xref: /llvm-project/clang/lib/CodeGen/CGExprComplex.cpp (revision 23f895f6567e0a4cef45cfc9d96d817a454b6e8f)
1 //===--- CGExprComplex.cpp - Emit LLVM Code for Complex Exprs -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes with complex types as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGOpenMPRuntime.h"
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "ConstantEmitter.h"
17 #include "clang/AST/StmtVisitor.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/Instructions.h"
21 #include "llvm/IR/MDBuilder.h"
22 #include "llvm/IR/Metadata.h"
23 #include <algorithm>
24 using namespace clang;
25 using namespace CodeGen;
26 
27 //===----------------------------------------------------------------------===//
28 //                        Complex Expression Emitter
29 //===----------------------------------------------------------------------===//
30 
31 namespace llvm {
32 extern cl::opt<bool> EnableSingleByteCoverage;
33 } // namespace llvm
34 
35 typedef CodeGenFunction::ComplexPairTy ComplexPairTy;
36 
37 /// Return the complex type that we are meant to emit.
38 static const ComplexType *getComplexType(QualType type) {
39   type = type.getCanonicalType();
40   if (const ComplexType *comp = dyn_cast<ComplexType>(type)) {
41     return comp;
42   } else {
43     return cast<ComplexType>(cast<AtomicType>(type)->getValueType());
44   }
45 }
46 
47 namespace  {
48 class ComplexExprEmitter
49   : public StmtVisitor<ComplexExprEmitter, ComplexPairTy> {
50   CodeGenFunction &CGF;
51   CGBuilderTy &Builder;
52   bool IgnoreReal;
53   bool IgnoreImag;
54 public:
55   ComplexExprEmitter(CodeGenFunction &cgf, bool ir=false, bool ii=false)
56     : CGF(cgf), Builder(CGF.Builder), IgnoreReal(ir), IgnoreImag(ii) {
57   }
58 
59 
60   //===--------------------------------------------------------------------===//
61   //                               Utilities
62   //===--------------------------------------------------------------------===//
63 
64   bool TestAndClearIgnoreReal() {
65     bool I = IgnoreReal;
66     IgnoreReal = false;
67     return I;
68   }
69   bool TestAndClearIgnoreImag() {
70     bool I = IgnoreImag;
71     IgnoreImag = false;
72     return I;
73   }
74 
75   /// EmitLoadOfLValue - Given an expression with complex type that represents a
76   /// value l-value, this method emits the address of the l-value, then loads
77   /// and returns the result.
78   ComplexPairTy EmitLoadOfLValue(const Expr *E) {
79     return EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc());
80   }
81 
82   ComplexPairTy EmitLoadOfLValue(LValue LV, SourceLocation Loc);
83 
84   /// EmitStoreOfComplex - Store the specified real/imag parts into the
85   /// specified value pointer.
86   void EmitStoreOfComplex(ComplexPairTy Val, LValue LV, bool isInit);
87 
88   /// Emit a cast from complex value Val to DestType.
89   ComplexPairTy EmitComplexToComplexCast(ComplexPairTy Val, QualType SrcType,
90                                          QualType DestType, SourceLocation Loc);
91   /// Emit a cast from scalar value Val to DestType.
92   ComplexPairTy EmitScalarToComplexCast(llvm::Value *Val, QualType SrcType,
93                                         QualType DestType, SourceLocation Loc);
94 
95   //===--------------------------------------------------------------------===//
96   //                            Visitor Methods
97   //===--------------------------------------------------------------------===//
98 
99   ComplexPairTy Visit(Expr *E) {
100     ApplyDebugLocation DL(CGF, E);
101     return StmtVisitor<ComplexExprEmitter, ComplexPairTy>::Visit(E);
102   }
103 
104   ComplexPairTy VisitStmt(Stmt *S) {
105     S->dump(llvm::errs(), CGF.getContext());
106     llvm_unreachable("Stmt can't have complex result type!");
107   }
108   ComplexPairTy VisitExpr(Expr *S);
109   ComplexPairTy VisitConstantExpr(ConstantExpr *E) {
110     if (llvm::Constant *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E))
111       return ComplexPairTy(Result->getAggregateElement(0U),
112                            Result->getAggregateElement(1U));
113     return Visit(E->getSubExpr());
114   }
115   ComplexPairTy VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr());}
116   ComplexPairTy VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
117     return Visit(GE->getResultExpr());
118   }
119   ComplexPairTy VisitImaginaryLiteral(const ImaginaryLiteral *IL);
120   ComplexPairTy
121   VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) {
122     return Visit(PE->getReplacement());
123   }
124   ComplexPairTy VisitCoawaitExpr(CoawaitExpr *S) {
125     return CGF.EmitCoawaitExpr(*S).getComplexVal();
126   }
127   ComplexPairTy VisitCoyieldExpr(CoyieldExpr *S) {
128     return CGF.EmitCoyieldExpr(*S).getComplexVal();
129   }
130   ComplexPairTy VisitUnaryCoawait(const UnaryOperator *E) {
131     return Visit(E->getSubExpr());
132   }
133 
134   ComplexPairTy emitConstant(const CodeGenFunction::ConstantEmission &Constant,
135                              Expr *E) {
136     assert(Constant && "not a constant");
137     if (Constant.isReference())
138       return EmitLoadOfLValue(Constant.getReferenceLValue(CGF, E),
139                               E->getExprLoc());
140 
141     llvm::Constant *pair = Constant.getValue();
142     return ComplexPairTy(pair->getAggregateElement(0U),
143                          pair->getAggregateElement(1U));
144   }
145 
146   // l-values.
147   ComplexPairTy VisitDeclRefExpr(DeclRefExpr *E) {
148     if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
149       return emitConstant(Constant, E);
150     return EmitLoadOfLValue(E);
151   }
152   ComplexPairTy VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
153     return EmitLoadOfLValue(E);
154   }
155   ComplexPairTy VisitObjCMessageExpr(ObjCMessageExpr *E) {
156     return CGF.EmitObjCMessageExpr(E).getComplexVal();
157   }
158   ComplexPairTy VisitArraySubscriptExpr(Expr *E) { return EmitLoadOfLValue(E); }
159   ComplexPairTy VisitMemberExpr(MemberExpr *ME) {
160     if (CodeGenFunction::ConstantEmission Constant =
161             CGF.tryEmitAsConstant(ME)) {
162       CGF.EmitIgnoredExpr(ME->getBase());
163       return emitConstant(Constant, ME);
164     }
165     return EmitLoadOfLValue(ME);
166   }
167   ComplexPairTy VisitOpaqueValueExpr(OpaqueValueExpr *E) {
168     if (E->isGLValue())
169       return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
170                               E->getExprLoc());
171     return CGF.getOrCreateOpaqueRValueMapping(E).getComplexVal();
172   }
173 
174   ComplexPairTy VisitPseudoObjectExpr(PseudoObjectExpr *E) {
175     return CGF.EmitPseudoObjectRValue(E).getComplexVal();
176   }
177 
178   // FIXME: CompoundLiteralExpr
179 
180   ComplexPairTy EmitCast(CastKind CK, Expr *Op, QualType DestTy);
181   ComplexPairTy VisitImplicitCastExpr(ImplicitCastExpr *E) {
182     // Unlike for scalars, we don't have to worry about function->ptr demotion
183     // here.
184     if (E->changesVolatileQualification())
185       return EmitLoadOfLValue(E);
186     return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType());
187   }
188   ComplexPairTy VisitCastExpr(CastExpr *E) {
189     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
190       CGF.CGM.EmitExplicitCastExprType(ECE, &CGF);
191     if (E->changesVolatileQualification())
192        return EmitLoadOfLValue(E);
193     return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType());
194   }
195   ComplexPairTy VisitCallExpr(const CallExpr *E);
196   ComplexPairTy VisitStmtExpr(const StmtExpr *E);
197 
198   // Operators.
199   ComplexPairTy VisitPrePostIncDec(const UnaryOperator *E,
200                                    bool isInc, bool isPre) {
201     LValue LV = CGF.EmitLValue(E->getSubExpr());
202     return CGF.EmitComplexPrePostIncDec(E, LV, isInc, isPre);
203   }
204   ComplexPairTy VisitUnaryPostDec(const UnaryOperator *E) {
205     return VisitPrePostIncDec(E, false, false);
206   }
207   ComplexPairTy VisitUnaryPostInc(const UnaryOperator *E) {
208     return VisitPrePostIncDec(E, true, false);
209   }
210   ComplexPairTy VisitUnaryPreDec(const UnaryOperator *E) {
211     return VisitPrePostIncDec(E, false, true);
212   }
213   ComplexPairTy VisitUnaryPreInc(const UnaryOperator *E) {
214     return VisitPrePostIncDec(E, true, true);
215   }
216   ComplexPairTy VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
217 
218   ComplexPairTy VisitUnaryPlus(const UnaryOperator *E,
219                                QualType PromotionType = QualType());
220   ComplexPairTy VisitPlus(const UnaryOperator *E, QualType PromotionType);
221   ComplexPairTy VisitUnaryMinus(const UnaryOperator *E,
222                                 QualType PromotionType = QualType());
223   ComplexPairTy VisitMinus(const UnaryOperator *E, QualType PromotionType);
224   ComplexPairTy VisitUnaryNot      (const UnaryOperator *E);
225   // LNot,Real,Imag never return complex.
