xref: /llvm-project/clang/lib/CodeGen/CGExprCXX.cpp (revision 7bf188fa991338e981e8dff120a4ed341ad7f4bd)
1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code dealing with code generation of C++ expressions
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCUDARuntime.h"
14 #include "CGCXXABI.h"
15 #include "CGDebugInfo.h"
16 #include "CGObjCRuntime.h"
17 #include "CodeGenFunction.h"
18 #include "ConstantEmitter.h"
19 #include "TargetInfo.h"
20 #include "clang/Basic/CodeGenOptions.h"
21 #include "clang/CodeGen/CGFunctionInfo.h"
22 #include "llvm/IR/Intrinsics.h"
23 
24 using namespace clang;
25 using namespace CodeGen;
26 
27 namespace {
28 struct MemberCallInfo {
29   RequiredArgs ReqArgs;
30   // Number of prefix arguments for the call. Ignores the `this` pointer.
31   unsigned PrefixSize;
32 };
33 }
34 
35 static MemberCallInfo
36 commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, GlobalDecl GD,
37                                   llvm::Value *This, llvm::Value *ImplicitParam,
38                                   QualType ImplicitParamTy, const CallExpr *CE,
39                                   CallArgList &Args, CallArgList *RtlArgs) {
40   auto *MD = cast<CXXMethodDecl>(GD.getDecl());
41 
42   assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) ||
43          isa<CXXOperatorCallExpr>(CE));
44   assert(MD->isImplicitObjectMemberFunction() &&
45          "Trying to emit a member or operator call expr on a static method!");
46 
47   // Push the this ptr.
48   const CXXRecordDecl *RD =
49       CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(GD);
50   Args.add(RValue::get(This), CGF.getTypes().DeriveThisType(RD, MD));
51 
52   // If there is an implicit parameter (e.g. VTT), emit it.
53   if (ImplicitParam) {
54     Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
55   }
56 
57   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
58   RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size());
59   unsigned PrefixSize = Args.size() - 1;
60 
61   // And the rest of the call args.
62   if (RtlArgs) {
63     // Special case: if the caller emitted the arguments right-to-left already
64     // (prior to emitting the *this argument), we're done. This happens for
65     // assignment operators.
66     Args.addFrom(*RtlArgs);
67   } else if (CE) {
68     // Special case: skip first argument of CXXOperatorCall (it is "this").
69     unsigned ArgsToSkip = 0;
70     if (const auto *Op = dyn_cast<CXXOperatorCallExpr>(CE)) {
71       if (const auto *M = dyn_cast<CXXMethodDecl>(Op->getCalleeDecl()))
72         ArgsToSkip =
73             static_cast<unsigned>(!M->isExplicitObjectMemberFunction());
74     }
75     CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip),
76                      CE->getDirectCallee());
77   } else {
78     assert(
79         FPT->getNumParams() == 0 &&
80         "No CallExpr specified for function with non-zero number of arguments");
81   }
82   return {required, PrefixSize};
83 }
84 
85 RValue CodeGenFunction::EmitCXXMemberOrOperatorCall(
86     const CXXMethodDecl *MD, const CGCallee &Callee,
87     ReturnValueSlot ReturnValue, llvm::Value *This, llvm::Value *ImplicitParam,
88     QualType ImplicitParamTy, const CallExpr *CE, CallArgList *RtlArgs,
89     llvm::CallBase **CallOrInvoke) {
90   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
91   CallArgList Args;
92   MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall(
93       *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs);
94   auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall(
95       Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize);
96   return EmitCall(FnInfo, Callee, ReturnValue, Args, CallOrInvoke,
97                   CE && CE == MustTailCall,
98                   CE ? CE->getExprLoc() : SourceLocation());
99 }
100 
101 RValue CodeGenFunction::EmitCXXDestructorCall(
102     GlobalDecl Dtor, const CGCallee &Callee, llvm::Value *This, QualType ThisTy,
103     llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE,
104     llvm::CallBase **CallOrInvoke) {
105   const CXXMethodDecl *DtorDecl = cast<CXXMethodDecl>(Dtor.getDecl());
106 
107   assert(!ThisTy.isNull());
108   assert(ThisTy->getAsCXXRecordDecl() == DtorDecl->getParent() &&
109          "Pointer/Object mixup");
110 
111   LangAS SrcAS = ThisTy.getAddressSpace();
112   LangAS DstAS = DtorDecl->getMethodQualifiers().getAddressSpace();
113   if (SrcAS != DstAS) {
114     QualType DstTy = DtorDecl->getThisType();
115     llvm::Type *NewType = CGM.getTypes().ConvertType(DstTy);
116     This = getTargetHooks().performAddrSpaceCast(*this, This, SrcAS, DstAS,
117                                                  NewType);
118   }
119 
120   CallArgList Args;
121   commonEmitCXXMemberOrOperatorCall(*this, Dtor, This, ImplicitParam,
122                                     ImplicitParamTy, CE, Args, nullptr);
123   return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(Dtor), Callee,
124                   ReturnValueSlot(), Args, CallOrInvoke,
125                   CE && CE == MustTailCall,
126                   CE ? CE->getExprLoc() : SourceLocation{});
127 }
128 
129 RValue CodeGenFunction::EmitCXXPseudoDestructorExpr(
130                                             const CXXPseudoDestructorExpr *E) {
131   QualType DestroyedType = E->getDestroyedType();
132   if (DestroyedType.hasStrongOrWeakObjCLifetime()) {
133     // Automatic Reference Counting:
134     //   If the pseudo-expression names a retainable object with weak or
135     //   strong lifetime, the object shall be released.
136     Expr *BaseExpr = E->getBase();
137     Address BaseValue = Address::invalid();
138     Qualifiers BaseQuals;
139 
140     // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
141     if (E->isArrow()) {
142       BaseValue = EmitPointerWithAlignment(BaseExpr);
143       const auto *PTy = BaseExpr->getType()->castAs<PointerType>();
144       BaseQuals = PTy->getPointeeType().getQualifiers();
145     } else {
146       LValue BaseLV = EmitLValue(BaseExpr);
147       BaseValue = BaseLV.getAddress();
148       QualType BaseTy = BaseExpr->getType();
149       BaseQuals = BaseTy.getQualifiers();
150     }
151 
152     switch (DestroyedType.getObjCLifetime()) {
153     case Qualifiers::OCL_None:
154     case Qualifiers::OCL_ExplicitNone:
155     case Qualifiers::OCL_Autoreleasing:
156       break;
157 
158     case Qualifiers::OCL_Strong:
159       EmitARCRelease(Builder.CreateLoad(BaseValue,
160                         DestroyedType.isVolatileQualified()),
161                      ARCPreciseLifetime);
162       break;
163 
164     case Qualifiers::OCL_Weak:
165       EmitARCDestroyWeak(BaseValue);
166       break;
167     }
168   } else {
169     // C++ [expr.pseudo]p1:
170     //   The result shall only be used as the operand for the function call
171     //   operator (), and the result of such a call has type void. The only
172     //   effect is the evaluation of the postfix-expression before the dot or
173     //   arrow.
174     EmitIgnoredExpr(E->getBase());
175   }
176 
177   return RValue::get(nullptr);
178 }
179 
180 static CXXRecordDecl *getCXXRecord(const Expr *E) {
181   QualType T = E->getType();
182   if (const PointerType *PTy = T->getAs<PointerType>())
183     T = PTy->getPointeeType();
184   const RecordType *Ty = T->castAs<RecordType>();
185   return cast<CXXRecordDecl>(Ty->getDecl());
186 }
187 
188 // Note: This function also emit constructor calls to support a MSVC
189 // extensions allowing explicit constructor function call.
190 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
191                                               ReturnValueSlot ReturnValue,
192                                               llvm::CallBase **CallOrInvoke) {
193   const Expr *callee = CE->getCallee()->IgnoreParens();
194 
195   if (isa<BinaryOperator>(callee))
196     return EmitCXXMemberPointerCallExpr(CE, ReturnValue, CallOrInvoke);
197 
198   const MemberExpr *ME = cast<MemberExpr>(callee);
199   const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
200 
201   if (MD->isStatic()) {
202     // The method is static, emit it as we would a regular call.
203     CGCallee callee =
204         CGCallee::forDirect(CGM.GetAddrOfFunction(MD), GlobalDecl(MD));
205     return EmitCall(getContext().getPointerType(MD->getType()), callee, CE,
206                     ReturnValue, /*Chain=*/nullptr, CallOrInvoke);
207   }
208 
209   bool HasQualifier = ME->hasQualifier();
210   NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr;
211   bool IsArrow = ME->isArrow();
212   const Expr *Base = ME->getBase();
213 
214   return EmitCXXMemberOrOperatorMemberCallExpr(CE, MD, ReturnValue,
215                                                HasQualifier, Qualifier, IsArrow,
216                                                Base, CallOrInvoke);
217 }
218 
219 RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr(
220     const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue,
221     bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow,
222     const Expr *Base, llvm::CallBase **CallOrInvoke) {
223   assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE));
224 
225   // Compute the object pointer.
226   bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier;
227 
228   const CXXMethodDecl *DevirtualizedMethod = nullptr;
229   if (CanUseVirtualCall &&
230       MD->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) {
231     const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
232     DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
233     assert(DevirtualizedMethod);
234     const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
235     const Expr *Inner = Base->IgnoreParenBaseCasts();
236     if (DevirtualizedMethod->getReturnType().getCanonicalType() !=
237         MD->getReturnType().getCanonicalType())
238       // If the return types are not the same, this might be a case where more
239       // code needs to run to compensate for it. For example, the derived
240       // method might return a type that inherits form from the return
241       // type of MD and has a prefix.
242       // For now we just avoid devirtualizing these covariant cases.
243       DevirtualizedMethod = nullptr;
244     else if (getCXXRecord(Inner) == DevirtualizedClass)
245       // If the class of the Inner expression is where the dynamic method
246       // is defined, build the this pointer from it.
247       Base = Inner;
248     else if (getCXXRecord(Base) != DevirtualizedClass) {
249       // If the method is defined in a class that is not the best dynamic
250       // one or the one of the full expression, we would have to build
251       // a derived-to-base cast to compute the correct this pointer, but
252       // we don't have support for that yet, so do a virtual call.
253       DevirtualizedMethod = nullptr;
254     }
255   }
256 
257   bool TrivialForCodegen =
258       MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion());
259   bool TrivialAssignment =
260       TrivialForCodegen &&
261       (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) &&
262       !MD->getParent()->mayInsertExtraPadding();
263 
264   // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment
265   // operator before the LHS.
266   CallArgList RtlArgStorage;
267   CallArgList *RtlArgs = nullptr;
268   LValue TrivialAssignmentRHS;
269   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
270     if (OCE->isAssignmentOp()) {
271       if (TrivialAssignment) {
272         TrivialAssignmentRHS = EmitLValue(CE->getArg(1));
273       } else {
274         RtlArgs = &RtlArgStorage;
275         EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(),
276                      drop_begin(CE->arguments(), 1), CE->getDirectCallee(),
277                      /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft);
278       }
279     }
280   }
281 
282   LValue This;
283   if (IsArrow) {
284     LValueBaseInfo BaseInfo;
285     TBAAAccessInfo TBAAInfo;
286     Address ThisValue = EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
287     This = MakeAddrLValue(ThisValue, Base->getType()->getPointeeType(),
288                           BaseInfo, TBAAInfo);
289   } else {
290     This = EmitLValue(Base);
291   }
292 
293   if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
294     // This is the MSVC p->Ctor::Ctor(...) extension. We assume that's
295     // constructing a new complete object of type Ctor.
