1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code dealing with code generation of C++ expressions 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCUDARuntime.h" 14 #include "CGCXXABI.h" 15 #include "CGDebugInfo.h" 16 #include "CGObjCRuntime.h" 17 #include "CodeGenFunction.h" 18 #include "ConstantEmitter.h" 19 #include "TargetInfo.h" 20 #include "clang/Basic/CodeGenOptions.h" 21 #include "clang/CodeGen/CGFunctionInfo.h" 22 #include "llvm/IR/Intrinsics.h" 23 24 using namespace clang; 25 using namespace CodeGen; 26 27 namespace { 28 struct MemberCallInfo { 29 RequiredArgs ReqArgs; 30 // Number of prefix arguments for the call. Ignores the `this` pointer. 31 unsigned PrefixSize; 32 }; 33 } 34 35 static MemberCallInfo 36 commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, GlobalDecl GD, 37 llvm::Value *This, llvm::Value *ImplicitParam, 38 QualType ImplicitParamTy, const CallExpr *CE, 39 CallArgList &Args, CallArgList *RtlArgs) { 40 auto *MD = cast<CXXMethodDecl>(GD.getDecl()); 41 42 assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) || 43 isa<CXXOperatorCallExpr>(CE)); 44 assert(MD->isImplicitObjectMemberFunction() && 45 "Trying to emit a member or operator call expr on a static method!"); 46 47 // Push the this ptr. 48 const CXXRecordDecl *RD = 49 CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(GD); 50 Args.add(RValue::get(This), CGF.getTypes().DeriveThisType(RD, MD)); 51 52 // If there is an implicit parameter (e.g. VTT), emit it. 53 if (ImplicitParam) { 54 Args.add(RValue::get(ImplicitParam), ImplicitParamTy); 55 } 56 57 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 58 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size()); 59 unsigned PrefixSize = Args.size() - 1; 60 61 // And the rest of the call args. 62 if (RtlArgs) { 63 // Special case: if the caller emitted the arguments right-to-left already 64 // (prior to emitting the *this argument), we're done. This happens for 65 // assignment operators. 66 Args.addFrom(*RtlArgs); 67 } else if (CE) { 68 // Special case: skip first argument of CXXOperatorCall (it is "this"). 69 unsigned ArgsToSkip = 0; 70 if (const auto *Op = dyn_cast<CXXOperatorCallExpr>(CE)) { 71 if (const auto *M = dyn_cast<CXXMethodDecl>(Op->getCalleeDecl())) 72 ArgsToSkip = 73 static_cast<unsigned>(!M->isExplicitObjectMemberFunction()); 74 } 75 CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip), 76 CE->getDirectCallee()); 77 } else { 78 assert( 79 FPT->getNumParams() == 0 && 80 "No CallExpr specified for function with non-zero number of arguments"); 81 } 82 return {required, PrefixSize}; 83 } 84 85 RValue CodeGenFunction::EmitCXXMemberOrOperatorCall( 86 const CXXMethodDecl *MD, const CGCallee &Callee, 87 ReturnValueSlot ReturnValue, llvm::Value *This, llvm::Value *ImplicitParam, 88 QualType ImplicitParamTy, const CallExpr *CE, CallArgList *RtlArgs, 89 llvm::CallBase **CallOrInvoke) { 90 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 91 CallArgList Args; 92 MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall( 93 *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs); 94 auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall( 95 Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize); 96 return EmitCall(FnInfo, Callee, ReturnValue, Args, CallOrInvoke, 97 CE && CE == MustTailCall, 98 CE ? CE->getExprLoc() : SourceLocation()); 99 } 100 101 RValue CodeGenFunction::EmitCXXDestructorCall( 102 GlobalDecl Dtor, const CGCallee &Callee, llvm::Value *This, QualType ThisTy, 103 llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE, 104 llvm::CallBase **CallOrInvoke) { 105 const CXXMethodDecl *DtorDecl = cast<CXXMethodDecl>(Dtor.getDecl()); 106 107 assert(!ThisTy.isNull()); 108 assert(ThisTy->getAsCXXRecordDecl() == DtorDecl->getParent() && 109 "Pointer/Object mixup"); 110 111 LangAS SrcAS = ThisTy.getAddressSpace(); 112 LangAS DstAS = DtorDecl->getMethodQualifiers().getAddressSpace(); 113 if (SrcAS != DstAS) { 114 QualType DstTy = DtorDecl->getThisType(); 115 llvm::Type *NewType = CGM.getTypes().ConvertType(DstTy); 116 This = getTargetHooks().performAddrSpaceCast(*this, This, SrcAS, DstAS, 117 NewType); 118 } 119 120 CallArgList Args; 121 commonEmitCXXMemberOrOperatorCall(*this, Dtor, This, ImplicitParam, 122 ImplicitParamTy, CE, Args, nullptr); 123 return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(Dtor), Callee, 124 ReturnValueSlot(), Args, CallOrInvoke, 125 CE && CE == MustTailCall, 126 CE ? CE->getExprLoc() : SourceLocation{}); 127 } 128 129 RValue CodeGenFunction::EmitCXXPseudoDestructorExpr( 130 const CXXPseudoDestructorExpr *E) { 131 QualType DestroyedType = E->getDestroyedType(); 132 if (DestroyedType.hasStrongOrWeakObjCLifetime()) { 133 // Automatic Reference Counting: 134 // If the pseudo-expression names a retainable object with weak or 135 // strong lifetime, the object shall be released. 136 Expr *BaseExpr = E->getBase(); 137 Address BaseValue = Address::invalid(); 138 Qualifiers BaseQuals; 139 140 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 141 if (E->isArrow()) { 142 BaseValue = EmitPointerWithAlignment(BaseExpr); 143 const auto *PTy = BaseExpr->getType()->castAs<PointerType>(); 144 BaseQuals = PTy->getPointeeType().getQualifiers(); 145 } else { 146 LValue BaseLV = EmitLValue(BaseExpr); 147 BaseValue = BaseLV.getAddress(); 148 QualType BaseTy = BaseExpr->getType(); 149 BaseQuals = BaseTy.getQualifiers(); 150 } 151 152 switch (DestroyedType.getObjCLifetime()) { 153 case Qualifiers::OCL_None: 154 case Qualifiers::OCL_ExplicitNone: 155 case Qualifiers::OCL_Autoreleasing: 156 break; 157 158 case Qualifiers::OCL_Strong: 159 EmitARCRelease(Builder.CreateLoad(BaseValue, 160 DestroyedType.isVolatileQualified()), 161 ARCPreciseLifetime); 162 break; 163 164 case Qualifiers::OCL_Weak: 165 EmitARCDestroyWeak(BaseValue); 166 break; 167 } 168 } else { 169 // C++ [expr.pseudo]p1: 170 // The result shall only be used as the operand for the function call 171 // operator (), and the result of such a call has type void. The only 172 // effect is the evaluation of the postfix-expression before the dot or 173 // arrow. 174 EmitIgnoredExpr(E->getBase()); 175 } 176 177 return RValue::get(nullptr); 178 } 179 180 static CXXRecordDecl *getCXXRecord(const Expr *E) { 181 QualType T = E->getType(); 182 if (const PointerType *PTy = T->getAs<PointerType>()) 183 T = PTy->getPointeeType(); 184 const RecordType *Ty = T->castAs<RecordType>(); 185 return cast<CXXRecordDecl>(Ty->getDecl()); 186 } 187 188 // Note: This function also emit constructor calls to support a MSVC 189 // extensions allowing explicit constructor function call. 190 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE, 191 ReturnValueSlot ReturnValue, 192 llvm::CallBase **CallOrInvoke) { 193 const Expr *callee = CE->getCallee()->IgnoreParens(); 194 195 if (isa<BinaryOperator>(callee)) 196 return EmitCXXMemberPointerCallExpr(CE, ReturnValue, CallOrInvoke); 197 198 const MemberExpr *ME = cast<MemberExpr>(callee); 199 const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl()); 200 201 if (MD->isStatic()) { 202 // The method is static, emit it as we would a regular call. 203 CGCallee callee = 204 CGCallee::forDirect(CGM.GetAddrOfFunction(MD), GlobalDecl(MD)); 205 return EmitCall(getContext().getPointerType(MD->getType()), callee, CE, 206 ReturnValue, /*Chain=*/nullptr, CallOrInvoke); 207 } 208 209 bool HasQualifier = ME->hasQualifier(); 210 NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr; 211 bool IsArrow = ME->isArrow(); 212 const Expr *Base = ME->getBase(); 213 214 return EmitCXXMemberOrOperatorMemberCallExpr(CE, MD, ReturnValue, 215 HasQualifier, Qualifier, IsArrow, 216 Base, CallOrInvoke); 217 } 218 219 RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr( 220 const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue, 221 bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow, 222 const Expr *Base, llvm::CallBase **CallOrInvoke) { 223 assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE)); 224 225 // Compute the object pointer. 226 bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier; 227 228 const CXXMethodDecl *DevirtualizedMethod = nullptr; 229 if (CanUseVirtualCall && 230 MD->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) { 231 const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType(); 232 DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl); 233 assert(DevirtualizedMethod); 234 const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent(); 235 const Expr *Inner = Base->IgnoreParenBaseCasts(); 236 if (DevirtualizedMethod->getReturnType().getCanonicalType() != 237 MD->getReturnType().getCanonicalType()) 238 // If the return types are not the same, this might be a case where more 239 // code needs to run to compensate for it. For example, the derived 240 // method might return a type that inherits form from the return 241 // type of MD and has a prefix. 242 // For now we just avoid devirtualizing these covariant cases. 243 DevirtualizedMethod = nullptr; 244 else if (getCXXRecord(Inner) == DevirtualizedClass) 245 // If the class of the Inner expression is where the dynamic method 246 // is defined, build the this pointer from it. 247 Base = Inner; 248 else if (getCXXRecord(Base) != DevirtualizedClass) { 249 // If the method is defined in a class that is not the best dynamic 250 // one or the one of the full expression, we would have to build 251 // a derived-to-base cast to compute the correct this pointer, but 252 // we don't have support for that yet, so do a virtual call. 253 DevirtualizedMethod = nullptr; 254 } 255 } 256 257 bool TrivialForCodegen = 258 MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion()); 259 bool TrivialAssignment = 260 TrivialForCodegen && 261 (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) && 262 !MD->getParent()->mayInsertExtraPadding(); 263 264 // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment 265 // operator before the LHS. 266 CallArgList RtlArgStorage; 267 CallArgList *RtlArgs = nullptr; 268 LValue TrivialAssignmentRHS; 269 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) { 270 if (OCE->isAssignmentOp()) { 271 if (TrivialAssignment) { 272 TrivialAssignmentRHS = EmitLValue(CE->getArg(1)); 273 } else { 274 RtlArgs = &RtlArgStorage; 275 EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(), 276 drop_begin(CE->arguments(), 1), CE->getDirectCallee(), 277 /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft); 278 } 279 } 280 } 281 282 LValue This; 283 if (IsArrow) { 284 LValueBaseInfo BaseInfo; 285 TBAAAccessInfo TBAAInfo; 286 Address ThisValue = EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo); 287 This = MakeAddrLValue(ThisValue, Base->getType()->getPointeeType(), 288 BaseInfo, TBAAInfo); 289 } else { 290 This = EmitLValue(Base); 291 } 292 293 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) { 294 // This is the MSVC p->Ctor::Ctor(...) extension. We assume that's 295 // constructing a new complete object of type Ctor. 296 assert(!RtlArgs); 297 assert(ReturnValue.isNull() && "Constructor shouldn't have return value"); 298 CallArgList Args; 299 commonEmitCXXMemberOrOperatorCall( 300 *this, {Ctor, Ctor_Complete}, This.getPointer(*this), 301 /*ImplicitParam=*/nullptr, 302 /*ImplicitParamTy=*/QualType(), CE, Args, nullptr); 303 304 EmitCXXConstructorCall(Ctor, Ctor_Complete, /*ForVirtualBase=*/false, 305 /*Delegating=*/false, This.getAddress(), Args, 306 AggValueSlot::DoesNotOverlap, CE->getExprLoc(), 307 /*NewPointerIsChecked=*/false, CallOrInvoke); 308 return RValue::get(nullptr); 309 } 310 311 if (TrivialForCodegen) { 312 if (isa<CXXDestructorDecl>(MD)) 313 return RValue::get(nullptr); 314 315 if (TrivialAssignment) { 316 // We don't like to generate the trivial copy/move assignment operator 317 // when it isn't necessary; just produce the proper effect here. 318 // It's important that we use the result of EmitLValue here rather than 319 // emitting call arguments, in order to preserve TBAA information from 320 // the RHS. 321 LValue RHS = isa<CXXOperatorCallExpr>(CE) 322 ? TrivialAssignmentRHS 323 : EmitLValue(*CE->arg_begin()); 324 EmitAggregateAssign(This, RHS, CE->getType()); 325 return RValue::get(This.getPointer(*this)); 326 } 327 328 assert(MD->getParent()->mayInsertExtraPadding() && 329 "unknown trivial member function"); 330 } 331 332 // Compute the function type we're calling. 