1 //===--- CGExprComplex.cpp - Emit LLVM Code for Complex Exprs -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Expr nodes with complex types as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGOpenMPRuntime.h" 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "ConstantEmitter.h" 17 #include "clang/AST/StmtVisitor.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/Instructions.h" 21 #include "llvm/IR/MDBuilder.h" 22 #include "llvm/IR/Metadata.h" 23 #include <algorithm> 24 using namespace clang; 25 using namespace CodeGen; 26 27 //===----------------------------------------------------------------------===// 28 // Complex Expression Emitter 29 //===----------------------------------------------------------------------===// 30 31 namespace llvm { 32 extern cl::opt<bool> EnableSingleByteCoverage; 33 } // namespace llvm 34 35 typedef CodeGenFunction::ComplexPairTy ComplexPairTy; 36 37 /// Return the complex type that we are meant to emit. 38 static const ComplexType *getComplexType(QualType type) { 39 type = type.getCanonicalType(); 40 if (const ComplexType *comp = dyn_cast<ComplexType>(type)) { 41 return comp; 42 } else { 43 return cast<ComplexType>(cast<AtomicType>(type)->getValueType()); 44 } 45 } 46 47 namespace { 48 class ComplexExprEmitter 49 : public StmtVisitor<ComplexExprEmitter, ComplexPairTy> { 50 CodeGenFunction &CGF; 51 CGBuilderTy &Builder; 52 bool IgnoreReal; 53 bool IgnoreImag; 54 public: 55 ComplexExprEmitter(CodeGenFunction &cgf, bool ir=false, bool ii=false) 56 : CGF(cgf), Builder(CGF.Builder), IgnoreReal(ir), IgnoreImag(ii) { 57 } 58 59 60 //===--------------------------------------------------------------------===// 61 // Utilities 62 //===--------------------------------------------------------------------===// 63 64 bool TestAndClearIgnoreReal() { 65 bool I = IgnoreReal; 66 IgnoreReal = false; 67 return I; 68 } 69 bool TestAndClearIgnoreImag() { 70 bool I = IgnoreImag; 71 IgnoreImag = false; 72 return I; 73 } 74 75 /// EmitLoadOfLValue - Given an expression with complex type that represents a 76 /// value l-value, this method emits the address of the l-value, then loads 77 /// and returns the result. 78 ComplexPairTy EmitLoadOfLValue(const Expr *E) { 79 return EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc()); 80 } 81 82 ComplexPairTy EmitLoadOfLValue(LValue LV, SourceLocation Loc); 83 84 /// EmitStoreOfComplex - Store the specified real/imag parts into the 85 /// specified value pointer. 86 void EmitStoreOfComplex(ComplexPairTy Val, LValue LV, bool isInit); 87 88 /// Emit a cast from complex value Val to DestType. 89 ComplexPairTy EmitComplexToComplexCast(ComplexPairTy Val, QualType SrcType, 90 QualType DestType, SourceLocation Loc); 91 /// Emit a cast from scalar value Val to DestType. 92 ComplexPairTy EmitScalarToComplexCast(llvm::Value *Val, QualType SrcType, 93 QualType DestType, SourceLocation Loc); 94 95 //===--------------------------------------------------------------------===// 96 // Visitor Methods 97 //===--------------------------------------------------------------------===// 98 99 ComplexPairTy Visit(Expr *E) { 100 ApplyDebugLocation DL(CGF, E); 101 return StmtVisitor<ComplexExprEmitter, ComplexPairTy>::Visit(E); 102 } 103 104 ComplexPairTy VisitStmt(Stmt *S) { 105 S->dump(llvm::errs(), CGF.getContext()); 106 llvm_unreachable("Stmt can't have complex result type!"); 107 } 108 ComplexPairTy VisitExpr(Expr *S); 109 ComplexPairTy VisitConstantExpr(ConstantExpr *E) { 110 if (llvm::Constant *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) 111 return ComplexPairTy(Result->getAggregateElement(0U), 112 Result->getAggregateElement(1U)); 113 return Visit(E->getSubExpr()); 114 } 115 ComplexPairTy VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr());} 116 ComplexPairTy VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 117 return Visit(GE->getResultExpr()); 118 } 119 ComplexPairTy VisitImaginaryLiteral(const ImaginaryLiteral *IL); 120 ComplexPairTy 121 VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) { 122 return Visit(PE->getReplacement()); 123 } 124 ComplexPairTy VisitCoawaitExpr(CoawaitExpr *S) { 125 return CGF.EmitCoawaitExpr(*S).getComplexVal(); 126 } 127 ComplexPairTy VisitCoyieldExpr(CoyieldExpr *S) { 128 return CGF.EmitCoyieldExpr(*S).getComplexVal(); 129 } 130 ComplexPairTy VisitUnaryCoawait(const UnaryOperator *E) { 131 return Visit(E->getSubExpr()); 132 } 133 134 ComplexPairTy emitConstant(const CodeGenFunction::ConstantEmission &Constant, 135 Expr *E) { 136 assert(Constant && "not a constant"); 137 if (Constant.isReference()) 138 return EmitLoadOfLValue(Constant.getReferenceLValue(CGF, E), 139 E->getExprLoc()); 140 141 llvm::Constant *pair = Constant.getValue(); 142 return ComplexPairTy(pair->getAggregateElement(0U), 143 pair->getAggregateElement(1U)); 144 } 145 146 // l-values. 147 ComplexPairTy VisitDeclRefExpr(DeclRefExpr *E) { 148 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) 149 return emitConstant(Constant, E); 150 return EmitLoadOfLValue(E); 151 } 152 ComplexPairTy VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 153 return EmitLoadOfLValue(E); 154 } 155 ComplexPairTy VisitObjCMessageExpr(ObjCMessageExpr *E) { 156 return CGF.EmitObjCMessageExpr(E).getComplexVal(); 157 } 158 ComplexPairTy VisitArraySubscriptExpr(Expr *E) { return EmitLoadOfLValue(E); } 159 ComplexPairTy VisitMemberExpr(MemberExpr *ME) { 160 if (CodeGenFunction::ConstantEmission Constant = 161 CGF.tryEmitAsConstant(ME)) { 162 CGF.EmitIgnoredExpr(ME->getBase()); 163 return emitConstant(Constant, ME); 164 } 165 return EmitLoadOfLValue(ME); 166 } 167 ComplexPairTy VisitOpaqueValueExpr(OpaqueValueExpr *E) { 168 if (E->isGLValue()) 169 return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E), 170 E->getExprLoc()); 171 return CGF.getOrCreateOpaqueRValueMapping(E).getComplexVal(); 172 } 173 174 ComplexPairTy VisitPseudoObjectExpr(PseudoObjectExpr *E) { 175 return CGF.EmitPseudoObjectRValue(E).getComplexVal(); 176 } 177 178 // FIXME: CompoundLiteralExpr 179 180 ComplexPairTy EmitCast(CastKind CK, Expr *Op, QualType DestTy); 181 ComplexPairTy VisitImplicitCastExpr(ImplicitCastExpr *E) { 182 // Unlike for scalars, we don't have to worry about function->ptr demotion 183 // here. 184 if (E->changesVolatileQualification()) 185 return EmitLoadOfLValue(E); 186 return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType()); 187 } 188 ComplexPairTy VisitCastExpr(CastExpr *E) { 189 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E)) 190 CGF.CGM.EmitExplicitCastExprType(ECE, &CGF); 191 if (E->changesVolatileQualification()) 192 return EmitLoadOfLValue(E); 193 return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType()); 194 } 195 ComplexPairTy VisitCallExpr(const CallExpr *E); 196 ComplexPairTy VisitStmtExpr(const StmtExpr *E); 197 198 // Operators. 