296     assert(!RtlArgs);
297     assert(ReturnValue.isNull() && "Constructor shouldn't have return value");
298     CallArgList Args;
299     commonEmitCXXMemberOrOperatorCall(
300         *this, {Ctor, Ctor_Complete}, This.getPointer(*this),
301         /*ImplicitParam=*/nullptr,
302         /*ImplicitParamTy=*/QualType(), CE, Args, nullptr);
303 
304     EmitCXXConstructorCall(Ctor, Ctor_Complete, /*ForVirtualBase=*/false,
305                            /*Delegating=*/false, This.getAddress(), Args,
306                            AggValueSlot::DoesNotOverlap, CE->getExprLoc(),
307                            /*NewPointerIsChecked=*/false, CallOrInvoke);
308     return RValue::get(nullptr);
309   }
310 
311   if (TrivialForCodegen) {
312     if (isa<CXXDestructorDecl>(MD))
313       return RValue::get(nullptr);
314 
315     if (TrivialAssignment) {
316       // We don't like to generate the trivial copy/move assignment operator
317       // when it isn't necessary; just produce the proper effect here.
318       // It's important that we use the result of EmitLValue here rather than
319       // emitting call arguments, in order to preserve TBAA information from
320       // the RHS.
321       LValue RHS = isa<CXXOperatorCallExpr>(CE)
322                        ? TrivialAssignmentRHS
323                        : EmitLValue(*CE->arg_begin());
324       EmitAggregateAssign(This, RHS, CE->getType());
325       return RValue::get(This.getPointer(*this));
326     }
327 
328     assert(MD->getParent()->mayInsertExtraPadding() &&
329            "unknown trivial member function");
330   }
331 
332   // Compute the function type we're calling.
333   const CXXMethodDecl *CalleeDecl =
334       DevirtualizedMethod ? DevirtualizedMethod : MD;
335   const CGFunctionInfo *FInfo = nullptr;
336   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
337     FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
338         GlobalDecl(Dtor, Dtor_Complete));
339   else
340     FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
341 
342   llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo);
343 
344   // C++11 [class.mfct.non-static]p2:
345   //   If a non-static member function of a class X is called for an object that
346   //   is not of type X, or of a type derived from X, the behavior is undefined.
347   SourceLocation CallLoc;
348   ASTContext &C = getContext();
349   if (CE)
350     CallLoc = CE->getExprLoc();
351 
352   SanitizerSet SkippedChecks;
353   if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) {
354     auto *IOA = CMCE->getImplicitObjectArgument();
355     bool IsImplicitObjectCXXThis = IsWrappedCXXThis(IOA);
356     if (IsImplicitObjectCXXThis)
357       SkippedChecks.set(SanitizerKind::Alignment, true);
358     if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(IOA))
359       SkippedChecks.set(SanitizerKind::Null, true);
360   }
361 
362   if (sanitizePerformTypeCheck())
363     EmitTypeCheck(CodeGenFunction::TCK_MemberCall, CallLoc,
364                   This.emitRawPointer(*this),
365                   C.getRecordType(CalleeDecl->getParent()),
366                   /*Alignment=*/CharUnits::Zero(), SkippedChecks);
367 
368   // C++ [class.virtual]p12:
369   //   Explicit qualification with the scope operator (5.1) suppresses the
370   //   virtual call mechanism.
371   //
372   // We also don't emit a virtual call if the base expression has a record type
373   // because then we know what the type is.
374   bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
375 
376   if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) {
377     assert(CE->arg_begin() == CE->arg_end() &&
378            "Destructor shouldn't have explicit parameters");
379     assert(ReturnValue.isNull() && "Destructor shouldn't have return value");
380     if (UseVirtualCall) {
381       CGM.getCXXABI().EmitVirtualDestructorCall(
382           *this, Dtor, Dtor_Complete, This.getAddress(),
383           cast<CXXMemberCallExpr>(CE), CallOrInvoke);
384     } else {
385       GlobalDecl GD(Dtor, Dtor_Complete);
386       CGCallee Callee;
387       if (getLangOpts().AppleKext && Dtor->isVirtual() && HasQualifier)
388         Callee = BuildAppleKextVirtualCall(Dtor, Qualifier, Ty);
389       else if (!DevirtualizedMethod)
390         Callee =
391             CGCallee::forDirect(CGM.getAddrOfCXXStructor(GD, FInfo, Ty), GD);
392       else {
393         Callee = CGCallee::forDirect(CGM.GetAddrOfFunction(GD, Ty), GD);
394       }
395 
396       QualType ThisTy =
397           IsArrow ? Base->getType()->getPointeeType() : Base->getType();
398       EmitCXXDestructorCall(GD, Callee, This.getPointer(*this), ThisTy,
399                             /*ImplicitParam=*/nullptr,
400                             /*ImplicitParamTy=*/QualType(), CE, CallOrInvoke);
401     }
402     return RValue::get(nullptr);
403   }
404 
405   // FIXME: Uses of 'MD' past this point need to be audited. We may need to use
406   // 'CalleeDecl' instead.
407 
408   CGCallee Callee;
409   if (UseVirtualCall) {
410     Callee = CGCallee::forVirtual(CE, MD, This.getAddress(), Ty);
411   } else {
412     if (SanOpts.has(SanitizerKind::CFINVCall) &&
413         MD->getParent()->isDynamicClass()) {
414       llvm::Value *VTable;
415       const CXXRecordDecl *RD;
416       std::tie(VTable, RD) = CGM.getCXXABI().LoadVTablePtr(
417           *this, This.getAddress(), CalleeDecl->getParent());
418       EmitVTablePtrCheckForCall(RD, VTable, CFITCK_NVCall, CE->getBeginLoc());
419     }
420 
421     if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
422       Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
423     else if (!DevirtualizedMethod)
424       Callee =
425           CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), GlobalDecl(MD));
426     else {
427       Callee =
428           CGCallee::forDirect(CGM.GetAddrOfFunction(DevirtualizedMethod, Ty),
429                               GlobalDecl(DevirtualizedMethod));
430     }
431   }
432 
433   if (MD->isVirtual()) {
434     Address NewThisAddr =
435         CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall(
436             *this, CalleeDecl, This.getAddress(), UseVirtualCall);
437     This.setAddress(NewThisAddr);
438   }
439 
440   return EmitCXXMemberOrOperatorCall(
441       CalleeDecl, Callee, ReturnValue, This.getPointer(*this),
442       /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs, CallOrInvoke);
443 }
444 
445 RValue
446 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
447                                               ReturnValueSlot ReturnValue,
448                                               llvm::CallBase **CallOrInvoke) {
449   const BinaryOperator *BO =
450       cast<BinaryOperator>(E->getCallee()->IgnoreParens());
451   const Expr *BaseExpr = BO->getLHS();
452   const Expr *MemFnExpr = BO->getRHS();
453 
454   const auto *MPT = MemFnExpr->getType()->castAs<MemberPointerType>();
455   const auto *FPT = MPT->getPointeeType()->castAs<FunctionProtoType>();
456   const auto *RD =
457       cast<CXXRecordDecl>(MPT->getClass()->castAs<RecordType>()->getDecl());
458 
459   // Emit the 'this' pointer.
460   Address This = Address::invalid();
461   if (BO->getOpcode() == BO_PtrMemI)
462     This = EmitPointerWithAlignment(BaseExpr, nullptr, nullptr, KnownNonNull);
463   else
464     This = EmitLValue(BaseExpr, KnownNonNull).getAddress();
465 
466   EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.emitRawPointer(*this),
467                 QualType(MPT->getClass(), 0));
468 
469   // Get the member function pointer.
470   llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
471 
472   // Ask the ABI to load the callee.  Note that This is modified.
473   llvm::Value *ThisPtrForCall = nullptr;
474   CGCallee Callee =
475     CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This,
476                                              ThisPtrForCall, MemFnPtr, MPT);
477 
478   CallArgList Args;
479 
480   QualType ThisType =
481     getContext().getPointerType(getContext().getTagDeclType(RD));
482 
483   // Push the this ptr.
484   Args.add(RValue::get(ThisPtrForCall), ThisType);
485 
486   RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1);
487 
488   // And the rest of the call args
489   EmitCallArgs(Args, FPT, E->arguments());
490   return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required,
491                                                       /*PrefixSize=*/0),
492                   Callee, ReturnValue, Args, CallOrInvoke, E == MustTailCall,
493                   E->getExprLoc());
494 }
495 
496 RValue CodeGenFunction::EmitCXXOperatorMemberCallExpr(
497     const CXXOperatorCallExpr *E, const CXXMethodDecl *MD,
498     ReturnValueSlot ReturnValue, llvm::CallBase **CallOrInvoke) {
499   assert(MD->isImplicitObjectMemberFunction() &&
500          "Trying to emit a member call expr on a static method!");
501   return EmitCXXMemberOrOperatorMemberCallExpr(
502       E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr,
503       /*IsArrow=*/false, E->getArg(0), CallOrInvoke);
504 }
505 
506 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
507                                                ReturnValueSlot ReturnValue,
508                                                llvm::CallBase **CallOrInvoke) {
509   return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue,
510                                                      CallOrInvoke);
511 }
512 
513 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
514                                             Address DestPtr,
515                                             const CXXRecordDecl *Base) {
516   if (Base->isEmpty())
517     return;
518 
519   DestPtr = DestPtr.withElementType(CGF.Int8Ty);
520 
521   const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
522   CharUnits NVSize = Layout.getNonVirtualSize();
523 
524   // We cannot simply zero-initialize the entire base sub-object if vbptrs are
525   // present, they are initialized by the most derived class before calling the
526   // constructor.
527   SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores;
528   Stores.emplace_back(CharUnits::Zero(), NVSize);
529 
530   // Each store is split by the existence of a vbptr.
531   CharUnits VBPtrWidth = CGF.getPointerSize();
532   std::vector<CharUnits> VBPtrOffsets =
533       CGF.CGM.getCXXABI().getVBPtrOffsets(Base);
534   for (CharUnits VBPtrOffset : VBPtrOffsets) {
535     // Stop before we hit any virtual base pointers located in virtual bases.
536     if (VBPtrOffset >= NVSize)
537       break;
538     std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val();
539     CharUnits LastStoreOffset = LastStore.first;
540     CharUnits LastStoreSize = LastStore.second;
541 
542     CharUnits SplitBeforeOffset = LastStoreOffset;
543     CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset;
544     assert(!SplitBeforeSize.isNegative() && "negative store size!");
545     if (!SplitBeforeSize.isZero())
546       Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize);
547 
548     CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth;
549     CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset;
550     assert(!SplitAfterSize.isNegative() && "negative store size!");
551     if (!SplitAfterSize.isZero())
552       Stores.emplace_back(SplitAfterOffset, SplitAfterSize);
553   }
554 
555   // If the type contains a pointer to data member we can't memset it to zero.
556   // Instead, create a null constant and copy it to the destination.
557   // TODO: there are other patterns besides zero that we can usefully memset,
558   // like -1, which happens to be the pattern used by member-pointers.
559   // TODO: isZeroInitializable can be over-conservative in the case where a
560   // virtual base contains a member pointer.
561   llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base);
562   if (!NullConstantForBase->isNullValue()) {
563     llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable(
564         CGF.CGM.getModule(), NullConstantForBase->getType(),
565         /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage,
566         NullConstantForBase, Twine());
567 
568     CharUnits Align =
569         std::max(Layout.getNonVirtualAlignment(), DestPtr.getAlignment());
570     NullVariable->setAlignment(Align.getAsAlign());
571 
572     Address SrcPtr(NullVariable, CGF.Int8Ty, Align);
573 
574     // Get and call the appropriate llvm.memcpy overload.
