xref: /llvm-project/clang/lib/CodeGen/CGExprScalar.cpp (revision 1295aa2e814d1747d69520e34e2c5fb2888e666d)
1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGCleanup.h"
15 #include "CGDebugInfo.h"
16 #include "CGObjCRuntime.h"
17 #include "CGOpenMPRuntime.h"
18 #include "CGRecordLayout.h"
19 #include "CodeGenFunction.h"
20 #include "CodeGenModule.h"
21 #include "ConstantEmitter.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/Attr.h"
25 #include "clang/AST/DeclObjC.h"
26 #include "clang/AST/Expr.h"
27 #include "clang/AST/ParentMapContext.h"
28 #include "clang/AST/RecordLayout.h"
29 #include "clang/AST/StmtVisitor.h"
30 #include "clang/Basic/CodeGenOptions.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "llvm/ADT/APFixedPoint.h"
33 #include "llvm/IR/CFG.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/FixedPointBuilder.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/GEPNoWrapFlags.h"
40 #include "llvm/IR/GetElementPtrTypeIterator.h"
41 #include "llvm/IR/GlobalVariable.h"
42 #include "llvm/IR/Intrinsics.h"
43 #include "llvm/IR/IntrinsicsPowerPC.h"
44 #include "llvm/IR/MatrixBuilder.h"
45 #include "llvm/IR/Module.h"
46 #include "llvm/Support/TypeSize.h"
47 #include <cstdarg>
48 #include <optional>
49 
50 using namespace clang;
51 using namespace CodeGen;
52 using llvm::Value;
53 
54 //===----------------------------------------------------------------------===//
55 //                         Scalar Expression Emitter
56 //===----------------------------------------------------------------------===//
57 
58 namespace llvm {
59 extern cl::opt<bool> EnableSingleByteCoverage;
60 } // namespace llvm
61 
62 namespace {
63 
64 /// Determine whether the given binary operation may overflow.
65 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul,
66 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem},
67 /// the returned overflow check is precise. The returned value is 'true' for
68 /// all other opcodes, to be conservative.
69 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS,
70                              BinaryOperator::Opcode Opcode, bool Signed,
71                              llvm::APInt &Result) {
72   // Assume overflow is possible, unless we can prove otherwise.
73   bool Overflow = true;
74   const auto &LHSAP = LHS->getValue();
75   const auto &RHSAP = RHS->getValue();
76   if (Opcode == BO_Add) {
77     Result = Signed ? LHSAP.sadd_ov(RHSAP, Overflow)
78                     : LHSAP.uadd_ov(RHSAP, Overflow);
79   } else if (Opcode == BO_Sub) {
80     Result = Signed ? LHSAP.ssub_ov(RHSAP, Overflow)
81                     : LHSAP.usub_ov(RHSAP, Overflow);
82   } else if (Opcode == BO_Mul) {
83     Result = Signed ? LHSAP.smul_ov(RHSAP, Overflow)
84                     : LHSAP.umul_ov(RHSAP, Overflow);
85   } else if (Opcode == BO_Div || Opcode == BO_Rem) {
86     if (Signed && !RHS->isZero())
87       Result = LHSAP.sdiv_ov(RHSAP, Overflow);
88     else
89       return false;
90   }
91   return Overflow;
92 }
93 
94 struct BinOpInfo {
95   Value *LHS;
96   Value *RHS;
97   QualType Ty;  // Computation Type.
98   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
99   FPOptions FPFeatures;
100   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
101 
102   /// Check if the binop can result in integer overflow.
103   bool mayHaveIntegerOverflow() const {
104     // Without constant input, we can't rule out overflow.
105     auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS);
106     auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS);
107     if (!LHSCI || !RHSCI)
108       return true;
109 
110     llvm::APInt Result;
111     return ::mayHaveIntegerOverflow(
112         LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result);
113   }
114 
115   /// Check if the binop computes a division or a remainder.
116   bool isDivremOp() const {
117     return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign ||
118            Opcode == BO_RemAssign;
119   }
120 
121   /// Check if the binop can result in an integer division by zero.
122   bool mayHaveIntegerDivisionByZero() const {
123     if (isDivremOp())
124       if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS))
125         return CI->isZero();
126     return true;
127   }
128 
129   /// Check if the binop can result in a float division by zero.
130   bool mayHaveFloatDivisionByZero() const {
131     if (isDivremOp())
132       if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS))
133         return CFP->isZero();
134     return true;
135   }
136 
137   /// Check if at least one operand is a fixed point type. In such cases, this
138   /// operation did not follow usual arithmetic conversion and both operands
139   /// might not be of the same type.
140   bool isFixedPointOp() const {
141     // We cannot simply check the result type since comparison operations return
142     // an int.
143     if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) {
144       QualType LHSType = BinOp->getLHS()->getType();
145       QualType RHSType = BinOp->getRHS()->getType();
146       return LHSType->isFixedPointType() || RHSType->isFixedPointType();
147     }
148     if (const auto *UnOp = dyn_cast<UnaryOperator>(E))
149       return UnOp->getSubExpr()->getType()->isFixedPointType();
150     return false;
151   }
152 
153   /// Check if the RHS has a signed integer representation.
154   bool rhsHasSignedIntegerRepresentation() const {
155     if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) {
156       QualType RHSType = BinOp->getRHS()->getType();
157       return RHSType->hasSignedIntegerRepresentation();
158     }
159     return false;
160   }
161 };
162 
163 static bool MustVisitNullValue(const Expr *E) {
164   // If a null pointer expression's type is the C++0x nullptr_t, then
165   // it's not necessarily a simple constant and it must be evaluated
166   // for its potential side effects.
167   return E->getType()->isNullPtrType();
168 }
169 
170 /// If \p E is a widened promoted integer, get its base (unpromoted) type.
171 static std::optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx,
172                                                        const Expr *E) {
173   const Expr *Base = E->IgnoreImpCasts();
174   if (E == Base)
175     return std::nullopt;
176 
177   QualType BaseTy = Base->getType();
178   if (!Ctx.isPromotableIntegerType(BaseTy) ||
179       Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType()))
180     return std::nullopt;
181 
182   return BaseTy;
183 }
184 
185 /// Check if \p E is a widened promoted integer.
186 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) {
187   return getUnwidenedIntegerType(Ctx, E).has_value();
188 }
189 
190 /// Check if we can skip the overflow check for \p Op.
191 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
192   assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) &&
193          "Expected a unary or binary operator");
194 
195   // If the binop has constant inputs and we can prove there is no overflow,
196   // we can elide the overflow check.
197   if (!Op.mayHaveIntegerOverflow())
198     return true;
199 
200   if (Op.Ty->isSignedIntegerType() &&
201       Ctx.isTypeIgnoredBySanitizer(SanitizerKind::SignedIntegerOverflow,
202                                    Op.Ty)) {
203     return true;
204   }
205 
206   if (Op.Ty->isUnsignedIntegerType() &&
207       Ctx.isTypeIgnoredBySanitizer(SanitizerKind::UnsignedIntegerOverflow,
208                                    Op.Ty)) {
209     return true;
210   }
211 
212   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Op.E);
213 
214   if (UO && UO->getOpcode() == UO_Minus &&
215       Ctx.getLangOpts().isOverflowPatternExcluded(
216           LangOptions::OverflowPatternExclusionKind::NegUnsignedConst) &&
217       UO->isIntegerConstantExpr(Ctx))
218     return true;
219 
220   // If a unary op has a widened operand, the op cannot overflow.
221   if (UO)
222     return !UO->canOverflow();
223 
224   // We usually don't need overflow checks for binops with widened operands.
225   // Multiplication with promoted unsigned operands is a special case.
226   const auto *BO = cast<BinaryOperator>(Op.E);
227   if (BO->hasExcludedOverflowPattern())
228     return true;
229 
230   auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS());
231   if (!OptionalLHSTy)
232     return false;
233 
234   auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS());
235   if (!OptionalRHSTy)
236     return false;
237 
238   QualType LHSTy = *OptionalLHSTy;
239   QualType RHSTy = *OptionalRHSTy;
240 
241   // This is the simple case: binops without unsigned multiplication, and with
242   // widened operands. No overflow check is needed here.
243   if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) ||
244       !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType())
245     return true;
246 
247   // For unsigned multiplication the overflow check can be elided if either one
248   // of the unpromoted types are less than half the size of the promoted type.
249   unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType());
250   return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize ||
251          (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize;
252 }
253 
254 class ScalarExprEmitter
255   : public StmtVisitor<ScalarExprEmitter, Value*> {
256   CodeGenFunction &CGF;
257   CGBuilderTy &Builder;
258   bool IgnoreResultAssign;
259   llvm::LLVMContext &VMContext;
260 public:
261 
262   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
263     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
264       VMContext(cgf.getLLVMContext()) {
265   }
266 
267   //===--------------------------------------------------------------------===//
268   //                               Utilities
269   //===--------------------------------------------------------------------===//
270 
271   bool TestAndClearIgnoreResultAssign() {
272     bool I = IgnoreResultAssign;
273     IgnoreResultAssign = false;
274     return I;
275   }
276 
277   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
278   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
279   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
280     return CGF.EmitCheckedLValue(E, TCK);
281   }
282 
283   void EmitBinOpCheck(
284       ArrayRef<std::pair<Value *, SanitizerKind::SanitizerOrdinal>> Checks,
285       const BinOpInfo &Info);
286 
287   Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
288     return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
289   }
290 
291   void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
292     const AlignValueAttr *AVAttr = nullptr;
293     if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
294       const ValueDecl *VD = DRE->getDecl();
295 
296       if (VD->getType()->isReferenceType()) {
297         if (const auto *TTy =
298                 VD->getType().getNonReferenceType()->getAs<TypedefType>())
299           AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
300       } else {
301         // Assumptions for function parameters are emitted at the start of the
302         // function, so there is no need to repeat that here,
303         // unless the alignment-assumption sanitizer is enabled,
304         // then we prefer the assumption over alignment attribute
305         // on IR function param.
306         if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment))
307           return;
308 
309         AVAttr = VD->getAttr<AlignValueAttr>();
310       }
311     }
312 
313     if (!AVAttr)
314       if (const auto *TTy = E->getType()->getAs<TypedefType>())
315         AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
316 
317     if (!AVAttr)
318       return;
319 
320     Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
321     llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
322     CGF.emitAlignmentAssumption(V, E, AVAttr->getLocation(), AlignmentCI);
323   }
324 
325   /// EmitLoadOfLValue - Given an expression with complex type that represents a
326   /// value l-value, this method emits the address of the l-value, then loads
327   /// and returns the result.
328   Value *EmitLoadOfLValue(const Expr *E) {
329     Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
330                                 E->getExprLoc());
331 
332     EmitLValueAlignmentAssumption(E, V);
333     return V;
334   }
335 
336   /// EmitConversionToBool - Convert the specified expression value to a
337   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
338   Value *EmitConversionToBool(Value *Src, QualType DstTy);
339 
340   /// Emit a check that a conversion from a floating-point type does not
341   /// overflow.
342   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
343                                 Value *Src, QualType SrcType, QualType DstType,
344                                 llvm::Type *DstTy, SourceLocation Loc);
345 
346   /// Known implicit conversion check kinds.
347   /// This is used for bitfield conversion checks as well.
348   /// Keep in sync with the enum of the same name in ubsan_handlers.h
349   enum ImplicitConversionCheckKind : unsigned char {
350     ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7.
351     ICCK_UnsignedIntegerTruncation = 1,
352     ICCK_SignedIntegerTruncation = 2,
353     ICCK_IntegerSignChange = 3,
354     ICCK_SignedIntegerTruncationOrSignChange = 4,
355   };
356 
357   /// Emit a check that an [implicit] truncation of an integer  does not
358   /// discard any bits. It is not UB, so we use the value after truncation.
359   void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst,
360                                   QualType DstType, SourceLocation Loc);
361 
362   /// Emit a check that an [implicit] conversion of an integer does not change
363   /// the sign of the value. It is not UB, so we use the value after conversion.
364   /// NOTE: Src and Dst may be the exact same value! (point to the same thing)
365   void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst,
366                                   QualType DstType, SourceLocation Loc);
367 
368   /// Emit a conversion from the specified type to the specified destination
369   /// type, both of which are LLVM scalar types.
370   struct ScalarConversionOpts {
371     bool TreatBooleanAsSigned;
372     bool EmitImplicitIntegerTruncationChecks;
373     bool EmitImplicitIntegerSignChangeChecks;
374 
375     ScalarConversionOpts()
376         : TreatBooleanAsSigned(false),
377           EmitImplicitIntegerTruncationChecks(false),
378           EmitImplicitIntegerSignChangeChecks(false) {}
379 
380     ScalarConversionOpts(clang::SanitizerSet SanOpts)
381         : TreatBooleanAsSigned(false),
382           EmitImplicitIntegerTruncationChecks(
383               SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)),
384           EmitImplicitIntegerSignChangeChecks(
385               SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {}
386   };
387   Value *EmitScalarCast(Value *Src, QualType SrcType, QualType DstType,
388                         llvm::Type *SrcTy, llvm::Type *DstTy,
389                         ScalarConversionOpts Opts);
390   Value *
391   EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
392                        SourceLocation Loc,
393                        ScalarConversionOpts Opts = ScalarConversionOpts());
394 
395   /// Convert between either a fixed point and other fixed point or fixed point
396   /// and an integer.
397   Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy,
398                                   SourceLocation Loc);
399 
400   /// Emit a conversion from the specified complex type to the specified
401   /// destination type, where the destination type is an LLVM scalar type.
402   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
403                                        QualType SrcTy, QualType DstTy,
404                                        SourceLocation Loc);
405 
406   /// EmitNullValue - Emit a value that corresponds to null for the given type.
407   Value *EmitNullValue(QualType Ty);
408 
409   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
410   Value *EmitFloatToBoolConversion(Value *V) {
411     // Compare against 0.0 for fp scalars.
412     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
413     return Builder.CreateFCmpUNE(V, Zero, "tobool");
414   }
415 
416   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
417   Value *EmitPointerToBoolConversion(Value *V, QualType QT) {
418     Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT);
419 
420     return Builder.CreateICmpNE(V, Zero, "tobool");
421   }
422 
423   Value *EmitIntToBoolConversion(Value *V) {
424     // Because of the type rules of C, we often end up computing a
425     // logical value, then zero extending it to int, then wanting it
426     // as a logical value again.  Optimize this common case.
427     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
428       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
429         Value *Result = ZI->getOperand(0);
430         // If there aren't any more uses, zap the instruction to save space.
431         // Note that there can be more uses, for example if this
432         // is the result of an assignment.
433         if (ZI->use_empty())
434           ZI->eraseFromParent();
435         return Result;
436       }
437     }
438 
439     return Builder.CreateIsNotNull(V, "tobool");
440   }
441 
442   //===--------------------------------------------------------------------===//
443   //                            Visitor Methods
444   //===--------------------------------------------------------------------===//
445 
446   Value *Visit(Expr *E) {
447     ApplyDebugLocation DL(CGF, E);
448     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
449   }
450 
451   Value *VisitStmt(Stmt *S) {
452     S->dump(llvm::errs(), CGF.getContext());
453     llvm_unreachable("Stmt can't have complex result type!");
454   }
455   Value *VisitExpr(Expr *S);
456 
457   Value *VisitConstantExpr(ConstantExpr *E) {
458     // A constant expression of type 'void' generates no code and produces no
459     // value.
460     if (E->getType()->isVoidType())
461       return nullptr;
462 
463     if (Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) {
464       if (E->isGLValue())
465         return CGF.EmitLoadOfScalar(
466             Address(Result, CGF.convertTypeForLoadStore(E->getType()),
467                     CGF.getContext().getTypeAlignInChars(E->getType())),
468             /*Volatile*/ false, E->getType(), E->getExprLoc());
469       return Result;
470     }
471     return Visit(E->getSubExpr());
472   }
473   Value *VisitParenExpr(ParenExpr *PE) {
474     return Visit(PE->getSubExpr());
475   }
476   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
477     return Visit(E->getReplacement());
478   }
479   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
480     return Visit(GE->getResultExpr());
481   }
482   Value *VisitCoawaitExpr(CoawaitExpr *S) {
483     return CGF.EmitCoawaitExpr(*S).getScalarVal();
484   }
485   Value *VisitCoyieldExpr(CoyieldExpr *S) {
486     return CGF.EmitCoyieldExpr(*S).getScalarVal();
487   }
488   Value *VisitUnaryCoawait(const UnaryOperator *E) {
489     return Visit(E->getSubExpr());
490   }
491 
492   // Leaves.
493   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
494     return Builder.getInt(E->getValue());
495   }
496   Value *VisitFixedPointLiteral(const FixedPointLiteral *E) {
497     return Builder.getInt(E->getValue());
498   }
499   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
500     return llvm::ConstantFP::get(VMContext, E->getValue());
501   }
502   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
503     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
504   }
505   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
506     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
507   }
508   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
509     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
510   }
511   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
512     if (E->getType()->isVoidType())
513       return nullptr;
514 
515     return EmitNullValue(E->getType());
516   }
517   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
518     return EmitNullValue(E->getType());
519   }
520   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
521   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
522   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
523     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
524     return Builder.CreateBitCast(V, ConvertType(E->getType()));
525   }
526 
527   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
528     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
529   }
530 
531   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
532     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
533   }
534 
535   Value *VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr *E);
536   Value *VisitEmbedExpr(EmbedExpr *E);
537 
538   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
539     if (E->isGLValue())
540       return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
541                               E->getExprLoc());
542 
543     // Otherwise, assume the mapping is the scalar directly.
544     return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal();
545   }
546 
547   Value *VisitOpenACCAsteriskSizeExpr(OpenACCAsteriskSizeExpr *E) {
548     llvm_unreachable("Codegen for this isn't defined/implemented");
549   }
550 
551   // l-values.
552   Value *VisitDeclRefExpr(DeclRefExpr *E) {
553     if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
554       return CGF.emitScalarConstant(Constant, E);
555     return EmitLoadOfLValue(E);
556   }
557 
558   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
559     return CGF.EmitObjCSelectorExpr(E);
560   }
561   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
562     return CGF.EmitObjCProtocolExpr(E);
563   }
564   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
565     return EmitLoadOfLValue(E);
566   }
567   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
568     if (E->getMethodDecl() &&
569         E->getMethodDecl()->getReturnType()->isReferenceType())
570       return EmitLoadOfLValue(E);
571     return CGF.EmitObjCMessageExpr(E).getScalarVal();
572   }
573 
574   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
575     LValue LV = CGF.EmitObjCIsaExpr(E);
576     Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
577     return V;
578   }
579 
580   Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) {
581     VersionTuple Version = E->getVersion();
582 
583     // If we're checking for a platform older than our minimum deployment
584     // target, we can fold the check away.
585     if (Version <= CGF.CGM.getTarget().getPlatformMinVersion())
586       return llvm::ConstantInt::get(Builder.getInt1Ty(), 1);
587 
588     return CGF.EmitBuiltinAvailable(Version);
589   }
590 
591   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
592   Value *VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E);
593   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
594   Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
595   Value *VisitMemberExpr(MemberExpr *E);
596   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
597   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
598     // Strictly speaking, we shouldn't be calling EmitLoadOfLValue, which
599     // transitively calls EmitCompoundLiteralLValue, here in C++ since compound
600     // literals aren't l-values in C++. We do so simply because that's the
601     // cleanest way to handle compound literals in C++.
602     // See the discussion here: https://reviews.llvm.org/D64464
603     return EmitLoadOfLValue(E);
604   }
605 
606   Value *VisitInitListExpr(InitListExpr *E);
607 
608   Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) {
609     assert(CGF.getArrayInitIndex() &&
610            "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?");
611     return CGF.getArrayInitIndex();
612   }
613 
614   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
615     return EmitNullValue(E->getType());
616   }
617   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
618     CGF.CGM.EmitExplicitCastExprType(E, &CGF);
619     return VisitCastExpr(E);
620   }
621   Value *VisitCastExpr(CastExpr *E);
622 
623   Value *VisitCallExpr(const CallExpr *E) {
624     if (E->getCallReturnType(CGF.getContext())->isReferenceType())
625       return EmitLoadOfLValue(E);
626 
627     Value *V = CGF.EmitCallExpr(E).getScalarVal();
628 
629     EmitLValueAlignmentAssumption(E, V);
630     return V;
631   }
632 
633   Value *VisitStmtExpr(const StmtExpr *E);
634 
635   // Unary Operators.
636   Value *VisitUnaryPostDec(const UnaryOperator *E) {
637     LValue LV = EmitLValue(E->getSubExpr());
638     return EmitScalarPrePostIncDec(E, LV, false, false);
639   }
640   Value *VisitUnaryPostInc(const UnaryOperator *E) {
641     LValue LV = EmitLValue(E->getSubExpr());
642     return EmitScalarPrePostIncDec(E, LV, true, false);
643   }
644   Value *VisitUnaryPreDec(const UnaryOperator *E) {
645     LValue LV = EmitLValue(E->getSubExpr());
646     return EmitScalarPrePostIncDec(E, LV, false, true);
647   }
648   Value *VisitUnaryPreInc(const UnaryOperator *E) {
649     LValue LV = EmitLValue(E->getSubExpr());
650     return EmitScalarPrePostIncDec(E, LV, true, true);
651   }
652 
653   llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
654                                                   llvm::Value *InVal,
655                                                   bool IsInc);
656 
657   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
658                                        bool isInc, bool isPre);
659 
660 
661   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
662     if (isa<MemberPointerType>(E->getType())) // never sugared
663       return CGF.CGM.getMemberPointerConstant(E);
664 
665     return EmitLValue(E->getSubExpr()).getPointer(CGF);
666   }
667   Value *VisitUnaryDeref(const UnaryOperator *E) {
668     if (E->getType()->isVoidType())
669       return Visit(E->getSubExpr()); // the actual value should be unused
670     return EmitLoadOfLValue(E);
671   }
672 
673   Value *VisitUnaryPlus(const UnaryOperator *E,
674                         QualType PromotionType = QualType());
675   Value *VisitPlus(const UnaryOperator *E, QualType PromotionType);
676   Value *VisitUnaryMinus(const UnaryOperator *E,
677                          QualType PromotionType = QualType());
678   Value *VisitMinus(const UnaryOperator *E, QualType PromotionType);
679 
680   Value *VisitUnaryNot      (const UnaryOperator *E);
681   Value *VisitUnaryLNot     (const UnaryOperator *E);
682   Value *VisitUnaryReal(const UnaryOperator *E,
683                         QualType PromotionType = QualType());
684   Value *VisitReal(const UnaryOperator *E, QualType PromotionType);
685   Value *VisitUnaryImag(const UnaryOperator *E,
686                         QualType PromotionType = QualType());
687   Value *VisitImag(const UnaryOperator *E, QualType PromotionType);
688   Value *VisitUnaryExtension(const UnaryOperator *E) {
689     return Visit(E->getSubExpr());
690   }
691 
692   // C++
693   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
694     return EmitLoadOfLValue(E);
695   }
696   Value *VisitSourceLocExpr(SourceLocExpr *SLE) {
697     auto &Ctx = CGF.getContext();
698     APValue Evaluated =
699         SLE->EvaluateInContext(Ctx, CGF.CurSourceLocExprScope.getDefaultExpr());
700     return ConstantEmitter(CGF).emitAbstract(SLE->getLocation(), Evaluated,
701                                              SLE->getType());
702   }
703 
704   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
705     CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
706     return Visit(DAE->getExpr());
707   }
708   Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
709     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
710     return Visit(DIE->getExpr());
711   }
712   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
713     return CGF.LoadCXXThis();
714   }
715 
716   Value *VisitExprWithCleanups(ExprWithCleanups *E);
717   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
718     return CGF.EmitCXXNewExpr(E);
719   }
720   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
721     CGF.EmitCXXDeleteExpr(E);
722     return nullptr;
723   }
724 
725   Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
726     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
727   }
728 
729   Value *VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) {
730     return Builder.getInt1(E->isSatisfied());
731   }
732 
733   Value *VisitRequiresExpr(const RequiresExpr *E) {
734     return Builder.getInt1(E->isSatisfied());
735   }
736 
737   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
738     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
739   }
740 
741   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
742     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
743   }
744 
745   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
746     // C++ [expr.pseudo]p1:
747     //   The result shall only be used as the operand for the function call
748     //   operator (), and the result of such a call has type void. The only
749     //   effect is the evaluation of the postfix-expression before the dot or
750     //   arrow.
751     CGF.EmitScalarExpr(E->getBase());
752     return nullptr;
753   }
754 
755   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
756     return EmitNullValue(E->getType());
757   }
758 
759   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
760     CGF.EmitCXXThrowExpr(E);
761     return nullptr;
762   }
763 
764   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
765     return Builder.getInt1(E->getValue());
766   }
767 
768   // Binary Operators.
769   Value *EmitMul(const BinOpInfo &Ops) {
770     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
771       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
772       case LangOptions::SOB_Defined:
773         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
774           return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
775         [[fallthrough]];
776       case LangOptions::SOB_Undefined:
777         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
778           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
779         [[fallthrough]];
780       case LangOptions::SOB_Trapping:
781         if (CanElideOverflowCheck(CGF.getContext(), Ops))
782           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
783         return EmitOverflowCheckedBinOp(Ops);
784       }
785     }
786 
787     if (Ops.Ty->isConstantMatrixType()) {
788       llvm::MatrixBuilder MB(Builder);
789       // We need to check the types of the operands of the operator to get the
790       // correct matrix dimensions.
791       auto *BO = cast<BinaryOperator>(Ops.E);
792       auto *LHSMatTy = dyn_cast<ConstantMatrixType>(
793           BO->getLHS()->getType().getCanonicalType());
794       auto *RHSMatTy = dyn_cast<ConstantMatrixType>(
795           BO->getRHS()->getType().getCanonicalType());
796       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
797       if (LHSMatTy && RHSMatTy)
798         return MB.CreateMatrixMultiply(Ops.LHS, Ops.RHS, LHSMatTy->getNumRows(),
799                                        LHSMatTy->getNumColumns(),
800                                        RHSMatTy->getNumColumns());
801       return MB.CreateScalarMultiply(Ops.LHS, Ops.RHS);
802     }
803 
804     if (Ops.Ty->isUnsignedIntegerType() &&
805         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
806         !CanElideOverflowCheck(CGF.getContext(), Ops))
807       return EmitOverflowCheckedBinOp(Ops);
808 
809     if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
810       //  Preserve the old values
811       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
812       return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
813     }
814     if (Ops.isFixedPointOp())
815       return EmitFixedPointBinOp(Ops);
816     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
817   }
818   /// Create a binary op that checks for overflow.
819   /// Currently only supports +, - and *.
820   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
821 
822   // Check for undefined division and modulus behaviors.
823   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
824                                                   llvm::Value *Zero,bool isDiv);
825   // Common helper for getting how wide LHS of shift is.
826   static Value *GetMaximumShiftAmount(Value *LHS, Value *RHS, bool RHSIsSigned);
827 
828   // Used for shifting constraints for OpenCL, do mask for powers of 2, URem for
829   // non powers of two.
830   Value *ConstrainShiftValue(Value *LHS, Value *RHS, const Twine &Name);
831 
832   Value *EmitDiv(const BinOpInfo &Ops);
833   Value *EmitRem(const BinOpInfo &Ops);
834   Value *EmitAdd(const BinOpInfo &Ops);
835   Value *EmitSub(const BinOpInfo &Ops);
836   Value *EmitShl(const BinOpInfo &Ops);
837   Value *EmitShr(const BinOpInfo &Ops);
838   Value *EmitAnd(const BinOpInfo &Ops) {
839     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
840   }
841   Value *EmitXor(const BinOpInfo &Ops) {
842     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
843   }
844   Value *EmitOr (const BinOpInfo &Ops) {
845     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
846   }
847 
848   // Helper functions for fixed point binary operations.
849   Value *EmitFixedPointBinOp(const BinOpInfo &Ops);
850 
851   BinOpInfo EmitBinOps(const BinaryOperator *E,
852                        QualType PromotionTy = QualType());
853 
854   Value *EmitPromotedValue(Value *result, QualType PromotionType);
855   Value *EmitUnPromotedValue(Value *result, QualType ExprType);
856   Value *EmitPromoted(const Expr *E, QualType PromotionType);
857 
858   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
859                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
860                                   Value *&Result);
861 
862   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
863                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
864 
865   QualType getPromotionType(QualType Ty) {
866     const auto &Ctx = CGF.getContext();
867     if (auto *CT = Ty->getAs<ComplexType>()) {
868       QualType ElementType = CT->getElementType();
869       if (ElementType.UseExcessPrecision(Ctx))
870         return Ctx.getComplexType(Ctx.FloatTy);
871     }
872 
873     if (Ty.UseExcessPrecision(Ctx)) {
874       if (auto *VT = Ty->getAs<VectorType>()) {
875         unsigned NumElements = VT->getNumElements();
876         return Ctx.getVectorType(Ctx.FloatTy, NumElements, VT->getVectorKind());
877       }
878       return Ctx.FloatTy;
879     }
880 
881     return QualType();
882   }
883 
884   // Binary operators and binary compound assignment operators.