199 ComplexPairTy VisitPrePostIncDec(const UnaryOperator *E, 200 bool isInc, bool isPre) { 201 LValue LV = CGF.EmitLValue(E->getSubExpr()); 202 return CGF.EmitComplexPrePostIncDec(E, LV, isInc, isPre); 203 } 204 ComplexPairTy VisitUnaryPostDec(const UnaryOperator *E) { 205 return VisitPrePostIncDec(E, false, false); 206 } 207 ComplexPairTy VisitUnaryPostInc(const UnaryOperator *E) { 208 return VisitPrePostIncDec(E, true, false); 209 } 210 ComplexPairTy VisitUnaryPreDec(const UnaryOperator *E) { 211 return VisitPrePostIncDec(E, false, true); 212 } 213 ComplexPairTy VisitUnaryPreInc(const UnaryOperator *E) { 214 return VisitPrePostIncDec(E, true, true); 215 } 216 ComplexPairTy VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); } 217 218 ComplexPairTy VisitUnaryPlus(const UnaryOperator *E, 219 QualType PromotionType = QualType()); 220 ComplexPairTy VisitPlus(const UnaryOperator *E, QualType PromotionType); 221 ComplexPairTy VisitUnaryMinus(const UnaryOperator *E, 222 QualType PromotionType = QualType()); 223 ComplexPairTy VisitMinus(const UnaryOperator *E, QualType PromotionType); 224 ComplexPairTy VisitUnaryNot (const UnaryOperator *E); 225 // LNot,Real,Imag never return complex. 226 ComplexPairTy VisitUnaryExtension(const UnaryOperator *E) { 227 return Visit(E->getSubExpr()); 228 } 229 ComplexPairTy VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 230 CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE); 231 return Visit(DAE->getExpr()); 232 } 233 ComplexPairTy VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 234 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE); 235 return Visit(DIE->getExpr()); 236 } 237 ComplexPairTy VisitExprWithCleanups(ExprWithCleanups *E) { 238 CodeGenFunction::RunCleanupsScope Scope(CGF); 239 ComplexPairTy Vals = Visit(E->getSubExpr()); 240 // Defend against dominance problems caused by jumps out of expression 241 // evaluation through the shared cleanup block. 242 Scope.ForceCleanup({&Vals.first, &Vals.second}); 243 return Vals; 244 } 245 ComplexPairTy VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 246 assert(E->getType()->isAnyComplexType() && "Expected complex type!"); 247 QualType Elem = E->getType()->castAs<ComplexType>()->getElementType(); 248 llvm::Constant *Null = llvm::Constant::getNullValue(CGF.ConvertType(Elem)); 249 return ComplexPairTy(Null, Null); 250 } 251 ComplexPairTy VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 252 assert(E->getType()->isAnyComplexType() && "Expected complex type!"); 253 QualType Elem = E->getType()->castAs<ComplexType>()->getElementType(); 254 llvm::Constant *Null = 255 llvm::Constant::getNullValue(CGF.ConvertType(Elem)); 256 return ComplexPairTy(Null, Null); 257 } 258 259 struct BinOpInfo { 260 ComplexPairTy LHS; 261 ComplexPairTy RHS; 262 QualType Ty; // Computation Type. 263 FPOptions FPFeatures; 264 }; 265 266 BinOpInfo EmitBinOps(const BinaryOperator *E, 267 QualType PromotionTy = QualType()); 268 ComplexPairTy EmitPromoted(const Expr *E, QualType PromotionTy); 269 ComplexPairTy EmitPromotedComplexOperand(const Expr *E, QualType PromotionTy); 270 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 271 ComplexPairTy (ComplexExprEmitter::*Func) 272 (const BinOpInfo &), 273 RValue &Val); 274 ComplexPairTy EmitCompoundAssign(const CompoundAssignOperator *E, 275 ComplexPairTy (ComplexExprEmitter::*Func) 276 (const BinOpInfo &)); 277 278 ComplexPairTy EmitBinAdd(const BinOpInfo &Op); 279 ComplexPairTy EmitBinSub(const BinOpInfo &Op); 280 ComplexPairTy EmitBinMul(const BinOpInfo &Op); 281 ComplexPairTy EmitBinDiv(const BinOpInfo &Op); 282 ComplexPairTy EmitAlgebraicDiv(llvm::Value *A, llvm::Value *B, llvm::Value *C, 283 llvm::Value *D); 284 ComplexPairTy EmitRangeReductionDiv(llvm::Value *A, llvm::Value *B, 285 llvm::Value *C, llvm::Value *D); 286 287 ComplexPairTy EmitComplexBinOpLibCall(StringRef LibCallName, 288 const BinOpInfo &Op); 289 290 QualType getPromotionType(QualType Ty) { 291 if (auto *CT = Ty->getAs<ComplexType>()) { 292 QualType ElementType = CT->getElementType(); 293 if (ElementType.UseExcessPrecision(CGF.getContext())) 294 return CGF.getContext().getComplexType(CGF.getContext().FloatTy); 295 } 296 if (Ty.UseExcessPrecision(CGF.getContext())) 297 return CGF.getContext().FloatTy; 298 return QualType(); 299 } 300 301 #define HANDLEBINOP(OP) \ 302 ComplexPairTy VisitBin##OP(const BinaryOperator *E) { \ 303 QualType promotionTy = getPromotionType(E->getType()); \ 304 ComplexPairTy result = EmitBin##OP(EmitBinOps(E, promotionTy)); \ 305 if (!promotionTy.isNull()) \ 306 result = \ 307 CGF.EmitUnPromotedValue(result, E->getType()); \ 308 return result; \ 309 } 310 311 HANDLEBINOP(Mul) 312 HANDLEBINOP(Div) 313 HANDLEBINOP(Add) 314 HANDLEBINOP(Sub) 315 #undef HANDLEBINOP 316 317 ComplexPairTy VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) { 318 return Visit(E->getSemanticForm()); 319 } 320 321 // Compound assignments. 322 ComplexPairTy VisitBinAddAssign(const CompoundAssignOperator *E) { 323 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinAdd); 324 } 325 ComplexPairTy VisitBinSubAssign(const CompoundAssignOperator *E) { 326 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinSub); 327 } 328 ComplexPairTy VisitBinMulAssign(const CompoundAssignOperator *E) { 329 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinMul); 330 } 331 ComplexPairTy VisitBinDivAssign(const CompoundAssignOperator *E) { 332 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinDiv); 333 } 334 335 // GCC rejects rem/and/or/xor for integer complex. 336 // Logical and/or always return int, never complex. 337 338 // No comparisons produce a complex result. 339 340 LValue EmitBinAssignLValue(const BinaryOperator *E, 341 ComplexPairTy &Val); 342 ComplexPairTy VisitBinAssign (const BinaryOperator *E); 343 ComplexPairTy VisitBinComma (const BinaryOperator *E); 344 345 346 ComplexPairTy 347 VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 348 ComplexPairTy VisitChooseExpr(ChooseExpr *CE); 349 350 ComplexPairTy VisitInitListExpr(InitListExpr *E); 351 352 ComplexPairTy VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 353 return EmitLoadOfLValue(E); 354 } 355 356 ComplexPairTy VisitVAArgExpr(VAArgExpr *E); 357 358 ComplexPairTy VisitAtomicExpr(AtomicExpr *E) { 359 return CGF.EmitAtomicExpr(E).getComplexVal(); 360 } 361 362 ComplexPairTy VisitPackIndexingExpr(PackIndexingExpr *E) { 363 return Visit(E->getSelectedExpr()); 364 } 365 }; 366 } // end anonymous namespace. 367 368 //===----------------------------------------------------------------------===// 369 // Utilities 370 //===----------------------------------------------------------------------===// 371 372 Address CodeGenFunction::emitAddrOfRealComponent(Address addr, 373 QualType complexType) { 374 return Builder.CreateStructGEP(addr, 0, addr.getName() + ".realp"); 375 } 376 377 Address CodeGenFunction::emitAddrOfImagComponent(Address addr, 378 QualType complexType) { 379 return Builder.CreateStructGEP(addr, 1, addr.getName() + ".imagp"); 380 } 381 382 /// EmitLoadOfLValue - Given an RValue reference for a complex, emit code to 383 /// load the real and imaginary pieces, returning them as Real/Imag. 384 ComplexPairTy ComplexExprEmitter::EmitLoadOfLValue(LValue lvalue, 385 SourceLocation loc) { 386 assert(lvalue.isSimple() && "non-simple complex l-value?"); 387 if (lvalue.getType()->isAtomicType()) 388 return CGF.EmitAtomicLoad(lvalue, loc).getComplexVal(); 389 390 Address SrcPtr = lvalue.getAddress(CGF); 391 bool isVolatile = lvalue.isVolatileQualified(); 392 393 llvm::Value *Real = nullptr, *Imag = nullptr; 394 395 if (!IgnoreReal || isVolatile) { 396 Address RealP = CGF.emitAddrOfRealComponent(SrcPtr, lvalue.getType()); 397 Real = Builder.CreateLoad(RealP, isVolatile, SrcPtr.getName() + ".real"); 398 } 399 400 if (!IgnoreImag || isVolatile) { 401 Address ImagP = CGF.emitAddrOfImagComponent(SrcPtr, lvalue.getType()); 402 Imag = Builder.CreateLoad(ImagP, isVolatile, SrcPtr.getName() + ".imag"); 403 } 404 405 return ComplexPairTy(Real, Imag); 406 } 407 408 /// EmitStoreOfComplex - Store the specified real/imag parts into the 409 /// specified value pointer. 