575     for (std::pair<CharUnits, CharUnits> Store : Stores) {
576       CharUnits StoreOffset = Store.first;
577       CharUnits StoreSize = Store.second;
578       llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
579       CGF.Builder.CreateMemCpy(
580           CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
581           CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset),
582           StoreSizeVal);
583     }
584 
585   // Otherwise, just memset the whole thing to zero.  This is legal
586   // because in LLVM, all default initializers (other than the ones we just
587   // handled above) are guaranteed to have a bit pattern of all zeros.
588   } else {
589     for (std::pair<CharUnits, CharUnits> Store : Stores) {
590       CharUnits StoreOffset = Store.first;
591       CharUnits StoreSize = Store.second;
592       llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
593       CGF.Builder.CreateMemSet(
594           CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
595           CGF.Builder.getInt8(0), StoreSizeVal);
596     }
597   }
598 }
599 
600 void
601 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
602                                       AggValueSlot Dest) {
603   assert(!Dest.isIgnored() && "Must have a destination!");
604   const CXXConstructorDecl *CD = E->getConstructor();
605 
606   // If we require zero initialization before (or instead of) calling the
607   // constructor, as can be the case with a non-user-provided default
608   // constructor, emit the zero initialization now, unless destination is
609   // already zeroed.
610   if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
611     switch (E->getConstructionKind()) {
612     case CXXConstructionKind::Delegating:
613     case CXXConstructionKind::Complete:
614       EmitNullInitialization(Dest.getAddress(), E->getType());
615       break;
616     case CXXConstructionKind::VirtualBase:
617     case CXXConstructionKind::NonVirtualBase:
618       EmitNullBaseClassInitialization(*this, Dest.getAddress(),
619                                       CD->getParent());
620       break;
621     }
622   }
623 
624   // If this is a call to a trivial default constructor, do nothing.
625   if (CD->isTrivial() && CD->isDefaultConstructor())
626     return;
627 
628   // Elide the constructor if we're constructing from a temporary.
629   if (getLangOpts().ElideConstructors && E->isElidable()) {
630     // FIXME: This only handles the simplest case, where the source object
631     //        is passed directly as the first argument to the constructor.
632     //        This should also handle stepping though implicit casts and
633     //        conversion sequences which involve two steps, with a
634     //        conversion operator followed by a converting constructor.
635     const Expr *SrcObj = E->getArg(0);
636     assert(SrcObj->isTemporaryObject(getContext(), CD->getParent()));
637     assert(
638         getContext().hasSameUnqualifiedType(E->getType(), SrcObj->getType()));
639     EmitAggExpr(SrcObj, Dest);
640     return;
641   }
642 
643   if (const ArrayType *arrayType
644         = getContext().getAsArrayType(E->getType())) {
645     EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E,
646                                Dest.isSanitizerChecked());
647   } else {
648     CXXCtorType Type = Ctor_Complete;
649     bool ForVirtualBase = false;
650     bool Delegating = false;
651 
652     switch (E->getConstructionKind()) {
653     case CXXConstructionKind::Delegating:
654       // We should be emitting a constructor; GlobalDecl will assert this
655       Type = CurGD.getCtorType();
656       Delegating = true;
657       break;
658 
659     case CXXConstructionKind::Complete:
660       Type = Ctor_Complete;
661       break;
662 
663     case CXXConstructionKind::VirtualBase:
664       ForVirtualBase = true;
665       [[fallthrough]];
666 
667     case CXXConstructionKind::NonVirtualBase:
668       Type = Ctor_Base;
669      }
670 
671      // Call the constructor.
672      EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, Dest, E);
673   }
674 }
675 
676 void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src,
677                                                  const Expr *Exp) {
678   if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
679     Exp = E->getSubExpr();
680   assert(isa<CXXConstructExpr>(Exp) &&
681          "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
682   const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
683   const CXXConstructorDecl *CD = E->getConstructor();
684   RunCleanupsScope Scope(*this);
685 
686   // If we require zero initialization before (or instead of) calling the
687   // constructor, as can be the case with a non-user-provided default
688   // constructor, emit the zero initialization now.
689   // FIXME. Do I still need this for a copy ctor synthesis?
690   if (E->requiresZeroInitialization())
691     EmitNullInitialization(Dest, E->getType());
692 
693   assert(!getContext().getAsConstantArrayType(E->getType())
694          && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
695   EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E);
696 }
697 
698 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
699                                         const CXXNewExpr *E) {
700   if (!E->isArray())
701     return CharUnits::Zero();
702 
703   // No cookie is required if the operator new[] being used is the
704   // reserved placement operator new[].
705   if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
706     return CharUnits::Zero();
707 
708   return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
709 }
710 
711 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
712                                         const CXXNewExpr *e,
713                                         unsigned minElements,
714                                         llvm::Value *&numElements,
715                                         llvm::Value *&sizeWithoutCookie) {
716   QualType type = e->getAllocatedType();
717 
718   if (!e->isArray()) {
719     CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
720     sizeWithoutCookie
721       = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
722     return sizeWithoutCookie;
723   }
724 
725   // The width of size_t.
726   unsigned sizeWidth = CGF.SizeTy->getBitWidth();
727 
728   // Figure out the cookie size.
729   llvm::APInt cookieSize(sizeWidth,
730                          CalculateCookiePadding(CGF, e).getQuantity());
731 
732   // Emit the array size expression.
733   // We multiply the size of all dimensions for NumElements.
734   // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
735   numElements = ConstantEmitter(CGF).tryEmitAbstract(
736       *e->getArraySize(), (*e->getArraySize())->getType());
737   if (!numElements)
738     numElements = CGF.EmitScalarExpr(*e->getArraySize());
739   assert(isa<llvm::IntegerType>(numElements->getType()));
740 
741   // The number of elements can be have an arbitrary integer type;
742   // essentially, we need to multiply it by a constant factor, add a
743   // cookie size, and verify that the result is representable as a
744   // size_t.  That's just a gloss, though, and it's wrong in one
745   // important way: if the count is negative, it's an error even if
746   // the cookie size would bring the total size >= 0.
747   bool isSigned
748     = (*e->getArraySize())->getType()->isSignedIntegerOrEnumerationType();
749   llvm::IntegerType *numElementsType
750     = cast<llvm::IntegerType>(numElements->getType());
751   unsigned numElementsWidth = numElementsType->getBitWidth();
752 
753   // Compute the constant factor.
754   llvm::APInt arraySizeMultiplier(sizeWidth, 1);
755   while (const ConstantArrayType *CAT
756              = CGF.getContext().getAsConstantArrayType(type)) {
757     type = CAT->getElementType();
758     arraySizeMultiplier *= CAT->getSize();
759   }
760 
761   CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
762   llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
763   typeSizeMultiplier *= arraySizeMultiplier;
764 
765   // This will be a size_t.
766   llvm::Value *size;
767 
768   // If someone is doing 'new int[42]' there is no need to do a dynamic check.
769   // Don't bloat the -O0 code.
770   if (llvm::ConstantInt *numElementsC =
771         dyn_cast<llvm::ConstantInt>(numElements)) {
772     const llvm::APInt &count = numElementsC->getValue();
773 
774     bool hasAnyOverflow = false;
775 
776     // If 'count' was a negative number, it's an overflow.
777     if (isSigned && count.isNegative())
778       hasAnyOverflow = true;
779 
780     // We want to do all this arithmetic in size_t.  If numElements is
781     // wider than that, check whether it's already too big, and if so,
782     // overflow.
783     else if (numElementsWidth > sizeWidth &&
784              numElementsWidth - sizeWidth > count.countl_zero())
785       hasAnyOverflow = true;
786 
787     // Okay, compute a count at the right width.
788     llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
789 
790     // If there is a brace-initializer, we cannot allocate fewer elements than
791     // there are initializers. If we do, that's treated like an overflow.
792     if (adjustedCount.ult(minElements))
793       hasAnyOverflow = true;
794 
795     // Scale numElements by that.  This might overflow, but we don't
796     // care because it only overflows if allocationSize does, too, and
797     // if that overflows then we shouldn't use this.
798     numElements = llvm::ConstantInt::get(CGF.SizeTy,
799                                          adjustedCount * arraySizeMultiplier);
800 
801     // Compute the size before cookie, and track whether it overflowed.
802     bool overflow;
803     llvm::APInt allocationSize
804       = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
805     hasAnyOverflow |= overflow;
806 
807     // Add in the cookie, and check whether it's overflowed.
808     if (cookieSize != 0) {
809       // Save the current size without a cookie.  This shouldn't be
810       // used if there was overflow.
811       sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
812 
813       allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
814       hasAnyOverflow |= overflow;
815     }
816 
817     // On overflow, produce a -1 so operator new will fail.
818     if (hasAnyOverflow) {
819       size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
820     } else {
821       size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
822     }
823 
824   // Otherwise, we might need to use the overflow intrinsics.
825   } else {
826     // There are up to five conditions we need to test for:
827     // 1) if isSigned, we need to check whether numElements is negative;
828     // 2) if numElementsWidth > sizeWidth, we need to check whether
829     //   numElements is larger than something representable in size_t;
830     // 3) if minElements > 0, we need to check whether numElements is smaller
831     //    than that.
832     // 4) we need to compute
833     //      sizeWithoutCookie := numElements * typeSizeMultiplier
834     //    and check whether it overflows; and
835     // 5) if we need a cookie, we need to compute
836     //      size := sizeWithoutCookie + cookieSize
837     //    and check whether it overflows.
838 
839     llvm::Value *hasOverflow = nullptr;
840 
841     // If numElementsWidth > sizeWidth, then one way or another, we're
842     // going to have to do a comparison for (2), and this happens to
843     // take care of (1), too.
844     if (numElementsWidth > sizeWidth) {
845       llvm::APInt threshold =
846           llvm::APInt::getOneBitSet(numElementsWidth, sizeWidth);
847 
848       llvm::Value *thresholdV
849         = llvm::ConstantInt::get(numElementsType, threshold);
850 
851       hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
852       numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
853 
854     // Otherwise, if we're signed, we want to sext up to size_t.
855     } else if (isSigned) {
856       if (numElementsWidth < sizeWidth)
857         numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
858 
859       // If there's a non-1 type size multiplier, then we can do the
860       // signedness check at the same time as we do the multiply
861       // because a negative number times anything will cause an
862       // unsigned overflow.  Otherwise, we have to do it here. But at least
863       // in this case, we can subsume the >= minElements check.
864       if (typeSizeMultiplier == 1)
865         hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
866                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
867 
868     // Otherwise, zext up to size_t if necessary.
869     } else if (numElementsWidth < sizeWidth) {
870       numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
871     }
872 
873     assert(numElements->getType() == CGF.SizeTy);
874 
875     if (minElements) {
876       // Don't allow allocation of fewer elements than we have initializers.
877       if (!hasOverflow) {
878         hasOverflow = CGF.Builder.CreateICmpULT(numElements,
879                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
880       } else if (numElementsWidth > sizeWidth) {
881         // The other existing overflow subsumes this check.
882         // We do an unsigned comparison, since any signed value < -1 is
883         // taken care of either above or below.
884         hasOverflow = CGF.Builder.CreateOr(hasOverflow,
885                           CGF.Builder.CreateICmpULT(numElements,
886                               llvm::ConstantInt::get(CGF.SizeTy, minElements)));
887       }
888     }
889 
890     size = numElements;
891 
892     // Multiply by the type size if necessary.  This multiplier
893     // includes all the factors for nested arrays.
894     //
895     // This step also causes numElements to be scaled up by the
896     // nested-array factor if necessary.  Overflow on this computation
897     // can be ignored because the result shouldn't be used if
898     // allocation fails.
899     if (typeSizeMultiplier != 1) {
900       llvm::Function *umul_with_overflow
901         = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
902 
903       llvm::Value *tsmV =
904         llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
905       llvm::Value *result =
906           CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV});
907 
908       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
909       if (hasOverflow)
910         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
911       else
912         hasOverflow = overflowed;
913 
914       size = CGF.Builder.CreateExtractValue(result, 0);
915 
916       // Also scale up numElements by the array size multiplier.
