540 ///   call i8* \@objc_autoreleaseReturnValue(i8* %value)
2541 llvm::Value *
2542 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) {
2543   return emitARCValueOperation(*this, value, nullptr,
2544                             CGM.getObjCEntrypoints().objc_autoreleaseReturnValue,
2545                                llvm::Intrinsic::objc_autoreleaseReturnValue,
2546                                llvm::CallInst::TCK_Tail);
2547 }
2548 
2549 /// Do a fused retain/autorelease of the given object.
2550 ///   call i8* \@objc_retainAutoreleaseReturnValue(i8* %value)
2551 llvm::Value *
2552 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) {
2553   return emitARCValueOperation(*this, value, nullptr,
2554                      CGM.getObjCEntrypoints().objc_retainAutoreleaseReturnValue,
2555                              llvm::Intrinsic::objc_retainAutoreleaseReturnValue,
2556                                llvm::CallInst::TCK_Tail);
2557 }
2558 
2559 /// Do a fused retain/autorelease of the given object.
2560 ///   call i8* \@objc_retainAutorelease(i8* %value)
2561 /// or
2562 ///   %retain = call i8* \@objc_retainBlock(i8* %value)
2563 ///   call i8* \@objc_autorelease(i8* %retain)
2564 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type,
2565                                                        llvm::Value *value) {
2566   if (!type->isBlockPointerType())
2567     return EmitARCRetainAutoreleaseNonBlock(value);
2568 
2569   if (isa<llvm::ConstantPointerNull>(value)) return value;
2570 
2571   llvm::Type *origType = value->getType();
2572   value = Builder.CreateBitCast(value, Int8PtrTy);
2573   value = EmitARCRetainBlock(value, /*mandatory*/ true);
2574   value = EmitARCAutorelease(value);
2575   return Builder.CreateBitCast(value, origType);
2576 }
2577 
2578 /// Do a fused retain/autorelease of the given object.
2579 ///   call i8* \@objc_retainAutorelease(i8* %value)
2580 llvm::Value *
2581 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) {
2582   return emitARCValueOperation(*this, value, nullptr,
2583                                CGM.getObjCEntrypoints().objc_retainAutorelease,
2584                                llvm::Intrinsic::objc_retainAutorelease);
2585 }
2586 
2587 /// i8* \@objc_loadWeak(i8** %addr)
2588 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
2589 llvm::Value *CodeGenFunction::EmitARCLoadWeak(Address addr) {
2590   return emitARCLoadOperation(*this, addr,
2591                               CGM.getObjCEntrypoints().objc_loadWeak,
2592                               llvm::Intrinsic::objc_loadWeak);
2593 }
2594 
2595 /// i8* \@objc_loadWeakRetained(i8** %addr)
2596 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(Address addr) {
2597   return emitARCLoadOperation(*this, addr,
2598                               CGM.getObjCEntrypoints().objc_loadWeakRetained,
2599                               llvm::Intrinsic::objc_loadWeakRetained);
2600 }
2601 
2602 /// i8* \@objc_storeWeak(i8** %addr, i8* %value)
2603 /// Returns %value.
2604 llvm::Value *CodeGenFunction::EmitARCStoreWeak(Address addr,
2605                                                llvm::Value *value,
2606                                                bool ignored) {
2607   return emitARCStoreOperation(*this, addr, value,
2608                                CGM.getObjCEntrypoints().objc_storeWeak,
2609                                llvm::Intrinsic::objc_storeWeak, ignored);
2610 }
2611 
2612 /// i8* \@objc_initWeak(i8** %addr, i8* %value)
2613 /// Returns %value.  %addr is known to not have a current weak entry.
2614 /// Essentially equivalent to:
2615 ///   *addr = nil; objc_storeWeak(addr, value);
2616 void CodeGenFunction::EmitARCInitWeak(Address addr, llvm::Value *value) {
2617   // If we're initializing to null, just write null to memory; no need
2618   // to get the runtime involved.  But don't do this if optimization
2619   // is enabled, because accounting for this would make the optimizer
2620   // much more complicated.
2621   if (isa<llvm::ConstantPointerNull>(value) &&
2622       CGM.getCodeGenOpts().OptimizationLevel == 0) {
2623     Builder.CreateStore(value, addr);
2624     return;
2625   }
2626 
2627   emitARCStoreOperation(*this, addr, value,
2628                         CGM.getObjCEntrypoints().objc_initWeak,
2629                         llvm::Intrinsic::objc_initWeak, /*ignored*/ true);
2630 }
2631 
2632 /// void \@objc_destroyWeak(i8** %addr)
2633 /// Essentially objc_storeWeak(addr, nil).
2634 void CodeGenFunction::EmitARCDestroyWeak(Address addr) {
2635   llvm::Function *&fn = CGM.getObjCEntrypoints().objc_destroyWeak;
2636   if (!fn)
2637     fn = getARCIntrinsic(llvm::Intrinsic::objc_destroyWeak, CGM);
2638 
2639   EmitNounwindRuntimeCall(fn, addr.emitRawPointer(*this));
2640 }
2641 
2642 /// void \@objc_moveWeak(i8** %dest, i8** %src)
2643 /// Disregards the current value in %dest.  Leaves %src pointing to nothing.
2644 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
2645 void CodeGenFunction::EmitARCMoveWeak(Address dst, Address src) {
2646   emitARCCopyOperation(*this, dst, src,
2647                        CGM.getObjCEntrypoints().objc_moveWeak,
2648                        llvm::Intrinsic::objc_moveWeak);
2649 }
2650 
2651 /// void \@objc_copyWeak(i8** %dest, i8** %src)
2652 /// Disregards the current value in %dest.  Essentially
2653 ///   objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
2654 void CodeGenFunction::EmitARCCopyWeak(Address dst, Address src) {
2655   emitARCCopyOperation(*this, dst, src,
2656                        CGM.getObjCEntrypoints().objc_copyWeak,
2657                        llvm::Intrinsic::objc_copyWeak);
2658 }
2659 
2660 void CodeGenFunction::emitARCCopyAssignWeak(QualType Ty, Address DstAddr,
2661                                             Address SrcAddr) {
2662   llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr);
2663   Object = EmitObjCConsumeObject(Ty, Object);
2664   EmitARCStoreWeak(DstAddr, Object, false);
2665 }
2666 
2667 void CodeGenFunction::emitARCMoveAssignWeak(QualType Ty, Address DstAddr,
2668                                             Address SrcAddr) {
2669   llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr);
2670   Object = EmitObjCConsumeObject(Ty, Object);
2671   EmitARCStoreWeak(DstAddr, Object, false);
2672   EmitARCDestroyWeak(SrcAddr);
2673 }
2674 
2675 /// Produce the code to do a objc_autoreleasepool_push.
2676 ///   call i8* \@objc_autoreleasePoolPush(void)
2677 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() {
2678   llvm::Function *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPush;
2679   if (!fn)
2680     fn = getARCIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPush, CGM);
2681 
2682   return EmitNounwindRuntimeCall(fn);
2683 }
2684 
2685 /// Produce the code to do a primitive release.
2686 ///   call void \@objc_autoreleasePoolPop(i8* %ptr)
2687 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) {
2688   assert(value->getType() == Int8PtrTy);
2689 
2690   if (getInvokeDest()) {
2691     // Call the runtime method not the intrinsic if we are handling exceptions
2692     llvm::FunctionCallee &fn =
2693         CGM.getObjCEntrypoints().objc_autoreleasePoolPopInvoke;
2694     if (!fn) {
2695       llvm::FunctionType *fnType =
2696         llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2697       fn = CGM.CreateRuntimeFunction(fnType, "objc_autoreleasePoolPop");
2698       setARCRuntimeFunctionLinkage(CGM, fn);
2699     }
2700 
2701     // objc_autoreleasePoolPop can throw.
2702     EmitRuntimeCallOrInvoke(fn, value);
2703   } else {
2704     llvm::FunctionCallee &fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPop;
2705     if (!fn)
2706       fn = getARCIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPop, CGM);
2707 
2708     EmitRuntimeCall(fn, value);
2709   }
2710 }
2711 
2712 /// Produce the code to do an MRR version objc_autoreleasepool_push.
2713 /// Which is: [[NSAutoreleasePool alloc] init];
2714 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
2715 /// init is declared as: - (id) init; in its NSObject super class.
