xref: /llvm-project/clang/lib/CodeGen/CGExprAgg.cpp (revision 627746581b8fde4143533937130f420bbbdf9ddf)
1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Aggregate Expr nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGObjCRuntime.h"
15 #include "CGRecordLayout.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenModule.h"
18 #include "ConstantEmitter.h"
19 #include "EHScopeStack.h"
20 #include "TargetInfo.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/Attr.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/AST/DeclTemplate.h"
25 #include "clang/AST/StmtVisitor.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/GlobalVariable.h"
29 #include "llvm/IR/Instruction.h"
30 #include "llvm/IR/IntrinsicInst.h"
31 #include "llvm/IR/Intrinsics.h"
32 using namespace clang;
33 using namespace CodeGen;
34 
35 //===----------------------------------------------------------------------===//
36 //                        Aggregate Expression Emitter
37 //===----------------------------------------------------------------------===//
38 
39 namespace llvm {
40 extern cl::opt<bool> EnableSingleByteCoverage;
41 } // namespace llvm
42 
43 namespace {
44 class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
45   CodeGenFunction &CGF;
46   CGBuilderTy &Builder;
47   AggValueSlot Dest;
48   bool IsResultUnused;
49 
50   AggValueSlot EnsureSlot(QualType T) {
51     if (!Dest.isIgnored()) return Dest;
52     return CGF.CreateAggTemp(T, "agg.tmp.ensured");
53   }
54   void EnsureDest(QualType T) {
55     if (!Dest.isIgnored()) return;
56     Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured");
57   }
58 
59   // Calls `Fn` with a valid return value slot, potentially creating a temporary
60   // to do so. If a temporary is created, an appropriate copy into `Dest` will
61   // be emitted, as will lifetime markers.
62   //
63   // The given function should take a ReturnValueSlot, and return an RValue that
64   // points to said slot.
65   void withReturnValueSlot(const Expr *E,
66                            llvm::function_ref<RValue(ReturnValueSlot)> Fn);
67 
68   void DoZeroInitPadding(uint64_t &PaddingStart, uint64_t PaddingEnd,
69                          const FieldDecl *NextField);
70 
71 public:
72   AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, bool IsResultUnused)
73     : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
74     IsResultUnused(IsResultUnused) { }
75 
76   //===--------------------------------------------------------------------===//
77   //                               Utilities
78   //===--------------------------------------------------------------------===//
79 
80   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
81   /// represents a value lvalue, this method emits the address of the lvalue,
82   /// then loads the result into DestPtr.
83   void EmitAggLoadOfLValue(const Expr *E);
84 
85   /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
86   /// SrcIsRValue is true if source comes from an RValue.
87   void EmitFinalDestCopy(QualType type, const LValue &src,
88                          CodeGenFunction::ExprValueKind SrcValueKind =
89                              CodeGenFunction::EVK_NonRValue);
90   void EmitFinalDestCopy(QualType type, RValue src);
91   void EmitCopy(QualType type, const AggValueSlot &dest,
92                 const AggValueSlot &src);
93 
94   void EmitArrayInit(Address DestPtr, llvm::ArrayType *AType, QualType ArrayQTy,
95                      Expr *ExprToVisit, ArrayRef<Expr *> Args,
96                      Expr *ArrayFiller);
97 
98   AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) {
99     if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T))
100       return AggValueSlot::NeedsGCBarriers;
101     return AggValueSlot::DoesNotNeedGCBarriers;
102   }
103 
104   bool TypeRequiresGCollection(QualType T);
105 
106   //===--------------------------------------------------------------------===//
107   //                            Visitor Methods
108   //===--------------------------------------------------------------------===//
109 
110   void Visit(Expr *E) {
111     ApplyDebugLocation DL(CGF, E);
112     StmtVisitor<AggExprEmitter>::Visit(E);
113   }
114 
115   void VisitStmt(Stmt *S) {
116     CGF.ErrorUnsupported(S, "aggregate expression");
117   }
118   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
119   void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
120     Visit(GE->getResultExpr());
121   }
122   void VisitCoawaitExpr(CoawaitExpr *E) {
123     CGF.EmitCoawaitExpr(*E, Dest, IsResultUnused);
124   }
125   void VisitCoyieldExpr(CoyieldExpr *E) {
126     CGF.EmitCoyieldExpr(*E, Dest, IsResultUnused);
127   }
128   void VisitUnaryCoawait(UnaryOperator *E) { Visit(E->getSubExpr()); }
129   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
130   void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
131     return Visit(E->getReplacement());
132   }
133 
134   void VisitConstantExpr(ConstantExpr *E) {
135     EnsureDest(E->getType());
136 
137     if (llvm::Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) {
138       CGF.CreateCoercedStore(
139           Result, Dest.getAddress(),
140           llvm::TypeSize::getFixed(
141               Dest.getPreferredSize(CGF.getContext(), E->getType())
142                   .getQuantity()),
143           E->getType().isVolatileQualified());
144       return;
145     }
146     return Visit(E->getSubExpr());
147   }
148 
149   // l-values.