226   ComplexPairTy VisitUnaryExtension(const UnaryOperator *E) {
227     return Visit(E->getSubExpr());
228   }
229   ComplexPairTy VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
230     CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
231     return Visit(DAE->getExpr());
232   }
233   ComplexPairTy VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
234     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
235     return Visit(DIE->getExpr());
236   }
237   ComplexPairTy VisitExprWithCleanups(ExprWithCleanups *E) {
238     CodeGenFunction::RunCleanupsScope Scope(CGF);
239     ComplexPairTy Vals = Visit(E->getSubExpr());
240     // Defend against dominance problems caused by jumps out of expression
241     // evaluation through the shared cleanup block.
242     Scope.ForceCleanup({&Vals.first, &Vals.second});
243     return Vals;
244   }
245   ComplexPairTy VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
246     assert(E->getType()->isAnyComplexType() && "Expected complex type!");
247     QualType Elem = E->getType()->castAs<ComplexType>()->getElementType();
248     llvm::Constant *Null = llvm::Constant::getNullValue(CGF.ConvertType(Elem));
249     return ComplexPairTy(Null, Null);
250   }
251   ComplexPairTy VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
252     assert(E->getType()->isAnyComplexType() && "Expected complex type!");
253     QualType Elem = E->getType()->castAs<ComplexType>()->getElementType();
254     llvm::Constant *Null =
255                        llvm::Constant::getNullValue(CGF.ConvertType(Elem));
256     return ComplexPairTy(Null, Null);
257   }
258 
259   struct BinOpInfo {
260     ComplexPairTy LHS;
261     ComplexPairTy RHS;
262     QualType Ty;  // Computation Type.
263     FPOptions FPFeatures;
264   };
265 
266   BinOpInfo EmitBinOps(const BinaryOperator *E,
267                        QualType PromotionTy = QualType());
268   ComplexPairTy EmitPromoted(const Expr *E, QualType PromotionTy);
269   ComplexPairTy EmitPromotedComplexOperand(const Expr *E, QualType PromotionTy);
270   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
271                                   ComplexPairTy (ComplexExprEmitter::*Func)
272                                   (const BinOpInfo &),
273                                   RValue &Val);
274   ComplexPairTy EmitCompoundAssign(const CompoundAssignOperator *E,
275                                    ComplexPairTy (ComplexExprEmitter::*Func)
276                                    (const BinOpInfo &));
277 
278   ComplexPairTy EmitBinAdd(const BinOpInfo &Op);
279   ComplexPairTy EmitBinSub(const BinOpInfo &Op);
280   ComplexPairTy EmitBinMul(const BinOpInfo &Op);
281   ComplexPairTy EmitBinDiv(const BinOpInfo &Op);
282   ComplexPairTy EmitAlgebraicDiv(llvm::Value *A, llvm::Value *B, llvm::Value *C,
283                                  llvm::Value *D);
284   ComplexPairTy EmitRangeReductionDiv(llvm::Value *A, llvm::Value *B,
285                                       llvm::Value *C, llvm::Value *D);
286 
287   ComplexPairTy EmitComplexBinOpLibCall(StringRef LibCallName,
288                                         const BinOpInfo &Op);
289 
290   QualType getPromotionType(QualType Ty) {
291     if (auto *CT = Ty->getAs<ComplexType>()) {
292       QualType ElementType = CT->getElementType();
293       if (ElementType.UseExcessPrecision(CGF.getContext()))
294         return CGF.getContext().getComplexType(CGF.getContext().FloatTy);
295     }
296     if (Ty.UseExcessPrecision(CGF.getContext()))
297       return CGF.getContext().FloatTy;
298     return QualType();
299   }
300 
301 #define HANDLEBINOP(OP)                                                        \
302   ComplexPairTy VisitBin##OP(const BinaryOperator *E) {                        \
303     QualType promotionTy = getPromotionType(E->getType());                     \
304     ComplexPairTy result = EmitBin##OP(EmitBinOps(E, promotionTy));            \
305     if (!promotionTy.isNull())                                                 \
306       result =                                                                 \
307           CGF.EmitUnPromotedValue(result, E->getType());                       \
308     return result;                                                             \
309   }
310 
311   HANDLEBINOP(Mul)
312   HANDLEBINOP(Div)
313   HANDLEBINOP(Add)
314   HANDLEBINOP(Sub)
315 #undef HANDLEBINOP
316 
317   ComplexPairTy VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
318     return Visit(E->getSemanticForm());
319   }
320 
321   // Compound assignments.
322   ComplexPairTy VisitBinAddAssign(const CompoundAssignOperator *E) {
323     return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinAdd);
324   }
325   ComplexPairTy VisitBinSubAssign(const CompoundAssignOperator *E) {
326     return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinSub);
327   }
328   ComplexPairTy VisitBinMulAssign(const CompoundAssignOperator *E) {
329     return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinMul);
330   }
331   ComplexPairTy VisitBinDivAssign(const CompoundAssignOperator *E) {
332     return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinDiv);
333   }
334 
335   // GCC rejects rem/and/or/xor for integer complex.
336   // Logical and/or always return int, never complex.
337 
338   // No comparisons produce a complex result.
339 
340   LValue EmitBinAssignLValue(const BinaryOperator *E,
341                              ComplexPairTy &Val);
342   ComplexPairTy VisitBinAssign     (const BinaryOperator *E);
343   ComplexPairTy VisitBinComma      (const BinaryOperator *E);
344 
345 
346   ComplexPairTy
347   VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
348   ComplexPairTy VisitChooseExpr(ChooseExpr *CE);
349 
350   ComplexPairTy VisitInitListExpr(InitListExpr *E);
351 
352   ComplexPairTy VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
353     return EmitLoadOfLValue(E);
354   }
355 
356   ComplexPairTy VisitVAArgExpr(VAArgExpr *E);
357 
358   ComplexPairTy VisitAtomicExpr(AtomicExpr *E) {
359     return CGF.EmitAtomicExpr(E).getComplexVal();
360   }
361 
362   ComplexPairTy VisitPackIndexingExpr(PackIndexingExpr *E) {
363     return Visit(E->getSelectedExpr());
364   }
365 };
366 }  // end anonymous namespace.
367 
368 //===----------------------------------------------------------------------===//
369 //                                Utilities
370 //===----------------------------------------------------------------------===//
371 
372 Address CodeGenFunction::emitAddrOfRealComponent(Address addr,
373                                                  QualType complexType) {
374   return Builder.CreateStructGEP(addr, 0, addr.getName() + ".realp");
375 }
376 
377 Address CodeGenFunction::emitAddrOfImagComponent(Address addr,
378                                                  QualType complexType) {
379   return Builder.CreateStructGEP(addr, 1, addr.getName() + ".imagp");
380 }
381 
382 /// EmitLoadOfLValue - Given an RValue reference for a complex, emit code to
383 /// load the real and imaginary pieces, returning them as Real/Imag.
384 ComplexPairTy ComplexExprEmitter::EmitLoadOfLValue(LValue lvalue,
385                                                    SourceLocation loc) {
386   assert(lvalue.isSimple() && "non-simple complex l-value?");
387   if (lvalue.getType()->isAtomicType())
388     return CGF.EmitAtomicLoad(lvalue, loc).getComplexVal();
389 
390   Address SrcPtr = lvalue.getAddress(CGF);
391   bool isVolatile = lvalue.isVolatileQualified();
392 
393   llvm::Value *Real = nullptr, *Imag = nullptr;
394 
395   if (!IgnoreReal || isVolatile) {
396     Address RealP = CGF.emitAddrOfRealComponent(SrcPtr, lvalue.getType());
397     Real = Builder.CreateLoad(RealP, isVolatile, SrcPtr.getName() + ".real");
398   }
399 
400   if (!IgnoreImag || isVolatile) {
401     Address ImagP = CGF.emitAddrOfImagComponent(SrcPtr, lvalue.getType());
402     Imag = Builder.CreateLoad(ImagP, isVolatile, SrcPtr.getName() + ".imag");
403   }
404 
405   return ComplexPairTy(Real, Imag);
406 }
407 
408 /// EmitStoreOfComplex - Store the specified real/imag parts into the
409 /// specified value pointer.