2716 ///
2717 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() {
2718   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
2719   llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this);
2720   // [NSAutoreleasePool alloc]
2721   const IdentifierInfo *II = &CGM.getContext().Idents.get("alloc");
2722   Selector AllocSel = getContext().Selectors.getSelector(0, &II);
2723   CallArgList Args;
2724   RValue AllocRV =
2725     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2726                                 getContext().getObjCIdType(),
2727                                 AllocSel, Receiver, Args);
2728 
2729   // [Receiver init]
2730   Receiver = AllocRV.getScalarVal();
2731   II = &CGM.getContext().Idents.get("init");
2732   Selector InitSel = getContext().Selectors.getSelector(0, &II);
2733   RValue InitRV =
2734     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2735                                 getContext().getObjCIdType(),
2736                                 InitSel, Receiver, Args);
2737   return InitRV.getScalarVal();
2738 }
2739 
2740 /// Allocate the given objc object.
2741 ///   call i8* \@objc_alloc(i8* %value)
2742 llvm::Value *CodeGenFunction::EmitObjCAlloc(llvm::Value *value,
2743                                             llvm::Type *resultType) {
2744   return emitObjCValueOperation(*this, value, resultType,
2745                                 CGM.getObjCEntrypoints().objc_alloc,
2746                                 "objc_alloc");
2747 }
2748 
2749 /// Allocate the given objc object.
2750 ///   call i8* \@objc_allocWithZone(i8* %value)
2751 llvm::Value *CodeGenFunction::EmitObjCAllocWithZone(llvm::Value *value,
2752                                                     llvm::Type *resultType) {
2753   return emitObjCValueOperation(*this, value, resultType,
2754                                 CGM.getObjCEntrypoints().objc_allocWithZone,
2755                                 "objc_allocWithZone");
2756 }
2757 
2758 llvm::Value *CodeGenFunction::EmitObjCAllocInit(llvm::Value *value,
2759                                                 llvm::Type *resultType) {
2760   return emitObjCValueOperation(*this, value, resultType,
2761                                 CGM.getObjCEntrypoints().objc_alloc_init,
2762                                 "objc_alloc_init");
2763 }
2764 
2765 /// Produce the code to do a primitive release.
2766 /// [tmp drain];
2767 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) {
2768   const IdentifierInfo *II = &CGM.getContext().Idents.get("drain");
2769   Selector DrainSel = getContext().Selectors.getSelector(0, &II);
2770   CallArgList Args;
2771   CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2772                               getContext().VoidTy, DrainSel, Arg, Args);
2773 }
2774 
2775 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF,
2776                                               Address addr,
2777                                               QualType type) {
2778   CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime);
2779 }
2780 
2781 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF,
2782                                                 Address addr,
2783                                                 QualType type) {
2784   CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime);
2785 }
2786 
2787 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF,
2788                                      Address addr,
2789                                      QualType type) {
2790   CGF.EmitARCDestroyWeak(addr);
2791 }
2792 
2793 void CodeGenFunction::emitARCIntrinsicUse(CodeGenFunction &CGF, Address addr,
2794                                           QualType type) {
2795   llvm::Value *value = CGF.Builder.CreateLoad(addr);
2796   CGF.EmitARCIntrinsicUse(value);
2797 }
2798 
2799 /// Autorelease the given object.
2800 ///   call i8* \@objc_autorelease(i8* %value)
2801 llvm::Value *CodeGenFunction::EmitObjCAutorelease(llvm::Value *value,
2802                                                   llvm::Type *returnType) {
2803   return emitObjCValueOperation(
2804       *this, value, returnType,
2805       CGM.getObjCEntrypoints().objc_autoreleaseRuntimeFunction,
2806       "objc_autorelease");
2807 }
2808 
2809 /// Retain the given object, with normal retain semantics.
2810 ///   call i8* \@objc_retain(i8* %value)
2811 llvm::Value *CodeGenFunction::EmitObjCRetainNonBlock(llvm::Value *value,
2812                                                      llvm::Type *returnType) {
2813   return emitObjCValueOperation(
2814       *this, value, returnType,
2815       CGM.getObjCEntrypoints().objc_retainRuntimeFunction, "objc_retain");
2816 }
2817 
2818 /// Release the given object.
2819 ///   call void \@objc_release(i8* %value)
2820 void CodeGenFunction::EmitObjCRelease(llvm::Value *value,
2821                                       ARCPreciseLifetime_t precise) {
2822   if (isa<llvm::ConstantPointerNull>(value)) return;
2823 
2824   llvm::FunctionCallee &fn =
2825       CGM.getObjCEntrypoints().objc_releaseRuntimeFunction;
2826   if (!fn) {
2827     llvm::FunctionType *fnType =
2828         llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2829     fn = CGM.CreateRuntimeFunction(fnType, "objc_release");
2830     setARCRuntimeFunctionLinkage(CGM, fn);
2831     // We have Native ARC, so set nonlazybind attribute for performance
2832     if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee()))
2833       f->addFnAttr(llvm::Attribute::NonLazyBind);
2834   }
2835 
2836   // Cast the argument to 'id'.
2837   value = Builder.CreateBitCast(value, Int8PtrTy);
2838 
2839   // Call objc_release.
2840   llvm::CallBase *call = EmitCallOrInvoke(fn, value);
2841 
2842   if (precise == ARCImpreciseLifetime) {
2843     call->setMetadata("clang.imprecise_release",
2844                       llvm::MDNode::get(Builder.getContext(), {}));
2845   }
2846 }
2847 
2848 namespace {
2849   struct CallObjCAutoreleasePoolObject final : EHScopeStack::Cleanup {
2850     llvm::Value *Token;
2851 
2852     CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2853 
2854     void Emit(CodeGenFunction &CGF, Flags flags) override {
2855       CGF.EmitObjCAutoreleasePoolPop(Token);
2856     }
2857   };
2858   struct CallObjCMRRAutoreleasePoolObject final : EHScopeStack::Cleanup {
2859     llvm::Value *Token;
2860 
2861     CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2862 
2863     void Emit(CodeGenFunction &CGF, Flags flags) override {
2864       CGF.EmitObjCMRRAutoreleasePoolPop(Token);
2865     }
2866   };
2867 }
2868 
2869 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) {
2870   if (CGM.getLangOpts().ObjCAutoRefCount)
2871     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr);
2872   else
2873     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr);
2874 }
2875 
2876 static bool shouldRetainObjCLifetime(Qualifiers::ObjCLifetime lifetime) {
2877   switch (lifetime) {
2878   case Qualifiers::OCL_None:
2879   case Qualifiers::OCL_ExplicitNone:
2880   case Qualifiers::OCL_Strong:
2881   case Qualifiers::OCL_Autoreleasing:
2882     return true;
2883 
2884   case Qualifiers::OCL_Weak:
2885     return false;
2886   }
2887 
2888   llvm_unreachable("impossible lifetime!");
2889 }
2890 
2891 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2892                                                   LValue lvalue,
2893                                                   QualType type) {
2894   llvm::Value *result;
2895   bool shouldRetain = shouldRetainObjCLifetime(type.getObjCLifetime());
2896   if (shouldRetain) {
2897     result = CGF.EmitLoadOfLValue(lvalue, SourceLocation()).getScalarVal();
2898   } else {
2899     assert(type.getObjCLifetime() == Qualifiers::OCL_Weak);
2900     result = CGF.EmitARCLoadWeakRetained(lvalue.getAddress());
2901   }
2902   return TryEmitResult(result, !shouldRetain);
2903 }
2904 
2905 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2906                                                   const Expr *e) {
2907   e = e->IgnoreParens();
2908   QualType type = e->getType();
2909 
2910   // If we're loading retained from a __strong xvalue, we can avoid
2911   // an extra retain/release pair by zeroing out the source of this
2912   // "move" operation.
2913   if (e->isXValue() &&
2914       !type.isConstQualified() &&
2915       type.getObjCLifetime() == Qualifiers::OCL_Strong) {
2916     // Emit the lvalue.
2917     LValue lv = CGF.EmitLValue(e);
2918 
2919     // Load the object pointer.
2920     llvm::Value *result = CGF.EmitLoadOfLValue(lv,
2921                                                SourceLocation()).getScalarVal();
2922 
2923     // Set the source pointer to NULL.