917       if (arraySizeMultiplier != 1) {
918         // If the base element type size is 1, then we can re-use the
919         // multiply we just did.
920         if (typeSize.isOne()) {
921           assert(arraySizeMultiplier == typeSizeMultiplier);
922           numElements = size;
923 
924         // Otherwise we need a separate multiply.
925         } else {
926           llvm::Value *asmV =
927             llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
928           numElements = CGF.Builder.CreateMul(numElements, asmV);
929         }
930       }
931     } else {
932       // numElements doesn't need to be scaled.
933       assert(arraySizeMultiplier == 1);
934     }
935 
936     // Add in the cookie size if necessary.
937     if (cookieSize != 0) {
938       sizeWithoutCookie = size;
939 
940       llvm::Function *uadd_with_overflow
941         = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
942 
943       llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
944       llvm::Value *result =
945           CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV});
946 
947       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
948       if (hasOverflow)
949         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
950       else
951         hasOverflow = overflowed;
952 
953       size = CGF.Builder.CreateExtractValue(result, 0);
954     }
955 
956     // If we had any possibility of dynamic overflow, make a select to
957     // overwrite 'size' with an all-ones value, which should cause
958     // operator new to throw.
959     if (hasOverflow)
960       size = CGF.Builder.CreateSelect(hasOverflow,
961                                  llvm::Constant::getAllOnesValue(CGF.SizeTy),
962                                       size);
963   }
964 
965   if (cookieSize == 0)
966     sizeWithoutCookie = size;
967   else
968     assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
969 
970   return size;
971 }
972 
973 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
974                                     QualType AllocType, Address NewPtr,
975                                     AggValueSlot::Overlap_t MayOverlap) {
976   // FIXME: Refactor with EmitExprAsInit.
977   switch (CGF.getEvaluationKind(AllocType)) {
978   case TEK_Scalar:
979     CGF.EmitScalarInit(Init, nullptr,
980                        CGF.MakeAddrLValue(NewPtr, AllocType), false);
981     return;
982   case TEK_Complex:
983     CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType),
984                                   /*isInit*/ true);
985     return;
986   case TEK_Aggregate: {
987     AggValueSlot Slot
988       = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(),
989                               AggValueSlot::IsDestructed,
990                               AggValueSlot::DoesNotNeedGCBarriers,
991                               AggValueSlot::IsNotAliased,
992                               MayOverlap, AggValueSlot::IsNotZeroed,
993                               AggValueSlot::IsSanitizerChecked);
994     CGF.EmitAggExpr(Init, Slot);
995     return;
996   }
997   }
998   llvm_unreachable("bad evaluation kind");
999 }
1000 
1001 void CodeGenFunction::EmitNewArrayInitializer(
1002     const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy,
1003     Address BeginPtr, llvm::Value *NumElements,
1004     llvm::Value *AllocSizeWithoutCookie) {
1005   // If we have a type with trivial initialization and no initializer,
1006   // there's nothing to do.
1007   if (!E->hasInitializer())
1008     return;
1009 
1010   Address CurPtr = BeginPtr;
1011 
1012   unsigned InitListElements = 0;
1013 
1014   const Expr *Init = E->getInitializer();
1015   Address EndOfInit = Address::invalid();
1016   QualType::DestructionKind DtorKind = ElementType.isDestructedType();
1017   CleanupDeactivationScope deactivation(*this);
1018   bool pushedCleanup = false;
1019 
1020   CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType);
1021   CharUnits ElementAlign =
1022     BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize);
1023 
1024   // Attempt to perform zero-initialization using memset.
1025   auto TryMemsetInitialization = [&]() -> bool {
1026     // FIXME: If the type is a pointer-to-data-member under the Itanium ABI,
1027     // we can initialize with a memset to -1.
1028     if (!CGM.getTypes().isZeroInitializable(ElementType))
1029       return false;
1030 
1031     // Optimization: since zero initialization will just set the memory
1032     // to all zeroes, generate a single memset to do it in one shot.
1033 
1034     // Subtract out the size of any elements we've already initialized.
1035     auto *RemainingSize = AllocSizeWithoutCookie;
1036     if (InitListElements) {
1037       // We know this can't overflow; we check this when doing the allocation.
1038       auto *InitializedSize = llvm::ConstantInt::get(
1039           RemainingSize->getType(),
1040           getContext().getTypeSizeInChars(ElementType).getQuantity() *
1041               InitListElements);
1042       RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize);
1043     }
1044 
1045     // Create the memset.
1046     Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false);
1047     return true;
1048   };
1049 
1050   const InitListExpr *ILE = dyn_cast<InitListExpr>(Init);
1051   const CXXParenListInitExpr *CPLIE = nullptr;
1052   const StringLiteral *SL = nullptr;
1053   const ObjCEncodeExpr *OCEE = nullptr;
1054   const Expr *IgnoreParen = nullptr;
1055   if (!ILE) {
1056     IgnoreParen = Init->IgnoreParenImpCasts();
1057     CPLIE = dyn_cast<CXXParenListInitExpr>(IgnoreParen);
1058     SL = dyn_cast<StringLiteral>(IgnoreParen);
1059     OCEE = dyn_cast<ObjCEncodeExpr>(IgnoreParen);
1060   }
1061 
1062   // If the initializer is an initializer list, first do the explicit elements.
1063   if (ILE || CPLIE || SL || OCEE) {
1064     // Initializing from a (braced) string literal is a special case; the init
1065     // list element does not initialize a (single) array element.
1066     if ((ILE && ILE->isStringLiteralInit()) || SL || OCEE) {
1067       if (!ILE)
1068         Init = IgnoreParen;
1069       // Initialize the initial portion of length equal to that of the string
1070       // literal. The allocation must be for at least this much; we emitted a
1071       // check for that earlier.
1072       AggValueSlot Slot =
1073           AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(),
1074                                 AggValueSlot::IsDestructed,
1075                                 AggValueSlot::DoesNotNeedGCBarriers,
1076                                 AggValueSlot::IsNotAliased,
1077                                 AggValueSlot::DoesNotOverlap,
1078                                 AggValueSlot::IsNotZeroed,
1079                                 AggValueSlot::IsSanitizerChecked);
1080       EmitAggExpr(ILE ? ILE->getInit(0) : Init, Slot);
1081 
1082       // Move past these elements.
1083       InitListElements =
1084           cast<ConstantArrayType>(Init->getType()->getAsArrayTypeUnsafe())
1085               ->getZExtSize();
1086       CurPtr = Builder.CreateConstInBoundsGEP(
1087           CurPtr, InitListElements, "string.init.end");
1088 
1089       // Zero out the rest, if any remain.
1090       llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1091       if (!ConstNum || !ConstNum->equalsInt(InitListElements)) {
1092         bool OK = TryMemsetInitialization();
1093         (void)OK;
1094         assert(OK && "couldn't memset character type?");
1095       }
1096       return;
1097     }
1098 
1099     ArrayRef<const Expr *> InitExprs =
1100         ILE ? ILE->inits() : CPLIE->getInitExprs();
1101     InitListElements = InitExprs.size();
1102 
1103     // If this is a multi-dimensional array new, we will initialize multiple
1104     // elements with each init list element.
1105     QualType AllocType = E->getAllocatedType();
1106     if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>(
1107             AllocType->getAsArrayTypeUnsafe())) {
1108       ElementTy = ConvertTypeForMem(AllocType);
1109       CurPtr = CurPtr.withElementType(ElementTy);
1110       InitListElements *= getContext().getConstantArrayElementCount(CAT);
1111     }
1112 
1113     // Enter a partial-destruction Cleanup if necessary.
1114     if (DtorKind) {
1115       AllocaTrackerRAII AllocaTracker(*this);
1116       // In principle we could tell the Cleanup where we are more
1117       // directly, but the control flow can get so varied here that it
1118       // would actually be quite complex.  Therefore we go through an
1119       // alloca.
1120       llvm::Instruction *DominatingIP =
1121           Builder.CreateFlagLoad(llvm::ConstantInt::getNullValue(Int8PtrTy));
1122       EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(),
1123                                    "array.init.end");
1124       pushIrregularPartialArrayCleanup(BeginPtr.emitRawPointer(*this),
1125                                        EndOfInit, ElementType, ElementAlign,
1126                                        getDestroyer(DtorKind));
1127       cast<EHCleanupScope>(*EHStack.find(EHStack.stable_begin()))
1128           .AddAuxAllocas(AllocaTracker.Take());
1129       DeferredDeactivationCleanupStack.push_back(
1130           {EHStack.stable_begin(), DominatingIP});
1131       pushedCleanup = true;
1132     }
1133 
1134     CharUnits StartAlign = CurPtr.getAlignment();
1135     unsigned i = 0;
1136     for (const Expr *IE : InitExprs) {
1137       // Tell the cleanup that it needs to destroy up to this
1138       // element.  TODO: some of these stores can be trivially
1139       // observed to be unnecessary.
1140       if (EndOfInit.isValid()) {
1141         Builder.CreateStore(CurPtr.emitRawPointer(*this), EndOfInit);
1142       }
1143       // FIXME: If the last initializer is an incomplete initializer list for
1144       // an array, and we have an array filler, we can fold together the two
1145       // initialization loops.
1146       StoreAnyExprIntoOneUnit(*this, IE, IE->getType(), CurPtr,
1147                               AggValueSlot::DoesNotOverlap);
1148       CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getElementType(),
1149                                                  CurPtr.emitRawPointer(*this),
1150                                                  Builder.getSize(1),
1151                                                  "array.exp.next"),
1152                        CurPtr.getElementType(),
1153                        StartAlign.alignmentAtOffset((++i) * ElementSize));
1154     }
1155 
1156     // The remaining elements are filled with the array filler expression.
1157     Init = ILE ? ILE->getArrayFiller() : CPLIE->getArrayFiller();
1158 
1159     // Extract the initializer for the individual array elements by pulling
1160     // out the array filler from all the nested initializer lists. This avoids
1161     // generating a nested loop for the initialization.
1162     while (Init && Init->getType()->isConstantArrayType()) {
1163       auto *SubILE = dyn_cast<InitListExpr>(Init);
1164       if (!SubILE)
1165         break;
1166       assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?");
1167       Init = SubILE->getArrayFiller();
1168     }
1169 
1170     // Switch back to initializing one base element at a time.
1171     CurPtr = CurPtr.withElementType(BeginPtr.getElementType());
1172   }
1173 
1174   // If all elements have already been initialized, skip any further
1175   // initialization.
1176   llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1177   if (ConstNum && ConstNum->getZExtValue() <= InitListElements) {
1178     return;
1179   }
1180 
1181   assert(Init && "have trailing elements to initialize but no initializer");
1182 
1183   // If this is a constructor call, try to optimize it out, and failing that
1184   // emit a single loop to initialize all remaining elements.
1185   if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
1186     CXXConstructorDecl *Ctor = CCE->getConstructor();
1187     if (Ctor->isTrivial()) {
1188       // If new expression did not specify value-initialization, then there
1189       // is no initialization.
1190       if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
1191         return;
1192 
1193       if (TryMemsetInitialization())
1194         return;
1195     }
1196 
1197     // Store the new Cleanup position for irregular Cleanups.
1198     //
1199     // FIXME: Share this cleanup with the constructor call emission rather than
1200     // having it create a cleanup of its own.
1201     if (EndOfInit.isValid())
1202       Builder.CreateStore(CurPtr.emitRawPointer(*this), EndOfInit);
1203 
1204     // Emit a constructor call loop to initialize the remaining elements.
