1 //===--- CGExprComplex.cpp - Emit LLVM Code for Complex Exprs -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Expr nodes with complex types as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGOpenMPRuntime.h" 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "ConstantEmitter.h" 17 #include "clang/AST/StmtVisitor.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/Instructions.h" 21 #include "llvm/IR/MDBuilder.h" 22 #include "llvm/IR/Metadata.h" 23 #include <algorithm> 24 using namespace clang; 25 using namespace CodeGen; 26 27 //===----------------------------------------------------------------------===// 28 // Complex Expression Emitter 29 //===----------------------------------------------------------------------===// 30 31 typedef CodeGenFunction::ComplexPairTy ComplexPairTy; 32 33 /// Return the complex type that we are meant to emit. 34 static const ComplexType *getComplexType(QualType type) { 35 type = type.getCanonicalType(); 36 if (const ComplexType *comp = dyn_cast<ComplexType>(type)) { 37 return comp; 38 } else { 39 return cast<ComplexType>(cast<AtomicType>(type)->getValueType()); 40 } 41 } 42 43 namespace { 44 class ComplexExprEmitter 45 : public StmtVisitor<ComplexExprEmitter, ComplexPairTy> { 46 CodeGenFunction &CGF; 47 CGBuilderTy &Builder; 48 bool IgnoreReal; 49 bool IgnoreImag; 50 public: 51 ComplexExprEmitter(CodeGenFunction &cgf, bool ir=false, bool ii=false) 52 : CGF(cgf), Builder(CGF.Builder), IgnoreReal(ir), IgnoreImag(ii) { 53 } 54 55 56 //===--------------------------------------------------------------------===// 57 // Utilities 58 //===--------------------------------------------------------------------===// 59 60 bool TestAndClearIgnoreReal() { 61 bool I = IgnoreReal; 62 IgnoreReal = false; 63 return I; 64 } 65 bool TestAndClearIgnoreImag() { 66 bool I = IgnoreImag; 67 IgnoreImag = false; 68 return I; 69 } 70 71 /// EmitLoadOfLValue - Given an expression with complex type that represents a 72 /// value l-value, this method emits the address of the l-value, then loads 73 /// and returns the result. 74 ComplexPairTy EmitLoadOfLValue(const Expr *E) { 75 return EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc()); 76 } 77 78 ComplexPairTy EmitLoadOfLValue(LValue LV, SourceLocation Loc); 79 80 /// EmitStoreOfComplex - Store the specified real/imag parts into the 81 /// specified value pointer. 82 void EmitStoreOfComplex(ComplexPairTy Val, LValue LV, bool isInit); 83 84 /// Emit a cast from complex value Val to DestType. 85 ComplexPairTy EmitComplexToComplexCast(ComplexPairTy Val, QualType SrcType, 86 QualType DestType, SourceLocation Loc); 87 /// Emit a cast from scalar value Val to DestType. 88 ComplexPairTy EmitScalarToComplexCast(llvm::Value *Val, QualType SrcType, 89 QualType DestType, SourceLocation Loc); 90 91 //===--------------------------------------------------------------------===// 92 // Visitor Methods 93 //===--------------------------------------------------------------------===// 94 95 ComplexPairTy Visit(Expr *E) { 96 ApplyDebugLocation DL(CGF, E); 97 return StmtVisitor<ComplexExprEmitter, ComplexPairTy>::Visit(E); 98 } 99 100 ComplexPairTy VisitStmt(Stmt *S) { 101 S->dump(llvm::errs(), CGF.getContext()); 102 llvm_unreachable("Stmt can't have complex result type!"); 103 } 104 ComplexPairTy VisitExpr(Expr *S); 105 ComplexPairTy VisitConstantExpr(ConstantExpr *E) { 106 if (llvm::Constant *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) 107 return ComplexPairTy(Result->getAggregateElement(0U), 108 Result->getAggregateElement(1U)); 109 return Visit(E->getSubExpr()); 110 } 111 ComplexPairTy VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr());} 112 ComplexPairTy VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 113 return Visit(GE->getResultExpr()); 114 } 115 ComplexPairTy VisitImaginaryLiteral(const ImaginaryLiteral *IL); 116 ComplexPairTy 117 VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) { 118 return Visit(PE->getReplacement()); 119 } 120 ComplexPairTy VisitCoawaitExpr(CoawaitExpr *S) { 121 return CGF.EmitCoawaitExpr(*S).getComplexVal(); 122 } 123 ComplexPairTy VisitCoyieldExpr(CoyieldExpr *S) { 124 return CGF.EmitCoyieldExpr(*S).getComplexVal(); 125 } 126 ComplexPairTy VisitUnaryCoawait(const UnaryOperator *E) { 127 return Visit(E->getSubExpr()); 128 } 129 130 ComplexPairTy emitConstant(const CodeGenFunction::ConstantEmission &Constant, 131 Expr *E) { 132 assert(Constant && "not a constant"); 133 if (Constant.isReference()) 134 return EmitLoadOfLValue(Constant.getReferenceLValue(CGF, E), 135 E->getExprLoc()); 136 137 llvm::Constant *pair = Constant.getValue(); 138 return ComplexPairTy(pair->getAggregateElement(0U), 139 pair->getAggregateElement(1U)); 140 } 141 142 // l-values. 143 ComplexPairTy VisitDeclRefExpr(DeclRefExpr *E) { 144 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) 145 return emitConstant(Constant, E); 146 return EmitLoadOfLValue(E); 147 } 148 ComplexPairTy VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 149 return EmitLoadOfLValue(E); 150 } 151 ComplexPairTy VisitObjCMessageExpr(ObjCMessageExpr *E) { 152 return CGF.EmitObjCMessageExpr(E).getComplexVal(); 153 } 154 ComplexPairTy VisitArraySubscriptExpr(Expr *E) { return EmitLoadOfLValue(E); } 155 ComplexPairTy VisitMemberExpr(MemberExpr *ME) { 156 if (CodeGenFunction::ConstantEmission Constant = 157 CGF.tryEmitAsConstant(ME)) { 158 CGF.EmitIgnoredExpr(ME->getBase()); 159 return emitConstant(Constant, ME); 160 } 161 return EmitLoadOfLValue(ME); 162 } 163 ComplexPairTy VisitOpaqueValueExpr(OpaqueValueExpr *E) { 164 if (E->isGLValue()) 165 return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E), 166 E->getExprLoc()); 167 return CGF.getOrCreateOpaqueRValueMapping(E).getComplexVal(); 168 } 169 170 ComplexPairTy VisitPseudoObjectExpr(PseudoObjectExpr *E) { 171 return CGF.EmitPseudoObjectRValue(E).getComplexVal(); 172 } 173 174 // FIXME: CompoundLiteralExpr 175 176 ComplexPairTy EmitCast(CastKind CK, Expr *Op, QualType DestTy); 177 ComplexPairTy VisitImplicitCastExpr(ImplicitCastExpr *E) { 178 // Unlike for scalars, we don't have to worry about function->ptr demotion 179 // here. 180 if (E->changesVolatileQualification()) 181 return EmitLoadOfLValue(E); 182 return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType()); 183 } 184 ComplexPairTy VisitCastExpr(CastExpr *E) { 185 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E)) 186 CGF.CGM.EmitExplicitCastExprType(ECE, &CGF); 187 if (E->changesVolatileQualification()) 188 return EmitLoadOfLValue(E); 189 return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType()); 190 } 191 ComplexPairTy VisitCallExpr(const CallExpr *E); 192 ComplexPairTy VisitStmtExpr(const StmtExpr *E); 193 194 // Operators. 