885 #define HANDLEBINOP(OP)                                                        \
886   Value *VisitBin##OP(const BinaryOperator *E) {                               \
887     QualType promotionTy = getPromotionType(E->getType());                     \
888     auto result = Emit##OP(EmitBinOps(E, promotionTy));                        \
889     if (result && !promotionTy.isNull())                                       \
890       result = EmitUnPromotedValue(result, E->getType());                      \
891     return result;                                                             \
892   }                                                                            \
893   Value *VisitBin##OP##Assign(const CompoundAssignOperator *E) {               \
894     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit##OP);                \
895   }
896   HANDLEBINOP(Mul)
897   HANDLEBINOP(Div)
898   HANDLEBINOP(Rem)
899   HANDLEBINOP(Add)
900   HANDLEBINOP(Sub)
901   HANDLEBINOP(Shl)
902   HANDLEBINOP(Shr)
903   HANDLEBINOP(And)
904   HANDLEBINOP(Xor)
905   HANDLEBINOP(Or)
906 #undef HANDLEBINOP
907 
908   // Comparisons.
909   Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
910                      llvm::CmpInst::Predicate SICmpOpc,
911                      llvm::CmpInst::Predicate FCmpOpc, bool IsSignaling);
912 #define VISITCOMP(CODE, UI, SI, FP, SIG) \
913     Value *VisitBin##CODE(const BinaryOperator *E) { \
914       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
915                          llvm::FCmpInst::FP, SIG); }
916   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT, true)
917   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT, true)
918   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE, true)
919   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE, true)
920   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ, false)
921   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE, false)
922 #undef VISITCOMP
923 
924   Value *VisitBinAssign     (const BinaryOperator *E);
925 
926   Value *VisitBinLAnd       (const BinaryOperator *E);
927   Value *VisitBinLOr        (const BinaryOperator *E);
928   Value *VisitBinComma      (const BinaryOperator *E);
929 
930   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
931   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
932 
933   Value *VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
934     return Visit(E->getSemanticForm());
935   }
936 
937   // Other Operators.
938   Value *VisitBlockExpr(const BlockExpr *BE);
939   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
940   Value *VisitChooseExpr(ChooseExpr *CE);
941   Value *VisitVAArgExpr(VAArgExpr *VE);
942   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
943     return CGF.EmitObjCStringLiteral(E);
944   }
945   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
946     return CGF.EmitObjCBoxedExpr(E);
947   }
948   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
949     return CGF.EmitObjCArrayLiteral(E);
950   }
951   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
952     return CGF.EmitObjCDictionaryLiteral(E);
953   }
954   Value *VisitAsTypeExpr(AsTypeExpr *CE);
955   Value *VisitAtomicExpr(AtomicExpr *AE);
956   Value *VisitPackIndexingExpr(PackIndexingExpr *E) {
957     return Visit(E->getSelectedExpr());
958   }
959 };
960 }  // end anonymous namespace.
961 
962 //===----------------------------------------------------------------------===//
963 //                                Utilities
964 //===----------------------------------------------------------------------===//
965 
966 /// EmitConversionToBool - Convert the specified expression value to a
967 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
968 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
969   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
970 
971   if (SrcType->isRealFloatingType())
972     return EmitFloatToBoolConversion(Src);
973 
974   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
975     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
976 
977   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
978          "Unknown scalar type to convert");
979 
980   if (isa<llvm::IntegerType>(Src->getType()))
981     return EmitIntToBoolConversion(Src);
982 
983   assert(isa<llvm::PointerType>(Src->getType()));
984   return EmitPointerToBoolConversion(Src, SrcType);
985 }
986 
987 void ScalarExprEmitter::EmitFloatConversionCheck(
988     Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
989     QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
990   assert(SrcType->isFloatingType() && "not a conversion from floating point");
991   if (!isa<llvm::IntegerType>(DstTy))
992     return;
993 
994   CodeGenFunction::SanitizerScope SanScope(&CGF);
995   using llvm::APFloat;
996   using llvm::APSInt;
997 
998   llvm::Value *Check = nullptr;
999   const llvm::fltSemantics &SrcSema =
1000     CGF.getContext().getFloatTypeSemantics(OrigSrcType);
1001 
1002   // Floating-point to integer. This has undefined behavior if the source is
1003   // +-Inf, NaN, or doesn't fit into the destination type (after truncation
1004   // to an integer).
1005   unsigned Width = CGF.getContext().getIntWidth(DstType);
1006   bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
1007 
1008   APSInt Min = APSInt::getMinValue(Width, Unsigned);
1009   APFloat MinSrc(SrcSema, APFloat::uninitialized);
1010   if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
1011       APFloat::opOverflow)
1012     // Don't need an overflow check for lower bound. Just check for
1013     // -Inf/NaN.
1014     MinSrc = APFloat::getInf(SrcSema, true);
1015   else
1016     // Find the largest value which is too small to represent (before
1017     // truncation toward zero).
1018     MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
1019 
1020   APSInt Max = APSInt::getMaxValue(Width, Unsigned);
1021   APFloat MaxSrc(SrcSema, APFloat::uninitialized);
1022   if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
1023       APFloat::opOverflow)
1024     // Don't need an overflow check for upper bound. Just check for
1025     // +Inf/NaN.
1026     MaxSrc = APFloat::getInf(SrcSema, false);
1027   else
1028     // Find the smallest value which is too large to represent (before
1029     // truncation toward zero).
1030     MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
1031 
1032   // If we're converting from __half, convert the range to float to match
1033   // the type of src.
1034   if (OrigSrcType->isHalfType()) {
1035     const llvm::fltSemantics &Sema =
1036       CGF.getContext().getFloatTypeSemantics(SrcType);
1037     bool IsInexact;
1038     MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
1039     MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
1040   }
1041 
1042   llvm::Value *GE =
1043     Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
1044   llvm::Value *LE =
1045     Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
1046   Check = Builder.CreateAnd(GE, LE);
1047 
1048   llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
1049                                   CGF.EmitCheckTypeDescriptor(OrigSrcType),
1050                                   CGF.EmitCheckTypeDescriptor(DstType)};
1051   CGF.EmitCheck(std::make_pair(Check, SanitizerKind::SO_FloatCastOverflow),
1052                 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc);
1053 }
1054 
1055 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
1056 // Returns 'i1 false' when the truncation Src -> Dst was lossy.
1057 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1058                  std::pair<llvm::Value *, SanitizerKind::SanitizerOrdinal>>
1059 EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst,
1060                                  QualType DstType, CGBuilderTy &Builder) {
1061   llvm::Type *SrcTy = Src->getType();
1062   llvm::Type *DstTy = Dst->getType();
1063   (void)DstTy; // Only used in assert()
1064 
1065   // This should be truncation of integral types.
1066   assert(Src != Dst);
1067   assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits());
1068   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
1069          "non-integer llvm type");
1070 
1071   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1072   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1073 
1074   // If both (src and dst) types are unsigned, then it's an unsigned truncation.
1075   // Else, it is a signed truncation.
1076   ScalarExprEmitter::ImplicitConversionCheckKind Kind;
1077   SanitizerKind::SanitizerOrdinal Ordinal;
1078   if (!SrcSigned && !DstSigned) {
1079     Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation;
1080     Ordinal = SanitizerKind::SO_ImplicitUnsignedIntegerTruncation;
1081   } else {
1082     Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation;
1083     Ordinal = SanitizerKind::SO_ImplicitSignedIntegerTruncation;
1084   }
1085 
1086   llvm::Value *Check = nullptr;
1087   // 1. Extend the truncated value back to the same width as the Src.
1088   Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext");
1089   // 2. Equality-compare with the original source value
1090   Check = Builder.CreateICmpEQ(Check, Src, "truncheck");
1091   // If the comparison result is 'i1 false', then the truncation was lossy.
1092   return std::make_pair(Kind, std::make_pair(Check, Ordinal));
1093 }
1094 
1095 static bool PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
1096     QualType SrcType, QualType DstType) {
1097   return SrcType->isIntegerType() && DstType->isIntegerType();
1098 }
1099 
1100 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType,
1101                                                    Value *Dst, QualType DstType,
1102                                                    SourceLocation Loc) {
1103   if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation))
1104     return;
1105 
1106   // We only care about int->int conversions here.
1107   // We ignore conversions to/from pointer and/or bool.
1108   if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1109                                                                        DstType))
1110     return;
1111 
1112   unsigned SrcBits = Src->getType()->getScalarSizeInBits();
1113   unsigned DstBits = Dst->getType()->getScalarSizeInBits();
1114   // This must be truncation. Else we do not care.
1115   if (SrcBits <= DstBits)
1116     return;
1117 
1118   assert(!DstType->isBooleanType() && "we should not get here with booleans.");
1119 
1120   // If the integer sign change sanitizer is enabled,
1121   // and we are truncating from larger unsigned type to smaller signed type,
1122   // let that next sanitizer deal with it.
1123   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1124   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1125   if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) &&
1126       (!SrcSigned && DstSigned))
1127     return;
1128 
1129   CodeGenFunction::SanitizerScope SanScope(&CGF);
1130 
1131   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1132             std::pair<llvm::Value *, SanitizerKind::SanitizerOrdinal>>
1133       Check =
1134           EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1135   // If the comparison result is 'i1 false', then the truncation was lossy.
1136 
1137   // Do we care about this type of truncation?
1138   if (!CGF.SanOpts.has(Check.second.second))
1139     return;
1140 
1141   // Does some SSCL ignore this type?
1142   if (CGF.getContext().isTypeIgnoredBySanitizer(
1143           SanitizerMask::bitPosToMask(Check.second.second), DstType))
1144     return;
1145 
1146   llvm::Constant *StaticArgs[] = {
1147       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1148       CGF.EmitCheckTypeDescriptor(DstType),
1149       llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first),
1150       llvm::ConstantInt::get(Builder.getInt32Ty(), 0)};
1151 
1152   CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs,
1153                 {Src, Dst});
1154 }
1155 
1156 static llvm::Value *EmitIsNegativeTestHelper(Value *V, QualType VType,
1157                                              const char *Name,
1158                                              CGBuilderTy &Builder) {
1159   bool VSigned = VType->isSignedIntegerOrEnumerationType();
1160   llvm::Type *VTy = V->getType();
1161   if (!VSigned) {
1162     // If the value is unsigned, then it is never negative.
1163     return llvm::ConstantInt::getFalse(VTy->getContext());
1164   }
1165   llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0);
1166   return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero,
1167                             llvm::Twine(Name) + "." + V->getName() +
1168                                 ".negativitycheck");
1169 }
1170 
1171 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
1172 // Returns 'i1 false' when the conversion Src -> Dst changed the sign.
1173 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1174                  std::pair<llvm::Value *, SanitizerKind::SanitizerOrdinal>>
1175 EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst,
1176                                  QualType DstType, CGBuilderTy &Builder) {
1177   llvm::Type *SrcTy = Src->getType();
1178   llvm::Type *DstTy = Dst->getType();
1179 
1180   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
1181          "non-integer llvm type");
1182 
1183   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1184   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1185   (void)SrcSigned; // Only used in assert()
1186   (void)DstSigned; // Only used in assert()
1187   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1188   unsigned DstBits = DstTy->getScalarSizeInBits();
1189   (void)SrcBits; // Only used in assert()
1190   (void)DstBits; // Only used in assert()
1191 
1192   assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) &&
1193          "either the widths should be different, or the signednesses.");
1194 
1195   // 1. Was the old Value negative?
1196   llvm::Value *SrcIsNegative =
1197       EmitIsNegativeTestHelper(Src, SrcType, "src", Builder);
1198   // 2. Is the new Value negative?
1199   llvm::Value *DstIsNegative =
1200       EmitIsNegativeTestHelper(Dst, DstType, "dst", Builder);
1201   // 3. Now, was the 'negativity status' preserved during the conversion?
1202   //    NOTE: conversion from negative to zero is considered to change the sign.
1203   //    (We want to get 'false' when the conversion changed the sign)
1204   //    So we should just equality-compare the negativity statuses.
1205   llvm::Value *Check = nullptr;
1206   Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck");
1207   // If the comparison result is 'false', then the conversion changed the sign.
1208   return std::make_pair(
1209       ScalarExprEmitter::ICCK_IntegerSignChange,
1210       std::make_pair(Check, SanitizerKind::SO_ImplicitIntegerSignChange));
1211 }
1212 
1213 void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType,
1214                                                    Value *Dst, QualType DstType,
1215                                                    SourceLocation Loc) {
1216   if (!CGF.SanOpts.has(SanitizerKind::SO_ImplicitIntegerSignChange))
1217     return;
1218 
1219   llvm::Type *SrcTy = Src->getType();
1220   llvm::Type *DstTy = Dst->getType();
1221 
1222   // We only care about int->int conversions here.
1223   // We ignore conversions to/from pointer and/or bool.
1224   if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1225                                                                        DstType))
1226     return;
1227 
1228   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1229   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1230   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1231   unsigned DstBits = DstTy->getScalarSizeInBits();
1232 
1233   // Now, we do not need to emit the check in *all* of the cases.
1234   // We can avoid emitting it in some obvious cases where it would have been
1235   // dropped by the opt passes (instcombine) always anyways.
1236   // If it's a cast between effectively the same type, no check.
1237   // NOTE: this is *not* equivalent to checking the canonical types.
1238   if (SrcSigned == DstSigned && SrcBits == DstBits)
1239     return;
1240   // At least one of the values needs to have signed type.
1241   // If both are unsigned, then obviously, neither of them can be negative.
1242   if (!SrcSigned && !DstSigned)
1243     return;
1244   // If the conversion is to *larger* *signed* type, then no check is needed.
1245   // Because either sign-extension happens (so the sign will remain),
1246   // or zero-extension will happen (the sign bit will be zero.)
1247   if ((DstBits > SrcBits) && DstSigned)
1248     return;
1249   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1250       (SrcBits > DstBits) && SrcSigned) {
1251     // If the signed integer truncation sanitizer is enabled,
1252     // and this is a truncation from signed type, then no check is needed.
1253     // Because here sign change check is interchangeable with truncation check.
1254     return;
1255   }
1256   // Does an SSCL have an entry for the DstType under its respective sanitizer
1257   // section?
1258   if (DstSigned && CGF.getContext().isTypeIgnoredBySanitizer(
1259                        SanitizerKind::ImplicitSignedIntegerTruncation, DstType))
1260     return;
1261   if (!DstSigned &&
1262       CGF.getContext().isTypeIgnoredBySanitizer(
1263           SanitizerKind::ImplicitUnsignedIntegerTruncation, DstType))
1264     return;
1265   // That's it. We can't rule out any more cases with the data we have.
1266 
1267   CodeGenFunction::SanitizerScope SanScope(&CGF);
1268 
1269   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1270             std::pair<llvm::Value *, SanitizerKind::SanitizerOrdinal>>
1271       Check;
1272 
1273   // Each of these checks needs to return 'false' when an issue was detected.
1274   ImplicitConversionCheckKind CheckKind;
1275   llvm::SmallVector<std::pair<llvm::Value *, SanitizerKind::SanitizerOrdinal>,
1276                     2>
1277       Checks;
1278   // So we can 'and' all the checks together, and still get 'false',
1279   // if at least one of the checks detected an issue.
1280 
1281   Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder);
1282   CheckKind = Check.first;
1283   Checks.emplace_back(Check.second);
1284 
1285   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1286       (SrcBits > DstBits) && !SrcSigned && DstSigned) {
1287     // If the signed integer truncation sanitizer was enabled,
1288     // and we are truncating from larger unsigned type to smaller signed type,
1289     // let's handle the case we skipped in that check.
1290     Check =
1291         EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1292     CheckKind = ICCK_SignedIntegerTruncationOrSignChange;
1293     Checks.emplace_back(Check.second);
1294     // If the comparison result is 'i1 false', then the truncation was lossy.
1295   }
1296 
1297   llvm::Constant *StaticArgs[] = {
1298       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1299       CGF.EmitCheckTypeDescriptor(DstType),
1300       llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind),
1301       llvm::ConstantInt::get(Builder.getInt32Ty(), 0)};
1302   // EmitCheck() will 'and' all the checks together.
1303   CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs,
1304                 {Src, Dst});
1305 }
1306 
1307 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
1308 // Returns 'i1 false' when the truncation Src -> Dst was lossy.
1309 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1310                  std::pair<llvm::Value *, SanitizerKind::SanitizerOrdinal>>
1311 EmitBitfieldTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst,
1312                                   QualType DstType, CGBuilderTy &Builder) {
1313   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1314   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1315 
1316   ScalarExprEmitter::ImplicitConversionCheckKind Kind;
1317   if (!SrcSigned && !DstSigned)
1318     Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation;
1319   else
1320     Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation;
1321 
1322   llvm::Value *Check = nullptr;
1323   // 1. Extend the truncated value back to the same width as the Src.
1324   Check = Builder.CreateIntCast(Dst, Src->getType(), DstSigned, "bf.anyext");
1325   // 2. Equality-compare with the original source value
1326   Check = Builder.CreateICmpEQ(Check, Src, "bf.truncheck");
1327   // If the comparison result is 'i1 false', then the truncation was lossy.
1328 
1329   return std::make_pair(
1330       Kind,
1331       std::make_pair(Check, SanitizerKind::SO_ImplicitBitfieldConversion));
1332 }
1333 
1334 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
1335 // Returns 'i1 false' when the conversion Src -> Dst changed the sign.
1336 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1337                  std::pair<llvm::Value *, SanitizerKind::SanitizerOrdinal>>
1338 EmitBitfieldSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst,
1339                                   QualType DstType, CGBuilderTy &Builder) {
1340   // 1. Was the old Value negative?
1341   llvm::Value *SrcIsNegative =
1342       EmitIsNegativeTestHelper(Src, SrcType, "bf.src", Builder);
1343   // 2. Is the new Value negative?
1344   llvm::Value *DstIsNegative =
1345       EmitIsNegativeTestHelper(Dst, DstType, "bf.dst", Builder);
1346   // 3. Now, was the 'negativity status' preserved during the conversion?
1347   //    NOTE: conversion from negative to zero is considered to change the sign.
1348   //    (We want to get 'false' when the conversion changed the sign)
1349   //    So we should just equality-compare the negativity statuses.
1350   llvm::Value *Check = nullptr;
1351   Check =
1352       Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "bf.signchangecheck");
1353   // If the comparison result is 'false', then the conversion changed the sign.
1354   return std::make_pair(
1355       ScalarExprEmitter::ICCK_IntegerSignChange,
1356       std::make_pair(Check, SanitizerKind::SO_ImplicitBitfieldConversion));
1357 }
1358 
1359 void CodeGenFunction::EmitBitfieldConversionCheck(Value *Src, QualType SrcType,
1360                                                   Value *Dst, QualType DstType,
1361                                                   const CGBitFieldInfo &Info,
1362                                                   SourceLocation Loc) {
1363 
1364   if (!SanOpts.has(SanitizerKind::ImplicitBitfieldConversion))
1365     return;
1366 
1367   // We only care about int->int conversions here.
1368   // We ignore conversions to/from pointer and/or bool.
1369   if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1370                                                                        DstType))
1371     return;
1372 
1373   if (DstType->isBooleanType() || SrcType->isBooleanType())
1374     return;
1375 
1376   // This should be truncation of integral types.
1377   assert(isa<llvm::IntegerType>(Src->getType()) &&
1378          isa<llvm::IntegerType>(Dst->getType()) && "non-integer llvm type");
1379 
1380   // TODO: Calculate src width to avoid emitting code
1381   // for unecessary cases.
1382   unsigned SrcBits = ConvertType(SrcType)->getScalarSizeInBits();
1383   unsigned DstBits = Info.Size;
1384 
1385   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1386   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1387 
1388   CodeGenFunction::SanitizerScope SanScope(this);
1389 
1390   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1391             std::pair<llvm::Value *, SanitizerKind::SanitizerOrdinal>>
1392       Check;
1393 
1394   // Truncation
1395   bool EmitTruncation = DstBits < SrcBits;
1396   // If Dst is signed and Src unsigned, we want to be more specific
1397   // about the CheckKind we emit, in this case we want to emit
1398   // ICCK_SignedIntegerTruncationOrSignChange.
1399   bool EmitTruncationFromUnsignedToSigned =
1400       EmitTruncation && DstSigned && !SrcSigned;
1401   // Sign change
1402   bool SameTypeSameSize = SrcSigned == DstSigned && SrcBits == DstBits;
1403   bool BothUnsigned = !SrcSigned && !DstSigned;
1404   bool LargerSigned = (DstBits > SrcBits) && DstSigned;
1405   // We can avoid emitting sign change checks in some obvious cases
1406   //   1. If Src and Dst have the same signedness and size
1407   //   2. If both are unsigned sign check is unecessary!
1408   //   3. If Dst is signed and bigger than Src, either
1409   //      sign-extension or zero-extension will make sure
1410   //      the sign remains.
1411   bool EmitSignChange = !SameTypeSameSize && !BothUnsigned && !LargerSigned;
1412 
1413   if (EmitTruncation)
1414     Check =
1415         EmitBitfieldTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1416   else if (EmitSignChange) {
1417     assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) &&
1418            "either the widths should be different, or the signednesses.");
1419     Check =
1420         EmitBitfieldSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder);
1421   } else
1422     return;
1423 
1424   ScalarExprEmitter::ImplicitConversionCheckKind CheckKind = Check.first;
1425   if (EmitTruncationFromUnsignedToSigned)
1426     CheckKind = ScalarExprEmitter::ICCK_SignedIntegerTruncationOrSignChange;
1427 
1428   llvm::Constant *StaticArgs[] = {
1429       EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(SrcType),
1430       EmitCheckTypeDescriptor(DstType),
1431       llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind),
1432       llvm::ConstantInt::get(Builder.getInt32Ty(), Info.Size)};
1433 
1434   EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs,
1435             {Src, Dst});
1436 }
1437 
1438 Value *ScalarExprEmitter::EmitScalarCast(Value *Src, QualType SrcType,
1439                                          QualType DstType, llvm::Type *SrcTy,
1440                                          llvm::Type *DstTy,
1441                                          ScalarConversionOpts Opts) {
1442   // The Element types determine the type of cast to perform.
1443   llvm::Type *SrcElementTy;
1444   llvm::Type *DstElementTy;
1445   QualType SrcElementType;
1446   QualType DstElementType;
1447   if (SrcType->isMatrixType() && DstType->isMatrixType()) {
1448     SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType();
1449     DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType();
1450     SrcElementType = SrcType->castAs<MatrixType>()->getElementType();
1451     DstElementType = DstType->castAs<MatrixType>()->getElementType();
1452   } else {
1453     assert(!SrcType->isMatrixType() && !DstType->isMatrixType() &&
1454            "cannot cast between matrix and non-matrix types");
1455     SrcElementTy = SrcTy;
1456     DstElementTy = DstTy;
1457     SrcElementType = SrcType;
1458     DstElementType = DstType;
1459   }
1460 
1461   if (isa<llvm::IntegerType>(SrcElementTy)) {
1462     bool InputSigned = SrcElementType->isSignedIntegerOrEnumerationType();
1463     if (SrcElementType->isBooleanType() && Opts.TreatBooleanAsSigned) {
1464       InputSigned = true;
1465     }
1466 
1467     if (isa<llvm::IntegerType>(DstElementTy))
1468       return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1469     if (InputSigned)
1470       return Builder.CreateSIToFP(Src, DstTy, "conv");
1471     return Builder.CreateUIToFP(Src, DstTy, "conv");
1472   }
1473 
1474   if (isa<llvm::IntegerType>(DstElementTy)) {
1475     assert(SrcElementTy->isFloatingPointTy() && "Unknown real conversion");
1476     bool IsSigned = DstElementType->isSignedIntegerOrEnumerationType();
1477 
1478     // If we can't recognize overflow as undefined behavior, assume that
1479     // overflow saturates. This protects against normal optimizations if we are
1480     // compiling with non-standard FP semantics.
1481     if (!CGF.CGM.getCodeGenOpts().StrictFloatCastOverflow) {
1482       llvm::Intrinsic::ID IID =
1483           IsSigned ? llvm::Intrinsic::fptosi_sat : llvm::Intrinsic::fptoui_sat;
1484       return Builder.CreateCall(CGF.CGM.getIntrinsic(IID, {DstTy, SrcTy}), Src);
1485     }
1486 
1487     if (IsSigned)
1488       return Builder.CreateFPToSI(Src, DstTy, "conv");
1489     return Builder.CreateFPToUI(Src, DstTy, "conv");
1490   }
1491 
1492   if ((DstElementTy->is16bitFPTy() && SrcElementTy->is16bitFPTy())) {
1493     Value *FloatVal = Builder.CreateFPExt(Src, Builder.getFloatTy(), "fpext");
1494     return Builder.CreateFPTrunc(FloatVal, DstTy, "fptrunc");
1495   }
1496   if (DstElementTy->getTypeID() < SrcElementTy->getTypeID())
1497     return Builder.CreateFPTrunc(Src, DstTy, "conv");
1498   return Builder.CreateFPExt(Src, DstTy, "conv");
1499 }
1500 
1501 /// Emit a conversion from the specified type to the specified destination type,
1502 /// both of which are LLVM scalar types.
1503 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
1504                                                QualType DstType,
1505                                                SourceLocation Loc,
1506                                                ScalarConversionOpts Opts) {
1507   // All conversions involving fixed point types should be handled by the
1508   // EmitFixedPoint family functions. This is done to prevent bloating up this
1509   // function more, and although fixed point numbers are represented by
1510   // integers, we do not want to follow any logic that assumes they should be
1511   // treated as integers.
1512   // TODO(leonardchan): When necessary, add another if statement checking for
1513   // conversions to fixed point types from other types.
1514   if (SrcType->isFixedPointType()) {
1515     if (DstType->isBooleanType())
1516       // It is important that we check this before checking if the dest type is
1517       // an integer because booleans are technically integer types.
1518       // We do not need to check the padding bit on unsigned types if unsigned
1519       // padding is enabled because overflow into this bit is undefined
1520       // behavior.
1521       return Builder.CreateIsNotNull(Src, "tobool");
1522     if (DstType->isFixedPointType() || DstType->isIntegerType() ||
1523         DstType->isRealFloatingType())
1524       return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1525 
1526     llvm_unreachable(
1527         "Unhandled scalar conversion from a fixed point type to another type.");
1528   } else if (DstType->isFixedPointType()) {
1529     if (SrcType->isIntegerType() || SrcType->isRealFloatingType())
1530       // This also includes converting booleans and enums to fixed point types.
1531       return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1532 
1533     llvm_unreachable(
1534         "Unhandled scalar conversion to a fixed point type from another type.");
1535   }
1536 
1537   QualType NoncanonicalSrcType = SrcType;
1538   QualType NoncanonicalDstType = DstType;
1539 
1540   SrcType = CGF.getContext().getCanonicalType(SrcType);
1541   DstType = CGF.getContext().getCanonicalType(DstType);
1542   if (SrcType == DstType) return Src;
1543 
1544   if (DstType->isVoidType()) return nullptr;
1545 
1546   llvm::Value *OrigSrc = Src;
1547   QualType OrigSrcType = SrcType;
1548   llvm::Type *SrcTy = Src->getType();
1549 
1550   // Handle conversions to bool first, they are special: comparisons against 0.
1551   if (DstType->isBooleanType())
1552     return EmitConversionToBool(Src, SrcType);
1553 
1554   llvm::Type *DstTy = ConvertType(DstType);
1555 
1556   // Cast from half through float if half isn't a native type.
1557   if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1558     // Cast to FP using the intrinsic if the half type itself isn't supported.
1559     if (DstTy->isFloatingPointTy()) {
1560       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1561         return Builder.CreateCall(
1562             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
1563             Src);
1564     } else {
1565       // Cast to other types through float, using either the intrinsic or FPExt,
1566       // depending on whether the half type itself is supported
1567       // (as opposed to operations on half, available with NativeHalfType).
1568       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1569         Src = Builder.CreateCall(
1570             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1571                                  CGF.CGM.FloatTy),
1572             Src);
1573       } else {
1574         Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
1575       }
1576       SrcType = CGF.getContext().FloatTy;
1577       SrcTy = CGF.FloatTy;
1578     }
1579   }
1580 
1581   // Ignore conversions like int -> uint.