1205     if (InitListElements)
1206       NumElements = Builder.CreateSub(
1207           NumElements,
1208           llvm::ConstantInt::get(NumElements->getType(), InitListElements));
1209     EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE,
1210                                /*NewPointerIsChecked*/true,
1211                                CCE->requiresZeroInitialization());
1212     return;
1213   }
1214 
1215   // If this is value-initialization, we can usually use memset.
1216   ImplicitValueInitExpr IVIE(ElementType);
1217   if (isa<ImplicitValueInitExpr>(Init)) {
1218     if (TryMemsetInitialization())
1219       return;
1220 
1221     // Switch to an ImplicitValueInitExpr for the element type. This handles
1222     // only one case: multidimensional array new of pointers to members. In
1223     // all other cases, we already have an initializer for the array element.
1224     Init = &IVIE;
1225   }
1226 
1227   // At this point we should have found an initializer for the individual
1228   // elements of the array.
1229   assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) &&
1230          "got wrong type of element to initialize");
1231 
1232   // If we have an empty initializer list, we can usually use memset.
1233   if (auto *ILE = dyn_cast<InitListExpr>(Init))
1234     if (ILE->getNumInits() == 0 && TryMemsetInitialization())
1235       return;
1236 
1237   // If we have a struct whose every field is value-initialized, we can
1238   // usually use memset.
1239   if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
1240     if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
1241       if (RType->getDecl()->isStruct()) {
1242         unsigned NumElements = 0;
1243         if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl()))
1244           NumElements = CXXRD->getNumBases();
1245         for (auto *Field : RType->getDecl()->fields())
1246           if (!Field->isUnnamedBitField())
1247             ++NumElements;
1248         // FIXME: Recurse into nested InitListExprs.
1249         if (ILE->getNumInits() == NumElements)
1250           for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1251             if (!isa<ImplicitValueInitExpr>(ILE->getInit(i)))
1252               --NumElements;
1253         if (ILE->getNumInits() == NumElements && TryMemsetInitialization())
1254           return;
1255       }
1256     }
1257   }
1258 
1259   // Create the loop blocks.
1260   llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
1261   llvm::BasicBlock *LoopBB = createBasicBlock("new.loop");
1262   llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end");
1263 
1264   // Find the end of the array, hoisted out of the loop.
1265   llvm::Value *EndPtr = Builder.CreateInBoundsGEP(
1266       BeginPtr.getElementType(), BeginPtr.emitRawPointer(*this), NumElements,
1267       "array.end");
1268 
1269   // If the number of elements isn't constant, we have to now check if there is
1270   // anything left to initialize.
1271   if (!ConstNum) {
1272     llvm::Value *IsEmpty = Builder.CreateICmpEQ(CurPtr.emitRawPointer(*this),
1273                                                 EndPtr, "array.isempty");
1274     Builder.CreateCondBr(IsEmpty, ContBB, LoopBB);
1275   }
1276 
1277   // Enter the loop.
1278   EmitBlock(LoopBB);
1279 
1280   // Set up the current-element phi.
1281   llvm::PHINode *CurPtrPhi =
1282       Builder.CreatePHI(CurPtr.getType(), 2, "array.cur");
1283   CurPtrPhi->addIncoming(CurPtr.emitRawPointer(*this), EntryBB);
1284 
1285   CurPtr = Address(CurPtrPhi, CurPtr.getElementType(), ElementAlign);
1286 
1287   // Store the new Cleanup position for irregular Cleanups.
1288   if (EndOfInit.isValid())
1289     Builder.CreateStore(CurPtr.emitRawPointer(*this), EndOfInit);
1290 
1291   // Enter a partial-destruction Cleanup if necessary.
1292   if (!pushedCleanup && needsEHCleanup(DtorKind)) {
1293     llvm::Instruction *DominatingIP =
1294         Builder.CreateFlagLoad(llvm::ConstantInt::getNullValue(Int8PtrTy));
1295     pushRegularPartialArrayCleanup(BeginPtr.emitRawPointer(*this),
1296                                    CurPtr.emitRawPointer(*this), ElementType,
1297                                    ElementAlign, getDestroyer(DtorKind));
1298     DeferredDeactivationCleanupStack.push_back(
1299         {EHStack.stable_begin(), DominatingIP});
1300   }
1301 
1302   // Emit the initializer into this element.
1303   StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr,
1304                           AggValueSlot::DoesNotOverlap);
1305 
1306   // Leave the Cleanup if we entered one.
1307   deactivation.ForceDeactivate();
1308 
1309   // Advance to the next element by adjusting the pointer type as necessary.
1310   llvm::Value *NextPtr = Builder.CreateConstInBoundsGEP1_32(
1311       ElementTy, CurPtr.emitRawPointer(*this), 1, "array.next");
1312 
1313   // Check whether we've gotten to the end of the array and, if so,
1314   // exit the loop.
1315   llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend");
1316   Builder.CreateCondBr(IsEnd, ContBB, LoopBB);
1317   CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock());
1318 
1319   EmitBlock(ContBB);
1320 }
1321 
1322 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
1323                                QualType ElementType, llvm::Type *ElementTy,
1324                                Address NewPtr, llvm::Value *NumElements,
1325                                llvm::Value *AllocSizeWithoutCookie) {
1326   ApplyDebugLocation DL(CGF, E);
1327   if (E->isArray())
1328     CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements,
1329                                 AllocSizeWithoutCookie);
1330   else if (const Expr *Init = E->getInitializer())
1331     StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr,
1332                             AggValueSlot::DoesNotOverlap);
1333 }
1334 
1335 /// Emit a call to an operator new or operator delete function, as implicitly
1336 /// created by new-expressions and delete-expressions.
1337 static RValue EmitNewDeleteCall(CodeGenFunction &CGF,
1338                                 const FunctionDecl *CalleeDecl,
1339                                 const FunctionProtoType *CalleeType,
1340                                 const CallArgList &Args) {
1341   llvm::CallBase *CallOrInvoke;
1342   llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl);
1343   CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(CalleeDecl));
1344   RValue RV =
1345       CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(
1346                        Args, CalleeType, /*ChainCall=*/false),
1347                    Callee, ReturnValueSlot(), Args, &CallOrInvoke);
1348 
1349   /// C++1y [expr.new]p10:
1350   ///   [In a new-expression,] an implementation is allowed to omit a call
1351   ///   to a replaceable global allocation function.
1352   ///
1353   /// We model such elidable calls with the 'builtin' attribute.
1354   llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr);
1355   if (CalleeDecl->isReplaceableGlobalAllocationFunction() &&
1356       Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
1357     CallOrInvoke->addFnAttr(llvm::Attribute::Builtin);
1358   }
1359 
1360   return RV;
1361 }
1362 
1363 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
1364                                                  const CallExpr *TheCall,
1365                                                  bool IsDelete) {
1366   CallArgList Args;
1367   EmitCallArgs(Args, Type, TheCall->arguments());
1368   // Find the allocation or deallocation function that we're calling.
1369   ASTContext &Ctx = getContext();
1370   DeclarationName Name = Ctx.DeclarationNames
1371       .getCXXOperatorName(IsDelete ? OO_Delete : OO_New);
1372 
1373   for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name))
1374     if (auto *FD = dyn_cast<FunctionDecl>(Decl))
1375       if (Ctx.hasSameType(FD->getType(), QualType(Type, 0)))
1376         return EmitNewDeleteCall(*this, FD, Type, Args);
1377   llvm_unreachable("predeclared global operator new/delete is missing");
1378 }
1379 
1380 namespace {
1381 /// The parameters to pass to a usual operator delete.
1382 struct UsualDeleteParams {
1383   bool DestroyingDelete = false;
1384   bool Size = false;
1385   bool Alignment = false;
1386 };
1387 }
1388 
1389 static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD) {
1390   UsualDeleteParams Params;
1391 
1392   const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
1393   auto AI = FPT->param_type_begin(), AE = FPT->param_type_end();
1394 
1395   // The first argument is always a void*.
1396   ++AI;
1397 
1398   // The next parameter may be a std::destroying_delete_t.
1399   if (FD->isDestroyingOperatorDelete()) {
1400     Params.DestroyingDelete = true;
1401     assert(AI != AE);
1402     ++AI;
1403   }
1404 
1405   // Figure out what other parameters we should be implicitly passing.
1406   if (AI != AE && (*AI)->isIntegerType()) {
1407     Params.Size = true;
1408     ++AI;
1409   }
1410 
1411   if (AI != AE && (*AI)->isAlignValT()) {
1412     Params.Alignment = true;
1413     ++AI;
1414   }
1415 
1416   assert(AI == AE && "unexpected usual deallocation function parameter");
1417   return Params;
1418 }
1419 
1420 namespace {
1421   /// A cleanup to call the given 'operator delete' function upon abnormal
1422   /// exit from a new expression. Templated on a traits type that deals with
1423   /// ensuring that the arguments dominate the cleanup if necessary.
1424   template<typename Traits>
1425   class CallDeleteDuringNew final : public EHScopeStack::Cleanup {
1426     /// Type used to hold llvm::Value*s.
1427     typedef typename Traits::ValueTy ValueTy;
1428     /// Type used to hold RValues.
1429     typedef typename Traits::RValueTy RValueTy;
1430     struct PlacementArg {
1431       RValueTy ArgValue;
1432       QualType ArgType;
1433     };
1434 
1435     unsigned NumPlacementArgs : 31;
1436     LLVM_PREFERRED_TYPE(bool)
1437     unsigned PassAlignmentToPlacementDelete : 1;
1438     const FunctionDecl *OperatorDelete;
1439     ValueTy Ptr;
1440     ValueTy AllocSize;
1441     CharUnits AllocAlign;
1442 
1443     PlacementArg *getPlacementArgs() {
1444       return reinterpret_cast<PlacementArg *>(this + 1);
1445     }
1446 
1447   public:
1448     static size_t getExtraSize(size_t NumPlacementArgs) {
1449       return NumPlacementArgs * sizeof(PlacementArg);
1450     }
1451 
1452     CallDeleteDuringNew(size_t NumPlacementArgs,
1453                         const FunctionDecl *OperatorDelete, ValueTy Ptr,
1454                         ValueTy AllocSize, bool PassAlignmentToPlacementDelete,
1455                         CharUnits AllocAlign)
1456       : NumPlacementArgs(NumPlacementArgs),
1457         PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete),
1458         OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize),
1459         AllocAlign(AllocAlign) {}
1460 
1461     void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) {
1462       assert(I < NumPlacementArgs && "index out of range");
1463       getPlacementArgs()[I] = {Arg, Type};
1464     }
1465 
1466     void Emit(CodeGenFunction &CGF, Flags flags) override {
1467       const auto *FPT = OperatorDelete->getType()->castAs<FunctionProtoType>();
1468       CallArgList DeleteArgs;
1469 
1470       // The first argument is always a void* (or C* for a destroying operator
1471       // delete for class type C).
1472       DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0));
1473 
1474       // Figure out what other parameters we should be implicitly passing.
1475       UsualDeleteParams Params;
1476       if (NumPlacementArgs) {
1477         // A placement deallocation function is implicitly passed an alignment
1478         // if the placement allocation function was, but is never passed a size.
1479         Params.Alignment = PassAlignmentToPlacementDelete;
1480       } else {
1481         // For a non-placement new-expression, 'operator delete' can take a
1482         // size and/or an alignment if it has the right parameters.
1483         Params = getUsualDeleteParams(OperatorDelete);
1484       }
1485 
1486       assert(!Params.DestroyingDelete &&
1487              "should not call destroying delete in a new-expression");
1488 
1489       // The second argument can be a std::size_t (for non-placement delete).
1490       if (Params.Size)
1491         DeleteArgs.add(Traits::get(CGF, AllocSize),
1492                        CGF.getContext().getSizeType());
1493 
1494       // The next (second or third) argument can be a std::align_val_t, which
1495       // is an enum whose underlying type is std::size_t.