150   void VisitDeclRefExpr(DeclRefExpr *E) { EmitAggLoadOfLValue(E); }
151   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
152   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
153   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
154   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
155   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
156     EmitAggLoadOfLValue(E);
157   }
158   void VisitPredefinedExpr(const PredefinedExpr *E) {
159     EmitAggLoadOfLValue(E);
160   }
161 
162   // Operators.
163   void VisitCastExpr(CastExpr *E);
164   void VisitCallExpr(const CallExpr *E);
165   void VisitStmtExpr(const StmtExpr *E);
166   void VisitBinaryOperator(const BinaryOperator *BO);
167   void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
168   void VisitBinAssign(const BinaryOperator *E);
169   void VisitBinComma(const BinaryOperator *E);
170   void VisitBinCmp(const BinaryOperator *E);
171   void VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
172     Visit(E->getSemanticForm());
173   }
174 
175   void VisitObjCMessageExpr(ObjCMessageExpr *E);
176   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
177     EmitAggLoadOfLValue(E);
178   }
179 
180   void VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E);
181   void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
182   void VisitChooseExpr(const ChooseExpr *CE);
183   void VisitInitListExpr(InitListExpr *E);
184   void VisitCXXParenListOrInitListExpr(Expr *ExprToVisit, ArrayRef<Expr *> Args,
185                                        FieldDecl *InitializedFieldInUnion,
186                                        Expr *ArrayFiller);
187   void VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E,
188                               llvm::Value *outerBegin = nullptr);
189   void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
190   void VisitNoInitExpr(NoInitExpr *E) { } // Do nothing.
191   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
192     CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
193     Visit(DAE->getExpr());
194   }
195   void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
196     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
197     Visit(DIE->getExpr());
198   }
199   void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
200   void VisitCXXConstructExpr(const CXXConstructExpr *E);
201   void VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E);
202   void VisitLambdaExpr(LambdaExpr *E);
203   void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E);
204   void VisitExprWithCleanups(ExprWithCleanups *E);
205   void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
206   void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
207   void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
208   void VisitOpaqueValueExpr(OpaqueValueExpr *E);
209 
210   void VisitPseudoObjectExpr(PseudoObjectExpr *E) {
211     if (E->isGLValue()) {
212       LValue LV = CGF.EmitPseudoObjectLValue(E);
213       return EmitFinalDestCopy(E->getType(), LV);
214     }
215 
216     AggValueSlot Slot = EnsureSlot(E->getType());
217     bool NeedsDestruction =
218         !Slot.isExternallyDestructed() &&
219         E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct;
220     if (NeedsDestruction)
221       Slot.setExternallyDestructed();
222     CGF.EmitPseudoObjectRValue(E, Slot);
223     if (NeedsDestruction)
224       CGF.pushDestroy(QualType::DK_nontrivial_c_struct, Slot.getAddress(),
225                       E->getType());
226   }
227 
228   void VisitVAArgExpr(VAArgExpr *E);
229   void VisitCXXParenListInitExpr(CXXParenListInitExpr *E);
230   void VisitCXXParenListOrInitListExpr(Expr *ExprToVisit, ArrayRef<Expr *> Args,
231                                        Expr *ArrayFiller);
232 
233   void EmitInitializationToLValue(Expr *E, LValue Address);
234   void EmitNullInitializationToLValue(LValue Address);
235   //  case Expr::ChooseExprClass:
236   void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
237   void VisitAtomicExpr(AtomicExpr *E) {
238     RValue Res = CGF.EmitAtomicExpr(E);
239     EmitFinalDestCopy(E->getType(), Res);
240   }
241   void VisitPackIndexingExpr(PackIndexingExpr *E) {
242     Visit(E->getSelectedExpr());
243   }
244 };
245 }  // end anonymous namespace.
