xref: /llvm-project/clang/lib/CodeGen/CGExprComplex.cpp (revision b0afa6bab9581abc91f23c854b3bb45095cbb057)
1 //===--- CGExprComplex.cpp - Emit LLVM Code for Complex Exprs -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes with complex types as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGOpenMPRuntime.h"
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "ConstantEmitter.h"
17 #include "clang/AST/StmtVisitor.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/Instructions.h"
20 #include "llvm/IR/MDBuilder.h"
21 #include "llvm/IR/Metadata.h"
22 using namespace clang;
23 using namespace CodeGen;
24 
25 //===----------------------------------------------------------------------===//
26 //                        Complex Expression Emitter
27 //===----------------------------------------------------------------------===//
28 
29 namespace llvm {
30 extern cl::opt<bool> EnableSingleByteCoverage;
31 } // namespace llvm
32 
33 typedef CodeGenFunction::ComplexPairTy ComplexPairTy;
34 
35 /// Return the complex type that we are meant to emit.
36 static const ComplexType *getComplexType(QualType type) {
37   type = type.getCanonicalType();
38   if (const ComplexType *comp = dyn_cast<ComplexType>(type)) {
39     return comp;
40   } else {
41     return cast<ComplexType>(cast<AtomicType>(type)->getValueType());
42   }
43 }
44 
45 namespace  {
46 class ComplexExprEmitter
47   : public StmtVisitor<ComplexExprEmitter, ComplexPairTy> {
48   CodeGenFunction &CGF;
49   CGBuilderTy &Builder;
50   bool IgnoreReal;
51   bool IgnoreImag;
52   bool FPHasBeenPromoted;
53 
54 public:
55   ComplexExprEmitter(CodeGenFunction &cgf, bool ir = false, bool ii = false)
56       : CGF(cgf), Builder(CGF.Builder), IgnoreReal(ir), IgnoreImag(ii),
57         FPHasBeenPromoted(false) {}
58 
59   //===--------------------------------------------------------------------===//
60   //                               Utilities
61   //===--------------------------------------------------------------------===//
62 
63   bool TestAndClearIgnoreReal() {
64     bool I = IgnoreReal;
65     IgnoreReal = false;
66     return I;
67   }
68   bool TestAndClearIgnoreImag() {
69     bool I = IgnoreImag;
70     IgnoreImag = false;
71     return I;
72   }
73 
74   /// EmitLoadOfLValue - Given an expression with complex type that represents a
75   /// value l-value, this method emits the address of the l-value, then loads
76   /// and returns the result.
77   ComplexPairTy EmitLoadOfLValue(const Expr *E) {
78     return EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc());
79   }
80 
81   ComplexPairTy EmitLoadOfLValue(LValue LV, SourceLocation Loc);
82 
83   /// EmitStoreOfComplex - Store the specified real/imag parts into the
84   /// specified value pointer.
85   void EmitStoreOfComplex(ComplexPairTy Val, LValue LV, bool isInit);
86 
87   /// Emit a cast from complex value Val to DestType.
88   ComplexPairTy EmitComplexToComplexCast(ComplexPairTy Val, QualType SrcType,
89                                          QualType DestType, SourceLocation Loc);
90   /// Emit a cast from scalar value Val to DestType.
91   ComplexPairTy EmitScalarToComplexCast(llvm::Value *Val, QualType SrcType,
92                                         QualType DestType, SourceLocation Loc);
93 
94   //===--------------------------------------------------------------------===//
95   //                            Visitor Methods
96   //===--------------------------------------------------------------------===//
97 
98   ComplexPairTy Visit(Expr *E) {
99     ApplyDebugLocation DL(CGF, E);
100     return StmtVisitor<ComplexExprEmitter, ComplexPairTy>::Visit(E);
101   }
102 
103   ComplexPairTy VisitStmt(Stmt *S) {
104     S->dump(llvm::errs(), CGF.getContext());
105     llvm_unreachable("Stmt can't have complex result type!");
106   }
107   ComplexPairTy VisitExpr(Expr *S);
108   ComplexPairTy VisitConstantExpr(ConstantExpr *E) {
109     if (llvm::Constant *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E))
110       return ComplexPairTy(Result->getAggregateElement(0U),
111                            Result->getAggregateElement(1U));
112     return Visit(E->getSubExpr());
113   }
114   ComplexPairTy VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr());}
115   ComplexPairTy VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
116     return Visit(GE->getResultExpr());
117   }
118   ComplexPairTy VisitImaginaryLiteral(const ImaginaryLiteral *IL);
119   ComplexPairTy
120   VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) {
121     return Visit(PE->getReplacement());
122   }
123   ComplexPairTy VisitCoawaitExpr(CoawaitExpr *S) {
124     return CGF.EmitCoawaitExpr(*S).getComplexVal();
125   }
126   ComplexPairTy VisitCoyieldExpr(CoyieldExpr *S) {
127     return CGF.EmitCoyieldExpr(*S).getComplexVal();
128   }
129   ComplexPairTy VisitUnaryCoawait(const UnaryOperator *E) {
130     return Visit(E->getSubExpr());
131   }
132 
133   ComplexPairTy emitConstant(const CodeGenFunction::ConstantEmission &Constant,
134                              Expr *E) {
135     assert(Constant && "not a constant");
136     if (Constant.isReference())
137       return EmitLoadOfLValue(Constant.getReferenceLValue(CGF, E),
138                               E->getExprLoc());
139 
140     llvm::Constant *pair = Constant.getValue();
141     return ComplexPairTy(pair->getAggregateElement(0U),
142                          pair->getAggregateElement(1U));
143   }
144 
145   // l-values.
146   ComplexPairTy VisitDeclRefExpr(DeclRefExpr *E) {
147     if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
148       return emitConstant(Constant, E);
149     return EmitLoadOfLValue(E);
150   }
151   ComplexPairTy VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
152     return EmitLoadOfLValue(E);
153   }
154   ComplexPairTy VisitObjCMessageExpr(ObjCMessageExpr *E) {
155     return CGF.EmitObjCMessageExpr(E).getComplexVal();
156   }
157   ComplexPairTy VisitArraySubscriptExpr(Expr *E) { return EmitLoadOfLValue(E); }
158   ComplexPairTy VisitMemberExpr(MemberExpr *ME) {
159     if (CodeGenFunction::ConstantEmission Constant =
160             CGF.tryEmitAsConstant(ME)) {
161       CGF.EmitIgnoredExpr(ME->getBase());
162       return emitConstant(Constant, ME);
163     }
164     return EmitLoadOfLValue(ME);
165   }
166   ComplexPairTy VisitOpaqueValueExpr(OpaqueValueExpr *E) {
167     if (E->isGLValue())
168       return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
169                               E->getExprLoc());
170     return CGF.getOrCreateOpaqueRValueMapping(E).getComplexVal();
171   }
172 
173   ComplexPairTy VisitPseudoObjectExpr(PseudoObjectExpr *E) {
174     return CGF.EmitPseudoObjectRValue(E).getComplexVal();
175   }
176 
177   // FIXME: CompoundLiteralExpr
178 
179   ComplexPairTy EmitCast(CastKind CK, Expr *Op, QualType DestTy);
180   ComplexPairTy VisitImplicitCastExpr(ImplicitCastExpr *E) {
181     // Unlike for scalars, we don't have to worry about function->ptr demotion
182     // here.
183     if (E->changesVolatileQualification())
184       return EmitLoadOfLValue(E);
185     return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType());
186   }
187   ComplexPairTy VisitCastExpr(CastExpr *E) {
188     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
189       CGF.CGM.EmitExplicitCastExprType(ECE, &CGF);
190     if (E->changesVolatileQualification())
191        return EmitLoadOfLValue(E);
192     return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType());
193   }
194   ComplexPairTy VisitCallExpr(const CallExpr *E);
195   ComplexPairTy VisitStmtExpr(const StmtExpr *E);
196 
197   // Operators.
198   ComplexPairTy VisitPrePostIncDec(const UnaryOperator *E,
199                                    bool isInc, bool isPre) {
200     LValue LV = CGF.EmitLValue(E->getSubExpr());
201     return CGF.EmitComplexPrePostIncDec(E, LV, isInc, isPre);
202   }
203   ComplexPairTy VisitUnaryPostDec(const UnaryOperator *E) {
204     return VisitPrePostIncDec(E, false, false);
205   }
206   ComplexPairTy VisitUnaryPostInc(const UnaryOperator *E) {
207     return VisitPrePostIncDec(E, true, false);
208   }
209   ComplexPairTy VisitUnaryPreDec(const UnaryOperator *E) {
210     return VisitPrePostIncDec(E, false, true);
211   }
212   ComplexPairTy VisitUnaryPreInc(const UnaryOperator *E) {
213     return VisitPrePostIncDec(E, true, true);
214   }
215   ComplexPairTy VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
216 
217   ComplexPairTy VisitUnaryPlus(const UnaryOperator *E,
218                                QualType PromotionType = QualType());
219   ComplexPairTy VisitPlus(const UnaryOperator *E, QualType PromotionType);
220   ComplexPairTy VisitUnaryMinus(const UnaryOperator *E,
221                                 QualType PromotionType = QualType());
222   ComplexPairTy VisitMinus(const UnaryOperator *E, QualType PromotionType);
223   ComplexPairTy VisitUnaryNot      (const UnaryOperator *E);
224   // LNot,Real,Imag never return complex.