1582   if (SrcTy == DstTy) {
1583     if (Opts.EmitImplicitIntegerSignChangeChecks)
1584       EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src,
1585                                  NoncanonicalDstType, Loc);
1586 
1587     return Src;
1588   }
1589 
1590   // Handle pointer conversions next: pointers can only be converted to/from
1591   // other pointers and integers. Check for pointer types in terms of LLVM, as
1592   // some native types (like Obj-C id) may map to a pointer type.
1593   if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) {
1594     // The source value may be an integer, or a pointer.
1595     if (isa<llvm::PointerType>(SrcTy))
1596       return Src;
1597 
1598     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
1599     // First, convert to the correct width so that we control the kind of
1600     // extension.
1601     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT);
1602     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1603     llvm::Value* IntResult =
1604         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1605     // Then, cast to pointer.
1606     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
1607   }
1608 
1609   if (isa<llvm::PointerType>(SrcTy)) {
1610     // Must be an ptr to int cast.
1611     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
1612     return Builder.CreatePtrToInt(Src, DstTy, "conv");
1613   }
1614 
1615   // A scalar can be splatted to an extended vector of the same element type
1616   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
1617     // Sema should add casts to make sure that the source expression's type is
1618     // the same as the vector's element type (sans qualifiers)
1619     assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
1620                SrcType.getTypePtr() &&
1621            "Splatted expr doesn't match with vector element type?");
1622 
1623     // Splat the element across to all elements
1624     unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements();
1625     return Builder.CreateVectorSplat(NumElements, Src, "splat");
1626   }
1627 
1628   if (SrcType->isMatrixType() && DstType->isMatrixType())
1629     return EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts);
1630 
1631   if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) {
1632     // Allow bitcast from vector to integer/fp of the same size.
1633     llvm::TypeSize SrcSize = SrcTy->getPrimitiveSizeInBits();
1634     llvm::TypeSize DstSize = DstTy->getPrimitiveSizeInBits();
1635     if (SrcSize == DstSize)
1636       return Builder.CreateBitCast(Src, DstTy, "conv");
1637 
1638     // Conversions between vectors of different sizes are not allowed except
1639     // when vectors of half are involved. Operations on storage-only half
1640     // vectors require promoting half vector operands to float vectors and
1641     // truncating the result, which is either an int or float vector, to a
1642     // short or half vector.
1643 
1644     // Source and destination are both expected to be vectors.
1645     llvm::Type *SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType();
1646     llvm::Type *DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType();
1647     (void)DstElementTy;
1648 
1649     assert(((SrcElementTy->isIntegerTy() &&
1650              DstElementTy->isIntegerTy()) ||
1651             (SrcElementTy->isFloatingPointTy() &&
1652              DstElementTy->isFloatingPointTy())) &&
1653            "unexpected conversion between a floating-point vector and an "
1654            "integer vector");
1655 
1656     // Truncate an i32 vector to an i16 vector.
1657     if (SrcElementTy->isIntegerTy())
1658       return Builder.CreateIntCast(Src, DstTy, false, "conv");
1659 
1660     // Truncate a float vector to a half vector.
1661     if (SrcSize > DstSize)
1662       return Builder.CreateFPTrunc(Src, DstTy, "conv");
1663 
1664     // Promote a half vector to a float vector.
1665     return Builder.CreateFPExt(Src, DstTy, "conv");
1666   }
1667 
1668   // Finally, we have the arithmetic types: real int/float.
1669   Value *Res = nullptr;
1670   llvm::Type *ResTy = DstTy;
1671 
1672   // An overflowing conversion has undefined behavior if either the source type
1673   // or the destination type is a floating-point type. However, we consider the
1674   // range of representable values for all floating-point types to be
1675   // [-inf,+inf], so no overflow can ever happen when the destination type is a
1676   // floating-point type.
1677   if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
1678       OrigSrcType->isFloatingType())
1679     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
1680                              Loc);
1681 
1682   // Cast to half through float if half isn't a native type.
1683   if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1684     // Make sure we cast in a single step if from another FP type.
1685     if (SrcTy->isFloatingPointTy()) {
1686       // Use the intrinsic if the half type itself isn't supported
1687       // (as opposed to operations on half, available with NativeHalfType).
1688       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1689         return Builder.CreateCall(
1690             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
1691       // If the half type is supported, just use an fptrunc.
1692       return Builder.CreateFPTrunc(Src, DstTy);
1693     }
1694     DstTy = CGF.FloatTy;
1695   }
1696 
1697   Res = EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts);
1698 
1699   if (DstTy != ResTy) {
1700     if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1701       assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
1702       Res = Builder.CreateCall(
1703         CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
1704         Res);
1705     } else {
1706       Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
1707     }
1708   }
1709 
1710   if (Opts.EmitImplicitIntegerTruncationChecks)
1711     EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res,
1712                                NoncanonicalDstType, Loc);
1713 
1714   if (Opts.EmitImplicitIntegerSignChangeChecks)
1715     EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res,
1716                                NoncanonicalDstType, Loc);
1717 
1718   return Res;
1719 }
1720 
1721 Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy,
1722                                                    QualType DstTy,
1723                                                    SourceLocation Loc) {
1724   llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
1725   llvm::Value *Result;
1726   if (SrcTy->isRealFloatingType())
1727     Result = FPBuilder.CreateFloatingToFixed(Src,
1728         CGF.getContext().getFixedPointSemantics(DstTy));
1729   else if (DstTy->isRealFloatingType())
1730     Result = FPBuilder.CreateFixedToFloating(Src,
1731         CGF.getContext().getFixedPointSemantics(SrcTy),
1732         ConvertType(DstTy));
1733   else {
1734     auto SrcFPSema = CGF.getContext().getFixedPointSemantics(SrcTy);
1735     auto DstFPSema = CGF.getContext().getFixedPointSemantics(DstTy);
1736 
1737     if (DstTy->isIntegerType())
1738       Result = FPBuilder.CreateFixedToInteger(Src, SrcFPSema,
1739                                               DstFPSema.getWidth(),
1740                                               DstFPSema.isSigned());
1741     else if (SrcTy->isIntegerType())
1742       Result =  FPBuilder.CreateIntegerToFixed(Src, SrcFPSema.isSigned(),
1743                                                DstFPSema);
1744     else
1745       Result = FPBuilder.CreateFixedToFixed(Src, SrcFPSema, DstFPSema);
1746   }
1747   return Result;
1748 }
1749 
1750 /// Emit a conversion from the specified complex type to the specified
1751 /// destination type, where the destination type is an LLVM scalar type.
1752 Value *ScalarExprEmitter::EmitComplexToScalarConversion(
1753     CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
1754     SourceLocation Loc) {
1755   // Get the source element type.
1756   SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
1757 
1758   // Handle conversions to bool first, they are special: comparisons against 0.
1759   if (DstTy->isBooleanType()) {
1760     //  Complex != 0  -> (Real != 0) | (Imag != 0)
1761     Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1762     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
1763     return Builder.CreateOr(Src.first, Src.second, "tobool");
1764   }
1765 
1766   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
1767   // the imaginary part of the complex value is discarded and the value of the
1768   // real part is converted according to the conversion rules for the
1769   // corresponding real type.
1770   return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1771 }
1772 
1773 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
1774   return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
1775 }
1776 
1777 /// Emit a sanitization check for the given "binary" operation (which
1778 /// might actually be a unary increment which has been lowered to a binary
1779 /// operation). The check passes if all values in \p Checks (which are \c i1),
1780 /// are \c true.
1781 void ScalarExprEmitter::EmitBinOpCheck(
1782     ArrayRef<std::pair<Value *, SanitizerKind::SanitizerOrdinal>> Checks,
1783     const BinOpInfo &Info) {
1784   assert(CGF.IsSanitizerScope);
1785   SanitizerHandler Check;
1786   SmallVector<llvm::Constant *, 4> StaticData;
1787   SmallVector<llvm::Value *, 2> DynamicData;
1788 
1789   BinaryOperatorKind Opcode = Info.Opcode;
1790   if (BinaryOperator::isCompoundAssignmentOp(Opcode))
1791     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
1792 
1793   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
1794   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
1795   if (UO && UO->getOpcode() == UO_Minus) {
1796     Check = SanitizerHandler::NegateOverflow;
1797     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
1798     DynamicData.push_back(Info.RHS);
1799   } else {
1800     if (BinaryOperator::isShiftOp(Opcode)) {
1801       // Shift LHS negative or too large, or RHS out of bounds.
1802       Check = SanitizerHandler::ShiftOutOfBounds;
1803       const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
1804       StaticData.push_back(
1805         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
1806       StaticData.push_back(
1807         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
1808     } else if (Opcode == BO_Div || Opcode == BO_Rem) {
1809       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
1810       Check = SanitizerHandler::DivremOverflow;
1811       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1812     } else {
1813       // Arithmetic overflow (+, -, *).
1814       switch (Opcode) {
1815       case BO_Add: Check = SanitizerHandler::AddOverflow; break;
1816       case BO_Sub: Check = SanitizerHandler::SubOverflow; break;
1817       case BO_Mul: Check = SanitizerHandler::MulOverflow; break;
1818       default: llvm_unreachable("unexpected opcode for bin op check");
1819       }
1820       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1821     }
1822     DynamicData.push_back(Info.LHS);
1823     DynamicData.push_back(Info.RHS);
1824   }
1825 
1826   CGF.EmitCheck(Checks, Check, StaticData, DynamicData);
1827 }
1828 
1829 //===----------------------------------------------------------------------===//
1830 //                            Visitor Methods
1831 //===----------------------------------------------------------------------===//
1832 
1833 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
1834   CGF.ErrorUnsupported(E, "scalar expression");
1835   if (E->getType()->isVoidType())
1836     return nullptr;
1837   return llvm::PoisonValue::get(CGF.ConvertType(E->getType()));
1838 }
1839 
1840 Value *
1841 ScalarExprEmitter::VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr *E) {
1842   ASTContext &Context = CGF.getContext();
1843   unsigned AddrSpace =
1844       Context.getTargetAddressSpace(CGF.CGM.GetGlobalConstantAddressSpace());
1845   llvm::Constant *GlobalConstStr = Builder.CreateGlobalString(
1846       E->ComputeName(Context), "__usn_str", AddrSpace);
1847 
1848   llvm::Type *ExprTy = ConvertType(E->getType());
1849   return Builder.CreatePointerBitCastOrAddrSpaceCast(GlobalConstStr, ExprTy,
1850                                                      "usn_addr_cast");
1851 }
1852 
1853 Value *ScalarExprEmitter::VisitEmbedExpr(EmbedExpr *E) {
1854   assert(E->getDataElementCount() == 1);
1855   auto It = E->begin();
1856   return Builder.getInt((*It)->getValue());
1857 }
1858 
1859 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
1860   // Vector Mask Case
1861   if (E->getNumSubExprs() == 2) {
1862     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
1863     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
1864     Value *Mask;
1865 
1866     auto *LTy = cast<llvm::FixedVectorType>(LHS->getType());
1867     unsigned LHSElts = LTy->getNumElements();
1868 
1869     Mask = RHS;
1870 
1871     auto *MTy = cast<llvm::FixedVectorType>(Mask->getType());
1872 
1873     // Mask off the high bits of each shuffle index.
1874     Value *MaskBits =
1875         llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1876     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1877 
1878     // newv = undef
1879     // mask = mask & maskbits
1880     // for each elt
1881     //   n = extract mask i
1882     //   x = extract val n
1883     //   newv = insert newv, x, i
1884     auto *RTy = llvm::FixedVectorType::get(LTy->getElementType(),
1885                                            MTy->getNumElements());
1886     Value* NewV = llvm::PoisonValue::get(RTy);
1887     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1888       Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1889       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1890 
1891       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1892       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1893     }
1894     return NewV;
1895   }
1896 
1897   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1898   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1899 
1900   SmallVector<int, 32> Indices;
1901   for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1902     llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1903     // Check for -1 and output it as undef in the IR.
1904     if (Idx.isSigned() && Idx.isAllOnes())
1905       Indices.push_back(-1);
1906     else
1907       Indices.push_back(Idx.getZExtValue());
1908   }
1909 
1910   return Builder.CreateShuffleVector(V1, V2, Indices, "shuffle");
1911 }
1912 
1913 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1914   QualType SrcType = E->getSrcExpr()->getType(),
1915            DstType = E->getType();
1916 
1917   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
1918 
1919   SrcType = CGF.getContext().getCanonicalType(SrcType);
1920   DstType = CGF.getContext().getCanonicalType(DstType);
1921   if (SrcType == DstType) return Src;
1922 
1923   assert(SrcType->isVectorType() &&
1924          "ConvertVector source type must be a vector");
1925   assert(DstType->isVectorType() &&
1926          "ConvertVector destination type must be a vector");
1927 
1928   llvm::Type *SrcTy = Src->getType();
1929   llvm::Type *DstTy = ConvertType(DstType);
1930 
1931   // Ignore conversions like int -> uint.
1932   if (SrcTy == DstTy)
1933     return Src;
1934 
1935   QualType SrcEltType = SrcType->castAs<VectorType>()->getElementType(),
1936            DstEltType = DstType->castAs<VectorType>()->getElementType();
1937 
1938   assert(SrcTy->isVectorTy() &&
1939          "ConvertVector source IR type must be a vector");
1940   assert(DstTy->isVectorTy() &&
1941          "ConvertVector destination IR type must be a vector");
1942 
1943   llvm::Type *SrcEltTy = cast<llvm::VectorType>(SrcTy)->getElementType(),
1944              *DstEltTy = cast<llvm::VectorType>(DstTy)->getElementType();
1945 
1946   if (DstEltType->isBooleanType()) {
1947     assert((SrcEltTy->isFloatingPointTy() ||
1948             isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1949 
1950     llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1951     if (SrcEltTy->isFloatingPointTy()) {
1952       return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1953     } else {
1954       return Builder.CreateICmpNE(Src, Zero, "tobool");
1955     }
1956   }
1957 
1958   // We have the arithmetic types: real int/float.
1959   Value *Res = nullptr;
1960 
1961   if (isa<llvm::IntegerType>(SrcEltTy)) {
1962     bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1963     if (isa<llvm::IntegerType>(DstEltTy))
1964       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1965     else if (InputSigned)
1966       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1967     else
1968       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1969   } else if (isa<llvm::IntegerType>(DstEltTy)) {
1970     assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1971     if (DstEltType->isSignedIntegerOrEnumerationType())
1972       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1973     else
1974       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1975   } else {
1976     assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1977            "Unknown real conversion");
1978     if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1979       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1980     else
1981       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1982   }
1983 
1984   return Res;
1985 }
1986 
1987 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1988   if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) {
1989     CGF.EmitIgnoredExpr(E->getBase());
1990     return CGF.emitScalarConstant(Constant, E);
1991   } else {
1992     Expr::EvalResult Result;
1993     if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1994       llvm::APSInt Value = Result.Val.getInt();
1995       CGF.EmitIgnoredExpr(E->getBase());
1996       return Builder.getInt(Value);
1997     }
1998   }
1999 
2000   llvm::Value *Result = EmitLoadOfLValue(E);
2001 
2002   // If -fdebug-info-for-profiling is specified, emit a pseudo variable and its
2003   // debug info for the pointer, even if there is no variable associated with
2004   // the pointer's expression.
2005   if (CGF.CGM.getCodeGenOpts().DebugInfoForProfiling && CGF.getDebugInfo()) {
2006     if (llvm::LoadInst *Load = dyn_cast<llvm::LoadInst>(Result)) {
2007       if (llvm::GetElementPtrInst *GEP =
2008               dyn_cast<llvm::GetElementPtrInst>(Load->getPointerOperand())) {
2009         if (llvm::Instruction *Pointer =
2010                 dyn_cast<llvm::Instruction>(GEP->getPointerOperand())) {
2011           QualType Ty = E->getBase()->getType();
2012           if (!E->isArrow())
2013             Ty = CGF.getContext().getPointerType(Ty);
2014           CGF.getDebugInfo()->EmitPseudoVariable(Builder, Pointer, Ty);
2015         }
2016       }
2017     }
2018   }
2019   return Result;
2020 }
2021 
2022 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
2023   TestAndClearIgnoreResultAssign();
2024 
2025   // Emit subscript expressions in rvalue context's.  For most cases, this just
2026   // loads the lvalue formed by the subscript expr.  However, we have to be
2027   // careful, because the base of a vector subscript is occasionally an rvalue,
2028   // so we can't get it as an lvalue.
2029   if (!E->getBase()->getType()->isVectorType() &&
2030       !E->getBase()->getType()->isSveVLSBuiltinType())
2031     return EmitLoadOfLValue(E);
2032 
2033   // Handle the vector case.  The base must be a vector, the index must be an
2034   // integer value.
2035   Value *Base = Visit(E->getBase());
2036   Value *Idx  = Visit(E->getIdx());
2037   QualType IdxTy = E->getIdx()->getType();
2038 
2039   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
2040     CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
2041 
2042   return Builder.CreateExtractElement(Base, Idx, "vecext");
2043 }
2044 
2045 Value *ScalarExprEmitter::VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E) {
2046   TestAndClearIgnoreResultAssign();
2047 
2048   // Handle the vector case.  The base must be a vector, the index must be an
2049   // integer value.
2050   Value *RowIdx = CGF.EmitMatrixIndexExpr(E->getRowIdx());
2051   Value *ColumnIdx = CGF.EmitMatrixIndexExpr(E->getColumnIdx());
2052 
2053   const auto *MatrixTy = E->getBase()->getType()->castAs<ConstantMatrixType>();
2054   unsigned NumRows = MatrixTy->getNumRows();
2055   llvm::MatrixBuilder MB(Builder);
2056   Value *Idx = MB.CreateIndex(RowIdx, ColumnIdx, NumRows);
2057   if (CGF.CGM.getCodeGenOpts().OptimizationLevel > 0)
2058     MB.CreateIndexAssumption(Idx, MatrixTy->getNumElementsFlattened());
2059 
2060   Value *Matrix = Visit(E->getBase());
2061 
2062   // TODO: Should we emit bounds checks with SanitizerKind::ArrayBounds?
2063   return Builder.CreateExtractElement(Matrix, Idx, "matrixext");
2064 }
2065 
2066 static int getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
2067                       unsigned Off) {
2068   int MV = SVI->getMaskValue(Idx);
2069   if (MV == -1)
2070     return -1;
2071   return Off + MV;
2072 }
2073 
2074 static int getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
2075   assert(llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue()) &&
2076          "Index operand too large for shufflevector mask!");
2077   return C->getZExtValue();
2078 }
2079 
2080 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
2081   bool Ignore = TestAndClearIgnoreResultAssign();
2082   (void)Ignore;
2083   assert (Ignore == false && "init list ignored");
2084   unsigned NumInitElements = E->getNumInits();
2085 
2086   if (E->hadArrayRangeDesignator())
2087     CGF.ErrorUnsupported(E, "GNU array range designator extension");
2088 
2089   llvm::VectorType *VType =
2090     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
2091 
2092   if (!VType) {
2093     if (NumInitElements == 0) {
2094       // C++11 value-initialization for the scalar.
2095       return EmitNullValue(E->getType());
2096     }
2097     // We have a scalar in braces. Just use the first element.
2098     return Visit(E->getInit(0));
2099   }
2100 
2101   if (isa<llvm::ScalableVectorType>(VType)) {
2102     if (NumInitElements == 0) {
2103       // C++11 value-initialization for the vector.
2104       return EmitNullValue(E->getType());
2105     }
2106 
2107     if (NumInitElements == 1) {
2108       Expr *InitVector = E->getInit(0);
2109 
2110       // Initialize from another scalable vector of the same type.
2111       if (InitVector->getType().getCanonicalType() ==
2112           E->getType().getCanonicalType())
2113         return Visit(InitVector);
2114     }
2115 
2116     llvm_unreachable("Unexpected initialization of a scalable vector!");
2117   }
2118 
2119   unsigned ResElts = cast<llvm::FixedVectorType>(VType)->getNumElements();
2120 
2121   // Loop over initializers collecting the Value for each, and remembering
2122   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
2123   // us to fold the shuffle for the swizzle into the shuffle for the vector
2124   // initializer, since LLVM optimizers generally do not want to touch
2125   // shuffles.
2126   unsigned CurIdx = 0;
2127   bool VIsPoisonShuffle = false;
2128   llvm::Value *V = llvm::PoisonValue::get(VType);
2129   for (unsigned i = 0; i != NumInitElements; ++i) {
2130     Expr *IE = E->getInit(i);
2131     Value *Init = Visit(IE);
2132     SmallVector<int, 16> Args;
2133 
2134     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
2135 
2136     // Handle scalar elements.  If the scalar initializer is actually one
2137     // element of a different vector of the same width, use shuffle instead of
2138     // extract+insert.
2139     if (!VVT) {
2140       if (isa<ExtVectorElementExpr>(IE)) {
2141         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
2142 
2143         if (cast<llvm::FixedVectorType>(EI->getVectorOperandType())
2144                 ->getNumElements() == ResElts) {
2145           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
2146           Value *LHS = nullptr, *RHS = nullptr;
2147           if (CurIdx == 0) {
2148             // insert into poison -> shuffle (src, poison)
2149             // shufflemask must use an i32
2150             Args.push_back(getAsInt32(C, CGF.Int32Ty));
2151             Args.resize(ResElts, -1);
2152 
2153             LHS = EI->getVectorOperand();
2154             RHS = V;
2155             VIsPoisonShuffle = true;
2156           } else if (VIsPoisonShuffle) {
2157             // insert into poison shuffle && size match -> shuffle (v, src)
2158             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
2159             for (unsigned j = 0; j != CurIdx; ++j)
2160               Args.push_back(getMaskElt(SVV, j, 0));
2161             Args.push_back(ResElts + C->getZExtValue());
2162             Args.resize(ResElts, -1);
2163 
2164             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
2165             RHS = EI->getVectorOperand();
2166             VIsPoisonShuffle = false;
2167           }
2168           if (!Args.empty()) {
2169             V = Builder.CreateShuffleVector(LHS, RHS, Args);
2170             ++CurIdx;
2171             continue;
2172           }
2173         }
2174       }
2175       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
2176                                       "vecinit");
2177       VIsPoisonShuffle = false;
2178       ++CurIdx;
2179       continue;
2180     }
2181 
2182     unsigned InitElts = cast<llvm::FixedVectorType>(VVT)->getNumElements();
2183 
2184     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
2185     // input is the same width as the vector being constructed, generate an
2186     // optimized shuffle of the swizzle input into the result.
2187     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
2188     if (isa<ExtVectorElementExpr>(IE)) {
2189       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
2190       Value *SVOp = SVI->getOperand(0);
2191       auto *OpTy = cast<llvm::FixedVectorType>(SVOp->getType());
2192 
2193       if (OpTy->getNumElements() == ResElts) {
2194         for (unsigned j = 0; j != CurIdx; ++j) {
2195           // If the current vector initializer is a shuffle with poison, merge
2196           // this shuffle directly into it.
2197           if (VIsPoisonShuffle) {
2198             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0));
2199           } else {
2200             Args.push_back(j);
2201           }
2202         }
2203         for (unsigned j = 0, je = InitElts; j != je; ++j)
2204           Args.push_back(getMaskElt(SVI, j, Offset));
2205         Args.resize(ResElts, -1);
2206 
2207         if (VIsPoisonShuffle)
2208           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
2209 
2210         Init = SVOp;
2211       }
2212     }
2213 
2214     // Extend init to result vector length, and then shuffle its contribution
2215     // to the vector initializer into V.
2216     if (Args.empty()) {
2217       for (unsigned j = 0; j != InitElts; ++j)
2218         Args.push_back(j);
2219       Args.resize(ResElts, -1);
2220       Init = Builder.CreateShuffleVector(Init, Args, "vext");
2221 
2222       Args.clear();
2223       for (unsigned j = 0; j != CurIdx; ++j)
2224         Args.push_back(j);
2225       for (unsigned j = 0; j != InitElts; ++j)
2226         Args.push_back(j + Offset);
2227       Args.resize(ResElts, -1);
2228     }
2229 
2230     // If V is poison, make sure it ends up on the RHS of the shuffle to aid
2231     // merging subsequent shuffles into this one.
2232     if (CurIdx == 0)
2233       std::swap(V, Init);
2234     V = Builder.CreateShuffleVector(V, Init, Args, "vecinit");
2235     VIsPoisonShuffle = isa<llvm::PoisonValue>(Init);
2236     CurIdx += InitElts;
2237   }
2238 
2239   // FIXME: evaluate codegen vs. shuffling against constant null vector.
2240   // Emit remaining default initializers.
2241   llvm::Type *EltTy = VType->getElementType();
2242 
2243   // Emit remaining default initializers
2244   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
2245     Value *Idx = Builder.getInt32(CurIdx);
2246     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
2247     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
2248   }
2249   return V;
2250 }
2251 
2252 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
2253   const Expr *E = CE->getSubExpr();
2254 
2255   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
2256     return false;
2257 
2258   if (isa<CXXThisExpr>(E->IgnoreParens())) {
2259     // We always assume that 'this' is never null.
2260     return false;
2261   }
2262 
2263   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
2264     // And that glvalue casts are never null.
2265     if (ICE->isGLValue())
2266       return false;
2267   }
2268 
2269   return true;
2270 }
2271 
2272 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
2273 // have to handle a more broad range of conversions than explicit casts, as they
2274 // handle things like function to ptr-to-function decay etc.
2275 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
2276   Expr *E = CE->getSubExpr();
2277   QualType DestTy = CE->getType();
2278   CastKind Kind = CE->getCastKind();
2279   CodeGenFunction::CGFPOptionsRAII FPOptions(CGF, CE);
2280 
2281   // These cases are generally not written to ignore the result of
2282   // evaluating their sub-expressions, so we clear this now.
2283   bool Ignored = TestAndClearIgnoreResultAssign();
2284 
2285   // Since almost all cast kinds apply to scalars, this switch doesn't have
2286   // a default case, so the compiler will warn on a missing case.  The cases
2287   // are in the same order as in the CastKind enum.
2288   switch (Kind) {
2289   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
2290   case CK_BuiltinFnToFnPtr:
2291     llvm_unreachable("builtin functions are handled elsewhere");
2292 
2293   case CK_LValueBitCast:
2294   case CK_ObjCObjectLValueCast: {
2295     Address Addr = EmitLValue(E).getAddress();
2296     Addr = Addr.withElementType(CGF.ConvertTypeForMem(DestTy));
2297     LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
2298     return EmitLoadOfLValue(LV, CE->getExprLoc());
2299   }
2300 
2301   case CK_LValueToRValueBitCast: {
2302     LValue SourceLVal = CGF.EmitLValue(E);
2303     Address Addr =
2304         SourceLVal.getAddress().withElementType(CGF.ConvertTypeForMem(DestTy));
2305     LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
2306     DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
2307     return EmitLoadOfLValue(DestLV, CE->getExprLoc());
2308   }
2309 
2310   case CK_CPointerToObjCPointerCast:
2311   case CK_BlockPointerToObjCPointerCast:
2312   case CK_AnyPointerToBlockPointerCast:
2313   case CK_BitCast: {
2314     Value *Src = Visit(const_cast<Expr*>(E));
2315     llvm::Type *SrcTy = Src->getType();
2316     llvm::Type *DstTy = ConvertType(DestTy);
2317     assert(
2318         (!SrcTy->isPtrOrPtrVectorTy() || !DstTy->isPtrOrPtrVectorTy() ||
2319          SrcTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace()) &&
2320         "Address-space cast must be used to convert address spaces");
2321 
2322     if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
2323       if (auto *PT = DestTy->getAs<PointerType>()) {
2324         CGF.EmitVTablePtrCheckForCast(
2325             PT->getPointeeType(),
2326             Address(Src,
2327                     CGF.ConvertTypeForMem(
2328                         E->getType()->castAs<PointerType>()->getPointeeType()),
2329                     CGF.getPointerAlign()),
2330             /*MayBeNull=*/true, CodeGenFunction::CFITCK_UnrelatedCast,
2331             CE->getBeginLoc());
2332       }
2333     }
2334 
2335     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2336       const QualType SrcType = E->getType();
2337 
2338       if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) {
2339         // Casting to pointer that could carry dynamic information (provided by
2340         // invariant.group) requires launder.
2341         Src = Builder.CreateLaunderInvariantGroup(Src);
2342       } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) {
2343         // Casting to pointer that does not carry dynamic information (provided
2344         // by invariant.group) requires stripping it.  Note that we don't do it
2345         // if the source could not be dynamic type and destination could be
2346         // dynamic because dynamic information is already laundered.  It is
2347         // because launder(strip(src)) == launder(src), so there is no need to
2348         // add extra strip before launder.