246 
247 //===----------------------------------------------------------------------===//
248 //                                Utilities
249 //===----------------------------------------------------------------------===//
250 
251 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
252 /// represents a value lvalue, this method emits the address of the lvalue,
253 /// then loads the result into DestPtr.
254 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
255   LValue LV = CGF.EmitLValue(E);
256 
257   // If the type of the l-value is atomic, then do an atomic load.
258   if (LV.getType()->isAtomicType() || CGF.LValueIsSuitableForInlineAtomic(LV)) {
259     CGF.EmitAtomicLoad(LV, E->getExprLoc(), Dest);
260     return;
261   }
262 
263   EmitFinalDestCopy(E->getType(), LV);
264 }
265 
266 /// True if the given aggregate type requires special GC API calls.
267 bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
268   // Only record types have members that might require garbage collection.
269   const RecordType *RecordTy = T->getAs<RecordType>();
270   if (!RecordTy) return false;
271 
272   // Don't mess with non-trivial C++ types.
273   RecordDecl *Record = RecordTy->getDecl();
274   if (isa<CXXRecordDecl>(Record) &&
275       (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() ||
276        !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
277     return false;
278 
279   // Check whether the type has an object member.
280   return Record->hasObjectMember();
281 }
282 
283 void AggExprEmitter::withReturnValueSlot(
284     const Expr *E, llvm::function_ref<RValue(ReturnValueSlot)> EmitCall) {
285   QualType RetTy = E->getType();
286   bool RequiresDestruction =
287       !Dest.isExternallyDestructed() &&
288       RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct;
289 
290   // If it makes no observable difference, save a memcpy + temporary.
291   //
292   // We need to always provide our own temporary if destruction is required.
293   // Otherwise, EmitCall will emit its own, notice that it's "unused", and end
294   // its lifetime before we have the chance to emit a proper destructor call.
295   bool UseTemp = Dest.isPotentiallyAliased() || Dest.requiresGCollection() ||
296                  (RequiresDestruction && Dest.isIgnored());
297 
298   Address RetAddr = Address::invalid();
299   RawAddress RetAllocaAddr = RawAddress::invalid();
300 
301   EHScopeStack::stable_iterator LifetimeEndBlock;
302   llvm::Value *LifetimeSizePtr = nullptr;
303   llvm::IntrinsicInst *LifetimeStartInst = nullptr;
304   if (!UseTemp) {
305     RetAddr = Dest.getAddress();
306   } else {
307     RetAddr = CGF.CreateMemTemp(RetTy, "tmp", &RetAllocaAddr);
308     llvm::TypeSize Size =
309         CGF.CGM.getDataLayout().getTypeAllocSize(CGF.ConvertTypeForMem(RetTy));
310     LifetimeSizePtr = CGF.EmitLifetimeStart(Size, RetAllocaAddr.getPointer());
311     if (LifetimeSizePtr) {
312       LifetimeStartInst =
313           cast<llvm::IntrinsicInst>(std::prev(Builder.GetInsertPoint()));
314       assert(LifetimeStartInst->getIntrinsicID() ==
315                  llvm::Intrinsic::lifetime_start &&
316              "Last insertion wasn't a lifetime.start?");
317 
318       CGF.pushFullExprCleanup<CodeGenFunction::CallLifetimeEnd>(
319           NormalEHLifetimeMarker, RetAllocaAddr, LifetimeSizePtr);
320       LifetimeEndBlock = CGF.EHStack.stable_begin();
321     }
322   }
323 
324   RValue Src =
325       EmitCall(ReturnValueSlot(RetAddr, Dest.isVolatile(), IsResultUnused,
326                                Dest.isExternallyDestructed()));
327 
328   if (!UseTemp)
329     return;
330 
331   assert(Dest.isIgnored() || Dest.emitRawPointer(CGF) !=
332                                  Src.getAggregatePointer(E->getType(), CGF));
333   EmitFinalDestCopy(E->getType(), Src);
334 
335   if (!RequiresDestruction && LifetimeStartInst) {
336     // If there's no dtor to run, the copy was the last use of our temporary.