225   ComplexPairTy VisitUnaryExtension(const UnaryOperator *E) {
226     return Visit(E->getSubExpr());
227   }
228   ComplexPairTy VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
229     CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
230     return Visit(DAE->getExpr());
231   }
232   ComplexPairTy VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
233     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
234     return Visit(DIE->getExpr());
235   }
236   ComplexPairTy VisitExprWithCleanups(ExprWithCleanups *E) {
237     CodeGenFunction::RunCleanupsScope Scope(CGF);
238     ComplexPairTy Vals = Visit(E->getSubExpr());
239     // Defend against dominance problems caused by jumps out of expression
240     // evaluation through the shared cleanup block.
241     Scope.ForceCleanup({&Vals.first, &Vals.second});
242     return Vals;
243   }
244   ComplexPairTy VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
245     assert(E->getType()->isAnyComplexType() && "Expected complex type!");
246     QualType Elem = E->getType()->castAs<ComplexType>()->getElementType();
247     llvm::Constant *Null = llvm::Constant::getNullValue(CGF.ConvertType(Elem));
248     return ComplexPairTy(Null, Null);
249   }
250   ComplexPairTy VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
251     assert(E->getType()->isAnyComplexType() && "Expected complex type!");
252     QualType Elem = E->getType()->castAs<ComplexType>()->getElementType();
253     llvm::Constant *Null =
254                        llvm::Constant::getNullValue(CGF.ConvertType(Elem));
255     return ComplexPairTy(Null, Null);
256   }
257 
258   struct BinOpInfo {
259     ComplexPairTy LHS;
260     ComplexPairTy RHS;
261     QualType Ty;  // Computation Type.
262     FPOptions FPFeatures;
263   };
264 
265   BinOpInfo EmitBinOps(const BinaryOperator *E,
266                        QualType PromotionTy = QualType());
267   ComplexPairTy EmitPromoted(const Expr *E, QualType PromotionTy);
268   ComplexPairTy EmitPromotedComplexOperand(const Expr *E, QualType PromotionTy);
269   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
270                                   ComplexPairTy (ComplexExprEmitter::*Func)
271                                   (const BinOpInfo &),
272                                   RValue &Val);
273   ComplexPairTy EmitCompoundAssign(const CompoundAssignOperator *E,
274                                    ComplexPairTy (ComplexExprEmitter::*Func)
275                                    (const BinOpInfo &));
276 
277   ComplexPairTy EmitBinAdd(const BinOpInfo &Op);
278   ComplexPairTy EmitBinSub(const BinOpInfo &Op);
279   ComplexPairTy EmitBinMul(const BinOpInfo &Op);
280   ComplexPairTy EmitBinDiv(const BinOpInfo &Op);
281   ComplexPairTy EmitAlgebraicDiv(llvm::Value *A, llvm::Value *B, llvm::Value *C,
282                                  llvm::Value *D);
283   ComplexPairTy EmitRangeReductionDiv(llvm::Value *A, llvm::Value *B,
284                                       llvm::Value *C, llvm::Value *D);
285 
286   ComplexPairTy EmitComplexBinOpLibCall(StringRef LibCallName,
287                                         const BinOpInfo &Op);
288 
289   QualType HigherPrecisionTypeForComplexArithmetic(QualType ElementType,
290                                                    bool IsDivOpCode) {
291     ASTContext &Ctx = CGF.getContext();
292     const QualType HigherElementType =
293         Ctx.GetHigherPrecisionFPType(ElementType);
294     const llvm::fltSemantics &ElementTypeSemantics =
295         Ctx.getFloatTypeSemantics(ElementType);
296     const llvm::fltSemantics &HigherElementTypeSemantics =
297         Ctx.getFloatTypeSemantics(HigherElementType);
298     // Check that the promoted type can handle the intermediate values without
299     // overflowing. This can be interpreted as:
300     // (SmallerType.LargestFiniteVal * SmallerType.LargestFiniteVal) * 2 <=
301     // LargerType.LargestFiniteVal.
302     // In terms of exponent it gives this formula:
303     // (SmallerType.LargestFiniteVal * SmallerType.LargestFiniteVal
304     // doubles the exponent of SmallerType.LargestFiniteVal)
305     if (llvm::APFloat::semanticsMaxExponent(ElementTypeSemantics) * 2 + 1 <=
306         llvm::APFloat::semanticsMaxExponent(HigherElementTypeSemantics)) {
307       FPHasBeenPromoted = true;
308       return Ctx.getComplexType(HigherElementType);
309     } else {
310       // The intermediate values can't be represented in the promoted type
311       // without overflowing.
312       return QualType();
313     }
314   }
315 
316   QualType getPromotionType(FPOptionsOverride Features, QualType Ty,
317                             bool IsDivOpCode = false) {
318     if (auto *CT = Ty->getAs<ComplexType>()) {
319       QualType ElementType = CT->getElementType();
320       bool IsFloatingType = ElementType->isFloatingType();
321       bool IsComplexRangePromoted = CGF.getLangOpts().getComplexRange() ==
322                                     LangOptions::ComplexRangeKind::CX_Promoted;
323       bool HasNoComplexRangeOverride = !Features.hasComplexRangeOverride();
324       bool HasMatchingComplexRange = Features.hasComplexRangeOverride() &&
325                                      Features.getComplexRangeOverride() ==
326                                          CGF.getLangOpts().getComplexRange();
327 
328       if (IsDivOpCode && IsFloatingType && IsComplexRangePromoted &&
329           (HasNoComplexRangeOverride || HasMatchingComplexRange))
330         return HigherPrecisionTypeForComplexArithmetic(ElementType,
331                                                        IsDivOpCode);
332       if (ElementType.UseExcessPrecision(CGF.getContext()))
333         return CGF.getContext().getComplexType(CGF.getContext().FloatTy);
334     }
335     if (Ty.UseExcessPrecision(CGF.getContext()))
336       return CGF.getContext().FloatTy;
337     return QualType();
338   }
339 
340 #define HANDLEBINOP(OP)                                                        \
341   ComplexPairTy VisitBin##OP(const BinaryOperator *E) {                        \
342     QualType promotionTy = getPromotionType(                                   \
343         E->getStoredFPFeaturesOrDefault(), E->getType(),                       \
344         (E->getOpcode() == BinaryOperatorKind::BO_Div) ? true : false);        \
345     ComplexPairTy result = EmitBin##OP(EmitBinOps(E, promotionTy));            \
346     if (!promotionTy.isNull())                                                 \
347       result = CGF.EmitUnPromotedValue(result, E->getType());                  \
348     return result;                                                             \
349   }
350 
351   HANDLEBINOP(Mul)
352   HANDLEBINOP(Div)
353   HANDLEBINOP(Add)
354   HANDLEBINOP(Sub)
355 #undef HANDLEBINOP
356 
357   ComplexPairTy VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
358     return Visit(E->getSemanticForm());
359   }
360 
361   // Compound assignments.
362   ComplexPairTy VisitBinAddAssign(const CompoundAssignOperator *E) {
363     return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinAdd);
364   }
365   ComplexPairTy VisitBinSubAssign(const CompoundAssignOperator *E) {
366     return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinSub);
367   }
368   ComplexPairTy VisitBinMulAssign(const CompoundAssignOperator *E) {
369     return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinMul);
370   }
371   ComplexPairTy VisitBinDivAssign(const CompoundAssignOperator *E) {
372     return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinDiv);
373   }
374 
375   // GCC rejects rem/and/or/xor for integer complex.
376   // Logical and/or always return int, never complex.
377 
378   // No comparisons produce a complex result.
379 
380   LValue EmitBinAssignLValue(const BinaryOperator *E,
381                              ComplexPairTy &Val);
382   ComplexPairTy VisitBinAssign     (const BinaryOperator *E);
383   ComplexPairTy VisitBinComma      (const BinaryOperator *E);
384 
385 
386   ComplexPairTy
387   VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
388   ComplexPairTy VisitChooseExpr(ChooseExpr *CE);
389 
390   ComplexPairTy VisitInitListExpr(InitListExpr *E);
391 
392   ComplexPairTy VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
393     return EmitLoadOfLValue(E);
394   }
395 
396   ComplexPairTy VisitVAArgExpr(VAArgExpr *E);
397 
398   ComplexPairTy VisitAtomicExpr(AtomicExpr *E) {
399     return CGF.EmitAtomicExpr(E).getComplexVal();
400   }
401 
402   ComplexPairTy VisitPackIndexingExpr(PackIndexingExpr *E) {
403     return Visit(E->getSelectedExpr());
404   }
405 };
406 }  // end anonymous namespace.
407 
408 //===----------------------------------------------------------------------===//
409 //                                Utilities
410 //===----------------------------------------------------------------------===//
411 
412 Address CodeGenFunction::emitAddrOfRealComponent(Address addr,
413                                                  QualType complexType) {
414   return Builder.CreateStructGEP(addr, 0, addr.getName() + ".realp");
415 }
416 
417 Address CodeGenFunction::emitAddrOfImagComponent(Address addr,
418                                                  QualType complexType) {
419   return Builder.CreateStructGEP(addr, 1, addr.getName() + ".imagp");
420 }
421 
422 /// EmitLoadOfLValue - Given an RValue reference for a complex, emit code to
423 /// load the real and imaginary pieces, returning them as Real/Imag.