195 ComplexPairTy VisitPrePostIncDec(const UnaryOperator *E, 196 bool isInc, bool isPre) { 197 LValue LV = CGF.EmitLValue(E->getSubExpr()); 198 return CGF.EmitComplexPrePostIncDec(E, LV, isInc, isPre); 199 } 200 ComplexPairTy VisitUnaryPostDec(const UnaryOperator *E) { 201 return VisitPrePostIncDec(E, false, false); 202 } 203 ComplexPairTy VisitUnaryPostInc(const UnaryOperator *E) { 204 return VisitPrePostIncDec(E, true, false); 205 } 206 ComplexPairTy VisitUnaryPreDec(const UnaryOperator *E) { 207 return VisitPrePostIncDec(E, false, true); 208 } 209 ComplexPairTy VisitUnaryPreInc(const UnaryOperator *E) { 210 return VisitPrePostIncDec(E, true, true); 211 } 212 ComplexPairTy VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); } 213 214 ComplexPairTy VisitUnaryPlus(const UnaryOperator *E, 215 QualType PromotionType = QualType()); 216 ComplexPairTy VisitPlus(const UnaryOperator *E, QualType PromotionType); 217 ComplexPairTy VisitUnaryMinus(const UnaryOperator *E, 218 QualType PromotionType = QualType()); 219 ComplexPairTy VisitMinus(const UnaryOperator *E, QualType PromotionType); 220 ComplexPairTy VisitUnaryNot (const UnaryOperator *E); 221 // LNot,Real,Imag never return complex. 222 ComplexPairTy VisitUnaryExtension(const UnaryOperator *E) { 223 return Visit(E->getSubExpr()); 224 } 225 ComplexPairTy VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 226 CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE); 227 return Visit(DAE->getExpr()); 228 } 229 ComplexPairTy VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 230 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE); 231 return Visit(DIE->getExpr()); 232 } 233 ComplexPairTy VisitExprWithCleanups(ExprWithCleanups *E) { 234 CodeGenFunction::RunCleanupsScope Scope(CGF); 235 ComplexPairTy Vals = Visit(E->getSubExpr()); 236 // Defend against dominance problems caused by jumps out of expression 237 // evaluation through the shared cleanup block. 238 Scope.ForceCleanup({&Vals.first, &Vals.second}); 239 return Vals; 240 } 241 ComplexPairTy VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 242 assert(E->getType()->isAnyComplexType() && "Expected complex type!"); 243 QualType Elem = E->getType()->castAs<ComplexType>()->getElementType(); 244 llvm::Constant *Null = llvm::Constant::getNullValue(CGF.ConvertType(Elem)); 245 return ComplexPairTy(Null, Null); 246 } 247 ComplexPairTy VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 248 assert(E->getType()->isAnyComplexType() && "Expected complex type!"); 249 QualType Elem = E->getType()->castAs<ComplexType>()->getElementType(); 250 llvm::Constant *Null = 251 llvm::Constant::getNullValue(CGF.ConvertType(Elem)); 252 return ComplexPairTy(Null, Null); 253 } 254 255 struct BinOpInfo { 256 ComplexPairTy LHS; 257 ComplexPairTy RHS; 258 QualType Ty; // Computation Type. 259 FPOptions FPFeatures; 260 }; 261 262 BinOpInfo EmitBinOps(const BinaryOperator *E, 263 QualType PromotionTy = QualType()); 264 ComplexPairTy EmitPromoted(const Expr *E, QualType PromotionTy); 265 ComplexPairTy EmitPromotedComplexOperand(const Expr *E, QualType PromotionTy); 266 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 267 ComplexPairTy (ComplexExprEmitter::*Func) 268 (const BinOpInfo &), 269 RValue &Val); 270 ComplexPairTy EmitCompoundAssign(const CompoundAssignOperator *E, 271 ComplexPairTy (ComplexExprEmitter::*Func) 272 (const BinOpInfo &)); 273 274 ComplexPairTy EmitBinAdd(const BinOpInfo &Op); 275 ComplexPairTy EmitBinSub(const BinOpInfo &Op); 276 ComplexPairTy EmitBinMul(const BinOpInfo &Op); 277 ComplexPairTy EmitBinDiv(const BinOpInfo &Op); 278 ComplexPairTy EmitAlgebraicDiv(llvm::Value *A, llvm::Value *B, llvm::Value *C, 279 llvm::Value *D); 280 ComplexPairTy EmitRangeReductionDiv(llvm::Value *A, llvm::Value *B, 281 llvm::Value *C, llvm::Value *D); 282 283 ComplexPairTy EmitComplexBinOpLibCall(StringRef LibCallName, 284 const BinOpInfo &Op); 285 286 QualType getPromotionType(QualType Ty) { 287 if (auto *CT = Ty->getAs<ComplexType>()) { 288 QualType ElementType = CT->getElementType(); 289 if (ElementType.UseExcessPrecision(CGF.getContext())) 290 return CGF.getContext().getComplexType(CGF.getContext().FloatTy); 291 } 292 if (Ty.UseExcessPrecision(CGF.getContext())) 293 return CGF.getContext().FloatTy; 294 return QualType(); 295 } 296 297 #define HANDLEBINOP(OP) \ 298 ComplexPairTy VisitBin##OP(const BinaryOperator *E) { \ 299 QualType promotionTy = getPromotionType(E->getType()); \ 300 ComplexPairTy result = EmitBin##OP(EmitBinOps(E, promotionTy)); \ 301 if (!promotionTy.isNull()) \ 302 result = \ 303 CGF.EmitUnPromotedValue(result, E->getType()); \ 304 return result; \ 305 } 306 307 HANDLEBINOP(Mul) 308 HANDLEBINOP(Div) 309 HANDLEBINOP(Add) 310 HANDLEBINOP(Sub) 311 #undef HANDLEBINOP 312 313 ComplexPairTy VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) { 314 return Visit(E->getSemanticForm()); 315 } 316 317 // Compound assignments. 318 ComplexPairTy VisitBinAddAssign(const CompoundAssignOperator *E) { 319 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinAdd); 320 } 321 ComplexPairTy VisitBinSubAssign(const CompoundAssignOperator *E) { 322 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinSub); 323 } 324 ComplexPairTy VisitBinMulAssign(const CompoundAssignOperator *E) { 325 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinMul); 326 } 327 ComplexPairTy VisitBinDivAssign(const CompoundAssignOperator *E) { 328 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinDiv); 329 } 330 331 // GCC rejects rem/and/or/xor for integer complex. 332 // Logical and/or always return int, never complex. 333 334 // No comparisons produce a complex result. 335 336 LValue EmitBinAssignLValue(const BinaryOperator *E, 337 ComplexPairTy &Val); 338 ComplexPairTy VisitBinAssign (const BinaryOperator *E); 339 ComplexPairTy VisitBinComma (const BinaryOperator *E); 340 341 342 ComplexPairTy 343 VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 344 ComplexPairTy VisitChooseExpr(ChooseExpr *CE); 345 346 ComplexPairTy VisitInitListExpr(InitListExpr *E); 347 348 ComplexPairTy VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 349 return EmitLoadOfLValue(E); 350 } 351 352 ComplexPairTy VisitVAArgExpr(VAArgExpr *E); 353 354 ComplexPairTy VisitAtomicExpr(AtomicExpr *E) { 355 return CGF.EmitAtomicExpr(E).getComplexVal(); 356 } 357 358 ComplexPairTy VisitPackIndexingExpr(PackIndexingExpr *E) { 359 return Visit(E->getSelectedExpr()); 360 } 361 }; 362 } // end anonymous namespace. 363 364 //===----------------------------------------------------------------------===// 365 // Utilities 366 //===----------------------------------------------------------------------===// 367 368 Address CodeGenFunction::emitAddrOfRealComponent(Address addr, 369 QualType complexType) { 370 return Builder.CreateStructGEP(addr, 0, addr.getName() + ".realp"); 371 } 372 373 Address CodeGenFunction::emitAddrOfImagComponent(Address addr, 374 QualType complexType) { 375 return Builder.CreateStructGEP(addr, 1, addr.getName() + ".imagp"); 376 } 377 378 /// EmitLoadOfLValue - Given an RValue reference for a complex, emit code to 379 /// load the real and imaginary pieces, returning them as Real/Imag. 380 ComplexPairTy ComplexExprEmitter::EmitLoadOfLValue(LValue lvalue, 381 SourceLocation loc) { 382 assert(lvalue.isSimple() && "non-simple complex l-value?"); 383 if (lvalue.getType()->isAtomicType()) 384 return CGF.EmitAtomicLoad(lvalue, loc).getComplexVal(); 385 386 Address SrcPtr = lvalue.getAddress(CGF); 387 bool isVolatile = lvalue.isVolatileQualified(); 388 389 llvm::Value *Real = nullptr, *Imag = nullptr; 390 391 if (!IgnoreReal || isVolatile) { 392 Address RealP = CGF.emitAddrOfRealComponent(SrcPtr, lvalue.getType()); 393 Real = Builder.CreateLoad(RealP, isVolatile, SrcPtr.getName() + ".real"); 394 } 395 396 if (!IgnoreImag || isVolatile) { 397 Address ImagP = CGF.emitAddrOfImagComponent(SrcPtr, lvalue.getType()); 398 Imag = Builder.CreateLoad(ImagP, isVolatile, SrcPtr.getName() + ".imag"); 399 } 400 401 return ComplexPairTy(Real, Imag); 402 } 403 404 /// EmitStoreOfComplex - Store the specified real/imag parts into the 405 /// specified value pointer. 