337     // Since we're not guaranteed to be in an ExprWithCleanups, clean up
338     // eagerly.
339     CGF.DeactivateCleanupBlock(LifetimeEndBlock, LifetimeStartInst);
340     CGF.EmitLifetimeEnd(LifetimeSizePtr, RetAllocaAddr.getPointer());
341   }
342 }
343 
344 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
345 void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src) {
346   assert(src.isAggregate() && "value must be aggregate value!");
347   LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddress(), type);
348   EmitFinalDestCopy(type, srcLV, CodeGenFunction::EVK_RValue);
349 }
350 
351 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
352 void AggExprEmitter::EmitFinalDestCopy(
353     QualType type, const LValue &src,
354     CodeGenFunction::ExprValueKind SrcValueKind) {
355   // If Dest is ignored, then we're evaluating an aggregate expression
356   // in a context that doesn't care about the result.  Note that loads
357   // from volatile l-values force the existence of a non-ignored
358   // destination.
359   if (Dest.isIgnored())
360     return;
361 
362   // Copy non-trivial C structs here.
363   LValue DstLV = CGF.MakeAddrLValue(
364       Dest.getAddress(), Dest.isVolatile() ? type.withVolatile() : type);
365 
366   if (SrcValueKind == CodeGenFunction::EVK_RValue) {
367     if (type.isNonTrivialToPrimitiveDestructiveMove() == QualType::PCK_Struct) {
368       if (Dest.isPotentiallyAliased())
369         CGF.callCStructMoveAssignmentOperator(DstLV, src);
370       else
371         CGF.callCStructMoveConstructor(DstLV, src);
372       return;
373     }
374   } else {
375     if (type.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) {
376       if (Dest.isPotentiallyAliased())
377         CGF.callCStructCopyAssignmentOperator(DstLV, src);
378       else
379         CGF.callCStructCopyConstructor(DstLV, src);
380       return;
381     }
382   }
383 
384   AggValueSlot srcAgg = AggValueSlot::forLValue(
385       src, AggValueSlot::IsDestructed, needsGC(type), AggValueSlot::IsAliased,
386       AggValueSlot::MayOverlap);
387   EmitCopy(type, Dest, srcAgg);
388 }
389 
390 /// Perform a copy from the source into the destination.
391 ///
392 /// \param type - the type of the aggregate being copied; qualifiers are
393 ///   ignored
394 void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest,
395                               const AggValueSlot &src) {
396   if (dest.requiresGCollection()) {
397     CharUnits sz = dest.getPreferredSize(CGF.getContext(), type);
398     llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity());
399     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
400                                                       dest.getAddress(),
401                                                       src.getAddress(),
402                                                       size);
403     return;
404   }
405 
406   // If the result of the assignment is used, copy the LHS there also.
407   // It's volatile if either side is.  Use the minimum alignment of
408   // the two sides.
409   LValue DestLV = CGF.MakeAddrLValue(dest.getAddress(), type);
410   LValue SrcLV = CGF.MakeAddrLValue(src.getAddress(), type);
411   CGF.EmitAggregateCopy(DestLV, SrcLV, type, dest.mayOverlap(),
412                         dest.isVolatile() || src.isVolatile());
413 }
414 
415 /// Emit the initializer for a std::initializer_list initialized with a
416 /// real initializer list.