410 void ComplexExprEmitter::EmitStoreOfComplex(ComplexPairTy Val, LValue lvalue, 411 bool isInit) { 412 if (lvalue.getType()->isAtomicType() || 413 (!isInit && CGF.LValueIsSuitableForInlineAtomic(lvalue))) 414 return CGF.EmitAtomicStore(RValue::getComplex(Val), lvalue, isInit); 415 416 Address Ptr = lvalue.getAddress(CGF); 417 Address RealPtr = CGF.emitAddrOfRealComponent(Ptr, lvalue.getType()); 418 Address ImagPtr = CGF.emitAddrOfImagComponent(Ptr, lvalue.getType()); 419 420 Builder.CreateStore(Val.first, RealPtr, lvalue.isVolatileQualified()); 421 Builder.CreateStore(Val.second, ImagPtr, lvalue.isVolatileQualified()); 422 } 423 424 425 426 //===----------------------------------------------------------------------===// 427 // Visitor Methods 428 //===----------------------------------------------------------------------===// 429 430 ComplexPairTy ComplexExprEmitter::VisitExpr(Expr *E) { 431 CGF.ErrorUnsupported(E, "complex expression"); 432 llvm::Type *EltTy = 433 CGF.ConvertType(getComplexType(E->getType())->getElementType()); 434 llvm::Value *U = llvm::UndefValue::get(EltTy); 435 return ComplexPairTy(U, U); 436 } 437 438 ComplexPairTy ComplexExprEmitter:: 439 VisitImaginaryLiteral(const ImaginaryLiteral *IL) { 440 llvm::Value *Imag = CGF.EmitScalarExpr(IL->getSubExpr()); 441 return ComplexPairTy(llvm::Constant::getNullValue(Imag->getType()), Imag); 442 } 443 444 445 ComplexPairTy ComplexExprEmitter::VisitCallExpr(const CallExpr *E) { 446 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 447 return EmitLoadOfLValue(E); 448 449 return CGF.EmitCallExpr(E).getComplexVal(); 450 } 451 452 ComplexPairTy ComplexExprEmitter::VisitStmtExpr(const StmtExpr *E) { 453 CodeGenFunction::StmtExprEvaluation eval(CGF); 454 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), true); 455 assert(RetAlloca.isValid() && "Expected complex return value"); 456 return EmitLoadOfLValue(CGF.MakeAddrLValue(RetAlloca, E->getType()), 457 E->getExprLoc()); 458 } 459 460 /// Emit a cast from complex value Val to DestType. 461 ComplexPairTy ComplexExprEmitter::EmitComplexToComplexCast(ComplexPairTy Val, 462 QualType SrcType, 463 QualType DestType, 464 SourceLocation Loc) { 465 // Get the src/dest element type. 466 SrcType = SrcType->castAs<ComplexType>()->getElementType(); 467 DestType = DestType->castAs<ComplexType>()->getElementType(); 468 469 // C99 6.3.1.6: When a value of complex type is converted to another 470 // complex type, both the real and imaginary parts follow the conversion 471 // rules for the corresponding real types. 472 if (Val.first) 473 Val.first = CGF.EmitScalarConversion(Val.first, SrcType, DestType, Loc); 474 if (Val.second) 475 Val.second = CGF.EmitScalarConversion(Val.second, SrcType, DestType, Loc); 476 return Val; 477 } 478 479 ComplexPairTy ComplexExprEmitter::EmitScalarToComplexCast(llvm::Value *Val, 480 QualType SrcType, 481 QualType DestType, 482 SourceLocation Loc) { 483 // Convert the input element to the element type of the complex. 484 DestType = DestType->castAs<ComplexType>()->getElementType(); 485 Val = CGF.EmitScalarConversion(Val, SrcType, DestType, Loc); 486 487 // Return (realval, 0). 488 return ComplexPairTy(Val, llvm::Constant::getNullValue(Val->getType())); 489 } 490 491 ComplexPairTy ComplexExprEmitter::EmitCast(CastKind CK, Expr *Op, 492 QualType DestTy) { 493 switch (CK) { 494 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 495 496 // Atomic to non-atomic casts may be more than a no-op for some platforms and 497 // for some types. 498 case CK_AtomicToNonAtomic: 499 case CK_NonAtomicToAtomic: 500 case CK_NoOp: 501 case CK_LValueToRValue: 502 case CK_UserDefinedConversion: 503 return Visit(Op); 504 505 case CK_LValueBitCast: { 506 LValue origLV = CGF.EmitLValue(Op); 507 Address V = origLV.getAddress(CGF).withElementType(CGF.ConvertType(DestTy)); 508 return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy), Op->getExprLoc()); 509 } 510 511 case CK_LValueToRValueBitCast: { 512 LValue SourceLVal = CGF.EmitLValue(Op); 513 Address Addr = SourceLVal.getAddress(CGF).withElementType( 514 CGF.ConvertTypeForMem(DestTy)); 515 LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy); 516 DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo()); 517 return EmitLoadOfLValue(DestLV, Op->getExprLoc()); 518 } 519 520 case CK_BitCast: 521 case CK_BaseToDerived: 522 case CK_DerivedToBase: 523 case CK_UncheckedDerivedToBase: 524 case CK_Dynamic: 525 case CK_ToUnion: 526 case CK_ArrayToPointerDecay: 527 case CK_FunctionToPointerDecay: 528 case CK_NullToPointer: 529 case CK_NullToMemberPointer: 530 case CK_BaseToDerivedMemberPointer: 531 case CK_DerivedToBaseMemberPointer: 532 case CK_MemberPointerToBoolean: 533 case CK_ReinterpretMemberPointer: 534 case CK_ConstructorConversion: 535 case CK_IntegralToPointer: 536 case CK_PointerToIntegral: 537 case CK_PointerToBoolean: 538 case CK_ToVoid: 539 case CK_VectorSplat: 540 case CK_IntegralCast: 541 case CK_BooleanToSignedIntegral: 542 case CK_IntegralToBoolean: 543 case CK_IntegralToFloating: 544 case CK_FloatingToIntegral: 545 case CK_FloatingToBoolean: 546 case CK_FloatingCast: 547 case CK_CPointerToObjCPointerCast: 548 case CK_BlockPointerToObjCPointerCast: 549 case CK_AnyPointerToBlockPointerCast: 550 case CK_ObjCObjectLValueCast: 551 case CK_FloatingComplexToReal: 552 case CK_FloatingComplexToBoolean: 553 case CK_IntegralComplexToReal: 554 case CK_IntegralComplexToBoolean: 555 case CK_ARCProduceObject: 556 case CK_ARCConsumeObject: 557 case CK_ARCReclaimReturnedObject: 558 case CK_ARCExtendBlockObject: 559 case CK_CopyAndAutoreleaseBlockObject: 560 case CK_BuiltinFnToFnPtr: 561 case CK_ZeroToOCLOpaqueType: 562 case CK_AddressSpaceConversion: 563 case CK_IntToOCLSampler: 564 case CK_FloatingToFixedPoint: 565 case CK_FixedPointToFloating: 566 case CK_FixedPointCast: 567 case CK_FixedPointToBoolean: 568 case CK_FixedPointToIntegral: 569 case CK_IntegralToFixedPoint: 570 case CK_MatrixCast: 571 case CK_HLSLVectorTruncation: 572 llvm_unreachable("invalid cast kind for complex value"); 573 574 case CK_FloatingRealToComplex: 575 case CK_IntegralRealToComplex: { 576 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op); 577 return EmitScalarToComplexCast(CGF.EmitScalarExpr(Op), Op->getType(), 578 DestTy, Op->getExprLoc()); 579 } 580 581 case CK_FloatingComplexCast: 582 