424 ComplexPairTy ComplexExprEmitter::EmitLoadOfLValue(LValue lvalue,
425                                                    SourceLocation loc) {
426   assert(lvalue.isSimple() && "non-simple complex l-value?");
427   if (lvalue.getType()->isAtomicType())
428     return CGF.EmitAtomicLoad(lvalue, loc).getComplexVal();
429 
430   Address SrcPtr = lvalue.getAddress();
431   bool isVolatile = lvalue.isVolatileQualified();
432 
433   llvm::Value *Real = nullptr, *Imag = nullptr;
434 
435   if (!IgnoreReal || isVolatile) {
436     Address RealP = CGF.emitAddrOfRealComponent(SrcPtr, lvalue.getType());
437     Real = Builder.CreateLoad(RealP, isVolatile, SrcPtr.getName() + ".real");
438   }
439 
440   if (!IgnoreImag || isVolatile) {
441     Address ImagP = CGF.emitAddrOfImagComponent(SrcPtr, lvalue.getType());
442     Imag = Builder.CreateLoad(ImagP, isVolatile, SrcPtr.getName() + ".imag");
443   }
444 
445   return ComplexPairTy(Real, Imag);
446 }
447 
448 /// EmitStoreOfComplex - Store the specified real/imag parts into the
449 /// specified value pointer.
450 void ComplexExprEmitter::EmitStoreOfComplex(ComplexPairTy Val, LValue lvalue,
451                                             bool isInit) {
452   if (lvalue.getType()->isAtomicType() ||
453       (!isInit && CGF.LValueIsSuitableForInlineAtomic(lvalue)))
454     return CGF.EmitAtomicStore(RValue::getComplex(Val), lvalue, isInit);
455 
456   Address Ptr = lvalue.getAddress();
457   Address RealPtr = CGF.emitAddrOfRealComponent(Ptr, lvalue.getType());
458   Address ImagPtr = CGF.emitAddrOfImagComponent(Ptr, lvalue.getType());
459 
460   Builder.CreateStore(Val.first, RealPtr, lvalue.isVolatileQualified());
461   Builder.CreateStore(Val.second, ImagPtr, lvalue.isVolatileQualified());
462 }
463 
464 
465 
466 //===----------------------------------------------------------------------===//
467 //                            Visitor Methods
468 //===----------------------------------------------------------------------===//
469 
470 ComplexPairTy ComplexExprEmitter::VisitExpr(Expr *E) {
471   CGF.ErrorUnsupported(E, "complex expression");
472   llvm::Type *EltTy =
473     CGF.ConvertType(getComplexType(E->getType())->getElementType());
474   llvm::Value *U = llvm::PoisonValue::get(EltTy);
475   return ComplexPairTy(U, U);
476 }
477 
478 ComplexPairTy ComplexExprEmitter::
479 VisitImaginaryLiteral(const ImaginaryLiteral *IL) {
480   llvm::Value *Imag = CGF.EmitScalarExpr(IL->getSubExpr());
481   return ComplexPairTy(llvm::Constant::getNullValue(Imag->getType()), Imag);
482 }
483 
484 
485 ComplexPairTy ComplexExprEmitter::VisitCallExpr(const CallExpr *E) {
486   if (E->getCallReturnType(CGF.getContext())->isReferenceType())
487     return EmitLoadOfLValue(E);
488 
489   return CGF.EmitCallExpr(E).getComplexVal();
490 }
491 
492 ComplexPairTy ComplexExprEmitter::VisitStmtExpr(const StmtExpr *E) {
493   CodeGenFunction::StmtExprEvaluation eval(CGF);
494   Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), true);
495   assert(RetAlloca.isValid() && "Expected complex return value");
496   return EmitLoadOfLValue(CGF.MakeAddrLValue(RetAlloca, E->getType()),
497                           E->getExprLoc());
498 }
499 
500 /// Emit a cast from complex value Val to DestType.
501 ComplexPairTy ComplexExprEmitter::EmitComplexToComplexCast(ComplexPairTy Val,
502                                                            QualType SrcType,
503                                                            QualType DestType,
504                                                            SourceLocation Loc) {
505   // Get the src/dest element type.
506   SrcType = SrcType->castAs<ComplexType>()->getElementType();
507   DestType = DestType->castAs<ComplexType>()->getElementType();
508 
509   // C99 6.3.1.6: When a value of complex type is converted to another
510   // complex type, both the real and imaginary parts follow the conversion
511   // rules for the corresponding real types.
512   if (Val.first)
513     Val.first = CGF.EmitScalarConversion(Val.first, SrcType, DestType, Loc);
514   if (Val.second)
515     Val.second = CGF.EmitScalarConversion(Val.second, SrcType, DestType, Loc);
516   return Val;
517 }
518 
519 ComplexPairTy ComplexExprEmitter::EmitScalarToComplexCast(llvm::Value *Val,
520                                                           QualType SrcType,
521                                                           QualType DestType,
522                                                           SourceLocation Loc) {
523   // Convert the input element to the element type of the complex.
524   DestType = DestType->castAs<ComplexType>()->getElementType();
525   Val = CGF.EmitScalarConversion(Val, SrcType, DestType, Loc);
526 
527   // Return (realval, 0).
528   return ComplexPairTy(Val, llvm::Constant::getNullValue(Val->getType()));
529 }
530 
531 ComplexPairTy ComplexExprEmitter::EmitCast(CastKind CK, Expr *Op,
532                                            QualType DestTy) {
533   switch (CK) {
534   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
535 
536   // Atomic to non-atomic casts may be more than a no-op for some platforms and
537   // for some types.
538   case CK_AtomicToNonAtomic:
539   case CK_NonAtomicToAtomic:
540   case CK_NoOp:
541   case CK_LValueToRValue:
542   case CK_UserDefinedConversion:
543     return Visit(Op);
544 
545   case CK_LValueBitCast: {
546     LValue origLV = CGF.EmitLValue(Op);
547     Address V = origLV.getAddress().withElementType(CGF.ConvertType(DestTy));
548     return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy), Op->getExprLoc());
549   }
550 
551   case CK_LValueToRValueBitCast: {
552     LValue SourceLVal = CGF.EmitLValue(Op);
553     Address Addr =
554         SourceLVal.getAddress().withElementType(CGF.ConvertTypeForMem(DestTy));
555     LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
556     DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
557     return EmitLoadOfLValue(DestLV, Op->getExprLoc());
558   }
559 
560   case CK_BitCast:
561   case CK_BaseToDerived:
562   case CK_DerivedToBase:
563   case CK_UncheckedDerivedToBase:
564   case CK_Dynamic:
565   case CK_ToUnion:
566   case CK_ArrayToPointerDecay:
567   case CK_FunctionToPointerDecay:
568   case CK_NullToPointer:
569   case CK_NullToMemberPointer:
570   case CK_BaseToDerivedMemberPointer:
571   case CK_DerivedToBaseMemberPointer:
572   case CK_MemberPointerToBoolean:
573   case CK_ReinterpretMemberPointer:
574   case CK_ConstructorConversion:
575   case CK_IntegralToPointer:
576   case CK_PointerToIntegral:
577   case CK_PointerToBoolean:
578   case CK_ToVoid:
579   case CK_VectorSplat:
580   case CK_IntegralCast:
581   case CK_BooleanToSignedIntegral:
582   case CK_IntegralToBoolean:
583   case CK_IntegralToFloating:
584   case CK_FloatingToIntegral:
585   case CK_FloatingToBoolean:
586   case CK_FloatingCast:
587   case CK_CPointerToObjCPointerCast:
588   case CK_BlockPointerToObjCPointerCast:
589   case CK_AnyPointerToBlockPointerCast:
590   case CK_ObjCObjectLValueCast:
591   case CK_FloatingComplexToReal:
592   case CK_FloatingComplexToBoolean:
593   case CK_IntegralComplexToReal:
594   case CK_IntegralComplexToBoolean:
595   case CK_ARCProduceObject:
596   case CK_ARCConsumeObject:
597   case CK_ARCReclaimReturnedObject:
598   case CK_ARCExtendBlockObject:
599   case CK_CopyAndAutoreleaseBlockObject:
600   case CK_BuiltinFnToFnPtr:
601   case CK_ZeroToOCLOpaqueType:
602   case CK_AddressSpaceConversion:
603   case CK_IntToOCLSampler:
604   case CK_FloatingToFixedPoint:
605   case CK_FixedPointToFloating:
606   case CK_FixedPointCast:
607   case CK_FixedPointToBoolean:
608   case CK_FixedPointToIntegral:
609   case CK_IntegralToFixedPoint:
610   case CK_MatrixCast:
611   case CK_HLSLVectorTruncation:
612   case CK_HLSLArrayRValue:
613     llvm_unreachable("invalid cast kind for complex value");
614 
615   case CK_FloatingRealToComplex:
616   case CK_IntegralRealToComplex: {
617     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op);