410 void ComplexExprEmitter::EmitStoreOfComplex(ComplexPairTy Val, LValue lvalue,
411                                             bool isInit) {
412   if (lvalue.getType()->isAtomicType() ||
413       (!isInit && CGF.LValueIsSuitableForInlineAtomic(lvalue)))
414     return CGF.EmitAtomicStore(RValue::getComplex(Val), lvalue, isInit);
415 
416   Address Ptr = lvalue.getAddress(CGF);
417   Address RealPtr = CGF.emitAddrOfRealComponent(Ptr, lvalue.getType());
418   Address ImagPtr = CGF.emitAddrOfImagComponent(Ptr, lvalue.getType());
419 
420   Builder.CreateStore(Val.first, RealPtr, lvalue.isVolatileQualified());
421   Builder.CreateStore(Val.second, ImagPtr, lvalue.isVolatileQualified());
422 }
423 
424 
425 
426 //===----------------------------------------------------------------------===//
427 //                            Visitor Methods
428 //===----------------------------------------------------------------------===//
429 
430 ComplexPairTy ComplexExprEmitter::VisitExpr(Expr *E) {
431   CGF.ErrorUnsupported(E, "complex expression");
432   llvm::Type *EltTy =
433     CGF.ConvertType(getComplexType(E->getType())->getElementType());
434   llvm::Value *U = llvm::UndefValue::get(EltTy);
435   return ComplexPairTy(U, U);
436 }
437 
438 ComplexPairTy ComplexExprEmitter::
439 VisitImaginaryLiteral(const ImaginaryLiteral *IL) {
440   llvm::Value *Imag = CGF.EmitScalarExpr(IL->getSubExpr());
441   return ComplexPairTy(llvm::Constant::getNullValue(Imag->getType()), Imag);
442 }
443 
444 
445 ComplexPairTy ComplexExprEmitter::VisitCallExpr(const CallExpr *E) {
446   if (E->getCallReturnType(CGF.getContext())->isReferenceType())
447     return EmitLoadOfLValue(E);
448 
449   return CGF.EmitCallExpr(E).getComplexVal();
450 }
451 
452 ComplexPairTy ComplexExprEmitter::VisitStmtExpr(const StmtExpr *E) {
453   CodeGenFunction::StmtExprEvaluation eval(CGF);
454   Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), true);
455   assert(RetAlloca.isValid() && "Expected complex return value");
456   return EmitLoadOfLValue(CGF.MakeAddrLValue(RetAlloca, E->getType()),
457                           E->getExprLoc());
458 }
459 
460 /// Emit a cast from complex value Val to DestType.
461 ComplexPairTy ComplexExprEmitter::EmitComplexToComplexCast(ComplexPairTy Val,
462                                                            QualType SrcType,
463                                                            QualType DestType,
464                                                            SourceLocation Loc) {
465   // Get the src/dest element type.
466   SrcType = SrcType->castAs<ComplexType>()->getElementType();
467   DestType = DestType->castAs<ComplexType>()->getElementType();
468 
469   // C99 6.3.1.6: When a value of complex type is converted to another
470   // complex type, both the real and imaginary parts follow the conversion
471   // rules for the corresponding real types.
472   if (Val.first)
473     Val.first = CGF.EmitScalarConversion(Val.first, SrcType, DestType, Loc);
474   if (Val.second)
475     Val.second = CGF.EmitScalarConversion(Val.second, SrcType, DestType, Loc);
476   return Val;
477 }
478 
479 ComplexPairTy ComplexExprEmitter::EmitScalarToComplexCast(llvm::Value *Val,
480                                                           QualType SrcType,
481                                                           QualType DestType,
482                                                           SourceLocation Loc) {
483   // Convert the input element to the element type of the complex.
484   DestType = DestType->castAs<ComplexType>()->getElementType();
485   Val = CGF.EmitScalarConversion(Val, SrcType, DestType, Loc);
486 
487   // Return (realval, 0).
488   return ComplexPairTy(Val, llvm::Constant::getNullValue(Val->getType()));
489 }
490 
491 ComplexPairTy ComplexExprEmitter::EmitCast(CastKind CK, Expr *Op,
492                                            QualType DestTy) {
493   switch (CK) {
494   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
495 
496   // Atomic to non-atomic casts may be more than a no-op for some platforms and
497   // for some types.
498   case CK_AtomicToNonAtomic:
499   case CK_NonAtomicToAtomic:
500   case CK_NoOp:
501   case CK_LValueToRValue:
502   case CK_UserDefinedConversion:
503     return Visit(Op);
504 
505   case CK_LValueBitCast: {
506     LValue origLV = CGF.EmitLValue(Op);
507     Address V = origLV.getAddress(CGF).withElementType(CGF.ConvertType(DestTy));
508     return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy), Op->getExprLoc());
509   }
510 
511   case CK_LValueToRValueBitCast: {
512     LValue SourceLVal = CGF.EmitLValue(Op);
513     Address Addr = SourceLVal.getAddress(CGF).withElementType(
514         CGF.ConvertTypeForMem(DestTy));
515     LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
516     DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
517     return EmitLoadOfLValue(DestLV, Op->getExprLoc());
518   }
519 
520   case CK_BitCast:
521   case CK_BaseToDerived:
522   case CK_DerivedToBase:
523   case CK_UncheckedDerivedToBase:
524   case CK_Dynamic:
525   case CK_ToUnion:
526   case CK_ArrayToPointerDecay:
527   case CK_FunctionToPointerDecay:
528   case CK_NullToPointer:
529   case CK_NullToMemberPointer:
530   case CK_BaseToDerivedMemberPointer:
531   case CK_DerivedToBaseMemberPointer:
532   case CK_MemberPointerToBoolean:
533   case CK_ReinterpretMemberPointer:
534   case CK_ConstructorConversion:
535   case CK_IntegralToPointer:
536   case CK_PointerToIntegral:
537   case CK_PointerToBoolean:
538   case CK_ToVoid:
539   case CK_VectorSplat:
540   case CK_IntegralCast:
541   case CK_BooleanToSignedIntegral:
542   case CK_IntegralToBoolean:
543   case CK_IntegralToFloating:
544   case CK_FloatingToIntegral:
545   case CK_FloatingToBoolean:
546   case CK_FloatingCast:
547   case CK_CPointerToObjCPointerCast:
548   case CK_BlockPointerToObjCPointerCast:
549   case CK_AnyPointerToBlockPointerCast:
550   case CK_ObjCObjectLValueCast:
551   case CK_FloatingComplexToReal:
552   case CK_FloatingComplexToBoolean:
553   case CK_IntegralComplexToReal:
554   case CK_IntegralComplexToBoolean:
555   case CK_ARCProduceObject:
556   case CK_ARCConsumeObject:
557   case CK_ARCReclaimReturnedObject:
558   case CK_ARCExtendBlockObject:
559   case CK_CopyAndAutoreleaseBlockObject:
560   case CK_BuiltinFnToFnPtr:
561   case CK_ZeroToOCLOpaqueType:
562   case CK_AddressSpaceConversion:
563   case CK_IntToOCLSampler:
564   case CK_FloatingToFixedPoint:
565   case CK_FixedPointToFloating:
566   case CK_FixedPointCast:
567   case CK_FixedPointToBoolean:
568   case CK_FixedPointToIntegral:
569   case CK_IntegralToFixedPoint:
570   case CK_MatrixCast:
571   case CK_HLSLVectorTruncation:
572     llvm_unreachable("invalid cast kind for complex value");
573 
574   case CK_FloatingRealToComplex:
575   case CK_IntegralRealToComplex: {
576     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op);
577     return EmitScalarToComplexCast(CGF.EmitScalarExpr(Op), Op->getType(),
578                                    DestTy, Op->getExprLoc());
579   }
580 
581   case CK_FloatingComplexCast:
582   case CK_FloatingComplexToIntegralComplex:
583   case CK_IntegralComplexCast:
584   case CK_IntegralComplexToFloatingComplex: {
585     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op);
586     return EmitComplexToComplexCast(Visit(Op), Op->getType(), DestTy,
587                                     Op->getExprLoc());
588   }
589   }
590 
591   llvm_unreachable("unknown cast resulting in complex value");
592 }
593 
594 ComplexPairTy ComplexExprEmitter::VisitUnaryPlus(const UnaryOperator *E,
595                                                  QualType PromotionType) {
596   QualType promotionTy = PromotionType.isNull()
597                              ? getPromotionType(E->getSubExpr()->getType())
598                              : PromotionType;
599   ComplexPairTy result = VisitPlus(E, promotionTy);
600   if (!promotionTy.isNull())
601     return CGF.EmitUnPromotedValue(result, E->getSubExpr()->getType());
602   return result;
603 }
604 
605 ComplexPairTy ComplexExprEmitter::VisitPlus(const UnaryOperator *E,