333 const CXXMethodDecl *CalleeDecl = 334 DevirtualizedMethod ? DevirtualizedMethod : MD; 335 const CGFunctionInfo *FInfo = nullptr; 336 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) 337 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration( 338 GlobalDecl(Dtor, Dtor_Complete)); 339 else 340 FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl); 341 342 llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo); 343 344 // C++11 [class.mfct.non-static]p2: 345 // If a non-static member function of a class X is called for an object that 346 // is not of type X, or of a type derived from X, the behavior is undefined. 347 SourceLocation CallLoc; 348 ASTContext &C = getContext(); 349 if (CE) 350 CallLoc = CE->getExprLoc(); 351 352 SanitizerSet SkippedChecks; 353 if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) { 354 auto *IOA = CMCE->getImplicitObjectArgument(); 355 bool IsImplicitObjectCXXThis = IsWrappedCXXThis(IOA); 356 if (IsImplicitObjectCXXThis) 357 SkippedChecks.set(SanitizerKind::Alignment, true); 358 if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(IOA)) 359 SkippedChecks.set(SanitizerKind::Null, true); 360 } 361 362 if (sanitizePerformTypeCheck()) 363 EmitTypeCheck(CodeGenFunction::TCK_MemberCall, CallLoc, 364 This.emitRawPointer(*this), 365 C.getRecordType(CalleeDecl->getParent()), 366 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 367 368 // C++ [class.virtual]p12: 369 // Explicit qualification with the scope operator (5.1) suppresses the 370 // virtual call mechanism. 371 // 372 // We also don't emit a virtual call if the base expression has a record type 373 // because then we know what the type is. 374 bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod; 375 376 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) { 377 assert(CE->arg_begin() == CE->arg_end() && 378 "Destructor shouldn't have explicit parameters"); 379 assert(ReturnValue.isNull() && "Destructor shouldn't have return value"); 380 if (UseVirtualCall) { 381 CGM.getCXXABI().EmitVirtualDestructorCall( 382 *this, Dtor, Dtor_Complete, This.getAddress(), 383 cast<CXXMemberCallExpr>(CE), CallOrInvoke); 384 } else { 385 GlobalDecl GD(Dtor, Dtor_Complete); 386 CGCallee Callee; 387 if (getLangOpts().AppleKext && Dtor->isVirtual() && HasQualifier) 388 Callee = BuildAppleKextVirtualCall(Dtor, Qualifier, Ty); 389 else if (!DevirtualizedMethod) 390 Callee = 391 CGCallee::forDirect(CGM.getAddrOfCXXStructor(GD, FInfo, Ty), GD); 392 else { 393 Callee = CGCallee::forDirect(CGM.GetAddrOfFunction(GD, Ty), GD); 394 } 395 396 QualType ThisTy = 397 IsArrow ? Base->getType()->getPointeeType() : Base->getType(); 398 EmitCXXDestructorCall(GD, Callee, This.getPointer(*this), ThisTy, 399 /*ImplicitParam=*/nullptr, 400 /*ImplicitParamTy=*/QualType(), CE, CallOrInvoke); 401 } 402 return RValue::get(nullptr); 403 } 404 405 // FIXME: Uses of 'MD' past this point need to be audited. We may need to use 406 // 'CalleeDecl' instead. 407 408 CGCallee Callee; 409 if (UseVirtualCall) { 410 Callee = CGCallee::forVirtual(CE, MD, This.getAddress(), Ty); 411 } else { 412 if (SanOpts.has(SanitizerKind::CFINVCall) && 413 MD->getParent()->isDynamicClass()) { 414 llvm::Value *VTable; 415 const CXXRecordDecl *RD; 416 std::tie(VTable, RD) = CGM.getCXXABI().LoadVTablePtr( 417 *this, This.getAddress(), CalleeDecl->getParent()); 418 EmitVTablePtrCheckForCall(RD, VTable, CFITCK_NVCall, CE->getBeginLoc()); 419 } 420 421 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier) 422 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty); 423 else if (!DevirtualizedMethod) 424 Callee = 425 CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), GlobalDecl(MD)); 426 else { 427 Callee = 428 CGCallee::forDirect(CGM.GetAddrOfFunction(DevirtualizedMethod, Ty), 429 GlobalDecl(DevirtualizedMethod)); 430 } 431 } 432 433 if (MD->isVirtual()) { 434 Address NewThisAddr = 435 CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall( 436 *this, CalleeDecl, This.getAddress(), UseVirtualCall); 437 This.setAddress(NewThisAddr); 438 } 439 440 return EmitCXXMemberOrOperatorCall( 441 CalleeDecl, Callee, ReturnValue, This.getPointer(*this), 442 /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs, CallOrInvoke); 443 } 444 445 RValue 446 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 447 ReturnValueSlot ReturnValue, 448 llvm::CallBase **CallOrInvoke) { 449 const BinaryOperator *BO = 450 cast<BinaryOperator>(E->getCallee()->IgnoreParens()); 451 const Expr *BaseExpr = BO->getLHS(); 452 const Expr *MemFnExpr = BO->getRHS(); 453 454 const auto *MPT = MemFnExpr->getType()->castAs<MemberPointerType>(); 455 const auto *FPT = MPT->getPointeeType()->castAs<FunctionProtoType>(); 456 const auto *RD = 457 cast<CXXRecordDecl>(MPT->getClass()->castAs<RecordType>()->getDecl()); 458 459 // Emit the 'this' pointer. 460 Address This = Address::invalid(); 461 if (BO->getOpcode() == BO_PtrMemI) 462 This = EmitPointerWithAlignment(BaseExpr, nullptr, nullptr, KnownNonNull); 463 else 464 This = EmitLValue(BaseExpr, KnownNonNull).getAddress(); 465 466 EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.emitRawPointer(*this), 467 QualType(MPT->getClass(), 0)); 468 469 // Get the member function pointer. 470 llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr); 471 472 // Ask the ABI to load the callee. Note that This is modified. 473 llvm::Value *ThisPtrForCall = nullptr; 474 CGCallee Callee = 475 CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This, 476 ThisPtrForCall, MemFnPtr, MPT); 477 478 CallArgList Args; 479 480 QualType ThisType = 481 getContext().getPointerType(getContext().getTagDeclType(RD)); 482 483 // Push the this ptr. 484 Args.add(RValue::get(ThisPtrForCall), ThisType); 485 486 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1); 487 488 // And the rest of the call args 489 EmitCallArgs(Args, FPT, E->arguments()); 490 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required, 491 /*PrefixSize=*/0), 492 Callee, ReturnValue, Args, CallOrInvoke, E == MustTailCall, 493 E->getExprLoc()); 494 } 495 496 RValue CodeGenFunction::EmitCXXOperatorMemberCallExpr( 497 const CXXOperatorCallExpr *E, const CXXMethodDecl *MD, 498 ReturnValueSlot ReturnValue, llvm::CallBase **CallOrInvoke) { 499 assert(MD->isImplicitObjectMemberFunction() && 500 "Trying to emit a member call expr on a static method!"); 501 return EmitCXXMemberOrOperatorMemberCallExpr( 502 E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr, 503 /*IsArrow=*/false, E->getArg(0), CallOrInvoke); 504 } 505 506 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 507 ReturnValueSlot ReturnValue, 508 llvm::CallBase **CallOrInvoke) { 509 return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue, 510 CallOrInvoke); 511 } 512 513 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF, 514 Address DestPtr, 515 const CXXRecordDecl *Base) { 516 if (Base->isEmpty()) 517 return; 518 519 DestPtr = DestPtr.withElementType(CGF.Int8Ty); 520 521 const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base); 522 CharUnits NVSize = Layout.getNonVirtualSize(); 523 524 // We cannot simply zero-initialize the entire base sub-object if vbptrs are 525 // present, they are initialized by the most derived class before calling the 526 // constructor. 527 SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores; 528 Stores.emplace_back(CharUnits::Zero(), NVSize); 529 530 // Each store is split by the existence of a vbptr. 531 CharUnits VBPtrWidth = CGF.getPointerSize(); 532 std::vector<CharUnits> VBPtrOffsets = 533 CGF.CGM.getCXXABI().getVBPtrOffsets(Base); 534 for (CharUnits VBPtrOffset : VBPtrOffsets) { 535 // Stop before we hit any virtual base pointers located in virtual bases. 536 if (VBPtrOffset >= NVSize) 537 break; 538 std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val(); 539 CharUnits LastStoreOffset = LastStore.first; 540 CharUnits LastStoreSize = LastStore.second; 541 542 CharUnits SplitBeforeOffset = LastStoreOffset; 543 CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset; 544 assert(!SplitBeforeSize.isNegative() && "negative store size!"); 545 if (!SplitBeforeSize.isZero()) 546 Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize); 547 548 CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth; 549 CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset; 550 assert(!SplitAfterSize.isNegative() && "negative store size!"); 551 if (!SplitAfterSize.isZero()) 552 Stores.emplace_back(SplitAfterOffset, SplitAfterSize); 553 } 554 555 // If the type contains a pointer to data member we can't memset it to zero. 556 // Instead, create a null constant and copy it to the destination. 557 // TODO: there are other patterns besides zero that we can usefully memset, 558 // like -1, which happens to be the pattern used by member-pointers. 559 // TODO: isZeroInitializable can be over-conservative in the case where a 560 // virtual base contains a member pointer. 561 llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base); 562 if (!NullConstantForBase->isNullValue()) { 563 llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable( 564 CGF.CGM.getModule(), NullConstantForBase->getType(), 565 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, 566 NullConstantForBase, Twine()); 567 568 CharUnits Align = 569 std::max(Layout.getNonVirtualAlignment(), DestPtr.getAlignment()); 570 NullVariable->setAlignment(Align.getAsAlign()); 571 572 Address SrcPtr(NullVariable, CGF.Int8Ty, Align); 573 574 // Get and call the appropriate llvm.memcpy overload. 575 for (std::pair<CharUnits, CharUnits> Store : Stores) { 576 CharUnits StoreOffset = Store.first; 577 CharUnits StoreSize = Store.second; 578 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize); 579 CGF.Builder.CreateMemCpy( 580 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset), 581 CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset), 582 StoreSizeVal); 583 } 584 585 // Otherwise, just memset the whole thing to zero. This is legal 586 // because in LLVM, all default initializers (other than the ones we just 587 // handled above) are guaranteed to have a bit pattern of all zeros. 