417 void
418 AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) {
419   // Emit an array containing the elements.  The array is externally destructed
420   // if the std::initializer_list object is.
421   ASTContext &Ctx = CGF.getContext();
422   LValue Array = CGF.EmitLValue(E->getSubExpr());
423   assert(Array.isSimple() && "initializer_list array not a simple lvalue");
424   Address ArrayPtr = Array.getAddress();
425 
426   const ConstantArrayType *ArrayType =
427       Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
428   assert(ArrayType && "std::initializer_list constructed from non-array");
429 
430   RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
431   RecordDecl::field_iterator Field = Record->field_begin();
432   assert(Field != Record->field_end() &&
433          Ctx.hasSameType(Field->getType()->getPointeeType(),
434                          ArrayType->getElementType()) &&
435          "Expected std::initializer_list first field to be const E *");
436 
437   // Start pointer.
438   AggValueSlot Dest = EnsureSlot(E->getType());
439   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
440   LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
441   llvm::Value *ArrayStart = ArrayPtr.emitRawPointer(CGF);
442   CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start);
443   ++Field;
444   assert(Field != Record->field_end() &&
445          "Expected std::initializer_list to have two fields");
446 
447   llvm::Value *Size = Builder.getInt(ArrayType->getSize());
448   LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
449   if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) {
450     // Length.
451     CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength);
452 
453   } else {
454     // End pointer.
455     assert(Field->getType()->isPointerType() &&
456            Ctx.hasSameType(Field->getType()->getPointeeType(),
457                            ArrayType->getElementType()) &&
458            "Expected std::initializer_list second field to be const E *");
459     llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0);
460     llvm::Value *IdxEnd[] = { Zero, Size };
461     llvm::Value *ArrayEnd = Builder.CreateInBoundsGEP(
462         ArrayPtr.getElementType(), ArrayPtr.emitRawPointer(CGF), IdxEnd,
463         "arrayend");
464     CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength);
465   }
466 
467   assert(++Field == Record->field_end() &&
468          "Expected std::initializer_list to only have two fields");
469 }
470 
471 /// Determine if E is a trivial array filler, that is, one that is
472 /// equivalent to zero-initialization.
473 static bool isTrivialFiller(Expr *E) {
474   if (!E)
475     return true;
476 
477   if (isa<ImplicitValueInitExpr>(E))
478     return true;
479 
480   if (auto *ILE = dyn_cast<InitListExpr>(E)) {
481     if (ILE->getNumInits())
482       return false;
483     return isTrivialFiller(ILE->getArrayFiller());
484   }
485 
486   if (auto *Cons = dyn_cast_or_null<CXXConstructExpr>(E))
487     return Cons->getConstructor()->isDefaultConstructor() &&
488            Cons->getConstructor()->isTrivial();
489 
490   // FIXME: Are there other cases where we can avoid emitting an initializer?
491   return false;
492 }
493 
494 /// Emit initialization of an array from an initializer list. ExprToVisit must
495 /// be either an InitListEpxr a CXXParenInitListExpr.
496 void AggExprEmitter::EmitArrayInit(Address DestPtr, llvm::ArrayType *AType,
497                                    QualType ArrayQTy, Expr *ExprToVisit,
498                                    ArrayRef<Expr *> Args, Expr *ArrayFiller) {
499   uint64_t NumInitElements = Args.size();
500 
501   uint64_t NumArrayElements = AType->getNumElements();
502   for (const auto *Init : Args) {
503     if (const auto *Embed = dyn_cast<EmbedExpr>(Init->IgnoreParenImpCasts())) {
504       NumInitElements += Embed->getDataElementCount() - 1;
505       if (NumInitElements > NumArrayElements) {
506         NumInitElements = NumArrayElements;
507         break;
508       }
509     }
510   }
511 
512   assert(NumInitElements <= NumArrayElements);
513 
514   QualType elementType =
515       CGF.getContext().getAsArrayType(ArrayQTy)->getElementType();
516   CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
517   CharUnits elementAlign =
518     DestPtr.getAlignment().alignmentOfArrayElement(elementSize);
519   llvm::Type *llvmElementType = CGF.ConvertTypeForMem(elementType);
520 
521   // Consider initializing the array by copying from a global. For this to be
522   // more efficient than per-element initialization, the size of the elements
523   // with explicit initializers should be large enough.