2349         Src = Builder.CreateStripInvariantGroup(Src);
2350       }
2351     }
2352 
2353     // Update heapallocsite metadata when there is an explicit pointer cast.
2354     if (auto *CI = dyn_cast<llvm::CallBase>(Src)) {
2355       if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE) &&
2356           !isa<CastExpr>(E)) {
2357         QualType PointeeType = DestTy->getPointeeType();
2358         if (!PointeeType.isNull())
2359           CGF.getDebugInfo()->addHeapAllocSiteMetadata(CI, PointeeType,
2360                                                        CE->getExprLoc());
2361       }
2362     }
2363 
2364     // If Src is a fixed vector and Dst is a scalable vector, and both have the
2365     // same element type, use the llvm.vector.insert intrinsic to perform the
2366     // bitcast.
2367     if (auto *FixedSrcTy = dyn_cast<llvm::FixedVectorType>(SrcTy)) {
2368       if (auto *ScalableDstTy = dyn_cast<llvm::ScalableVectorType>(DstTy)) {
2369         // If we are casting a fixed i8 vector to a scalable i1 predicate
2370         // vector, use a vector insert and bitcast the result.
2371         if (ScalableDstTy->getElementType()->isIntegerTy(1) &&
2372             ScalableDstTy->getElementCount().isKnownMultipleOf(8) &&
2373             FixedSrcTy->getElementType()->isIntegerTy(8)) {
2374           ScalableDstTy = llvm::ScalableVectorType::get(
2375               FixedSrcTy->getElementType(),
2376               ScalableDstTy->getElementCount().getKnownMinValue() / 8);
2377         }
2378         if (FixedSrcTy->getElementType() == ScalableDstTy->getElementType()) {
2379           llvm::Value *PoisonVec = llvm::PoisonValue::get(ScalableDstTy);
2380           llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
2381           llvm::Value *Result = Builder.CreateInsertVector(
2382               ScalableDstTy, PoisonVec, Src, Zero, "cast.scalable");
2383           if (Result->getType() != DstTy)
2384             Result = Builder.CreateBitCast(Result, DstTy);
2385           return Result;
2386         }
2387       }
2388     }
2389 
2390     // If Src is a scalable vector and Dst is a fixed vector, and both have the
2391     // same element type, use the llvm.vector.extract intrinsic to perform the
2392     // bitcast.
2393     if (auto *ScalableSrcTy = dyn_cast<llvm::ScalableVectorType>(SrcTy)) {
2394       if (auto *FixedDstTy = dyn_cast<llvm::FixedVectorType>(DstTy)) {
2395         // If we are casting a scalable i1 predicate vector to a fixed i8
2396         // vector, bitcast the source and use a vector extract.
2397         if (ScalableSrcTy->getElementType()->isIntegerTy(1) &&
2398             ScalableSrcTy->getElementCount().isKnownMultipleOf(8) &&
2399             FixedDstTy->getElementType()->isIntegerTy(8)) {
2400           ScalableSrcTy = llvm::ScalableVectorType::get(
2401               FixedDstTy->getElementType(),
2402               ScalableSrcTy->getElementCount().getKnownMinValue() / 8);
2403           Src = Builder.CreateBitCast(Src, ScalableSrcTy);
2404         }
2405         if (ScalableSrcTy->getElementType() == FixedDstTy->getElementType()) {
2406           llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
2407           return Builder.CreateExtractVector(DstTy, Src, Zero, "cast.fixed");
2408         }
2409       }
2410     }
2411 
2412     // Perform VLAT <-> VLST bitcast through memory.
2413     // TODO: since the llvm.vector.{insert,extract} intrinsics
2414     //       require the element types of the vectors to be the same, we
2415     //       need to keep this around for bitcasts between VLAT <-> VLST where
2416     //       the element types of the vectors are not the same, until we figure
2417     //       out a better way of doing these casts.
2418     if ((isa<llvm::FixedVectorType>(SrcTy) &&
2419          isa<llvm::ScalableVectorType>(DstTy)) ||
2420         (isa<llvm::ScalableVectorType>(SrcTy) &&
2421          isa<llvm::FixedVectorType>(DstTy))) {
2422       Address Addr = CGF.CreateDefaultAlignTempAlloca(SrcTy, "saved-value");
2423       LValue LV = CGF.MakeAddrLValue(Addr, E->getType());
2424       CGF.EmitStoreOfScalar(Src, LV);
2425       Addr = Addr.withElementType(CGF.ConvertTypeForMem(DestTy));
2426       LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
2427       DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
2428       return EmitLoadOfLValue(DestLV, CE->getExprLoc());
2429     }
2430 
2431     llvm::Value *Result = Builder.CreateBitCast(Src, DstTy);
2432     return CGF.authPointerToPointerCast(Result, E->getType(), DestTy);
2433   }
2434   case CK_AddressSpaceConversion: {
2435     Expr::EvalResult Result;
2436     if (E->EvaluateAsRValue(Result, CGF.getContext()) &&
2437         Result.Val.isNullPointer()) {
2438       // If E has side effect, it is emitted even if its final result is a
2439       // null pointer. In that case, a DCE pass should be able to
2440       // eliminate the useless instructions emitted during translating E.
2441       if (Result.HasSideEffects)
2442         Visit(E);
2443       return CGF.CGM.getNullPointer(cast<llvm::PointerType>(
2444           ConvertType(DestTy)), DestTy);
2445     }
2446     // Since target may map different address spaces in AST to the same address
2447     // space, an address space conversion may end up as a bitcast.
2448     return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast(
2449         CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(),
2450         DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy));
2451   }
2452   case CK_AtomicToNonAtomic:
2453   case CK_NonAtomicToAtomic:
2454   case CK_UserDefinedConversion:
2455     return Visit(const_cast<Expr*>(E));
2456 
2457   case CK_NoOp: {
2458     return CE->changesVolatileQualification() ? EmitLoadOfLValue(CE)
2459                                               : Visit(const_cast<Expr *>(E));
2460   }
2461 
2462   case CK_BaseToDerived: {
2463     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
2464     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
2465 
2466     Address Base = CGF.EmitPointerWithAlignment(E);
2467     Address Derived =
2468       CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
2469                                    CE->path_begin(), CE->path_end(),
2470                                    CGF.ShouldNullCheckClassCastValue(CE));
2471 
2472     // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
2473     // performed and the object is not of the derived type.
2474     if (CGF.sanitizePerformTypeCheck())
2475       CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
2476                         Derived, DestTy->getPointeeType());
2477 
2478     if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
2479       CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(), Derived,
2480                                     /*MayBeNull=*/true,
2481                                     CodeGenFunction::CFITCK_DerivedCast,
2482                                     CE->getBeginLoc());
2483 
2484     return CGF.getAsNaturalPointerTo(Derived, CE->getType()->getPointeeType());
2485   }
2486   case CK_UncheckedDerivedToBase:
2487   case CK_DerivedToBase: {
2488     // The EmitPointerWithAlignment path does this fine; just discard
2489     // the alignment.
2490     return CGF.getAsNaturalPointerTo(CGF.EmitPointerWithAlignment(CE),
2491                                      CE->getType()->getPointeeType());
2492   }
2493 
2494   case CK_Dynamic: {
2495     Address V = CGF.EmitPointerWithAlignment(E);
2496     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
2497     return CGF.EmitDynamicCast(V, DCE);
2498   }
2499 
2500   case CK_ArrayToPointerDecay:
2501     return CGF.getAsNaturalPointerTo(CGF.EmitArrayToPointerDecay(E),
2502                                      CE->getType()->getPointeeType());
2503   case CK_FunctionToPointerDecay:
2504     return EmitLValue(E).getPointer(CGF);
2505 
2506   case CK_NullToPointer:
2507     if (MustVisitNullValue(E))
2508       CGF.EmitIgnoredExpr(E);
2509 
2510     return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)),
2511                               DestTy);
2512 
2513   case CK_NullToMemberPointer: {
2514     if (MustVisitNullValue(E))
2515       CGF.EmitIgnoredExpr(E);
2516 
2517     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
2518     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
2519   }
2520 
2521   case CK_ReinterpretMemberPointer:
2522   case CK_BaseToDerivedMemberPointer:
2523   case CK_DerivedToBaseMemberPointer: {
2524     Value *Src = Visit(E);
2525 
2526     // Note that the AST doesn't distinguish between checked and
2527     // unchecked member pointer conversions, so we always have to
2528     // implement checked conversions here.  This is inefficient when
2529     // actual control flow may be required in order to perform the
2530     // check, which it is for data member pointers (but not member
2531     // function pointers on Itanium and ARM).
2532     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
2533   }
2534 
2535   case CK_ARCProduceObject:
2536     return CGF.EmitARCRetainScalarExpr(E);
2537   case CK_ARCConsumeObject:
2538     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
2539   case CK_ARCReclaimReturnedObject:
2540     return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
2541   case CK_ARCExtendBlockObject:
2542     return CGF.EmitARCExtendBlockObject(E);
2543 
2544   case CK_CopyAndAutoreleaseBlockObject:
2545     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
2546 
2547   case CK_FloatingRealToComplex:
2548   case CK_FloatingComplexCast:
2549   case CK_IntegralRealToComplex:
2550   case CK_IntegralComplexCast:
2551   case CK_IntegralComplexToFloatingComplex:
2552   case CK_FloatingComplexToIntegralComplex:
2553   case CK_ConstructorConversion:
2554   case CK_ToUnion:
2555   case CK_HLSLArrayRValue:
2556     llvm_unreachable("scalar cast to non-scalar value");
2557 
2558   case CK_LValueToRValue:
2559     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
2560     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
2561     return Visit(const_cast<Expr*>(E));
2562 
2563   case CK_IntegralToPointer: {
2564     Value *Src = Visit(const_cast<Expr*>(E));
2565 
2566     // First, convert to the correct width so that we control the kind of
2567     // extension.
2568     auto DestLLVMTy = ConvertType(DestTy);
2569     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy);
2570     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
2571     llvm::Value* IntResult =
2572       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
2573 
2574     auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy);
2575 
2576     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2577       // Going from integer to pointer that could be dynamic requires reloading
2578       // dynamic information from invariant.group.
2579       if (DestTy.mayBeDynamicClass())
2580         IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr);
2581     }
2582 
2583     IntToPtr = CGF.authPointerToPointerCast(IntToPtr, E->getType(), DestTy);
2584     return IntToPtr;
2585   }
2586   case CK_PointerToIntegral: {
2587     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
2588     auto *PtrExpr = Visit(E);
2589 
2590     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2591       const QualType SrcType = E->getType();
2592 
2593       // Casting to integer requires stripping dynamic information as it does
2594       // not carries it.
2595       if (SrcType.mayBeDynamicClass())
2596         PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr);
2597     }
2598 
2599     PtrExpr = CGF.authPointerToPointerCast(PtrExpr, E->getType(), DestTy);
2600     return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy));
2601   }
2602   case CK_ToVoid: {
2603     CGF.EmitIgnoredExpr(E);
2604     return nullptr;
2605   }
2606   case CK_MatrixCast: {
2607     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2608                                 CE->getExprLoc());
2609   }
2610   case CK_VectorSplat: {
2611     llvm::Type *DstTy = ConvertType(DestTy);
2612     Value *Elt = Visit(const_cast<Expr *>(E));
2613     // Splat the element across to all elements
2614     llvm::ElementCount NumElements =
2615         cast<llvm::VectorType>(DstTy)->getElementCount();
2616     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
2617   }
2618 
2619   case CK_FixedPointCast:
2620     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2621                                 CE->getExprLoc());
2622 
2623   case CK_FixedPointToBoolean:
2624     assert(E->getType()->isFixedPointType() &&
2625            "Expected src type to be fixed point type");
2626     assert(DestTy->isBooleanType() && "Expected dest type to be boolean type");
2627     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2628                                 CE->getExprLoc());
2629 
2630   case CK_FixedPointToIntegral:
2631     assert(E->getType()->isFixedPointType() &&
2632            "Expected src type to be fixed point type");
2633     assert(DestTy->isIntegerType() && "Expected dest type to be an integer");
2634     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2635                                 CE->getExprLoc());
2636 
2637   case CK_IntegralToFixedPoint:
2638     assert(E->getType()->isIntegerType() &&
2639            "Expected src type to be an integer");
2640     assert(DestTy->isFixedPointType() &&
2641            "Expected dest type to be fixed point type");
2642     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2643                                 CE->getExprLoc());
2644 
2645   case CK_IntegralCast: {
2646     if (E->getType()->isExtVectorType() && DestTy->isExtVectorType()) {
2647       QualType SrcElTy = E->getType()->castAs<VectorType>()->getElementType();
2648       return Builder.CreateIntCast(Visit(E), ConvertType(DestTy),
2649                                    SrcElTy->isSignedIntegerOrEnumerationType(),
2650                                    "conv");
2651     }
2652     ScalarConversionOpts Opts;
2653     if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
2654       if (!ICE->isPartOfExplicitCast())
2655         Opts = ScalarConversionOpts(CGF.SanOpts);
2656     }
2657     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2658                                 CE->getExprLoc(), Opts);
2659   }
2660   case CK_IntegralToFloating: {
2661     if (E->getType()->isVectorType() && DestTy->isVectorType()) {
2662       // TODO: Support constrained FP intrinsics.
2663       QualType SrcElTy = E->getType()->castAs<VectorType>()->getElementType();
2664       if (SrcElTy->isSignedIntegerOrEnumerationType())
2665         return Builder.CreateSIToFP(Visit(E), ConvertType(DestTy), "conv");
2666       return Builder.CreateUIToFP(Visit(E), ConvertType(DestTy), "conv");
2667     }
2668     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2669     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2670                                 CE->getExprLoc());
2671   }
2672   case CK_FloatingToIntegral: {
2673     if (E->getType()->isVectorType() && DestTy->isVectorType()) {
2674       // TODO: Support constrained FP intrinsics.
2675       QualType DstElTy = DestTy->castAs<VectorType>()->getElementType();
2676       if (DstElTy->isSignedIntegerOrEnumerationType())
2677         return Builder.CreateFPToSI(Visit(E), ConvertType(DestTy), "conv");
2678       return Builder.CreateFPToUI(Visit(E), ConvertType(DestTy), "conv");
2679     }
2680     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2681     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2682                                 CE->getExprLoc());
2683   }
2684   case CK_FloatingCast: {
2685     if (E->getType()->isVectorType() && DestTy->isVectorType()) {
2686       // TODO: Support constrained FP intrinsics.
2687       QualType SrcElTy = E->getType()->castAs<VectorType>()->getElementType();
2688       QualType DstElTy = DestTy->castAs<VectorType>()->getElementType();
2689       if (DstElTy->castAs<BuiltinType>()->getKind() <
2690           SrcElTy->castAs<BuiltinType>()->getKind())
2691         return Builder.CreateFPTrunc(Visit(E), ConvertType(DestTy), "conv");
2692       return Builder.CreateFPExt(Visit(E), ConvertType(DestTy), "conv");
2693     }
2694     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2695     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2696                                 CE->getExprLoc());
2697   }
2698   case CK_FixedPointToFloating:
2699   case CK_FloatingToFixedPoint: {
2700     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2701     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2702                                 CE->getExprLoc());
2703   }
2704   case CK_BooleanToSignedIntegral: {
2705     ScalarConversionOpts Opts;
2706     Opts.TreatBooleanAsSigned = true;
2707     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2708                                 CE->getExprLoc(), Opts);
2709   }
2710   case CK_IntegralToBoolean:
2711     return EmitIntToBoolConversion(Visit(E));
2712   case CK_PointerToBoolean:
2713     return EmitPointerToBoolConversion(Visit(E), E->getType());
2714   case CK_FloatingToBoolean: {
2715     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2716     return EmitFloatToBoolConversion(Visit(E));
2717   }
2718   case CK_MemberPointerToBoolean: {
2719     llvm::Value *MemPtr = Visit(E);
2720     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
2721     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
2722   }
2723 
2724   case CK_FloatingComplexToReal:
2725   case CK_IntegralComplexToReal:
2726     return CGF.EmitComplexExpr(E, false, true).first;
2727 
2728   case CK_FloatingComplexToBoolean:
2729   case CK_IntegralComplexToBoolean: {
2730     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
2731 
2732     // TODO: kill this function off, inline appropriate case here
2733     return EmitComplexToScalarConversion(V, E->getType(), DestTy,
2734                                          CE->getExprLoc());
2735   }
2736 
2737   case CK_ZeroToOCLOpaqueType: {
2738     assert((DestTy->isEventT() || DestTy->isQueueT() ||
2739             DestTy->isOCLIntelSubgroupAVCType()) &&
2740            "CK_ZeroToOCLEvent cast on non-event type");
2741     return llvm::Constant::getNullValue(ConvertType(DestTy));
2742   }
2743 
2744   case CK_IntToOCLSampler:
2745     return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF);
2746 
2747   case CK_HLSLVectorTruncation: {
2748     assert((DestTy->isVectorType() || DestTy->isBuiltinType()) &&
2749            "Destination type must be a vector or builtin type.");
2750     Value *Vec = Visit(const_cast<Expr *>(E));
2751     if (auto *VecTy = DestTy->getAs<VectorType>()) {
2752       SmallVector<int> Mask;
2753       unsigned NumElts = VecTy->getNumElements();
2754       for (unsigned I = 0; I != NumElts; ++I)
2755         Mask.push_back(I);
2756 
2757       return Builder.CreateShuffleVector(Vec, Mask, "trunc");
2758     }
2759     llvm::Value *Zero = llvm::Constant::getNullValue(CGF.SizeTy);
2760     return Builder.CreateExtractElement(Vec, Zero, "cast.vtrunc");
2761   }
2762 
2763   } // end of switch
2764 
2765   llvm_unreachable("unknown scalar cast");
2766 }
2767 
2768 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
2769   CodeGenFunction::StmtExprEvaluation eval(CGF);
2770   Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
2771                                            !E->getType()->isVoidType());
2772   if (!RetAlloca.isValid())
2773     return nullptr;
2774   return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
2775                               E->getExprLoc());
2776 }
2777 
2778 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
2779   CodeGenFunction::RunCleanupsScope Scope(CGF);
2780   Value *V = Visit(E->getSubExpr());
2781   // Defend against dominance problems caused by jumps out of expression
2782   // evaluation through the shared cleanup block.
2783   Scope.ForceCleanup({&V});
2784   return V;
2785 }
2786 
2787 //===----------------------------------------------------------------------===//
2788 //                             Unary Operators
2789 //===----------------------------------------------------------------------===//
2790 
2791 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
2792                                            llvm::Value *InVal, bool IsInc,
2793                                            FPOptions FPFeatures) {
2794   BinOpInfo BinOp;
2795   BinOp.LHS = InVal;
2796   BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
2797   BinOp.Ty = E->getType();
2798   BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
2799   BinOp.FPFeatures = FPFeatures;
2800   BinOp.E = E;
2801   return BinOp;
2802 }
2803 
2804 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
2805     const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
2806   llvm::Value *Amount =
2807       llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
2808   StringRef Name = IsInc ? "inc" : "dec";
2809   switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2810   case LangOptions::SOB_Defined:
2811     if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2812       return Builder.CreateAdd(InVal, Amount, Name);
2813     [[fallthrough]];
2814   case LangOptions::SOB_Undefined:
2815     if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2816       return Builder.CreateNSWAdd(InVal, Amount, Name);
2817     [[fallthrough]];
2818   case LangOptions::SOB_Trapping:
2819     BinOpInfo Info = createBinOpInfoFromIncDec(
2820         E, InVal, IsInc, E->getFPFeaturesInEffect(CGF.getLangOpts()));
2821     if (!E->canOverflow() || CanElideOverflowCheck(CGF.getContext(), Info))
2822       return Builder.CreateNSWAdd(InVal, Amount, Name);
2823     return EmitOverflowCheckedBinOp(Info);
2824   }
2825   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
2826 }
2827 
2828 /// For the purposes of overflow pattern exclusion, does this match the
2829 /// "while(i--)" pattern?
2830 static bool matchesPostDecrInWhile(const UnaryOperator *UO, bool isInc,
2831                                    bool isPre, ASTContext &Ctx) {
2832   if (isInc || isPre)
2833     return false;
2834 
2835   // -fsanitize-undefined-ignore-overflow-pattern=unsigned-post-decr-while
2836   if (!Ctx.getLangOpts().isOverflowPatternExcluded(
2837           LangOptions::OverflowPatternExclusionKind::PostDecrInWhile))
2838     return false;
2839 
2840   // all Parents (usually just one) must be a WhileStmt
2841   for (const auto &Parent : Ctx.getParentMapContext().getParents(*UO))
2842     if (!Parent.get<WhileStmt>())
2843       return false;
2844 
2845   return true;
2846 }
2847 
2848 namespace {
2849 /// Handles check and update for lastprivate conditional variables.
2850 class OMPLastprivateConditionalUpdateRAII {
2851 private:
2852   CodeGenFunction &CGF;
2853   const UnaryOperator *E;
2854 
2855 public:
2856   OMPLastprivateConditionalUpdateRAII(CodeGenFunction &CGF,
2857                                       const UnaryOperator *E)
2858       : CGF(CGF), E(E) {}
2859   ~OMPLastprivateConditionalUpdateRAII() {
2860     if (CGF.getLangOpts().OpenMP)
2861       CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(
2862           CGF, E->getSubExpr());
2863   }
2864 };
2865 } // namespace
2866 
2867 llvm::Value *
2868 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2869                                            bool isInc, bool isPre) {
2870   OMPLastprivateConditionalUpdateRAII OMPRegion(CGF, E);
2871   QualType type = E->getSubExpr()->getType();
2872   llvm::PHINode *atomicPHI = nullptr;
2873   llvm::Value *value;
2874   llvm::Value *input;
2875   llvm::Value *Previous = nullptr;
2876   QualType SrcType = E->getType();
2877 
2878   int amount = (isInc ? 1 : -1);
2879   bool isSubtraction = !isInc;
2880 
2881   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
2882     type = atomicTy->getValueType();
2883     if (isInc && type->isBooleanType()) {
2884       llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
2885       if (isPre) {
2886         Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified())
2887             ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
2888         return Builder.getTrue();
2889       }
2890       // For atomic bool increment, we just store true and return it for
2891       // preincrement, do an atomic swap with true for postincrement
2892       return Builder.CreateAtomicRMW(
2893           llvm::AtomicRMWInst::Xchg, LV.getAddress(), True,
2894           llvm::AtomicOrdering::SequentiallyConsistent);
2895     }
2896     // Special case for atomic increment / decrement on integers, emit
2897     // atomicrmw instructions.  We skip this if we want to be doing overflow
2898     // checking, and fall into the slow path with the atomic cmpxchg loop.
2899     if (!type->isBooleanType() && type->isIntegerType() &&
2900         !(type->isUnsignedIntegerType() &&
2901           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2902         CGF.getLangOpts().getSignedOverflowBehavior() !=
2903             LangOptions::SOB_Trapping) {
2904       llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
2905         llvm::AtomicRMWInst::Sub;
2906       llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
2907         llvm::Instruction::Sub;
2908       llvm::Value *amt = CGF.EmitToMemory(
2909           llvm::ConstantInt::get(ConvertType(type), 1, true), type);
2910       llvm::Value *old =
2911           Builder.CreateAtomicRMW(aop, LV.getAddress(), amt,
2912                                   llvm::AtomicOrdering::SequentiallyConsistent);
2913       return isPre ? Builder.CreateBinOp(op, old, amt) : old;
2914     }
2915     // Special case for atomic increment/decrement on floats.
2916     // Bail out non-power-of-2-sized floating point types (e.g., x86_fp80).
2917     if (type->isFloatingType()) {
2918       llvm::Type *Ty = ConvertType(type);
2919       if (llvm::has_single_bit(Ty->getScalarSizeInBits())) {
2920         llvm::AtomicRMWInst::BinOp aop =
2921             isInc ? llvm::AtomicRMWInst::FAdd : llvm::AtomicRMWInst::FSub;
2922         llvm::Instruction::BinaryOps op =
2923             isInc ? llvm::Instruction::FAdd : llvm::Instruction::FSub;
2924         llvm::Value *amt = llvm::ConstantFP::get(Ty, 1.0);
2925         llvm::AtomicRMWInst *old =
2926             CGF.emitAtomicRMWInst(aop, LV.getAddress(), amt,
2927                                   llvm::AtomicOrdering::SequentiallyConsistent);
2928 
2929         return isPre ? Builder.CreateBinOp(op, old, amt) : old;
2930       }
2931     }
2932     value = EmitLoadOfLValue(LV, E->getExprLoc());
2933     input = value;
2934     // For every other atomic operation, we need to emit a load-op-cmpxchg loop
2935     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2936     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2937     value = CGF.EmitToMemory(value, type);
2938     Builder.CreateBr(opBB);
2939     Builder.SetInsertPoint(opBB);
2940     atomicPHI = Builder.CreatePHI(value->getType(), 2);
2941     atomicPHI->addIncoming(value, startBB);
2942     value = atomicPHI;
2943   } else {
2944     value = EmitLoadOfLValue(LV, E->getExprLoc());
2945     input = value;
2946   }
2947 
2948   // Special case of integer increment that we have to check first: bool++.
2949   // Due to promotion rules, we get:
2950   //   bool++ -> bool = bool + 1
2951   //          -> bool = (int)bool + 1
2952   //          -> bool = ((int)bool + 1 != 0)
2953   // An interesting aspect of this is that increment is always true.
2954   // Decrement does not have this property.
2955   if (isInc && type->isBooleanType()) {
2956     value = Builder.getTrue();
2957 
2958   // Most common case by far: integer increment.
2959   } else if (type->isIntegerType()) {
2960     QualType promotedType;
2961     bool canPerformLossyDemotionCheck = false;
2962 
2963     bool excludeOverflowPattern =
2964         matchesPostDecrInWhile(E, isInc, isPre, CGF.getContext());
2965 
2966     if (CGF.getContext().isPromotableIntegerType(type)) {
2967       promotedType = CGF.getContext().getPromotedIntegerType(type);
2968       assert(promotedType != type && "Shouldn't promote to the same type.");
2969       canPerformLossyDemotionCheck = true;
2970       canPerformLossyDemotionCheck &=
2971           CGF.getContext().getCanonicalType(type) !=
2972           CGF.getContext().getCanonicalType(promotedType);
2973       canPerformLossyDemotionCheck &=
2974           PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
2975               type, promotedType);
2976       assert((!canPerformLossyDemotionCheck ||
2977               type->isSignedIntegerOrEnumerationType() ||
2978               promotedType->isSignedIntegerOrEnumerationType() ||
2979               ConvertType(type)->getScalarSizeInBits() ==
2980                   ConvertType(promotedType)->getScalarSizeInBits()) &&
2981              "The following check expects that if we do promotion to different "
2982              "underlying canonical type, at least one of the types (either "
2983              "base or promoted) will be signed, or the bitwidths will match.");
2984     }
2985     if (CGF.SanOpts.hasOneOf(
2986             SanitizerKind::ImplicitIntegerArithmeticValueChange |
2987             SanitizerKind::ImplicitBitfieldConversion) &&
2988         canPerformLossyDemotionCheck) {
2989       // While `x += 1` (for `x` with width less than int) is modeled as
2990       // promotion+arithmetics+demotion, and we can catch lossy demotion with
2991       // ease; inc/dec with width less than int can't overflow because of
2992       // promotion rules, so we omit promotion+demotion, which means that we can
2993       // not catch lossy "demotion". Because we still want to catch these cases
2994       // when the sanitizer is enabled, we perform the promotion, then perform
2995       // the increment/decrement in the wider type, and finally
2996       // perform the demotion. This will catch lossy demotions.
2997 
2998       // We have a special case for bitfields defined using all the bits of the
2999       // type. In this case we need to do the same trick as for the integer
3000       // sanitizer checks, i.e., promotion -> increment/decrement -> demotion.
3001 
3002       value = EmitScalarConversion(value, type, promotedType, E->getExprLoc());
3003       Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
3004       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
3005       // Do pass non-default ScalarConversionOpts so that sanitizer check is
3006       // emitted if LV is not a bitfield, otherwise the bitfield sanitizer
3007       // checks will take care of the conversion.
3008       ScalarConversionOpts Opts;
3009       if (!LV.isBitField())
3010         Opts = ScalarConversionOpts(CGF.SanOpts);
3011       else if (CGF.SanOpts.has(SanitizerKind::ImplicitBitfieldConversion)) {
3012         Previous = value;
3013         SrcType = promotedType;
3014       }
3015 
3016       value = EmitScalarConversion(value, promotedType, type, E->getExprLoc(),
3017                                    Opts);
3018 
3019       // Note that signed integer inc/dec with width less than int can't
3020       // overflow because of promotion rules; we're just eliding a few steps
3021       // here.