588 } else { 589 for (std::pair<CharUnits, CharUnits> Store : Stores) { 590 CharUnits StoreOffset = Store.first; 591 CharUnits StoreSize = Store.second; 592 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize); 593 CGF.Builder.CreateMemSet( 594 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset), 595 CGF.Builder.getInt8(0), StoreSizeVal); 596 } 597 } 598 } 599 600 void 601 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E, 602 AggValueSlot Dest) { 603 assert(!Dest.isIgnored() && "Must have a destination!"); 604 const CXXConstructorDecl *CD = E->getConstructor(); 605 606 // If we require zero initialization before (or instead of) calling the 607 // constructor, as can be the case with a non-user-provided default 608 // constructor, emit the zero initialization now, unless destination is 609 // already zeroed. 610 if (E->requiresZeroInitialization() && !Dest.isZeroed()) { 611 switch (E->getConstructionKind()) { 612 case CXXConstructionKind::Delegating: 613 case CXXConstructionKind::Complete: 614 EmitNullInitialization(Dest.getAddress(), E->getType()); 615 break; 616 case CXXConstructionKind::VirtualBase: 617 case CXXConstructionKind::NonVirtualBase: 618 EmitNullBaseClassInitialization(*this, Dest.getAddress(), 619 CD->getParent()); 620 break; 621 } 622 } 623 624 // If this is a call to a trivial default constructor, do nothing. 625 if (CD->isTrivial() && CD->isDefaultConstructor()) 626 return; 627 628 // Elide the constructor if we're constructing from a temporary. 629 if (getLangOpts().ElideConstructors && E->isElidable()) { 630 // FIXME: This only handles the simplest case, where the source object 631 // is passed directly as the first argument to the constructor. 632 // This should also handle stepping though implicit casts and 633 // conversion sequences which involve two steps, with a 634 // conversion operator followed by a converting constructor. 635 const Expr *SrcObj = E->getArg(0); 636 assert(SrcObj->isTemporaryObject(getContext(), CD->getParent())); 637 assert( 638 getContext().hasSameUnqualifiedType(E->getType(), SrcObj->getType())); 639 EmitAggExpr(SrcObj, Dest); 640 return; 641 } 642 643 if (const ArrayType *arrayType 644 = getContext().getAsArrayType(E->getType())) { 645 EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E, 646 Dest.isSanitizerChecked()); 647 } else { 648 CXXCtorType Type = Ctor_Complete; 649 bool ForVirtualBase = false; 650 bool Delegating = false; 651 652 switch (E->getConstructionKind()) { 653 case CXXConstructionKind::Delegating: 654 // We should be emitting a constructor; GlobalDecl will assert this 655 Type = CurGD.getCtorType(); 656 Delegating = true; 657 break; 658 659 case CXXConstructionKind::Complete: 660 Type = Ctor_Complete; 661 break; 662 663 case CXXConstructionKind::VirtualBase: 664 ForVirtualBase = true; 665 [[fallthrough]]; 666 667 case CXXConstructionKind::NonVirtualBase: 668 Type = Ctor_Base; 669 } 670 671 // Call the constructor. 672 EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, Dest, E); 673 } 674 } 675 676 void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, 677 const Expr *Exp) { 678 if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp)) 679 Exp = E->getSubExpr(); 680 assert(isa<CXXConstructExpr>(Exp) && 681 "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"); 682 const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp); 683 const CXXConstructorDecl *CD = E->getConstructor(); 684 RunCleanupsScope Scope(*this); 685 686 // If we require zero initialization before (or instead of) calling the 687 // constructor, as can be the case with a non-user-provided default 688 // constructor, emit the zero initialization now. 689 // FIXME. Do I still need this for a copy ctor synthesis? 690 if (E->requiresZeroInitialization()) 691 EmitNullInitialization(Dest, E->getType()); 692 693 assert(!getContext().getAsConstantArrayType(E->getType()) 694 && "EmitSynthesizedCXXCopyCtor - Copied-in Array"); 695 EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E); 696 } 697 698 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF, 699 const CXXNewExpr *E) { 700 if (!E->isArray()) 701 return CharUnits::Zero(); 702 703 // No cookie is required if the operator new[] being used is the 704 // reserved placement operator new[]. 705 if (E->getOperatorNew()->isReservedGlobalPlacementOperator()) 706 return CharUnits::Zero(); 707 708 return CGF.CGM.getCXXABI().GetArrayCookieSize(E); 709 } 710 711 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF, 712 const CXXNewExpr *e, 713 unsigned minElements, 714 llvm::Value *&numElements, 715 llvm::Value *&sizeWithoutCookie) { 716 QualType type = e->getAllocatedType(); 717 718 if (!e->isArray()) { 719 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 720 sizeWithoutCookie 721 = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity()); 722 return sizeWithoutCookie; 723 } 724 725 // The width of size_t. 726 unsigned sizeWidth = CGF.SizeTy->getBitWidth(); 727 728 // Figure out the cookie size. 729 llvm::APInt cookieSize(sizeWidth, 730 CalculateCookiePadding(CGF, e).getQuantity()); 731 732 // Emit the array size expression. 733 // We multiply the size of all dimensions for NumElements. 734 // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6. 735 numElements = ConstantEmitter(CGF).tryEmitAbstract( 736 *e->getArraySize(), (*e->getArraySize())->getType()); 737 if (!numElements) 738 numElements = CGF.EmitScalarExpr(*e->getArraySize()); 739 assert(isa<llvm::IntegerType>(numElements->getType())); 740 741 // The number of elements can be have an arbitrary integer type; 742 // essentially, we need to multiply it by a constant factor, add a 743 // cookie size, and verify that the result is representable as a 744 // size_t. That's just a gloss, though, and it's wrong in one 745 // important way: if the count is negative, it's an error even if 746 // the cookie size would bring the total size >= 0. 747 bool isSigned 748 = (*e->getArraySize())->getType()->isSignedIntegerOrEnumerationType(); 749 llvm::IntegerType *numElementsType 750 = cast<llvm::IntegerType>(numElements->getType()); 751 unsigned numElementsWidth = numElementsType->getBitWidth(); 752 753 // Compute the constant factor. 754 llvm::APInt arraySizeMultiplier(sizeWidth, 1); 755 while (const ConstantArrayType *CAT 756 = CGF.getContext().getAsConstantArrayType(type)) { 757 type = CAT->getElementType(); 758 arraySizeMultiplier *= CAT->getSize(); 759 } 760 761 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 762 llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity()); 763 typeSizeMultiplier *= arraySizeMultiplier; 764 765 // This will be a size_t. 766 llvm::Value *size; 767 768 // If someone is doing 'new int[42]' there is no need to do a dynamic check. 769 // Don't bloat the -O0 code. 770 if (llvm::ConstantInt *numElementsC = 771 dyn_cast<llvm::ConstantInt>(numElements)) { 772 const llvm::APInt &count = numElementsC->getValue(); 773 774 bool hasAnyOverflow = false; 775 776 // If 'count' was a negative number, it's an overflow. 777 if (isSigned && count.isNegative()) 778 hasAnyOverflow = true; 779 780 // We want to do all this arithmetic in size_t. If numElements is 781 // wider than that, check whether it's already too big, and if so, 782 // overflow. 783 else if (numElementsWidth > sizeWidth && 784 numElementsWidth - sizeWidth > count.countl_zero()) 785 hasAnyOverflow = true; 786 787 // Okay, compute a count at the right width. 788 llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth); 789 790 // If there is a brace-initializer, we cannot allocate fewer elements than 791 // there are initializers. If we do, that's treated like an overflow. 792 if (adjustedCount.ult(minElements)) 793 hasAnyOverflow = true; 794 795 // Scale numElements by that. This might overflow, but we don't 796 // care because it only overflows if allocationSize does, too, and 797 // if that overflows then we shouldn't use this. 798 numElements = llvm::ConstantInt::get(CGF.SizeTy, 799 adjustedCount * arraySizeMultiplier); 800 801 // Compute the size before cookie, and track whether it overflowed. 802 bool overflow; 803 llvm::APInt allocationSize 804 = adjustedCount.umul_ov(typeSizeMultiplier, overflow); 805 hasAnyOverflow |= overflow; 806 807 // Add in the cookie, and check whether it's overflowed. 808 if (cookieSize != 0) { 809 // Save the current size without a cookie. This shouldn't be 810 // used if there was overflow. 811 sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 812 813 allocationSize = allocationSize.uadd_ov(cookieSize, overflow); 814 hasAnyOverflow |= overflow; 815 } 816 817 // On overflow, produce a -1 so operator new will fail. 818 if (hasAnyOverflow) { 819 size = llvm::Constant::getAllOnesValue(CGF.SizeTy); 820 } else { 821 size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 822 } 823 824 // Otherwise, we might need to use the overflow intrinsics. 825 } else { 826 // There are up to five conditions we need to test for: 827 // 1) if isSigned, we need to check whether numElements is negative; 828 // 2) if numElementsWidth > sizeWidth, we need to check whether 829 // numElements is larger than something representable in size_t; 830 // 3) if minElements > 0, we need to check whether numElements is smaller 831 // than that. 832 // 4) we need to compute 833 // sizeWithoutCookie := numElements * typeSizeMultiplier 834 // and check whether it overflows; and 835 // 5) if we need a cookie, we need to compute 836 // size := sizeWithoutCookie + cookieSize 837 // and check whether it overflows. 838 839 llvm::Value *hasOverflow = nullptr; 840 841 // If numElementsWidth > sizeWidth, then one way or another, we're 842 // going to have to do a comparison for (2), and this happens to 843 // take care of (1), too. 844 if (numElementsWidth > sizeWidth) { 845 llvm::APInt threshold = 846 llvm::APInt::getOneBitSet(numElementsWidth, sizeWidth); 847 848 llvm::Value *thresholdV 849 = llvm::ConstantInt::get(numElementsType, threshold); 850 851 hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV); 852 numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy); 853 854 // Otherwise, if we're signed, we want to sext up to size_t. 855 } else if (isSigned) { 856 if (numElementsWidth < sizeWidth) 857 numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy); 858 859 // If there's a non-1 type size multiplier, then we can do the 860 // signedness check at the same time as we do the multiply 861 // because a negative number times anything will cause an 862 // unsigned overflow. Otherwise, we have to do it here. But at least 863 // in this case, we can subsume the >= minElements check. 864 if (typeSizeMultiplier == 1) 865 hasOverflow = CGF.Builder.CreateICmpSLT(numElements, 866 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 867 868 // Otherwise, zext up to size_t if necessary. 869 } else if (numElementsWidth < sizeWidth) { 870 numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy); 871 } 872 873 assert(numElements->getType() == CGF.SizeTy); 874 875 if (minElements) { 876 // Don't allow allocation of fewer elements than we have initializers. 