2924     CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv);
2925 
2926     return TryEmitResult(result, true);
2927   }
2928 
2929   // As a very special optimization, in ARC++, if the l-value is the
2930   // result of a non-volatile assignment, do a simple retain of the
2931   // result of the call to objc_storeWeak instead of reloading.
2932   if (CGF.getLangOpts().CPlusPlus &&
2933       !type.isVolatileQualified() &&
2934       type.getObjCLifetime() == Qualifiers::OCL_Weak &&
2935       isa<BinaryOperator>(e) &&
2936       cast<BinaryOperator>(e)->getOpcode() == BO_Assign)
2937     return TryEmitResult(CGF.EmitScalarExpr(e), false);
2938 
2939   // Try to emit code for scalar constant instead of emitting LValue and
2940   // loading it because we are not guaranteed to have an l-value. One of such
2941   // cases is DeclRefExpr referencing non-odr-used constant-evaluated variable.
2942   if (const auto *decl_expr = dyn_cast<DeclRefExpr>(e)) {
2943     auto *DRE = const_cast<DeclRefExpr *>(decl_expr);
2944     if (CodeGenFunction::ConstantEmission constant = CGF.tryEmitAsConstant(DRE))
2945       return TryEmitResult(CGF.emitScalarConstant(constant, DRE),
2946                            !shouldRetainObjCLifetime(type.getObjCLifetime()));
2947   }
2948 
2949   return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type);
2950 }
2951 
2952 typedef llvm::function_ref<llvm::Value *(CodeGenFunction &CGF,
2953                                          llvm::Value *value)>
2954   ValueTransform;
2955 
2956 /// Insert code immediately after a call.
2957 
2958 // FIXME: We should find a way to emit the runtime call immediately
2959 // after the call is emitted to eliminate the need for this function.
2960 static llvm::Value *emitARCOperationAfterCall(CodeGenFunction &CGF,
2961                                               llvm::Value *value,
2962                                               ValueTransform doAfterCall,
2963                                               ValueTransform doFallback) {
2964   CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2965   auto *callBase = dyn_cast<llvm::CallBase>(value);
2966 
2967   if (callBase && llvm::objcarc::hasAttachedCallOpBundle(callBase)) {
2968     // Fall back if the call base has operand bundle "clang.arc.attachedcall".
2969     value = doFallback(CGF, value);
2970   } else if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) {
2971     // Place the retain immediately following the call.
2972     CGF.Builder.SetInsertPoint(call->getParent(),
2973                                ++llvm::BasicBlock::iterator(call));
2974     value = doAfterCall(CGF, value);
2975   } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) {
2976     // Place the retain at the beginning of the normal destination block.
2977     llvm::BasicBlock *BB = invoke->getNormalDest();
2978     CGF.Builder.SetInsertPoint(BB, BB->begin());
2979     value = doAfterCall(CGF, value);
2980 
2981   // Bitcasts can arise because of related-result returns.  Rewrite
2982   // the operand.
2983   } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) {
2984     // Change the insert point to avoid emitting the fall-back call after the
2985     // bitcast.
2986     CGF.Builder.SetInsertPoint(bitcast->getParent(), bitcast->getIterator());
2987     llvm::Value *operand = bitcast->getOperand(0);
2988     operand = emitARCOperationAfterCall(CGF, operand, doAfterCall, doFallback);
2989     bitcast->setOperand(0, operand);
2990     value = bitcast;
2991   } else {
2992     auto *phi = dyn_cast<llvm::PHINode>(value);
2993     if (phi && phi->getNumIncomingValues() == 2 &&
2994         isa<llvm::ConstantPointerNull>(phi->getIncomingValue(1)) &&
2995         isa<llvm::CallBase>(phi->getIncomingValue(0))) {
2996       // Handle phi instructions that are generated when it's necessary to check
2997       // whether the receiver of a message is null.
2998       llvm::Value *inVal = phi->getIncomingValue(0);
2999       inVal = emitARCOperationAfterCall(CGF, inVal, doAfterCall, doFallback);
3000       phi->setIncomingValue(0, inVal);
3001       value = phi;
3002     } else {
3003       // Generic fall-back case.
3004       // Retain using the non-block variant: we never need to do a copy
3005       // of a block that's been returned to us.
3006       value = doFallback(CGF, value);
3007     }
3008   }
3009 
3010   CGF.Builder.restoreIP(ip);
3011   return value;
3012 }
3013 
3014 /// Given that the given expression is some sort of call (which does
3015 /// not return retained), emit a retain following it.
3016 static llvm::Value *emitARCRetainCallResult(CodeGenFunction &CGF,
3017                                             const Expr *e) {
3018   llvm::Value *value = CGF.EmitScalarExpr(e);
3019   return emitARCOperationAfterCall(CGF, value,
3020            [](CodeGenFunction &CGF, llvm::Value *value) {
3021              return CGF.EmitARCRetainAutoreleasedReturnValue(value);
3022            },
3023            [](CodeGenFunction &CGF, llvm::Value *value) {
3024              return CGF.EmitARCRetainNonBlock(value);
3025            });
3026 }
3027 
3028 /// Given that the given expression is some sort of call (which does
3029 /// not return retained), perform an unsafeClaim following it.
3030 static llvm::Value *emitARCUnsafeClaimCallResult(CodeGenFunction &CGF,
3031                                                  const Expr *e) {
3032   llvm::Value *value = CGF.EmitScalarExpr(e);
3033   return emitARCOperationAfterCall(CGF, value,
3034            [](CodeGenFunction &CGF, llvm::Value *value) {
3035              return CGF.EmitARCUnsafeClaimAutoreleasedReturnValue(value);
3036            },
3037            [](CodeGenFunction &CGF, llvm::Value *value) {
3038              return value;
3039            });
3040 }
3041 
3042 llvm::Value *CodeGenFunction::EmitARCReclaimReturnedObject(const Expr *E,
3043                                                       bool allowUnsafeClaim) {
3044   if (allowUnsafeClaim &&
3045       CGM.getLangOpts().ObjCRuntime.hasARCUnsafeClaimAutoreleasedReturnValue()) {
3046     return emitARCUnsafeClaimCallResult(*this, E);
3047   } else {
3048     llvm::Value *value = emitARCRetainCallResult(*this, E);
3049     return EmitObjCConsumeObject(E->getType(), value);
3050   }
3051 }
3052 
3053 /// Determine whether it might be important to emit a separate
3054 /// objc_retain_block on the result of the given expression, or
3055 /// whether it's okay to just emit it in a +1 context.
3056 static bool shouldEmitSeparateBlockRetain(const Expr *e) {
3057   assert(e->getType()->isBlockPointerType());
3058   e = e->IgnoreParens();
3059 
3060   // For future goodness, emit block expressions directly in +1
3061   // contexts if we can.
3062   if (isa<BlockExpr>(e))
3063     return false;
3064 
3065   if (const CastExpr *cast = dyn_cast<CastExpr>(e)) {
3066     switch (cast->getCastKind()) {
3067     // Emitting these operations in +1 contexts is goodness.
3068     case CK_LValueToRValue:
3069     case CK_ARCReclaimReturnedObject:
3070     case CK_ARCConsumeObject:
3071     case CK_ARCProduceObject:
3072       return false;
3073 
3074     // These operations preserve a block type.
3075     case CK_NoOp:
3076     case CK_BitCast:
3077       return shouldEmitSeparateBlockRetain(cast->getSubExpr());
3078 
3079     // These operations are known to be bad (or haven't been considered).
3080     case CK_AnyPointerToBlockPointerCast:
3081     default:
3082       return true;
3083     }
3084   }
3085 
3086   return true;
3087 }
3088 
3089 namespace {
3090 /// A CRTP base class for emitting expressions of retainable object
3091 /// pointer type in ARC.