3022     } else if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) {
3023       value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
3024     } else if (E->canOverflow() && type->isUnsignedIntegerType() &&
3025                CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3026                !excludeOverflowPattern &&
3027                !CGF.getContext().isTypeIgnoredBySanitizer(
3028                    SanitizerKind::UnsignedIntegerOverflow, E->getType())) {
3029       value = EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
3030           E, value, isInc, E->getFPFeaturesInEffect(CGF.getLangOpts())));
3031     } else {
3032       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
3033       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
3034     }
3035 
3036   // Next most common: pointer increment.
3037   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
3038     QualType type = ptr->getPointeeType();
3039 
3040     // VLA types don't have constant size.
3041     if (const VariableArrayType *vla
3042           = CGF.getContext().getAsVariableArrayType(type)) {
3043       llvm::Value *numElts = CGF.getVLASize(vla).NumElts;
3044       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
3045       llvm::Type *elemTy = CGF.ConvertTypeForMem(vla->getElementType());
3046       if (CGF.getLangOpts().PointerOverflowDefined)
3047         value = Builder.CreateGEP(elemTy, value, numElts, "vla.inc");
3048       else
3049         value = CGF.EmitCheckedInBoundsGEP(
3050             elemTy, value, numElts, /*SignedIndices=*/false, isSubtraction,
3051             E->getExprLoc(), "vla.inc");
3052 
3053     // Arithmetic on function pointers (!) is just +-1.
3054     } else if (type->isFunctionType()) {
3055       llvm::Value *amt = Builder.getInt32(amount);
3056 
3057       if (CGF.getLangOpts().PointerOverflowDefined)
3058         value = Builder.CreateGEP(CGF.Int8Ty, value, amt, "incdec.funcptr");
3059       else
3060         value =
3061             CGF.EmitCheckedInBoundsGEP(CGF.Int8Ty, value, amt,
3062                                        /*SignedIndices=*/false, isSubtraction,
3063                                        E->getExprLoc(), "incdec.funcptr");
3064 
3065     // For everything else, we can just do a simple increment.
3066     } else {
3067       llvm::Value *amt = Builder.getInt32(amount);
3068       llvm::Type *elemTy = CGF.ConvertTypeForMem(type);
3069       if (CGF.getLangOpts().PointerOverflowDefined)
3070         value = Builder.CreateGEP(elemTy, value, amt, "incdec.ptr");
3071       else
3072         value = CGF.EmitCheckedInBoundsGEP(
3073             elemTy, value, amt, /*SignedIndices=*/false, isSubtraction,
3074             E->getExprLoc(), "incdec.ptr");
3075     }
3076 
3077   // Vector increment/decrement.
3078   } else if (type->isVectorType()) {
3079     if (type->hasIntegerRepresentation()) {
3080       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
3081 
3082       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
3083     } else {
3084       value = Builder.CreateFAdd(
3085                   value,
3086                   llvm::ConstantFP::get(value->getType(), amount),
3087                   isInc ? "inc" : "dec");
3088     }
3089 
3090   // Floating point.
3091   } else if (type->isRealFloatingType()) {
3092     // Add the inc/dec to the real part.
3093     llvm::Value *amt;
3094     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
3095 
3096     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
3097       // Another special case: half FP increment should be done via float
3098       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
3099         value = Builder.CreateCall(
3100             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
3101                                  CGF.CGM.FloatTy),
3102             input, "incdec.conv");
3103       } else {
3104         value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
3105       }
3106     }
3107 
3108     if (value->getType()->isFloatTy())
3109       amt = llvm::ConstantFP::get(VMContext,
3110                                   llvm::APFloat(static_cast<float>(amount)));
3111     else if (value->getType()->isDoubleTy())
3112       amt = llvm::ConstantFP::get(VMContext,
3113                                   llvm::APFloat(static_cast<double>(amount)));
3114     else {
3115       // Remaining types are Half, Bfloat16, LongDouble, __ibm128 or __float128.
3116       // Convert from float.
3117       llvm::APFloat F(static_cast<float>(amount));
3118       bool ignored;
3119       const llvm::fltSemantics *FS;
3120       // Don't use getFloatTypeSemantics because Half isn't
3121       // necessarily represented using the "half" LLVM type.
3122       if (value->getType()->isFP128Ty())
3123         FS = &CGF.getTarget().getFloat128Format();
3124       else if (value->getType()->isHalfTy())
3125         FS = &CGF.getTarget().getHalfFormat();
3126       else if (value->getType()->isBFloatTy())
3127         FS = &CGF.getTarget().getBFloat16Format();
3128       else if (value->getType()->isPPC_FP128Ty())
3129         FS = &CGF.getTarget().getIbm128Format();
3130       else
3131         FS = &CGF.getTarget().getLongDoubleFormat();
3132       F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
3133       amt = llvm::ConstantFP::get(VMContext, F);
3134     }
3135     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
3136 
3137     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
3138       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
3139         value = Builder.CreateCall(
3140             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
3141                                  CGF.CGM.FloatTy),
3142             value, "incdec.conv");
3143       } else {
3144         value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
3145       }
3146     }
3147 
3148   // Fixed-point types.
3149   } else if (type->isFixedPointType()) {
3150     // Fixed-point types are tricky. In some cases, it isn't possible to
3151     // represent a 1 or a -1 in the type at all. Piggyback off of
3152     // EmitFixedPointBinOp to avoid having to reimplement saturation.
3153     BinOpInfo Info;
3154     Info.E = E;
3155     Info.Ty = E->getType();
3156     Info.Opcode = isInc ? BO_Add : BO_Sub;
3157     Info.LHS = value;
3158     Info.RHS = llvm::ConstantInt::get(value->getType(), 1, false);
3159     // If the type is signed, it's better to represent this as +(-1) or -(-1),
3160     // since -1 is guaranteed to be representable.
3161     if (type->isSignedFixedPointType()) {
3162       Info.Opcode = isInc ? BO_Sub : BO_Add;
3163       Info.RHS = Builder.CreateNeg(Info.RHS);
3164     }
3165     // Now, convert from our invented integer literal to the type of the unary
3166     // op. This will upscale and saturate if necessary. This value can become
3167     // undef in some cases.
3168     llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
3169     auto DstSema = CGF.getContext().getFixedPointSemantics(Info.Ty);
3170     Info.RHS = FPBuilder.CreateIntegerToFixed(Info.RHS, true, DstSema);
3171     value = EmitFixedPointBinOp(Info);
3172 
3173   // Objective-C pointer types.
3174   } else {
3175     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
3176 
3177     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
3178     if (!isInc) size = -size;
3179     llvm::Value *sizeValue =
3180       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
3181 
3182     if (CGF.getLangOpts().PointerOverflowDefined)
3183       value = Builder.CreateGEP(CGF.Int8Ty, value, sizeValue, "incdec.objptr");
3184     else
3185       value = CGF.EmitCheckedInBoundsGEP(
3186           CGF.Int8Ty, value, sizeValue, /*SignedIndices=*/false, isSubtraction,
3187           E->getExprLoc(), "incdec.objptr");
3188     value = Builder.CreateBitCast(value, input->getType());
3189   }
3190 
3191   if (atomicPHI) {
3192     llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
3193     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
3194     auto Pair = CGF.EmitAtomicCompareExchange(
3195         LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
3196     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
3197     llvm::Value *success = Pair.second;
3198     atomicPHI->addIncoming(old, curBlock);
3199     Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
3200     Builder.SetInsertPoint(contBB);
3201     return isPre ? value : input;
3202   }
3203 
3204   // Store the updated result through the lvalue.
3205   if (LV.isBitField()) {
3206     Value *Src = Previous ? Previous : value;
3207     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
3208     CGF.EmitBitfieldConversionCheck(Src, SrcType, value, E->getType(),
3209                                     LV.getBitFieldInfo(), E->getExprLoc());
3210   } else
3211     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
3212 
3213   // If this is a postinc, return the value read from memory, otherwise use the
3214   // updated value.
3215   return isPre ? value : input;
3216 }
3217 
3218 
3219 Value *ScalarExprEmitter::VisitUnaryPlus(const UnaryOperator *E,
3220                                          QualType PromotionType) {
3221   QualType promotionTy = PromotionType.isNull()
3222                              ? getPromotionType(E->getSubExpr()->getType())
3223                              : PromotionType;
3224   Value *result = VisitPlus(E, promotionTy);
3225   if (result && !promotionTy.isNull())
3226     result = EmitUnPromotedValue(result, E->getType());
3227   return result;
3228 }
3229 
3230 Value *ScalarExprEmitter::VisitPlus(const UnaryOperator *E,
3231                                     QualType PromotionType) {
3232   // This differs from gcc, though, most likely due to a bug in gcc.
3233   TestAndClearIgnoreResultAssign();
3234   if (!PromotionType.isNull())
3235     return CGF.EmitPromotedScalarExpr(E->getSubExpr(), PromotionType);
3236   return Visit(E->getSubExpr());
3237 }
3238 
3239 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E,
3240                                           QualType PromotionType) {
3241   QualType promotionTy = PromotionType.isNull()
3242                              ? getPromotionType(E->getSubExpr()->getType())
3243                              : PromotionType;
3244   Value *result = VisitMinus(E, promotionTy);
3245   if (result && !promotionTy.isNull())
3246     result = EmitUnPromotedValue(result, E->getType());
3247   return result;
3248 }
3249 
3250 Value *ScalarExprEmitter::VisitMinus(const UnaryOperator *E,
3251                                      QualType PromotionType) {
3252   TestAndClearIgnoreResultAssign();
3253   Value *Op;
3254   if (!PromotionType.isNull())
3255     Op = CGF.EmitPromotedScalarExpr(E->getSubExpr(), PromotionType);
3256   else
3257     Op = Visit(E->getSubExpr());
3258 
3259   // Generate a unary FNeg for FP ops.
3260   if (Op->getType()->isFPOrFPVectorTy())
3261     return Builder.CreateFNeg(Op, "fneg");
3262 
3263   // Emit unary minus with EmitSub so we handle overflow cases etc.
3264   BinOpInfo BinOp;
3265   BinOp.RHS = Op;
3266   BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
3267   BinOp.Ty = E->getType();
3268   BinOp.Opcode = BO_Sub;
3269   BinOp.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
3270   BinOp.E = E;
3271   return EmitSub(BinOp);
3272 }
3273 
3274 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
3275   TestAndClearIgnoreResultAssign();
3276   Value *Op = Visit(E->getSubExpr());
3277   return Builder.CreateNot(Op, "not");
3278 }
3279 
3280 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
3281   // Perform vector logical not on comparison with zero vector.
3282   if (E->getType()->isVectorType() &&
3283       E->getType()->castAs<VectorType>()->getVectorKind() ==
3284           VectorKind::Generic) {
3285     Value *Oper = Visit(E->getSubExpr());
3286     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
3287     Value *Result;
3288     if (Oper->getType()->isFPOrFPVectorTy()) {
3289       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
3290           CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
3291       Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
3292     } else
3293       Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
3294     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
3295   }
3296 
3297   // Compare operand to zero.
3298   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
3299 
3300   // Invert value.
3301   // TODO: Could dynamically modify easy computations here.  For example, if
3302   // the operand is an icmp ne, turn into icmp eq.
3303   BoolVal = Builder.CreateNot(BoolVal, "lnot");
3304 
3305   // ZExt result to the expr type.
3306   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
3307 }
3308 
3309 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
3310   // Try folding the offsetof to a constant.
3311   Expr::EvalResult EVResult;
3312   if (E->EvaluateAsInt(EVResult, CGF.getContext())) {
3313     llvm::APSInt Value = EVResult.Val.getInt();
3314     return Builder.getInt(Value);
3315   }
3316 
3317   // Loop over the components of the offsetof to compute the value.
3318   unsigned n = E->getNumComponents();
3319   llvm::Type* ResultType = ConvertType(E->getType());
3320   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
3321   QualType CurrentType = E->getTypeSourceInfo()->getType();
3322   for (unsigned i = 0; i != n; ++i) {
3323     OffsetOfNode ON = E->getComponent(i);
3324     llvm::Value *Offset = nullptr;
3325     switch (ON.getKind()) {
3326     case OffsetOfNode::Array: {
3327       // Compute the index
3328       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
3329       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
3330       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
3331       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
3332 
3333       // Save the element type
3334       CurrentType =
3335           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
3336 
3337       // Compute the element size
3338       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
3339           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
3340 
3341       // Multiply out to compute the result
3342       Offset = Builder.CreateMul(Idx, ElemSize);
3343       break;
3344     }
3345 
3346     case OffsetOfNode::Field: {
3347       FieldDecl *MemberDecl = ON.getField();
3348       RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
3349       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
3350 
3351       // Compute the index of the field in its parent.
3352       unsigned i = 0;
3353       // FIXME: It would be nice if we didn't have to loop here!
3354       for (RecordDecl::field_iterator Field = RD->field_begin(),
3355                                       FieldEnd = RD->field_end();
3356            Field != FieldEnd; ++Field, ++i) {
3357         if (*Field == MemberDecl)
3358           break;
3359       }
3360       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
3361 
3362       // Compute the offset to the field
3363       int64_t OffsetInt = RL.getFieldOffset(i) /
3364                           CGF.getContext().getCharWidth();
3365       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
3366 
3367       // Save the element type.
3368       CurrentType = MemberDecl->getType();
3369       break;
3370     }
3371 
3372     case OffsetOfNode::Identifier:
3373       llvm_unreachable("dependent __builtin_offsetof");
3374 
3375     case OffsetOfNode::Base: {
3376       if (ON.getBase()->isVirtual()) {
3377         CGF.ErrorUnsupported(E, "virtual base in offsetof");
3378         continue;
3379       }
3380 
3381       RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
3382       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
3383 
3384       // Save the element type.
3385       CurrentType = ON.getBase()->getType();
3386 
3387       // Compute the offset to the base.
3388       auto *BaseRT = CurrentType->castAs<RecordType>();
3389       auto *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
3390       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
3391       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
3392       break;
3393     }
3394     }
3395     Result = Builder.CreateAdd(Result, Offset);
3396   }
3397   return Result;
3398 }
3399 
3400 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
3401 /// argument of the sizeof expression as an integer.
3402 Value *
3403 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
3404                               const UnaryExprOrTypeTraitExpr *E) {
3405   QualType TypeToSize = E->getTypeOfArgument();
3406   if (auto Kind = E->getKind();
3407       Kind == UETT_SizeOf || Kind == UETT_DataSizeOf) {
3408     if (const VariableArrayType *VAT =
3409             CGF.getContext().getAsVariableArrayType(TypeToSize)) {
3410       if (E->isArgumentType()) {
3411         // sizeof(type) - make sure to emit the VLA size.
3412         CGF.EmitVariablyModifiedType(TypeToSize);
3413       } else {
3414         // C99 6.5.3.4p2: If the argument is an expression of type
3415         // VLA, it is evaluated.
3416         CGF.EmitIgnoredExpr(E->getArgumentExpr());
3417       }
3418 
3419       auto VlaSize = CGF.getVLASize(VAT);
3420       llvm::Value *size = VlaSize.NumElts;
3421 
3422       // Scale the number of non-VLA elements by the non-VLA element size.
3423       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type);
3424       if (!eltSize.isOne())
3425         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size);
3426 
3427       return size;
3428     }
3429   } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
3430     auto Alignment =
3431         CGF.getContext()
3432             .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
3433                 E->getTypeOfArgument()->getPointeeType()))
3434             .getQuantity();
3435     return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
3436   } else if (E->getKind() == UETT_VectorElements) {
3437     auto *VecTy = cast<llvm::VectorType>(ConvertType(E->getTypeOfArgument()));
3438     return Builder.CreateElementCount(CGF.SizeTy, VecTy->getElementCount());
3439   }
3440 
3441   // If this isn't sizeof(vla), the result must be constant; use the constant
3442   // folding logic so we don't have to duplicate it here.
3443   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
3444 }
3445 
3446 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E,
3447                                          QualType PromotionType) {
3448   QualType promotionTy = PromotionType.isNull()
3449                              ? getPromotionType(E->getSubExpr()->getType())
3450                              : PromotionType;
3451   Value *result = VisitReal(E, promotionTy);
3452   if (result && !promotionTy.isNull())
3453     result = EmitUnPromotedValue(result, E->getType());
3454   return result;
3455 }
3456 
3457 Value *ScalarExprEmitter::VisitReal(const UnaryOperator *E,
3458                                     QualType PromotionType) {
3459   Expr *Op = E->getSubExpr();
3460   if (Op->getType()->isAnyComplexType()) {
3461     // If it's an l-value, load through the appropriate subobject l-value.
3462     // Note that we have to ask E because Op might be an l-value that
3463     // this won't work for, e.g. an Obj-C property.
3464     if (E->isGLValue())  {
3465       if (!PromotionType.isNull()) {
3466         CodeGenFunction::ComplexPairTy result = CGF.EmitComplexExpr(
3467             Op, /*IgnoreReal*/ IgnoreResultAssign, /*IgnoreImag*/ true);
3468         if (result.first)
3469           result.first = CGF.EmitPromotedValue(result, PromotionType).first;
3470         return result.first;
3471       } else {
3472         return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc())
3473             .getScalarVal();
3474       }
3475     }
3476     // Otherwise, calculate and project.
3477     return CGF.EmitComplexExpr(Op, false, true).first;
3478   }
3479 
3480   if (!PromotionType.isNull())
3481     return CGF.EmitPromotedScalarExpr(Op, PromotionType);
3482   return Visit(Op);
3483 }
3484 
3485 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E,
3486                                          QualType PromotionType) {
3487   QualType promotionTy = PromotionType.isNull()
3488                              ? getPromotionType(E->getSubExpr()->getType())
3489                              : PromotionType;
3490   Value *result = VisitImag(E, promotionTy);
3491   if (result && !promotionTy.isNull())
3492     result = EmitUnPromotedValue(result, E->getType());
3493   return result;
3494 }
3495 
3496 Value *ScalarExprEmitter::VisitImag(const UnaryOperator *E,
3497                                     QualType PromotionType) {
3498   Expr *Op = E->getSubExpr();
3499   if (Op->getType()->isAnyComplexType()) {
3500     // If it's an l-value, load through the appropriate subobject l-value.
3501     // Note that we have to ask E because Op might be an l-value that
3502     // this won't work for, e.g. an Obj-C property.
3503     if (Op->isGLValue()) {
3504       if (!PromotionType.isNull()) {
3505         CodeGenFunction::ComplexPairTy result = CGF.EmitComplexExpr(
3506             Op, /*IgnoreReal*/ true, /*IgnoreImag*/ IgnoreResultAssign);
3507         if (result.second)
3508           result.second = CGF.EmitPromotedValue(result, PromotionType).second;
3509         return result.second;
3510       } else {
3511         return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc())
3512             .getScalarVal();
3513       }
3514     }
3515     // Otherwise, calculate and project.
3516     return CGF.EmitComplexExpr(Op, true, false).second;
3517   }
3518 
3519   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
3520   // effects are evaluated, but not the actual value.
3521   if (Op->isGLValue())
3522     CGF.EmitLValue(Op);
3523   else if (!PromotionType.isNull())
3524     CGF.EmitPromotedScalarExpr(Op, PromotionType);
3525   else
3526     CGF.EmitScalarExpr(Op, true);
3527   if (!PromotionType.isNull())
3528     return llvm::Constant::getNullValue(ConvertType(PromotionType));
3529   return llvm::Constant::getNullValue(ConvertType(E->getType()));
3530 }
3531 
3532 //===----------------------------------------------------------------------===//
3533 //                           Binary Operators
3534 //===----------------------------------------------------------------------===//
3535 
3536 Value *ScalarExprEmitter::EmitPromotedValue(Value *result,
3537                                             QualType PromotionType) {
3538   return CGF.Builder.CreateFPExt(result, ConvertType(PromotionType), "ext");
3539 }
3540 
3541 Value *ScalarExprEmitter::EmitUnPromotedValue(Value *result,
3542                                               QualType ExprType) {
3543   return CGF.Builder.CreateFPTrunc(result, ConvertType(ExprType), "unpromotion");
3544 }
3545 
3546 Value *ScalarExprEmitter::EmitPromoted(const Expr *E, QualType PromotionType) {
3547   E = E->IgnoreParens();
3548   if (auto BO = dyn_cast<BinaryOperator>(E)) {
3549     switch (BO->getOpcode()) {
3550 #define HANDLE_BINOP(OP)                                                       \
3551   case BO_##OP:                                                                \
3552     return Emit##OP(EmitBinOps(BO, PromotionType));
3553       HANDLE_BINOP(Add)
3554       HANDLE_BINOP(Sub)
3555       HANDLE_BINOP(Mul)
3556       HANDLE_BINOP(Div)
3557 #undef HANDLE_BINOP
3558     default:
3559       break;
3560     }
3561   } else if (auto UO = dyn_cast<UnaryOperator>(E)) {
3562     switch (UO->getOpcode()) {
3563     case UO_Imag:
3564       return VisitImag(UO, PromotionType);
3565     case UO_Real:
3566       return VisitReal(UO, PromotionType);
3567     case UO_Minus:
3568       return VisitMinus(UO, PromotionType);
3569     case UO_Plus:
3570       return VisitPlus(UO, PromotionType);
3571     default:
3572       break;
3573     }
3574   }
3575   auto result = Visit(const_cast<Expr *>(E));
3576   if (result) {
3577     if (!PromotionType.isNull())
3578       return EmitPromotedValue(result, PromotionType);
3579     else
3580       return EmitUnPromotedValue(result, E->getType());
3581   }
3582   return result;
3583 }
3584 
3585 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E,
3586                                         QualType PromotionType) {
3587   TestAndClearIgnoreResultAssign();
3588   BinOpInfo Result;
3589   Result.LHS = CGF.EmitPromotedScalarExpr(E->getLHS(), PromotionType);
3590   Result.RHS = CGF.EmitPromotedScalarExpr(E->getRHS(), PromotionType);
3591   if (!PromotionType.isNull())
3592     Result.Ty = PromotionType;
3593   else
3594     Result.Ty  = E->getType();
3595   Result.Opcode = E->getOpcode();
3596   Result.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
3597   Result.E = E;
3598   return Result;
3599 }
3600 
3601 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
3602                                               const CompoundAssignOperator *E,
3603                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
3604                                                    Value *&Result) {
3605   QualType LHSTy = E->getLHS()->getType();
3606   BinOpInfo OpInfo;
3607 
3608   if (E->getComputationResultType()->isAnyComplexType())
3609     return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
3610 
3611   // Emit the RHS first.  __block variables need to have the rhs evaluated
3612   // first, plus this should improve codegen a little.
3613 
3614   QualType PromotionTypeCR;
3615   PromotionTypeCR = getPromotionType(E->getComputationResultType());
3616   if (PromotionTypeCR.isNull())
3617       PromotionTypeCR = E->getComputationResultType();
3618   QualType PromotionTypeLHS = getPromotionType(E->getComputationLHSType());
3619   QualType PromotionTypeRHS = getPromotionType(E->getRHS()->getType());
3620   if (!PromotionTypeRHS.isNull())
3621     OpInfo.RHS = CGF.EmitPromotedScalarExpr(E->getRHS(), PromotionTypeRHS);
3622   else
3623     OpInfo.RHS = Visit(E->getRHS());
3624   OpInfo.Ty = PromotionTypeCR;
3625   OpInfo.Opcode = E->getOpcode();
3626   OpInfo.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
3627   OpInfo.E = E;
3628   // Load/convert the LHS.
3629   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3630 
3631   llvm::PHINode *atomicPHI = nullptr;
3632   if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
3633     QualType type = atomicTy->getValueType();
3634     if (!type->isBooleanType() && type->isIntegerType() &&
3635         !(type->isUnsignedIntegerType() &&
3636           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
3637         CGF.getLangOpts().getSignedOverflowBehavior() !=
3638             LangOptions::SOB_Trapping) {
3639       llvm::AtomicRMWInst::BinOp AtomicOp = llvm::AtomicRMWInst::BAD_BINOP;
3640       llvm::Instruction::BinaryOps Op;
3641       switch (OpInfo.Opcode) {
3642         // We don't have atomicrmw operands for *, %, /, <<, >>
3643         case BO_MulAssign: case BO_DivAssign:
3644         case BO_RemAssign:
3645         case BO_ShlAssign:
3646         case BO_ShrAssign:
3647           break;
3648         case BO_AddAssign:
3649           AtomicOp = llvm::AtomicRMWInst::Add;
3650           Op = llvm::Instruction::Add;
3651           break;
3652         case BO_SubAssign:
3653           AtomicOp = llvm::AtomicRMWInst::Sub;
3654           Op = llvm::Instruction::Sub;
3655           break;
3656         case BO_AndAssign:
3657           AtomicOp = llvm::AtomicRMWInst::And;
3658           Op = llvm::Instruction::And;
3659           break;
3660         case BO_XorAssign:
3661           AtomicOp = llvm::AtomicRMWInst::Xor;
3662           Op = llvm::Instruction::Xor;
3663           break;
3664         case BO_OrAssign:
3665           AtomicOp = llvm::AtomicRMWInst::Or;
3666           Op = llvm::Instruction::Or;
3667           break;
3668         default:
3669           llvm_unreachable("Invalid compound assignment type");
3670       }
3671       if (AtomicOp != llvm::AtomicRMWInst::BAD_BINOP) {
3672         llvm::Value *Amt = CGF.EmitToMemory(
3673             EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
3674                                  E->getExprLoc()),
3675             LHSTy);
3676 
3677         llvm::AtomicRMWInst *OldVal =
3678             CGF.emitAtomicRMWInst(AtomicOp, LHSLV.getAddress(), Amt);
3679 
3680         // Since operation is atomic, the result type is guaranteed to be the
3681         // same as the input in LLVM terms.
3682         Result = Builder.CreateBinOp(Op, OldVal, Amt);
3683         return LHSLV;
3684       }
3685     }
3686     // FIXME: For floating point types, we should be saving and restoring the
3687     // floating point environment in the loop.
3688     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
3689     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
3690     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
3691     OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
3692     Builder.CreateBr(opBB);
3693     Builder.SetInsertPoint(opBB);
3694     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
3695     atomicPHI->addIncoming(OpInfo.LHS, startBB);
3696     OpInfo.LHS = atomicPHI;
3697   }
3698   else
3699     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
3700 
3701   CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, OpInfo.FPFeatures);
3702   SourceLocation Loc = E->getExprLoc();
3703   if (!PromotionTypeLHS.isNull())
3704     OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy, PromotionTypeLHS,
3705                                       E->getExprLoc());
3706   else
3707     OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
3708                                       E->getComputationLHSType(), Loc);
3709 
3710   // Expand the binary operator.
3711   Result = (this->*Func)(OpInfo);
3712 
3713   // Convert the result back to the LHS type,
3714   // potentially with Implicit Conversion sanitizer check.
3715   // If LHSLV is a bitfield, use default ScalarConversionOpts
3716   // to avoid emit any implicit integer checks.
3717   Value *Previous = nullptr;
3718   if (LHSLV.isBitField()) {
3719     Previous = Result;
3720     Result = EmitScalarConversion(Result, PromotionTypeCR, LHSTy, Loc);
3721   } else
3722     Result = EmitScalarConversion(Result, PromotionTypeCR, LHSTy, Loc,
3723                                   ScalarConversionOpts(CGF.SanOpts));
3724 
3725   if (atomicPHI) {
3726     llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
3727     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
3728     auto Pair = CGF.EmitAtomicCompareExchange(
3729         LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
3730     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
3731     llvm::Value *success = Pair.second;
3732     atomicPHI->addIncoming(old, curBlock);
3733     Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
3734     Builder.SetInsertPoint(contBB);
3735     return LHSLV;
3736   }
3737 
3738   // Store the result value into the LHS lvalue. Bit-fields are handled
3739   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
3740   // 'An assignment expression has the value of the left operand after the
3741   // assignment...'.
3742   if (LHSLV.isBitField()) {
3743     Value *Src = Previous ? Previous : Result;
3744     QualType SrcType = E->getRHS()->getType();
3745     QualType DstType = E->getLHS()->getType();
3746     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
3747     CGF.EmitBitfieldConversionCheck(Src, SrcType, Result, DstType,
3748                                     LHSLV.getBitFieldInfo(), E->getExprLoc());
3749   } else
3750     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
3751 
3752   if (CGF.getLangOpts().OpenMP)
3753     CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF,
3754                                                                   E->getLHS());
3755   return LHSLV;
3756 }
3757 
3758 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
3759                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
3760   bool Ignore = TestAndClearIgnoreResultAssign();
3761   Value *RHS = nullptr;
3762   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
3763 
3764   // If the result is clearly ignored, return now.