case CK_FloatingComplexToIntegralComplex: 583 case CK_IntegralComplexCast: 584 case CK_IntegralComplexToFloatingComplex: { 585 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op); 586 return EmitComplexToComplexCast(Visit(Op), Op->getType(), DestTy, 587 Op->getExprLoc()); 588 } 589 } 590 591 llvm_unreachable("unknown cast resulting in complex value"); 592 } 593 594 ComplexPairTy ComplexExprEmitter::VisitUnaryPlus(const UnaryOperator *E, 595 QualType PromotionType) { 596 QualType promotionTy = PromotionType.isNull() 597 ? getPromotionType(E->getSubExpr()->getType()) 598 : PromotionType; 599 ComplexPairTy result = VisitPlus(E, promotionTy); 600 if (!promotionTy.isNull()) 601 return CGF.EmitUnPromotedValue(result, E->getSubExpr()->getType()); 602 return result; 603 } 604 605 ComplexPairTy ComplexExprEmitter::VisitPlus(const UnaryOperator *E, 606 QualType PromotionType) { 607 TestAndClearIgnoreReal(); 608 TestAndClearIgnoreImag(); 609 if (!PromotionType.isNull()) 610 return CGF.EmitPromotedComplexExpr(E->getSubExpr(), PromotionType); 611 return Visit(E->getSubExpr()); 612 } 613 614 ComplexPairTy ComplexExprEmitter::VisitUnaryMinus(const UnaryOperator *E, 615 QualType PromotionType) { 616 QualType promotionTy = PromotionType.isNull() 617 ? getPromotionType(E->getSubExpr()->getType()) 618 : PromotionType; 619 ComplexPairTy result = VisitMinus(E, promotionTy); 620 if (!promotionTy.isNull()) 621 return CGF.EmitUnPromotedValue(result, E->getSubExpr()->getType()); 622 return result; 623 } 624 ComplexPairTy ComplexExprEmitter::VisitMinus(const UnaryOperator *E, 625 QualType PromotionType) { 626 TestAndClearIgnoreReal(); 627 TestAndClearIgnoreImag(); 628 ComplexPairTy Op; 629 if (!PromotionType.isNull()) 630 Op = CGF.EmitPromotedComplexExpr(E->getSubExpr(), PromotionType); 631 else 632 Op = Visit(E->getSubExpr()); 633 634 llvm::Value *ResR, *ResI; 635 if (Op.first->getType()->isFloatingPointTy()) { 636 ResR = Builder.CreateFNeg(Op.first, "neg.r"); 637 ResI = Builder.CreateFNeg(Op.second, "neg.i"); 638 } else { 639 ResR = Builder.CreateNeg(Op.first, "neg.r"); 640 ResI = Builder.CreateNeg(Op.second, "neg.i"); 641 } 642 return ComplexPairTy(ResR, ResI); 643 } 644 645 ComplexPairTy ComplexExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 646 TestAndClearIgnoreReal(); 647 TestAndClearIgnoreImag(); 648 // ~(a+ib) = a + i*-b 649 ComplexPairTy Op = Visit(E->getSubExpr()); 650 llvm::Value *ResI; 651 if (Op.second->getType()->isFloatingPointTy()) 652 ResI = Builder.CreateFNeg(Op.second, "conj.i"); 653 else 654 ResI = Builder.CreateNeg(Op.second, "conj.i"); 655 656 return ComplexPairTy(Op.first, ResI); 657 } 658 659 ComplexPairTy ComplexExprEmitter::EmitBinAdd(const BinOpInfo &Op) { 660 llvm::Value *ResR, *ResI; 661 662 if (Op.LHS.first->getType()->isFloatingPointTy()) { 663 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op.FPFeatures); 664 ResR = Builder.CreateFAdd(Op.LHS.first, Op.RHS.first, "add.r"); 665 if (Op.LHS.second && Op.RHS.second) 666 ResI = Builder.CreateFAdd(Op.LHS.second, Op.RHS.second, "add.i"); 667 else 668 ResI = Op.LHS.second ? Op.LHS.second : Op.RHS.second; 669 assert(ResI && "Only one operand may be real!"); 670 } else { 671 ResR = Builder.CreateAdd(Op.LHS.first, Op.RHS.first, "add.r"); 672 assert(Op.LHS.second && Op.RHS.second && 673 "Both operands of integer complex operators must be complex!"); 674 ResI = Builder.CreateAdd(Op.LHS.second, Op.RHS.second, "add.i"); 675 } 676 return ComplexPairTy(ResR, ResI); 677 } 678 679 ComplexPairTy ComplexExprEmitter::EmitBinSub(const BinOpInfo &Op) { 680 llvm::Value *ResR, *ResI; 681 if (Op.LHS.first->getType()->isFloatingPointTy()) { 682 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op.FPFeatures); 683 ResR = Builder.CreateFSub(Op.LHS.first, Op.RHS.first, "sub.r"); 684 if (Op.LHS.second && Op.RHS.second) 685 ResI = Builder.CreateFSub(Op.LHS.second, Op.RHS.second, "sub.i"); 686 else 687 ResI = Op.LHS.second ? Op.LHS.second 688 : Builder.CreateFNeg(Op.RHS.second, "sub.i"); 689 assert(ResI && "Only one operand may be real!"); 690 } else { 691 ResR = Builder.CreateSub(Op.LHS.first, Op.RHS.first, "sub.r"); 692 assert(Op.LHS.second && Op.RHS.second && 693 "Both operands of integer complex operators must be complex!"); 694 ResI = Builder.CreateSub(Op.LHS.second, Op.RHS.second, "sub.i"); 695 } 696 return ComplexPairTy(ResR, ResI); 697 } 698 699 /// Emit a libcall for a binary operation on complex types. 700 ComplexPairTy ComplexExprEmitter::EmitComplexBinOpLibCall(StringRef LibCallName, 701 const BinOpInfo &Op) { 702 CallArgList Args; 703 Args.add(RValue::get(Op.LHS.first), 704 Op.Ty->castAs<ComplexType>()->getElementType()); 705 Args.add(RValue::get(Op.LHS.second), 706 Op.Ty->castAs<ComplexType>()->getElementType()); 707 Args.add(RValue::get(Op.RHS.first), 708 Op.Ty->castAs<ComplexType>()->getElementType()); 709 Args.add(RValue::get(Op.RHS.second), 710 Op.Ty->castAs<ComplexType>()->getElementType()); 711 712 // We *must* use the full CG function call building logic here because the 713 // complex type has special ABI handling. We also should not forget about 714 // special calling convention which may be used for compiler builtins. 715 716 // We create a function qualified type to state that this call does not have 717 // any exceptions. 718 FunctionProtoType::ExtProtoInfo EPI; 719 EPI = EPI.withExceptionSpec( 720 FunctionProtoType::ExceptionSpecInfo(EST_BasicNoexcept)); 721 SmallVector<QualType, 4> ArgsQTys( 722 4, Op.Ty->castAs<ComplexType>()->getElementType()); 723 QualType FQTy = CGF.getContext().getFunctionType(Op.Ty, ArgsQTys, EPI); 724 const CGFunctionInfo &FuncInfo = CGF.CGM.getTypes().arrangeFreeFunctionCall( 725 Args, cast<FunctionType>(FQTy.getTypePtr()), false); 726 727 llvm::FunctionType *FTy = CGF.CGM.getTypes().GetFunctionType(FuncInfo); 728 llvm::FunctionCallee Func = CGF.CGM.CreateRuntimeFunction( 729 FTy, LibCallName, llvm::AttributeList(), true); 730 CGCallee Callee = CGCallee::forDirect(Func, FQTy->getAs<FunctionProtoType>()); 731 732 llvm::CallBase *Call; 733 RValue Res = CGF.EmitCall(FuncInfo, Callee, ReturnValueSlot(), Args, &Call); 734 Call->setCallingConv(CGF.CGM.getRuntimeCC()); 735 return Res.getComplexVal(); 736 } 737 738 /// Lookup the libcall name for a given floating point type complex 739 /// multiply. 740 static StringRef getComplexMultiplyLibCallName(llvm::Type *Ty) { 741 switch (Ty->getTypeID()) { 742 default: 743 llvm_unreachable("Unsupported floating point type!"); 744 case llvm::Type::HalfTyID: 745 return "__mulhc3"; 746 case llvm::Type::FloatTyID: 747 return "__mulsc3"; 748 case llvm::Type::DoubleTyID: 749 return "__muldc3"; 750 case llvm::Type::PPC_FP128TyID: 751 return "__multc3"; 752 case llvm::Type::X86_FP80TyID: 753 return "__mulxc3"; 754 case llvm::Type::FP128TyID: 755 return "__multc3"; 756 } 757 } 758 759 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex 760 // typed values. 