406 void ComplexExprEmitter::EmitStoreOfComplex(ComplexPairTy Val, LValue lvalue, 407 bool isInit) { 408 if (lvalue.getType()->isAtomicType() || 409 (!isInit && CGF.LValueIsSuitableForInlineAtomic(lvalue))) 410 return CGF.EmitAtomicStore(RValue::getComplex(Val), lvalue, isInit); 411 412 Address Ptr = lvalue.getAddress(CGF); 413 Address RealPtr = CGF.emitAddrOfRealComponent(Ptr, lvalue.getType()); 414 Address ImagPtr = CGF.emitAddrOfImagComponent(Ptr, lvalue.getType()); 415 416 Builder.CreateStore(Val.first, RealPtr, lvalue.isVolatileQualified()); 417 Builder.CreateStore(Val.second, ImagPtr, lvalue.isVolatileQualified()); 418 } 419 420 421 422 //===----------------------------------------------------------------------===// 423 // Visitor Methods 424 //===----------------------------------------------------------------------===// 425 426 ComplexPairTy ComplexExprEmitter::VisitExpr(Expr *E) { 427 CGF.ErrorUnsupported(E, "complex expression"); 428 llvm::Type *EltTy = 429 CGF.ConvertType(getComplexType(E->getType())->getElementType()); 430 llvm::Value *U = llvm::UndefValue::get(EltTy); 431 return ComplexPairTy(U, U); 432 } 433 434 ComplexPairTy ComplexExprEmitter:: 435 VisitImaginaryLiteral(const ImaginaryLiteral *IL) { 436 llvm::Value *Imag = CGF.EmitScalarExpr(IL->getSubExpr()); 437 return ComplexPairTy(llvm::Constant::getNullValue(Imag->getType()), Imag); 438 } 439 440 441 ComplexPairTy ComplexExprEmitter::VisitCallExpr(const CallExpr *E) { 442 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 443 return EmitLoadOfLValue(E); 444 445 return CGF.EmitCallExpr(E).getComplexVal(); 446 } 447 448 ComplexPairTy ComplexExprEmitter::VisitStmtExpr(const StmtExpr *E) { 449 CodeGenFunction::StmtExprEvaluation eval(CGF); 450 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), true); 451 assert(RetAlloca.isValid() && "Expected complex return value"); 452 return EmitLoadOfLValue(CGF.MakeAddrLValue(RetAlloca, E->getType()), 453 E->getExprLoc()); 454 } 455 456 /// Emit a cast from complex value Val to DestType. 457 ComplexPairTy ComplexExprEmitter::EmitComplexToComplexCast(ComplexPairTy Val, 458 QualType SrcType, 459 QualType DestType, 460 SourceLocation Loc) { 461 // Get the src/dest element type. 462 SrcType = SrcType->castAs<ComplexType>()->getElementType(); 463 DestType = DestType->castAs<ComplexType>()->getElementType(); 464 465 // C99 6.3.1.6: When a value of complex type is converted to another 466 // complex type, both the real and imaginary parts follow the conversion 467 // rules for the corresponding real types. 468 if (Val.first) 469 Val.first = CGF.EmitScalarConversion(Val.first, SrcType, DestType, Loc); 470 if (Val.second) 471 Val.second = CGF.EmitScalarConversion(Val.second, SrcType, DestType, Loc); 472 return Val; 473 } 474 475 ComplexPairTy ComplexExprEmitter::EmitScalarToComplexCast(llvm::Value *Val, 476 QualType SrcType, 477 QualType DestType, 478 SourceLocation Loc) { 479 // Convert the input element to the element type of the complex. 480 DestType = DestType->castAs<ComplexType>()->getElementType(); 481 Val = CGF.EmitScalarConversion(Val, SrcType, DestType, Loc); 482 483 // Return (realval, 0). 484 return ComplexPairTy(Val, llvm::Constant::getNullValue(Val->getType())); 485 } 486 487 ComplexPairTy ComplexExprEmitter::EmitCast(CastKind CK, Expr *Op, 488 QualType DestTy) { 489 switch (CK) { 490 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 491 492 // Atomic to non-atomic casts may be more than a no-op for some platforms and 493 // for some types. 494 case CK_AtomicToNonAtomic: 495 case CK_NonAtomicToAtomic: 496 case CK_NoOp: 497 case CK_LValueToRValue: 498 case CK_UserDefinedConversion: 499 return Visit(Op); 500 501 case CK_LValueBitCast: { 502 LValue origLV = CGF.EmitLValue(Op); 503 Address V = origLV.getAddress(CGF).withElementType(CGF.ConvertType(DestTy)); 504 return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy), Op->getExprLoc()); 505 } 506 507 case CK_LValueToRValueBitCast: { 508 LValue SourceLVal = CGF.EmitLValue(Op); 509 Address Addr = SourceLVal.getAddress(CGF).withElementType( 510 CGF.ConvertTypeForMem(DestTy)); 511 LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy); 512 DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo()); 513 return EmitLoadOfLValue(DestLV, Op->getExprLoc()); 514 } 515 516 case CK_BitCast: 517 case CK_BaseToDerived: 518 case CK_DerivedToBase: 519 case CK_UncheckedDerivedToBase: 520 case CK_Dynamic: 521 case CK_ToUnion: 522 case CK_ArrayToPointerDecay: 523 case CK_FunctionToPointerDecay: 524 case CK_NullToPointer: 525 case CK_NullToMemberPointer: 526 case CK_BaseToDerivedMemberPointer: 527 case CK_DerivedToBaseMemberPointer: 528 case CK_MemberPointerToBoolean: 529 case CK_ReinterpretMemberPointer: 530 case CK_ConstructorConversion: 531 case CK_IntegralToPointer: 532 case CK_PointerToIntegral: 533 case CK_PointerToBoolean: 534 case CK_ToVoid: 535 case CK_VectorSplat: 536 case CK_IntegralCast: 537 case CK_BooleanToSignedIntegral: 538 case CK_IntegralToBoolean: 539 case CK_IntegralToFloating: 540 case CK_FloatingToIntegral: 541 case CK_FloatingToBoolean: 542 case CK_FloatingCast: 543 case CK_CPointerToObjCPointerCast: 544 case CK_BlockPointerToObjCPointerCast: 545 case CK_AnyPointerToBlockPointerCast: 546 case CK_ObjCObjectLValueCast: 547 case CK_FloatingComplexToReal: 548 case CK_FloatingComplexToBoolean: 549 case CK_IntegralComplexToReal: 550 case CK_IntegralComplexToBoolean: 551 case CK_ARCProduceObject: 552 case CK_ARCConsumeObject: 553 case CK_ARCReclaimReturnedObject: 554 case CK_ARCExtendBlockObject: 555 case CK_CopyAndAutoreleaseBlockObject: 556 case CK_BuiltinFnToFnPtr: 557 case CK_ZeroToOCLOpaqueType: 558 case CK_AddressSpaceConversion: 559 case CK_IntToOCLSampler: 560 case CK_FloatingToFixedPoint: 561 case CK_FixedPointToFloating: 562 case CK_FixedPointCast: 563 case CK_FixedPointToBoolean: 564 case CK_FixedPointToIntegral: 565 case CK_IntegralToFixedPoint: 566 case CK_MatrixCast: 567 llvm_unreachable("invalid cast kind for complex value"); 568 569 case CK_FloatingRealToComplex: 570 case CK_IntegralRealToComplex: { 571 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op); 572 return EmitScalarToComplexCast(CGF.EmitScalarExpr(Op), Op->getType(), 573 DestTy, Op->getExprLoc()); 574 } 575 576 case