3765   if (Ignore)
3766     return nullptr;
3767 
3768   // The result of an assignment in C is the assigned r-value.
3769   if (!CGF.getLangOpts().CPlusPlus)
3770     return RHS;
3771 
3772   // If the lvalue is non-volatile, return the computed value of the assignment.
3773   if (!LHS.isVolatileQualified())
3774     return RHS;
3775 
3776   // Otherwise, reload the value.
3777   return EmitLoadOfLValue(LHS, E->getExprLoc());
3778 }
3779 
3780 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
3781     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
3782   SmallVector<std::pair<llvm::Value *, SanitizerKind::SanitizerOrdinal>, 2>
3783       Checks;
3784 
3785   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
3786     Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
3787                                     SanitizerKind::SO_IntegerDivideByZero));
3788   }
3789 
3790   const auto *BO = cast<BinaryOperator>(Ops.E);
3791   if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
3792       Ops.Ty->hasSignedIntegerRepresentation() &&
3793       !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) &&
3794       Ops.mayHaveIntegerOverflow()) {
3795     llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
3796 
3797     llvm::Value *IntMin =
3798       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
3799     llvm::Value *NegOne = llvm::Constant::getAllOnesValue(Ty);
3800 
3801     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
3802     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
3803     llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
3804     Checks.push_back(
3805         std::make_pair(NotOverflow, SanitizerKind::SO_SignedIntegerOverflow));
3806   }
3807 
3808   if (Checks.size() > 0)
3809     EmitBinOpCheck(Checks, Ops);
3810 }
3811 
3812 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
3813   {
3814     CodeGenFunction::SanitizerScope SanScope(&CGF);
3815     if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3816          CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3817         Ops.Ty->isIntegerType() &&
3818         (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3819       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3820       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
3821     } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
3822                Ops.Ty->isRealFloatingType() &&
3823                Ops.mayHaveFloatDivisionByZero()) {
3824       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3825       llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
3826       EmitBinOpCheck(
3827           std::make_pair(NonZero, SanitizerKind::SO_FloatDivideByZero), Ops);
3828     }
3829   }
3830 
3831   if (Ops.Ty->isConstantMatrixType()) {
3832     llvm::MatrixBuilder MB(Builder);
3833     // We need to check the types of the operands of the operator to get the
3834     // correct matrix dimensions.
3835     auto *BO = cast<BinaryOperator>(Ops.E);
3836     (void)BO;
3837     assert(
3838         isa<ConstantMatrixType>(BO->getLHS()->getType().getCanonicalType()) &&
3839         "first operand must be a matrix");
3840     assert(BO->getRHS()->getType().getCanonicalType()->isArithmeticType() &&
3841            "second operand must be an arithmetic type");
3842     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
3843     return MB.CreateScalarDiv(Ops.LHS, Ops.RHS,
3844                               Ops.Ty->hasUnsignedIntegerRepresentation());
3845   }
3846 
3847   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
3848     llvm::Value *Val;
3849     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
3850     Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
3851     CGF.SetDivFPAccuracy(Val);
3852     return Val;
3853   }
3854   else if (Ops.isFixedPointOp())
3855     return EmitFixedPointBinOp(Ops);
3856   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
3857     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
3858   else
3859     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
3860 }
3861 
3862 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
3863   // Rem in C can't be a floating point type: C99 6.5.5p2.
3864   if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3865        CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3866       Ops.Ty->isIntegerType() &&
3867       (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3868     CodeGenFunction::SanitizerScope SanScope(&CGF);
3869     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3870     EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
3871   }
3872 
3873   if (Ops.Ty->hasUnsignedIntegerRepresentation())
3874     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
3875   else
3876     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
3877 }
3878 
3879 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
3880   unsigned IID;
3881   unsigned OpID = 0;
3882   SanitizerHandler OverflowKind;
3883 
3884   bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
3885   switch (Ops.Opcode) {
3886   case BO_Add:
3887   case BO_AddAssign:
3888     OpID = 1;
3889     IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
3890                      llvm::Intrinsic::uadd_with_overflow;
3891     OverflowKind = SanitizerHandler::AddOverflow;
3892     break;
3893   case BO_Sub:
3894   case BO_SubAssign:
3895     OpID = 2;
3896     IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
3897                      llvm::Intrinsic::usub_with_overflow;
3898     OverflowKind = SanitizerHandler::SubOverflow;
3899     break;
3900   case BO_Mul:
3901   case BO_MulAssign:
3902     OpID = 3;
3903     IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
3904                      llvm::Intrinsic::umul_with_overflow;
3905     OverflowKind = SanitizerHandler::MulOverflow;
3906     break;
3907   default:
3908     llvm_unreachable("Unsupported operation for overflow detection");
3909   }
3910   OpID <<= 1;
3911   if (isSigned)
3912     OpID |= 1;
3913 
3914   CodeGenFunction::SanitizerScope SanScope(&CGF);
3915   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
3916 
3917   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
3918 
3919   Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
3920   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
3921   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
3922 
3923   // Handle overflow with llvm.trap if no custom handler has been specified.
3924   const std::string *handlerName =
3925     &CGF.getLangOpts().OverflowHandler;
3926   if (handlerName->empty()) {
3927     // If the signed-integer-overflow sanitizer is enabled, emit a call to its
3928     // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
3929     if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
3930       llvm::Value *NotOverflow = Builder.CreateNot(overflow);
3931       SanitizerKind::SanitizerOrdinal Ordinal =
3932           isSigned ? SanitizerKind::SO_SignedIntegerOverflow
3933                    : SanitizerKind::SO_UnsignedIntegerOverflow;
3934       EmitBinOpCheck(std::make_pair(NotOverflow, Ordinal), Ops);
3935     } else
3936       CGF.EmitTrapCheck(Builder.CreateNot(overflow), OverflowKind);
3937     return result;
3938   }
3939 
3940   // Branch in case of overflow.
3941   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
3942   llvm::BasicBlock *continueBB =
3943       CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode());
3944   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
3945 
3946   Builder.CreateCondBr(overflow, overflowBB, continueBB);
3947 
3948   // If an overflow handler is set, then we want to call it and then use its
3949   // result, if it returns.
3950   Builder.SetInsertPoint(overflowBB);
3951 
3952   // Get the overflow handler.
3953   llvm::Type *Int8Ty = CGF.Int8Ty;
3954   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
3955   llvm::FunctionType *handlerTy =
3956       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
3957   llvm::FunctionCallee handler =
3958       CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
3959 
3960   // Sign extend the args to 64-bit, so that we can use the same handler for
3961   // all types of overflow.
3962   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
3963   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
3964 
3965   // Call the handler with the two arguments, the operation, and the size of
3966   // the result.
3967   llvm::Value *handlerArgs[] = {
3968     lhs,
3969     rhs,
3970     Builder.getInt8(OpID),
3971     Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
3972   };
3973   llvm::Value *handlerResult =
3974     CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
3975 
3976   // Truncate the result back to the desired size.
3977   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
3978   Builder.CreateBr(continueBB);
3979 
3980   Builder.SetInsertPoint(continueBB);
3981   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
3982   phi->addIncoming(result, initialBB);
3983   phi->addIncoming(handlerResult, overflowBB);
3984 
3985   return phi;
3986 }
3987 
3988 /// Emit pointer + index arithmetic.
3989 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
3990                                     const BinOpInfo &op,
3991                                     bool isSubtraction) {
3992   // Must have binary (not unary) expr here.  Unary pointer
3993   // increment/decrement doesn't use this path.
3994   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3995 
3996   Value *pointer = op.LHS;
3997   Expr *pointerOperand = expr->getLHS();
3998   Value *index = op.RHS;
3999   Expr *indexOperand = expr->getRHS();
4000 
4001   // In a subtraction, the LHS is always the pointer.
4002   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
4003     std::swap(pointer, index);
4004     std::swap(pointerOperand, indexOperand);
4005   }
4006 
4007   bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
4008 
4009   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
4010   auto &DL = CGF.CGM.getDataLayout();
4011   auto PtrTy = cast<llvm::PointerType>(pointer->getType());
4012 
4013   // Some versions of glibc and gcc use idioms (particularly in their malloc
4014   // routines) that add a pointer-sized integer (known to be a pointer value)
4015   // to a null pointer in order to cast the value back to an integer or as
4016   // part of a pointer alignment algorithm.  This is undefined behavior, but
4017   // we'd like to be able to compile programs that use it.
4018   //
4019   // Normally, we'd generate a GEP with a null-pointer base here in response
4020   // to that code, but it's also UB to dereference a pointer created that
4021   // way.  Instead (as an acknowledged hack to tolerate the idiom) we will
4022   // generate a direct cast of the integer value to a pointer.
4023   //
4024   // The idiom (p = nullptr + N) is not met if any of the following are true:
4025   //
4026   //   The operation is subtraction.
4027   //   The index is not pointer-sized.
4028   //   The pointer type is not byte-sized.
4029   //
4030   if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(),
4031                                                        op.Opcode,
4032                                                        expr->getLHS(),
4033                                                        expr->getRHS()))
4034     return CGF.Builder.CreateIntToPtr(index, pointer->getType());
4035 
4036   if (width != DL.getIndexTypeSizeInBits(PtrTy)) {
4037     // Zero-extend or sign-extend the pointer value according to
4038     // whether the index is signed or not.
4039     index = CGF.Builder.CreateIntCast(index, DL.getIndexType(PtrTy), isSigned,
4040                                       "idx.ext");
4041   }
4042 
4043   // If this is subtraction, negate the index.
4044   if (isSubtraction)
4045     index = CGF.Builder.CreateNeg(index, "idx.neg");
4046 
4047   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
4048     CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
4049                         /*Accessed*/ false);
4050 
4051   const PointerType *pointerType
4052     = pointerOperand->getType()->getAs<PointerType>();
4053   if (!pointerType) {
4054     QualType objectType = pointerOperand->getType()
4055                                         ->castAs<ObjCObjectPointerType>()
4056                                         ->getPointeeType();
4057     llvm::Value *objectSize
4058       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
4059 
4060     index = CGF.Builder.CreateMul(index, objectSize);
4061 
4062     Value *result =
4063         CGF.Builder.CreateGEP(CGF.Int8Ty, pointer, index, "add.ptr");
4064     return CGF.Builder.CreateBitCast(result, pointer->getType());
4065   }
4066 
4067   QualType elementType = pointerType->getPointeeType();
4068   if (const VariableArrayType *vla
4069         = CGF.getContext().getAsVariableArrayType(elementType)) {
4070     // The element count here is the total number of non-VLA elements.
4071     llvm::Value *numElements = CGF.getVLASize(vla).NumElts;
4072 
4073     // Effectively, the multiply by the VLA size is part of the GEP.
4074     // GEP indexes are signed, and scaling an index isn't permitted to
4075     // signed-overflow, so we use the same semantics for our explicit
4076     // multiply.  We suppress this if overflow is not undefined behavior.
4077     llvm::Type *elemTy = CGF.ConvertTypeForMem(vla->getElementType());
4078     if (CGF.getLangOpts().PointerOverflowDefined) {
4079       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
4080       pointer = CGF.Builder.CreateGEP(elemTy, pointer, index, "add.ptr");
4081     } else {
4082       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
4083       pointer = CGF.EmitCheckedInBoundsGEP(
4084           elemTy, pointer, index, isSigned, isSubtraction, op.E->getExprLoc(),
4085           "add.ptr");
4086     }
4087     return pointer;
4088   }
4089 
4090   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
4091   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
4092   // future proof.
4093   llvm::Type *elemTy;
4094   if (elementType->isVoidType() || elementType->isFunctionType())
4095     elemTy = CGF.Int8Ty;
4096   else
4097     elemTy = CGF.ConvertTypeForMem(elementType);
4098 
4099   if (CGF.getLangOpts().PointerOverflowDefined)
4100     return CGF.Builder.CreateGEP(elemTy, pointer, index, "add.ptr");
4101 
4102   return CGF.EmitCheckedInBoundsGEP(
4103       elemTy, pointer, index, isSigned, isSubtraction, op.E->getExprLoc(),
4104       "add.ptr");
4105 }
4106 
4107 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
4108 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
4109 // the add operand respectively. This allows fmuladd to represent a*b-c, or
4110 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
4111 // efficient operations.
4112 static Value* buildFMulAdd(llvm::Instruction *MulOp, Value *Addend,
4113                            const CodeGenFunction &CGF, CGBuilderTy &Builder,
4114                            bool negMul, bool negAdd) {
4115   Value *MulOp0 = MulOp->getOperand(0);
4116   Value *MulOp1 = MulOp->getOperand(1);
4117   if (negMul)
4118     MulOp0 = Builder.CreateFNeg(MulOp0, "neg");
4119   if (negAdd)
4120     Addend = Builder.CreateFNeg(Addend, "neg");
4121 
4122   Value *FMulAdd = nullptr;
4123   if (Builder.getIsFPConstrained()) {
4124     assert(isa<llvm::ConstrainedFPIntrinsic>(MulOp) &&
4125            "Only constrained operation should be created when Builder is in FP "
4126            "constrained mode");
4127     FMulAdd = Builder.CreateConstrainedFPCall(
4128         CGF.CGM.getIntrinsic(llvm::Intrinsic::experimental_constrained_fmuladd,
4129                              Addend->getType()),
4130         {MulOp0, MulOp1, Addend});
4131   } else {
4132     FMulAdd = Builder.CreateCall(
4133         CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
4134         {MulOp0, MulOp1, Addend});
4135   }
4136   MulOp->eraseFromParent();
4137 
4138   return FMulAdd;
4139 }
4140 
4141 // Check whether it would be legal to emit an fmuladd intrinsic call to
4142 // represent op and if so, build the fmuladd.
4143 //
4144 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
4145 // Does NOT check the type of the operation - it's assumed that this function
4146 // will be called from contexts where it's known that the type is contractable.
4147 static Value* tryEmitFMulAdd(const BinOpInfo &op,
4148                          const CodeGenFunction &CGF, CGBuilderTy &Builder,
4149                          bool isSub=false) {
4150 
4151   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
4152           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
4153          "Only fadd/fsub can be the root of an fmuladd.");
4154 
4155   // Check whether this op is marked as fusable.
4156   if (!op.FPFeatures.allowFPContractWithinStatement())
4157     return nullptr;
4158 
4159   Value *LHS = op.LHS;
4160   Value *RHS = op.RHS;
4161 
4162   // Peek through fneg to look for fmul. Make sure fneg has no users, and that
4163   // it is the only use of its operand.
4164   bool NegLHS = false;
4165   if (auto *LHSUnOp = dyn_cast<llvm::UnaryOperator>(LHS)) {
4166     if (LHSUnOp->getOpcode() == llvm::Instruction::FNeg &&
4167         LHSUnOp->use_empty() && LHSUnOp->getOperand(0)->hasOneUse()) {
4168       LHS = LHSUnOp->getOperand(0);
4169       NegLHS = true;
4170     }
4171   }
4172 
4173   bool NegRHS = false;
4174   if (auto *RHSUnOp = dyn_cast<llvm::UnaryOperator>(RHS)) {
4175     if (RHSUnOp->getOpcode() == llvm::Instruction::FNeg &&
4176         RHSUnOp->use_empty() && RHSUnOp->getOperand(0)->hasOneUse()) {
4177       RHS = RHSUnOp->getOperand(0);
4178       NegRHS = true;
4179     }
4180   }
4181 
4182   // We have a potentially fusable op. Look for a mul on one of the operands.
4183   // Also, make sure that the mul result isn't used directly. In that case,
4184   // there's no point creating a muladd operation.
4185   if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(LHS)) {
4186     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
4187         (LHSBinOp->use_empty() || NegLHS)) {
4188       // If we looked through fneg, erase it.
4189       if (NegLHS)
4190         cast<llvm::Instruction>(op.LHS)->eraseFromParent();
4191       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, NegLHS, isSub);
4192     }
4193   }
4194   if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(RHS)) {
4195     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
4196         (RHSBinOp->use_empty() || NegRHS)) {
4197       // If we looked through fneg, erase it.
4198       if (NegRHS)
4199         cast<llvm::Instruction>(op.RHS)->eraseFromParent();
4200       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub ^ NegRHS, false);
4201     }
4202   }
4203 
4204   if (auto *LHSBinOp = dyn_cast<llvm::CallBase>(LHS)) {
4205     if (LHSBinOp->getIntrinsicID() ==
4206             llvm::Intrinsic::experimental_constrained_fmul &&
4207         (LHSBinOp->use_empty() || NegLHS)) {
4208       // If we looked through fneg, erase it.
4209       if (NegLHS)
4210         cast<llvm::Instruction>(op.LHS)->eraseFromParent();
4211       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, NegLHS, isSub);
4212     }
4213   }
4214   if (auto *RHSBinOp = dyn_cast<llvm::CallBase>(RHS)) {
4215     if (RHSBinOp->getIntrinsicID() ==
4216             llvm::Intrinsic::experimental_constrained_fmul &&
4217         (RHSBinOp->use_empty() || NegRHS)) {
4218       // If we looked through fneg, erase it.
4219       if (NegRHS)
4220         cast<llvm::Instruction>(op.RHS)->eraseFromParent();
4221       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub ^ NegRHS, false);
4222     }
4223   }
4224 
4225   return nullptr;
4226 }
4227 
4228 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
4229   if (op.LHS->getType()->isPointerTy() ||
4230       op.RHS->getType()->isPointerTy())
4231     return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction);
4232 
4233   if (op.Ty->isSignedIntegerOrEnumerationType()) {
4234     switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
4235     case LangOptions::SOB_Defined:
4236       if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
4237         return Builder.CreateAdd(op.LHS, op.RHS, "add");
4238       [[fallthrough]];
4239     case LangOptions::SOB_Undefined:
4240       if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
4241         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
4242       [[fallthrough]];
4243     case LangOptions::SOB_Trapping:
4244       if (CanElideOverflowCheck(CGF.getContext(), op))
4245         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
4246       return EmitOverflowCheckedBinOp(op);
4247     }
4248   }
4249 
4250   // For vector and matrix adds, try to fold into a fmuladd.
4251   if (op.LHS->getType()->isFPOrFPVectorTy()) {
4252     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
4253     // Try to form an fmuladd.
4254     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
4255       return FMulAdd;
4256   }
4257 
4258   if (op.Ty->isConstantMatrixType()) {
4259     llvm::MatrixBuilder MB(Builder);
4260     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
4261     return MB.CreateAdd(op.LHS, op.RHS);
4262   }
4263 
4264   if (op.Ty->isUnsignedIntegerType() &&
4265       CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
4266       !CanElideOverflowCheck(CGF.getContext(), op))
4267     return EmitOverflowCheckedBinOp(op);
4268 
4269   if (op.LHS->getType()->isFPOrFPVectorTy()) {
4270     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
4271     return Builder.CreateFAdd(op.LHS, op.RHS, "add");
4272   }
4273 
4274   if (op.isFixedPointOp())
4275     return EmitFixedPointBinOp(op);
4276 
4277   return Builder.CreateAdd(op.LHS, op.RHS, "add");
4278 }
4279 
4280 /// The resulting value must be calculated with exact precision, so the operands
4281 /// may not be the same type.
4282 Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) {
4283   using llvm::APSInt;
4284   using llvm::ConstantInt;
4285 
4286   // This is either a binary operation where at least one of the operands is
4287   // a fixed-point type, or a unary operation where the operand is a fixed-point
4288   // type. The result type of a binary operation is determined by
4289   // Sema::handleFixedPointConversions().
4290   QualType ResultTy = op.Ty;
4291   QualType LHSTy, RHSTy;
4292   if (const auto *BinOp = dyn_cast<BinaryOperator>(op.E)) {
4293     RHSTy = BinOp->getRHS()->getType();
4294     if (const auto *CAO = dyn_cast<CompoundAssignOperator>(BinOp)) {
4295       // For compound assignment, the effective type of the LHS at this point
4296       // is the computation LHS type, not the actual LHS type, and the final
4297       // result type is not the type of the expression but rather the
4298       // computation result type.
4299       LHSTy = CAO->getComputationLHSType();
4300       ResultTy = CAO->getComputationResultType();
4301     } else
4302       LHSTy = BinOp->getLHS()->getType();
4303   } else if (const auto *UnOp = dyn_cast<UnaryOperator>(op.E)) {
4304     LHSTy = UnOp->getSubExpr()->getType();
4305     RHSTy = UnOp->getSubExpr()->getType();
4306   }
4307   ASTContext &Ctx = CGF.getContext();
4308   Value *LHS = op.LHS;
4309   Value *RHS = op.RHS;
4310 
4311   auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy);
4312   auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy);
4313   auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy);
4314   auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema);
4315 
4316   // Perform the actual operation.
4317   Value *Result;
4318   llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
4319   switch (op.Opcode) {
4320   case BO_AddAssign:
4321   case BO_Add:
4322     Result = FPBuilder.CreateAdd(LHS, LHSFixedSema, RHS, RHSFixedSema);
4323     break;
4324   case BO_SubAssign:
4325   case BO_Sub:
4326     Result = FPBuilder.CreateSub(LHS, LHSFixedSema, RHS, RHSFixedSema);
4327     break;
4328   case BO_MulAssign:
4329   case BO_Mul:
4330     Result = FPBuilder.CreateMul(LHS, LHSFixedSema, RHS, RHSFixedSema);
4331     break;
4332   case BO_DivAssign:
4333   case BO_Div:
4334     Result = FPBuilder.CreateDiv(LHS, LHSFixedSema, RHS, RHSFixedSema);
4335     break;
4336   case BO_ShlAssign:
4337   case BO_Shl:
4338     Result = FPBuilder.CreateShl(LHS, LHSFixedSema, RHS);
4339     break;
4340   case BO_ShrAssign:
4341   case BO_Shr:
4342     Result = FPBuilder.CreateShr(LHS, LHSFixedSema, RHS);
4343     break;
4344   case BO_LT:
4345     return FPBuilder.CreateLT(LHS, LHSFixedSema, RHS, RHSFixedSema);
4346   case BO_GT:
4347     return FPBuilder.CreateGT(LHS, LHSFixedSema, RHS, RHSFixedSema);
4348   case BO_LE:
4349     return FPBuilder.CreateLE(LHS, LHSFixedSema, RHS, RHSFixedSema);
4350   case BO_GE:
4351     return FPBuilder.CreateGE(LHS, LHSFixedSema, RHS, RHSFixedSema);
4352   case BO_EQ:
4353     // For equality operations, we assume any padding bits on unsigned types are
4354     // zero'd out. They could be overwritten through non-saturating operations
4355     // that cause overflow, but this leads to undefined behavior.
4356     return FPBuilder.CreateEQ(LHS, LHSFixedSema, RHS, RHSFixedSema);
4357   case BO_NE:
4358     return FPBuilder.CreateNE(LHS, LHSFixedSema, RHS, RHSFixedSema);
4359   case BO_Cmp:
4360   case BO_LAnd:
4361   case BO_LOr:
4362     llvm_unreachable("Found unimplemented fixed point binary operation");
4363   case BO_PtrMemD:
4364   case BO_PtrMemI:
4365   case BO_Rem:
4366   case BO_Xor:
4367   case BO_And:
4368   case BO_Or:
4369   case BO_Assign:
4370   case BO_RemAssign:
4371   case BO_AndAssign:
4372   case BO_XorAssign:
4373   case BO_OrAssign:
4374   case BO_Comma:
4375     llvm_unreachable("Found unsupported binary operation for fixed point types.");
4376   }
4377 
4378   bool IsShift = BinaryOperator::isShiftOp(op.Opcode) ||
4379                  BinaryOperator::isShiftAssignOp(op.Opcode);
4380   // Convert to the result type.
4381   return FPBuilder.CreateFixedToFixed(Result, IsShift ? LHSFixedSema
4382                                                       : CommonFixedSema,
4383                                       ResultFixedSema);
4384 }
4385 
4386 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
4387   // The LHS is always a pointer if either side is.
4388   if (!op.LHS->getType()->isPointerTy()) {
4389     if (op.Ty->isSignedIntegerOrEnumerationType()) {
4390       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
4391       case LangOptions::SOB_Defined:
4392         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
4393           return Builder.CreateSub(op.LHS, op.RHS, "sub");
4394         [[fallthrough]];
4395       case LangOptions::SOB_Undefined:
4396         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
4397           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
4398         [[fallthrough]];
4399       case LangOptions::SOB_Trapping:
4400         if (CanElideOverflowCheck(CGF.getContext(), op))
4401           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
4402         return EmitOverflowCheckedBinOp(op);
4403       }
4404     }
4405 
4406     // For vector and matrix subs, try to fold into a fmuladd.
4407     if (op.LHS->getType()->isFPOrFPVectorTy()) {
4408       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
4409       // Try to form an fmuladd.
4410       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
4411         return FMulAdd;
4412     }
4413 
4414     if (op.Ty->isConstantMatrixType()) {
4415       llvm::MatrixBuilder MB(Builder);
4416       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
4417       return MB.CreateSub(op.LHS, op.RHS);
4418     }
4419 
4420     if (op.Ty->isUnsignedIntegerType() &&
4421         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
4422         !CanElideOverflowCheck(CGF.getContext(), op))
4423       return EmitOverflowCheckedBinOp(op);
4424 
4425     if (op.LHS->getType()->isFPOrFPVectorTy()) {
4426       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
4427       return Builder.CreateFSub(op.LHS, op.RHS, "sub");
4428     }
4429 
4430     if (op.isFixedPointOp())
4431       return EmitFixedPointBinOp(op);
4432 
4433     return Builder.CreateSub(op.LHS, op.RHS, "sub");
4434   }
4435 
4436   // If the RHS is not a pointer, then we have normal pointer
4437   // arithmetic.
4438   if (!op.RHS->getType()->isPointerTy())
4439     return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction);
4440 
4441   // Otherwise, this is a pointer subtraction.
4442 
4443   // Do the raw subtraction part.
4444   llvm::Value *LHS
4445     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
4446   llvm::Value *RHS
4447     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
4448   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
4449 
4450   // Okay, figure out the element size.
4451   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
4452   QualType elementType = expr->getLHS()->getType()->getPointeeType();
4453 
4454   llvm::Value *divisor = nullptr;
4455 
4456   // For a variable-length array, this is going to be non-constant.
4457   if (const VariableArrayType *vla
4458         = CGF.getContext().getAsVariableArrayType(elementType)) {
4459     auto VlaSize = CGF.getVLASize(vla);
4460     elementType = VlaSize.Type;
4461     divisor = VlaSize.NumElts;
4462 
4463     // Scale the number of non-VLA elements by the non-VLA element size.
4464     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
4465     if (!eltSize.isOne())
4466       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
4467 
4468   // For everything elese, we can just compute it, safe in the
4469   // assumption that Sema won't let anything through that we can't
4470   // safely compute the size of.
4471   } else {
4472     CharUnits elementSize;
4473     // Handle GCC extension for pointer arithmetic on void* and
4474     // function pointer types.
4475     if (elementType->isVoidType() || elementType->isFunctionType())
4476       elementSize = CharUnits::One();
4477     else
4478       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
4479 
4480     // Don't even emit the divide for element size of 1.
4481     if (elementSize.isOne())
4482       return diffInChars;
4483 
4484     divisor = CGF.CGM.getSize(elementSize);
4485   }
4486 
4487   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
4488   // pointer difference in C is only defined in the case where both operands
4489   // are pointing to elements of an array.
4490   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
4491 }
4492 
4493 Value *ScalarExprEmitter::GetMaximumShiftAmount(Value *LHS, Value *RHS,
4494                                                 bool RHSIsSigned) {
4495   llvm::IntegerType *Ty;
4496   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
4497     Ty = cast<llvm::IntegerType>(VT->getElementType());
4498   else
4499     Ty = cast<llvm::IntegerType>(LHS->getType());
4500   // For a given type of LHS the maximum shift amount is width(LHS)-1, however
4501   // it can occur that width(LHS)-1 > range(RHS). Since there is no check for
4502   // this in ConstantInt::get, this results in the value getting truncated.
4503   // Constrain the return value to be max(RHS) in this case.