3092 template <typename Impl, typename Result> class ARCExprEmitter {
3093 protected:
3094   CodeGenFunction &CGF;
3095   Impl &asImpl() { return *static_cast<Impl*>(this); }
3096 
3097   ARCExprEmitter(CodeGenFunction &CGF) : CGF(CGF) {}
3098 
3099 public:
3100   Result visit(const Expr *e);
3101   Result visitCastExpr(const CastExpr *e);
3102   Result visitPseudoObjectExpr(const PseudoObjectExpr *e);
3103   Result visitBlockExpr(const BlockExpr *e);
3104   Result visitBinaryOperator(const BinaryOperator *e);
3105   Result visitBinAssign(const BinaryOperator *e);
3106   Result visitBinAssignUnsafeUnretained(const BinaryOperator *e);
3107   Result visitBinAssignAutoreleasing(const BinaryOperator *e);
3108   Result visitBinAssignWeak(const BinaryOperator *e);
3109   Result visitBinAssignStrong(const BinaryOperator *e);
3110 
3111   // Minimal implementation:
3112   //   Result visitLValueToRValue(const Expr *e)
3113   //   Result visitConsumeObject(const Expr *e)
3114   //   Result visitExtendBlockObject(const Expr *e)
3115   //   Result visitReclaimReturnedObject(const Expr *e)
3116   //   Result visitCall(const Expr *e)
3117   //   Result visitExpr(const Expr *e)
3118   //
3119   //   Result emitBitCast(Result result, llvm::Type *resultType)
3120   //   llvm::Value *getValueOfResult(Result result)
3121 };
3122 }
3123 
3124 /// Try to emit a PseudoObjectExpr under special ARC rules.
3125 ///
3126 /// This massively duplicates emitPseudoObjectRValue.
3127 template <typename Impl, typename Result>
3128 Result
3129 ARCExprEmitter<Impl,Result>::visitPseudoObjectExpr(const PseudoObjectExpr *E) {
3130   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
3131 
3132   // Find the result expression.
3133   const Expr *resultExpr = E->getResultExpr();
3134   assert(resultExpr);
3135   Result result;
3136 
3137   for (PseudoObjectExpr::const_semantics_iterator
3138          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
3139     const Expr *semantic = *i;
3140 
3141     // If this semantic expression is an opaque value, bind it
3142     // to the result of its source expression.
3143     if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
3144       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
3145       OVMA opaqueData;
3146 
3147       // If this semantic is the result of the pseudo-object
3148       // expression, try to evaluate the source as +1.
3149       if (ov == resultExpr) {
3150         assert(!OVMA::shouldBindAsLValue(ov));
3151         result = asImpl().visit(ov->getSourceExpr());
3152         opaqueData = OVMA::bind(CGF, ov,
3153                             RValue::get(asImpl().getValueOfResult(result)));
3154 
3155       // Otherwise, just bind it.
3156       } else {
3157         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
3158       }
3159       opaques.push_back(opaqueData);
3160 
3161     // Otherwise, if the expression is the result, evaluate it
3162     // and remember the result.
3163     } else if (semantic == resultExpr) {
3164       result = asImpl().visit(semantic);
3165 
3166     // Otherwise, evaluate the expression in an ignored context.
3167     } else {
3168       CGF.EmitIgnoredExpr(semantic);
3169     }
3170   }
3171 
3172   // Unbind all the opaques now.
3173   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
3174     opaques[i].unbind(CGF);
3175 
3176   return result;
3177 }
3178 
3179 template <typename Impl, typename Result>
3180 Result ARCExprEmitter<Impl, Result>::visitBlockExpr(const BlockExpr *e) {
3181   // The default implementation just forwards the expression to visitExpr.
3182   return asImpl().visitExpr(e);
3183 }
3184 
3185 template <typename Impl, typename Result>
3186 Result ARCExprEmitter<Impl,Result>::visitCastExpr(const CastExpr *e) {
3187   switch (e->getCastKind()) {
3188 
3189   // No-op casts don't change the type, so we just ignore them.
3190   case CK_NoOp:
3191     return asImpl().visit(e->getSubExpr());
3192 
3193   // These casts can change the type.
3194   case CK_CPointerToObjCPointerCast:
3195   case CK_BlockPointerToObjCPointerCast:
3196   case CK_AnyPointerToBlockPointerCast:
3197   case CK_BitCast: {
3198     llvm::Type *resultType = CGF.ConvertType(e->getType());
3199     assert(e->getSubExpr()->getType()->hasPointerRepresentation());
3200     Result result = asImpl().visit(e->getSubExpr());
3201     return asImpl().emitBitCast(result, resultType);
3202   }
3203 
3204   // Handle some casts specially.
3205   case CK_LValueToRValue:
3206     return asImpl().visitLValueToRValue(e->getSubExpr());
3207   case CK_ARCConsumeObject:
3208     return asImpl().visitConsumeObject(e->getSubExpr());
3209   case CK_ARCExtendBlockObject:
3210     return asImpl().visitExtendBlockObject(e->getSubExpr());
3211   case CK_ARCReclaimReturnedObject:
3212     return asImpl().visitReclaimReturnedObject(e->getSubExpr());
3213 
3214   // Otherwise, use the default logic.
3215   default:
3216     return asImpl().visitExpr(e);
3217   }
3218 }
3219 
3220 template <typename Impl, typename Result>
3221 Result
3222 ARCExprEmitter<Impl,Result>::visitBinaryOperator(const BinaryOperator *e) {
3223   switch (e->getOpcode()) {
3224   case BO_Comma:
3225     CGF.EmitIgnoredExpr(e->getLHS());
3226     CGF.EnsureInsertPoint();
3227     return asImpl().visit(e->getRHS());
3228 
3229   case BO_Assign:
3230     return asImpl().visitBinAssign(e);
3231 
3232   default:
3233     return asImpl().visitExpr(e);
3234   }
3235 }
3236 
3237 template <typename Impl, typename Result>
3238 Result ARCExprEmitter<Impl,Result>::visitBinAssign(const BinaryOperator *e) {
3239   switch (e->getLHS()->getType().getObjCLifetime()) {
3240   case Qualifiers::OCL_ExplicitNone:
3241     return asImpl().visitBinAssignUnsafeUnretained(e);
3242 
3243   case Qualifiers::OCL_Weak:
3244     return asImpl().visitBinAssignWeak(e);
3245 
3246   case Qualifiers::OCL_Autoreleasing:
3247     return asImpl().visitBinAssignAutoreleasing(e);
3248 
3249   case Qualifiers::OCL_Strong:
3250     return asImpl().visitBinAssignStrong(e);
3251 
3252   case Qualifiers::OCL_None:
3253     return asImpl().visitExpr(e);
3254   }
3255   llvm_unreachable("bad ObjC ownership qualifier");
3256 }
3257 
3258 /// The default rule for __unsafe_unretained emits the RHS recursively,
3259 /// stores into the unsafe variable, and propagates the result outward.
3260 template <typename Impl, typename Result>
3261 Result ARCExprEmitter<Impl,Result>::
3262                     visitBinAssignUnsafeUnretained(const BinaryOperator *e) {
3263   // Recursively emit the RHS.
3264   // For __block safety, do this before emitting the LHS.
3265   Result result = asImpl().visit(e->getRHS());
3266 
3267   // Perform the store.
3268   LValue lvalue =
3269     CGF.EmitCheckedLValue(e->getLHS(), CodeGenFunction::TCK_Store);
3270   CGF.EmitStoreThroughLValue(RValue::get(asImpl().getValueOfResult(result)),
3271                              lvalue);
3272 
3273   return result;
3274 }
3275 
3276 template <typename Impl, typename Result>
3277 Result
3278 ARCExprEmitter<Impl,Result>::visitBinAssignAutoreleasing(const BinaryOperator *e) {
3279   return asImpl().visitExpr(e);
3280 }
3281 
3282 template <typename Impl, typename Result>
3283 Result
3284 ARCExprEmitter<Impl,Result>::visitBinAssignWeak(const BinaryOperator *e) {
3285   return asImpl().visitExpr(e);
3286 }
3287 
3288 template <typename Impl, typename Result>
3289 Result
3290 ARCExprEmitter<Impl,Result>::visitBinAssignStrong(const BinaryOperator *e) {
3291   return asImpl().visitExpr(e);
3292 }
3293 
3294 /// The general expression-emission logic.
3295 template <typename Impl, typename Result>
3296 Result ARCExprEmitter<Impl,Result>::visit(const Expr *e) {
3297   // We should *never* see a nested full-expression here, because if
3298   // we fail to emit at +1, our caller must not retain after we close
3299   // out the full-expression.  This isn't as important in the unsafe
3300   // emitter.
3301   assert(!isa<ExprWithCleanups>(e));
3302 
3303   // Look through parens, __extension__, generic selection, etc.
3304   e = e->IgnoreParens();
3305 
3306   // Handle certain kinds of casts.
3307   if (const CastExpr *ce = dyn_cast<CastExpr>(e)) {
3308     return asImpl().visitCastExpr(ce);
3309 
3310   // Handle the comma operator.