CK_FloatingComplexCast: 577 case CK_FloatingComplexToIntegralComplex: 578 case CK_IntegralComplexCast: 579 case CK_IntegralComplexToFloatingComplex: { 580 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op); 581 return EmitComplexToComplexCast(Visit(Op), Op->getType(), DestTy, 582 Op->getExprLoc()); 583 } 584 } 585 586 llvm_unreachable("unknown cast resulting in complex value"); 587 } 588 589 ComplexPairTy ComplexExprEmitter::VisitUnaryPlus(const UnaryOperator *E, 590 QualType PromotionType) { 591 QualType promotionTy = PromotionType.isNull() 592 ? getPromotionType(E->getSubExpr()->getType()) 593 : PromotionType; 594 ComplexPairTy result = VisitPlus(E, promotionTy); 595 if (!promotionTy.isNull()) 596 return CGF.EmitUnPromotedValue(result, E->getSubExpr()->getType()); 597 return result; 598 } 599 600 ComplexPairTy ComplexExprEmitter::VisitPlus(const UnaryOperator *E, 601 QualType PromotionType) { 602 TestAndClearIgnoreReal(); 603 TestAndClearIgnoreImag(); 604 if (!PromotionType.isNull()) 605 return CGF.EmitPromotedComplexExpr(E->getSubExpr(), PromotionType); 606 return Visit(E->getSubExpr()); 607 } 608 609 ComplexPairTy ComplexExprEmitter::VisitUnaryMinus(const UnaryOperator *E, 610 QualType PromotionType) { 611 QualType promotionTy = PromotionType.isNull() 612 ? getPromotionType(E->getSubExpr()->getType()) 613 : PromotionType; 614 ComplexPairTy result = VisitMinus(E, promotionTy); 615 if (!promotionTy.isNull()) 616 return CGF.EmitUnPromotedValue(result, E->getSubExpr()->getType()); 617 return result; 618 } 619 ComplexPairTy ComplexExprEmitter::VisitMinus(const UnaryOperator *E, 620 QualType PromotionType) { 621 TestAndClearIgnoreReal(); 622 TestAndClearIgnoreImag(); 623 ComplexPairTy Op; 624 if (!PromotionType.isNull()) 625 Op = CGF.EmitPromotedComplexExpr(E->getSubExpr(), PromotionType); 626 else 627 Op = Visit(E->getSubExpr()); 628 629 llvm::Value *ResR, *ResI; 630 if (Op.first->getType()->isFloatingPointTy()) { 631 ResR = Builder.CreateFNeg(Op.first, "neg.r"); 632 ResI = Builder.CreateFNeg(Op.second, "neg.i"); 633 } else { 634 ResR = Builder.CreateNeg(Op.first, "neg.r"); 635 ResI = Builder.CreateNeg(Op.second, "neg.i"); 636 } 637 return ComplexPairTy(ResR, ResI); 638 } 639 640 ComplexPairTy ComplexExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 641 TestAndClearIgnoreReal(); 642 TestAndClearIgnoreImag(); 643 // ~(a+ib) = a + i*-b 644 ComplexPairTy Op = Visit(E->getSubExpr()); 645 llvm::Value *ResI; 646 if (Op.second->getType()->isFloatingPointTy()) 647 ResI = Builder.CreateFNeg(Op.second, "conj.i"); 648 else 649 ResI = Builder.CreateNeg(Op.second, "conj.i"); 650 651 return ComplexPairTy(Op.first, ResI); 652 } 653 654 ComplexPairTy ComplexExprEmitter::EmitBinAdd(const BinOpInfo &Op) { 655 llvm::Value *ResR, *ResI; 656 657 if (Op.LHS.first->getType()->isFloatingPointTy()) { 658 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op.FPFeatures); 659 ResR = Builder.CreateFAdd(Op.LHS.first, Op.RHS.first, "add.r"); 660 if (Op.LHS.second && Op.RHS.second) 661 ResI = Builder.CreateFAdd(Op.LHS.second, Op.RHS.second, "add.i"); 662 else 663 ResI = Op.LHS.second ? Op.LHS.second : Op.RHS.second; 664 assert(ResI && "Only one operand may be real!"); 665 } else { 666 ResR = Builder.CreateAdd(Op.LHS.first, Op.RHS.first, "add.r"); 667 assert(Op.LHS.second && Op.RHS.second && 668 "Both operands of integer complex operators must be complex!"); 669 ResI = Builder.CreateAdd(Op.LHS.second, Op.RHS.second, "add.i"); 670 } 671 return ComplexPairTy(ResR, ResI); 672 } 673 674 ComplexPairTy ComplexExprEmitter::EmitBinSub(const BinOpInfo &Op) { 675 llvm::Value *ResR, *ResI; 676 if (Op.LHS.first->getType()->isFloatingPointTy()) { 677 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op.FPFeatures); 678 ResR = Builder.CreateFSub(Op.LHS.first, Op.RHS.first, "sub.r"); 679 if (Op.LHS.second && Op.RHS.second) 680 ResI = Builder.CreateFSub(Op.LHS.second, Op.RHS.second, "sub.i"); 681 else 682 ResI = Op.LHS.second ? Op.LHS.second 683 : Builder.CreateFNeg(Op.RHS.second, "sub.i"); 684 assert(ResI && "Only one operand may be real!"); 685 } else { 686 ResR = Builder.CreateSub(Op.LHS.first, Op.RHS.first, "sub.r"); 687 assert(Op.LHS.second && Op.RHS.second && 688 "Both operands of integer complex operators must be complex!"); 689 ResI = Builder.CreateSub(Op.LHS.second, Op.RHS.second, "sub.i"); 690 } 691 return ComplexPairTy(ResR, ResI); 692 } 693 694 /// Emit a libcall for a binary operation on complex types. 695 ComplexPairTy ComplexExprEmitter::EmitComplexBinOpLibCall(StringRef LibCallName, 696 const BinOpInfo &Op) { 697 CallArgList Args; 698 Args.add(RValue::get(Op.LHS.first), 699 Op.Ty->castAs<ComplexType>()->getElementType()); 700 Args.add(RValue::get(Op.LHS.second), 701 Op.Ty->castAs<ComplexType>()->getElementType()); 702 Args.add(RValue::get(Op.RHS.first), 703 Op.Ty->castAs<ComplexType>()->getElementType()); 704 Args.add(RValue::get(Op.RHS.second), 705 Op.Ty->castAs<ComplexType>()->getElementType()); 706 707 // We *must* use the full CG function call building logic here because the 708 // complex type has special ABI handling. We also should not forget about 709 // special calling convention which may be used for compiler builtins. 710 711 // We create a function qualified type to state that this call does not have 712 // any exceptions. 713 FunctionProtoType::ExtProtoInfo EPI; 714 EPI = EPI.withExceptionSpec( 715 FunctionProtoType::ExceptionSpecInfo(EST_BasicNoexcept)); 716 SmallVector<QualType, 4> ArgsQTys( 717 4, Op.Ty->castAs<ComplexType>()->getElementType()); 718 QualType FQTy = CGF.getContext().getFunctionType(Op.Ty, ArgsQTys, EPI); 719 const CGFunctionInfo &FuncInfo = CGF.CGM.getTypes().arrangeFreeFunctionCall( 720 Args, cast<FunctionType>(FQTy.getTypePtr()), false); 721 722 llvm::FunctionType *FTy = CGF.CGM.getTypes().GetFunctionType(FuncInfo); 723 llvm::FunctionCallee Func = CGF.CGM.CreateRuntimeFunction( 724 FTy, LibCallName, llvm::AttributeList(), true); 725 CGCallee Callee = CGCallee::forDirect(Func, FQTy->getAs<FunctionProtoType>()); 726 727 llvm::CallBase *Call; 728 RValue Res = CGF.EmitCall(FuncInfo, Callee, ReturnValueSlot(), Args, &Call); 729 Call->setCallingConv(CGF.CGM.getRuntimeCC()); 730 return Res.getComplexVal(); 731 } 732 733 /// Lookup the libcall name for a given floating point type complex 734 /// multiply. 735 static StringRef getComplexMultiplyLibCallName(llvm::Type *Ty) { 736 switch (Ty->getTypeID()) { 737 default: 738 llvm_unreachable("Unsupported floating point type!"); 739 case llvm::Type::HalfTyID: 740 return "__mulhc3"; 741 case llvm::Type::FloatTyID: 742 return "__mulsc3"; 743 case llvm::Type::DoubleTyID: 744 return "__muldc3"; 745 case llvm::Type::PPC_FP128TyID: 746 return "__multc3"; 747 case llvm::Type::X86_FP80TyID: 748 return "__mulxc3"; 749 case llvm::Type::FP128TyID: 750 return "__multc3"; 751 } 752 } 753 754 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex 755 // typed values. 