877 if (!hasOverflow) { 878 hasOverflow = CGF.Builder.CreateICmpULT(numElements, 879 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 880 } else if (numElementsWidth > sizeWidth) { 881 // The other existing overflow subsumes this check. 882 // We do an unsigned comparison, since any signed value < -1 is 883 // taken care of either above or below. 884 hasOverflow = CGF.Builder.CreateOr(hasOverflow, 885 CGF.Builder.CreateICmpULT(numElements, 886 llvm::ConstantInt::get(CGF.SizeTy, minElements))); 887 } 888 } 889 890 size = numElements; 891 892 // Multiply by the type size if necessary. This multiplier 893 // includes all the factors for nested arrays. 894 // 895 // This step also causes numElements to be scaled up by the 896 // nested-array factor if necessary. Overflow on this computation 897 // can be ignored because the result shouldn't be used if 898 // allocation fails. 899 if (typeSizeMultiplier != 1) { 900 llvm::Function *umul_with_overflow 901 = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy); 902 903 llvm::Value *tsmV = 904 llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier); 905 llvm::Value *result = 906 CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV}); 907 908 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 909 if (hasOverflow) 910 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 911 else 912 hasOverflow = overflowed; 913 914 size = CGF.Builder.CreateExtractValue(result, 0); 915 916 // Also scale up numElements by the array size multiplier. 917 if (arraySizeMultiplier != 1) { 918 // If the base element type size is 1, then we can re-use the 919 // multiply we just did. 920 if (typeSize.isOne()) { 921 assert(arraySizeMultiplier == typeSizeMultiplier); 922 numElements = size; 923 924 // Otherwise we need a separate multiply. 925 } else { 926 llvm::Value *asmV = 927 llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier); 928 numElements = CGF.Builder.CreateMul(numElements, asmV); 929 } 930 } 931 } else { 932 // numElements doesn't need to be scaled. 933 assert(arraySizeMultiplier == 1); 934 } 935 936 // Add in the cookie size if necessary. 937 if (cookieSize != 0) { 938 sizeWithoutCookie = size; 939 940 llvm::Function *uadd_with_overflow 941 = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy); 942 943 llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize); 944 llvm::Value *result = 945 CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV}); 946 947 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 948 if (hasOverflow) 949 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 950 else 951 hasOverflow = overflowed; 952 953 size = CGF.Builder.CreateExtractValue(result, 0); 954 } 955 956 // If we had any possibility of dynamic overflow, make a select to 957 // overwrite 'size' with an all-ones value, which should cause 958 // operator new to throw. 959 if (hasOverflow) 960 size = CGF.Builder.CreateSelect(hasOverflow, 961 llvm::Constant::getAllOnesValue(CGF.SizeTy), 962 size); 963 } 964 965 if (cookieSize == 0) 966 sizeWithoutCookie = size; 967 else 968 assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?"); 969 970 return size; 971 } 972 973 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init, 974 QualType AllocType, Address NewPtr, 975 AggValueSlot::Overlap_t MayOverlap) { 976 // FIXME: Refactor with EmitExprAsInit. 977 switch (CGF.getEvaluationKind(AllocType)) { 978 case TEK_Scalar: 979 CGF.EmitScalarInit(Init, nullptr, 980 CGF.MakeAddrLValue(NewPtr, AllocType), false); 981 return; 982 case TEK_Complex: 983 CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType), 984 /*isInit*/ true); 985 return; 986 case TEK_Aggregate: { 987 AggValueSlot Slot 988 = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(), 989 AggValueSlot::IsDestructed, 990 AggValueSlot::DoesNotNeedGCBarriers, 991 AggValueSlot::IsNotAliased, 992 MayOverlap, AggValueSlot::IsNotZeroed, 993 AggValueSlot::IsSanitizerChecked); 994 CGF.EmitAggExpr(Init, Slot); 995 return; 996 } 997 } 998 llvm_unreachable("bad evaluation kind"); 999 } 1000 1001 void CodeGenFunction::EmitNewArrayInitializer( 1002 const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy, 1003 Address BeginPtr, llvm::Value *NumElements, 1004 llvm::Value *AllocSizeWithoutCookie) { 1005 // If we have a type with trivial initialization and no initializer, 1006 // there's nothing to do. 1007 if (!E->hasInitializer()) 1008 return; 1009 1010 Address CurPtr = BeginPtr; 1011 1012 unsigned InitListElements = 0; 1013 1014 const Expr *Init = E->getInitializer(); 1015 Address EndOfInit = Address::invalid(); 1016 QualType::DestructionKind DtorKind = ElementType.isDestructedType(); 1017 CleanupDeactivationScope deactivation(*this); 1018 bool pushedCleanup = false; 1019 1020 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType); 1021 CharUnits ElementAlign = 1022 BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize); 1023 1024 // Attempt to perform zero-initialization using memset. 1025 auto TryMemsetInitialization = [&]() -> bool { 1026 // FIXME: If the type is a pointer-to-data-member under the Itanium ABI, 1027 // we can initialize with a memset to -1. 1028 if (!CGM.getTypes().isZeroInitializable(ElementType)) 1029 return false; 1030 1031 // Optimization: since zero initialization will just set the memory 1032 // to all zeroes, generate a single memset to do it in one shot. 1033 1034 // Subtract out the size of any elements we've already initialized. 1035 auto *RemainingSize = AllocSizeWithoutCookie; 1036 if (InitListElements) { 1037 // We know this can't overflow; we check this when doing the allocation. 1038 auto *InitializedSize = llvm::ConstantInt::get( 1039 RemainingSize->getType(), 1040 getContext().getTypeSizeInChars(ElementType).getQuantity() * 1041 InitListElements); 1042 RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize); 1043 } 1044 1045 // Create the memset. 1046 Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false); 1047 return true; 1048 }; 1049 1050 const InitListExpr *ILE = dyn_cast<InitListExpr>(Init); 1051 const CXXParenListInitExpr *CPLIE = nullptr; 1052 const StringLiteral *SL = nullptr; 1053 const ObjCEncodeExpr *OCEE = nullptr; 1054 const Expr *IgnoreParen = nullptr; 1055 if (!ILE) { 1056 IgnoreParen = Init->IgnoreParenImpCasts(); 1057 CPLIE = dyn_cast<CXXParenListInitExpr>(IgnoreParen); 1058 SL = dyn_cast<StringLiteral>(IgnoreParen); 1059 OCEE = dyn_cast<ObjCEncodeExpr>(IgnoreParen); 1060 } 1061 1062 // If the initializer is an initializer list, first do the explicit elements. 1063 if (ILE || CPLIE || SL || OCEE) { 1064 // Initializing from a (braced) string literal is a special case; the init 1065 // list element does not initialize a (single) array element. 1066 if ((ILE && ILE->isStringLiteralInit()) || SL || OCEE) { 1067 if (!ILE) 1068 Init = IgnoreParen; 1069 // Initialize the initial portion of length equal to that of the string 1070 // literal. The allocation must be for at least this much; we emitted a 1071 // check for that earlier. 1072 AggValueSlot Slot = 1073 AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(), 1074 AggValueSlot::IsDestructed, 1075 AggValueSlot::DoesNotNeedGCBarriers, 1076 AggValueSlot::IsNotAliased, 1077 AggValueSlot::DoesNotOverlap, 1078 AggValueSlot::IsNotZeroed, 1079 AggValueSlot::IsSanitizerChecked); 1080 EmitAggExpr(ILE ? ILE->getInit(0) : Init, Slot); 1081 1082 // Move past these elements. 1083 InitListElements = 1084 cast<ConstantArrayType>(Init->getType()->getAsArrayTypeUnsafe()) 1085 ->getZExtSize(); 1086 CurPtr = Builder.CreateConstInBoundsGEP( 1087 CurPtr, InitListElements, "string.init.end"); 1088 1089 // Zero out the rest, if any remain. 1090 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); 1091 if (!ConstNum || !ConstNum->equalsInt(InitListElements)) { 1092 bool OK = TryMemsetInitialization(); 1093 (void)OK; 1094 assert(OK && "couldn't memset character type?"); 1095 } 1096 return; 1097 } 1098 1099 ArrayRef<const Expr *> InitExprs = 1100 ILE ? ILE->inits() : CPLIE->getInitExprs(); 1101 InitListElements = InitExprs.size(); 1102 1103 // If this is a multi-dimensional array new, we will initialize multiple 1104 // elements with each init list element. 1105 QualType AllocType = E->getAllocatedType(); 1106 if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>( 1107 AllocType->getAsArrayTypeUnsafe())) { 1108 ElementTy = ConvertTypeForMem(AllocType); 1109 CurPtr = CurPtr.withElementType(ElementTy); 1110 InitListElements *= getContext().getConstantArrayElementCount(CAT); 1111 } 1112 1113 // Enter a partial-destruction Cleanup if necessary. 1114 if (DtorKind) { 1115 AllocaTrackerRAII AllocaTracker(*this); 1116 // In principle we could tell the Cleanup where we are more 1117 // directly, but the control flow can get so varied here that it 1118 // would actually be quite complex. Therefore we go through an 1119 // alloca. 1120 llvm::Instruction *DominatingIP = 1121 Builder.CreateFlagLoad(llvm::ConstantInt::getNullValue(Int8PtrTy)); 1122 EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(), 1123 "array.init.end"); 1124 pushIrregularPartialArrayCleanup(BeginPtr.emitRawPointer(*this), 1125 EndOfInit, ElementType, ElementAlign, 1126 getDestroyer(DtorKind)); 1127 cast<EHCleanupScope>(*EHStack.find(EHStack.stable_begin())) 1128 .AddAuxAllocas(AllocaTracker.Take()); 1129 DeferredDeactivationCleanupStack.push_back( 1130 {EHStack.stable_begin(), DominatingIP}); 1131 pushedCleanup = true; 1132 } 1133 1134 CharUnits StartAlign = CurPtr.getAlignment(); 1135 unsigned i = 0; 1136 for (const Expr *IE : InitExprs) { 1137 // Tell the cleanup that it needs to destroy up to this 1138 // element. TODO: some of these stores can be trivially 1139 // observed to be unnecessary. 1140 if (EndOfInit.isValid()) { 1141 Builder.CreateStore(CurPtr.emitRawPointer(*this), EndOfInit); 1142 } 1143 // FIXME: If the last initializer is an incomplete initializer list for 1144 // an array, and we have an array filler, we can fold together the two 1145 // initialization loops. 1146 StoreAnyExprIntoOneUnit(*this, IE, IE->getType(), CurPtr, 1147 AggValueSlot::DoesNotOverlap); 1148 CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getElementType(), 1149 CurPtr.emitRawPointer(*this), 1150 Builder.getSize(1), 1151 "array.exp.next"), 1152 CurPtr.getElementType(), 1153 StartAlign.alignmentAtOffset((++i) * ElementSize)); 1154 } 1155 1156 // The remaining elements are filled with the array filler expression. 1157 Init = ILE ? ILE->getArrayFiller() : CPLIE->getArrayFiller(); 1158 1159 // Extract the initializer for the individual array elements by pulling 1160 // out the array filler from all the nested initializer lists. This avoids 1161 // generating a nested loop for the initialization. 1162 while (Init && Init->getType()->isConstantArrayType()) { 1163 auto *SubILE = dyn_cast<InitListExpr>(Init); 1164 if (!SubILE) 1165 break; 1166 assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?"); 1167 Init = SubILE->getArrayFiller(); 1168 } 1169 1170 // Switch back to initializing one base element at a time. 1171 CurPtr = CurPtr.withElementType(BeginPtr.getElementType()); 1172 } 1173 1174 // If all elements have already been initialized, skip any further 1175 // initialization. 