3311   } else if (auto op = dyn_cast<BinaryOperator>(e)) {
3312     return asImpl().visitBinaryOperator(op);
3313 
3314   // TODO: handle conditional operators here
3315 
3316   // For calls and message sends, use the retained-call logic.
3317   // Delegate inits are a special case in that they're the only
3318   // returns-retained expression that *isn't* surrounded by
3319   // a consume.
3320   } else if (isa<CallExpr>(e) ||
3321              (isa<ObjCMessageExpr>(e) &&
3322               !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) {
3323     return asImpl().visitCall(e);
3324 
3325   // Look through pseudo-object expressions.
3326   } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
3327     return asImpl().visitPseudoObjectExpr(pseudo);
3328   } else if (auto *be = dyn_cast<BlockExpr>(e))
3329     return asImpl().visitBlockExpr(be);
3330 
3331   return asImpl().visitExpr(e);
3332 }
3333 
3334 namespace {
3335 
3336 /// An emitter for +1 results.
3337 struct ARCRetainExprEmitter :
3338   public ARCExprEmitter<ARCRetainExprEmitter, TryEmitResult> {
3339 
3340   ARCRetainExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
3341 
3342   llvm::Value *getValueOfResult(TryEmitResult result) {
3343     return result.getPointer();
3344   }
3345 
3346   TryEmitResult emitBitCast(TryEmitResult result, llvm::Type *resultType) {
3347     llvm::Value *value = result.getPointer();
3348     value = CGF.Builder.CreateBitCast(value, resultType);
3349     result.setPointer(value);
3350     return result;
3351   }
3352 
3353   TryEmitResult visitLValueToRValue(const Expr *e) {
3354     return tryEmitARCRetainLoadOfScalar(CGF, e);
3355   }
3356 
3357   /// For consumptions, just emit the subexpression and thus elide
3358   /// the retain/release pair.
3359   TryEmitResult visitConsumeObject(const Expr *e) {
3360     llvm::Value *result = CGF.EmitScalarExpr(e);
3361     return TryEmitResult(result, true);
3362   }
3363 
3364   TryEmitResult visitBlockExpr(const BlockExpr *e) {
3365     TryEmitResult result = visitExpr(e);
3366     // Avoid the block-retain if this is a block literal that doesn't need to be
3367     // copied to the heap.
3368     if (CGF.CGM.getCodeGenOpts().ObjCAvoidHeapifyLocalBlocks &&
3369         e->getBlockDecl()->canAvoidCopyToHeap())
3370       result.setInt(true);
3371     return result;
3372   }
3373 
3374   /// Block extends are net +0.  Naively, we could just recurse on
3375   /// the subexpression, but actually we need to ensure that the
3376   /// value is copied as a block, so there's a little filter here.
3377   TryEmitResult visitExtendBlockObject(const Expr *e) {
3378     llvm::Value *result; // will be a +0 value
3379 
3380     // If we can't safely assume the sub-expression will produce a
3381     // block-copied value, emit the sub-expression at +0.
3382     if (shouldEmitSeparateBlockRetain(e)) {
3383       result = CGF.EmitScalarExpr(e);
3384 
3385     // Otherwise, try to emit the sub-expression at +1 recursively.
3386     } else {
3387       TryEmitResult subresult = asImpl().visit(e);
3388 
3389       // If that produced a retained value, just use that.
3390       if (subresult.getInt()) {
3391         return subresult;
3392       }
3393 
3394       // Otherwise it's +0.
3395       result = subresult.getPointer();
3396     }
3397 
3398     // Retain the object as a block.
3399     result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true);
3400     return TryEmitResult(result, true);
3401   }
3402 
3403   /// For reclaims, emit the subexpression as a retained call and
3404   /// skip the consumption.
3405   TryEmitResult visitReclaimReturnedObject(const Expr *e) {
3406     llvm::Value *result = emitARCRetainCallResult(CGF, e);
3407     return TryEmitResult(result, true);
3408   }
3409 
3410   /// When we have an undecorated call, retroactively do a claim.
3411   TryEmitResult visitCall(const Expr *e) {
3412     llvm::Value *result = emitARCRetainCallResult(CGF, e);
3413     return TryEmitResult(result, true);
3414   }
3415 
3416   // TODO: maybe special-case visitBinAssignWeak?
3417 
3418   TryEmitResult visitExpr(const Expr *e) {
3419     // We didn't find an obvious production, so emit what we've got and
3420     // tell the caller that we didn't manage to retain.
3421     llvm::Value *result = CGF.EmitScalarExpr(e);
3422     return TryEmitResult(result, false);
3423   }
3424 };
3425 }
3426 
3427 static TryEmitResult
3428 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) {
3429   return ARCRetainExprEmitter(CGF).visit(e);
3430 }
3431 
3432 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
3433                                                 LValue lvalue,
3434                                                 QualType type) {
3435   TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type);
3436   llvm::Value *value = result.getPointer();
3437   if (!result.getInt())
3438     value = CGF.EmitARCRetain(type, value);
3439   return value;
3440 }
3441 
3442 /// EmitARCRetainScalarExpr - Semantically equivalent to
3443 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
3444 /// best-effort attempt to peephole expressions that naturally produce
3445 /// retained objects.
3446 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) {
3447   // The retain needs to happen within the full-expression.
3448   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3449     RunCleanupsScope scope(*this);
3450     return EmitARCRetainScalarExpr(cleanups->getSubExpr());
3451   }
3452 
3453   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
3454   llvm::Value *value = result.getPointer();
3455   if (!result.getInt())
3456     value = EmitARCRetain(e->getType(), value);
3457   return value;
3458 }
3459 
3460 llvm::Value *
3461 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) {
3462   // The retain needs to happen within the full-expression.
3463   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3464     RunCleanupsScope scope(*this);
3465     return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr());
3466   }
3467 
3468   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
3469   llvm::Value *value = result.getPointer();
3470   if (result.getInt())
3471     value = EmitARCAutorelease(value);
3472   else
3473     value = EmitARCRetainAutorelease(e->getType(), value);
3474   return value;
3475 }
3476 
3477 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) {
3478   llvm::Value *result;
3479   bool doRetain;
3480 
3481   if (shouldEmitSeparateBlockRetain(e)) {
3482     result = EmitScalarExpr(e);
3483     doRetain = true;
3484   } else {
3485     TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e);
3486     result = subresult.getPointer();
3487     doRetain = !subresult.getInt();
3488   }
3489 
3490   if (doRetain)
3491     result = EmitARCRetainBlock(result, /*mandatory*/ true);
3492   return EmitObjCConsumeObject(e->getType(), result);
3493 }
3494 
3495 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) {
3496   // In ARC, retain and autorelease the expression.
3497   if (getLangOpts().ObjCAutoRefCount) {
3498     // Do so before running any cleanups for the full-expression.
3499     // EmitARCRetainAutoreleaseScalarExpr does this for us.
3500     return EmitARCRetainAutoreleaseScalarExpr(expr);
3501   }
3502 
3503   // Otherwise, use the normal scalar-expression emission.  The
3504   // exception machinery doesn't do anything special with the
3505   // exception like retaining it, so there's no safety associated with
3506   // only running cleanups after the throw has started, and when it
3507   // matters it tends to be substantially inferior code.
3508   return EmitScalarExpr(expr);
3509 }
3510 
3511 namespace {
3512 
3513 /// An emitter for assigning into an __unsafe_unretained context.
3514 struct ARCUnsafeUnretainedExprEmitter :
3515   public ARCExprEmitter<ARCUnsafeUnretainedExprEmitter, llvm::Value*> {
3516 
3517   ARCUnsafeUnretainedExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
3518 
3519   llvm::Value *getValueOfResult(llvm::Value *value) {
3520     return value;
3521   }
3522 
3523   llvm::Value *emitBitCast(llvm::Value *value, llvm::Type *resultType) {
3524     return CGF.Builder.CreateBitCast(value, resultType);
3525   }
3526 
3527   llvm::Value *visitLValueToRValue(const Expr *e) {
3528     return CGF.EmitScalarExpr(e);
3529   }
3530 
3531   /// For consumptions, just emit the subexpression and perform the
3532   /// consumption like normal.