756 ComplexPairTy ComplexExprEmitter::EmitBinMul(const BinOpInfo &Op) { 757 using llvm::Value; 758 Value *ResR, *ResI; 759 llvm::MDBuilder MDHelper(CGF.getLLVMContext()); 760 761 if (Op.LHS.first->getType()->isFloatingPointTy()) { 762 // The general formulation is: 763 // (a + ib) * (c + id) = (a * c - b * d) + i(a * d + b * c) 764 // 765 // But we can fold away components which would be zero due to a real 766 // operand according to C11 Annex G.5.1p2. 767 // FIXME: C11 also provides for imaginary types which would allow folding 768 // still more of this within the type system. 769 770 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op.FPFeatures); 771 if (Op.LHS.second && Op.RHS.second) { 772 // If both operands are complex, emit the core math directly, and then 773 // test for NaNs. If we find NaNs in the result, we delegate to a libcall 774 // to carefully re-compute the correct infinity representation if 775 // possible. The expectation is that the presence of NaNs here is 776 // *extremely* rare, and so the cost of the libcall is almost irrelevant. 777 // This is good, because the libcall re-computes the core multiplication 778 // exactly the same as we do here and re-tests for NaNs in order to be 779 // a generic complex*complex libcall. 780 781 // First compute the four products. 782 Value *AC = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul_ac"); 783 Value *BD = Builder.CreateFMul(Op.LHS.second, Op.RHS.second, "mul_bd"); 784 Value *AD = Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul_ad"); 785 Value *BC = Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul_bc"); 786 787 // The real part is the difference of the first two, the imaginary part is 788 // the sum of the second. 789 ResR = Builder.CreateFSub(AC, BD, "mul_r"); 790 ResI = Builder.CreateFAdd(AD, BC, "mul_i"); 791 792 if (Op.FPFeatures.getComplexRange() == LangOptions::CX_Limited || 793 Op.FPFeatures.getComplexRange() == LangOptions::CX_Fortran) 794 return ComplexPairTy(ResR, ResI); 795 796 // Emit the test for the real part becoming NaN and create a branch to 797 // handle it. We test for NaN by comparing the number to itself. 798 Value *IsRNaN = Builder.CreateFCmpUNO(ResR, ResR, "isnan_cmp"); 799 llvm::BasicBlock *ContBB = CGF.createBasicBlock("complex_mul_cont"); 800 llvm::BasicBlock *INaNBB = CGF.createBasicBlock("complex_mul_imag_nan"); 801 llvm::Instruction *Branch = Builder.CreateCondBr(IsRNaN, INaNBB, ContBB); 802 llvm::BasicBlock *OrigBB = Branch->getParent(); 803 804 // Give hint that we very much don't expect to see NaNs. 805 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 806 llvm::MDNode *BrWeight = MDHelper.createBranchWeights(1, (1U << 20) - 1); 807 Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight); 808 809 // Now test the imaginary part and create its branch. 810 CGF.EmitBlock(INaNBB); 811 Value *IsINaN = Builder.CreateFCmpUNO(ResI, ResI, "isnan_cmp"); 812 llvm::BasicBlock *LibCallBB = CGF.createBasicBlock("complex_mul_libcall"); 813 Branch = Builder.CreateCondBr(IsINaN, LibCallBB, ContBB); 814 Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight); 815 816 // Now emit the libcall on this slowest of the slow paths. 817 CGF.EmitBlock(LibCallBB); 818 Value *LibCallR, *LibCallI; 819 std::tie(LibCallR, LibCallI) = EmitComplexBinOpLibCall( 820 getComplexMultiplyLibCallName(Op.LHS.first->getType()), Op); 821 Builder.CreateBr(ContBB); 822 823 // Finally continue execution by phi-ing together the different 824 // computation paths. 825 CGF.EmitBlock(ContBB); 826 llvm::PHINode *RealPHI = Builder.CreatePHI(ResR->getType(), 3, "real_mul_phi"); 827 RealPHI->addIncoming(ResR, OrigBB); 828 RealPHI->addIncoming(ResR, INaNBB); 829 RealPHI->addIncoming(LibCallR, LibCallBB); 830 llvm::PHINode *ImagPHI = Builder.CreatePHI(ResI->getType(), 3, "imag_mul_phi"); 831 ImagPHI->addIncoming(ResI, OrigBB); 832 ImagPHI->addIncoming(ResI, INaNBB); 833 ImagPHI->addIncoming(LibCallI, LibCallBB); 834 return ComplexPairTy(RealPHI, ImagPHI); 835 } 836 assert((Op.LHS.second || Op.RHS.second) && 837 "At least one operand must be complex!"); 838 839 // If either of the operands is a real rather than a complex, the 840 // imaginary component is ignored when computing the real component of the 841 // result. 842 ResR = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul.rl"); 843 844 ResI = Op.LHS.second 845 ? Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul.il") 846 : Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul.ir"); 847 } else { 848 assert(Op.LHS.second && Op.RHS.second && 849 "Both operands of integer complex operators must be complex!"); 850 Value *ResRl = Builder.CreateMul(Op.LHS.first, Op.RHS.first, "mul.rl"); 851 Value *ResRr = Builder.CreateMul(Op.LHS.second, Op.RHS.second, "mul.rr"); 852 ResR = Builder.CreateSub(ResRl, ResRr, "mul.r"); 853 854 Value *ResIl = Builder.CreateMul(Op.LHS.second, Op.RHS.first, "mul.il"); 855 Value *ResIr = Builder.CreateMul(Op.LHS.first, Op.RHS.second, "mul.ir"); 856 ResI = Builder.CreateAdd(ResIl, ResIr, "mul.i"); 857 } 858 return ComplexPairTy(ResR, ResI); 859 } 860 861 ComplexPairTy ComplexExprEmitter::EmitAlgebraicDiv(llvm::Value *LHSr, 862 llvm::Value *LHSi, 863 llvm::Value *RHSr, 864 llvm::Value *RHSi) { 865 // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) 866 llvm::Value *DSTr, *DSTi; 867 868 llvm::Value *AC = Builder.CreateFMul(LHSr, RHSr); // a*c 869 llvm::Value *BD = Builder.CreateFMul(LHSi, RHSi); // b*d 870 llvm::Value *ACpBD = Builder.CreateFAdd(AC, BD); // ac+bd 871 872 llvm::Value *CC = Builder.CreateFMul(RHSr, RHSr); // c*c 873 llvm::Value *DD = Builder.CreateFMul(RHSi, RHSi); // d*d 874 llvm::Value *CCpDD = Builder.CreateFAdd(CC, DD); // cc+dd 875 876 llvm::Value *BC = Builder.CreateFMul(LHSi, RHSr); // b*c 877 llvm::Value *AD = Builder.CreateFMul(LHSr, RHSi); // a*d 878 llvm::Value *BCmAD = Builder.CreateFSub(BC, AD); // bc-ad 879 880 DSTr = Builder.CreateFDiv(ACpBD, CCpDD); 881 DSTi = Builder.CreateFDiv(BCmAD, CCpDD); 882 return ComplexPairTy(DSTr, DSTi); 883 } 884 885 // EmitFAbs - Emit a call to @llvm.fabs. 886 static llvm::Value *EmitllvmFAbs(CodeGenFunction &CGF, llvm::Value *Value) { 887 llvm::Function *Func = 888 CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Value->getType()); 889 llvm::Value *Call = CGF.Builder.CreateCall(Func, Value); 890 return Call; 891 } 892 893 // EmitRangeReductionDiv - Implements Smith's algorithm for complex division. 894 // SMITH, R. L. Algorithm 116: Complex division. Commun. ACM 5, 8 (1962). 895 ComplexPairTy ComplexExprEmitter::EmitRangeReductionDiv(llvm::Value *LHSr, 896 llvm::Value *LHSi, 897 llvm::Value *RHSr, 898 llvm::Value *RHSi) { 899 // FIXME: This could eventually be replaced by an LLVM intrinsic to 900 // avoid this long IR sequence. 