1176 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); 1177 if (ConstNum && ConstNum->getZExtValue() <= InitListElements) { 1178 return; 1179 } 1180 1181 assert(Init && "have trailing elements to initialize but no initializer"); 1182 1183 // If this is a constructor call, try to optimize it out, and failing that 1184 // emit a single loop to initialize all remaining elements. 1185 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) { 1186 CXXConstructorDecl *Ctor = CCE->getConstructor(); 1187 if (Ctor->isTrivial()) { 1188 // If new expression did not specify value-initialization, then there 1189 // is no initialization. 1190 if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty()) 1191 return; 1192 1193 if (TryMemsetInitialization()) 1194 return; 1195 } 1196 1197 // Store the new Cleanup position for irregular Cleanups. 1198 // 1199 // FIXME: Share this cleanup with the constructor call emission rather than 1200 // having it create a cleanup of its own. 1201 if (EndOfInit.isValid()) 1202 Builder.CreateStore(CurPtr.emitRawPointer(*this), EndOfInit); 1203 1204 // Emit a constructor call loop to initialize the remaining elements. 1205 if (InitListElements) 1206 NumElements = Builder.CreateSub( 1207 NumElements, 1208 llvm::ConstantInt::get(NumElements->getType(), InitListElements)); 1209 EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE, 1210 /*NewPointerIsChecked*/true, 1211 CCE->requiresZeroInitialization()); 1212 return; 1213 } 1214 1215 // If this is value-initialization, we can usually use memset. 1216 ImplicitValueInitExpr IVIE(ElementType); 1217 if (isa<ImplicitValueInitExpr>(Init)) { 1218 if (TryMemsetInitialization()) 1219 return; 1220 1221 // Switch to an ImplicitValueInitExpr for the element type. This handles 1222 // only one case: multidimensional array new of pointers to members. In 1223 // all other cases, we already have an initializer for the array element. 1224 Init = &IVIE; 1225 } 1226 1227 // At this point we should have found an initializer for the individual 1228 // elements of the array. 1229 assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) && 1230 "got wrong type of element to initialize"); 1231 1232 // If we have an empty initializer list, we can usually use memset. 1233 if (auto *ILE = dyn_cast<InitListExpr>(Init)) 1234 if (ILE->getNumInits() == 0 && TryMemsetInitialization()) 1235 return; 1236 1237 // If we have a struct whose every field is value-initialized, we can 1238 // usually use memset. 1239 if (auto *ILE = dyn_cast<InitListExpr>(Init)) { 1240 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) { 1241 if (RType->getDecl()->isStruct()) { 1242 unsigned NumElements = 0; 1243 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl())) 1244 NumElements = CXXRD->getNumBases(); 1245 for (auto *Field : RType->getDecl()->fields()) 1246 if (!Field->isUnnamedBitField()) 1247 ++NumElements; 1248 // FIXME: Recurse into nested InitListExprs. 1249 if (ILE->getNumInits() == NumElements) 1250 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 1251 if (!isa<ImplicitValueInitExpr>(ILE->getInit(i))) 1252 --NumElements; 1253 if (ILE->getNumInits() == NumElements && TryMemsetInitialization()) 1254 return; 1255 } 1256 } 1257 } 1258 1259 // Create the loop blocks. 1260 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 1261 llvm::BasicBlock *LoopBB = createBasicBlock("new.loop"); 1262 llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end"); 1263 1264 // Find the end of the array, hoisted out of the loop. 1265 llvm::Value *EndPtr = Builder.CreateInBoundsGEP( 1266 BeginPtr.getElementType(), BeginPtr.emitRawPointer(*this), NumElements, 1267 "array.end"); 1268 1269 // If the number of elements isn't constant, we have to now check if there is 1270 // anything left to initialize. 1271 if (!ConstNum) { 1272 llvm::Value *IsEmpty = Builder.CreateICmpEQ(CurPtr.emitRawPointer(*this), 1273 EndPtr, "array.isempty"); 1274 Builder.CreateCondBr(IsEmpty, ContBB, LoopBB); 1275 } 1276 1277 // Enter the loop. 1278 EmitBlock(LoopBB); 1279 1280 // Set up the current-element phi. 1281 llvm::PHINode *CurPtrPhi = 1282 Builder.CreatePHI(CurPtr.getType(), 2, "array.cur"); 1283 CurPtrPhi->addIncoming(CurPtr.emitRawPointer(*this), EntryBB); 1284 1285 CurPtr = Address(CurPtrPhi, CurPtr.getElementType(), ElementAlign); 1286 1287 // Store the new Cleanup position for irregular Cleanups. 1288 if (EndOfInit.isValid()) 1289 Builder.CreateStore(CurPtr.emitRawPointer(*this), EndOfInit); 1290 1291 // Enter a partial-destruction Cleanup if necessary. 1292 if (!pushedCleanup && needsEHCleanup(DtorKind)) { 1293 llvm::Instruction *DominatingIP = 1294 Builder.CreateFlagLoad(llvm::ConstantInt::getNullValue(Int8PtrTy)); 1295 pushRegularPartialArrayCleanup(BeginPtr.emitRawPointer(*this), 1296 CurPtr.emitRawPointer(*this), ElementType, 1297 ElementAlign, getDestroyer(DtorKind)); 1298 DeferredDeactivationCleanupStack.push_back( 1299 {EHStack.stable_begin(), DominatingIP}); 1300 } 1301 1302 // Emit the initializer into this element. 1303 StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr, 1304 AggValueSlot::DoesNotOverlap); 1305 1306 // Leave the Cleanup if we entered one. 1307 deactivation.ForceDeactivate(); 1308 1309 // Advance to the next element by adjusting the pointer type as necessary. 1310 llvm::Value *NextPtr = Builder.CreateConstInBoundsGEP1_32( 1311 ElementTy, CurPtr.emitRawPointer(*this), 1, "array.next"); 1312 1313 // Check whether we've gotten to the end of the array and, if so, 1314 // exit the loop. 1315 llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend"); 1316 Builder.CreateCondBr(IsEnd, ContBB, LoopBB); 1317 CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock()); 1318 1319 EmitBlock(ContBB); 1320 } 1321 1322 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, 1323 QualType ElementType, llvm::Type *ElementTy, 1324 Address NewPtr, llvm::Value *NumElements, 1325 llvm::Value *AllocSizeWithoutCookie) { 1326 ApplyDebugLocation DL(CGF, E); 1327 if (E->isArray()) 1328 CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements, 1329 AllocSizeWithoutCookie); 1330 else if (const Expr *Init = E->getInitializer()) 1331 StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr, 1332 AggValueSlot::DoesNotOverlap); 1333 } 1334 1335 /// Emit a call to an operator new or operator delete function, as implicitly 1336 /// created by new-expressions and delete-expressions. 1337 static RValue EmitNewDeleteCall(CodeGenFunction &CGF, 1338 const FunctionDecl *CalleeDecl, 1339 const FunctionProtoType *CalleeType, 1340 const CallArgList &Args) { 1341 llvm::CallBase *CallOrInvoke; 1342 llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl); 1343 CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(CalleeDecl)); 1344 RValue RV = 1345 CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall( 1346 Args, CalleeType, /*ChainCall=*/false), 1347 Callee, ReturnValueSlot(), Args, &CallOrInvoke); 1348 1349 /// C++1y [expr.new]p10: 1350 /// [In a new-expression,] an implementation is allowed to omit a call 1351 /// to a replaceable global allocation function. 1352 /// 1353 /// We model such elidable calls with the 'builtin' attribute. 1354 llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr); 1355 if (CalleeDecl->isReplaceableGlobalAllocationFunction() && 1356 Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) { 1357 CallOrInvoke->addFnAttr(llvm::Attribute::Builtin); 1358 } 1359 1360 return RV; 1361 } 1362 1363 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 1364 const CallExpr *TheCall, 1365 bool IsDelete) { 1366 CallArgList Args; 1367 EmitCallArgs(Args, Type, TheCall->arguments()); 1368 // Find the allocation or deallocation function that we're calling. 1369 ASTContext &Ctx = getContext(); 1370 DeclarationName Name = Ctx.DeclarationNames 1371 .getCXXOperatorName(IsDelete ? OO_Delete : OO_New); 1372 1373 for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name)) 1374 if (auto *FD = dyn_cast<FunctionDecl>(Decl)) 1375 if (Ctx.hasSameType(FD->getType(), QualType(Type, 0))) 1376 return EmitNewDeleteCall(*this, FD, Type, Args); 1377 llvm_unreachable("predeclared global operator new/delete is missing"); 1378 } 1379 1380 namespace { 1381 /// The parameters to pass to a usual operator delete. 1382 struct UsualDeleteParams { 1383 bool DestroyingDelete = false; 1384 bool Size = false; 1385 bool Alignment = false; 1386 }; 1387 } 1388 1389 static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD) { 1390 UsualDeleteParams Params; 1391 1392 const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>(); 1393 auto AI = FPT->param_type_begin(), AE = FPT->param_type_end(); 1394 1395 // The first argument is always a void*. 1396 ++AI; 1397 1398 // The next parameter may be a std::destroying_delete_t. 1399 if (FD->isDestroyingOperatorDelete()) { 1400 Params.DestroyingDelete = true; 1401 assert(AI != AE); 1402 ++AI; 1403 } 1404 1405 // Figure out what other parameters we should be implicitly passing. 1406 if (AI != AE && (*AI)->isIntegerType()) { 1407 Params.Size = true; 1408 ++AI; 1409 } 1410 1411 if (AI != AE && (*AI)->isAlignValT()) { 1412 Params.Alignment = true; 1413 ++AI; 1414 } 1415 1416 assert(AI == AE && "unexpected usual deallocation function parameter"); 1417 return Params; 1418 } 1419 1420 namespace { 1421 /// A cleanup to call the given 'operator delete' function upon abnormal 1422 /// exit from a new expression. Templated on a traits type that deals with 1423 /// ensuring that the arguments dominate the cleanup if necessary. 1424 template<typename Traits> 1425 class CallDeleteDuringNew final : public EHScopeStack::Cleanup { 1426 /// Type used to hold llvm::Value*s. 1427 typedef typename Traits::ValueTy ValueTy; 1428 /// Type used to hold RValues. 1429 typedef typename Traits::RValueTy RValueTy; 1430 struct PlacementArg { 1431 RValueTy ArgValue; 1432 QualType ArgType; 1433 }; 1434 1435 unsigned NumPlacementArgs : 31; 1436 LLVM_PREFERRED_TYPE(bool) 1437 unsigned PassAlignmentToPlacementDelete : 1; 1438 const FunctionDecl *OperatorDelete; 1439 ValueTy Ptr; 1440 ValueTy AllocSize; 1441 CharUnits AllocAlign; 1442 1443 PlacementArg *getPlacementArgs() { 1444 return reinterpret_cast<PlacementArg *>(this + 1); 1445 } 1446 1447 public: 1448 static size_t getExtraSize(size_t NumPlacementArgs) { 1449 return NumPlacementArgs * sizeof(PlacementArg); 1450 } 1451 1452 CallDeleteDuringNew(size_t NumPlacementArgs, 1453 const FunctionDecl *OperatorDelete, ValueTy Ptr, 1454 ValueTy AllocSize, bool PassAlignmentToPlacementDelete, 1455 CharUnits AllocAlign) 1456 : NumPlacementArgs(NumPlacementArgs), 1457 PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete), 1458 OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize), 1459 AllocAlign(AllocAlign) {} 1460 1461 void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) { 1462 assert(I < NumPlacementArgs && "index out of range"); 1463 getPlacementArgs()[I] = {Arg, Type}; 1464 } 1465 1466 void Emit(CodeGenFunction &CGF, Flags flags) override { 1467 const auto *FPT = OperatorDelete->getType()->castAs<FunctionProtoType>(); 1468 CallArgList DeleteArgs; 1469 1470 // The first argument is always a void* (or C* for a destroying operator 1471 // delete for class type C). 