524   if (NumInitElements * elementSize.getQuantity() > 16 &&
525       elementType.isTriviallyCopyableType(CGF.getContext())) {
526     CodeGen::CodeGenModule &CGM = CGF.CGM;
527     ConstantEmitter Emitter(CGF);
528     QualType GVArrayQTy = CGM.getContext().getAddrSpaceQualType(
529         CGM.getContext().removeAddrSpaceQualType(ArrayQTy),
530         CGM.GetGlobalConstantAddressSpace());
531     LangAS AS = GVArrayQTy.getAddressSpace();
532     if (llvm::Constant *C =
533             Emitter.tryEmitForInitializer(ExprToVisit, AS, GVArrayQTy)) {
534       auto GV = new llvm::GlobalVariable(
535           CGM.getModule(), C->getType(),
536           /* isConstant= */ true, llvm::GlobalValue::PrivateLinkage, C,
537           "constinit",
538           /* InsertBefore= */ nullptr, llvm::GlobalVariable::NotThreadLocal,
539           CGM.getContext().getTargetAddressSpace(AS));
540       Emitter.finalize(GV);
541       CharUnits Align = CGM.getContext().getTypeAlignInChars(GVArrayQTy);
542       GV->setAlignment(Align.getAsAlign());
543       Address GVAddr(GV, GV->getValueType(), Align);
544       EmitFinalDestCopy(ArrayQTy, CGF.MakeAddrLValue(GVAddr, GVArrayQTy));
545       return;
546     }
547   }
548 
549   // Exception safety requires us to destroy all the
550   // already-constructed members if an initializer throws.
551   // For that, we'll need an EH cleanup.
552   QualType::DestructionKind dtorKind = elementType.isDestructedType();
553   Address endOfInit = Address::invalid();
554   CodeGenFunction::CleanupDeactivationScope deactivation(CGF);
555 
556   llvm::Value *begin = DestPtr.emitRawPointer(CGF);
557   if (dtorKind) {
558     CodeGenFunction::AllocaTrackerRAII allocaTracker(CGF);
559     // In principle we could tell the cleanup where we are more
560     // directly, but the control flow can get so varied here that it
561     // would actually be quite complex.  Therefore we go through an
562     // alloca.
563     llvm::Instruction *dominatingIP =
564         Builder.CreateFlagLoad(llvm::ConstantInt::getNullValue(CGF.Int8PtrTy));
565     endOfInit = CGF.CreateTempAlloca(begin->getType(), CGF.getPointerAlign(),
566                                      "arrayinit.endOfInit");
567     Builder.CreateStore(begin, endOfInit);
568     CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
569                                          elementAlign,
570                                          CGF.getDestroyer(dtorKind));
571     cast<EHCleanupScope>(*CGF.EHStack.find(CGF.EHStack.stable_begin()))
572         .AddAuxAllocas(allocaTracker.Take());
573 
574     CGF.DeferredDeactivationCleanupStack.push_back(
575         {CGF.EHStack.stable_begin(), dominatingIP});
576   }
577 
578   llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);
579 
580   auto Emit = [&](Expr *Init, uint64_t ArrayIndex) {
581     llvm::Value *element = begin;
582     if (ArrayIndex > 0) {
583       element = Builder.CreateInBoundsGEP(
584           llvmElementType, begin,
585           llvm::ConstantInt::get(CGF.SizeTy, ArrayIndex), "arrayinit.element");
586 
587       // Tell the cleanup that it needs to destroy up to this
588       // element.  TODO: some of these stores can be trivially
589       // observed to be unnecessary.