4504   llvm::Type *RHSTy = RHS->getType();
4505   llvm::APInt RHSMax =
4506       RHSIsSigned ? llvm::APInt::getSignedMaxValue(RHSTy->getScalarSizeInBits())
4507                   : llvm::APInt::getMaxValue(RHSTy->getScalarSizeInBits());
4508   if (RHSMax.ult(Ty->getBitWidth()))
4509     return llvm::ConstantInt::get(RHSTy, RHSMax);
4510   return llvm::ConstantInt::get(RHSTy, Ty->getBitWidth() - 1);
4511 }
4512 
4513 Value *ScalarExprEmitter::ConstrainShiftValue(Value *LHS, Value *RHS,
4514                                               const Twine &Name) {
4515   llvm::IntegerType *Ty;
4516   if (auto *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
4517     Ty = cast<llvm::IntegerType>(VT->getElementType());
4518   else
4519     Ty = cast<llvm::IntegerType>(LHS->getType());
4520 
4521   if (llvm::isPowerOf2_64(Ty->getBitWidth()))
4522     return Builder.CreateAnd(RHS, GetMaximumShiftAmount(LHS, RHS, false), Name);
4523 
4524   return Builder.CreateURem(
4525       RHS, llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth()), Name);
4526 }
4527 
4528 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
4529   // TODO: This misses out on the sanitizer check below.
4530   if (Ops.isFixedPointOp())
4531     return EmitFixedPointBinOp(Ops);
4532 
4533   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
4534   // RHS to the same size as the LHS.
4535   Value *RHS = Ops.RHS;
4536   if (Ops.LHS->getType() != RHS->getType())
4537     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
4538 
4539   bool SanitizeSignedBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
4540                             Ops.Ty->hasSignedIntegerRepresentation() &&
4541                             !CGF.getLangOpts().isSignedOverflowDefined() &&
4542                             !CGF.getLangOpts().CPlusPlus20;
4543   bool SanitizeUnsignedBase =
4544       CGF.SanOpts.has(SanitizerKind::UnsignedShiftBase) &&
4545       Ops.Ty->hasUnsignedIntegerRepresentation();
4546   bool SanitizeBase = SanitizeSignedBase || SanitizeUnsignedBase;
4547   bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
4548   // OpenCL 6.3j: shift values are effectively % word size of LHS.
4549   if (CGF.getLangOpts().OpenCL || CGF.getLangOpts().HLSL)
4550     RHS = ConstrainShiftValue(Ops.LHS, RHS, "shl.mask");
4551   else if ((SanitizeBase || SanitizeExponent) &&
4552            isa<llvm::IntegerType>(Ops.LHS->getType())) {
4553     CodeGenFunction::SanitizerScope SanScope(&CGF);
4554     SmallVector<std::pair<Value *, SanitizerKind::SanitizerOrdinal>, 2> Checks;
4555     bool RHSIsSigned = Ops.rhsHasSignedIntegerRepresentation();
4556     llvm::Value *WidthMinusOne =
4557         GetMaximumShiftAmount(Ops.LHS, Ops.RHS, RHSIsSigned);
4558     llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne);
4559 
4560     if (SanitizeExponent) {
4561       Checks.push_back(
4562           std::make_pair(ValidExponent, SanitizerKind::SO_ShiftExponent));
4563     }
4564 
4565     if (SanitizeBase) {
4566       // Check whether we are shifting any non-zero bits off the top of the
4567       // integer. We only emit this check if exponent is valid - otherwise
4568       // instructions below will have undefined behavior themselves.
4569       llvm::BasicBlock *Orig = Builder.GetInsertBlock();
4570       llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
4571       llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
4572       Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
4573       llvm::Value *PromotedWidthMinusOne =
4574           (RHS == Ops.RHS) ? WidthMinusOne
4575                            : GetMaximumShiftAmount(Ops.LHS, RHS, RHSIsSigned);
4576       CGF.EmitBlock(CheckShiftBase);
4577       llvm::Value *BitsShiftedOff = Builder.CreateLShr(
4578           Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros",
4579                                      /*NUW*/ true, /*NSW*/ true),
4580           "shl.check");
4581       if (SanitizeUnsignedBase || CGF.getLangOpts().CPlusPlus) {
4582         // In C99, we are not permitted to shift a 1 bit into the sign bit.
4583         // Under C++11's rules, shifting a 1 bit into the sign bit is
4584         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
4585         // define signed left shifts, so we use the C99 and C++11 rules there).
4586         // Unsigned shifts can always shift into the top bit.
4587         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
4588         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
4589       }
4590       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
4591       llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
4592       CGF.EmitBlock(Cont);
4593       llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
4594       BaseCheck->addIncoming(Builder.getTrue(), Orig);
4595       BaseCheck->addIncoming(ValidBase, CheckShiftBase);
4596       Checks.push_back(std::make_pair(
4597           BaseCheck, SanitizeSignedBase ? SanitizerKind::SO_ShiftBase
4598                                         : SanitizerKind::SO_UnsignedShiftBase));
4599     }
4600 
4601     assert(!Checks.empty());
4602     EmitBinOpCheck(Checks, Ops);
4603   }
4604 
4605   return Builder.CreateShl(Ops.LHS, RHS, "shl");
4606 }
4607 
4608 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
4609   // TODO: This misses out on the sanitizer check below.
4610   if (Ops.isFixedPointOp())
4611     return EmitFixedPointBinOp(Ops);
4612 
4613   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
4614   // RHS to the same size as the LHS.
4615   Value *RHS = Ops.RHS;
4616   if (Ops.LHS->getType() != RHS->getType())
4617     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
4618 
4619   // OpenCL 6.3j: shift values are effectively % word size of LHS.
4620   if (CGF.getLangOpts().OpenCL || CGF.getLangOpts().HLSL)
4621     RHS = ConstrainShiftValue(Ops.LHS, RHS, "shr.mask");
4622   else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
4623            isa<llvm::IntegerType>(Ops.LHS->getType())) {
4624     CodeGenFunction::SanitizerScope SanScope(&CGF);
4625     bool RHSIsSigned = Ops.rhsHasSignedIntegerRepresentation();
4626     llvm::Value *Valid = Builder.CreateICmpULE(
4627         Ops.RHS, GetMaximumShiftAmount(Ops.LHS, Ops.RHS, RHSIsSigned));
4628     EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::SO_ShiftExponent), Ops);
4629   }
4630 
4631   if (Ops.Ty->hasUnsignedIntegerRepresentation())
4632     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
4633   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
4634 }
4635 
4636 enum IntrinsicType { VCMPEQ, VCMPGT };
4637 // return corresponding comparison intrinsic for given vector type
4638 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
4639                                         BuiltinType::Kind ElemKind) {
4640   switch (ElemKind) {
4641   default: llvm_unreachable("unexpected element type");
4642   case BuiltinType::Char_U:
4643   case BuiltinType::UChar:
4644     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
4645                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
4646   case BuiltinType::Char_S:
4647   case BuiltinType::SChar:
4648     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
4649                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
4650   case BuiltinType::UShort:
4651     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
4652                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
4653   case BuiltinType::Short:
4654     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
4655                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
4656   case BuiltinType::UInt:
4657     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
4658                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
4659   case BuiltinType::Int:
4660     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
4661                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
4662   case BuiltinType::ULong:
4663   case BuiltinType::ULongLong:
4664     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
4665                             llvm::Intrinsic::ppc_altivec_vcmpgtud_p;
4666   case BuiltinType::Long:
4667   case BuiltinType::LongLong:
4668     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
4669                             llvm::Intrinsic::ppc_altivec_vcmpgtsd_p;
4670   case BuiltinType::Float:
4671     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
4672                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
4673   case BuiltinType::Double:
4674     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p :
4675                             llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p;
4676   case BuiltinType::UInt128:
4677     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p
4678                           : llvm::Intrinsic::ppc_altivec_vcmpgtuq_p;
4679   case BuiltinType::Int128:
4680     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p
4681                           : llvm::Intrinsic::ppc_altivec_vcmpgtsq_p;
4682   }
4683 }
4684 
4685 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
4686                                       llvm::CmpInst::Predicate UICmpOpc,
4687                                       llvm::CmpInst::Predicate SICmpOpc,
4688                                       llvm::CmpInst::Predicate FCmpOpc,
4689                                       bool IsSignaling) {
4690   TestAndClearIgnoreResultAssign();
4691   Value *Result;
4692   QualType LHSTy = E->getLHS()->getType();
4693   QualType RHSTy = E->getRHS()->getType();
4694   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
4695     assert(E->getOpcode() == BO_EQ ||
4696            E->getOpcode() == BO_NE);
4697     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
4698     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
4699     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
4700                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
4701   } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
4702     BinOpInfo BOInfo = EmitBinOps(E);
4703     Value *LHS = BOInfo.LHS;
4704     Value *RHS = BOInfo.RHS;
4705 
4706     // If AltiVec, the comparison results in a numeric type, so we use
4707     // intrinsics comparing vectors and giving 0 or 1 as a result
4708     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
4709       // constants for mapping CR6 register bits to predicate result
4710       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
4711 
4712       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
4713 
4714       // in several cases vector arguments order will be reversed
4715       Value *FirstVecArg = LHS,
4716             *SecondVecArg = RHS;
4717 
4718       QualType ElTy = LHSTy->castAs<VectorType>()->getElementType();
4719       BuiltinType::Kind ElementKind = ElTy->castAs<BuiltinType>()->getKind();
4720 
4721       switch(E->getOpcode()) {
4722       default: llvm_unreachable("is not a comparison operation");
4723       case BO_EQ:
4724         CR6 = CR6_LT;
4725         ID = GetIntrinsic(VCMPEQ, ElementKind);
4726         break;
4727       case BO_NE:
4728         CR6 = CR6_EQ;
4729         ID = GetIntrinsic(VCMPEQ, ElementKind);
4730         break;
4731       case BO_LT:
4732         CR6 = CR6_LT;
4733         ID = GetIntrinsic(VCMPGT, ElementKind);
4734         std::swap(FirstVecArg, SecondVecArg);
4735         break;
4736       case BO_GT:
4737         CR6 = CR6_LT;
4738         ID = GetIntrinsic(VCMPGT, ElementKind);
4739         break;
4740       case BO_LE:
4741         if (ElementKind == BuiltinType::Float) {
4742           CR6 = CR6_LT;
4743           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
4744           std::swap(FirstVecArg, SecondVecArg);
4745         }
4746         else {
4747           CR6 = CR6_EQ;
4748           ID = GetIntrinsic(VCMPGT, ElementKind);
4749         }
4750         break;
4751       case BO_GE:
4752         if (ElementKind == BuiltinType::Float) {
4753           CR6 = CR6_LT;
4754           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
4755         }
4756         else {
4757           CR6 = CR6_EQ;
4758           ID = GetIntrinsic(VCMPGT, ElementKind);
4759           std::swap(FirstVecArg, SecondVecArg);
4760         }
4761         break;
4762       }
4763 
4764       Value *CR6Param = Builder.getInt32(CR6);
4765       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
4766       Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
4767 
4768       // The result type of intrinsic may not be same as E->getType().
4769       // If E->getType() is not BoolTy, EmitScalarConversion will do the
4770       // conversion work. If E->getType() is BoolTy, EmitScalarConversion will
4771       // do nothing, if ResultTy is not i1 at the same time, it will cause
4772       // crash later.
4773       llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType());
4774       if (ResultTy->getBitWidth() > 1 &&
4775           E->getType() == CGF.getContext().BoolTy)
4776         Result = Builder.CreateTrunc(Result, Builder.getInt1Ty());
4777       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
4778                                   E->getExprLoc());
4779     }
4780 
4781     if (BOInfo.isFixedPointOp()) {
4782       Result = EmitFixedPointBinOp(BOInfo);
4783     } else if (LHS->getType()->isFPOrFPVectorTy()) {
4784       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, BOInfo.FPFeatures);
4785       if (!IsSignaling)
4786         Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
4787       else
4788         Result = Builder.CreateFCmpS(FCmpOpc, LHS, RHS, "cmp");
4789     } else if (LHSTy->hasSignedIntegerRepresentation()) {
4790       Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
4791     } else {
4792       // Unsigned integers and pointers.
4793 
4794       if (CGF.CGM.getCodeGenOpts().StrictVTablePointers &&
4795           !isa<llvm::ConstantPointerNull>(LHS) &&
4796           !isa<llvm::ConstantPointerNull>(RHS)) {
4797 
4798         // Dynamic information is required to be stripped for comparisons,
4799         // because it could leak the dynamic information.  Based on comparisons
4800         // of pointers to dynamic objects, the optimizer can replace one pointer
4801         // with another, which might be incorrect in presence of invariant
4802         // groups. Comparison with null is safe because null does not carry any
4803         // dynamic information.
4804         if (LHSTy.mayBeDynamicClass())
4805           LHS = Builder.CreateStripInvariantGroup(LHS);
4806         if (RHSTy.mayBeDynamicClass())
4807           RHS = Builder.CreateStripInvariantGroup(RHS);
4808       }
4809 
4810       Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
4811     }
4812 
4813     // If this is a vector comparison, sign extend the result to the appropriate
4814     // vector integer type and return it (don't convert to bool).
4815     if (LHSTy->isVectorType())
4816       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
4817 
4818   } else {
4819     // Complex Comparison: can only be an equality comparison.
4820     CodeGenFunction::ComplexPairTy LHS, RHS;
4821     QualType CETy;
4822     if (auto *CTy = LHSTy->getAs<ComplexType>()) {
4823       LHS = CGF.EmitComplexExpr(E->getLHS());
4824       CETy = CTy->getElementType();
4825     } else {
4826       LHS.first = Visit(E->getLHS());
4827       LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
4828       CETy = LHSTy;
4829     }
4830     if (auto *CTy = RHSTy->getAs<ComplexType>()) {
4831       RHS = CGF.EmitComplexExpr(E->getRHS());
4832       assert(CGF.getContext().hasSameUnqualifiedType(CETy,
4833                                                      CTy->getElementType()) &&
4834              "The element types must always match.");
4835       (void)CTy;
4836     } else {
4837       RHS.first = Visit(E->getRHS());
4838       RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
4839       assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
4840              "The element types must always match.");
4841     }
4842 
4843     Value *ResultR, *ResultI;
4844     if (CETy->isRealFloatingType()) {
4845       // As complex comparisons can only be equality comparisons, they
4846       // are never signaling comparisons.
4847       ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
4848       ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
4849     } else {
4850       // Complex comparisons can only be equality comparisons.  As such, signed
4851       // and unsigned opcodes are the same.
4852       ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
4853       ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
4854     }
4855 
4856     if (E->getOpcode() == BO_EQ) {
4857       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
4858     } else {
4859       assert(E->getOpcode() == BO_NE &&
4860              "Complex comparison other than == or != ?");
4861       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
4862     }
4863   }
4864 
4865   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
4866                               E->getExprLoc());
4867 }
4868 
4869 llvm::Value *CodeGenFunction::EmitWithOriginalRHSBitfieldAssignment(
4870     const BinaryOperator *E, Value **Previous, QualType *SrcType) {
4871   // In case we have the integer or bitfield sanitizer checks enabled
4872   // we want to get the expression before scalar conversion.
4873   if (auto *ICE = dyn_cast<ImplicitCastExpr>(E->getRHS())) {
4874     CastKind Kind = ICE->getCastKind();
4875     if (Kind == CK_IntegralCast || Kind == CK_LValueToRValue) {
4876       *SrcType = ICE->getSubExpr()->getType();
4877       *Previous = EmitScalarExpr(ICE->getSubExpr());
4878       // Pass default ScalarConversionOpts to avoid emitting
4879       // integer sanitizer checks as E refers to bitfield.
4880       return EmitScalarConversion(*Previous, *SrcType, ICE->getType(),
4881                                   ICE->getExprLoc());
4882     }
4883   }
4884   return EmitScalarExpr(E->getRHS());
4885 }
4886 
4887 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
4888   bool Ignore = TestAndClearIgnoreResultAssign();
4889 
4890   Value *RHS;
4891   LValue LHS;
4892 
4893   switch (E->getLHS()->getType().getObjCLifetime()) {
4894   case Qualifiers::OCL_Strong:
4895     std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
4896     break;
4897 
4898   case Qualifiers::OCL_Autoreleasing:
4899     std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
4900     break;
4901 
4902   case Qualifiers::OCL_ExplicitNone:
4903     std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
4904     break;
4905 
4906   case Qualifiers::OCL_Weak:
4907     RHS = Visit(E->getRHS());
4908     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4909     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
4910     break;
4911 
4912   case Qualifiers::OCL_None:
4913     // __block variables need to have the rhs evaluated first, plus
4914     // this should improve codegen just a little.
4915     Value *Previous = nullptr;
4916     QualType SrcType = E->getRHS()->getType();
4917     // Check if LHS is a bitfield, if RHS contains an implicit cast expression
4918     // we want to extract that value and potentially (if the bitfield sanitizer
4919     // is enabled) use it to check for an implicit conversion.
4920     if (E->getLHS()->refersToBitField())
4921       RHS = CGF.EmitWithOriginalRHSBitfieldAssignment(E, &Previous, &SrcType);
4922     else
4923       RHS = Visit(E->getRHS());
4924 
4925     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4926 
4927     // Store the value into the LHS.  Bit-fields are handled specially
4928     // because the result is altered by the store, i.e., [C99 6.5.16p1]
4929     // 'An assignment expression has the value of the left operand after
4930     // the assignment...'.
4931     if (LHS.isBitField()) {
4932       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
4933       // If the expression contained an implicit conversion, make sure
4934       // to use the value before the scalar conversion.
4935       Value *Src = Previous ? Previous : RHS;
4936       QualType DstType = E->getLHS()->getType();
4937       CGF.EmitBitfieldConversionCheck(Src, SrcType, RHS, DstType,
4938                                       LHS.getBitFieldInfo(), E->getExprLoc());
4939     } else {
4940       CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc());
4941       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
4942     }
4943   }
4944 
4945   // If the result is clearly ignored, return now.
4946   if (Ignore)
4947     return nullptr;
4948 
4949   // The result of an assignment in C is the assigned r-value.
4950   if (!CGF.getLangOpts().CPlusPlus)
4951     return RHS;
4952 
4953   // If the lvalue is non-volatile, return the computed value of the assignment.
4954   if (!LHS.isVolatileQualified())
4955     return RHS;
4956 
4957   // Otherwise, reload the value.
4958   return EmitLoadOfLValue(LHS, E->getExprLoc());
4959 }
4960 
4961 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
4962   // Perform vector logical and on comparisons with zero vectors.
4963   if (E->getType()->isVectorType()) {
4964     CGF.incrementProfileCounter(E);
4965 
4966     Value *LHS = Visit(E->getLHS());
4967     Value *RHS = Visit(E->getRHS());
4968     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4969     if (LHS->getType()->isFPOrFPVectorTy()) {
4970       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
4971           CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
4972       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4973       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4974     } else {
4975       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4976       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4977     }
4978     Value *And = Builder.CreateAnd(LHS, RHS);
4979     return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
4980   }
4981 
4982   bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr();
4983   llvm::Type *ResTy = ConvertType(E->getType());
4984 
4985   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
4986   // If we have 1 && X, just emit X without inserting the control flow.
4987   bool LHSCondVal;
4988   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4989     if (LHSCondVal) { // If we have 1 && X, just emit X.
4990       CGF.incrementProfileCounter(E);
4991 
4992       // If the top of the logical operator nest, reset the MCDC temp to 0.
4993       if (CGF.MCDCLogOpStack.empty())
4994         CGF.maybeResetMCDCCondBitmap(E);
4995 
4996       CGF.MCDCLogOpStack.push_back(E);
4997 
4998       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4999 
5000       // If we're generating for profiling or coverage, generate a branch to a
5001       // block that increments the RHS counter needed to track branch condition
5002       // coverage. In this case, use "FBlock" as both the final "TrueBlock" and
5003       // "FalseBlock" after the increment is done.
5004       if (InstrumentRegions &&
5005           CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
5006         CGF.maybeUpdateMCDCCondBitmap(E->getRHS(), RHSCond);
5007         llvm::BasicBlock *FBlock = CGF.createBasicBlock("land.end");
5008         llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt");
5009         Builder.CreateCondBr(RHSCond, RHSBlockCnt, FBlock);
5010         CGF.EmitBlock(RHSBlockCnt);
5011         CGF.incrementProfileCounter(E->getRHS());
5012         CGF.EmitBranch(FBlock);
5013         CGF.EmitBlock(FBlock);
5014       } else
5015         CGF.markStmtMaybeUsed(E->getRHS());
5016 
5017       CGF.MCDCLogOpStack.pop_back();
5018       // If the top of the logical operator nest, update the MCDC bitmap.
5019       if (CGF.MCDCLogOpStack.empty())
5020         CGF.maybeUpdateMCDCTestVectorBitmap(E);
5021 
5022       // ZExt result to int or bool.
5023       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
5024     }
5025 
5026     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
5027     if (!CGF.ContainsLabel(E->getRHS())) {
5028       CGF.markStmtMaybeUsed(E->getRHS());
5029       return llvm::Constant::getNullValue(ResTy);
5030     }
5031   }
5032 
5033   // If the top of the logical operator nest, reset the MCDC temp to 0.
5034   if (CGF.MCDCLogOpStack.empty())
5035     CGF.maybeResetMCDCCondBitmap(E);
5036 
5037   CGF.MCDCLogOpStack.push_back(E);
5038 
5039   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
5040   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
5041 
5042   CodeGenFunction::ConditionalEvaluation eval(CGF);
5043 
5044   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
5045   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
5046                            CGF.getProfileCount(E->getRHS()));
5047 
5048   // Any edges into the ContBlock are now from an (indeterminate number of)
5049   // edges from this first condition.  All of these values will be false.  Start
5050   // setting up the PHI node in the Cont Block for this.
5051   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
5052                                             "", ContBlock);
5053   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
5054        PI != PE; ++PI)
5055     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
5056 
5057   eval.begin(CGF);
5058   CGF.EmitBlock(RHSBlock);
5059   CGF.incrementProfileCounter(E);
5060   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
5061   eval.end(CGF);
5062 
5063   // Reaquire the RHS block, as there may be subblocks inserted.
5064   RHSBlock = Builder.GetInsertBlock();
5065 
5066   // If we're generating for profiling or coverage, generate a branch on the
5067   // RHS to a block that increments the RHS true counter needed to track branch
5068   // condition coverage.
5069   if (InstrumentRegions &&
5070       CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
5071     CGF.maybeUpdateMCDCCondBitmap(E->getRHS(), RHSCond);
5072     llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt");
5073     Builder.CreateCondBr(RHSCond, RHSBlockCnt, ContBlock);
5074     CGF.EmitBlock(RHSBlockCnt);
5075     CGF.incrementProfileCounter(E->getRHS());
5076     CGF.EmitBranch(ContBlock);
5077     PN->addIncoming(RHSCond, RHSBlockCnt);
5078   }
5079 
5080   // Emit an unconditional branch from this block to ContBlock.
5081   {
5082     // There is no need to emit line number for unconditional branch.
5083     auto NL = ApplyDebugLocation::CreateEmpty(CGF);
5084     CGF.EmitBlock(ContBlock);
5085   }
5086   // Insert an entry into the phi node for the edge with the value of RHSCond.
5087   PN->addIncoming(RHSCond, RHSBlock);
5088 
5089   CGF.MCDCLogOpStack.pop_back();
5090   // If the top of the logical operator nest, update the MCDC bitmap.
5091   if (CGF.MCDCLogOpStack.empty())
5092     CGF.maybeUpdateMCDCTestVectorBitmap(E);
5093 
5094   // Artificial location to preserve the scope information
5095   {
5096     auto NL = ApplyDebugLocation::CreateArtificial(CGF);
5097     PN->setDebugLoc(Builder.getCurrentDebugLocation());
5098   }
5099 
5100   // ZExt result to int.
5101   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
5102 }
5103 
5104 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
5105   // Perform vector logical or on comparisons with zero vectors.
5106   if (E->getType()->isVectorType()) {
5107     CGF.incrementProfileCounter(E);
5108 
5109     Value *LHS = Visit(E->getLHS());
5110     Value *RHS = Visit(E->getRHS());
5111     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
5112     if (LHS->getType()->isFPOrFPVectorTy()) {
5113       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
5114           CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
5115       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
5116       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
5117     } else {
5118       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
5119       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
5120     }
5121     Value *Or = Builder.CreateOr(LHS, RHS);
5122     return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
5123   }
5124 
5125   bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr();
5126   llvm::Type *ResTy = ConvertType(E->getType());
5127 
5128   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
5129   // If we have 0 || X, just emit X without inserting the control flow.
5130   bool LHSCondVal;
5131   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
5132     if (!LHSCondVal) { // If we have 0 || X, just emit X.
5133       CGF.incrementProfileCounter(E);
5134 
5135       // If the top of the logical operator nest, reset the MCDC temp to 0.
5136       if (CGF.MCDCLogOpStack.empty())
5137         CGF.maybeResetMCDCCondBitmap(E);
5138 
5139       CGF.MCDCLogOpStack.push_back(E);
5140 
5141       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
5142 
5143       // If we're generating for profiling or coverage, generate a branch to a
5144       // block that increments the RHS counter need to track branch condition
5145       // coverage. In this case, use "FBlock" as both the final "TrueBlock" and
5146       // "FalseBlock" after the increment is done.
5147       if (InstrumentRegions &&
5148           CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
5149         CGF.maybeUpdateMCDCCondBitmap(E->getRHS(), RHSCond);
5150         llvm::BasicBlock *FBlock = CGF.createBasicBlock("lor.end");
5151         llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt");
5152         Builder.CreateCondBr(RHSCond, FBlock, RHSBlockCnt);
5153         CGF.EmitBlock(RHSBlockCnt);
5154         CGF.incrementProfileCounter(E->getRHS());
5155         CGF.EmitBranch(FBlock);
5156         CGF.EmitBlock(FBlock);
5157       } else
5158         CGF.markStmtMaybeUsed(E->getRHS());
5159 
5160       CGF.MCDCLogOpStack.pop_back();
5161       // If the top of the logical operator nest, update the MCDC bitmap.
5162       if (CGF.MCDCLogOpStack.empty())
5163         CGF.maybeUpdateMCDCTestVectorBitmap(E);
5164 
5165       // ZExt result to int or bool.
5166       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
5167     }
5168 
5169     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
5170     if (!CGF.ContainsLabel(E->getRHS())) {
5171       CGF.markStmtMaybeUsed(E->getRHS());
5172       return llvm::ConstantInt::get(ResTy, 1);
5173     }
5174   }
5175 
5176   // If the top of the logical operator nest, reset the MCDC temp to 0.
5177   if (CGF.MCDCLogOpStack.empty())
5178     CGF.maybeResetMCDCCondBitmap(E);
5179 
5180   CGF.MCDCLogOpStack.push_back(E);
5181 
5182   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
5183   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
5184 
5185   CodeGenFunction::ConditionalEvaluation eval(CGF);
5186 
5187   // Branch on the LHS first.  If it is true, go to the success (cont) block.
5188   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
5189                            CGF.getCurrentProfileCount() -
5190                                CGF.getProfileCount(E->getRHS()));
5191 
5192   // Any edges into the ContBlock are now from an (indeterminate number of)
5193   // edges from this first condition.  All of these values will be true.  Start
5194   // setting up the PHI node in the Cont Block for this.
5195   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
5196                                             "", ContBlock);
5197   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
5198        PI != PE; ++PI)
5199     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
5200 
5201   eval.begin(CGF);
5202 
5203   // Emit the RHS condition as a bool value.
5204   CGF.EmitBlock(RHSBlock);
5205   CGF.incrementProfileCounter(E);
5206   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
5207 
5208   eval.end(CGF);
5209 
5210   // Reaquire the RHS block, as there may be subblocks inserted.
5211   RHSBlock = Builder.GetInsertBlock();
5212 
5213   // If we're generating for profiling or coverage, generate a branch on the
5214   // RHS to a block that increments the RHS true counter needed to track branch
5215   // condition coverage.
5216   if (InstrumentRegions &&
5217       CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
5218     CGF.maybeUpdateMCDCCondBitmap(E->getRHS(), RHSCond);
5219     llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt");
5220     Builder.CreateCondBr(RHSCond, ContBlock, RHSBlockCnt);
5221     CGF.EmitBlock(RHSBlockCnt);
5222     CGF.incrementProfileCounter(E->getRHS());
5223     CGF.EmitBranch(ContBlock);
5224     PN->addIncoming(RHSCond, RHSBlockCnt);
5225   }
5226 
5227   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
5228   // into the phi node for the edge with the value of RHSCond.
5229   CGF.EmitBlock(ContBlock);
5230   PN->addIncoming(RHSCond, RHSBlock);
5231 
5232   CGF.MCDCLogOpStack.pop_back();
5233   // If the top of the logical operator nest, update the MCDC bitmap.
5234   if (CGF.MCDCLogOpStack.empty())
5235     CGF.maybeUpdateMCDCTestVectorBitmap(E);
5236 
5237   // ZExt result to int.