1472 DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0)); 1473 1474 // Figure out what other parameters we should be implicitly passing. 1475 UsualDeleteParams Params; 1476 if (NumPlacementArgs) { 1477 // A placement deallocation function is implicitly passed an alignment 1478 // if the placement allocation function was, but is never passed a size. 1479 Params.Alignment = PassAlignmentToPlacementDelete; 1480 } else { 1481 // For a non-placement new-expression, 'operator delete' can take a 1482 // size and/or an alignment if it has the right parameters. 1483 Params = getUsualDeleteParams(OperatorDelete); 1484 } 1485 1486 assert(!Params.DestroyingDelete && 1487 "should not call destroying delete in a new-expression"); 1488 1489 // The second argument can be a std::size_t (for non-placement delete). 1490 if (Params.Size) 1491 DeleteArgs.add(Traits::get(CGF, AllocSize), 1492 CGF.getContext().getSizeType()); 1493 1494 // The next (second or third) argument can be a std::align_val_t, which 1495 // is an enum whose underlying type is std::size_t. 1496 // FIXME: Use the right type as the parameter type. Note that in a call 1497 // to operator delete(size_t, ...), we may not have it available. 1498 if (Params.Alignment) 1499 DeleteArgs.add(RValue::get(llvm::ConstantInt::get( 1500 CGF.SizeTy, AllocAlign.getQuantity())), 1501 CGF.getContext().getSizeType()); 1502 1503 // Pass the rest of the arguments, which must match exactly. 1504 for (unsigned I = 0; I != NumPlacementArgs; ++I) { 1505 auto Arg = getPlacementArgs()[I]; 1506 DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType); 1507 } 1508 1509 // Call 'operator delete'. 1510 EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs); 1511 } 1512 }; 1513 } 1514 1515 /// Enter a cleanup to call 'operator delete' if the initializer in a 1516 /// new-expression throws. 1517 static void EnterNewDeleteCleanup(CodeGenFunction &CGF, 1518 const CXXNewExpr *E, 1519 Address NewPtr, 1520 llvm::Value *AllocSize, 1521 CharUnits AllocAlign, 1522 const CallArgList &NewArgs) { 1523 unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1; 1524 1525 // If we're not inside a conditional branch, then the cleanup will 1526 // dominate and we can do the easier (and more efficient) thing. 1527 if (!CGF.isInConditionalBranch()) { 1528 struct DirectCleanupTraits { 1529 typedef llvm::Value *ValueTy; 1530 typedef RValue RValueTy; 1531 static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); } 1532 static RValue get(CodeGenFunction &, RValueTy V) { return V; } 1533 }; 1534 1535 typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup; 1536 1537 DirectCleanup *Cleanup = CGF.EHStack.pushCleanupWithExtra<DirectCleanup>( 1538 EHCleanup, E->getNumPlacementArgs(), E->getOperatorDelete(), 1539 NewPtr.emitRawPointer(CGF), AllocSize, E->passAlignment(), AllocAlign); 1540 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) { 1541 auto &Arg = NewArgs[I + NumNonPlacementArgs]; 1542 Cleanup->setPlacementArg(I, Arg.getRValue(CGF), Arg.Ty); 1543 } 1544 1545 return; 1546 } 1547 1548 // Otherwise, we need to save all this stuff. 1549 DominatingValue<RValue>::saved_type SavedNewPtr = 1550 DominatingValue<RValue>::save(CGF, RValue::get(NewPtr, CGF)); 1551 DominatingValue<RValue>::saved_type SavedAllocSize = 1552 DominatingValue<RValue>::save(CGF, RValue::get(AllocSize)); 1553 1554 struct ConditionalCleanupTraits { 1555 typedef DominatingValue<RValue>::saved_type ValueTy; 1556 typedef DominatingValue<RValue>::saved_type RValueTy; 1557 static RValue get(CodeGenFunction &CGF, ValueTy V) { 1558 return V.restore(CGF); 1559 } 1560 }; 1561 typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup; 1562 1563 ConditionalCleanup *Cleanup = CGF.EHStack 1564 .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup, 1565 E->getNumPlacementArgs(), 1566 E->getOperatorDelete(), 1567 SavedNewPtr, 1568 SavedAllocSize, 1569 E->passAlignment(), 1570 AllocAlign); 1571 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) { 1572 auto &Arg = NewArgs[I + NumNonPlacementArgs]; 1573 Cleanup->setPlacementArg( 1574 I, DominatingValue<RValue>::save(CGF, Arg.getRValue(CGF)), Arg.Ty); 1575 } 1576 1577 CGF.initFullExprCleanup(); 1578 } 1579 1580 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) { 1581 // The element type being allocated. 1582 QualType allocType = getContext().getBaseElementType(E->getAllocatedType()); 1583 1584 // 1. Build a call to the allocation function. 1585 FunctionDecl *allocator = E->getOperatorNew(); 1586 1587 // If there is a brace-initializer or C++20 parenthesized initializer, cannot 1588 // allocate fewer elements than inits. 1589 unsigned minElements = 0; 1590 if (E->isArray() && E->hasInitializer()) { 1591 const Expr *Init = E->getInitializer(); 1592 const InitListExpr *ILE = dyn_cast<InitListExpr>(Init); 1593 const CXXParenListInitExpr *CPLIE = dyn_cast<CXXParenListInitExpr>(Init); 1594 const Expr *IgnoreParen = Init->IgnoreParenImpCasts(); 1595 if ((ILE && ILE->isStringLiteralInit()) || 1596 isa<StringLiteral>(IgnoreParen) || isa<ObjCEncodeExpr>(IgnoreParen)) { 1597 minElements = 1598 cast<ConstantArrayType>(Init->getType()->getAsArrayTypeUnsafe()) 1599 ->getZExtSize(); 1600 } else if (ILE || CPLIE) { 1601 minElements = ILE ? ILE->getNumInits() : CPLIE->getInitExprs().size(); 1602 } 1603 } 1604 1605 llvm::Value *numElements = nullptr; 1606 llvm::Value *allocSizeWithoutCookie = nullptr; 1607 llvm::Value *allocSize = 1608 EmitCXXNewAllocSize(*this, E, minElements, numElements, 1609 allocSizeWithoutCookie); 1610 CharUnits allocAlign = getContext().getTypeAlignInChars(allocType); 1611 1612 // Emit the allocation call. If the allocator is a global placement 1613 // operator, just "inline" it directly. 1614 Address allocation = Address::invalid(); 1615 CallArgList allocatorArgs; 1616 if (allocator->isReservedGlobalPlacementOperator()) { 1617 assert(E->getNumPlacementArgs() == 1); 1618 const Expr *arg = *E->placement_arguments().begin(); 1619 1620 LValueBaseInfo BaseInfo; 1621 allocation = EmitPointerWithAlignment(arg, &BaseInfo); 1622 1623 // The pointer expression will, in many cases, be an opaque void*. 1624 // In these cases, discard the computed alignment and use the 1625 // formal alignment of the allocated type. 1626 if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl) 1627 allocation.setAlignment(allocAlign); 1628 1629 // Set up allocatorArgs for the call to operator delete if it's not 1630 // the reserved global operator. 1631 if (E->getOperatorDelete() && 1632 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1633 allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType()); 1634 allocatorArgs.add(RValue::get(allocation, *this), arg->getType()); 1635 } 1636 1637 } else { 1638 const FunctionProtoType *allocatorType = 1639 allocator->getType()->castAs<FunctionProtoType>(); 1640 unsigned ParamsToSkip = 0; 1641 1642 // The allocation size is the first argument. 1643 QualType sizeType = getContext().getSizeType(); 1644 allocatorArgs.add(RValue::get(allocSize), sizeType); 1645 ++ParamsToSkip; 1646 1647 if (allocSize != allocSizeWithoutCookie) { 1648 CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI. 1649 allocAlign = std::max(allocAlign, cookieAlign); 1650 } 1651 1652 // The allocation alignment may be passed as the second argument. 1653 if (E->passAlignment()) { 1654 QualType AlignValT = sizeType; 1655 if (allocatorType->getNumParams() > 1) { 1656 AlignValT = allocatorType->getParamType(1); 1657 assert(getContext().hasSameUnqualifiedType( 1658 AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(), 1659 sizeType) && 1660 "wrong type for alignment parameter"); 1661 ++ParamsToSkip; 1662 } else { 1663 // Corner case, passing alignment to 'operator new(size_t, ...)'. 1664 assert(allocator->isVariadic() && "can't pass alignment to allocator"); 1665 } 1666 allocatorArgs.add( 1667 RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())), 1668 AlignValT); 1669 } 1670 1671 // FIXME: Why do we not pass a CalleeDecl here? 1672 EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(), 1673 /*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip); 1674 1675 RValue RV = 1676 EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs); 1677 1678 // Set !heapallocsite metadata on the call to operator new. 1679 if (getDebugInfo()) 1680 if (auto *newCall = dyn_cast<llvm::CallBase>(RV.getScalarVal())) 1681 getDebugInfo()->addHeapAllocSiteMetadata(newCall, allocType, 1682 E->getExprLoc()); 1683 1684 // If this was a call to a global replaceable allocation function that does 1685 // not take an alignment argument, the allocator is known to produce 1686 // storage that's suitably aligned for any object that fits, up to a known 1687 // threshold. Otherwise assume it's suitably aligned for the allocated type. 1688 CharUnits allocationAlign = allocAlign; 1689 if (!E->passAlignment() && 1690 allocator->isReplaceableGlobalAllocationFunction()) { 1691 unsigned AllocatorAlign = llvm::bit_floor(std::min<uint64_t>( 1692 Target.getNewAlign(), getContext().getTypeSize(allocType))); 1693 allocationAlign = std::max( 1694 allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign)); 1695 } 1696 1697 allocation = Address(RV.getScalarVal(), Int8Ty, allocationAlign); 1698 } 1699 1700 // Emit a null check on the allocation result if the allocation 1701 // function is allowed to return null (because it has a non-throwing 1702 // exception spec or is the reserved placement new) and we have an 1703 // interesting initializer will be running sanitizers on the initialization. 1704 bool nullCheck = E->shouldNullCheckAllocation() && 1705 (!allocType.isPODType(getContext()) || E->hasInitializer() || 1706 sanitizePerformTypeCheck()); 1707 1708 llvm::BasicBlock *nullCheckBB = nullptr; 1709 llvm::BasicBlock *contBB = nullptr; 1710 1711 // The null-check means that the initializer is conditionally 1712 // evaluated. 1713 ConditionalEvaluation conditional(*this); 1714 1715 if (nullCheck) { 1716 conditional.begin(*this); 1717 1718 nullCheckBB = Builder.GetInsertBlock(); 1719 llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull"); 1720 contBB = createBasicBlock("new.cont"); 1721 1722 llvm::Value *isNull = Builder.CreateIsNull(allocation, "new.isnull"); 1723 Builder.CreateCondBr(isNull, contBB, notNullBB); 1724 EmitBlock(notNullBB); 1725 } 1726 1727 // If there's an operator delete, enter a cleanup to call it if an 1728 // exception is thrown. 1729 EHScopeStack::stable_iterator operatorDeleteCleanup; 1730 llvm::Instruction *cleanupDominator = nullptr; 1731 if (E->getOperatorDelete() && 1732 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1733 EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign, 1734 allocatorArgs); 1735 operatorDeleteCleanup = EHStack.stable_begin(); 1736 cleanupDominator = Builder.CreateUnreachable(); 1737 } 1738 1739 assert((allocSize == allocSizeWithoutCookie) == 1740 CalculateCookiePadding(*this, E).isZero()); 1741 if (allocSize != allocSizeWithoutCookie) { 1742 assert(E->isArray()); 1743 allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation, 1744 numElements, 1745 E, allocType); 1746 } 1747 1748 llvm::Type *elementTy = ConvertTypeForMem(allocType); 1749 Address result = allocation.withElementType(elementTy); 1750 1751 // Passing pointer through launder.invariant.group to avoid propagation of 1752 // vptrs information which may be included in previous type. 1753 // To not break LTO with different optimizations levels, we do it regardless 1754 // of optimization level. 