761 ComplexPairTy ComplexExprEmitter::EmitBinMul(const BinOpInfo &Op) { 762 using llvm::Value; 763 Value *ResR, *ResI; 764 llvm::MDBuilder MDHelper(CGF.getLLVMContext()); 765 766 if (Op.LHS.first->getType()->isFloatingPointTy()) { 767 // The general formulation is: 768 // (a + ib) * (c + id) = (a * c - b * d) + i(a * d + b * c) 769 // 770 // But we can fold away components which would be zero due to a real 771 // operand according to C11 Annex G.5.1p2. 772 // FIXME: C11 also provides for imaginary types which would allow folding 773 // still more of this within the type system. 774 775 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op.FPFeatures); 776 if (Op.LHS.second && Op.RHS.second) { 777 // If both operands are complex, emit the core math directly, and then 778 // test for NaNs. If we find NaNs in the result, we delegate to a libcall 779 // to carefully re-compute the correct infinity representation if 780 // possible. The expectation is that the presence of NaNs here is 781 // *extremely* rare, and so the cost of the libcall is almost irrelevant. 782 // This is good, because the libcall re-computes the core multiplication 783 // exactly the same as we do here and re-tests for NaNs in order to be 784 // a generic complex*complex libcall. 785 786 // First compute the four products. 787 Value *AC = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul_ac"); 788 Value *BD = Builder.CreateFMul(Op.LHS.second, Op.RHS.second, "mul_bd"); 789 Value *AD = Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul_ad"); 790 Value *BC = Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul_bc"); 791 792 // The real part is the difference of the first two, the imaginary part is 793 // the sum of the second. 794 ResR = Builder.CreateFSub(AC, BD, "mul_r"); 795 ResI = Builder.CreateFAdd(AD, BC, "mul_i"); 796 797 if (Op.FPFeatures.getComplexRange() == LangOptions::CX_Limited || 798 Op.FPFeatures.getComplexRange() == LangOptions::CX_Fortran) 799 return ComplexPairTy(ResR, ResI); 800 801 // Emit the test for the real part becoming NaN and create a branch to 802 // handle it. We test for NaN by comparing the number to itself. 803 Value *IsRNaN = Builder.CreateFCmpUNO(ResR, ResR, "isnan_cmp"); 804 llvm::BasicBlock *ContBB = CGF.createBasicBlock("complex_mul_cont"); 805 llvm::BasicBlock *INaNBB = CGF.createBasicBlock("complex_mul_imag_nan"); 806 llvm::Instruction *Branch = Builder.CreateCondBr(IsRNaN, INaNBB, ContBB); 807 llvm::BasicBlock *OrigBB = Branch->getParent(); 808 809 // Give hint that we very much don't expect to see NaNs. 810 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 811 llvm::MDNode *BrWeight = MDHelper.createBranchWeights(1, (1U << 20) - 1); 812 Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight); 813 814 // Now test the imaginary part and create its branch. 815 CGF.EmitBlock(INaNBB); 816 Value *IsINaN = Builder.CreateFCmpUNO(ResI, ResI, "isnan_cmp"); 817 llvm::BasicBlock *LibCallBB = CGF.createBasicBlock("complex_mul_libcall"); 818 Branch = Builder.CreateCondBr(IsINaN, LibCallBB, ContBB); 819 Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight); 820 821 // Now emit the libcall on this slowest of the slow paths. 822 CGF.EmitBlock(LibCallBB); 823 Value *LibCallR, *LibCallI; 824 std::tie(LibCallR, LibCallI) = EmitComplexBinOpLibCall( 825 getComplexMultiplyLibCallName(Op.LHS.first->getType()), Op); 826 Builder.CreateBr(ContBB); 827 828 // Finally continue execution by phi-ing together the different 829 // computation paths. 830 CGF.EmitBlock(ContBB); 831 llvm::PHINode *RealPHI = Builder.CreatePHI(ResR->getType(), 3, "real_mul_phi"); 832 RealPHI->addIncoming(ResR, OrigBB); 833 RealPHI->addIncoming(ResR, INaNBB); 834 RealPHI->addIncoming(LibCallR, LibCallBB); 835 llvm::PHINode *ImagPHI = Builder.CreatePHI(ResI->getType(), 3, "imag_mul_phi"); 836 ImagPHI->addIncoming(ResI, OrigBB); 837 ImagPHI->addIncoming(ResI, INaNBB); 838 ImagPHI->addIncoming(LibCallI, LibCallBB); 839 return ComplexPairTy(RealPHI, ImagPHI); 840 } 841 assert((Op.LHS.second || Op.RHS.second) && 842 "At least one operand must be complex!"); 843 844 // If either of the operands is a real rather than a complex, the 845 // imaginary component is ignored when computing the real component of the 846 // result. 847 ResR = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul.rl"); 848 849 ResI = Op.LHS.second 850 ? Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul.il") 851 : Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul.ir"); 852 } else { 853 assert(Op.LHS.second && Op.RHS.second && 854 "Both operands of integer complex operators must be complex!"); 855 Value *ResRl = Builder.CreateMul(Op.LHS.first, Op.RHS.first, "mul.rl"); 856 Value *ResRr = Builder.CreateMul(Op.LHS.second, Op.RHS.second, "mul.rr"); 857 ResR = Builder.CreateSub(ResRl, ResRr, "mul.r"); 858 859 Value *ResIl = Builder.CreateMul(Op.LHS.second, Op.RHS.first, "mul.il"); 860 Value *ResIr = Builder.CreateMul(Op.LHS.first, Op.RHS.second, "mul.ir"); 861 ResI = Builder.CreateAdd(ResIl, ResIr, "mul.i"); 862 } 863 return ComplexPairTy(ResR, ResI); 864 } 865 866 ComplexPairTy ComplexExprEmitter::EmitAlgebraicDiv(llvm::Value *LHSr, 867 llvm::Value *LHSi, 868 llvm::Value *RHSr, 869 llvm::Value *RHSi) { 870 // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) 871 llvm::Value *DSTr, *DSTi; 872 873 llvm::Value *AC = Builder.CreateFMul(LHSr, RHSr); // a*c 874 llvm::Value *BD = Builder.CreateFMul(LHSi, RHSi); // b*d 875 llvm::Value *ACpBD = Builder.CreateFAdd(AC, BD); // ac+bd 876 877 llvm::Value *CC = Builder.CreateFMul(RHSr, RHSr); // c*c 878 llvm::Value *DD = Builder.CreateFMul(RHSi, RHSi); // d*d 879 llvm::Value *CCpDD = Builder.CreateFAdd(CC, DD); // cc+dd 880 881 llvm::Value *BC = Builder.CreateFMul(LHSi, RHSr); // b*c 882 llvm::Value *AD = Builder.CreateFMul(LHSr, RHSi); // a*d 883 llvm::Value *BCmAD = Builder.CreateFSub(BC, AD); // bc-ad 884 885 DSTr = Builder.CreateFDiv(ACpBD, CCpDD); 886 DSTi = Builder.CreateFDiv(BCmAD, CCpDD); 887 return ComplexPairTy(DSTr, DSTi); 888 } 889 890 // EmitFAbs - Emit a call to @llvm.fabs. 891 static llvm::Value *EmitllvmFAbs(CodeGenFunction &CGF, llvm::Value *Value) { 892 llvm::Function *Func = 893 CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Value->getType()); 894 llvm::Value *Call = CGF.Builder.CreateCall(Func, Value); 895 return Call; 896 } 897 898 // EmitRangeReductionDiv - Implements Smith's algorithm for complex division. 899 // SMITH, R. L. Algorithm 116: Complex division. Commun. ACM 5, 8 (1962). 900 ComplexPairTy ComplexExprEmitter::EmitRangeReductionDiv(llvm::Value *LHSr, 901 llvm::Value *LHSi, 902 llvm::Value *RHSr, 903 llvm::Value *RHSi) { 904 // FIXME: This could eventually be replaced by an LLVM intrinsic to 905 // avoid this long IR sequence. 