3533   llvm::Value *visitConsumeObject(const Expr *e) {
3534     llvm::Value *value = CGF.EmitScalarExpr(e);
3535     return CGF.EmitObjCConsumeObject(e->getType(), value);
3536   }
3537 
3538   /// No special logic for block extensions.  (This probably can't
3539   /// actually happen in this emitter, though.)
3540   llvm::Value *visitExtendBlockObject(const Expr *e) {
3541     return CGF.EmitARCExtendBlockObject(e);
3542   }
3543 
3544   /// For reclaims, perform an unsafeClaim if that's enabled.
3545   llvm::Value *visitReclaimReturnedObject(const Expr *e) {
3546     return CGF.EmitARCReclaimReturnedObject(e, /*unsafe*/ true);
3547   }
3548 
3549   /// When we have an undecorated call, just emit it without adding
3550   /// the unsafeClaim.
3551   llvm::Value *visitCall(const Expr *e) {
3552     return CGF.EmitScalarExpr(e);
3553   }
3554 
3555   /// Just do normal scalar emission in the default case.
3556   llvm::Value *visitExpr(const Expr *e) {
3557     return CGF.EmitScalarExpr(e);
3558   }
3559 };
3560 }
3561 
3562 static llvm::Value *emitARCUnsafeUnretainedScalarExpr(CodeGenFunction &CGF,
3563                                                       const Expr *e) {
3564   return ARCUnsafeUnretainedExprEmitter(CGF).visit(e);
3565 }
3566 
3567 /// EmitARCUnsafeUnretainedScalarExpr - Semantically equivalent to
3568 /// immediately releasing the resut of EmitARCRetainScalarExpr, but
3569 /// avoiding any spurious retains, including by performing reclaims
3570 /// with objc_unsafeClaimAutoreleasedReturnValue.
3571 llvm::Value *CodeGenFunction::EmitARCUnsafeUnretainedScalarExpr(const Expr *e) {
3572   // Look through full-expressions.
3573   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3574     RunCleanupsScope scope(*this);
3575     return emitARCUnsafeUnretainedScalarExpr(*this, cleanups->getSubExpr());
3576   }
3577 
3578   return emitARCUnsafeUnretainedScalarExpr(*this, e);
3579 }
3580 
3581 std::pair<LValue,llvm::Value*>
3582 CodeGenFunction::EmitARCStoreUnsafeUnretained(const BinaryOperator *e,
3583                                               bool ignored) {
3584   // Evaluate the RHS first.  If we're ignoring the result, assume
3585   // that we can emit at an unsafe +0.
3586   llvm::Value *value;
3587   if (ignored) {
3588     value = EmitARCUnsafeUnretainedScalarExpr(e->getRHS());
3589   } else {
3590     value = EmitScalarExpr(e->getRHS());
3591   }
3592 
3593   // Emit the LHS and perform the store.
3594   LValue lvalue = EmitLValue(e->getLHS());
3595   EmitStoreOfScalar(value, lvalue);
3596 
3597   return std::pair<LValue,llvm::Value*>(std::move(lvalue), value);
3598 }
3599 
3600 std::pair<LValue,llvm::Value*>
3601 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e,
3602                                     bool ignored) {
3603   // Evaluate the RHS first.
3604   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS());
3605   llvm::Value *value = result.getPointer();
3606 
3607   bool hasImmediateRetain = result.getInt();
3608 
3609   // If we didn't emit a retained object, and the l-value is of block
3610   // type, then we need to emit the block-retain immediately in case
3611   // it invalidates the l-value.
3612   if (!hasImmediateRetain && e->getType()->isBlockPointerType()) {
3613     value = EmitARCRetainBlock(value, /*mandatory*/ false);
3614     hasImmediateRetain = true;
3615   }
3616 
3617   LValue lvalue = EmitLValue(e->getLHS());
3618 
3619   // If the RHS was emitted retained, expand this.
3620   if (hasImmediateRetain) {
3621     llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation());
3622     EmitStoreOfScalar(value, lvalue);
3623     EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime());
3624   } else {
3625     value = EmitARCStoreStrong(lvalue, value, ignored);
3626   }
3627 
3628   return std::pair<LValue,llvm::Value*>(lvalue, value);
3629 }
3630 
3631 std::pair<LValue,llvm::Value*>
3632 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) {
3633   llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS());
3634   LValue lvalue = EmitLValue(e->getLHS());
3635 
3636   EmitStoreOfScalar(value, lvalue);
3637 
3638   return std::pair<LValue,llvm::Value*>(lvalue, value);
3639 }
3640 
3641 void CodeGenFunction::EmitObjCAutoreleasePoolStmt(
3642                                           const ObjCAutoreleasePoolStmt &ARPS) {
3643   const Stmt *subStmt = ARPS.getSubStmt();
3644   const CompoundStmt &S = cast<CompoundStmt>(*subStmt);
3645 
3646   CGDebugInfo *DI = getDebugInfo();
3647   if (DI)
3648     DI->EmitLexicalBlockStart(Builder, S.getLBracLoc());
3649 
3650   // Keep track of the current cleanup stack depth.
3651   RunCleanupsScope Scope(*this);
3652   if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
3653     llvm::Value *token = EmitObjCAutoreleasePoolPush();
3654     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token);
3655   } else {
3656     llvm::Value *token = EmitObjCMRRAutoreleasePoolPush();
3657     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token);
3658   }
3659 
3660   for (const auto *I : S.body())
3661     EmitStmt(I);
3662 
3663   if (DI)
3664     DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc());
3665 }
3666 
3667 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
3668 /// make sure it survives garbage collection until this point.
3669 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) {
3670   // We just use an inline assembly.
3671   llvm::FunctionType *extenderType
3672     = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All);
3673   llvm::InlineAsm *extender = llvm::InlineAsm::get(extenderType,
3674                                                    /* assembly */ "",
3675                                                    /* constraints */ "r",
3676                                                    /* side effects */ true);
3677 
3678   EmitNounwindRuntimeCall(extender, object);
3679 }
3680 
3681 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with
3682 /// non-trivial copy assignment function, produce following helper function.
3683 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; }
3684 ///
3685 llvm::Constant *
3686 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction(
3687                                         const ObjCPropertyImplDecl *PID) {
3688   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3689   if ((!(PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_atomic)))
3690     return nullptr;
3691 
3692   QualType Ty = PID->getPropertyIvarDecl()->getType();
3693   ASTContext &C = getContext();
3694 
3695   if (Ty.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) {
3696     // Call the move assignment operator instead of calling the copy assignment
3697     // operator and destructor.