1496       // FIXME: Use the right type as the parameter type. Note that in a call
1497       // to operator delete(size_t, ...), we may not have it available.
1498       if (Params.Alignment)
1499         DeleteArgs.add(RValue::get(llvm::ConstantInt::get(
1500                            CGF.SizeTy, AllocAlign.getQuantity())),
1501                        CGF.getContext().getSizeType());
1502 
1503       // Pass the rest of the arguments, which must match exactly.
1504       for (unsigned I = 0; I != NumPlacementArgs; ++I) {
1505         auto Arg = getPlacementArgs()[I];
1506         DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType);
1507       }
1508 
1509       // Call 'operator delete'.
1510       EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1511     }
1512   };
1513 }
1514 
1515 /// Enter a cleanup to call 'operator delete' if the initializer in a
1516 /// new-expression throws.
1517 static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
1518                                   const CXXNewExpr *E,
1519                                   Address NewPtr,
1520                                   llvm::Value *AllocSize,
1521                                   CharUnits AllocAlign,
1522                                   const CallArgList &NewArgs) {
1523   unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1;
1524 
1525   // If we're not inside a conditional branch, then the cleanup will
1526   // dominate and we can do the easier (and more efficient) thing.
1527   if (!CGF.isInConditionalBranch()) {
1528     struct DirectCleanupTraits {
1529       typedef llvm::Value *ValueTy;
1530       typedef RValue RValueTy;
1531       static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); }
1532       static RValue get(CodeGenFunction &, RValueTy V) { return V; }
1533     };
1534 
1535     typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup;
1536 
1537     DirectCleanup *Cleanup = CGF.EHStack.pushCleanupWithExtra<DirectCleanup>(
1538         EHCleanup, E->getNumPlacementArgs(), E->getOperatorDelete(),
1539         NewPtr.emitRawPointer(CGF), AllocSize, E->passAlignment(), AllocAlign);
1540     for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1541       auto &Arg = NewArgs[I + NumNonPlacementArgs];
1542       Cleanup->setPlacementArg(I, Arg.getRValue(CGF), Arg.Ty);
1543     }
1544 
1545     return;
1546   }
1547 
1548   // Otherwise, we need to save all this stuff.
1549   DominatingValue<RValue>::saved_type SavedNewPtr =
1550       DominatingValue<RValue>::save(CGF, RValue::get(NewPtr, CGF));
1551   DominatingValue<RValue>::saved_type SavedAllocSize =
1552     DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
1553 
1554   struct ConditionalCleanupTraits {
1555     typedef DominatingValue<RValue>::saved_type ValueTy;
1556     typedef DominatingValue<RValue>::saved_type RValueTy;
1557     static RValue get(CodeGenFunction &CGF, ValueTy V) {
1558       return V.restore(CGF);
1559     }
1560   };
1561   typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup;
1562 
1563   ConditionalCleanup *Cleanup = CGF.EHStack
1564     .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup,
1565                                               E->getNumPlacementArgs(),
1566                                               E->getOperatorDelete(),
1567                                               SavedNewPtr,
1568                                               SavedAllocSize,
1569                                               E->passAlignment(),
1570                                               AllocAlign);
1571   for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1572     auto &Arg = NewArgs[I + NumNonPlacementArgs];
1573     Cleanup->setPlacementArg(
1574         I, DominatingValue<RValue>::save(CGF, Arg.getRValue(CGF)), Arg.Ty);
1575   }
1576 
1577   CGF.initFullExprCleanup();
1578 }
1579 
1580 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
1581   // The element type being allocated.
1582   QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
1583 
1584   // 1. Build a call to the allocation function.
1585   FunctionDecl *allocator = E->getOperatorNew();
1586 
1587   // If there is a brace-initializer or C++20 parenthesized initializer, cannot
1588   // allocate fewer elements than inits.
1589   unsigned minElements = 0;
1590   if (E->isArray() && E->hasInitializer()) {
1591     const Expr *Init = E->getInitializer();
1592     const InitListExpr *ILE = dyn_cast<InitListExpr>(Init);
1593     const CXXParenListInitExpr *CPLIE = dyn_cast<CXXParenListInitExpr>(Init);
1594     const Expr *IgnoreParen = Init->IgnoreParenImpCasts();
1595     if ((ILE && ILE->isStringLiteralInit()) ||
1596         isa<StringLiteral>(IgnoreParen) || isa<ObjCEncodeExpr>(IgnoreParen)) {
1597       minElements =
1598           cast<ConstantArrayType>(Init->getType()->getAsArrayTypeUnsafe())
1599               ->getZExtSize();
1600     } else if (ILE || CPLIE) {
1601       minElements = ILE ? ILE->getNumInits() : CPLIE->getInitExprs().size();
1602     }
1603   }
1604 
1605   llvm::Value *numElements = nullptr;
1606   llvm::Value *allocSizeWithoutCookie = nullptr;
1607   llvm::Value *allocSize =
1608     EmitCXXNewAllocSize(*this, E, minElements, numElements,
1609                         allocSizeWithoutCookie);
1610   CharUnits allocAlign = getContext().getTypeAlignInChars(allocType);
1611 
1612   // Emit the allocation call.  If the allocator is a global placement
1613   // operator, just "inline" it directly.
1614   Address allocation = Address::invalid();
1615   CallArgList allocatorArgs;
1616   if (allocator->isReservedGlobalPlacementOperator()) {
1617     assert(E->getNumPlacementArgs() == 1);
1618     const Expr *arg = *E->placement_arguments().begin();
1619 
1620     LValueBaseInfo BaseInfo;
1621     allocation = EmitPointerWithAlignment(arg, &BaseInfo);
1622 
1623     // The pointer expression will, in many cases, be an opaque void*.
1624     // In these cases, discard the computed alignment and use the
1625     // formal alignment of the allocated type.
1626     if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl)
1627       allocation.setAlignment(allocAlign);
1628 
1629     // Set up allocatorArgs for the call to operator delete if it's not
1630     // the reserved global operator.
1631     if (E->getOperatorDelete() &&
1632         !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1633       allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType());
1634       allocatorArgs.add(RValue::get(allocation, *this), arg->getType());
1635     }
1636 
1637   } else {
1638     const FunctionProtoType *allocatorType =
1639       allocator->getType()->castAs<FunctionProtoType>();
1640     unsigned ParamsToSkip = 0;
1641 
1642     // The allocation size is the first argument.
1643     QualType sizeType = getContext().getSizeType();
1644     allocatorArgs.add(RValue::get(allocSize), sizeType);
1645     ++ParamsToSkip;
1646 
1647     if (allocSize != allocSizeWithoutCookie) {
1648       CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI.
1649       allocAlign = std::max(allocAlign, cookieAlign);
1650     }
1651 
1652     // The allocation alignment may be passed as the second argument.
1653     if (E->passAlignment()) {
1654       QualType AlignValT = sizeType;
1655       if (allocatorType->getNumParams() > 1) {
1656         AlignValT = allocatorType->getParamType(1);
1657         assert(getContext().hasSameUnqualifiedType(
1658                    AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(),
1659                    sizeType) &&
1660                "wrong type for alignment parameter");
1661         ++ParamsToSkip;
1662       } else {
1663         // Corner case, passing alignment to 'operator new(size_t, ...)'.
1664         assert(allocator->isVariadic() && "can't pass alignment to allocator");
1665       }
1666       allocatorArgs.add(
1667           RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())),
1668           AlignValT);
1669     }
1670 
1671     // FIXME: Why do we not pass a CalleeDecl here?
1672     EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(),
1673                  /*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip);
1674 
1675     RValue RV =
1676       EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs);
1677 
1678     // Set !heapallocsite metadata on the call to operator new.
1679     if (getDebugInfo())
1680       if (auto *newCall = dyn_cast<llvm::CallBase>(RV.getScalarVal()))
1681         getDebugInfo()->addHeapAllocSiteMetadata(newCall, allocType,
1682                                                  E->getExprLoc());
1683 
1684     // If this was a call to a global replaceable allocation function that does
1685     // not take an alignment argument, the allocator is known to produce
1686     // storage that's suitably aligned for any object that fits, up to a known
1687     // threshold. Otherwise assume it's suitably aligned for the allocated type.
1688     CharUnits allocationAlign = allocAlign;
1689     if (!E->passAlignment() &&
1690         allocator->isReplaceableGlobalAllocationFunction()) {
1691       unsigned AllocatorAlign = llvm::bit_floor(std::min<uint64_t>(
1692           Target.getNewAlign(), getContext().getTypeSize(allocType)));
1693       allocationAlign = std::max(
1694           allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign));
1695     }
1696 
1697     allocation = Address(RV.getScalarVal(), Int8Ty, allocationAlign);
1698   }
1699 
1700   // Emit a null check on the allocation result if the allocation
1701   // function is allowed to return null (because it has a non-throwing
1702   // exception spec or is the reserved placement new) and we have an
1703   // interesting initializer will be running sanitizers on the initialization.
1704   bool nullCheck = E->shouldNullCheckAllocation() &&
1705                    (!allocType.isPODType(getContext()) || E->hasInitializer() ||
1706                     sanitizePerformTypeCheck());
1707 
1708   llvm::BasicBlock *nullCheckBB = nullptr;
1709   llvm::BasicBlock *contBB = nullptr;
1710 
1711   // The null-check means that the initializer is conditionally
1712   // evaluated.
1713   ConditionalEvaluation conditional(*this);
1714 
1715   if (nullCheck) {
1716     conditional.begin(*this);
1717 
1718     nullCheckBB = Builder.GetInsertBlock();
1719     llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
1720     contBB = createBasicBlock("new.cont");
1721 
1722     llvm::Value *isNull = Builder.CreateIsNull(allocation, "new.isnull");
1723     Builder.CreateCondBr(isNull, contBB, notNullBB);
1724     EmitBlock(notNullBB);
1725   }
1726 
1727   // If there's an operator delete, enter a cleanup to call it if an
1728   // exception is thrown.
1729   EHScopeStack::stable_iterator operatorDeleteCleanup;
1730   llvm::Instruction *cleanupDominator = nullptr;
1731   if (E->getOperatorDelete() &&
1732       !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1733     EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign,
1734                           allocatorArgs);
1735     operatorDeleteCleanup = EHStack.stable_begin();
1736     cleanupDominator = Builder.CreateUnreachable();
1737   }
1738 
1739   assert((allocSize == allocSizeWithoutCookie) ==
1740          CalculateCookiePadding(*this, E).isZero());
1741   if (allocSize != allocSizeWithoutCookie) {
1742     assert(E->isArray());
1743     allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
1744                                                        numElements,
1745                                                        E, allocType);
1746   }
1747 
1748   llvm::Type *elementTy = ConvertTypeForMem(allocType);
1749   Address result = allocation.withElementType(elementTy);
1750 
1751   // Passing pointer through launder.invariant.group to avoid propagation of
1752   // vptrs information which may be included in previous type.
1753   // To not break LTO with different optimizations levels, we do it regardless
1754   // of optimization level.
1755   if (CGM.getCodeGenOpts().StrictVTablePointers &&
1756       allocator->isReservedGlobalPlacementOperator())
1757     result = Builder.CreateLaunderInvariantGroup(result);
1758 
1759   // Emit sanitizer checks for pointer value now, so that in the case of an
1760   // array it was checked only once and not at each constructor call. We may
1761   // have already checked that the pointer is non-null.
1762   // FIXME: If we have an array cookie and a potentially-throwing allocator,
1763   // we'll null check the wrong pointer here.