606                                             QualType PromotionType) {
607   TestAndClearIgnoreReal();
608   TestAndClearIgnoreImag();
609   if (!PromotionType.isNull())
610     return CGF.EmitPromotedComplexExpr(E->getSubExpr(), PromotionType);
611   return Visit(E->getSubExpr());
612 }
613 
614 ComplexPairTy ComplexExprEmitter::VisitUnaryMinus(const UnaryOperator *E,
615                                                   QualType PromotionType) {
616   QualType promotionTy = PromotionType.isNull()
617                              ? getPromotionType(E->getSubExpr()->getType())
618                              : PromotionType;
619   ComplexPairTy result = VisitMinus(E, promotionTy);
620   if (!promotionTy.isNull())
621     return CGF.EmitUnPromotedValue(result, E->getSubExpr()->getType());
622   return result;
623 }
624 ComplexPairTy ComplexExprEmitter::VisitMinus(const UnaryOperator *E,
625                                              QualType PromotionType) {
626   TestAndClearIgnoreReal();
627   TestAndClearIgnoreImag();
628   ComplexPairTy Op;
629   if (!PromotionType.isNull())
630     Op = CGF.EmitPromotedComplexExpr(E->getSubExpr(), PromotionType);
631   else
632     Op = Visit(E->getSubExpr());
633 
634   llvm::Value *ResR, *ResI;
635   if (Op.first->getType()->isFloatingPointTy()) {
636     ResR = Builder.CreateFNeg(Op.first,  "neg.r");
637     ResI = Builder.CreateFNeg(Op.second, "neg.i");
638   } else {
639     ResR = Builder.CreateNeg(Op.first,  "neg.r");
640     ResI = Builder.CreateNeg(Op.second, "neg.i");
641   }
642   return ComplexPairTy(ResR, ResI);
643 }
644 
645 ComplexPairTy ComplexExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
646   TestAndClearIgnoreReal();
647   TestAndClearIgnoreImag();
648   // ~(a+ib) = a + i*-b
649   ComplexPairTy Op = Visit(E->getSubExpr());
650   llvm::Value *ResI;
651   if (Op.second->getType()->isFloatingPointTy())
652     ResI = Builder.CreateFNeg(Op.second, "conj.i");
653   else
654     ResI = Builder.CreateNeg(Op.second, "conj.i");
655 
656   return ComplexPairTy(Op.first, ResI);
657 }
658 
659 ComplexPairTy ComplexExprEmitter::EmitBinAdd(const BinOpInfo &Op) {
660   llvm::Value *ResR, *ResI;
661 
662   if (Op.LHS.first->getType()->isFloatingPointTy()) {
663     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op.FPFeatures);
664     ResR = Builder.CreateFAdd(Op.LHS.first,  Op.RHS.first,  "add.r");
665     if (Op.LHS.second && Op.RHS.second)
666       ResI = Builder.CreateFAdd(Op.LHS.second, Op.RHS.second, "add.i");
667     else
668       ResI = Op.LHS.second ? Op.LHS.second : Op.RHS.second;
669     assert(ResI && "Only one operand may be real!");
670   } else {
671     ResR = Builder.CreateAdd(Op.LHS.first,  Op.RHS.first,  "add.r");
672     assert(Op.LHS.second && Op.RHS.second &&
673            "Both operands of integer complex operators must be complex!");
674     ResI = Builder.CreateAdd(Op.LHS.second, Op.RHS.second, "add.i");
675   }
676   return ComplexPairTy(ResR, ResI);
677 }
678 
679 ComplexPairTy ComplexExprEmitter::EmitBinSub(const BinOpInfo &Op) {
680   llvm::Value *ResR, *ResI;
681   if (Op.LHS.first->getType()->isFloatingPointTy()) {
682     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op.FPFeatures);
683     ResR = Builder.CreateFSub(Op.LHS.first, Op.RHS.first, "sub.r");
684     if (Op.LHS.second && Op.RHS.second)
685       ResI = Builder.CreateFSub(Op.LHS.second, Op.RHS.second, "sub.i");
686     else
687       ResI = Op.LHS.second ? Op.LHS.second
688                            : Builder.CreateFNeg(Op.RHS.second, "sub.i");
689     assert(ResI && "Only one operand may be real!");
690   } else {
691     ResR = Builder.CreateSub(Op.LHS.first, Op.RHS.first, "sub.r");
692     assert(Op.LHS.second && Op.RHS.second &&
693            "Both operands of integer complex operators must be complex!");
694     ResI = Builder.CreateSub(Op.LHS.second, Op.RHS.second, "sub.i");
695   }
696   return ComplexPairTy(ResR, ResI);
697 }
698 
699 /// Emit a libcall for a binary operation on complex types.
700 ComplexPairTy ComplexExprEmitter::EmitComplexBinOpLibCall(StringRef LibCallName,
701                                                           const BinOpInfo &Op) {
702   CallArgList Args;
703   Args.add(RValue::get(Op.LHS.first),
704            Op.Ty->castAs<ComplexType>()->getElementType());
705   Args.add(RValue::get(Op.LHS.second),
706            Op.Ty->castAs<ComplexType>()->getElementType());
707   Args.add(RValue::get(Op.RHS.first),
708            Op.Ty->castAs<ComplexType>()->getElementType());
709   Args.add(RValue::get(Op.RHS.second),
710            Op.Ty->castAs<ComplexType>()->getElementType());
711 
712   // We *must* use the full CG function call building logic here because the
713   // complex type has special ABI handling. We also should not forget about
714   // special calling convention which may be used for compiler builtins.
715 
716   // We create a function qualified type to state that this call does not have
717   // any exceptions.
718   FunctionProtoType::ExtProtoInfo EPI;
719   EPI = EPI.withExceptionSpec(
720       FunctionProtoType::ExceptionSpecInfo(EST_BasicNoexcept));
721   SmallVector<QualType, 4> ArgsQTys(
722       4, Op.Ty->castAs<ComplexType>()->getElementType());
723   QualType FQTy = CGF.getContext().getFunctionType(Op.Ty, ArgsQTys, EPI);
724   const CGFunctionInfo &FuncInfo = CGF.CGM.getTypes().arrangeFreeFunctionCall(
725       Args, cast<FunctionType>(FQTy.getTypePtr()), false);
726 
727   llvm::FunctionType *FTy = CGF.CGM.getTypes().GetFunctionType(FuncInfo);
728   llvm::FunctionCallee Func = CGF.CGM.CreateRuntimeFunction(
729       FTy, LibCallName, llvm::AttributeList(), true);
730   CGCallee Callee = CGCallee::forDirect(Func, FQTy->getAs<FunctionProtoType>());
731 
732   llvm::CallBase *Call;
733   RValue Res = CGF.EmitCall(FuncInfo, Callee, ReturnValueSlot(), Args, &Call);
734   Call->setCallingConv(CGF.CGM.getRuntimeCC());
735   return Res.getComplexVal();
736 }
737 
738 /// Lookup the libcall name for a given floating point type complex
739 /// multiply.
740 static StringRef getComplexMultiplyLibCallName(llvm::Type *Ty) {
741   switch (Ty->getTypeID()) {
742   default:
743     llvm_unreachable("Unsupported floating point type!");
744   case llvm::Type::HalfTyID:
745     return "__mulhc3";
746   case llvm::Type::FloatTyID:
747     return "__mulsc3";
748   case llvm::Type::DoubleTyID:
749     return "__muldc3";
750   case llvm::Type::PPC_FP128TyID:
751     return "__multc3";
752   case llvm::Type::X86_FP80TyID:
753     return "__mulxc3";
754   case llvm::Type::FP128TyID:
755     return "__multc3";
756   }
757 }
758 
759 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex
760 // typed values.
761 ComplexPairTy ComplexExprEmitter::EmitBinMul(const BinOpInfo &Op) {
762   using llvm::Value;
763   Value *ResR, *ResI;
764   llvm::MDBuilder MDHelper(CGF.getLLVMContext());
765 
766   if (Op.LHS.first->getType()->isFloatingPointTy()) {
767     // The general formulation is:
768     // (a + ib) * (c + id) = (a * c - b * d) + i(a * d + b * c)
769     //
770     // But we can fold away components which would be zero due to a real
771     // operand according to C11 Annex G.5.1p2.
772     // FIXME: C11 also provides for imaginary types which would allow folding
773     // still more of this within the type system.
774 
775     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op.FPFeatures);
776     if (Op.LHS.second && Op.RHS.second) {
777       // If both operands are complex, emit the core math directly, and then
778       // test for NaNs. If we find NaNs in the result, we delegate to a libcall
779       // to carefully re-compute the correct infinity representation if
780       // possible. The expectation is that the presence of NaNs here is
781       // *extremely* rare, and so the cost of the libcall is almost irrelevant.
782       // This is good, because the libcall re-computes the core multiplication
783       // exactly the same as we do here and re-tests for NaNs in order to be
784       // a generic complex*complex libcall.
785 
786       // First compute the four products.