618     return EmitScalarToComplexCast(CGF.EmitScalarExpr(Op), Op->getType(),
619                                    DestTy, Op->getExprLoc());
620   }
621 
622   case CK_FloatingComplexCast:
623   case CK_FloatingComplexToIntegralComplex:
624   case CK_IntegralComplexCast:
625   case CK_IntegralComplexToFloatingComplex: {
626     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op);
627     return EmitComplexToComplexCast(Visit(Op), Op->getType(), DestTy,
628                                     Op->getExprLoc());
629   }
630   }
631 
632   llvm_unreachable("unknown cast resulting in complex value");
633 }
634 
635 ComplexPairTy ComplexExprEmitter::VisitUnaryPlus(const UnaryOperator *E,
636                                                  QualType PromotionType) {
637   QualType promotionTy =
638       PromotionType.isNull()
639           ? getPromotionType(E->getStoredFPFeaturesOrDefault(),
640                              E->getSubExpr()->getType())
641           : PromotionType;
642   ComplexPairTy result = VisitPlus(E, promotionTy);
643   if (!promotionTy.isNull())
644     return CGF.EmitUnPromotedValue(result, E->getSubExpr()->getType());
645   return result;
646 }
647 
648 ComplexPairTy ComplexExprEmitter::VisitPlus(const UnaryOperator *E,
649                                             QualType PromotionType) {
650   TestAndClearIgnoreReal();
651   TestAndClearIgnoreImag();
652   if (!PromotionType.isNull())
653     return CGF.EmitPromotedComplexExpr(E->getSubExpr(), PromotionType);
654   return Visit(E->getSubExpr());
655 }
656 
657 ComplexPairTy ComplexExprEmitter::VisitUnaryMinus(const UnaryOperator *E,
658                                                   QualType PromotionType) {
659   QualType promotionTy =
660       PromotionType.isNull()
661           ? getPromotionType(E->getStoredFPFeaturesOrDefault(),
662                              E->getSubExpr()->getType())
663           : PromotionType;
664   ComplexPairTy result = VisitMinus(E, promotionTy);
665   if (!promotionTy.isNull())
666     return CGF.EmitUnPromotedValue(result, E->getSubExpr()->getType());
667   return result;
668 }
669 ComplexPairTy ComplexExprEmitter::VisitMinus(const UnaryOperator *E,
670                                              QualType PromotionType) {
671   TestAndClearIgnoreReal();
672   TestAndClearIgnoreImag();
673   ComplexPairTy Op;
674   if (!PromotionType.isNull())
675     Op = CGF.EmitPromotedComplexExpr(E->getSubExpr(), PromotionType);
676   else
677     Op = Visit(E->getSubExpr());
678 
679   llvm::Value *ResR, *ResI;
680   if (Op.first->getType()->isFloatingPointTy()) {
681     ResR = Builder.CreateFNeg(Op.first,  "neg.r");
682     ResI = Builder.CreateFNeg(Op.second, "neg.i");
683   } else {
684     ResR = Builder.CreateNeg(Op.first,  "neg.r");
685     ResI = Builder.CreateNeg(Op.second, "neg.i");
686   }
687   return ComplexPairTy(ResR, ResI);
688 }
689 
690 ComplexPairTy ComplexExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
691   TestAndClearIgnoreReal();
692   TestAndClearIgnoreImag();
693   // ~(a+ib) = a + i*-b
694   ComplexPairTy Op = Visit(E->getSubExpr());
695   llvm::Value *ResI;
696   if (Op.second->getType()->isFloatingPointTy())
697     ResI = Builder.CreateFNeg(Op.second, "conj.i");
698   else
699     ResI = Builder.CreateNeg(Op.second, "conj.i");
700 
701   return ComplexPairTy(Op.first, ResI);
702 }
703 
704 ComplexPairTy ComplexExprEmitter::EmitBinAdd(const BinOpInfo &Op) {
705   llvm::Value *ResR, *ResI;
706 
707   if (Op.LHS.first->getType()->isFloatingPointTy()) {
708     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op.FPFeatures);
709     ResR = Builder.CreateFAdd(Op.LHS.first,  Op.RHS.first,  "add.r");
710     if (Op.LHS.second && Op.RHS.second)
711       ResI = Builder.CreateFAdd(Op.LHS.second, Op.RHS.second, "add.i");
712     else
713       ResI = Op.LHS.second ? Op.LHS.second : Op.RHS.second;
714     assert(ResI && "Only one operand may be real!");
715   } else {
716     ResR = Builder.CreateAdd(Op.LHS.first,  Op.RHS.first,  "add.r");
717     assert(Op.LHS.second && Op.RHS.second &&
718            "Both operands of integer complex operators must be complex!");
719     ResI = Builder.CreateAdd(Op.LHS.second, Op.RHS.second, "add.i");
720   }
721   return ComplexPairTy(ResR, ResI);
722 }
723 
724 ComplexPairTy ComplexExprEmitter::EmitBinSub(const BinOpInfo &Op) {
725   llvm::Value *ResR, *ResI;
726   if (Op.LHS.first->getType()->isFloatingPointTy()) {
727     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op.FPFeatures);
728     ResR = Builder.CreateFSub(Op.LHS.first, Op.RHS.first, "sub.r");
729     if (Op.LHS.second && Op.RHS.second)
730       ResI = Builder.CreateFSub(Op.LHS.second, Op.RHS.second, "sub.i");
731     else
732       ResI = Op.LHS.second ? Op.LHS.second
733                            : Builder.CreateFNeg(Op.RHS.second, "sub.i");
734     assert(ResI && "Only one operand may be real!");
735   } else {
736     ResR = Builder.CreateSub(Op.LHS.first, Op.RHS.first, "sub.r");
737     assert(Op.LHS.second && Op.RHS.second &&
738            "Both operands of integer complex operators must be complex!");
739     ResI = Builder.CreateSub(Op.LHS.second, Op.RHS.second, "sub.i");
740   }
741   return ComplexPairTy(ResR, ResI);
742 }
743 
744 /// Emit a libcall for a binary operation on complex types.
745 ComplexPairTy ComplexExprEmitter::EmitComplexBinOpLibCall(StringRef LibCallName,
746                                                           const BinOpInfo &Op) {
747   CallArgList Args;
748   Args.add(RValue::get(Op.LHS.first),
749            Op.Ty->castAs<ComplexType>()->getElementType());
750   Args.add(RValue::get(Op.LHS.second),
751            Op.Ty->castAs<ComplexType>()->getElementType());
752   Args.add(RValue::get(Op.RHS.first),
753            Op.Ty->castAs<ComplexType>()->getElementType());
754   Args.add(RValue::get(Op.RHS.second),
755            Op.Ty->castAs<ComplexType>()->getElementType());
756 
757   // We *must* use the full CG function call building logic here because the
758   // complex type has special ABI handling. We also should not forget about
759   // special calling convention which may be used for compiler builtins.
760 
761   // We create a function qualified type to state that this call does not have
762   // any exceptions.
763   FunctionProtoType::ExtProtoInfo EPI;
764   EPI = EPI.withExceptionSpec(
765       FunctionProtoType::ExceptionSpecInfo(EST_BasicNoexcept));
766   SmallVector<QualType, 4> ArgsQTys(
767       4, Op.Ty->castAs<ComplexType>()->getElementType());
768   QualType FQTy = CGF.getContext().getFunctionType(Op.Ty, ArgsQTys, EPI);
769   const CGFunctionInfo &FuncInfo = CGF.CGM.getTypes().arrangeFreeFunctionCall(
770       Args, cast<FunctionType>(FQTy.getTypePtr()), false);
771 
772   llvm::FunctionType *FTy = CGF.CGM.getTypes().GetFunctionType(FuncInfo);
773   llvm::FunctionCallee Func = CGF.CGM.CreateRuntimeFunction(
774       FTy, LibCallName, llvm::AttributeList(), true);
775   CGCallee Callee = CGCallee::forDirect(Func, FQTy->getAs<FunctionProtoType>());
776 
777   llvm::CallBase *Call;
778   RValue Res = CGF.EmitCall(FuncInfo, Callee, ReturnValueSlot(), Args, &Call);
779   Call->setCallingConv(CGF.CGM.getRuntimeCC());
780   return Res.getComplexVal();
781 }
782 
783 /// Lookup the libcall name for a given floating point type complex
784 /// multiply.
785 static StringRef getComplexMultiplyLibCallName(llvm::Type *Ty) {
786   switch (Ty->getTypeID()) {
787   default:
788     llvm_unreachable("Unsupported floating point type!");
789   case llvm::Type::HalfTyID:
790     return "__mulhc3";
791   case llvm::Type::FloatTyID:
792     return "__mulsc3";
793   case llvm::Type::DoubleTyID:
794     return "__muldc3";
795   case llvm::Type::PPC_FP128TyID:
796     return "__multc3";
797   case llvm::Type::X86_FP80TyID:
798     return "__mulxc3";
799   case llvm::Type::FP128TyID:
800     return "__multc3";
801   }
802 }
803 
804 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex
805 // typed values.