906 907 // (a + ib) / (c + id) = (e + if) 908 llvm::Value *FAbsRHSr = EmitllvmFAbs(CGF, RHSr); // |c| 909 llvm::Value *FAbsRHSi = EmitllvmFAbs(CGF, RHSi); // |d| 910 // |c| >= |d| 911 llvm::Value *IsR = Builder.CreateFCmpUGT(FAbsRHSr, FAbsRHSi, "abs_cmp"); 912 913 llvm::BasicBlock *TrueBB = 914 CGF.createBasicBlock("abs_rhsr_greater_or_equal_abs_rhsi"); 915 llvm::BasicBlock *FalseBB = 916 CGF.createBasicBlock("abs_rhsr_less_than_abs_rhsi"); 917 llvm::BasicBlock *ContBB = CGF.createBasicBlock("complex_div"); 918 Builder.CreateCondBr(IsR, TrueBB, FalseBB); 919 920 CGF.EmitBlock(TrueBB); 921 // abs(c) >= abs(d) 922 // r = d/c 923 // tmp = c + rd 924 // e = (a + br)/tmp 925 // f = (b - ar)/tmp 926 llvm::Value *DdC = Builder.CreateFDiv(RHSi, RHSr); // r=d/c 927 928 llvm::Value *RD = Builder.CreateFMul(DdC, RHSi); // rd 929 llvm::Value *CpRD = Builder.CreateFAdd(RHSr, RD); // tmp=c+rd 930 931 llvm::Value *T3 = Builder.CreateFMul(LHSi, DdC); // br 932 llvm::Value *T4 = Builder.CreateFAdd(LHSr, T3); // a+br 933 llvm::Value *DSTTr = Builder.CreateFDiv(T4, CpRD); // (a+br)/tmp 934 935 llvm::Value *T5 = Builder.CreateFMul(LHSr, DdC); // ar 936 llvm::Value *T6 = Builder.CreateFSub(LHSi, T5); // b-ar 937 llvm::Value *DSTTi = Builder.CreateFDiv(T6, CpRD); // (b-ar)/tmp 938 Builder.CreateBr(ContBB); 939 940 CGF.EmitBlock(FalseBB); 941 // abs(c) < abs(d) 942 // r = c/d 943 // tmp = d + rc 944 // e = (ar + b)/tmp 945 // f = (br - a)/tmp 946 llvm::Value *CdD = Builder.CreateFDiv(RHSr, RHSi); // r=c/d 947 948 llvm::Value *RC = Builder.CreateFMul(CdD, RHSr); // rc 949 llvm::Value *DpRC = Builder.CreateFAdd(RHSi, RC); // tmp=d+rc 950 951 llvm::Value *T7 = Builder.CreateFMul(LHSr, CdD); // ar 952 llvm::Value *T8 = Builder.CreateFAdd(T7, LHSi); // ar+b 953 llvm::Value *DSTFr = Builder.CreateFDiv(T8, DpRC); // (ar+b)/tmp 954 955 llvm::Value *T9 = Builder.CreateFMul(LHSi, CdD); // br 956 llvm::Value *T10 = Builder.CreateFSub(T9, LHSr); // br-a 957 llvm::Value *DSTFi = Builder.CreateFDiv(T10, DpRC); // (br-a)/tmp 958 Builder.CreateBr(ContBB); 959 960 // Phi together the computation paths. 961 CGF.EmitBlock(ContBB); 962 llvm::PHINode *VALr = Builder.CreatePHI(DSTTr->getType(), 2); 963 VALr->addIncoming(DSTTr, TrueBB); 964 VALr->addIncoming(DSTFr, FalseBB); 965 llvm::PHINode *VALi = Builder.CreatePHI(DSTTi->getType(), 2); 966 VALi->addIncoming(DSTTi, TrueBB); 967 VALi->addIncoming(DSTFi, FalseBB); 968 return ComplexPairTy(VALr, VALi); 969 } 970 971 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex 972 // typed values. 973 ComplexPairTy ComplexExprEmitter::EmitBinDiv(const BinOpInfo &Op) { 974 llvm::Value *LHSr = Op.LHS.first, *LHSi = Op.LHS.second; 975 llvm::Value *RHSr = Op.RHS.first, *RHSi = Op.RHS.second; 976 llvm::Value *DSTr, *DSTi; 977 if (LHSr->getType()->isFloatingPointTy()) { 978 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op.FPFeatures); 979 if (!RHSi) { 980 assert(LHSi && "Can have at most one non-complex operand!"); 981 982 DSTr = Builder.CreateFDiv(LHSr, RHSr); 983 DSTi = Builder.CreateFDiv(LHSi, RHSr); 984 return ComplexPairTy(DSTr, DSTi); 985 } 986 llvm::Value *OrigLHSi = LHSi; 987 if (!LHSi) 988 LHSi = llvm::Constant::getNullValue(RHSi->getType()); 989 if (Op.FPFeatures.getComplexRange() == LangOptions::CX_Fortran) 990 return EmitRangeReductionDiv(LHSr, LHSi, RHSr, RHSi); 991 else if (Op.FPFeatures.getComplexRange() == LangOptions::CX_Limited) 992 return EmitAlgebraicDiv(LHSr, LHSi, RHSr, RHSi); 993 else if (!CGF.getLangOpts().FastMath || 994 // '-ffast-math' is used in the command line but followed by an 995 // '-fno-cx-limited-range'. 996 Op.FPFeatures.getComplexRange() == LangOptions::CX_Full) { 997 LHSi = OrigLHSi; 998 // If we have a complex operand on the RHS and FastMath is not allowed, we 999 // delegate to a libcall to handle all of the complexities and minimize 1000 // underflow/overflow cases. When FastMath is allowed we construct the 1001 // divide inline using the same algorithm as for integer operands. 1002 // 1003 // FIXME: We would be able to avoid the libcall in many places if we 1004 // supported imaginary types in addition to complex types. 1005 BinOpInfo LibCallOp = Op; 1006 // If LHS was a real, supply a null imaginary part. 1007 if (!LHSi) 1008 LibCallOp.LHS.second = llvm::Constant::getNullValue(LHSr->getType()); 1009 1010 switch (LHSr->getType()->getTypeID()) { 1011 default: 1012 llvm_unreachable("Unsupported floating point type!"); 1013 case llvm::Type::HalfTyID: 1014 return EmitComplexBinOpLibCall("__divhc3", LibCallOp); 1015 case llvm::Type::FloatTyID: 1016 return EmitComplexBinOpLibCall("__divsc3", LibCallOp); 1017 case llvm::Type::DoubleTyID: 1018 return EmitComplexBinOpLibCall("__divdc3", LibCallOp); 1019 case llvm::Type::PPC_FP128TyID: 1020 return EmitComplexBinOpLibCall("__divtc3", LibCallOp); 1021 case llvm::Type::X86_FP80TyID: 1022 return EmitComplexBinOpLibCall("__divxc3", LibCallOp); 1023 case llvm::Type::FP128TyID: 1024 return EmitComplexBinOpLibCall("__divtc3", LibCallOp); 1025 } 1026 } else { 1027 return EmitAlgebraicDiv(LHSr, LHSi, RHSr, RHSi); 1028 } 1029 } else { 1030 assert(Op.LHS.second && Op.RHS.second && 1031 "Both operands of integer complex operators must be complex!"); 1032 // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) 1033 llvm::Value *Tmp1 = Builder.CreateMul(LHSr, RHSr); // a*c 1034 llvm::Value *Tmp2 = Builder.CreateMul(LHSi, RHSi); // b*d 1035 llvm::Value *Tmp3 = Builder.CreateAdd(Tmp1, Tmp2); // ac+bd 1036 1037 llvm::Value *Tmp4 = Builder.CreateMul(RHSr, RHSr); // c*c 1038 llvm::Value *Tmp5 = Builder.CreateMul(RHSi, RHSi); // d*d 1039 llvm::Value *Tmp6 = Builder.CreateAdd(Tmp4, Tmp5); // cc+dd 1040 1041 llvm::Value *Tmp7 = Builder.CreateMul(LHSi, RHSr); // b*c 1042 llvm::Value *Tmp8 = Builder.CreateMul(LHSr, RHSi); // a*d 1043 llvm::Value *Tmp9 = Builder.CreateSub(Tmp7, Tmp8); // bc-ad 1044 1045 if (Op.Ty->castAs<ComplexType>()->getElementType()->isUnsignedIntegerType()) { 1046 DSTr = Builder.CreateUDiv(Tmp3, Tmp6); 1047 DSTi = Builder.CreateUDiv(Tmp9, Tmp6); 1048 } else { 1049 DSTr = Builder.CreateSDiv(Tmp3, Tmp6); 1050 DSTi = Builder.CreateSDiv(Tmp9, Tmp6); 1051 } 1052 } 1053 1054 return ComplexPairTy(DSTr, DSTi); 1055 } 1056 1057 ComplexPairTy CodeGenFunction::EmitUnPromotedValue(ComplexPairTy result, 1058 QualType UnPromotionType) { 1059 llvm::Type *ComplexElementTy = 1060 ConvertType(UnPromotionType->castAs<ComplexType>()->getElementType()); 1061 if (result.first) 1062 result.first = 1063 Builder.CreateFPTrunc(result.first, ComplexElementTy, "unpromotion"); 1064 if (result.second) 1065 result.second = 1066 Builder.CreateFPTrunc(result.second, ComplexElementTy, "unpromotion"); 1067 return result; 1068 } 1069 1070 ComplexPairTy CodeGenFunction::EmitPromotedValue(ComplexPairTy result, 1071 QualType PromotionType) { 1072 llvm::Type *ComplexElementTy = 1073 ConvertType(PromotionType->castAs<ComplexType>()->getElementType()); 1074 if (result.first) 1075 result.first = Builder.CreateFPExt(result.first, ComplexElementTy, "ext"); 1076 if (result.second) 1077 result.second = Builder.CreateFPExt(result.second, ComplexElementTy, "ext"); 1078 1079 return result; 1080 } 1081 1082 ComplexPairTy ComplexExprEmitter::EmitPromoted(const Expr *E, 1083 QualType PromotionType) { 1084 E = E->IgnoreParens(); 1085 if (auto BO = dyn_cast<BinaryOperator>(E)) { 1086 switch (BO->getOpcode()) { 1087 #define HANDLE_BINOP(OP) \ 1088 case BO_##OP: \ 1089 return EmitBin##OP(EmitBinOps(BO, PromotionType)); 1090 HANDLE_BINOP(Add) 1091 HANDLE_BINOP(Sub) 1092 HANDLE_BINOP(Mul) 1093 HANDLE_BINOP(Div) 1094 #undef HANDLE_BINOP 1095 default: 1096 break; 1097 } 1098 } else if (auto UO = dyn_cast<UnaryOperator>(E)) { 