787       Value *AC = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul_ac");
788       Value *BD = Builder.CreateFMul(Op.LHS.second, Op.RHS.second, "mul_bd");
789       Value *AD = Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul_ad");
790       Value *BC = Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul_bc");
791 
792       // The real part is the difference of the first two, the imaginary part is
793       // the sum of the second.
794       ResR = Builder.CreateFSub(AC, BD, "mul_r");
795       ResI = Builder.CreateFAdd(AD, BC, "mul_i");
796 
797       if (Op.FPFeatures.getComplexRange() == LangOptions::CX_Limited ||
798           Op.FPFeatures.getComplexRange() == LangOptions::CX_Fortran)
799         return ComplexPairTy(ResR, ResI);
800 
801       // Emit the test for the real part becoming NaN and create a branch to
802       // handle it. We test for NaN by comparing the number to itself.
803       Value *IsRNaN = Builder.CreateFCmpUNO(ResR, ResR, "isnan_cmp");
804       llvm::BasicBlock *ContBB = CGF.createBasicBlock("complex_mul_cont");
805       llvm::BasicBlock *INaNBB = CGF.createBasicBlock("complex_mul_imag_nan");
806       llvm::Instruction *Branch = Builder.CreateCondBr(IsRNaN, INaNBB, ContBB);
807       llvm::BasicBlock *OrigBB = Branch->getParent();
808 
809       // Give hint that we very much don't expect to see NaNs.
810       // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
811       llvm::MDNode *BrWeight = MDHelper.createBranchWeights(1, (1U << 20) - 1);
812       Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight);
813 
814       // Now test the imaginary part and create its branch.
815       CGF.EmitBlock(INaNBB);
816       Value *IsINaN = Builder.CreateFCmpUNO(ResI, ResI, "isnan_cmp");
817       llvm::BasicBlock *LibCallBB = CGF.createBasicBlock("complex_mul_libcall");
818       Branch = Builder.CreateCondBr(IsINaN, LibCallBB, ContBB);
819       Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight);
820 
821       // Now emit the libcall on this slowest of the slow paths.
822       CGF.EmitBlock(LibCallBB);
823       Value *LibCallR, *LibCallI;
824       std::tie(LibCallR, LibCallI) = EmitComplexBinOpLibCall(
825           getComplexMultiplyLibCallName(Op.LHS.first->getType()), Op);
826       Builder.CreateBr(ContBB);
827 
828       // Finally continue execution by phi-ing together the different
829       // computation paths.
830       CGF.EmitBlock(ContBB);
831       llvm::PHINode *RealPHI = Builder.CreatePHI(ResR->getType(), 3, "real_mul_phi");
832       RealPHI->addIncoming(ResR, OrigBB);
833       RealPHI->addIncoming(ResR, INaNBB);
834       RealPHI->addIncoming(LibCallR, LibCallBB);
835       llvm::PHINode *ImagPHI = Builder.CreatePHI(ResI->getType(), 3, "imag_mul_phi");
836       ImagPHI->addIncoming(ResI, OrigBB);
837       ImagPHI->addIncoming(ResI, INaNBB);
838       ImagPHI->addIncoming(LibCallI, LibCallBB);
839       return ComplexPairTy(RealPHI, ImagPHI);
840     }
841     assert((Op.LHS.second || Op.RHS.second) &&
842            "At least one operand must be complex!");
843 
844     // If either of the operands is a real rather than a complex, the
845     // imaginary component is ignored when computing the real component of the
846     // result.
847     ResR = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul.rl");
848 
849     ResI = Op.LHS.second
850                ? Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul.il")
851                : Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul.ir");
852   } else {
853     assert(Op.LHS.second && Op.RHS.second &&
854            "Both operands of integer complex operators must be complex!");
855     Value *ResRl = Builder.CreateMul(Op.LHS.first, Op.RHS.first, "mul.rl");
856     Value *ResRr = Builder.CreateMul(Op.LHS.second, Op.RHS.second, "mul.rr");
857     ResR = Builder.CreateSub(ResRl, ResRr, "mul.r");
858 
859     Value *ResIl = Builder.CreateMul(Op.LHS.second, Op.RHS.first, "mul.il");
860     Value *ResIr = Builder.CreateMul(Op.LHS.first, Op.RHS.second, "mul.ir");
861     ResI = Builder.CreateAdd(ResIl, ResIr, "mul.i");
862   }
863   return ComplexPairTy(ResR, ResI);
864 }
865 
866 ComplexPairTy ComplexExprEmitter::EmitAlgebraicDiv(llvm::Value *LHSr,
867                                                    llvm::Value *LHSi,
868                                                    llvm::Value *RHSr,
869                                                    llvm::Value *RHSi) {
870   // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd))
871   llvm::Value *DSTr, *DSTi;
872 
873   llvm::Value *AC = Builder.CreateFMul(LHSr, RHSr); // a*c
874   llvm::Value *BD = Builder.CreateFMul(LHSi, RHSi); // b*d
875   llvm::Value *ACpBD = Builder.CreateFAdd(AC, BD);  // ac+bd
876 
877   llvm::Value *CC = Builder.CreateFMul(RHSr, RHSr); // c*c
878   llvm::Value *DD = Builder.CreateFMul(RHSi, RHSi); // d*d
879   llvm::Value *CCpDD = Builder.CreateFAdd(CC, DD);  // cc+dd
880 
881   llvm::Value *BC = Builder.CreateFMul(LHSi, RHSr); // b*c
882   llvm::Value *AD = Builder.CreateFMul(LHSr, RHSi); // a*d
883   llvm::Value *BCmAD = Builder.CreateFSub(BC, AD);  // bc-ad
884 
885   DSTr = Builder.CreateFDiv(ACpBD, CCpDD);
886   DSTi = Builder.CreateFDiv(BCmAD, CCpDD);
887   return ComplexPairTy(DSTr, DSTi);
888 }
889 
890 // EmitFAbs - Emit a call to @llvm.fabs.
891 static llvm::Value *EmitllvmFAbs(CodeGenFunction &CGF, llvm::Value *Value) {
892   llvm::Function *Func =
893       CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Value->getType());
894   llvm::Value *Call = CGF.Builder.CreateCall(Func, Value);
895   return Call;
896 }
897 
898 // EmitRangeReductionDiv - Implements Smith's algorithm for complex division.
899 // SMITH, R. L. Algorithm 116: Complex division. Commun. ACM 5, 8 (1962).
900 ComplexPairTy ComplexExprEmitter::EmitRangeReductionDiv(llvm::Value *LHSr,
901                                                         llvm::Value *LHSi,
902                                                         llvm::Value *RHSr,
903                                                         llvm::Value *RHSi) {
904   // FIXME: This could eventually be replaced by an LLVM intrinsic to
905   // avoid this long IR sequence.
906 
907   // (a + ib) / (c + id) = (e + if)
908   llvm::Value *FAbsRHSr = EmitllvmFAbs(CGF, RHSr); // |c|
909   llvm::Value *FAbsRHSi = EmitllvmFAbs(CGF, RHSi); // |d|
910   // |c| >= |d|
911   llvm::Value *IsR = Builder.CreateFCmpUGT(FAbsRHSr, FAbsRHSi, "abs_cmp");
912 
913   llvm::BasicBlock *TrueBB =
914       CGF.createBasicBlock("abs_rhsr_greater_or_equal_abs_rhsi");
915   llvm::BasicBlock *FalseBB =
916       CGF.createBasicBlock("abs_rhsr_less_than_abs_rhsi");
917   llvm::BasicBlock *ContBB = CGF.createBasicBlock("complex_div");
918   Builder.CreateCondBr(IsR, TrueBB, FalseBB);
919 
920   CGF.EmitBlock(TrueBB);
921   // abs(c) >= abs(d)
922   // r = d/c
923   // tmp = c + rd
924   // e = (a + br)/tmp
925   // f = (b - ar)/tmp
926   llvm::Value *DdC = Builder.CreateFDiv(RHSi, RHSr); // r=d/c
927 
928   llvm::Value *RD = Builder.CreateFMul(DdC, RHSi);  // rd
929   llvm::Value *CpRD = Builder.CreateFAdd(RHSr, RD); // tmp=c+rd
930 
931   llvm::Value *T3 = Builder.CreateFMul(LHSi, DdC);   // br
932   llvm::Value *T4 = Builder.CreateFAdd(LHSr, T3);    // a+br
933   llvm::Value *DSTTr = Builder.CreateFDiv(T4, CpRD); // (a+br)/tmp
934 
935   llvm::Value *T5 = Builder.CreateFMul(LHSr, DdC);   // ar
936   llvm::Value *T6 = Builder.CreateFSub(LHSi, T5);    // b-ar
937   llvm::Value *DSTTi = Builder.CreateFDiv(T6, CpRD); // (b-ar)/tmp
938   Builder.CreateBr(ContBB);
939 
940   CGF.EmitBlock(FalseBB);
941   // abs(c) < abs(d)
942   // r = c/d
943   // tmp = d + rc
944   // e = (ar + b)/tmp
945   // f = (br - a)/tmp
946   llvm::Value *CdD = Builder.CreateFDiv(RHSr, RHSi); // r=c/d
947 
948   llvm::Value *RC = Builder.CreateFMul(CdD, RHSr);  // rc
949   llvm::Value *DpRC = Builder.CreateFAdd(RHSi, RC); // tmp=d+rc
950 
951   llvm::Value *T7 = Builder.CreateFMul(LHSr, CdD);   // ar
952   llvm::Value *T8 = Builder.CreateFAdd(T7, LHSi);    // ar+b
953   llvm::Value *DSTFr = Builder.CreateFDiv(T8, DpRC); // (ar+b)/tmp
954 
955   llvm::Value *T9 = Builder.CreateFMul(LHSi, CdD);    // br
956   llvm::Value *T10 = Builder.CreateFSub(T9, LHSr);    // br-a
957   llvm::Value *DSTFi = Builder.CreateFDiv(T10, DpRC); // (br-a)/tmp
958   Builder.CreateBr(ContBB);
959 
960   // Phi together the computation paths.