5238   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
5239 }
5240 
5241 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
5242   CGF.EmitIgnoredExpr(E->getLHS());
5243   CGF.EnsureInsertPoint();
5244   return Visit(E->getRHS());
5245 }
5246 
5247 //===----------------------------------------------------------------------===//
5248 //                             Other Operators
5249 //===----------------------------------------------------------------------===//
5250 
5251 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
5252 /// expression is cheap enough and side-effect-free enough to evaluate
5253 /// unconditionally instead of conditionally.  This is used to convert control
5254 /// flow into selects in some cases.
5255 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
5256                                                    CodeGenFunction &CGF) {
5257   // Anything that is an integer or floating point constant is fine.
5258   return E->IgnoreParens()->isEvaluatable(CGF.getContext());
5259 
5260   // Even non-volatile automatic variables can't be evaluated unconditionally.
5261   // Referencing a thread_local may cause non-trivial initialization work to
5262   // occur. If we're inside a lambda and one of the variables is from the scope
5263   // outside the lambda, that function may have returned already. Reading its
5264   // locals is a bad idea. Also, these reads may introduce races there didn't
5265   // exist in the source-level program.
5266 }
5267 
5268 
5269 Value *ScalarExprEmitter::
5270 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
5271   TestAndClearIgnoreResultAssign();
5272 
5273   // Bind the common expression if necessary.
5274   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
5275 
5276   Expr *condExpr = E->getCond();
5277   Expr *lhsExpr = E->getTrueExpr();
5278   Expr *rhsExpr = E->getFalseExpr();
5279 
5280   // If the condition constant folds and can be elided, try to avoid emitting
5281   // the condition and the dead arm.
5282   bool CondExprBool;
5283   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
5284     Expr *live = lhsExpr, *dead = rhsExpr;
5285     if (!CondExprBool) std::swap(live, dead);
5286 
5287     // If the dead side doesn't have labels we need, just emit the Live part.
5288     if (!CGF.ContainsLabel(dead)) {
5289       if (CondExprBool) {
5290         if (llvm::EnableSingleByteCoverage) {
5291           CGF.incrementProfileCounter(lhsExpr);
5292           CGF.incrementProfileCounter(rhsExpr);
5293         }
5294         CGF.incrementProfileCounter(E);
5295       }
5296       Value *Result = Visit(live);
5297       CGF.markStmtMaybeUsed(dead);
5298 
5299       // If the live part is a throw expression, it acts like it has a void
5300       // type, so evaluating it returns a null Value*.  However, a conditional
5301       // with non-void type must return a non-null Value*.
5302       if (!Result && !E->getType()->isVoidType())
5303         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
5304 
5305       return Result;
5306     }
5307   }
5308 
5309   // OpenCL: If the condition is a vector, we can treat this condition like
5310   // the select function.
5311   if ((CGF.getLangOpts().OpenCL && condExpr->getType()->isVectorType()) ||
5312       condExpr->getType()->isExtVectorType()) {
5313     CGF.incrementProfileCounter(E);
5314 
5315     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
5316     llvm::Value *LHS = Visit(lhsExpr);
5317     llvm::Value *RHS = Visit(rhsExpr);
5318 
5319     llvm::Type *condType = ConvertType(condExpr->getType());
5320     auto *vecTy = cast<llvm::FixedVectorType>(condType);
5321 
5322     unsigned numElem = vecTy->getNumElements();
5323     llvm::Type *elemType = vecTy->getElementType();
5324 
5325     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
5326     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
5327     llvm::Value *tmp = Builder.CreateSExt(
5328         TestMSB, llvm::FixedVectorType::get(elemType, numElem), "sext");
5329     llvm::Value *tmp2 = Builder.CreateNot(tmp);
5330 
5331     // Cast float to int to perform ANDs if necessary.
5332     llvm::Value *RHSTmp = RHS;
5333     llvm::Value *LHSTmp = LHS;
5334     bool wasCast = false;
5335     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
5336     if (rhsVTy->getElementType()->isFloatingPointTy()) {
5337       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
5338       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
5339       wasCast = true;
5340     }
5341 
5342     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
5343     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
5344     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
5345     if (wasCast)
5346       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
5347 
5348     return tmp5;
5349   }
5350 
5351   if (condExpr->getType()->isVectorType() ||
5352       condExpr->getType()->isSveVLSBuiltinType()) {
5353     CGF.incrementProfileCounter(E);
5354 
5355     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
5356     llvm::Value *LHS = Visit(lhsExpr);
5357     llvm::Value *RHS = Visit(rhsExpr);
5358 
5359     llvm::Type *CondType = ConvertType(condExpr->getType());
5360     auto *VecTy = cast<llvm::VectorType>(CondType);
5361     llvm::Value *ZeroVec = llvm::Constant::getNullValue(VecTy);
5362 
5363     CondV = Builder.CreateICmpNE(CondV, ZeroVec, "vector_cond");
5364     return Builder.CreateSelect(CondV, LHS, RHS, "vector_select");
5365   }
5366 
5367   // If this is a really simple expression (like x ? 4 : 5), emit this as a
5368   // select instead of as control flow.  We can only do this if it is cheap and
5369   // safe to evaluate the LHS and RHS unconditionally.
5370   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
5371       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
5372     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
5373     llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty);
5374 
5375     if (llvm::EnableSingleByteCoverage) {
5376       CGF.incrementProfileCounter(lhsExpr);
5377       CGF.incrementProfileCounter(rhsExpr);
5378       CGF.incrementProfileCounter(E);
5379     } else
5380       CGF.incrementProfileCounter(E, StepV);
5381 
5382     llvm::Value *LHS = Visit(lhsExpr);
5383     llvm::Value *RHS = Visit(rhsExpr);
5384     if (!LHS) {
5385       // If the conditional has void type, make sure we return a null Value*.
5386       assert(!RHS && "LHS and RHS types must match");
5387       return nullptr;
5388     }
5389     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
5390   }
5391 
5392   // If the top of the logical operator nest, reset the MCDC temp to 0.
5393   if (CGF.MCDCLogOpStack.empty())
5394     CGF.maybeResetMCDCCondBitmap(condExpr);
5395 
5396   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
5397   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
5398   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
5399 
5400   CodeGenFunction::ConditionalEvaluation eval(CGF);
5401   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
5402                            CGF.getProfileCount(lhsExpr));
5403 
5404   CGF.EmitBlock(LHSBlock);
5405 
5406   // If the top of the logical operator nest, update the MCDC bitmap for the
5407   // ConditionalOperator prior to visiting its LHS and RHS blocks, since they
5408   // may also contain a boolean expression.
5409   if (CGF.MCDCLogOpStack.empty())
5410     CGF.maybeUpdateMCDCTestVectorBitmap(condExpr);
5411 
5412   if (llvm::EnableSingleByteCoverage)
5413     CGF.incrementProfileCounter(lhsExpr);
5414   else
5415     CGF.incrementProfileCounter(E);
5416 
5417   eval.begin(CGF);
5418   Value *LHS = Visit(lhsExpr);
5419   eval.end(CGF);
5420 
5421   LHSBlock = Builder.GetInsertBlock();
5422   Builder.CreateBr(ContBlock);
5423 
5424   CGF.EmitBlock(RHSBlock);
5425 
5426   // If the top of the logical operator nest, update the MCDC bitmap for the
5427   // ConditionalOperator prior to visiting its LHS and RHS blocks, since they
5428   // may also contain a boolean expression.
5429   if (CGF.MCDCLogOpStack.empty())
5430     CGF.maybeUpdateMCDCTestVectorBitmap(condExpr);
5431 
5432   if (llvm::EnableSingleByteCoverage)
5433     CGF.incrementProfileCounter(rhsExpr);
5434 
5435   eval.begin(CGF);
5436   Value *RHS = Visit(rhsExpr);
5437   eval.end(CGF);
5438 
5439   RHSBlock = Builder.GetInsertBlock();
5440   CGF.EmitBlock(ContBlock);
5441 
5442   // If the LHS or RHS is a throw expression, it will be legitimately null.
5443   if (!LHS)
5444     return RHS;
5445   if (!RHS)
5446     return LHS;
5447 
5448   // Create a PHI node for the real part.
5449   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
5450   PN->addIncoming(LHS, LHSBlock);
5451   PN->addIncoming(RHS, RHSBlock);
5452 
5453   // When single byte coverage mode is enabled, add a counter to continuation
5454   // block.
5455   if (llvm::EnableSingleByteCoverage)
5456     CGF.incrementProfileCounter(E);
5457 
5458   return PN;
5459 }
5460 
5461 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
5462   return Visit(E->getChosenSubExpr());
5463 }
5464 
5465 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
5466   Address ArgValue = Address::invalid();
5467   RValue ArgPtr = CGF.EmitVAArg(VE, ArgValue);
5468 
5469   return ArgPtr.getScalarVal();
5470 }
5471 
5472 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
5473   return CGF.EmitBlockLiteral(block);
5474 }
5475 
5476 // Convert a vec3 to vec4, or vice versa.
5477 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF,
5478                                  Value *Src, unsigned NumElementsDst) {
5479   static constexpr int Mask[] = {0, 1, 2, -1};
5480   return Builder.CreateShuffleVector(Src, llvm::ArrayRef(Mask, NumElementsDst));
5481 }
5482 
5483 // Create cast instructions for converting LLVM value \p Src to LLVM type \p
5484 // DstTy. \p Src has the same size as \p DstTy. Both are single value types
5485 // but could be scalar or vectors of different lengths, and either can be
5486 // pointer.
5487 // There are 4 cases:
5488 // 1. non-pointer -> non-pointer  : needs 1 bitcast
5489 // 2. pointer -> pointer          : needs 1 bitcast or addrspacecast
5490 // 3. pointer -> non-pointer
5491 //   a) pointer -> intptr_t       : needs 1 ptrtoint
5492 //   b) pointer -> non-intptr_t   : needs 1 ptrtoint then 1 bitcast
5493 // 4. non-pointer -> pointer
5494 //   a) intptr_t -> pointer       : needs 1 inttoptr
5495 //   b) non-intptr_t -> pointer   : needs 1 bitcast then 1 inttoptr
5496 // Note: for cases 3b and 4b two casts are required since LLVM casts do not
5497 // allow casting directly between pointer types and non-integer non-pointer
5498 // types.
5499 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder,
5500                                            const llvm::DataLayout &DL,
5501                                            Value *Src, llvm::Type *DstTy,
5502                                            StringRef Name = "") {
5503   auto SrcTy = Src->getType();
5504 
5505   // Case 1.
5506   if (!SrcTy->isPointerTy() && !DstTy->isPointerTy())
5507     return Builder.CreateBitCast(Src, DstTy, Name);
5508 
5509   // Case 2.
5510   if (SrcTy->isPointerTy() && DstTy->isPointerTy())
5511     return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name);
5512 
5513   // Case 3.
5514   if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) {
5515     // Case 3b.
5516     if (!DstTy->isIntegerTy())
5517       Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy));
5518     // Cases 3a and 3b.
5519     return Builder.CreateBitOrPointerCast(Src, DstTy, Name);
5520   }
5521 
5522   // Case 4b.
5523   if (!SrcTy->isIntegerTy())
5524     Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy));
5525   // Cases 4a and 4b.
5526   return Builder.CreateIntToPtr(Src, DstTy, Name);
5527 }
5528 
5529 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
5530   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
5531   llvm::Type *DstTy = ConvertType(E->getType());
5532 
5533   llvm::Type *SrcTy = Src->getType();
5534   unsigned NumElementsSrc =
5535       isa<llvm::VectorType>(SrcTy)
5536           ? cast<llvm::FixedVectorType>(SrcTy)->getNumElements()
5537           : 0;
5538   unsigned NumElementsDst =
5539       isa<llvm::VectorType>(DstTy)
5540           ? cast<llvm::FixedVectorType>(DstTy)->getNumElements()
5541           : 0;
5542 
5543   // Use bit vector expansion for ext_vector_type boolean vectors.
5544   if (E->getType()->isExtVectorBoolType())
5545     return CGF.emitBoolVecConversion(Src, NumElementsDst, "astype");
5546 
5547   // Going from vec3 to non-vec3 is a special case and requires a shuffle
5548   // vector to get a vec4, then a bitcast if the target type is different.
5549   if (NumElementsSrc == 3 && NumElementsDst != 3) {
5550     Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
5551     Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
5552                                        DstTy);
5553 
5554     Src->setName("astype");
5555     return Src;
5556   }
5557 
5558   // Going from non-vec3 to vec3 is a special case and requires a bitcast
5559   // to vec4 if the original type is not vec4, then a shuffle vector to
5560   // get a vec3.
5561   if (NumElementsSrc != 3 && NumElementsDst == 3) {
5562     auto *Vec4Ty = llvm::FixedVectorType::get(
5563         cast<llvm::VectorType>(DstTy)->getElementType(), 4);
5564     Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
5565                                        Vec4Ty);
5566 
5567     Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
5568     Src->setName("astype");
5569     return Src;
5570   }
5571 
5572   return createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(),
5573                                       Src, DstTy, "astype");
5574 }
5575 
5576 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
5577   return CGF.EmitAtomicExpr(E).getScalarVal();
5578 }
5579 
5580 //===----------------------------------------------------------------------===//
5581 //                         Entry Point into this File
5582 //===----------------------------------------------------------------------===//
5583 
5584 /// Emit the computation of the specified expression of scalar type, ignoring
5585 /// the result.
5586 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
5587   assert(E && hasScalarEvaluationKind(E->getType()) &&
5588          "Invalid scalar expression to emit");
5589 
5590   return ScalarExprEmitter(*this, IgnoreResultAssign)
5591       .Visit(const_cast<Expr *>(E));
5592 }
5593 
5594 /// Emit a conversion from the specified type to the specified destination type,
5595 /// both of which are LLVM scalar types.
5596 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
5597                                              QualType DstTy,
5598                                              SourceLocation Loc) {
5599   assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
5600          "Invalid scalar expression to emit");
5601   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
5602 }
5603 
5604 /// Emit a conversion from the specified complex type to the specified
5605 /// destination type, where the destination type is an LLVM scalar type.
5606 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
5607                                                       QualType SrcTy,
5608                                                       QualType DstTy,
5609                                                       SourceLocation Loc) {
5610   assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
5611          "Invalid complex -> scalar conversion");
5612   return ScalarExprEmitter(*this)
5613       .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
5614 }
5615 
5616 
5617 Value *
5618 CodeGenFunction::EmitPromotedScalarExpr(const Expr *E,
5619                                         QualType PromotionType) {
5620   if (!PromotionType.isNull())
5621     return ScalarExprEmitter(*this).EmitPromoted(E, PromotionType);
5622   else
5623     return ScalarExprEmitter(*this).Visit(const_cast<Expr *>(E));
5624 }
5625 
5626 
5627 llvm::Value *CodeGenFunction::
5628 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
5629                         bool isInc, bool isPre) {
5630   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
5631 }
5632 
5633 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
5634   // object->isa or (*object).isa
5635   // Generate code as for: *(Class*)object
5636 
5637   Expr *BaseExpr = E->getBase();
5638   Address Addr = Address::invalid();
5639   if (BaseExpr->isPRValue()) {
5640     llvm::Type *BaseTy =
5641         ConvertTypeForMem(BaseExpr->getType()->getPointeeType());
5642     Addr = Address(EmitScalarExpr(BaseExpr), BaseTy, getPointerAlign());
5643   } else {
5644     Addr = EmitLValue(BaseExpr).getAddress();
5645   }
5646 
5647   // Cast the address to Class*.
5648   Addr = Addr.withElementType(ConvertType(E->getType()));
5649   return MakeAddrLValue(Addr, E->getType());
5650 }
5651 
5652 
5653 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
5654                                             const CompoundAssignOperator *E) {
5655   ScalarExprEmitter Scalar(*this);
5656   Value *Result = nullptr;
5657   switch (E->getOpcode()) {
5658 #define COMPOUND_OP(Op)                                                       \
5659     case BO_##Op##Assign:                                                     \
5660       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
5661                                              Result)
5662   COMPOUND_OP(Mul);
5663   COMPOUND_OP(Div);
5664   COMPOUND_OP(Rem);
5665   COMPOUND_OP(Add);
5666   COMPOUND_OP(Sub);
5667   COMPOUND_OP(Shl);
5668   COMPOUND_OP(Shr);
5669   COMPOUND_OP(And);
5670   COMPOUND_OP(Xor);
5671   COMPOUND_OP(Or);
5672 #undef COMPOUND_OP
5673 
5674   case BO_PtrMemD:
5675   case BO_PtrMemI:
5676   case BO_Mul:
5677   case BO_Div:
5678   case BO_Rem:
5679   case BO_Add:
5680   case BO_Sub:
5681   case BO_Shl:
5682   case BO_Shr:
5683   case BO_LT:
5684   case BO_GT:
5685   case BO_LE:
5686   case BO_GE:
5687   case BO_EQ:
5688   case BO_NE:
5689   case BO_Cmp:
5690   case BO_And:
5691   case BO_Xor:
5692   case BO_Or:
5693   case BO_LAnd:
5694   case BO_LOr:
5695   case BO_Assign:
5696   case BO_Comma:
5697     llvm_unreachable("Not valid compound assignment operators");
5698   }
5699 
5700   llvm_unreachable("Unhandled compound assignment operator");
5701 }
5702 
5703 struct GEPOffsetAndOverflow {
5704   // The total (signed) byte offset for the GEP.
5705   llvm::Value *TotalOffset;
5706   // The offset overflow flag - true if the total offset overflows.
5707   llvm::Value *OffsetOverflows;
5708 };
5709 
5710 /// Evaluate given GEPVal, which is either an inbounds GEP, or a constant,
5711 /// and compute the total offset it applies from it's base pointer BasePtr.
5712 /// Returns offset in bytes and a boolean flag whether an overflow happened
5713 /// during evaluation.
5714 static GEPOffsetAndOverflow EmitGEPOffsetInBytes(Value *BasePtr, Value *GEPVal,
5715                                                  llvm::LLVMContext &VMContext,
5716                                                  CodeGenModule &CGM,
5717                                                  CGBuilderTy &Builder) {
5718   const auto &DL = CGM.getDataLayout();
5719 
5720   // The total (signed) byte offset for the GEP.
5721   llvm::Value *TotalOffset = nullptr;
5722 
5723   // Was the GEP already reduced to a constant?
5724   if (isa<llvm::Constant>(GEPVal)) {
5725     // Compute the offset by casting both pointers to integers and subtracting:
5726     // GEPVal = BasePtr + ptr(Offset) <--> Offset = int(GEPVal) - int(BasePtr)
5727     Value *BasePtr_int =
5728         Builder.CreatePtrToInt(BasePtr, DL.getIntPtrType(BasePtr->getType()));
5729     Value *GEPVal_int =
5730         Builder.CreatePtrToInt(GEPVal, DL.getIntPtrType(GEPVal->getType()));
5731     TotalOffset = Builder.CreateSub(GEPVal_int, BasePtr_int);
5732     return {TotalOffset, /*OffsetOverflows=*/Builder.getFalse()};
5733   }
5734 
5735   auto *GEP = cast<llvm::GEPOperator>(GEPVal);
5736   assert(GEP->getPointerOperand() == BasePtr &&
5737          "BasePtr must be the base of the GEP.");
5738   assert(GEP->isInBounds() && "Expected inbounds GEP");
5739 
5740   auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType());
5741 
5742   // Grab references to the signed add/mul overflow intrinsics for intptr_t.
5743   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
5744   auto *SAddIntrinsic =
5745       CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy);
5746   auto *SMulIntrinsic =
5747       CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy);
5748 
5749   // The offset overflow flag - true if the total offset overflows.
5750   llvm::Value *OffsetOverflows = Builder.getFalse();
5751 
5752   /// Return the result of the given binary operation.
5753   auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS,
5754                   llvm::Value *RHS) -> llvm::Value * {
5755     assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop");
5756 
5757     // If the operands are constants, return a constant result.
5758     if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) {
5759       if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) {
5760         llvm::APInt N;
5761         bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode,
5762                                                   /*Signed=*/true, N);
5763         if (HasOverflow)
5764           OffsetOverflows = Builder.getTrue();
5765         return llvm::ConstantInt::get(VMContext, N);
5766       }
5767     }
5768 
5769     // Otherwise, compute the result with checked arithmetic.
5770     auto *ResultAndOverflow = Builder.CreateCall(
5771         (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS});
5772     OffsetOverflows = Builder.CreateOr(
5773         Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows);
5774     return Builder.CreateExtractValue(ResultAndOverflow, 0);
5775   };
5776 
5777   // Determine the total byte offset by looking at each GEP operand.
5778   for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP);
5779        GTI != GTE; ++GTI) {
5780     llvm::Value *LocalOffset;
5781     auto *Index = GTI.getOperand();
5782     // Compute the local offset contributed by this indexing step:
5783     if (auto *STy = GTI.getStructTypeOrNull()) {
5784       // For struct indexing, the local offset is the byte position of the
5785       // specified field.
5786       unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue();
5787       LocalOffset = llvm::ConstantInt::get(
5788           IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo));
5789     } else {
5790       // Otherwise this is array-like indexing. The local offset is the index
5791       // multiplied by the element size.
5792       auto *ElementSize =
5793           llvm::ConstantInt::get(IntPtrTy, GTI.getSequentialElementStride(DL));
5794       auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true);
5795       LocalOffset = eval(BO_Mul, ElementSize, IndexS);
5796     }
5797 
5798     // If this is the first offset, set it as the total offset. Otherwise, add
5799     // the local offset into the running total.
5800     if (!TotalOffset || TotalOffset == Zero)
5801       TotalOffset = LocalOffset;
5802     else
5803       TotalOffset = eval(BO_Add, TotalOffset, LocalOffset);
5804   }
5805 
5806   return {TotalOffset, OffsetOverflows};
5807 }
5808 
5809 Value *
5810 CodeGenFunction::EmitCheckedInBoundsGEP(llvm::Type *ElemTy, Value *Ptr,
5811                                         ArrayRef<Value *> IdxList,
5812                                         bool SignedIndices, bool IsSubtraction,
5813                                         SourceLocation Loc, const Twine &Name) {
5814   llvm::Type *PtrTy = Ptr->getType();
5815 
5816   llvm::GEPNoWrapFlags NWFlags = llvm::GEPNoWrapFlags::inBounds();
5817   if (!SignedIndices && !IsSubtraction)
5818     NWFlags |= llvm::GEPNoWrapFlags::noUnsignedWrap();
5819 
5820   Value *GEPVal = Builder.CreateGEP(ElemTy, Ptr, IdxList, Name, NWFlags);
5821 
5822   // If the pointer overflow sanitizer isn't enabled, do nothing.
5823   if (!SanOpts.has(SanitizerKind::PointerOverflow))
5824     return GEPVal;
5825 
5826   // Perform nullptr-and-offset check unless the nullptr is defined.
5827   bool PerformNullCheck = !NullPointerIsDefined(
5828       Builder.GetInsertBlock()->getParent(), PtrTy->getPointerAddressSpace());
5829   // Check for overflows unless the GEP got constant-folded,
5830   // and only in the default address space
5831   bool PerformOverflowCheck =
5832       !isa<llvm::Constant>(GEPVal) && PtrTy->getPointerAddressSpace() == 0;
5833 
5834   if (!(PerformNullCheck || PerformOverflowCheck))
5835     return GEPVal;
5836 
5837   const auto &DL = CGM.getDataLayout();
5838 
5839   SanitizerScope SanScope(this);
5840   llvm::Type *IntPtrTy = DL.getIntPtrType(PtrTy);
5841 
5842   GEPOffsetAndOverflow EvaluatedGEP =
5843       EmitGEPOffsetInBytes(Ptr, GEPVal, getLLVMContext(), CGM, Builder);
5844 
5845   assert((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) ||
5846           EvaluatedGEP.OffsetOverflows == Builder.getFalse()) &&
5847          "If the offset got constant-folded, we don't expect that there was an "
5848          "overflow.");
5849 
5850   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
5851 
5852   // Common case: if the total offset is zero, don't emit a check.
5853   if (EvaluatedGEP.TotalOffset == Zero)
5854     return GEPVal;
5855 
5856   // Now that we've computed the total offset, add it to the base pointer (with
5857   // wrapping semantics).
5858   auto *IntPtr = Builder.CreatePtrToInt(Ptr, IntPtrTy);
5859   auto *ComputedGEP = Builder.CreateAdd(IntPtr, EvaluatedGEP.TotalOffset);
5860 
5861   llvm::SmallVector<std::pair<llvm::Value *, SanitizerKind::SanitizerOrdinal>,
5862                     2>
5863       Checks;
5864 
5865   if (PerformNullCheck) {
5866     // If the base pointer evaluates to a null pointer value,
5867     // the only valid  pointer this inbounds GEP can produce is also
5868     // a null pointer, so the offset must also evaluate to zero.
5869     // Likewise, if we have non-zero base pointer, we can not get null pointer
5870     // as a result, so the offset can not be -intptr_t(BasePtr).
5871     // In other words, both pointers are either null, or both are non-null,
5872     // or the behaviour is undefined.
5873     auto *BaseIsNotNullptr = Builder.CreateIsNotNull(Ptr);
5874     auto *ResultIsNotNullptr = Builder.CreateIsNotNull(ComputedGEP);
5875     auto *Valid = Builder.CreateICmpEQ(BaseIsNotNullptr, ResultIsNotNullptr);
5876     Checks.emplace_back(Valid, SanitizerKind::SO_PointerOverflow);
5877   }
5878 
5879   if (PerformOverflowCheck) {
5880     // The GEP is valid if:
5881     // 1) The total offset doesn't overflow, and
5882     // 2) The sign of the difference between the computed address and the base
5883     // pointer matches the sign of the total offset.
5884     llvm::Value *ValidGEP;
5885     auto *NoOffsetOverflow = Builder.CreateNot(EvaluatedGEP.OffsetOverflows);
5886     if (SignedIndices) {
5887       // GEP is computed as `unsigned base + signed offset`, therefore:
5888       // * If offset was positive, then the computed pointer can not be
5889       //   [unsigned] less than the base pointer, unless it overflowed.
5890       // * If offset was negative, then the computed pointer can not be
5891       //   [unsigned] greater than the bas pointere, unless it overflowed.
5892       auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
5893       auto *PosOrZeroOffset =
5894           Builder.CreateICmpSGE(EvaluatedGEP.TotalOffset, Zero);
5895       llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr);
5896       ValidGEP =
5897           Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid);
5898     } else if (!IsSubtraction) {
5899       // GEP is computed as `unsigned base + unsigned offset`,  therefore the
5900       // computed pointer can not be [unsigned] less than base pointer,
5901       // unless there was an overflow.
5902       // Equivalent to `@llvm.uadd.with.overflow(%base, %offset)`.
5903       ValidGEP = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
5904     } else {
5905       // GEP is computed as `unsigned base - unsigned offset`, therefore the
5906       // computed pointer can not be [unsigned] greater than base pointer,
5907       // unless there was an overflow.
5908       // Equivalent to `@llvm.usub.with.overflow(%base, sub(0, %offset))`.
5909       ValidGEP = Builder.CreateICmpULE(ComputedGEP, IntPtr);
5910     }
5911     ValidGEP = Builder.CreateAnd(ValidGEP, NoOffsetOverflow);
5912     Checks.emplace_back(ValidGEP, SanitizerKind::SO_PointerOverflow);
5913   }
5914 
5915   assert(!Checks.empty() && "Should have produced some checks.");
5916 
5917   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)};
5918   // Pass the computed GEP to the runtime to avoid emitting poisoned arguments.
5919   llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP};
5920   EmitCheck(Checks, SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs);
5921 
5922   return GEPVal;
5923 }
5924 
5925 Address CodeGenFunction::EmitCheckedInBoundsGEP(
5926     Address Addr, ArrayRef<Value *> IdxList, llvm::Type *elementType,
5927     bool SignedIndices, bool IsSubtraction, SourceLocation Loc, CharUnits Align,
5928     const Twine &Name) {
5929   if (!SanOpts.has(SanitizerKind::PointerOverflow)) {
5930     llvm::GEPNoWrapFlags NWFlags = llvm::GEPNoWrapFlags::inBounds();
5931     if (!SignedIndices && !IsSubtraction)
5932       NWFlags |= llvm::GEPNoWrapFlags::noUnsignedWrap();
5933 
5934     return Builder.CreateGEP(Addr, IdxList, elementType, Align, Name, NWFlags);
5935   }
5936 
5937   return RawAddress(
5938       EmitCheckedInBoundsGEP(Addr.getElementType(), Addr.emitRawPointer(*this),
5939                              IdxList, SignedIndices, IsSubtraction, Loc, Name),
5940       elementType, Align);
5941 }
5942