901 902 // (a + ib) / (c + id) = (e + if) 903 llvm::Value *FAbsRHSr = EmitllvmFAbs(CGF, RHSr); // |c| 904 llvm::Value *FAbsRHSi = EmitllvmFAbs(CGF, RHSi); // |d| 905 // |c| >= |d| 906 llvm::Value *IsR = Builder.CreateFCmpUGT(FAbsRHSr, FAbsRHSi, "abs_cmp"); 907 908 llvm::BasicBlock *TrueBB = 909 CGF.createBasicBlock("abs_rhsr_greater_or_equal_abs_rhsi"); 910 llvm::BasicBlock *FalseBB = 911 CGF.createBasicBlock("abs_rhsr_less_than_abs_rhsi"); 912 llvm::BasicBlock *ContBB = CGF.createBasicBlock("complex_div"); 913 Builder.CreateCondBr(IsR, TrueBB, FalseBB); 914 915 CGF.EmitBlock(TrueBB); 916 // abs(c) >= abs(d) 917 // r = d/c 918 // tmp = c + rd 919 // e = (a + br)/tmp 920 // f = (b - ar)/tmp 921 llvm::Value *DdC = Builder.CreateFDiv(RHSi, RHSr); // r=d/c 922 923 llvm::Value *RD = Builder.CreateFMul(DdC, RHSi); // rd 924 llvm::Value *CpRD = Builder.CreateFAdd(RHSr, RD); // tmp=c+rd 925 926 llvm::Value *T3 = Builder.CreateFMul(LHSi, DdC); // br 927 llvm::Value *T4 = Builder.CreateFAdd(LHSr, T3); // a+br 928 llvm::Value *DSTTr = Builder.CreateFDiv(T4, CpRD); // (a+br)/tmp 929 930 llvm::Value *T5 = Builder.CreateFMul(LHSr, DdC); // ar 931 llvm::Value *T6 = Builder.CreateFSub(LHSi, T5); // b-ar 932 llvm::Value *DSTTi = Builder.CreateFDiv(T6, CpRD); // (b-ar)/tmp 933 Builder.CreateBr(ContBB); 934 935 CGF.EmitBlock(FalseBB); 936 // abs(c) < abs(d) 937 // r = c/d 938 // tmp = d + rc 939 // e = (ar + b)/tmp 940 // f = (br - a)/tmp 941 llvm::Value *CdD = Builder.CreateFDiv(RHSr, RHSi); // r=c/d 942 943 llvm::Value *RC = Builder.CreateFMul(CdD, RHSr); // rc 944 llvm::Value *DpRC = Builder.CreateFAdd(RHSi, RC); // tmp=d+rc 945 946 llvm::Value *T7 = Builder.CreateFMul(LHSr, CdD); // ar 947 llvm::Value *T8 = Builder.CreateFAdd(T7, LHSi); // ar+b 948 llvm::Value *DSTFr = Builder.CreateFDiv(T8, DpRC); // (ar+b)/tmp 949 950 llvm::Value *T9 = Builder.CreateFMul(LHSi, CdD); // br 951 llvm::Value *T10 = Builder.CreateFSub(T9, LHSr); // br-a 952 llvm::Value *DSTFi = Builder.CreateFDiv(T10, DpRC); // (br-a)/tmp 953 Builder.CreateBr(ContBB); 954 955 // Phi together the computation paths. 956 CGF.EmitBlock(ContBB); 957 llvm::PHINode *VALr = Builder.CreatePHI(DSTTr->getType(), 2); 958 VALr->addIncoming(DSTTr, TrueBB); 959 VALr->addIncoming(DSTFr, FalseBB); 960 llvm::PHINode *VALi = Builder.CreatePHI(DSTTi->getType(), 2); 961 VALi->addIncoming(DSTTi, TrueBB); 962 VALi->addIncoming(DSTFi, FalseBB); 963 return ComplexPairTy(VALr, VALi); 964 } 965 966 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex 967 // typed values. 968 ComplexPairTy ComplexExprEmitter::EmitBinDiv(const BinOpInfo &Op) { 969 llvm::Value *LHSr = Op.LHS.first, *LHSi = Op.LHS.second; 970 llvm::Value *RHSr = Op.RHS.first, *RHSi = Op.RHS.second; 971 llvm::Value *DSTr, *DSTi; 972 if (LHSr->getType()->isFloatingPointTy()) { 973 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op.FPFeatures); 974 if (!RHSi) { 975 assert(LHSi && "Can have at most one non-complex operand!"); 976 977 DSTr = Builder.CreateFDiv(LHSr, RHSr); 978 DSTi = Builder.CreateFDiv(LHSi, RHSr); 979 return ComplexPairTy(DSTr, DSTi); 980 } 981 llvm::Value *OrigLHSi = LHSi; 982 if (!LHSi) 983 LHSi = llvm::Constant::getNullValue(RHSi->getType()); 984 if (Op.FPFeatures.getComplexRange() == LangOptions::CX_Fortran) 985 return EmitRangeReductionDiv(LHSr, LHSi, RHSr, RHSi); 986 else if (Op.FPFeatures.getComplexRange() == LangOptions::CX_Limited) 987 return EmitAlgebraicDiv(LHSr, LHSi, RHSr, RHSi); 988 else if (!CGF.getLangOpts().FastMath || 989 // '-ffast-math' is used in the command line but followed by an 990 // '-fno-cx-limited-range'. 991 Op.FPFeatures.getComplexRange() == LangOptions::CX_Full) { 992 LHSi = OrigLHSi; 993 // If we have a complex operand on the RHS and FastMath is not allowed, we 994 // delegate to a libcall to handle all of the complexities and minimize 995 // underflow/overflow cases. When FastMath is allowed we construct the 996 // divide inline using the same algorithm as for integer operands. 997 // 998 // FIXME: We would be able to avoid the libcall in many places if we 999 // supported imaginary types in addition to complex types. 1000 BinOpInfo LibCallOp = Op; 1001 // If LHS was a real, supply a null imaginary part. 1002 if (!LHSi) 1003 LibCallOp.LHS.second = llvm::Constant::getNullValue(LHSr->getType()); 1004 1005 switch (LHSr->getType()->getTypeID()) { 1006 default: 1007 llvm_unreachable("Unsupported floating point type!"); 1008 case llvm::Type::HalfTyID: 1009 return EmitComplexBinOpLibCall("__divhc3", LibCallOp); 1010 case llvm::Type::FloatTyID: 1011 return EmitComplexBinOpLibCall("__divsc3", LibCallOp); 1012 case llvm::Type::DoubleTyID: 1013 return EmitComplexBinOpLibCall("__divdc3", LibCallOp); 1014 case llvm::Type::PPC_FP128TyID: 1015 return EmitComplexBinOpLibCall("__divtc3", LibCallOp); 1016 case llvm::Type::X86_FP80TyID: 1017 return EmitComplexBinOpLibCall("__divxc3", LibCallOp); 1018 case llvm::Type::FP128TyID: 1019 return EmitComplexBinOpLibCall("__divtc3", LibCallOp); 1020 } 1021 } else { 1022 return EmitAlgebraicDiv(LHSr, LHSi, RHSr, RHSi); 1023 } 1024 } else { 1025 assert(Op.LHS.second && Op.RHS.second && 1026 "Both operands of integer complex operators must be complex!"); 1027 // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) 1028 llvm::Value *Tmp1 = Builder.CreateMul(LHSr, RHSr); // a*c 1029 llvm::Value *Tmp2 = Builder.CreateMul(LHSi, RHSi); // b*d 1030 llvm::Value *Tmp3 = Builder.CreateAdd(Tmp1, Tmp2); // ac+bd 1031 1032 llvm::Value *Tmp4 = Builder.CreateMul(RHSr, RHSr); // c*c 1033 llvm::Value *Tmp5 = Builder.CreateMul(RHSi, RHSi); // d*d 1034 llvm::Value *Tmp6 = Builder.CreateAdd(Tmp4, Tmp5); // cc+dd 1035 1036 llvm::Value *Tmp7 = Builder.CreateMul(LHSi, RHSr); // b*c 1037 llvm::Value *Tmp8 = Builder.CreateMul(LHSr, RHSi); // a*d 1038 llvm::Value *Tmp9 = Builder.CreateSub(Tmp7, Tmp8); // bc-ad 1039 1040 if (Op.Ty->castAs<ComplexType>()->getElementType()->isUnsignedIntegerType()) { 1041 DSTr = Builder.CreateUDiv(Tmp3, Tmp6); 1042 DSTi = Builder.CreateUDiv(Tmp9, Tmp6); 1043 } else { 1044 DSTr = Builder.CreateSDiv(Tmp3, Tmp6); 1045 DSTi = Builder.CreateSDiv(Tmp9, Tmp6); 1046 } 1047 } 1048 1049 return ComplexPairTy(DSTr, DSTi); 1050 } 1051 1052 ComplexPairTy CodeGenFunction::EmitUnPromotedValue(ComplexPairTy result, 1053 QualType UnPromotionType) { 1054 llvm::Type *ComplexElementTy = 1055 ConvertType(UnPromotionType->castAs<ComplexType>()->getElementType()); 1056 if (result.first) 1057 result.first = 1058 Builder.CreateFPTrunc(result.first, ComplexElementTy, "unpromotion"); 1059 if (result.second) 1060 result.second = 1061 Builder.CreateFPTrunc(result.second, ComplexElementTy, "unpromotion"); 1062 return result; 1063 } 1064 1065 ComplexPairTy CodeGenFunction::EmitPromotedValue(ComplexPairTy result, 1066 QualType PromotionType) { 1067 llvm::Type *ComplexElementTy = 1068 ConvertType(PromotionType->castAs<ComplexType>()->getElementType()); 1069 if (result.first) 1070 result.first = Builder.CreateFPExt(result.first, ComplexElementTy, "ext"); 1071 if (result.second) 1072 result.second = Builder.CreateFPExt(result.second, ComplexElementTy, "ext"); 1073 1074 return result; 1075 } 1076 1077 ComplexPairTy ComplexExprEmitter::EmitPromoted(const Expr *E, 1078 QualType PromotionType) { 1079 E = E->IgnoreParens(); 1080 if (auto BO = dyn_cast<BinaryOperator>(E)) { 1081 switch (BO->getOpcode()) { 1082 #define HANDLE_BINOP(OP) \ 1083 case BO_##OP: \ 1084 return EmitBin##OP(EmitBinOps(BO, PromotionType)); 1085 HANDLE_BINOP(Add) 