961   CGF.EmitBlock(ContBB);
962   llvm::PHINode *VALr = Builder.CreatePHI(DSTTr->getType(), 2);
963   VALr->addIncoming(DSTTr, TrueBB);
964   VALr->addIncoming(DSTFr, FalseBB);
965   llvm::PHINode *VALi = Builder.CreatePHI(DSTTi->getType(), 2);
966   VALi->addIncoming(DSTTi, TrueBB);
967   VALi->addIncoming(DSTFi, FalseBB);
968   return ComplexPairTy(VALr, VALi);
969 }
970 
971 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex
972 // typed values.
973 ComplexPairTy ComplexExprEmitter::EmitBinDiv(const BinOpInfo &Op) {
974   llvm::Value *LHSr = Op.LHS.first, *LHSi = Op.LHS.second;
975   llvm::Value *RHSr = Op.RHS.first, *RHSi = Op.RHS.second;
976   llvm::Value *DSTr, *DSTi;
977   if (LHSr->getType()->isFloatingPointTy()) {
978     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op.FPFeatures);
979     if (!RHSi) {
980       assert(LHSi && "Can have at most one non-complex operand!");
981 
982       DSTr = Builder.CreateFDiv(LHSr, RHSr);
983       DSTi = Builder.CreateFDiv(LHSi, RHSr);
984       return ComplexPairTy(DSTr, DSTi);
985     }
986     llvm::Value *OrigLHSi = LHSi;
987     if (!LHSi)
988       LHSi = llvm::Constant::getNullValue(RHSi->getType());
989     if (Op.FPFeatures.getComplexRange() == LangOptions::CX_Fortran)
990       return EmitRangeReductionDiv(LHSr, LHSi, RHSr, RHSi);
991     else if (Op.FPFeatures.getComplexRange() == LangOptions::CX_Limited)
992       return EmitAlgebraicDiv(LHSr, LHSi, RHSr, RHSi);
993     else if (!CGF.getLangOpts().FastMath ||
994              // '-ffast-math' is used in the command line but followed by an
995              // '-fno-cx-limited-range'.
996              Op.FPFeatures.getComplexRange() == LangOptions::CX_Full) {
997       LHSi = OrigLHSi;
998       // If we have a complex operand on the RHS and FastMath is not allowed, we
999       // delegate to a libcall to handle all of the complexities and minimize
1000       // underflow/overflow cases. When FastMath is allowed we construct the
1001       // divide inline using the same algorithm as for integer operands.
1002       //
1003       // FIXME: We would be able to avoid the libcall in many places if we
1004       // supported imaginary types in addition to complex types.
1005       BinOpInfo LibCallOp = Op;
1006       // If LHS was a real, supply a null imaginary part.
1007       if (!LHSi)
1008         LibCallOp.LHS.second = llvm::Constant::getNullValue(LHSr->getType());
1009 
1010       switch (LHSr->getType()->getTypeID()) {
1011       default:
1012         llvm_unreachable("Unsupported floating point type!");
1013       case llvm::Type::HalfTyID:
1014         return EmitComplexBinOpLibCall("__divhc3", LibCallOp);
1015       case llvm::Type::FloatTyID:
1016         return EmitComplexBinOpLibCall("__divsc3", LibCallOp);
1017       case llvm::Type::DoubleTyID:
1018         return EmitComplexBinOpLibCall("__divdc3", LibCallOp);
1019       case llvm::Type::PPC_FP128TyID:
1020         return EmitComplexBinOpLibCall("__divtc3", LibCallOp);
1021       case llvm::Type::X86_FP80TyID:
1022         return EmitComplexBinOpLibCall("__divxc3", LibCallOp);
1023       case llvm::Type::FP128TyID:
1024         return EmitComplexBinOpLibCall("__divtc3", LibCallOp);
1025       }
1026     } else {
1027       return EmitAlgebraicDiv(LHSr, LHSi, RHSr, RHSi);
1028     }
1029   } else {
1030     assert(Op.LHS.second && Op.RHS.second &&
1031            "Both operands of integer complex operators must be complex!");
1032     // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd))
1033     llvm::Value *Tmp1 = Builder.CreateMul(LHSr, RHSr); // a*c
1034     llvm::Value *Tmp2 = Builder.CreateMul(LHSi, RHSi); // b*d
1035     llvm::Value *Tmp3 = Builder.CreateAdd(Tmp1, Tmp2); // ac+bd
1036 
1037     llvm::Value *Tmp4 = Builder.CreateMul(RHSr, RHSr); // c*c
1038     llvm::Value *Tmp5 = Builder.CreateMul(RHSi, RHSi); // d*d
1039     llvm::Value *Tmp6 = Builder.CreateAdd(Tmp4, Tmp5); // cc+dd
1040 
1041     llvm::Value *Tmp7 = Builder.CreateMul(LHSi, RHSr); // b*c
1042     llvm::Value *Tmp8 = Builder.CreateMul(LHSr, RHSi); // a*d
1043     llvm::Value *Tmp9 = Builder.CreateSub(Tmp7, Tmp8); // bc-ad
1044 
1045     if (Op.Ty->castAs<ComplexType>()->getElementType()->isUnsignedIntegerType()) {
1046       DSTr = Builder.CreateUDiv(Tmp3, Tmp6);
1047       DSTi = Builder.CreateUDiv(Tmp9, Tmp6);
1048     } else {
1049       DSTr = Builder.CreateSDiv(Tmp3, Tmp6);
1050       DSTi = Builder.CreateSDiv(Tmp9, Tmp6);
1051     }
1052   }
1053 
1054   return ComplexPairTy(DSTr, DSTi);
1055 }
1056 
1057 ComplexPairTy CodeGenFunction::EmitUnPromotedValue(ComplexPairTy result,
1058                                                    QualType UnPromotionType) {
1059   llvm::Type *ComplexElementTy =
1060       ConvertType(UnPromotionType->castAs<ComplexType>()->getElementType());
1061   if (result.first)
1062     result.first =
1063         Builder.CreateFPTrunc(result.first, ComplexElementTy, "unpromotion");
1064   if (result.second)
1065     result.second =
1066         Builder.CreateFPTrunc(result.second, ComplexElementTy, "unpromotion");
1067   return result;
1068 }
1069 
1070 ComplexPairTy CodeGenFunction::EmitPromotedValue(ComplexPairTy result,
1071                                                  QualType PromotionType) {
1072   llvm::Type *ComplexElementTy =
1073       ConvertType(PromotionType->castAs<ComplexType>()->getElementType());
1074   if (result.first)
1075     result.first = Builder.CreateFPExt(result.first, ComplexElementTy, "ext");
1076   if (result.second)
1077     result.second = Builder.CreateFPExt(result.second, ComplexElementTy, "ext");
1078 
1079   return result;
1080 }
1081 
1082 ComplexPairTy ComplexExprEmitter::EmitPromoted(const Expr *E,
1083                                                QualType PromotionType) {
1084   E = E->IgnoreParens();
1085   if (auto BO = dyn_cast<BinaryOperator>(E)) {
1086     switch (BO->getOpcode()) {
1087 #define HANDLE_BINOP(OP)                                                       \
1088   case BO_##OP:                                                                \
1089     return EmitBin##OP(EmitBinOps(BO, PromotionType));
1090       HANDLE_BINOP(Add)
1091       HANDLE_BINOP(Sub)
1092       HANDLE_BINOP(Mul)
1093       HANDLE_BINOP(Div)
1094 #undef HANDLE_BINOP
1095     default:
1096       break;
1097     }
1098   } else if (auto UO = dyn_cast<UnaryOperator>(E)) {
1099     switch (UO->getOpcode()) {
1100     case UO_Minus:
1101       return VisitMinus(UO, PromotionType);
1102     case UO_Plus:
1103       return VisitPlus(UO, PromotionType);
1104     default:
1105       break;
1106     }
1107   }
1108   auto result = Visit(const_cast<Expr *>(E));
1109   if (!PromotionType.isNull())
1110     return CGF.EmitPromotedValue(result, PromotionType);
1111   else
1112     return result;
1113 }
1114 
1115 ComplexPairTy CodeGenFunction::EmitPromotedComplexExpr(const Expr *E,
1116                                                        QualType DstTy) {
1117   return ComplexExprEmitter(*this).EmitPromoted(E, DstTy);
1118 }
1119 
1120 ComplexPairTy
1121 ComplexExprEmitter::EmitPromotedComplexOperand(const Expr *E,
1122                                                QualType OverallPromotionType) {