1764   SanitizerSet SkippedChecks;
1765   SkippedChecks.set(SanitizerKind::Null, nullCheck);
1766   EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall,
1767                 E->getAllocatedTypeSourceInfo()->getTypeLoc().getBeginLoc(),
1768                 result, allocType, result.getAlignment(), SkippedChecks,
1769                 numElements);
1770 
1771   EmitNewInitializer(*this, E, allocType, elementTy, result, numElements,
1772                      allocSizeWithoutCookie);
1773   llvm::Value *resultPtr = result.emitRawPointer(*this);
1774 
1775   // Deactivate the 'operator delete' cleanup if we finished
1776   // initialization.
1777   if (operatorDeleteCleanup.isValid()) {
1778     DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
1779     cleanupDominator->eraseFromParent();
1780   }
1781 
1782   if (nullCheck) {
1783     conditional.end(*this);
1784 
1785     llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
1786     EmitBlock(contBB);
1787 
1788     llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2);
1789     PHI->addIncoming(resultPtr, notNullBB);
1790     PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()),
1791                      nullCheckBB);
1792 
1793     resultPtr = PHI;
1794   }
1795 
1796   return resultPtr;
1797 }
1798 
1799 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
1800                                      llvm::Value *DeletePtr, QualType DeleteTy,
1801                                      llvm::Value *NumElements,
1802                                      CharUnits CookieSize) {
1803   assert((!NumElements && CookieSize.isZero()) ||
1804          DeleteFD->getOverloadedOperator() == OO_Array_Delete);
1805 
1806   const auto *DeleteFTy = DeleteFD->getType()->castAs<FunctionProtoType>();
1807   CallArgList DeleteArgs;
1808 
1809   auto Params = getUsualDeleteParams(DeleteFD);
1810   auto ParamTypeIt = DeleteFTy->param_type_begin();
1811 
1812   // Pass the pointer itself.
1813   QualType ArgTy = *ParamTypeIt++;
1814   DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
1815 
1816   // Pass the std::destroying_delete tag if present.
1817   llvm::AllocaInst *DestroyingDeleteTag = nullptr;
1818   if (Params.DestroyingDelete) {
1819     QualType DDTag = *ParamTypeIt++;
1820     llvm::Type *Ty = getTypes().ConvertType(DDTag);
1821     CharUnits Align = CGM.getNaturalTypeAlignment(DDTag);
1822     DestroyingDeleteTag = CreateTempAlloca(Ty, "destroying.delete.tag");
1823     DestroyingDeleteTag->setAlignment(Align.getAsAlign());
1824     DeleteArgs.add(
1825         RValue::getAggregate(Address(DestroyingDeleteTag, Ty, Align)), DDTag);
1826   }
1827 
1828   // Pass the size if the delete function has a size_t parameter.
1829   if (Params.Size) {
1830     QualType SizeType = *ParamTypeIt++;
1831     CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
1832     llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType),
1833                                                DeleteTypeSize.getQuantity());
1834 
1835     // For array new, multiply by the number of elements.
1836     if (NumElements)
1837       Size = Builder.CreateMul(Size, NumElements);
1838 
1839     // If there is a cookie, add the cookie size.
1840     if (!CookieSize.isZero())
1841       Size = Builder.CreateAdd(
1842           Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()));
1843 
1844     DeleteArgs.add(RValue::get(Size), SizeType);
1845   }
1846 
1847   // Pass the alignment if the delete function has an align_val_t parameter.
1848   if (Params.Alignment) {
1849     QualType AlignValType = *ParamTypeIt++;
1850     CharUnits DeleteTypeAlign =
1851         getContext().toCharUnitsFromBits(getContext().getTypeAlignIfKnown(
1852             DeleteTy, true /* NeedsPreferredAlignment */));
1853     llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType),
1854                                                 DeleteTypeAlign.getQuantity());
1855     DeleteArgs.add(RValue::get(Align), AlignValType);
1856   }
1857 
1858   assert(ParamTypeIt == DeleteFTy->param_type_end() &&
1859          "unknown parameter to usual delete function");
1860 
1861   // Emit the call to delete.
1862   EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
1863 
1864   // If call argument lowering didn't use the destroying_delete_t alloca,
1865   // remove it again.
1866   if (DestroyingDeleteTag && DestroyingDeleteTag->use_empty())
1867     DestroyingDeleteTag->eraseFromParent();
1868 }
1869 
1870 namespace {
1871   /// Calls the given 'operator delete' on a single object.
1872   struct CallObjectDelete final : EHScopeStack::Cleanup {
1873     llvm::Value *Ptr;
1874     const FunctionDecl *OperatorDelete;
1875     QualType ElementType;
1876 
1877     CallObjectDelete(llvm::Value *Ptr,
1878                      const FunctionDecl *OperatorDelete,
1879                      QualType ElementType)
1880       : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
1881 
1882     void Emit(CodeGenFunction &CGF, Flags flags) override {
1883       CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
1884     }
1885   };
1886 }
1887 
1888 void
1889 CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1890                                              llvm::Value *CompletePtr,
1891                                              QualType ElementType) {
1892   EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr,
1893                                         OperatorDelete, ElementType);
1894 }
1895 
1896 /// Emit the code for deleting a single object with a destroying operator
1897 /// delete. If the element type has a non-virtual destructor, Ptr has already
1898 /// been converted to the type of the parameter of 'operator delete'. Otherwise
1899 /// Ptr points to an object of the static type.
1900 static void EmitDestroyingObjectDelete(CodeGenFunction &CGF,
1901                                        const CXXDeleteExpr *DE, Address Ptr,
1902                                        QualType ElementType) {
1903   auto *Dtor = ElementType->getAsCXXRecordDecl()->getDestructor();
1904   if (Dtor && Dtor->isVirtual())
1905     CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1906                                                 Dtor);
1907   else
1908     CGF.EmitDeleteCall(DE->getOperatorDelete(), Ptr.emitRawPointer(CGF),
1909                        ElementType);
1910 }
1911 
1912 /// Emit the code for deleting a single object.
1913 /// \return \c true if we started emitting UnconditionalDeleteBlock, \c false
1914 /// if not.
1915 static bool EmitObjectDelete(CodeGenFunction &CGF,
1916                              const CXXDeleteExpr *DE,
1917                              Address Ptr,
1918                              QualType ElementType,
1919                              llvm::BasicBlock *UnconditionalDeleteBlock) {
1920   // C++11 [expr.delete]p3:
1921   //   If the static type of the object to be deleted is different from its
1922   //   dynamic type, the static type shall be a base class of the dynamic type
1923   //   of the object to be deleted and the static type shall have a virtual
1924   //   destructor or the behavior is undefined.
1925   CGF.EmitTypeCheck(CodeGenFunction::TCK_MemberCall, DE->getExprLoc(), Ptr,
1926                     ElementType);
1927 
1928   const FunctionDecl *OperatorDelete = DE->getOperatorDelete();
1929   assert(!OperatorDelete->isDestroyingOperatorDelete());
1930 
1931   // Find the destructor for the type, if applicable.  If the
1932   // destructor is virtual, we'll just emit the vcall and return.
1933   const CXXDestructorDecl *Dtor = nullptr;
1934   if (const RecordType *RT = ElementType->getAs<RecordType>()) {
1935     CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1936     if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
1937       Dtor = RD->getDestructor();
1938 
1939       if (Dtor->isVirtual()) {
1940         bool UseVirtualCall = true;
1941         const Expr *Base = DE->getArgument();
1942         if (auto *DevirtualizedDtor =
1943                 dyn_cast_or_null<const CXXDestructorDecl>(
1944                     Dtor->getDevirtualizedMethod(
1945                         Base, CGF.CGM.getLangOpts().AppleKext))) {
1946           UseVirtualCall = false;
1947           const CXXRecordDecl *DevirtualizedClass =
1948               DevirtualizedDtor->getParent();
1949           if (declaresSameEntity(getCXXRecord(Base), DevirtualizedClass)) {
1950             // Devirtualized to the class of the base type (the type of the
1951             // whole expression).
1952             Dtor = DevirtualizedDtor;
1953           } else {
1954             // Devirtualized to some other type. Would need to cast the this
1955             // pointer to that type but we don't have support for that yet, so
1956             // do a virtual call. FIXME: handle the case where it is
1957             // devirtualized to the derived type (the type of the inner
1958             // expression) as in EmitCXXMemberOrOperatorMemberCallExpr.
1959             UseVirtualCall = true;
1960           }
1961         }
1962         if (UseVirtualCall) {
1963           CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1964                                                       Dtor);
1965           return false;
1966         }
1967       }
1968     }
1969   }
1970 
1971   // Make sure that we call delete even if the dtor throws.
1972   // This doesn't have to a conditional cleanup because we're going
1973   // to pop it off in a second.
1974   CGF.EHStack.pushCleanup<CallObjectDelete>(
1975       NormalAndEHCleanup, Ptr.emitRawPointer(CGF), OperatorDelete, ElementType);
1976 
1977   if (Dtor)
1978     CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
1979                               /*ForVirtualBase=*/false,
1980                               /*Delegating=*/false,
1981                               Ptr, ElementType);
1982   else if (auto Lifetime = ElementType.getObjCLifetime()) {
1983     switch (Lifetime) {
1984     case Qualifiers::OCL_None:
1985     case Qualifiers::OCL_ExplicitNone:
1986     case Qualifiers::OCL_Autoreleasing:
1987       break;
1988 
1989     case Qualifiers::OCL_Strong:
1990       CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime);
1991       break;
1992 
1993     case Qualifiers::OCL_Weak:
1994       CGF.EmitARCDestroyWeak(Ptr);
1995       break;
1996     }
1997   }
1998 
1999   // When optimizing for size, call 'operator delete' unconditionally.
2000   if (CGF.CGM.getCodeGenOpts().OptimizeSize > 1) {
2001     CGF.EmitBlock(UnconditionalDeleteBlock);
2002     CGF.PopCleanupBlock();
2003     return true;
2004   }
2005 
2006   CGF.PopCleanupBlock();
2007   return false;
2008 }
2009 
2010 namespace {
2011   /// Calls the given 'operator delete' on an array of objects.
2012   struct CallArrayDelete final : EHScopeStack::Cleanup {
2013     llvm::Value *Ptr;
2014     const FunctionDecl *OperatorDelete;
2015     llvm::Value *NumElements;
2016     QualType ElementType;
2017     CharUnits CookieSize;
2018 
2019     CallArrayDelete(llvm::Value *Ptr,
2020                     const FunctionDecl *OperatorDelete,
2021                     llvm::Value *NumElements,
2022                     QualType ElementType,
2023                     CharUnits CookieSize)
2024       : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
2025         ElementType(ElementType), CookieSize(CookieSize) {}
2026 
2027     void Emit(CodeGenFunction &CGF, Flags flags) override {
2028       CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements,
2029                          CookieSize);
2030     }
2031   };
2032 }
2033 
2034 /// Emit the code for deleting an array of objects.
2035 static void EmitArrayDelete(CodeGenFunction &CGF,
2036                             const CXXDeleteExpr *E,
2037                             Address deletedPtr,
2038                             QualType elementType) {
2039   llvm::Value *numElements = nullptr;
2040   llvm::Value *allocatedPtr = nullptr;
2041   CharUnits cookieSize;
2042   CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
2043                                       numElements, allocatedPtr, cookieSize);
2044 
2045   assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
2046 
2047   // Make sure that we call delete even if one of the dtors throws.
2048   const FunctionDecl *operatorDelete = E->getOperatorDelete();
2049   CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
2050                                            allocatedPtr, operatorDelete,
2051                                            numElements, elementType,
2052                                            cookieSize);
2053 
2054   // Destroy the elements.