1755 if (CGM.getCodeGenOpts().StrictVTablePointers && 1756 allocator->isReservedGlobalPlacementOperator()) 1757 result = Builder.CreateLaunderInvariantGroup(result); 1758 1759 // Emit sanitizer checks for pointer value now, so that in the case of an 1760 // array it was checked only once and not at each constructor call. We may 1761 // have already checked that the pointer is non-null. 1762 // FIXME: If we have an array cookie and a potentially-throwing allocator, 1763 // we'll null check the wrong pointer here. 1764 SanitizerSet SkippedChecks; 1765 SkippedChecks.set(SanitizerKind::Null, nullCheck); 1766 EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, 1767 E->getAllocatedTypeSourceInfo()->getTypeLoc().getBeginLoc(), 1768 result, allocType, result.getAlignment(), SkippedChecks, 1769 numElements); 1770 1771 EmitNewInitializer(*this, E, allocType, elementTy, result, numElements, 1772 allocSizeWithoutCookie); 1773 llvm::Value *resultPtr = result.emitRawPointer(*this); 1774 1775 // Deactivate the 'operator delete' cleanup if we finished 1776 // initialization. 1777 if (operatorDeleteCleanup.isValid()) { 1778 DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator); 1779 cleanupDominator->eraseFromParent(); 1780 } 1781 1782 if (nullCheck) { 1783 conditional.end(*this); 1784 1785 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 1786 EmitBlock(contBB); 1787 1788 llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2); 1789 PHI->addIncoming(resultPtr, notNullBB); 1790 PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()), 1791 nullCheckBB); 1792 1793 resultPtr = PHI; 1794 } 1795 1796 return resultPtr; 1797 } 1798 1799 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD, 1800 llvm::Value *DeletePtr, QualType DeleteTy, 1801 llvm::Value *NumElements, 1802 CharUnits CookieSize) { 1803 assert((!NumElements && CookieSize.isZero()) || 1804 DeleteFD->getOverloadedOperator() == OO_Array_Delete); 1805 1806 const auto *DeleteFTy = DeleteFD->getType()->castAs<FunctionProtoType>(); 1807 CallArgList DeleteArgs; 1808 1809 auto Params = getUsualDeleteParams(DeleteFD); 1810 auto ParamTypeIt = DeleteFTy->param_type_begin(); 1811 1812 // Pass the pointer itself. 1813 QualType ArgTy = *ParamTypeIt++; 1814 DeleteArgs.add(RValue::get(DeletePtr), ArgTy); 1815 1816 // Pass the std::destroying_delete tag if present. 1817 llvm::AllocaInst *DestroyingDeleteTag = nullptr; 1818 if (Params.DestroyingDelete) { 1819 QualType DDTag = *ParamTypeIt++; 1820 llvm::Type *Ty = getTypes().ConvertType(DDTag); 1821 CharUnits Align = CGM.getNaturalTypeAlignment(DDTag); 1822 DestroyingDeleteTag = CreateTempAlloca(Ty, "destroying.delete.tag"); 1823 DestroyingDeleteTag->setAlignment(Align.getAsAlign()); 1824 DeleteArgs.add( 1825 RValue::getAggregate(Address(DestroyingDeleteTag, Ty, Align)), DDTag); 1826 } 1827 1828 // Pass the size if the delete function has a size_t parameter. 1829 if (Params.Size) { 1830 QualType SizeType = *ParamTypeIt++; 1831 CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy); 1832 llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType), 1833 DeleteTypeSize.getQuantity()); 1834 1835 // For array new, multiply by the number of elements. 1836 if (NumElements) 1837 Size = Builder.CreateMul(Size, NumElements); 1838 1839 // If there is a cookie, add the cookie size. 1840 if (!CookieSize.isZero()) 1841 Size = Builder.CreateAdd( 1842 Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity())); 1843 1844 DeleteArgs.add(RValue::get(Size), SizeType); 1845 } 1846 1847 // Pass the alignment if the delete function has an align_val_t parameter. 1848 if (Params.Alignment) { 1849 QualType AlignValType = *ParamTypeIt++; 1850 CharUnits DeleteTypeAlign = 1851 getContext().toCharUnitsFromBits(getContext().getTypeAlignIfKnown( 1852 DeleteTy, true /* NeedsPreferredAlignment */)); 1853 llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType), 1854 DeleteTypeAlign.getQuantity()); 1855 DeleteArgs.add(RValue::get(Align), AlignValType); 1856 } 1857 1858 assert(ParamTypeIt == DeleteFTy->param_type_end() && 1859 "unknown parameter to usual delete function"); 1860 1861 // Emit the call to delete. 1862 EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs); 1863 1864 // If call argument lowering didn't use the destroying_delete_t alloca, 1865 // remove it again. 1866 if (DestroyingDeleteTag && DestroyingDeleteTag->use_empty()) 1867 DestroyingDeleteTag->eraseFromParent(); 1868 } 1869 1870 namespace { 1871 /// Calls the given 'operator delete' on a single object. 1872 struct CallObjectDelete final : EHScopeStack::Cleanup { 1873 llvm::Value *Ptr; 1874 const FunctionDecl *OperatorDelete; 1875 QualType ElementType; 1876 1877 CallObjectDelete(llvm::Value *Ptr, 1878 const FunctionDecl *OperatorDelete, 1879 QualType ElementType) 1880 : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {} 1881 1882 void Emit(CodeGenFunction &CGF, Flags flags) override { 1883 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType); 1884 } 1885 }; 1886 } 1887 1888 void 1889 CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1890 llvm::Value *CompletePtr, 1891 QualType ElementType) { 1892 EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr, 1893 OperatorDelete, ElementType); 1894 } 1895 1896 /// Emit the code for deleting a single object with a destroying operator 1897 /// delete. If the element type has a non-virtual destructor, Ptr has already 1898 /// been converted to the type of the parameter of 'operator delete'. Otherwise 1899 /// Ptr points to an object of the static type. 1900 static void EmitDestroyingObjectDelete(CodeGenFunction &CGF, 1901 const CXXDeleteExpr *DE, Address Ptr, 1902 QualType ElementType) { 1903 auto *Dtor = ElementType->getAsCXXRecordDecl()->getDestructor(); 1904 if (Dtor && Dtor->isVirtual()) 1905 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType, 1906 Dtor); 1907 else 1908 CGF.EmitDeleteCall(DE->getOperatorDelete(), Ptr.emitRawPointer(CGF), 1909 ElementType); 1910 } 1911 1912 /// Emit the code for deleting a single object. 1913 /// \return \c true if we started emitting UnconditionalDeleteBlock, \c false 1914 /// if not. 1915 static bool EmitObjectDelete(CodeGenFunction &CGF, 1916 const CXXDeleteExpr *DE, 1917 Address Ptr, 1918 QualType ElementType, 1919 llvm::BasicBlock *UnconditionalDeleteBlock) { 1920 // C++11 [expr.delete]p3: 1921 // If the static type of the object to be deleted is different from its 1922 // dynamic type, the static type shall be a base class of the dynamic type 1923 // of the object to be deleted and the static type shall have a virtual 1924 // destructor or the behavior is undefined. 1925 CGF.EmitTypeCheck(CodeGenFunction::TCK_MemberCall, DE->getExprLoc(), Ptr, 1926 ElementType); 1927 1928 const FunctionDecl *OperatorDelete = DE->getOperatorDelete(); 1929 assert(!OperatorDelete->isDestroyingOperatorDelete()); 1930 1931 // Find the destructor for the type, if applicable. If the 1932 // destructor is virtual, we'll just emit the vcall and return. 1933 const CXXDestructorDecl *Dtor = nullptr; 1934 if (const RecordType *RT = ElementType->getAs<RecordType>()) { 1935 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1936 if (RD->hasDefinition() && !RD->hasTrivialDestructor()) { 1937 Dtor = RD->getDestructor(); 1938 1939 if (Dtor->isVirtual()) { 1940 bool UseVirtualCall = true; 1941 const Expr *Base = DE->getArgument(); 1942 if (auto *DevirtualizedDtor = 1943 dyn_cast_or_null<const CXXDestructorDecl>( 1944 Dtor->getDevirtualizedMethod( 1945 Base, CGF.CGM.getLangOpts().AppleKext))) { 1946 UseVirtualCall = false; 1947 const CXXRecordDecl *DevirtualizedClass = 1948 DevirtualizedDtor->getParent(); 1949 if (declaresSameEntity(getCXXRecord(Base), DevirtualizedClass)) { 1950 // Devirtualized to the class of the base type (the type of the 1951 // whole expression). 1952 Dtor = DevirtualizedDtor; 1953 } else { 1954 // Devirtualized to some other type. Would need to cast the this 1955 // pointer to that type but we don't have support for that yet, so 1956 // do a virtual call. FIXME: handle the case where it is 1957 // devirtualized to the derived type (the type of the inner 1958 // expression) as in EmitCXXMemberOrOperatorMemberCallExpr. 1959 UseVirtualCall = true; 1960 } 1961 } 1962 if (UseVirtualCall) { 1963 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType, 1964 Dtor); 1965 return false; 1966 } 1967 } 1968 } 1969 } 1970 1971 // Make sure that we call delete even if the dtor throws. 1972 // This doesn't have to a conditional cleanup because we're going 1973 // to pop it off in a second. 1974 CGF.EHStack.pushCleanup<CallObjectDelete>( 1975 NormalAndEHCleanup, Ptr.emitRawPointer(CGF), OperatorDelete, ElementType); 1976 1977 if (Dtor) 1978 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 1979 /*ForVirtualBase=*/false, 1980 /*Delegating=*/false, 1981 Ptr, ElementType); 1982 else if (auto Lifetime = ElementType.getObjCLifetime()) { 1983 switch (Lifetime) { 1984 case Qualifiers::OCL_None: 1985 case Qualifiers::OCL_ExplicitNone: 1986 case Qualifiers::OCL_Autoreleasing: 1987 break; 1988 1989 case Qualifiers::OCL_Strong: 1990 CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime); 1991 break; 1992 1993 case Qualifiers::OCL_Weak: 1994 CGF.EmitARCDestroyWeak(Ptr); 1995 break; 1996 } 1997 } 1998 1999 // When optimizing for size, call 'operator delete' unconditionally. 2000 if (CGF.CGM.getCodeGenOpts().OptimizeSize > 1) { 2001 CGF.EmitBlock(UnconditionalDeleteBlock); 2002 CGF.PopCleanupBlock(); 2003 return true; 2004 } 2005 2006 CGF.PopCleanupBlock(); 2007 return false; 2008 } 2009 2010 namespace { 2011 /// Calls the given 'operator delete' on an array of objects. 2012 struct CallArrayDelete final : EHScopeStack::Cleanup { 2013 llvm::Value *Ptr; 2014 const FunctionDecl *OperatorDelete; 2015 llvm::Value *NumElements; 2016 QualType ElementType; 2017 CharUnits CookieSize; 2018 2019 CallArrayDelete(llvm::Value *Ptr, 2020 const FunctionDecl *OperatorDelete, 2021 llvm::Value *NumElements, 2022 QualType ElementType, 2023 CharUnits CookieSize) 2024 : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements), 2025 ElementType(ElementType), CookieSize(CookieSize) {} 2026 2027 void Emit(CodeGenFunction &CGF, Flags flags) override { 2028 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements, 2029 CookieSize); 2030 } 2031 }; 2032 } 2033 2034 /// Emit the code for deleting an array of objects. 2035 static void EmitArrayDelete(CodeGenFunction &CGF, 2036 const CXXDeleteExpr *E, 2037 Address deletedPtr, 2038 QualType elementType) { 2039 llvm::Value *numElements = nullptr; 2040 llvm::Value *allocatedPtr = nullptr; 2041 CharUnits cookieSize; 2042 CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType, 2043 numElements, allocatedPtr, cookieSize); 2044 2045 assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer"); 2046 2047 // Make sure that we call delete even if one of the dtors throws. 2048 const FunctionDecl *operatorDelete = E->getOperatorDelete(); 2049 CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup, 2050 allocatedPtr, operatorDelete, 2051 numElements, elementType, 2052 cookieSize); 2053 2054 // Destroy the elements. 