1086 HANDLE_BINOP(Sub) 1087 HANDLE_BINOP(Mul) 1088 HANDLE_BINOP(Div) 1089 #undef HANDLE_BINOP 1090 default: 1091 break; 1092 } 1093 } else if (auto UO = dyn_cast<UnaryOperator>(E)) { 1094 switch (UO->getOpcode()) { 1095 case UO_Minus: 1096 return VisitMinus(UO, PromotionType); 1097 case UO_Plus: 1098 return VisitPlus(UO, PromotionType); 1099 default: 1100 break; 1101 } 1102 } 1103 auto result = Visit(const_cast<Expr *>(E)); 1104 if (!PromotionType.isNull()) 1105 return CGF.EmitPromotedValue(result, PromotionType); 1106 else 1107 return result; 1108 } 1109 1110 ComplexPairTy CodeGenFunction::EmitPromotedComplexExpr(const Expr *E, 1111 QualType DstTy) { 1112 return ComplexExprEmitter(*this).EmitPromoted(E, DstTy); 1113 } 1114 1115 ComplexPairTy 1116 ComplexExprEmitter::EmitPromotedComplexOperand(const Expr *E, 1117 QualType OverallPromotionType) { 1118 if (E->getType()->isAnyComplexType()) { 1119 if (!OverallPromotionType.isNull()) 1120 return CGF.EmitPromotedComplexExpr(E, OverallPromotionType); 1121 else 1122 return Visit(const_cast<Expr *>(E)); 1123 } else { 1124 if (!OverallPromotionType.isNull()) { 1125 QualType ComplexElementTy = 1126 OverallPromotionType->castAs<ComplexType>()->getElementType(); 1127 return ComplexPairTy(CGF.EmitPromotedScalarExpr(E, ComplexElementTy), 1128 nullptr); 1129 } else { 1130 return ComplexPairTy(CGF.EmitScalarExpr(E), nullptr); 1131 } 1132 } 1133 } 1134 1135 ComplexExprEmitter::BinOpInfo 1136 ComplexExprEmitter::EmitBinOps(const BinaryOperator *E, 1137 QualType PromotionType) { 1138 TestAndClearIgnoreReal(); 1139 TestAndClearIgnoreImag(); 1140 BinOpInfo Ops; 1141 1142 Ops.LHS = EmitPromotedComplexOperand(E->getLHS(), PromotionType); 1143 Ops.RHS = EmitPromotedComplexOperand(E->getRHS(), PromotionType); 1144 if (!PromotionType.isNull()) 1145 Ops.Ty = PromotionType; 1146 else 1147 Ops.Ty = E->getType(); 1148 Ops.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts()); 1149 return Ops; 1150 } 1151 1152 1153 LValue ComplexExprEmitter:: 1154 EmitCompoundAssignLValue(const CompoundAssignOperator *E, 1155 ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&), 1156 RValue &Val) { 1157 TestAndClearIgnoreReal(); 1158 TestAndClearIgnoreImag(); 1159 QualType LHSTy = E->getLHS()->getType(); 1160 if (const AtomicType *AT = LHSTy->getAs<AtomicType>()) 1161 LHSTy = AT->getValueType(); 1162 1163 BinOpInfo OpInfo; 1164 OpInfo.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts()); 1165 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, OpInfo.FPFeatures); 1166 1167 // Load the RHS and LHS operands. 1168 // __block variables need to have the rhs evaluated first, plus this should 1169 // improve codegen a little. 1170 QualType PromotionTypeCR; 1171 PromotionTypeCR = getPromotionType(E->getComputationResultType()); 1172 if (PromotionTypeCR.isNull()) 1173 PromotionTypeCR = E->getComputationResultType(); 1174 OpInfo.Ty = PromotionTypeCR; 1175 QualType ComplexElementTy = 1176 OpInfo.Ty->castAs<ComplexType>()->getElementType(); 1177 QualType PromotionTypeRHS = getPromotionType(E->getRHS()->getType()); 1178 1179 // The RHS should have been converted to the computation type. 1180 if (E->getRHS()->getType()->isRealFloatingType()) { 1181 if (!PromotionTypeRHS.isNull()) 1182 OpInfo.RHS = ComplexPairTy( 1183 CGF.EmitPromotedScalarExpr(E->getRHS(), PromotionTypeRHS), nullptr); 1184 else { 1185 assert(CGF.getContext().hasSameUnqualifiedType(ComplexElementTy, 1186 E->getRHS()->getType())); 1187 1188 OpInfo.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr); 1189 } 1190 } else { 1191 if (!PromotionTypeRHS.isNull()) { 1192 OpInfo.RHS = ComplexPairTy( 1193 CGF.EmitPromotedComplexExpr(E->getRHS(), PromotionTypeRHS)); 1194 } else { 1195 assert(CGF.getContext().hasSameUnqualifiedType(OpInfo.Ty, 1196 E->getRHS()->getType())); 1197 OpInfo.RHS = Visit(E->getRHS()); 1198 } 1199 } 1200 1201 LValue LHS = CGF.EmitLValue(E->getLHS()); 1202 1203 // Load from the l-value and convert it. 1204 SourceLocation Loc = E->getExprLoc(); 1205 QualType PromotionTypeLHS = getPromotionType(E->getComputationLHSType()); 1206 if (LHSTy->isAnyComplexType()) { 1207 ComplexPairTy LHSVal = EmitLoadOfLValue(LHS, Loc); 1208 if (!PromotionTypeLHS.isNull()) 1209 OpInfo.LHS = 1210 EmitComplexToComplexCast(LHSVal, LHSTy, PromotionTypeLHS, Loc); 1211 else 1212 OpInfo.LHS = EmitComplexToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc); 1213 } else { 1214 llvm::Value *LHSVal = CGF.EmitLoadOfScalar(LHS, Loc); 1215 // For floating point real operands we can directly pass the scalar form 1216 // to the binary operator emission and potentially get more efficient code. 1217 if (LHSTy->isRealFloatingType()) { 1218 QualType PromotedComplexElementTy; 1219 if (!PromotionTypeLHS.isNull()) { 1220 PromotedComplexElementTy = 1221 cast<ComplexType>(PromotionTypeLHS)->getElementType(); 1222 if (!CGF.getContext().hasSameUnqualifiedType(PromotedComplexElementTy, 1223 PromotionTypeLHS)) 1224 LHSVal = CGF.EmitScalarConversion(LHSVal, LHSTy, 1225 PromotedComplexElementTy, Loc); 1226 } else { 1227 if (!CGF.getContext().hasSameUnqualifiedType(ComplexElementTy, LHSTy)) 1228 LHSVal = 1229 CGF.EmitScalarConversion(LHSVal, LHSTy, ComplexElementTy, Loc); 1230 } 1231 OpInfo.LHS = ComplexPairTy(LHSVal, nullptr); 1232 } else { 1233 OpInfo.LHS = EmitScalarToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc); 1234 } 1235 } 1236 1237 // Expand the binary operator. 1238 ComplexPairTy Result = (this->*Func)(OpInfo); 1239 1240 // Truncate the result and store it into the LHS lvalue. 1241 if (LHSTy->isAnyComplexType()) { 1242 ComplexPairTy ResVal = 1243 EmitComplexToComplexCast(Result, OpInfo.Ty, LHSTy, Loc); 1244 EmitStoreOfComplex(ResVal, LHS, /*isInit*/ false); 1245 Val = RValue::getComplex(ResVal); 1246 } else { 1247 llvm::Value *ResVal = 1248 CGF.EmitComplexToScalarConversion(Result, OpInfo.Ty, LHSTy, Loc); 1249 CGF.EmitStoreOfScalar(ResVal, LHS, /*isInit*/ false); 1250 Val = RValue::get(ResVal); 1251 } 1252 1253 return LHS; 1254 } 1255 1256 // Compound assignments. 1257 ComplexPairTy ComplexExprEmitter:: 1258 EmitCompoundAssign(const CompoundAssignOperator *E, 1259 ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&)){ 1260 RValue Val; 1261 LValue LV = EmitCompoundAssignLValue(E, Func, Val); 1262 1263 // The result of an assignment in C is the assigned r-value. 1264 if (!CGF.getLangOpts().CPlusPlus) 1265 return Val.getComplexVal(); 1266 1267 // If the lvalue is non-volatile, return the computed value of the assignment. 1268 if (!LV.isVolatileQualified()) 1269 return Val.getComplexVal(); 1270 1271 return EmitLoadOfLValue(LV, E->getExprLoc()); 1272 } 1273 1274 LValue ComplexExprEmitter::EmitBinAssignLValue(const BinaryOperator *E, 1275 ComplexPairTy &Val) { 1276 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 1277 E->getRHS()->getType()) && 1278 "Invalid assignment"); 1279 TestAndClearIgnoreReal(); 1280 TestAndClearIgnoreImag(); 1281 1282 // Emit the RHS. __block variables need the RHS evaluated first. 