2055   if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
2056     assert(numElements && "no element count for a type with a destructor!");
2057 
2058     CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2059     CharUnits elementAlign =
2060       deletedPtr.getAlignment().alignmentOfArrayElement(elementSize);
2061 
2062     llvm::Value *arrayBegin = deletedPtr.emitRawPointer(CGF);
2063     llvm::Value *arrayEnd = CGF.Builder.CreateInBoundsGEP(
2064       deletedPtr.getElementType(), arrayBegin, numElements, "delete.end");
2065 
2066     // Note that it is legal to allocate a zero-length array, and we
2067     // can never fold the check away because the length should always
2068     // come from a cookie.
2069     CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign,
2070                          CGF.getDestroyer(dtorKind),
2071                          /*checkZeroLength*/ true,
2072                          CGF.needsEHCleanup(dtorKind));
2073   }
2074 
2075   // Pop the cleanup block.
2076   CGF.PopCleanupBlock();
2077 }
2078 
2079 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
2080   const Expr *Arg = E->getArgument();
2081   Address Ptr = EmitPointerWithAlignment(Arg);
2082 
2083   // Null check the pointer.
2084   //
2085   // We could avoid this null check if we can determine that the object
2086   // destruction is trivial and doesn't require an array cookie; we can
2087   // unconditionally perform the operator delete call in that case. For now, we
2088   // assume that deleted pointers are null rarely enough that it's better to
2089   // keep the branch. This might be worth revisiting for a -O0 code size win.
2090   llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
2091   llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
2092 
2093   llvm::Value *IsNull = Builder.CreateIsNull(Ptr, "isnull");
2094 
2095   Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
2096   EmitBlock(DeleteNotNull);
2097   Ptr.setKnownNonNull();
2098 
2099   QualType DeleteTy = E->getDestroyedType();
2100 
2101   // A destroying operator delete overrides the entire operation of the
2102   // delete expression.
2103   if (E->getOperatorDelete()->isDestroyingOperatorDelete()) {
2104     EmitDestroyingObjectDelete(*this, E, Ptr, DeleteTy);
2105     EmitBlock(DeleteEnd);
2106     return;
2107   }
2108 
2109   // We might be deleting a pointer to array.  If so, GEP down to the
2110   // first non-array element.
2111   // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
2112   if (DeleteTy->isConstantArrayType()) {
2113     llvm::Value *Zero = Builder.getInt32(0);
2114     SmallVector<llvm::Value*,8> GEP;
2115 
2116     GEP.push_back(Zero); // point at the outermost array
2117 
2118     // For each layer of array type we're pointing at:
2119     while (const ConstantArrayType *Arr
2120              = getContext().getAsConstantArrayType(DeleteTy)) {
2121       // 1. Unpeel the array type.
2122       DeleteTy = Arr->getElementType();
2123 
2124       // 2. GEP to the first element of the array.
2125       GEP.push_back(Zero);
2126     }
2127 
2128     Ptr = Builder.CreateInBoundsGEP(Ptr, GEP, ConvertTypeForMem(DeleteTy),
2129                                     Ptr.getAlignment(), "del.first");
2130   }
2131 
2132   assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType());
2133 
2134   if (E->isArrayForm()) {
2135     EmitArrayDelete(*this, E, Ptr, DeleteTy);
2136     EmitBlock(DeleteEnd);
2137   } else {
2138     if (!EmitObjectDelete(*this, E, Ptr, DeleteTy, DeleteEnd))
2139       EmitBlock(DeleteEnd);
2140   }
2141 }
2142 
2143 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E,
2144                                          llvm::Type *StdTypeInfoPtrTy,
2145                                          bool HasNullCheck) {
2146   // Get the vtable pointer.
2147   Address ThisPtr = CGF.EmitLValue(E).getAddress();
2148 
2149   QualType SrcRecordTy = E->getType();
2150 
2151   // C++ [class.cdtor]p4:
2152   //   If the operand of typeid refers to the object under construction or
2153   //   destruction and the static type of the operand is neither the constructor
2154   //   or destructor’s class nor one of its bases, the behavior is undefined.
2155   CGF.EmitTypeCheck(CodeGenFunction::TCK_DynamicOperation, E->getExprLoc(),
2156                     ThisPtr, SrcRecordTy);
2157 
2158   // Whether we need an explicit null pointer check. For example, with the
2159   // Microsoft ABI, if this is a call to __RTtypeid, the null pointer check and
2160   // exception throw is inside the __RTtypeid(nullptr) call
2161   if (HasNullCheck &&
2162       CGF.CGM.getCXXABI().shouldTypeidBeNullChecked(SrcRecordTy)) {
2163     llvm::BasicBlock *BadTypeidBlock =
2164         CGF.createBasicBlock("typeid.bad_typeid");
2165     llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end");
2166 
2167     llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr);
2168     CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
2169 
2170     CGF.EmitBlock(BadTypeidBlock);
2171     CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF);
2172     CGF.EmitBlock(EndBlock);
2173   }
2174 
2175   return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr,
2176                                         StdTypeInfoPtrTy);
2177 }
2178 
2179 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
2180   // Ideally, we would like to use GlobalsInt8PtrTy here, however, we cannot,
2181   // primarily because the result of applying typeid is a value of type
2182   // type_info, which is declared & defined by the standard library
2183   // implementation and expects to operate on the generic (default) AS.
2184   // https://reviews.llvm.org/D157452 has more context, and a possible solution.
2185   llvm::Type *PtrTy = Int8PtrTy;
2186   LangAS GlobAS = CGM.GetGlobalVarAddressSpace(nullptr);
2187 
2188   auto MaybeASCast = [=](auto &&TypeInfo) {
2189     if (GlobAS == LangAS::Default)
2190       return TypeInfo;
2191     return getTargetHooks().performAddrSpaceCast(CGM,TypeInfo, GlobAS,
2192                                                  LangAS::Default, PtrTy);
2193   };
2194 
2195   if (E->isTypeOperand()) {
2196     llvm::Constant *TypeInfo =
2197         CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext()));
2198     return MaybeASCast(TypeInfo);
2199   }
2200 
2201   // C++ [expr.typeid]p2:
2202   //   When typeid is applied to a glvalue expression whose type is a
2203   //   polymorphic class type, the result refers to a std::type_info object
2204   //   representing the type of the most derived object (that is, the dynamic
2205   //   type) to which the glvalue refers.
2206   // If the operand is already most derived object, no need to look up vtable.
2207   if (E->isPotentiallyEvaluated() && !E->isMostDerived(getContext()))
2208     return EmitTypeidFromVTable(*this, E->getExprOperand(), PtrTy,
2209                                 E->hasNullCheck());
2210 
2211   QualType OperandTy = E->getExprOperand()->getType();
2212   return MaybeASCast(CGM.GetAddrOfRTTIDescriptor(OperandTy));
2213 }
2214 
2215 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
2216                                           QualType DestTy) {
2217   llvm::Type *DestLTy = CGF.ConvertType(DestTy);
2218   if (DestTy->isPointerType())
2219     return llvm::Constant::getNullValue(DestLTy);
2220 
2221   /// C++ [expr.dynamic.cast]p9:
2222   ///   A failed cast to reference type throws std::bad_cast
2223   if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF))
2224     return nullptr;
2225 
2226   CGF.Builder.ClearInsertionPoint();
2227   return llvm::PoisonValue::get(DestLTy);
2228 }
2229 
2230 llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr,
2231                                               const CXXDynamicCastExpr *DCE) {
2232   CGM.EmitExplicitCastExprType(DCE, this);
2233   QualType DestTy = DCE->getTypeAsWritten();
2234 
2235   QualType SrcTy = DCE->getSubExpr()->getType();
2236 
2237   // C++ [expr.dynamic.cast]p7:
2238   //   If T is "pointer to cv void," then the result is a pointer to the most
2239   //   derived object pointed to by v.
2240   bool IsDynamicCastToVoid = DestTy->isVoidPointerType();
2241   QualType SrcRecordTy;
2242   QualType DestRecordTy;
2243   if (IsDynamicCastToVoid) {
2244     SrcRecordTy = SrcTy->getPointeeType();
2245     // No DestRecordTy.
2246   } else if (const PointerType *DestPTy = DestTy->getAs<PointerType>()) {
2247     SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
2248     DestRecordTy = DestPTy->getPointeeType();
2249   } else {
2250     SrcRecordTy = SrcTy;
2251     DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
2252   }
2253 
2254   // C++ [class.cdtor]p5:
2255   //   If the operand of the dynamic_cast refers to the object under
2256   //   construction or destruction and the static type of the operand is not a
2257   //   pointer to or object of the constructor or destructor’s own class or one
2258   //   of its bases, the dynamic_cast results in undefined behavior.
2259   EmitTypeCheck(TCK_DynamicOperation, DCE->getExprLoc(), ThisAddr, SrcRecordTy);
2260 
2261   if (DCE->isAlwaysNull()) {
2262     if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy)) {
2263       // Expression emission is expected to retain a valid insertion point.
2264       if (!Builder.GetInsertBlock())
2265         EmitBlock(createBasicBlock("dynamic_cast.unreachable"));
2266       return T;
2267     }
2268   }
2269 
2270   assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
2271 
2272   // If the destination is effectively final, the cast succeeds if and only
2273   // if the dynamic type of the pointer is exactly the destination type.
2274   bool IsExact = !IsDynamicCastToVoid &&
2275                  CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2276                  DestRecordTy->getAsCXXRecordDecl()->isEffectivelyFinal() &&
2277                  CGM.getCXXABI().shouldEmitExactDynamicCast(DestRecordTy);
2278 
2279   // C++ [expr.dynamic.cast]p4:
2280   //   If the value of v is a null pointer value in the pointer case, the result
2281   //   is the null pointer value of type T.
2282   bool ShouldNullCheckSrcValue =
2283       IsExact || CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(
2284                      SrcTy->isPointerType(), SrcRecordTy);
2285 
2286   llvm::BasicBlock *CastNull = nullptr;
2287   llvm::BasicBlock *CastNotNull = nullptr;
2288   llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
2289 
2290   if (ShouldNullCheckSrcValue) {
2291     CastNull = createBasicBlock("dynamic_cast.null");
2292     CastNotNull = createBasicBlock("dynamic_cast.notnull");
2293 
2294     llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr);
2295     Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
2296     EmitBlock(CastNotNull);
2297   }
2298 
2299   llvm::Value *Value;
2300   if (IsDynamicCastToVoid) {
2301     Value = CGM.getCXXABI().emitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy);
2302   } else if (IsExact) {
2303     // If the destination type is effectively final, this pointer points to the
2304     // right type if and only if its vptr has the right value.
2305     Value = CGM.getCXXABI().emitExactDynamicCast(
2306         *this, ThisAddr, SrcRecordTy, DestTy, DestRecordTy, CastEnd, CastNull);
2307   } else {
2308     assert(DestRecordTy->isRecordType() &&
2309            "destination type must be a record type!");
2310     Value = CGM.getCXXABI().emitDynamicCastCall(*this, ThisAddr, SrcRecordTy,
2311                                                 DestTy, DestRecordTy, CastEnd);
2312   }
2313   CastNotNull = Builder.GetInsertBlock();
2314 
2315   llvm::Value *NullValue = nullptr;
2316   if (ShouldNullCheckSrcValue) {
2317     EmitBranch(CastEnd);
2318 
2319     EmitBlock(CastNull);
2320     NullValue = EmitDynamicCastToNull(*this, DestTy);
2321     CastNull = Builder.GetInsertBlock();
2322 
2323     EmitBranch(CastEnd);
2324   }
2325 
2326   EmitBlock(CastEnd);
2327 
2328   if (CastNull) {
2329     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
2330     PHI->addIncoming(Value, CastNotNull);
2331     PHI->addIncoming(NullValue, CastNull);
2332 
2333     Value = PHI;
2334   }
2335 
2336   return Value;
2337 }
2338