2055 if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) { 2056 assert(numElements && "no element count for a type with a destructor!"); 2057 2058 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 2059 CharUnits elementAlign = 2060 deletedPtr.getAlignment().alignmentOfArrayElement(elementSize); 2061 2062 llvm::Value *arrayBegin = deletedPtr.emitRawPointer(CGF); 2063 llvm::Value *arrayEnd = CGF.Builder.CreateInBoundsGEP( 2064 deletedPtr.getElementType(), arrayBegin, numElements, "delete.end"); 2065 2066 // Note that it is legal to allocate a zero-length array, and we 2067 // can never fold the check away because the length should always 2068 // come from a cookie. 2069 CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign, 2070 CGF.getDestroyer(dtorKind), 2071 /*checkZeroLength*/ true, 2072 CGF.needsEHCleanup(dtorKind)); 2073 } 2074 2075 // Pop the cleanup block. 2076 CGF.PopCleanupBlock(); 2077 } 2078 2079 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) { 2080 const Expr *Arg = E->getArgument(); 2081 Address Ptr = EmitPointerWithAlignment(Arg); 2082 2083 // Null check the pointer. 2084 // 2085 // We could avoid this null check if we can determine that the object 2086 // destruction is trivial and doesn't require an array cookie; we can 2087 // unconditionally perform the operator delete call in that case. For now, we 2088 // assume that deleted pointers are null rarely enough that it's better to 2089 // keep the branch. This might be worth revisiting for a -O0 code size win. 2090 llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull"); 2091 llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end"); 2092 2093 llvm::Value *IsNull = Builder.CreateIsNull(Ptr, "isnull"); 2094 2095 Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull); 2096 EmitBlock(DeleteNotNull); 2097 Ptr.setKnownNonNull(); 2098 2099 QualType DeleteTy = E->getDestroyedType(); 2100 2101 // A destroying operator delete overrides the entire operation of the 2102 // delete expression. 2103 if (E->getOperatorDelete()->isDestroyingOperatorDelete()) { 2104 EmitDestroyingObjectDelete(*this, E, Ptr, DeleteTy); 2105 EmitBlock(DeleteEnd); 2106 return; 2107 } 2108 2109 // We might be deleting a pointer to array. If so, GEP down to the 2110 // first non-array element. 2111 // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*) 2112 if (DeleteTy->isConstantArrayType()) { 2113 llvm::Value *Zero = Builder.getInt32(0); 2114 SmallVector<llvm::Value*,8> GEP; 2115 2116 GEP.push_back(Zero); // point at the outermost array 2117 2118 // For each layer of array type we're pointing at: 2119 while (const ConstantArrayType *Arr 2120 = getContext().getAsConstantArrayType(DeleteTy)) { 2121 // 1. Unpeel the array type. 2122 DeleteTy = Arr->getElementType(); 2123 2124 // 2. GEP to the first element of the array. 2125 GEP.push_back(Zero); 2126 } 2127 2128 Ptr = Builder.CreateInBoundsGEP(Ptr, GEP, ConvertTypeForMem(DeleteTy), 2129 Ptr.getAlignment(), "del.first"); 2130 } 2131 2132 assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType()); 2133 2134 if (E->isArrayForm()) { 2135 EmitArrayDelete(*this, E, Ptr, DeleteTy); 2136 EmitBlock(DeleteEnd); 2137 } else { 2138 if (!EmitObjectDelete(*this, E, Ptr, DeleteTy, DeleteEnd)) 2139 EmitBlock(DeleteEnd); 2140 } 2141 } 2142 2143 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E, 2144 llvm::Type *StdTypeInfoPtrTy, 2145 bool HasNullCheck) { 2146 // Get the vtable pointer. 2147 Address ThisPtr = CGF.EmitLValue(E).getAddress(); 2148 2149 QualType SrcRecordTy = E->getType(); 2150 2151 // C++ [class.cdtor]p4: 2152 // If the operand of typeid refers to the object under construction or 2153 // destruction and the static type of the operand is neither the constructor 2154 // or destructor’s class nor one of its bases, the behavior is undefined. 2155 CGF.EmitTypeCheck(CodeGenFunction::TCK_DynamicOperation, E->getExprLoc(), 2156 ThisPtr, SrcRecordTy); 2157 2158 // Whether we need an explicit null pointer check. For example, with the 2159 // Microsoft ABI, if this is a call to __RTtypeid, the null pointer check and 2160 // exception throw is inside the __RTtypeid(nullptr) call 2161 if (HasNullCheck && 2162 CGF.CGM.getCXXABI().shouldTypeidBeNullChecked(SrcRecordTy)) { 2163 llvm::BasicBlock *BadTypeidBlock = 2164 CGF.createBasicBlock("typeid.bad_typeid"); 2165 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end"); 2166 2167 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr); 2168 CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock); 2169 2170 CGF.EmitBlock(BadTypeidBlock); 2171 CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF); 2172 CGF.EmitBlock(EndBlock); 2173 } 2174 2175 return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr, 2176 StdTypeInfoPtrTy); 2177 } 2178 2179 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) { 2180 // Ideally, we would like to use GlobalsInt8PtrTy here, however, we cannot, 2181 // primarily because the result of applying typeid is a value of type 2182 // type_info, which is declared & defined by the standard library 2183 // implementation and expects to operate on the generic (default) AS. 2184 // https://reviews.llvm.org/D157452 has more context, and a possible solution. 2185 llvm::Type *PtrTy = Int8PtrTy; 2186 LangAS GlobAS = CGM.GetGlobalVarAddressSpace(nullptr); 2187 2188 auto MaybeASCast = [=](auto &&TypeInfo) { 2189 if (GlobAS == LangAS::Default) 2190 return TypeInfo; 2191 return getTargetHooks().performAddrSpaceCast(CGM,TypeInfo, GlobAS, 2192 LangAS::Default, PtrTy); 2193 }; 2194 2195 if (E->isTypeOperand()) { 2196 llvm::Constant *TypeInfo = 2197 CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext())); 2198 return MaybeASCast(TypeInfo); 2199 } 2200 2201 // C++ [expr.typeid]p2: 2202 // When typeid is applied to a glvalue expression whose type is a 2203 // polymorphic class type, the result refers to a std::type_info object 2204 // representing the type of the most derived object (that is, the dynamic 2205 // type) to which the glvalue refers. 2206 // If the operand is already most derived object, no need to look up vtable. 2207 if (E->isPotentiallyEvaluated() && !E->isMostDerived(getContext())) 2208 return EmitTypeidFromVTable(*this, E->getExprOperand(), PtrTy, 2209 E->hasNullCheck()); 2210 2211 QualType OperandTy = E->getExprOperand()->getType(); 2212 return MaybeASCast(CGM.GetAddrOfRTTIDescriptor(OperandTy)); 2213 } 2214 2215 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF, 2216 QualType DestTy) { 2217 llvm::Type *DestLTy = CGF.ConvertType(DestTy); 2218 if (DestTy->isPointerType()) 2219 return llvm::Constant::getNullValue(DestLTy); 2220 2221 /// C++ [expr.dynamic.cast]p9: 2222 /// A failed cast to reference type throws std::bad_cast 2223 if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF)) 2224 return nullptr; 2225 2226 CGF.Builder.ClearInsertionPoint(); 2227 return llvm::PoisonValue::get(DestLTy); 2228 } 2229 2230 llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr, 2231 const CXXDynamicCastExpr *DCE) { 2232 CGM.EmitExplicitCastExprType(DCE, this); 2233 QualType DestTy = DCE->getTypeAsWritten(); 2234 2235 QualType SrcTy = DCE->getSubExpr()->getType(); 2236 2237 // C++ [expr.dynamic.cast]p7: 2238 // If T is "pointer to cv void," then the result is a pointer to the most 2239 // derived object pointed to by v. 2240 bool IsDynamicCastToVoid = DestTy->isVoidPointerType(); 2241 QualType SrcRecordTy; 2242 QualType DestRecordTy; 2243 if (IsDynamicCastToVoid) { 2244 SrcRecordTy = SrcTy->getPointeeType(); 2245 // No DestRecordTy. 2246 } else if (const PointerType *DestPTy = DestTy->getAs<PointerType>()) { 2247 SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType(); 2248 DestRecordTy = DestPTy->getPointeeType(); 2249 } else { 2250 SrcRecordTy = SrcTy; 2251 DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType(); 2252 } 2253 2254 // C++ [class.cdtor]p5: 2255 // If the operand of the dynamic_cast refers to the object under 2256 // construction or destruction and the static type of the operand is not a 2257 // pointer to or object of the constructor or destructor’s own class or one 2258 // of its bases, the dynamic_cast results in undefined behavior. 2259 EmitTypeCheck(TCK_DynamicOperation, DCE->getExprLoc(), ThisAddr, SrcRecordTy); 2260 2261 if (DCE->isAlwaysNull()) { 2262 if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy)) { 2263 // Expression emission is expected to retain a valid insertion point. 2264 if (!Builder.GetInsertBlock()) 2265 EmitBlock(createBasicBlock("dynamic_cast.unreachable")); 2266 return T; 2267 } 2268 } 2269 2270 assert(SrcRecordTy->isRecordType() && "source type must be a record type!"); 2271 2272 // If the destination is effectively final, the cast succeeds if and only 2273 // if the dynamic type of the pointer is exactly the destination type. 2274 bool IsExact = !IsDynamicCastToVoid && 2275 CGM.getCodeGenOpts().OptimizationLevel > 0 && 2276 DestRecordTy->getAsCXXRecordDecl()->isEffectivelyFinal() && 2277 CGM.getCXXABI().shouldEmitExactDynamicCast(DestRecordTy); 2278 2279 // C++ [expr.dynamic.cast]p4: 2280 // If the value of v is a null pointer value in the pointer case, the result 2281 // is the null pointer value of type T. 2282 bool ShouldNullCheckSrcValue = 2283 IsExact || CGM.getCXXABI().shouldDynamicCastCallBeNullChecked( 2284 SrcTy->isPointerType(), SrcRecordTy); 2285 2286 llvm::BasicBlock *CastNull = nullptr; 2287 llvm::BasicBlock *CastNotNull = nullptr; 2288 llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end"); 2289 2290 if (ShouldNullCheckSrcValue) { 2291 CastNull = createBasicBlock("dynamic_cast.null"); 2292 CastNotNull = createBasicBlock("dynamic_cast.notnull"); 2293 2294 llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr); 2295 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 2296 EmitBlock(CastNotNull); 2297 } 2298 2299 llvm::Value *Value; 2300 if (IsDynamicCastToVoid) { 2301 Value = CGM.getCXXABI().emitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy); 2302 } else if (IsExact) { 2303 // If the destination type is effectively final, this pointer points to the 2304 // right type if and only if its vptr has the right value. 2305 Value = CGM.getCXXABI().emitExactDynamicCast( 2306 *this, ThisAddr, SrcRecordTy, DestTy, DestRecordTy, CastEnd, CastNull); 2307 } else { 2308 assert(DestRecordTy->isRecordType() && 2309 "destination type must be a record type!"); 2310 Value = CGM.getCXXABI().emitDynamicCastCall(*this, ThisAddr, SrcRecordTy, 2311 DestTy, DestRecordTy, CastEnd); 2312 } 2313 CastNotNull = Builder.GetInsertBlock(); 2314 2315 llvm::Value *NullValue = nullptr; 2316 if (ShouldNullCheckSrcValue) { 2317 EmitBranch(CastEnd); 2318 2319 EmitBlock(CastNull); 2320 NullValue = EmitDynamicCastToNull(*this, DestTy); 2321 CastNull = Builder.GetInsertBlock(); 2322 2323 EmitBranch(CastEnd); 2324 } 2325 2326 EmitBlock(CastEnd); 2327 2328 if (CastNull) { 2329 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 2330 PHI->addIncoming(Value, CastNotNull); 2331 PHI->addIncoming(NullValue, CastNull); 2332 2333 Value = PHI; 2334 } 2335 2336 return Value; 2337 } 2338