1099 switch (UO->getOpcode()) { 1100 case UO_Minus: 1101 return VisitMinus(UO, PromotionType); 1102 case UO_Plus: 1103 return VisitPlus(UO, PromotionType); 1104 default: 1105 break; 1106 } 1107 } 1108 auto result = Visit(const_cast<Expr *>(E)); 1109 if (!PromotionType.isNull()) 1110 return CGF.EmitPromotedValue(result, PromotionType); 1111 else 1112 return result; 1113 } 1114 1115 ComplexPairTy CodeGenFunction::EmitPromotedComplexExpr(const Expr *E, 1116 QualType DstTy) { 1117 return ComplexExprEmitter(*this).EmitPromoted(E, DstTy); 1118 } 1119 1120 ComplexPairTy 1121 ComplexExprEmitter::EmitPromotedComplexOperand(const Expr *E, 1122 QualType OverallPromotionType) { 1123 if (E->getType()->isAnyComplexType()) { 1124 if (!OverallPromotionType.isNull()) 1125 return CGF.EmitPromotedComplexExpr(E, OverallPromotionType); 1126 else 1127 return Visit(const_cast<Expr *>(E)); 1128 } else { 1129 if (!OverallPromotionType.isNull()) { 1130 QualType ComplexElementTy = 1131 OverallPromotionType->castAs<ComplexType>()->getElementType(); 1132 return ComplexPairTy(CGF.EmitPromotedScalarExpr(E, ComplexElementTy), 1133 nullptr); 1134 } else { 1135 return ComplexPairTy(CGF.EmitScalarExpr(E), nullptr); 1136 } 1137 } 1138 } 1139 1140 ComplexExprEmitter::BinOpInfo 1141 ComplexExprEmitter::EmitBinOps(const BinaryOperator *E, 1142 QualType PromotionType) { 1143 TestAndClearIgnoreReal(); 1144 TestAndClearIgnoreImag(); 1145 BinOpInfo Ops; 1146 1147 Ops.LHS = EmitPromotedComplexOperand(E->getLHS(), PromotionType); 1148 Ops.RHS = EmitPromotedComplexOperand(E->getRHS(), PromotionType); 1149 if (!PromotionType.isNull()) 1150 Ops.Ty = PromotionType; 1151 else 1152 Ops.Ty = E->getType(); 1153 Ops.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts()); 1154 return Ops; 1155 } 1156 1157 1158 LValue ComplexExprEmitter:: 1159 EmitCompoundAssignLValue(const CompoundAssignOperator *E, 1160 ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&), 1161 RValue &Val) { 1162 TestAndClearIgnoreReal(); 1163 TestAndClearIgnoreImag(); 1164 QualType LHSTy = E->getLHS()->getType(); 1165 if (const AtomicType *AT = LHSTy->getAs<AtomicType>()) 1166 LHSTy = AT->getValueType(); 1167 1168 BinOpInfo OpInfo; 1169 OpInfo.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts()); 1170 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, OpInfo.FPFeatures); 1171 1172 // Load the RHS and LHS operands. 1173 // __block variables need to have the rhs evaluated first, plus this should 1174 // improve codegen a little. 1175 QualType PromotionTypeCR; 1176 PromotionTypeCR = getPromotionType(E->getComputationResultType()); 1177 if (PromotionTypeCR.isNull()) 1178 PromotionTypeCR = E->getComputationResultType(); 1179 OpInfo.Ty = PromotionTypeCR; 1180 QualType ComplexElementTy = 1181 OpInfo.Ty->castAs<ComplexType>()->getElementType(); 1182 QualType PromotionTypeRHS = getPromotionType(E->getRHS()->getType()); 1183 1184 // The RHS should have been converted to the computation type. 1185 if (E->getRHS()->getType()->isRealFloatingType()) { 1186 if (!PromotionTypeRHS.isNull()) 1187 OpInfo.RHS = ComplexPairTy( 1188 CGF.EmitPromotedScalarExpr(E->getRHS(), PromotionTypeRHS), nullptr); 1189 else { 1190 assert(CGF.getContext().hasSameUnqualifiedType(ComplexElementTy, 1191 E->getRHS()->getType())); 1192 1193 OpInfo.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr); 1194 } 1195 } else { 1196 if (!PromotionTypeRHS.isNull()) { 1197 OpInfo.RHS = ComplexPairTy( 1198 CGF.EmitPromotedComplexExpr(E->getRHS(), PromotionTypeRHS)); 1199 } else { 1200 assert(CGF.getContext().hasSameUnqualifiedType(OpInfo.Ty, 1201 E->getRHS()->getType())); 1202 OpInfo.RHS = Visit(E->getRHS()); 1203 } 1204 } 1205 1206 LValue LHS = CGF.EmitLValue(E->getLHS()); 1207 1208 // Load from the l-value and convert it. 1209 SourceLocation Loc = E->getExprLoc(); 1210 QualType PromotionTypeLHS = getPromotionType(E->getComputationLHSType()); 1211 if (LHSTy->isAnyComplexType()) { 1212 ComplexPairTy LHSVal = EmitLoadOfLValue(LHS, Loc); 1213 if (!PromotionTypeLHS.isNull()) 1214 OpInfo.LHS = 1215 EmitComplexToComplexCast(LHSVal, LHSTy, PromotionTypeLHS, Loc); 1216 else 1217 OpInfo.LHS = EmitComplexToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc); 1218 } else { 1219 llvm::Value *LHSVal = CGF.EmitLoadOfScalar(LHS, Loc); 1220 // For floating point real operands we can directly pass the scalar form 1221 // to the binary operator emission and potentially get more efficient code. 1222 if (LHSTy->isRealFloatingType()) { 1223 QualType PromotedComplexElementTy; 1224 if (!PromotionTypeLHS.isNull()) { 1225 PromotedComplexElementTy = 1226 cast<ComplexType>(PromotionTypeLHS)->getElementType(); 1227 if (!CGF.getContext().hasSameUnqualifiedType(PromotedComplexElementTy, 1228 PromotionTypeLHS)) 1229 LHSVal = CGF.EmitScalarConversion(LHSVal, LHSTy, 1230 PromotedComplexElementTy, Loc); 1231 } else { 1232 if (!CGF.getContext().hasSameUnqualifiedType(ComplexElementTy, LHSTy)) 1233 LHSVal = 1234 CGF.EmitScalarConversion(LHSVal, LHSTy, ComplexElementTy, Loc); 1235 } 1236 OpInfo.LHS = ComplexPairTy(LHSVal, nullptr); 1237 } else { 1238 OpInfo.LHS = EmitScalarToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc); 1239 } 1240 } 1241 1242 // Expand the binary operator. 1243 ComplexPairTy Result = (this->*Func)(OpInfo); 1244 1245 // Truncate the result and store it into the LHS lvalue. 1246 if (LHSTy->isAnyComplexType()) { 1247 ComplexPairTy ResVal = 1248 EmitComplexToComplexCast(Result, OpInfo.Ty, LHSTy, Loc); 1249 EmitStoreOfComplex(ResVal, LHS, /*isInit*/ false); 1250 Val = RValue::getComplex(ResVal); 1251 } else { 1252 llvm::Value *ResVal = 1253 CGF.EmitComplexToScalarConversion(Result, OpInfo.Ty, LHSTy, Loc); 1254 CGF.EmitStoreOfScalar(ResVal, LHS, /*isInit*/ false); 1255 Val = RValue::get(ResVal); 1256 } 1257 1258 return LHS; 1259 } 1260 1261 // Compound assignments. 1262 ComplexPairTy ComplexExprEmitter:: 1263 EmitCompoundAssign(const CompoundAssignOperator *E, 1264 ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&)){ 1265 RValue Val; 1266 LValue LV = EmitCompoundAssignLValue(E, Func, Val); 1267 1268 // The result of an assignment in C is the assigned r-value. 1269 if (!CGF.getLangOpts().CPlusPlus) 1270 return Val.getComplexVal(); 1271 1272 // If the lvalue is non-volatile, return the computed value of the assignment. 1273 if (!LV.isVolatileQualified()) 1274 return Val.getComplexVal(); 1275 1276 return EmitLoadOfLValue(LV, E->getExprLoc()); 1277 } 1278 1279 LValue ComplexExprEmitter::EmitBinAssignLValue(const BinaryOperator *E, 1280 ComplexPairTy &Val) { 1281 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 1282 E->getRHS()->getType()) && 1283 "Invalid assignment"); 1284 TestAndClearIgnoreReal(); 1285 TestAndClearIgnoreImag(); 1286 1287 // Emit the RHS. __block variables need the RHS evaluated first. 1288 Val = Visit(E->getRHS()); 1289 1290 // Compute the address to store into. 1291 LValue LHS = CGF.EmitLValue(E->getLHS()); 1292 1293 // Store the result value into the LHS lvalue. 