3698     CharUnits Alignment = C.getTypeAlignInChars(Ty);
3699     llvm::Constant *Fn = getNonTrivialCStructMoveAssignmentOperator(
3700         CGM, Alignment, Alignment, Ty.isVolatileQualified(), Ty);
3701     return Fn;
3702   }
3703 
3704   if (!getLangOpts().CPlusPlus ||
3705       !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
3706     return nullptr;
3707   if (!Ty->isRecordType())
3708     return nullptr;
3709   llvm::Constant *HelperFn = nullptr;
3710   if (hasTrivialSetExpr(PID))
3711     return nullptr;
3712   assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null");
3713   if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty)))
3714     return HelperFn;
3715 
3716   const IdentifierInfo *II =
3717       &CGM.getContext().Idents.get("__assign_helper_atomic_property_");
3718 
3719   QualType ReturnTy = C.VoidTy;
3720   QualType DestTy = C.getPointerType(Ty);
3721   QualType SrcTy = Ty;
3722   SrcTy.addConst();
3723   SrcTy = C.getPointerType(SrcTy);
3724 
3725   SmallVector<QualType, 2> ArgTys;
3726   ArgTys.push_back(DestTy);
3727   ArgTys.push_back(SrcTy);
3728   QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {});
3729 
3730   FunctionDecl *FD = FunctionDecl::Create(
3731       C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
3732       FunctionTy, nullptr, SC_Static, false, false, false);
3733 
3734   FunctionArgList args;
3735   ParmVarDecl *Params[2];
3736   ParmVarDecl *DstDecl = ParmVarDecl::Create(
3737       C, FD, SourceLocation(), SourceLocation(), nullptr, DestTy,
3738       C.getTrivialTypeSourceInfo(DestTy, SourceLocation()), SC_None,
3739       /*DefArg=*/nullptr);
3740   args.push_back(Params[0] = DstDecl);
3741   ParmVarDecl *SrcDecl = ParmVarDecl::Create(
3742       C, FD, SourceLocation(), SourceLocation(), nullptr, SrcTy,
3743       C.getTrivialTypeSourceInfo(SrcTy, SourceLocation()), SC_None,
3744       /*DefArg=*/nullptr);
3745   args.push_back(Params[1] = SrcDecl);
3746   FD->setParams(Params);
3747 
3748   const CGFunctionInfo &FI =
3749       CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args);
3750 
3751   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3752 
3753   llvm::Function *Fn =
3754     llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
3755                            "__assign_helper_atomic_property_",
3756                            &CGM.getModule());
3757 
3758   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI);
3759 
3760   StartFunction(FD, ReturnTy, Fn, FI, args);
3761 
3762   DeclRefExpr DstExpr(C, DstDecl, false, DestTy, VK_PRValue, SourceLocation());
3763   UnaryOperator *DST = UnaryOperator::Create(
3764       C, &DstExpr, UO_Deref, DestTy->getPointeeType(), VK_LValue, OK_Ordinary,
3765       SourceLocation(), false, FPOptionsOverride());
3766 
3767   DeclRefExpr SrcExpr(C, SrcDecl, false, SrcTy, VK_PRValue, SourceLocation());
3768   UnaryOperator *SRC = UnaryOperator::Create(
3769       C, &SrcExpr, UO_Deref, SrcTy->getPointeeType(), VK_LValue, OK_Ordinary,
3770       SourceLocation(), false, FPOptionsOverride());
3771 
3772   Expr *Args[2] = {DST, SRC};
3773   CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment());
3774   CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create(
3775       C, OO_Equal, CalleeExp->getCallee(), Args, DestTy->getPointeeType(),
3776       VK_LValue, SourceLocation(), FPOptionsOverride());
3777 
3778   EmitStmt(TheCall);
3779 
3780   FinishFunction();
3781   HelperFn = Fn;
3782   CGM.setAtomicSetterHelperFnMap(Ty, HelperFn);
3783   return HelperFn;
3784 }
3785 
3786 llvm::Constant *CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction(
3787     const ObjCPropertyImplDecl *PID) {
3788   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3789   if ((!(PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_atomic)))
3790     return nullptr;
3791 
3792   QualType Ty = PD->getType();
3793   ASTContext &C = getContext();
3794 
3795   if (Ty.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) {
3796     CharUnits Alignment = C.getTypeAlignInChars(Ty);
3797     llvm::Constant *Fn = getNonTrivialCStructCopyConstructor(
3798         CGM, Alignment, Alignment, Ty.isVolatileQualified(), Ty);
3799     return Fn;
3800   }
3801 
3802   if (!getLangOpts().CPlusPlus ||
3803       !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
3804     return nullptr;
3805   if (!Ty->isRecordType())
3806     return nullptr;
3807   llvm::Constant *HelperFn = nullptr;
3808   if (hasTrivialGetExpr(PID))
3809     return nullptr;
3810   assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null");
3811   if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty)))
3812     return HelperFn;
3813 
3814   const IdentifierInfo *II =
3815       &CGM.getContext().Idents.get("__copy_helper_atomic_property_");
3816 
3817   QualType ReturnTy = C.VoidTy;
3818   QualType DestTy = C.getPointerType(Ty);
3819   QualType SrcTy = Ty;
3820   SrcTy.addConst();
3821   SrcTy = C.getPointerType(SrcTy);
3822 
3823   SmallVector<QualType, 2> ArgTys;
3824   ArgTys.push_back(DestTy);
3825   ArgTys.push_back(SrcTy);
3826   QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {});
3827 
3828   FunctionDecl *FD = FunctionDecl::Create(
3829       C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
3830       FunctionTy, nullptr, SC_Static, false, false, false);
3831 
3832   FunctionArgList args;
3833   ParmVarDecl *Params[2];
3834   ParmVarDecl *DstDecl = ParmVarDecl::Create(
3835       C, FD, SourceLocation(), SourceLocation(), nullptr, DestTy,
3836       C.getTrivialTypeSourceInfo(DestTy, SourceLocation()), SC_None,
3837       /*DefArg=*/nullptr);
3838   args.push_back(Params[0] = DstDecl);
3839   ParmVarDecl *SrcDecl = ParmVarDecl::Create(
3840       C, FD, SourceLocation(), SourceLocation(), nullptr, SrcTy,
3841       C.getTrivialTypeSourceInfo(SrcTy, SourceLocation()), SC_None,
3842       /*DefArg=*/nullptr);
3843   args.push_back(Params[1] = SrcDecl);
3844   FD->setParams(Params);
3845 
3846   const CGFunctionInfo &FI =
3847       CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args);
3848 
3849   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3850 
3851   llvm::Function *Fn = llvm::Function::Create(
3852       LTy, llvm::GlobalValue::InternalLinkage, "__copy_helper_atomic_property_",
3853       &CGM.getModule());
3854 
3855   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI);
3856 
3857   StartFunction(FD, ReturnTy, Fn, FI, args);
3858 
3859   DeclRefExpr SrcExpr(getContext(), SrcDecl, false, SrcTy, VK_PRValue,
3860                       SourceLocation());
3861 
3862   UnaryOperator *SRC = UnaryOperator::Create(
3863       C, &SrcExpr, UO_Deref, SrcTy->getPointeeType(), VK_LValue, OK_Ordinary,
3864       SourceLocation(), false, FPOptionsOverride());
3865 
3866   CXXConstructExpr *CXXConstExpr =
3867     cast<CXXConstructExpr>(PID->getGetterCXXConstructor());
3868 
3869   SmallVector<Expr*, 4> ConstructorArgs;
3870   ConstructorArgs.push_back(SRC);
3871   ConstructorArgs.append(std::next(CXXConstExpr->arg_begin()),
3872                          CXXConstExpr->arg_end());
3873 
3874   CXXConstructExpr *TheCXXConstructExpr =
3875     CXXConstructExpr::Create(C, Ty, SourceLocation(),
3876                              CXXConstExpr->getConstructor(),
3877                              CXXConstExpr->isElidable(),
3878                              ConstructorArgs,
3879                              CXXConstExpr->hadMultipleCandidates(),
3880                              CXXConstExpr->isListInitialization(),
3881                              CXXConstExpr->isStdInitListInitialization(),
3882                              CXXConstExpr->requiresZeroInitialization(),
3883                              CXXConstExpr->getConstructionKind(),
3884                              SourceRange());
3885 
3886   DeclRefExpr DstExpr(getContext(), DstDecl, false, DestTy, VK_PRValue,
3887                       SourceLocation());
3888 
3889   RValue DV = EmitAnyExpr(&DstExpr);
3890   CharUnits Alignment =
3891       getContext().getTypeAlignInChars(TheCXXConstructExpr->getType());
3892   EmitAggExpr(TheCXXConstructExpr,
3893               AggValueSlot::forAddr(
3894                   Address(DV.getScalarVal(), ConvertTypeForMem(Ty), Alignment),
3895                   Qualifiers(), AggValueSlot::IsDestructed,
3896                   AggValueSlot::DoesNotNeedGCBarriers,
3897                   AggValueSlot::IsNotAliased, AggValueSlot::DoesNotOverlap));
3898 
3899   FinishFunction();
3900   HelperFn = Fn;
3901   CGM.setAtomicGetterHelperFnMap(Ty, HelperFn);
3902   return HelperFn;
3903 }
3904 
3905 llvm::Value *
3906 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) {
3907   // Get selectors for retain/autorelease.
3908   const IdentifierInfo *CopyID = &getContext().Idents.get("copy");
3909   Selector CopySelector =
3910       getContext().Selectors.getNullarySelector(CopyID);
3911   const IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease");
3912   Selector AutoreleaseSelector =
3913       getContext().Selectors.getNullarySelector(AutoreleaseID);
3914 
3915   // Emit calls to retain/autorelease.