806 ComplexPairTy ComplexExprEmitter::EmitBinMul(const BinOpInfo &Op) {
807   using llvm::Value;
808   Value *ResR, *ResI;
809   llvm::MDBuilder MDHelper(CGF.getLLVMContext());
810 
811   if (Op.LHS.first->getType()->isFloatingPointTy()) {
812     // The general formulation is:
813     // (a + ib) * (c + id) = (a * c - b * d) + i(a * d + b * c)
814     //
815     // But we can fold away components which would be zero due to a real
816     // operand according to C11 Annex G.5.1p2.
817 
818     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op.FPFeatures);
819     if (Op.LHS.second && Op.RHS.second) {
820       // If both operands are complex, emit the core math directly, and then
821       // test for NaNs. If we find NaNs in the result, we delegate to a libcall
822       // to carefully re-compute the correct infinity representation if
823       // possible. The expectation is that the presence of NaNs here is
824       // *extremely* rare, and so the cost of the libcall is almost irrelevant.
825       // This is good, because the libcall re-computes the core multiplication
826       // exactly the same as we do here and re-tests for NaNs in order to be
827       // a generic complex*complex libcall.
828 
829       // First compute the four products.
830       Value *AC = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul_ac");
831       Value *BD = Builder.CreateFMul(Op.LHS.second, Op.RHS.second, "mul_bd");
832       Value *AD = Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul_ad");
833       Value *BC = Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul_bc");
834 
835       // The real part is the difference of the first two, the imaginary part is
836       // the sum of the second.
837       ResR = Builder.CreateFSub(AC, BD, "mul_r");
838       ResI = Builder.CreateFAdd(AD, BC, "mul_i");
839 
840       if (Op.FPFeatures.getComplexRange() == LangOptions::CX_Basic ||
841           Op.FPFeatures.getComplexRange() == LangOptions::CX_Improved ||
842           Op.FPFeatures.getComplexRange() == LangOptions::CX_Promoted)
843         return ComplexPairTy(ResR, ResI);
844 
845       // Emit the test for the real part becoming NaN and create a branch to
846       // handle it. We test for NaN by comparing the number to itself.
847       Value *IsRNaN = Builder.CreateFCmpUNO(ResR, ResR, "isnan_cmp");
848       llvm::BasicBlock *ContBB = CGF.createBasicBlock("complex_mul_cont");
849       llvm::BasicBlock *INaNBB = CGF.createBasicBlock("complex_mul_imag_nan");
850       llvm::Instruction *Branch = Builder.CreateCondBr(IsRNaN, INaNBB, ContBB);
851       llvm::BasicBlock *OrigBB = Branch->getParent();
852 
853       // Give hint that we very much don't expect to see NaNs.
854       llvm::MDNode *BrWeight = MDHelper.createUnlikelyBranchWeights();
855       Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight);
856 
857       // Now test the imaginary part and create its branch.
858       CGF.EmitBlock(INaNBB);
859       Value *IsINaN = Builder.CreateFCmpUNO(ResI, ResI, "isnan_cmp");
860       llvm::BasicBlock *LibCallBB = CGF.createBasicBlock("complex_mul_libcall");
861       Branch = Builder.CreateCondBr(IsINaN, LibCallBB, ContBB);
862       Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight);
863 
864       // Now emit the libcall on this slowest of the slow paths.
865       CGF.EmitBlock(LibCallBB);
866       Value *LibCallR, *LibCallI;
867       std::tie(LibCallR, LibCallI) = EmitComplexBinOpLibCall(
868           getComplexMultiplyLibCallName(Op.LHS.first->getType()), Op);
869       Builder.CreateBr(ContBB);
870 
871       // Finally continue execution by phi-ing together the different
872       // computation paths.
873       CGF.EmitBlock(ContBB);
874       llvm::PHINode *RealPHI = Builder.CreatePHI(ResR->getType(), 3, "real_mul_phi");
875       RealPHI->addIncoming(ResR, OrigBB);
876       RealPHI->addIncoming(ResR, INaNBB);
877       RealPHI->addIncoming(LibCallR, LibCallBB);
878       llvm::PHINode *ImagPHI = Builder.CreatePHI(ResI->getType(), 3, "imag_mul_phi");
879       ImagPHI->addIncoming(ResI, OrigBB);
880       ImagPHI->addIncoming(ResI, INaNBB);
881       ImagPHI->addIncoming(LibCallI, LibCallBB);
882       return ComplexPairTy(RealPHI, ImagPHI);
883     }
884     assert((Op.LHS.second || Op.RHS.second) &&
885            "At least one operand must be complex!");
886 
887     // If either of the operands is a real rather than a complex, the
888     // imaginary component is ignored when computing the real component of the
889     // result.
890     ResR = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul.rl");
891 
892     ResI = Op.LHS.second
893                ? Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul.il")
894                : Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul.ir");
895   } else {
896     assert(Op.LHS.second && Op.RHS.second &&
897            "Both operands of integer complex operators must be complex!");
898     Value *ResRl = Builder.CreateMul(Op.LHS.first, Op.RHS.first, "mul.rl");
899     Value *ResRr = Builder.CreateMul(Op.LHS.second, Op.RHS.second, "mul.rr");
900     ResR = Builder.CreateSub(ResRl, ResRr, "mul.r");
901 
902     Value *ResIl = Builder.CreateMul(Op.LHS.second, Op.RHS.first, "mul.il");
903     Value *ResIr = Builder.CreateMul(Op.LHS.first, Op.RHS.second, "mul.ir");
904     ResI = Builder.CreateAdd(ResIl, ResIr, "mul.i");
905   }
906   return ComplexPairTy(ResR, ResI);
907 }
908 
909 ComplexPairTy ComplexExprEmitter::EmitAlgebraicDiv(llvm::Value *LHSr,
910                                                    llvm::Value *LHSi,
911                                                    llvm::Value *RHSr,
912                                                    llvm::Value *RHSi) {
913   // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd))
914   llvm::Value *DSTr, *DSTi;
915 
916   llvm::Value *AC = Builder.CreateFMul(LHSr, RHSr); // a*c
917   llvm::Value *BD = Builder.CreateFMul(LHSi, RHSi); // b*d
918   llvm::Value *ACpBD = Builder.CreateFAdd(AC, BD);  // ac+bd
919 
920   llvm::Value *CC = Builder.CreateFMul(RHSr, RHSr); // c*c
921   llvm::Value *DD = Builder.CreateFMul(RHSi, RHSi); // d*d
922   llvm::Value *CCpDD = Builder.CreateFAdd(CC, DD);  // cc+dd
923 
924   llvm::Value *BC = Builder.CreateFMul(LHSi, RHSr); // b*c
925   llvm::Value *AD = Builder.CreateFMul(LHSr, RHSi); // a*d
926   llvm::Value *BCmAD = Builder.CreateFSub(BC, AD);  // bc-ad
927 
928   DSTr = Builder.CreateFDiv(ACpBD, CCpDD);
929   DSTi = Builder.CreateFDiv(BCmAD, CCpDD);
930   return ComplexPairTy(DSTr, DSTi);
931 }
932 
933 // EmitFAbs - Emit a call to @llvm.fabs.
934 static llvm::Value *EmitllvmFAbs(CodeGenFunction &CGF, llvm::Value *Value) {
935   llvm::Function *Func =
936       CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Value->getType());
937   llvm::Value *Call = CGF.Builder.CreateCall(Func, Value);
938   return Call;
939 }
940 
941 // EmitRangeReductionDiv - Implements Smith's algorithm for complex division.
942 // SMITH, R. L. Algorithm 116: Complex division. Commun. ACM 5, 8 (1962).
943 ComplexPairTy ComplexExprEmitter::EmitRangeReductionDiv(llvm::Value *LHSr,
944                                                         llvm::Value *LHSi,
945                                                         llvm::Value *RHSr,
946                                                         llvm::Value *RHSi) {
947   // FIXME: This could eventually be replaced by an LLVM intrinsic to
948   // avoid this long IR sequence.