1294 EmitStoreOfComplex(Val, LHS, /*isInit*/ false); 1295 1296 return LHS; 1297 } 1298 1299 ComplexPairTy ComplexExprEmitter::VisitBinAssign(const BinaryOperator *E) { 1300 ComplexPairTy Val; 1301 LValue LV = EmitBinAssignLValue(E, Val); 1302 1303 // The result of an assignment in C is the assigned r-value. 1304 if (!CGF.getLangOpts().CPlusPlus) 1305 return Val; 1306 1307 // If the lvalue is non-volatile, return the computed value of the assignment. 1308 if (!LV.isVolatileQualified()) 1309 return Val; 1310 1311 return EmitLoadOfLValue(LV, E->getExprLoc()); 1312 } 1313 1314 ComplexPairTy ComplexExprEmitter::VisitBinComma(const BinaryOperator *E) { 1315 CGF.EmitIgnoredExpr(E->getLHS()); 1316 return Visit(E->getRHS()); 1317 } 1318 1319 ComplexPairTy ComplexExprEmitter:: 1320 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 1321 TestAndClearIgnoreReal(); 1322 TestAndClearIgnoreImag(); 1323 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 1324 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 1325 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 1326 1327 // Bind the common expression if necessary. 1328 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 1329 1330 1331 CodeGenFunction::ConditionalEvaluation eval(CGF); 1332 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock, 1333 CGF.getProfileCount(E)); 1334 1335 eval.begin(CGF); 1336 CGF.EmitBlock(LHSBlock); 1337 if (llvm::EnableSingleByteCoverage) 1338 CGF.incrementProfileCounter(E->getTrueExpr()); 1339 else 1340 CGF.incrementProfileCounter(E); 1341 1342 ComplexPairTy LHS = Visit(E->getTrueExpr()); 1343 LHSBlock = Builder.GetInsertBlock(); 1344 CGF.EmitBranch(ContBlock); 1345 eval.end(CGF); 1346 1347 eval.begin(CGF); 1348 CGF.EmitBlock(RHSBlock); 1349 if (llvm::EnableSingleByteCoverage) 1350 CGF.incrementProfileCounter(E->getFalseExpr()); 1351 ComplexPairTy RHS = Visit(E->getFalseExpr()); 1352 RHSBlock = Builder.GetInsertBlock(); 1353 CGF.EmitBlock(ContBlock); 1354 if (llvm::EnableSingleByteCoverage) 1355 CGF.incrementProfileCounter(E); 1356 eval.end(CGF); 1357 1358 // Create a PHI node for the real part. 1359 llvm::PHINode *RealPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.r"); 1360 RealPN->addIncoming(LHS.first, LHSBlock); 1361 RealPN->addIncoming(RHS.first, RHSBlock); 1362 1363 // Create a PHI node for the imaginary part. 1364 llvm::PHINode *ImagPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.i"); 1365 ImagPN->addIncoming(LHS.second, LHSBlock); 1366 ImagPN->addIncoming(RHS.second, RHSBlock); 1367 1368 return ComplexPairTy(RealPN, ImagPN); 1369 } 1370 1371 ComplexPairTy ComplexExprEmitter::VisitChooseExpr(ChooseExpr *E) { 1372 return Visit(E->getChosenSubExpr()); 1373 } 1374 1375 ComplexPairTy ComplexExprEmitter::VisitInitListExpr(InitListExpr *E) { 1376 bool Ignore = TestAndClearIgnoreReal(); 1377 (void)Ignore; 1378 assert (Ignore == false && "init list ignored"); 1379 Ignore = TestAndClearIgnoreImag(); 1380 (void)Ignore; 1381 assert (Ignore == false && "init list ignored"); 1382 1383 if (E->getNumInits() == 2) { 1384 llvm::Value *Real = CGF.EmitScalarExpr(E->getInit(0)); 1385 llvm::Value *Imag = CGF.EmitScalarExpr(E->getInit(1)); 1386 return ComplexPairTy(Real, Imag); 1387 } else if (E->getNumInits() == 1) { 1388 return Visit(E->getInit(0)); 1389 } 1390 1391 // Empty init list initializes to null 1392 assert(E->getNumInits() == 0 && "Unexpected number of inits"); 1393 QualType Ty = E->getType()->castAs<ComplexType>()->getElementType(); 1394 llvm::Type* LTy = CGF.ConvertType(Ty); 1395 llvm::Value* zeroConstant = llvm::Constant::getNullValue(LTy); 1396 return ComplexPairTy(zeroConstant, zeroConstant); 1397 } 1398 1399 ComplexPairTy ComplexExprEmitter::VisitVAArgExpr(VAArgExpr *E) { 1400 Address ArgValue = Address::invalid(); 1401 Address ArgPtr = CGF.EmitVAArg(E, ArgValue); 1402 1403 if (!ArgPtr.isValid()) { 1404 CGF.ErrorUnsupported(E, "complex va_arg expression"); 1405 llvm::Type *EltTy = 1406 CGF.ConvertType(E->getType()->castAs<ComplexType>()->getElementType()); 1407 llvm::Value *U = llvm::UndefValue::get(EltTy); 1408 return ComplexPairTy(U, U); 1409 } 1410 1411 return EmitLoadOfLValue(CGF.MakeAddrLValue(ArgPtr, E->getType()), 1412 E->getExprLoc()); 1413 } 1414 1415 //===----------------------------------------------------------------------===// 1416 // Entry Point into this File 1417 //===----------------------------------------------------------------------===// 1418 1419 /// EmitComplexExpr - Emit the computation of the specified expression of 1420 /// complex type, ignoring the result. 1421 ComplexPairTy CodeGenFunction::EmitComplexExpr(const Expr *E, bool IgnoreReal, 1422 bool IgnoreImag) { 1423 assert(E && getComplexType(E->getType()) && 1424 "Invalid complex expression to emit"); 1425 1426 return ComplexExprEmitter(*this, IgnoreReal, IgnoreImag) 1427 .Visit(const_cast<Expr *>(E)); 1428 } 1429 1430 void CodeGenFunction::EmitComplexExprIntoLValue(const Expr *E, LValue dest, 1431 bool isInit) { 1432 assert(E && getComplexType(E->getType()) && 1433 "Invalid complex expression to emit"); 1434 ComplexExprEmitter Emitter(*this); 1435 ComplexPairTy Val = Emitter.Visit(const_cast<Expr*>(E)); 1436 Emitter.EmitStoreOfComplex(Val, dest, isInit); 1437 } 1438 1439 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 1440 void CodeGenFunction::EmitStoreOfComplex(ComplexPairTy V, LValue dest, 1441 bool isInit) { 1442 ComplexExprEmitter(*this).EmitStoreOfComplex(V, dest, isInit); 1443 } 1444 1445 /// EmitLoadOfComplex - Load a complex number from the specified address. 1446 ComplexPairTy CodeGenFunction::EmitLoadOfComplex(LValue src, 1447 SourceLocation loc) { 1448 return ComplexExprEmitter(*this).EmitLoadOfLValue(src, loc); 1449 } 1450 1451 LValue CodeGenFunction::EmitComplexAssignmentLValue(const BinaryOperator *E) { 1452 assert(E->getOpcode() == BO_Assign); 1453 ComplexPairTy Val; // ignored 1454 LValue LVal = ComplexExprEmitter(*this).EmitBinAssignLValue(E, Val); 1455 if (getLangOpts().OpenMP) 1456 CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this, 1457 E->getLHS()); 1458 return LVal; 1459 } 1460 1461 typedef ComplexPairTy (ComplexExprEmitter::*CompoundFunc)( 1462 const ComplexExprEmitter::BinOpInfo &); 1463 1464 static CompoundFunc getComplexOp(BinaryOperatorKind Op) { 1465 switch (Op) { 1466 case BO_MulAssign: return &ComplexExprEmitter::EmitBinMul; 1467 case BO_DivAssign: return &ComplexExprEmitter::EmitBinDiv; 1468 case BO_SubAssign: return &ComplexExprEmitter::EmitBinSub; 1469 case BO_AddAssign: return &ComplexExprEmitter::EmitBinAdd; 1470 default: 1471 llvm_unreachable("unexpected complex compound assignment"); 1472 } 1473 } 1474 1475 LValue CodeGenFunction:: 1476 EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E) { 1477 CompoundFunc Op = getComplexOp(E->getOpcode()); 1478 RValue Val; 1479 return ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val); 1480 } 1481 1482 LValue CodeGenFunction:: 1483 EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 1484 llvm::Value *&Result) { 1485 CompoundFunc Op = getComplexOp(E->getOpcode()); 1486 RValue Val; 1487 LValue Ret = ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val); 1488 Result = Val.getScalarVal(); 1489 return Ret; 1490 } 1491