1123   if (E->getType()->isAnyComplexType()) {
1124     if (!OverallPromotionType.isNull())
1125       return CGF.EmitPromotedComplexExpr(E, OverallPromotionType);
1126     else
1127       return Visit(const_cast<Expr *>(E));
1128   } else {
1129     if (!OverallPromotionType.isNull()) {
1130       QualType ComplexElementTy =
1131           OverallPromotionType->castAs<ComplexType>()->getElementType();
1132       return ComplexPairTy(CGF.EmitPromotedScalarExpr(E, ComplexElementTy),
1133                            nullptr);
1134     } else {
1135       return ComplexPairTy(CGF.EmitScalarExpr(E), nullptr);
1136     }
1137   }
1138 }
1139 
1140 ComplexExprEmitter::BinOpInfo
1141 ComplexExprEmitter::EmitBinOps(const BinaryOperator *E,
1142                                QualType PromotionType) {
1143   TestAndClearIgnoreReal();
1144   TestAndClearIgnoreImag();
1145   BinOpInfo Ops;
1146 
1147   Ops.LHS = EmitPromotedComplexOperand(E->getLHS(), PromotionType);
1148   Ops.RHS = EmitPromotedComplexOperand(E->getRHS(), PromotionType);
1149   if (!PromotionType.isNull())
1150     Ops.Ty = PromotionType;
1151   else
1152     Ops.Ty = E->getType();
1153   Ops.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
1154   return Ops;
1155 }
1156 
1157 
1158 LValue ComplexExprEmitter::
1159 EmitCompoundAssignLValue(const CompoundAssignOperator *E,
1160           ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&),
1161                          RValue &Val) {
1162   TestAndClearIgnoreReal();
1163   TestAndClearIgnoreImag();
1164   QualType LHSTy = E->getLHS()->getType();
1165   if (const AtomicType *AT = LHSTy->getAs<AtomicType>())
1166     LHSTy = AT->getValueType();
1167 
1168   BinOpInfo OpInfo;
1169   OpInfo.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
1170   CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, OpInfo.FPFeatures);
1171 
1172   // Load the RHS and LHS operands.
1173   // __block variables need to have the rhs evaluated first, plus this should
1174   // improve codegen a little.
1175   QualType PromotionTypeCR;
1176   PromotionTypeCR = getPromotionType(E->getComputationResultType());
1177   if (PromotionTypeCR.isNull())
1178     PromotionTypeCR = E->getComputationResultType();
1179   OpInfo.Ty = PromotionTypeCR;
1180   QualType ComplexElementTy =
1181       OpInfo.Ty->castAs<ComplexType>()->getElementType();
1182   QualType PromotionTypeRHS = getPromotionType(E->getRHS()->getType());
1183 
1184   // The RHS should have been converted to the computation type.
1185   if (E->getRHS()->getType()->isRealFloatingType()) {
1186     if (!PromotionTypeRHS.isNull())
1187       OpInfo.RHS = ComplexPairTy(
1188           CGF.EmitPromotedScalarExpr(E->getRHS(), PromotionTypeRHS), nullptr);
1189     else {
1190       assert(CGF.getContext().hasSameUnqualifiedType(ComplexElementTy,
1191                                                      E->getRHS()->getType()));
1192 
1193       OpInfo.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr);
1194     }
1195   } else {
1196     if (!PromotionTypeRHS.isNull()) {
1197       OpInfo.RHS = ComplexPairTy(
1198           CGF.EmitPromotedComplexExpr(E->getRHS(), PromotionTypeRHS));
1199     } else {
1200       assert(CGF.getContext().hasSameUnqualifiedType(OpInfo.Ty,
1201                                                      E->getRHS()->getType()));
1202       OpInfo.RHS = Visit(E->getRHS());
1203     }
1204   }
1205 
1206   LValue LHS = CGF.EmitLValue(E->getLHS());
1207 
1208   // Load from the l-value and convert it.
1209   SourceLocation Loc = E->getExprLoc();
1210   QualType PromotionTypeLHS = getPromotionType(E->getComputationLHSType());
1211   if (LHSTy->isAnyComplexType()) {
1212     ComplexPairTy LHSVal = EmitLoadOfLValue(LHS, Loc);
1213     if (!PromotionTypeLHS.isNull())
1214       OpInfo.LHS =
1215           EmitComplexToComplexCast(LHSVal, LHSTy, PromotionTypeLHS, Loc);
1216     else
1217       OpInfo.LHS = EmitComplexToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc);
1218   } else {
1219     llvm::Value *LHSVal = CGF.EmitLoadOfScalar(LHS, Loc);
1220     // For floating point real operands we can directly pass the scalar form
1221     // to the binary operator emission and potentially get more efficient code.
1222     if (LHSTy->isRealFloatingType()) {
1223       QualType PromotedComplexElementTy;
1224       if (!PromotionTypeLHS.isNull()) {
1225         PromotedComplexElementTy =
1226             cast<ComplexType>(PromotionTypeLHS)->getElementType();
1227         if (!CGF.getContext().hasSameUnqualifiedType(PromotedComplexElementTy,
1228                                                      PromotionTypeLHS))
1229           LHSVal = CGF.EmitScalarConversion(LHSVal, LHSTy,
1230                                             PromotedComplexElementTy, Loc);
1231       } else {
1232         if (!CGF.getContext().hasSameUnqualifiedType(ComplexElementTy, LHSTy))
1233           LHSVal =
1234               CGF.EmitScalarConversion(LHSVal, LHSTy, ComplexElementTy, Loc);
1235       }
1236       OpInfo.LHS = ComplexPairTy(LHSVal, nullptr);
1237     } else {
1238       OpInfo.LHS = EmitScalarToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc);
1239     }
1240   }
1241 
1242   // Expand the binary operator.
1243   ComplexPairTy Result = (this->*Func)(OpInfo);
1244 
1245   // Truncate the result and store it into the LHS lvalue.
1246   if (LHSTy->isAnyComplexType()) {
1247     ComplexPairTy ResVal =
1248         EmitComplexToComplexCast(Result, OpInfo.Ty, LHSTy, Loc);
1249     EmitStoreOfComplex(ResVal, LHS, /*isInit*/ false);
1250     Val = RValue::getComplex(ResVal);
1251   } else {
1252     llvm::Value *ResVal =
1253         CGF.EmitComplexToScalarConversion(Result, OpInfo.Ty, LHSTy, Loc);
1254     CGF.EmitStoreOfScalar(ResVal, LHS, /*isInit*/ false);
1255     Val = RValue::get(ResVal);
1256   }
1257 
1258   return LHS;
1259 }
1260 
1261 // Compound assignments.
1262 ComplexPairTy ComplexExprEmitter::
1263 EmitCompoundAssign(const CompoundAssignOperator *E,
1264                    ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&)){
1265   RValue Val;
1266   LValue LV = EmitCompoundAssignLValue(E, Func, Val);
1267 
1268   // The result of an assignment in C is the assigned r-value.
1269   if (!CGF.getLangOpts().CPlusPlus)
1270     return Val.getComplexVal();
1271 
1272   // If the lvalue is non-volatile, return the computed value of the assignment.
1273   if (!LV.isVolatileQualified())
1274     return Val.getComplexVal();
1275 
1276   return EmitLoadOfLValue(LV, E->getExprLoc());
1277 }
1278 
1279 LValue ComplexExprEmitter::EmitBinAssignLValue(const BinaryOperator *E,
1280                                                ComplexPairTy &Val) {
1281   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
1282                                                  E->getRHS()->getType()) &&
1283          "Invalid assignment");
1284   TestAndClearIgnoreReal();
1285   TestAndClearIgnoreImag();
1286 
1287   // Emit the RHS.  __block variables need the RHS evaluated first.
1288   Val = Visit(E->getRHS());
1289 
1290   // Compute the address to store into.
1291   LValue LHS = CGF.EmitLValue(E->getLHS());
1292 
1293   // Store the result value into the LHS lvalue.