949 
950   // (a + ib) / (c + id) = (e + if)
951   llvm::Value *FAbsRHSr = EmitllvmFAbs(CGF, RHSr); // |c|
952   llvm::Value *FAbsRHSi = EmitllvmFAbs(CGF, RHSi); // |d|
953   // |c| >= |d|
954   llvm::Value *IsR = Builder.CreateFCmpUGT(FAbsRHSr, FAbsRHSi, "abs_cmp");
955 
956   llvm::BasicBlock *TrueBB =
957       CGF.createBasicBlock("abs_rhsr_greater_or_equal_abs_rhsi");
958   llvm::BasicBlock *FalseBB =
959       CGF.createBasicBlock("abs_rhsr_less_than_abs_rhsi");
960   llvm::BasicBlock *ContBB = CGF.createBasicBlock("complex_div");
961   Builder.CreateCondBr(IsR, TrueBB, FalseBB);
962 
963   CGF.EmitBlock(TrueBB);
964   // abs(c) >= abs(d)
965   // r = d/c
966   // tmp = c + rd
967   // e = (a + br)/tmp
968   // f = (b - ar)/tmp
969   llvm::Value *DdC = Builder.CreateFDiv(RHSi, RHSr); // r=d/c
970 
971   llvm::Value *RD = Builder.CreateFMul(DdC, RHSi);  // rd
972   llvm::Value *CpRD = Builder.CreateFAdd(RHSr, RD); // tmp=c+rd
973 
974   llvm::Value *T3 = Builder.CreateFMul(LHSi, DdC);   // br
975   llvm::Value *T4 = Builder.CreateFAdd(LHSr, T3);    // a+br
976   llvm::Value *DSTTr = Builder.CreateFDiv(T4, CpRD); // (a+br)/tmp
977 
978   llvm::Value *T5 = Builder.CreateFMul(LHSr, DdC);   // ar
979   llvm::Value *T6 = Builder.CreateFSub(LHSi, T5);    // b-ar
980   llvm::Value *DSTTi = Builder.CreateFDiv(T6, CpRD); // (b-ar)/tmp
981   Builder.CreateBr(ContBB);
982 
983   CGF.EmitBlock(FalseBB);
984   // abs(c) < abs(d)
985   // r = c/d
986   // tmp = d + rc
987   // e = (ar + b)/tmp
988   // f = (br - a)/tmp
989   llvm::Value *CdD = Builder.CreateFDiv(RHSr, RHSi); // r=c/d
990 
991   llvm::Value *RC = Builder.CreateFMul(CdD, RHSr);  // rc
992   llvm::Value *DpRC = Builder.CreateFAdd(RHSi, RC); // tmp=d+rc
993 
994   llvm::Value *T7 = Builder.CreateFMul(LHSr, CdD);   // ar
995   llvm::Value *T8 = Builder.CreateFAdd(T7, LHSi);    // ar+b
996   llvm::Value *DSTFr = Builder.CreateFDiv(T8, DpRC); // (ar+b)/tmp
997 
998   llvm::Value *T9 = Builder.CreateFMul(LHSi, CdD);    // br
999   llvm::Value *T10 = Builder.CreateFSub(T9, LHSr);    // br-a
1000   llvm::Value *DSTFi = Builder.CreateFDiv(T10, DpRC); // (br-a)/tmp
1001   Builder.CreateBr(ContBB);
1002 
1003   // Phi together the computation paths.
1004   CGF.EmitBlock(ContBB);
1005   llvm::PHINode *VALr = Builder.CreatePHI(DSTTr->getType(), 2);
1006   VALr->addIncoming(DSTTr, TrueBB);
1007   VALr->addIncoming(DSTFr, FalseBB);
1008   llvm::PHINode *VALi = Builder.CreatePHI(DSTTi->getType(), 2);
1009   VALi->addIncoming(DSTTi, TrueBB);
1010   VALi->addIncoming(DSTFi, FalseBB);
1011   return ComplexPairTy(VALr, VALi);
1012 }
1013 
1014 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex
1015 // typed values.
1016 ComplexPairTy ComplexExprEmitter::EmitBinDiv(const BinOpInfo &Op) {
1017   llvm::Value *LHSr = Op.LHS.first, *LHSi = Op.LHS.second;
1018   llvm::Value *RHSr = Op.RHS.first, *RHSi = Op.RHS.second;
1019   llvm::Value *DSTr, *DSTi;
1020   if (LHSr->getType()->isFloatingPointTy()) {
1021     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op.FPFeatures);
1022     if (!RHSi) {
1023       assert(LHSi && "Can have at most one non-complex operand!");
1024 
1025       DSTr = Builder.CreateFDiv(LHSr, RHSr);
1026       DSTi = Builder.CreateFDiv(LHSi, RHSr);
1027       return ComplexPairTy(DSTr, DSTi);
1028     }
1029     llvm::Value *OrigLHSi = LHSi;
1030     if (!LHSi)
1031       LHSi = llvm::Constant::getNullValue(RHSi->getType());
1032     if (Op.FPFeatures.getComplexRange() == LangOptions::CX_Improved ||
1033         (Op.FPFeatures.getComplexRange() == LangOptions::CX_Promoted &&
1034          !FPHasBeenPromoted))
1035       return EmitRangeReductionDiv(LHSr, LHSi, RHSr, RHSi);
1036     else if (Op.FPFeatures.getComplexRange() == LangOptions::CX_Basic ||
1037              Op.FPFeatures.getComplexRange() == LangOptions::CX_Promoted)
1038       return EmitAlgebraicDiv(LHSr, LHSi, RHSr, RHSi);
1039     // '-ffast-math' is used in the command line but followed by an
1040     // '-fno-cx-limited-range' or '-fcomplex-arithmetic=full'.
1041     else if (Op.FPFeatures.getComplexRange() == LangOptions::CX_Full) {
1042       LHSi = OrigLHSi;
1043       // If we have a complex operand on the RHS and FastMath is not allowed, we
1044       // delegate to a libcall to handle all of the complexities and minimize
1045       // underflow/overflow cases. When FastMath is allowed we construct the
1046       // divide inline using the same algorithm as for integer operands.
1047       BinOpInfo LibCallOp = Op;
1048       // If LHS was a real, supply a null imaginary part.
1049       if (!LHSi)
1050         LibCallOp.LHS.second = llvm::Constant::getNullValue(LHSr->getType());
1051 
1052       switch (LHSr->getType()->getTypeID()) {
1053       default:
1054         llvm_unreachable("Unsupported floating point type!");
1055       case llvm::Type::HalfTyID:
1056         return EmitComplexBinOpLibCall("__divhc3", LibCallOp);
1057       case llvm::Type::FloatTyID:
1058         return EmitComplexBinOpLibCall("__divsc3", LibCallOp);
1059       case llvm::Type::DoubleTyID:
1060         return EmitComplexBinOpLibCall("__divdc3", LibCallOp);
1061       case llvm::Type::PPC_FP128TyID:
1062         return EmitComplexBinOpLibCall("__divtc3", LibCallOp);
1063       case llvm::Type::X86_FP80TyID:
1064         return EmitComplexBinOpLibCall("__divxc3", LibCallOp);
1065       case llvm::Type::FP128TyID:
1066         return EmitComplexBinOpLibCall("__divtc3", LibCallOp);
1067       }
1068     } else {
1069       return EmitAlgebraicDiv(LHSr, LHSi, RHSr, RHSi);
1070     }
1071   } else {
1072     assert(Op.LHS.second && Op.RHS.second &&
1073            "Both operands of integer complex operators must be complex!");
1074     // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd))
1075     llvm::Value *Tmp1 = Builder.CreateMul(LHSr, RHSr); // a*c
1076     llvm::Value *Tmp2 = Builder.CreateMul(LHSi, RHSi); // b*d
1077     llvm::Value *Tmp3 = Builder.CreateAdd(Tmp1, Tmp2); // ac+bd
1078 
1079     llvm::Value *Tmp4 = Builder.CreateMul(RHSr, RHSr); // c*c
1080     llvm::Value *Tmp5 = Builder.CreateMul(RHSi, RHSi); // d*d
1081     llvm::Value *Tmp6 = Builder.CreateAdd(Tmp4, Tmp5); // cc+dd
1082 
1083     llvm::Value *Tmp7 = Builder.CreateMul(LHSi, RHSr); // b*c
1084     llvm::Value *Tmp8 = Builder.CreateMul(LHSr, RHSi); // a*d
1085     llvm::Value *Tmp9 = Builder.CreateSub(Tmp7, Tmp8); // bc-ad
1086 
1087     if (Op.Ty->castAs<ComplexType>()->getElementType()->isUnsignedIntegerType()) {
1088       DSTr = Builder.CreateUDiv(Tmp3, Tmp6);
1089       DSTi = Builder.CreateUDiv(Tmp9, Tmp6);
1090     } else {
1091       DSTr = Builder.CreateSDiv(Tmp3, Tmp6);
1092       DSTi = Builder.CreateSDiv(Tmp9, Tmp6);
1093     }
1094   }
1095 
1096   return ComplexPairTy(DSTr, DSTi);
1097 }
1098 
1099 ComplexPairTy CodeGenFunction::EmitUnPromotedValue(ComplexPairTy result,
1100                                                    QualType UnPromotionType) {
1101   llvm::Type *ComplexElementTy =
1102       ConvertType(UnPromotionType->castAs<ComplexType>()->getElementType());
1103   if (result.first)
1104     result.first =
1105         Builder.CreateFPTrunc(result.first, ComplexElementTy, "unpromotion");
1106   if (result.second)
1107     result.second =
1108         Builder.CreateFPTrunc(result.second, ComplexElementTy, "unpromotion");
1109   return result;
1110 }
1111 
1112 ComplexPairTy CodeGenFunction::EmitPromotedValue(ComplexPairTy result,
1113                                                  QualType PromotionType) {
1114   llvm::Type *ComplexElementTy =
1115       ConvertType(PromotionType->castAs<ComplexType>()->getElementType());
1116   if (result.first)
1117     result.first = Builder.CreateFPExt(result.first, ComplexElementTy, "ext");
1118   if (result.second)
1119     result.second = Builder.CreateFPExt(result.second, ComplexElementTy, "ext");
1120 
1121   return result;
1122 }
1123 
1124 ComplexPairTy ComplexExprEmitter::EmitPromoted(const Expr *E,
1125                                                QualType PromotionType) {
1126   E = E->IgnoreParens();
1127   if (auto BO = dyn_cast<BinaryOperator>(E)) {
1128     switch (BO->getOpcode()) {
1129 #define HANDLE_BINOP(OP)                                                       \
1130   case BO_##OP:                                                                \