3916   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
3917   llvm::Value *Val = Block;
3918   RValue Result;
3919   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3920                                        Ty, CopySelector,
3921                                        Val, CallArgList(), nullptr, nullptr);
3922   Val = Result.getScalarVal();
3923   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3924                                        Ty, AutoreleaseSelector,
3925                                        Val, CallArgList(), nullptr, nullptr);
3926   Val = Result.getScalarVal();
3927   return Val;
3928 }
3929 
3930 static unsigned getBaseMachOPlatformID(const llvm::Triple &TT) {
3931   switch (TT.getOS()) {
3932   case llvm::Triple::Darwin:
3933   case llvm::Triple::MacOSX:
3934     return llvm::MachO::PLATFORM_MACOS;
3935   case llvm::Triple::IOS:
3936     return llvm::MachO::PLATFORM_IOS;
3937   case llvm::Triple::TvOS:
3938     return llvm::MachO::PLATFORM_TVOS;
3939   case llvm::Triple::WatchOS:
3940     return llvm::MachO::PLATFORM_WATCHOS;
3941   case llvm::Triple::XROS:
3942     return llvm::MachO::PLATFORM_XROS;
3943   case llvm::Triple::DriverKit:
3944     return llvm::MachO::PLATFORM_DRIVERKIT;
3945   default:
3946     return llvm::MachO::PLATFORM_UNKNOWN;
3947   }
3948 }
3949 
3950 static llvm::Value *emitIsPlatformVersionAtLeast(CodeGenFunction &CGF,
3951                                                  const VersionTuple &Version) {
3952   CodeGenModule &CGM = CGF.CGM;
3953   // Note: we intend to support multi-platform version checks, so reserve
3954   // the room for a dual platform checking invocation that will be
3955   // implemented in the future.
3956   llvm::SmallVector<llvm::Value *, 8> Args;
3957 
3958   auto EmitArgs = [&](const VersionTuple &Version, const llvm::Triple &TT) {
3959     std::optional<unsigned> Min = Version.getMinor(),
3960                             SMin = Version.getSubminor();
3961     Args.push_back(
3962         llvm::ConstantInt::get(CGM.Int32Ty, getBaseMachOPlatformID(TT)));
3963     Args.push_back(llvm::ConstantInt::get(CGM.Int32Ty, Version.getMajor()));
3964     Args.push_back(llvm::ConstantInt::get(CGM.Int32Ty, Min.value_or(0)));
3965     Args.push_back(llvm::ConstantInt::get(CGM.Int32Ty, SMin.value_or(0)));
3966   };
3967 
3968   assert(!Version.empty() && "unexpected empty version");
3969   EmitArgs(Version, CGM.getTarget().getTriple());
3970 
3971   if (!CGM.IsPlatformVersionAtLeastFn) {
3972     llvm::FunctionType *FTy = llvm::FunctionType::get(
3973         CGM.Int32Ty, {CGM.Int32Ty, CGM.Int32Ty, CGM.Int32Ty, CGM.Int32Ty},
3974         false);
3975     CGM.IsPlatformVersionAtLeastFn =
3976         CGM.CreateRuntimeFunction(FTy, "__isPlatformVersionAtLeast");
3977   }
3978 
3979   llvm::Value *Check =
3980       CGF.EmitNounwindRuntimeCall(CGM.IsPlatformVersionAtLeastFn, Args);
3981   return CGF.Builder.CreateICmpNE(Check,
3982                                   llvm::Constant::getNullValue(CGM.Int32Ty));
3983 }
3984 
3985 llvm::Value *
3986 CodeGenFunction::EmitBuiltinAvailable(const VersionTuple &Version) {
3987   // Darwin uses the new __isPlatformVersionAtLeast family of routines.
3988   if (CGM.getTarget().getTriple().isOSDarwin())
3989     return emitIsPlatformVersionAtLeast(*this, Version);
3990 
3991   if (!CGM.IsOSVersionAtLeastFn) {
3992     llvm::FunctionType *FTy =
3993         llvm::FunctionType::get(Int32Ty, {Int32Ty, Int32Ty, Int32Ty}, false);
3994     CGM.IsOSVersionAtLeastFn =
3995         CGM.CreateRuntimeFunction(FTy, "__isOSVersionAtLeast");
3996   }
3997 
3998   std::optional<unsigned> Min = Version.getMinor(),
3999                           SMin = Version.getSubminor();
4000   llvm::Value *Args[] = {
4001       llvm::ConstantInt::get(CGM.Int32Ty, Version.getMajor()),
4002       llvm::ConstantInt::get(CGM.Int32Ty, Min.value_or(0)),
4003       llvm::ConstantInt::get(CGM.Int32Ty, SMin.value_or(0))};
4004 
4005   llvm::Value *CallRes =
4006       EmitNounwindRuntimeCall(CGM.IsOSVersionAtLeastFn, Args);
4007 
4008   return Builder.CreateICmpNE(CallRes, llvm::Constant::getNullValue(Int32Ty));
4009 }
4010 
4011 static bool isFoundationNeededForDarwinAvailabilityCheck(
4012     const llvm::Triple &TT, const VersionTuple &TargetVersion) {
4013   VersionTuple FoundationDroppedInVersion;
4014   switch (TT.getOS()) {
4015   case llvm::Triple::IOS:
4016   case llvm::Triple::TvOS:
4017     FoundationDroppedInVersion = VersionTuple(/*Major=*/13);
4018     break;
4019   case llvm::Triple::WatchOS:
4020     FoundationDroppedInVersion = VersionTuple(/*Major=*/6);
4021     break;
4022   case llvm::Triple::Darwin:
4023   case llvm::Triple::MacOSX:
4024     FoundationDroppedInVersion = VersionTuple(/*Major=*/10, /*Minor=*/15);
4025     break;
4026   case llvm::Triple::XROS:
4027     // XROS doesn't need Foundation.
4028     return false;
4029   case llvm::Triple::DriverKit:
4030     // DriverKit doesn't need Foundation.
4031     return false;
4032   default:
4033     llvm_unreachable("Unexpected OS");
4034   }
4035   return TargetVersion < FoundationDroppedInVersion;
4036 }
4037 
4038 void CodeGenModule::emitAtAvailableLinkGuard() {
4039   if (!IsPlatformVersionAtLeastFn)
4040     return;
4041   // @available requires CoreFoundation only on Darwin.
4042   if (!Target.getTriple().isOSDarwin())
4043     return;
4044   // @available doesn't need Foundation on macOS 10.15+, iOS/tvOS 13+, or
4045   // watchOS 6+.
4046   if (!isFoundationNeededForDarwinAvailabilityCheck(
4047           Target.getTriple(), Target.getPlatformMinVersion()))
4048     return;
4049   // Add -framework CoreFoundation to the linker commands. We still want to
4050   // emit the core foundation reference down below because otherwise if
4051   // CoreFoundation is not used in the code, the linker won't link the
4052   // framework.
4053   auto &Context = getLLVMContext();
4054   llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
4055                              llvm::MDString::get(Context, "CoreFoundation")};
4056   LinkerOptionsMetadata.push_back(llvm::MDNode::get(Context, Args));
4057   // Emit a reference to a symbol from CoreFoundation to ensure that
4058   // CoreFoundation is linked into the final binary.
4059   llvm::FunctionType *FTy =
4060       llvm::FunctionType::get(Int32Ty, {VoidPtrTy}, false);
4061   llvm::FunctionCallee CFFunc =
4062       CreateRuntimeFunction(FTy, "CFBundleGetVersionNumber");
4063 
4064   llvm::FunctionType *CheckFTy = llvm::FunctionType::get(VoidTy, {}, false);
4065   llvm::FunctionCallee CFLinkCheckFuncRef = CreateRuntimeFunction(
4066       CheckFTy, "__clang_at_available_requires_core_foundation_framework",
4067       llvm::AttributeList(), /*Local=*/true);
4068   llvm::Function *CFLinkCheckFunc =
4069       cast<llvm::Function>(CFLinkCheckFuncRef.getCallee()->stripPointerCasts());
4070   if (CFLinkCheckFunc->empty()) {
4071     CFLinkCheckFunc->setLinkage(llvm::GlobalValue::LinkOnceAnyLinkage);
4072     CFLinkCheckFunc->setVisibility(llvm::GlobalValue::HiddenVisibility);
4073     CodeGenFunction CGF(*this);
4074     CGF.Builder.SetInsertPoint(CGF.createBasicBlock("", CFLinkCheckFunc));
4075     CGF.EmitNounwindRuntimeCall(CFFunc,
4076                                 llvm::Constant::getNullValue(VoidPtrTy));
4077     CGF.Builder.CreateUnreachable();
4078     addCompilerUsedGlobal(CFLinkCheckFunc);
4079   }
4080 }
4081 
4082 CGObjCRuntime::~CGObjCRuntime() {}
4083