1283 Val = Visit(E->getRHS()); 1284 1285 // Compute the address to store into. 1286 LValue LHS = CGF.EmitLValue(E->getLHS()); 1287 1288 // Store the result value into the LHS lvalue. 1289 EmitStoreOfComplex(Val, LHS, /*isInit*/ false); 1290 1291 return LHS; 1292 } 1293 1294 ComplexPairTy ComplexExprEmitter::VisitBinAssign(const BinaryOperator *E) { 1295 ComplexPairTy Val; 1296 LValue LV = EmitBinAssignLValue(E, Val); 1297 1298 // The result of an assignment in C is the assigned r-value. 1299 if (!CGF.getLangOpts().CPlusPlus) 1300 return Val; 1301 1302 // If the lvalue is non-volatile, return the computed value of the assignment. 1303 if (!LV.isVolatileQualified()) 1304 return Val; 1305 1306 return EmitLoadOfLValue(LV, E->getExprLoc()); 1307 } 1308 1309 ComplexPairTy ComplexExprEmitter::VisitBinComma(const BinaryOperator *E) { 1310 CGF.EmitIgnoredExpr(E->getLHS()); 1311 return Visit(E->getRHS()); 1312 } 1313 1314 ComplexPairTy ComplexExprEmitter:: 1315 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 1316 TestAndClearIgnoreReal(); 1317 TestAndClearIgnoreImag(); 1318 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 1319 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 1320 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 1321 1322 // Bind the common expression if necessary. 1323 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 1324 1325 1326 CodeGenFunction::ConditionalEvaluation eval(CGF); 1327 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock, 1328 CGF.getProfileCount(E)); 1329 1330 eval.begin(CGF); 1331 CGF.EmitBlock(LHSBlock); 1332 CGF.incrementProfileCounter(E); 1333 ComplexPairTy LHS = Visit(E->getTrueExpr()); 1334 LHSBlock = Builder.GetInsertBlock(); 1335 CGF.EmitBranch(ContBlock); 1336 eval.end(CGF); 1337 1338 eval.begin(CGF); 1339 CGF.EmitBlock(RHSBlock); 1340 ComplexPairTy RHS = Visit(E->getFalseExpr()); 1341 RHSBlock = Builder.GetInsertBlock(); 1342 CGF.EmitBlock(ContBlock); 1343 eval.end(CGF); 1344 1345 // Create a PHI node for the real part. 1346 llvm::PHINode *RealPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.r"); 1347 RealPN->addIncoming(LHS.first, LHSBlock); 1348 RealPN->addIncoming(RHS.first, RHSBlock); 1349 1350 // Create a PHI node for the imaginary part. 1351 llvm::PHINode *ImagPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.i"); 1352 ImagPN->addIncoming(LHS.second, LHSBlock); 1353 ImagPN->addIncoming(RHS.second, RHSBlock); 1354 1355 return ComplexPairTy(RealPN, ImagPN); 1356 } 1357 1358 ComplexPairTy ComplexExprEmitter::VisitChooseExpr(ChooseExpr *E) { 1359 return Visit(E->getChosenSubExpr()); 1360 } 1361 1362 ComplexPairTy ComplexExprEmitter::VisitInitListExpr(InitListExpr *E) { 1363 bool Ignore = TestAndClearIgnoreReal(); 1364 (void)Ignore; 1365 assert (Ignore == false && "init list ignored"); 1366 Ignore = TestAndClearIgnoreImag(); 1367 (void)Ignore; 1368 assert (Ignore == false && "init list ignored"); 1369 1370 if (E->getNumInits() == 2) { 1371 llvm::Value *Real = CGF.EmitScalarExpr(E->getInit(0)); 1372 llvm::Value *Imag = CGF.EmitScalarExpr(E->getInit(1)); 1373 return ComplexPairTy(Real, Imag); 1374 } else if (E->getNumInits() == 1) { 1375 return Visit(E->getInit(0)); 1376 } 1377 1378 // Empty init list initializes to null 1379 assert(E->getNumInits() == 0 && "Unexpected number of inits"); 1380 QualType Ty = E->getType()->castAs<ComplexType>()->getElementType(); 1381 llvm::Type* LTy = CGF.ConvertType(Ty); 1382 llvm::Value* zeroConstant = llvm::Constant::getNullValue(LTy); 1383 return ComplexPairTy(zeroConstant, zeroConstant); 1384 } 1385 1386 ComplexPairTy ComplexExprEmitter::VisitVAArgExpr(VAArgExpr *E) { 1387 Address ArgValue = Address::invalid(); 1388 Address ArgPtr = CGF.EmitVAArg(E, ArgValue); 1389 1390 if (!ArgPtr.isValid()) { 1391 CGF.ErrorUnsupported(E, "complex va_arg expression"); 1392 llvm::Type *EltTy = 1393 CGF.ConvertType(E->getType()->castAs<ComplexType>()->getElementType()); 1394 llvm::Value *U = llvm::UndefValue::get(EltTy); 1395 return ComplexPairTy(U, U); 1396 } 1397 1398 return EmitLoadOfLValue(CGF.MakeAddrLValue(ArgPtr, E->getType()), 1399 E->getExprLoc()); 1400 } 1401 1402 //===----------------------------------------------------------------------===// 1403 // Entry Point into this File 1404 //===----------------------------------------------------------------------===// 1405 1406 /// EmitComplexExpr - Emit the computation of the specified expression of 1407 /// complex type, ignoring the result. 1408 ComplexPairTy CodeGenFunction::EmitComplexExpr(const Expr *E, bool IgnoreReal, 1409 bool IgnoreImag) { 1410 assert(E && getComplexType(E->getType()) && 1411 "Invalid complex expression to emit"); 1412 1413 return ComplexExprEmitter(*this, IgnoreReal, IgnoreImag) 1414 .Visit(const_cast<Expr *>(E)); 1415 } 1416 1417 void CodeGenFunction::EmitComplexExprIntoLValue(const Expr *E, LValue dest, 1418 bool isInit) { 1419 assert(E && getComplexType(E->getType()) && 1420 "Invalid complex expression to emit"); 1421 ComplexExprEmitter Emitter(*this); 1422 ComplexPairTy Val = Emitter.Visit(const_cast<Expr*>(E)); 1423 Emitter.EmitStoreOfComplex(Val, dest, isInit); 1424 } 1425 1426 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 1427 void CodeGenFunction::EmitStoreOfComplex(ComplexPairTy V, LValue dest, 1428 bool isInit) { 1429 ComplexExprEmitter(*this).EmitStoreOfComplex(V, dest, isInit); 1430 } 1431 1432 /// EmitLoadOfComplex - Load a complex number from the specified address. 1433 ComplexPairTy CodeGenFunction::EmitLoadOfComplex(LValue src, 1434 SourceLocation loc) { 1435 return ComplexExprEmitter(*this).EmitLoadOfLValue(src, loc); 1436 } 1437 1438 LValue CodeGenFunction::EmitComplexAssignmentLValue(const BinaryOperator *E) { 1439 assert(E->getOpcode() == BO_Assign); 1440 ComplexPairTy Val; // ignored 1441 LValue LVal = ComplexExprEmitter(*this).EmitBinAssignLValue(E, Val); 1442 if (getLangOpts().OpenMP) 1443 CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this, 1444 E->getLHS()); 1445 return LVal; 1446 } 1447 1448 typedef ComplexPairTy (ComplexExprEmitter::*CompoundFunc)( 1449 const ComplexExprEmitter::BinOpInfo &); 1450 1451 static CompoundFunc getComplexOp(BinaryOperatorKind Op) { 1452 switch (Op) { 1453 case BO_MulAssign: return &ComplexExprEmitter::EmitBinMul; 1454 case BO_DivAssign: return &ComplexExprEmitter::EmitBinDiv; 1455 case BO_SubAssign: return &ComplexExprEmitter::EmitBinSub; 1456 case BO_AddAssign: return &ComplexExprEmitter::EmitBinAdd; 1457 default: 1458 llvm_unreachable("unexpected complex compound assignment"); 1459 } 1460 } 1461 1462 LValue CodeGenFunction:: 1463 EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E) { 1464 CompoundFunc Op = getComplexOp(E->getOpcode()); 1465 RValue Val; 1466 return ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val); 1467 } 1468 1469 LValue CodeGenFunction:: 1470 EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 1471 llvm::Value *&Result) { 1472 CompoundFunc Op = getComplexOp(E->getOpcode()); 1473 RValue Val; 1474 LValue Ret = ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val); 1475 Result = Val.getScalarVal(); 1476 return Ret; 1477 } 1478