1131     return EmitBin##OP(EmitBinOps(BO, PromotionType));
1132       HANDLE_BINOP(Add)
1133       HANDLE_BINOP(Sub)
1134       HANDLE_BINOP(Mul)
1135       HANDLE_BINOP(Div)
1136 #undef HANDLE_BINOP
1137     default:
1138       break;
1139     }
1140   } else if (auto UO = dyn_cast<UnaryOperator>(E)) {
1141     switch (UO->getOpcode()) {
1142     case UO_Minus:
1143       return VisitMinus(UO, PromotionType);
1144     case UO_Plus:
1145       return VisitPlus(UO, PromotionType);
1146     default:
1147       break;
1148     }
1149   }
1150   auto result = Visit(const_cast<Expr *>(E));
1151   if (!PromotionType.isNull())
1152     return CGF.EmitPromotedValue(result, PromotionType);
1153   else
1154     return result;
1155 }
1156 
1157 ComplexPairTy CodeGenFunction::EmitPromotedComplexExpr(const Expr *E,
1158                                                        QualType DstTy) {
1159   return ComplexExprEmitter(*this).EmitPromoted(E, DstTy);
1160 }
1161 
1162 ComplexPairTy
1163 ComplexExprEmitter::EmitPromotedComplexOperand(const Expr *E,
1164                                                QualType OverallPromotionType) {
1165   if (E->getType()->isAnyComplexType()) {
1166     if (!OverallPromotionType.isNull())
1167       return CGF.EmitPromotedComplexExpr(E, OverallPromotionType);
1168     else
1169       return Visit(const_cast<Expr *>(E));
1170   } else {
1171     if (!OverallPromotionType.isNull()) {
1172       QualType ComplexElementTy =
1173           OverallPromotionType->castAs<ComplexType>()->getElementType();
1174       return ComplexPairTy(CGF.EmitPromotedScalarExpr(E, ComplexElementTy),
1175                            nullptr);
1176     } else {
1177       return ComplexPairTy(CGF.EmitScalarExpr(E), nullptr);
1178     }
1179   }
1180 }
1181 
1182 ComplexExprEmitter::BinOpInfo
1183 ComplexExprEmitter::EmitBinOps(const BinaryOperator *E,
1184                                QualType PromotionType) {
1185   TestAndClearIgnoreReal();
1186   TestAndClearIgnoreImag();
1187   BinOpInfo Ops;
1188 
1189   Ops.LHS = EmitPromotedComplexOperand(E->getLHS(), PromotionType);
1190   Ops.RHS = EmitPromotedComplexOperand(E->getRHS(), PromotionType);
1191   if (!PromotionType.isNull())
1192     Ops.Ty = PromotionType;
1193   else
1194     Ops.Ty = E->getType();
1195   Ops.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
1196   return Ops;
1197 }
1198 
1199 
1200 LValue ComplexExprEmitter::
1201 EmitCompoundAssignLValue(const CompoundAssignOperator *E,
1202           ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&),
1203                          RValue &Val) {
1204   TestAndClearIgnoreReal();
1205   TestAndClearIgnoreImag();
1206   QualType LHSTy = E->getLHS()->getType();
1207   if (const AtomicType *AT = LHSTy->getAs<AtomicType>())
1208     LHSTy = AT->getValueType();
1209 
1210   BinOpInfo OpInfo;
1211   OpInfo.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
1212   CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, OpInfo.FPFeatures);
1213 
1214   // Load the RHS and LHS operands.
1215   // __block variables need to have the rhs evaluated first, plus this should
1216   // improve codegen a little.
1217   QualType PromotionTypeCR;
1218   PromotionTypeCR = getPromotionType(E->getStoredFPFeaturesOrDefault(),
1219                                      E->getComputationResultType());
1220   if (PromotionTypeCR.isNull())
1221     PromotionTypeCR = E->getComputationResultType();
1222   OpInfo.Ty = PromotionTypeCR;
1223   QualType ComplexElementTy =
1224       OpInfo.Ty->castAs<ComplexType>()->getElementType();
1225   QualType PromotionTypeRHS = getPromotionType(
1226       E->getStoredFPFeaturesOrDefault(), E->getRHS()->getType());
1227 
1228   // The RHS should have been converted to the computation type.
1229   if (E->getRHS()->getType()->isRealFloatingType()) {
1230     if (!PromotionTypeRHS.isNull())
1231       OpInfo.RHS = ComplexPairTy(
1232           CGF.EmitPromotedScalarExpr(E->getRHS(), PromotionTypeRHS), nullptr);
1233     else {
1234       assert(CGF.getContext().hasSameUnqualifiedType(ComplexElementTy,
1235                                                      E->getRHS()->getType()));
1236 
1237       OpInfo.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr);
1238     }
1239   } else {
1240     if (!PromotionTypeRHS.isNull()) {
1241       OpInfo.RHS = ComplexPairTy(
1242           CGF.EmitPromotedComplexExpr(E->getRHS(), PromotionTypeRHS));
1243     } else {
1244       assert(CGF.getContext().hasSameUnqualifiedType(OpInfo.Ty,
1245                                                      E->getRHS()->getType()));
1246       OpInfo.RHS = Visit(E->getRHS());
1247     }
1248   }
1249 
1250   LValue LHS = CGF.EmitLValue(E->getLHS());
1251 
1252   // Load from the l-value and convert it.
1253   SourceLocation Loc = E->getExprLoc();
1254   QualType PromotionTypeLHS = getPromotionType(
1255       E->getStoredFPFeaturesOrDefault(), E->getComputationLHSType());
1256   if (LHSTy->isAnyComplexType()) {
1257     ComplexPairTy LHSVal = EmitLoadOfLValue(LHS, Loc);
1258     if (!PromotionTypeLHS.isNull())
1259       OpInfo.LHS =
1260           EmitComplexToComplexCast(LHSVal, LHSTy, PromotionTypeLHS, Loc);
1261     else
1262       OpInfo.LHS = EmitComplexToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc);
1263   } else {
1264     llvm::Value *LHSVal = CGF.EmitLoadOfScalar(LHS, Loc);
1265     // For floating point real operands we can directly pass the scalar form
1266     // to the binary operator emission and potentially get more efficient code.
1267     if (LHSTy->isRealFloatingType()) {
1268       QualType PromotedComplexElementTy;
1269       if (!PromotionTypeLHS.isNull()) {
1270         PromotedComplexElementTy =
1271             cast<ComplexType>(PromotionTypeLHS)->getElementType();
1272         if (!CGF.getContext().hasSameUnqualifiedType(PromotedComplexElementTy,
1273                                                      PromotionTypeLHS))
1274           LHSVal = CGF.EmitScalarConversion(LHSVal, LHSTy,
1275                                             PromotedComplexElementTy, Loc);
1276       } else {
1277         if (!CGF.getContext().hasSameUnqualifiedType(ComplexElementTy, LHSTy))
1278           LHSVal =
1279               CGF.EmitScalarConversion(LHSVal, LHSTy, ComplexElementTy, Loc);
1280       }
1281       OpInfo.LHS = ComplexPairTy(LHSVal, nullptr);
1282     } else {
1283       OpInfo.LHS = EmitScalarToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc);
1284     }
1285   }
1286 
1287   // Expand the binary operator.
1288   ComplexPairTy Result = (this->*Func)(OpInfo);
1289 
1290   // Truncate the result and store it into the LHS lvalue.
1291   if (LHSTy->isAnyComplexType()) {
1292     ComplexPairTy ResVal =
1293         EmitComplexToComplexCast(Result, OpInfo.Ty, LHSTy, Loc);
1294     EmitStoreOfComplex(ResVal, LHS, /*isInit*/ false);
1295     Val = RValue::getComplex(ResVal);
1296   } else {
1297     llvm::Value *ResVal =
1298         CGF.EmitComplexToScalarConversion(Result, OpInfo.Ty, LHSTy, Loc);
1299     CGF.EmitStoreOfScalar(ResVal, LHS, /*isInit*/ false);
1300     Val = RValue::get(ResVal);
1301   }
1302 
1303   return LHS;
1304 }
1305 
1306 // Compound assignments.
1307 ComplexPairTy ComplexExprEmitter::
1308 EmitCompoundAssign(const CompoundAssignOperator *E,
1309                    ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&)){
1310   RValue Val;
1311   LValue LV = EmitCompoundAssignLValue(E, Func, Val);
1312 
1313   // The result of an assignment in C is the assigned r-value.
1314   if (!CGF.getLangOpts().CPlusPlus)
1315     return Val.getComplexVal();
1316 
1317   // If the lvalue is non-volatile, return the computed value of the assignment.
1318   if (!LV.isVolatileQualified())
1319     return Val.getComplexVal();
1320 
1321   return EmitLoadOfLValue(LV, E->getExprLoc());
1322 }
1323 
1324 LValue ComplexExprEmitter::EmitBinAssignLValue(const BinaryOperator *E,
1325                                                ComplexPairTy &Val) {
1326   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
1327                                                  E->getRHS()->getType()) &&
1328          "Invalid assignment");
1329   TestAndClearIgnoreReal();
1330   TestAndClearIgnoreImag();
1331 
1332   // Emit the RHS.  __block variables need the RHS evaluated first.