1294   EmitStoreOfComplex(Val, LHS, /*isInit*/ false);
1295 
1296   return LHS;
1297 }
1298 
1299 ComplexPairTy ComplexExprEmitter::VisitBinAssign(const BinaryOperator *E) {
1300   ComplexPairTy Val;
1301   LValue LV = EmitBinAssignLValue(E, Val);
1302 
1303   // The result of an assignment in C is the assigned r-value.
1304   if (!CGF.getLangOpts().CPlusPlus)
1305     return Val;
1306 
1307   // If the lvalue is non-volatile, return the computed value of the assignment.
1308   if (!LV.isVolatileQualified())
1309     return Val;
1310 
1311   return EmitLoadOfLValue(LV, E->getExprLoc());
1312 }
1313 
1314 ComplexPairTy ComplexExprEmitter::VisitBinComma(const BinaryOperator *E) {
1315   CGF.EmitIgnoredExpr(E->getLHS());
1316   return Visit(E->getRHS());
1317 }
1318 
1319 ComplexPairTy ComplexExprEmitter::
1320 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
1321   TestAndClearIgnoreReal();
1322   TestAndClearIgnoreImag();
1323   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
1324   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
1325   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
1326 
1327   // Bind the common expression if necessary.
1328   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
1329 
1330 
1331   CodeGenFunction::ConditionalEvaluation eval(CGF);
1332   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock,
1333                            CGF.getProfileCount(E));
1334 
1335   eval.begin(CGF);
1336   CGF.EmitBlock(LHSBlock);
1337   if (llvm::EnableSingleByteCoverage)
1338     CGF.incrementProfileCounter(E->getTrueExpr());
1339   else
1340     CGF.incrementProfileCounter(E);
1341 
1342   ComplexPairTy LHS = Visit(E->getTrueExpr());
1343   LHSBlock = Builder.GetInsertBlock();
1344   CGF.EmitBranch(ContBlock);
1345   eval.end(CGF);
1346 
1347   eval.begin(CGF);
1348   CGF.EmitBlock(RHSBlock);
1349   if (llvm::EnableSingleByteCoverage)
1350     CGF.incrementProfileCounter(E->getFalseExpr());
1351   ComplexPairTy RHS = Visit(E->getFalseExpr());
1352   RHSBlock = Builder.GetInsertBlock();
1353   CGF.EmitBlock(ContBlock);
1354   if (llvm::EnableSingleByteCoverage)
1355     CGF.incrementProfileCounter(E);
1356   eval.end(CGF);
1357 
1358   // Create a PHI node for the real part.
1359   llvm::PHINode *RealPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.r");
1360   RealPN->addIncoming(LHS.first, LHSBlock);
1361   RealPN->addIncoming(RHS.first, RHSBlock);
1362 
1363   // Create a PHI node for the imaginary part.
1364   llvm::PHINode *ImagPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.i");
1365   ImagPN->addIncoming(LHS.second, LHSBlock);
1366   ImagPN->addIncoming(RHS.second, RHSBlock);
1367 
1368   return ComplexPairTy(RealPN, ImagPN);
1369 }
1370 
1371 ComplexPairTy ComplexExprEmitter::VisitChooseExpr(ChooseExpr *E) {
1372   return Visit(E->getChosenSubExpr());
1373 }
1374 
1375 ComplexPairTy ComplexExprEmitter::VisitInitListExpr(InitListExpr *E) {
1376     bool Ignore = TestAndClearIgnoreReal();
1377     (void)Ignore;
1378     assert (Ignore == false && "init list ignored");
1379     Ignore = TestAndClearIgnoreImag();
1380     (void)Ignore;
1381     assert (Ignore == false && "init list ignored");
1382 
1383   if (E->getNumInits() == 2) {
1384     llvm::Value *Real = CGF.EmitScalarExpr(E->getInit(0));
1385     llvm::Value *Imag = CGF.EmitScalarExpr(E->getInit(1));
1386     return ComplexPairTy(Real, Imag);
1387   } else if (E->getNumInits() == 1) {
1388     return Visit(E->getInit(0));
1389   }
1390 
1391   // Empty init list initializes to null
1392   assert(E->getNumInits() == 0 && "Unexpected number of inits");
1393   QualType Ty = E->getType()->castAs<ComplexType>()->getElementType();
1394   llvm::Type* LTy = CGF.ConvertType(Ty);
1395   llvm::Value* zeroConstant = llvm::Constant::getNullValue(LTy);
1396   return ComplexPairTy(zeroConstant, zeroConstant);
1397 }
1398 
1399 ComplexPairTy ComplexExprEmitter::VisitVAArgExpr(VAArgExpr *E) {
1400   Address ArgValue = Address::invalid();
1401   Address ArgPtr = CGF.EmitVAArg(E, ArgValue);
1402 
1403   if (!ArgPtr.isValid()) {
1404     CGF.ErrorUnsupported(E, "complex va_arg expression");
1405     llvm::Type *EltTy =
1406       CGF.ConvertType(E->getType()->castAs<ComplexType>()->getElementType());
1407     llvm::Value *U = llvm::UndefValue::get(EltTy);
1408     return ComplexPairTy(U, U);
1409   }
1410 
1411   return EmitLoadOfLValue(CGF.MakeAddrLValue(ArgPtr, E->getType()),
1412                           E->getExprLoc());
1413 }
1414 
1415 //===----------------------------------------------------------------------===//
1416 //                         Entry Point into this File
1417 //===----------------------------------------------------------------------===//
1418 
1419 /// EmitComplexExpr - Emit the computation of the specified expression of
1420 /// complex type, ignoring the result.
1421 ComplexPairTy CodeGenFunction::EmitComplexExpr(const Expr *E, bool IgnoreReal,
1422                                                bool IgnoreImag) {
1423   assert(E && getComplexType(E->getType()) &&
1424          "Invalid complex expression to emit");
1425 
1426   return ComplexExprEmitter(*this, IgnoreReal, IgnoreImag)
1427       .Visit(const_cast<Expr *>(E));
1428 }
1429 
1430 void CodeGenFunction::EmitComplexExprIntoLValue(const Expr *E, LValue dest,
1431                                                 bool isInit) {
1432   assert(E && getComplexType(E->getType()) &&
1433          "Invalid complex expression to emit");
1434   ComplexExprEmitter Emitter(*this);
1435   ComplexPairTy Val = Emitter.Visit(const_cast<Expr*>(E));
1436   Emitter.EmitStoreOfComplex(Val, dest, isInit);
1437 }
1438 
1439 /// EmitStoreOfComplex - Store a complex number into the specified l-value.
1440 void CodeGenFunction::EmitStoreOfComplex(ComplexPairTy V, LValue dest,
1441                                          bool isInit) {
1442   ComplexExprEmitter(*this).EmitStoreOfComplex(V, dest, isInit);
1443 }
1444 
1445 /// EmitLoadOfComplex - Load a complex number from the specified address.
1446 ComplexPairTy CodeGenFunction::EmitLoadOfComplex(LValue src,
1447                                                  SourceLocation loc) {
1448   return ComplexExprEmitter(*this).EmitLoadOfLValue(src, loc);
1449 }
1450 
1451 LValue CodeGenFunction::EmitComplexAssignmentLValue(const BinaryOperator *E) {
1452   assert(E->getOpcode() == BO_Assign);
1453   ComplexPairTy Val; // ignored
1454   LValue LVal = ComplexExprEmitter(*this).EmitBinAssignLValue(E, Val);
1455   if (getLangOpts().OpenMP)
1456     CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
1457                                                               E->getLHS());
1458   return LVal;
1459 }
1460 
1461 typedef ComplexPairTy (ComplexExprEmitter::*CompoundFunc)(
1462     const ComplexExprEmitter::BinOpInfo &);
1463 
1464 static CompoundFunc getComplexOp(BinaryOperatorKind Op) {
1465   switch (Op) {
1466   case BO_MulAssign: return &ComplexExprEmitter::EmitBinMul;
1467   case BO_DivAssign: return &ComplexExprEmitter::EmitBinDiv;
1468   case BO_SubAssign: return &ComplexExprEmitter::EmitBinSub;
1469   case BO_AddAssign: return &ComplexExprEmitter::EmitBinAdd;
1470   default:
1471     llvm_unreachable("unexpected complex compound assignment");
1472   }
1473 }
1474 
1475 LValue CodeGenFunction::
1476 EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E) {
1477   CompoundFunc Op = getComplexOp(E->getOpcode());
1478   RValue Val;
1479   return ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val);
1480 }
1481 
1482 LValue CodeGenFunction::
1483 EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
1484                                     llvm::Value *&Result) {
1485   CompoundFunc Op = getComplexOp(E->getOpcode());
1486   RValue Val;
1487   LValue Ret = ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val);
1488   Result = Val.getScalarVal();
1489   return Ret;
1490 }
1491