1333   Val = Visit(E->getRHS());
1334 
1335   // Compute the address to store into.
1336   LValue LHS = CGF.EmitLValue(E->getLHS());
1337 
1338   // Store the result value into the LHS lvalue.
1339   EmitStoreOfComplex(Val, LHS, /*isInit*/ false);
1340 
1341   return LHS;
1342 }
1343 
1344 ComplexPairTy ComplexExprEmitter::VisitBinAssign(const BinaryOperator *E) {
1345   ComplexPairTy Val;
1346   LValue LV = EmitBinAssignLValue(E, Val);
1347 
1348   // The result of an assignment in C is the assigned r-value.
1349   if (!CGF.getLangOpts().CPlusPlus)
1350     return Val;
1351 
1352   // If the lvalue is non-volatile, return the computed value of the assignment.
1353   if (!LV.isVolatileQualified())
1354     return Val;
1355 
1356   return EmitLoadOfLValue(LV, E->getExprLoc());
1357 }
1358 
1359 ComplexPairTy ComplexExprEmitter::VisitBinComma(const BinaryOperator *E) {
1360   CGF.EmitIgnoredExpr(E->getLHS());
1361   return Visit(E->getRHS());
1362 }
1363 
1364 ComplexPairTy ComplexExprEmitter::
1365 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
1366   TestAndClearIgnoreReal();
1367   TestAndClearIgnoreImag();
1368   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
1369   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
1370   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
1371 
1372   // Bind the common expression if necessary.
1373   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
1374 
1375 
1376   CodeGenFunction::ConditionalEvaluation eval(CGF);
1377   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock,
1378                            CGF.getProfileCount(E));
1379 
1380   eval.begin(CGF);
1381   CGF.EmitBlock(LHSBlock);
1382   if (llvm::EnableSingleByteCoverage)
1383     CGF.incrementProfileCounter(E->getTrueExpr());
1384   else
1385     CGF.incrementProfileCounter(E);
1386 
1387   ComplexPairTy LHS = Visit(E->getTrueExpr());
1388   LHSBlock = Builder.GetInsertBlock();
1389   CGF.EmitBranch(ContBlock);
1390   eval.end(CGF);
1391 
1392   eval.begin(CGF);
1393   CGF.EmitBlock(RHSBlock);
1394   if (llvm::EnableSingleByteCoverage)
1395     CGF.incrementProfileCounter(E->getFalseExpr());
1396   ComplexPairTy RHS = Visit(E->getFalseExpr());
1397   RHSBlock = Builder.GetInsertBlock();
1398   CGF.EmitBlock(ContBlock);
1399   if (llvm::EnableSingleByteCoverage)
1400     CGF.incrementProfileCounter(E);
1401   eval.end(CGF);
1402 
1403   // Create a PHI node for the real part.
1404   llvm::PHINode *RealPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.r");
1405   RealPN->addIncoming(LHS.first, LHSBlock);
1406   RealPN->addIncoming(RHS.first, RHSBlock);
1407 
1408   // Create a PHI node for the imaginary part.
1409   llvm::PHINode *ImagPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.i");
1410   ImagPN->addIncoming(LHS.second, LHSBlock);
1411   ImagPN->addIncoming(RHS.second, RHSBlock);
1412 
1413   return ComplexPairTy(RealPN, ImagPN);
1414 }
1415 
1416 ComplexPairTy ComplexExprEmitter::VisitChooseExpr(ChooseExpr *E) {
1417   return Visit(E->getChosenSubExpr());
1418 }
1419 
1420 ComplexPairTy ComplexExprEmitter::VisitInitListExpr(InitListExpr *E) {
1421     bool Ignore = TestAndClearIgnoreReal();
1422     (void)Ignore;
1423     assert (Ignore == false && "init list ignored");
1424     Ignore = TestAndClearIgnoreImag();
1425     (void)Ignore;
1426     assert (Ignore == false && "init list ignored");
1427 
1428   if (E->getNumInits() == 2) {
1429     llvm::Value *Real = CGF.EmitScalarExpr(E->getInit(0));
1430     llvm::Value *Imag = CGF.EmitScalarExpr(E->getInit(1));
1431     return ComplexPairTy(Real, Imag);
1432   } else if (E->getNumInits() == 1) {
1433     return Visit(E->getInit(0));
1434   }
1435 
1436   // Empty init list initializes to null
1437   assert(E->getNumInits() == 0 && "Unexpected number of inits");
1438   QualType Ty = E->getType()->castAs<ComplexType>()->getElementType();
1439   llvm::Type* LTy = CGF.ConvertType(Ty);
1440   llvm::Value* zeroConstant = llvm::Constant::getNullValue(LTy);
1441   return ComplexPairTy(zeroConstant, zeroConstant);
1442 }
1443 
1444 ComplexPairTy ComplexExprEmitter::VisitVAArgExpr(VAArgExpr *E) {
1445   Address ArgValue = Address::invalid();
1446   RValue RV = CGF.EmitVAArg(E, ArgValue);
1447 
1448   if (!ArgValue.isValid()) {
1449     CGF.ErrorUnsupported(E, "complex va_arg expression");
1450     llvm::Type *EltTy =
1451       CGF.ConvertType(E->getType()->castAs<ComplexType>()->getElementType());
1452     llvm::Value *U = llvm::PoisonValue::get(EltTy);
1453     return ComplexPairTy(U, U);
1454   }
1455 
1456   return RV.getComplexVal();
1457 }
1458 
1459 //===----------------------------------------------------------------------===//
1460 //                         Entry Point into this File
1461 //===----------------------------------------------------------------------===//
1462 
1463 /// EmitComplexExpr - Emit the computation of the specified expression of
1464 /// complex type, ignoring the result.
1465 ComplexPairTy CodeGenFunction::EmitComplexExpr(const Expr *E, bool IgnoreReal,
1466                                                bool IgnoreImag) {
1467   assert(E && getComplexType(E->getType()) &&
1468          "Invalid complex expression to emit");
1469 
1470   return ComplexExprEmitter(*this, IgnoreReal, IgnoreImag)
1471       .Visit(const_cast<Expr *>(E));
1472 }
1473 
1474 void CodeGenFunction::EmitComplexExprIntoLValue(const Expr *E, LValue dest,
1475                                                 bool isInit) {
1476   assert(E && getComplexType(E->getType()) &&
1477          "Invalid complex expression to emit");
1478   ComplexExprEmitter Emitter(*this);
1479   ComplexPairTy Val = Emitter.Visit(const_cast<Expr*>(E));
1480   Emitter.EmitStoreOfComplex(Val, dest, isInit);
1481 }
1482 
1483 /// EmitStoreOfComplex - Store a complex number into the specified l-value.
1484 void CodeGenFunction::EmitStoreOfComplex(ComplexPairTy V, LValue dest,
1485                                          bool isInit) {
1486   ComplexExprEmitter(*this).EmitStoreOfComplex(V, dest, isInit);
1487 }
1488 
1489 /// EmitLoadOfComplex - Load a complex number from the specified address.
1490 ComplexPairTy CodeGenFunction::EmitLoadOfComplex(LValue src,
1491                                                  SourceLocation loc) {
1492   return ComplexExprEmitter(*this).EmitLoadOfLValue(src, loc);
1493 }
1494 
1495 LValue CodeGenFunction::EmitComplexAssignmentLValue(const BinaryOperator *E) {
1496   assert(E->getOpcode() == BO_Assign);
1497   ComplexPairTy Val; // ignored
1498   LValue LVal = ComplexExprEmitter(*this).EmitBinAssignLValue(E, Val);
1499   if (getLangOpts().OpenMP)
1500     CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
1501                                                               E->getLHS());
1502   return LVal;
1503 }
1504 
1505 typedef ComplexPairTy (ComplexExprEmitter::*CompoundFunc)(
1506     const ComplexExprEmitter::BinOpInfo &);
1507 
1508 static CompoundFunc getComplexOp(BinaryOperatorKind Op) {
1509   switch (Op) {
1510   case BO_MulAssign: return &ComplexExprEmitter::EmitBinMul;
1511   case BO_DivAssign: return &ComplexExprEmitter::EmitBinDiv;
1512   case BO_SubAssign: return &ComplexExprEmitter::EmitBinSub;
1513   case BO_AddAssign: return &ComplexExprEmitter::EmitBinAdd;
1514   default:
1515     llvm_unreachable("unexpected complex compound assignment");
1516   }
1517 }
1518 
1519 LValue CodeGenFunction::
1520 EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E) {
1521   CompoundFunc Op = getComplexOp(E->getOpcode());
1522   RValue Val;
1523   return ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val);
1524 }
1525 
1526 LValue CodeGenFunction::
1527 EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
1528                                     llvm::Value *&Result) {
1529   CompoundFunc Op = getComplexOp(E->getOpcode());
1530   RValue Val;
1531   LValue Ret = ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val);
1532   Result = Val.getScalarVal();
1533   return Ret;
1534 }
1535