590       if (endOfInit.isValid())
591         Builder.CreateStore(element, endOfInit);
592     }
593 
594     LValue elementLV = CGF.MakeAddrLValue(
595         Address(element, llvmElementType, elementAlign), elementType);
596     EmitInitializationToLValue(Init, elementLV);
597     return true;
598   };
599 
600   unsigned ArrayIndex = 0;
601   // Emit the explicit initializers.
602   for (uint64_t i = 0; i != NumInitElements; ++i) {
603     if (ArrayIndex >= NumInitElements)
604       break;
605     if (auto *EmbedS = dyn_cast<EmbedExpr>(Args[i]->IgnoreParenImpCasts())) {
606       EmbedS->doForEachDataElement(Emit, ArrayIndex);
607     } else {
608       Emit(Args[i], ArrayIndex);
609       ArrayIndex++;
610     }
611   }
612 
613   // Check whether there's a non-trivial array-fill expression.
614   bool hasTrivialFiller = isTrivialFiller(ArrayFiller);
615 
616   // Any remaining elements need to be zero-initialized, possibly
617   // using the filler expression.  We can skip this if the we're
618   // emitting to zeroed memory.
619   if (NumInitElements != NumArrayElements &&
620       !(Dest.isZeroed() && hasTrivialFiller &&
621         CGF.getTypes().isZeroInitializable(elementType))) {
622 
623     // Use an actual loop.  This is basically
624     //   do { *array++ = filler; } while (array != end);
625 
626     // Advance to the start of the rest of the array.
627     llvm::Value *element = begin;
628     if (NumInitElements) {
629       element = Builder.CreateInBoundsGEP(
630           llvmElementType, element,
631           llvm::ConstantInt::get(CGF.SizeTy, NumInitElements),
632           "arrayinit.start");
633       if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
634     }
635 
636     // Compute the end of the array.
637     llvm::Value *end = Builder.CreateInBoundsGEP(
638         llvmElementType, begin,
639         llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements), "arrayinit.end");
640 
641     llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
642     llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
643 
644     // Jump into the body.
645     CGF.EmitBlock(bodyBB);
646     llvm::PHINode *currentElement =
647       Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
648     currentElement->addIncoming(element, entryBB);
649 
650     // Emit the actual filler expression.
651     {
652       // C++1z [class.temporary]p5:
653       //   when a default constructor is called to initialize an element of
654       //   an array with no corresponding initializer [...] the destruction of
655       //   every temporary created in a default argument is sequenced before
656       //   the construction of the next array element, if any
657       CodeGenFunction::RunCleanupsScope CleanupsScope(CGF);
658       LValue elementLV = CGF.MakeAddrLValue(
659           Address(currentElement, llvmElementType, elementAlign), elementType);
660       if (ArrayFiller)
661         EmitInitializationToLValue(ArrayFiller, elementLV);
662       else
663         EmitNullInitializationToLValue(elementLV);
664     }
665 
666     // Move on to the next element.
667     llvm::Value *nextElement = Builder.CreateInBoundsGEP(
668         llvmElementType, currentElement, one, "arrayinit.next");
669 
670     // Tell the EH cleanup that we finished with the last element.
671     if (endOfInit.isValid()) Builder.CreateStore(nextElement, endOfInit);
672 
673     // Leave the loop if we're done.
674     llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
675                                              "arrayinit.done");
676     llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
677     Builder.CreateCondBr(done, endBB, bodyBB);
678     currentElement->addIncoming(nextElement, Builder.GetInsertBlock());
679 
680     CGF.EmitBlock(endBB);
681   }
682 }
683 
684 //===----------------------------------------------------------------------===//
685 //                            Visitor Methods
686 //===----------------------------------------------------------------------===//
687 
688 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){
689   Visit(E->getSubExpr());
690 }
691 
692 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
693   // If this is a unique OVE, just visit its source expression.
694   if (e->isUnique())
695     Visit(e->getSourceExpr());
696   else
697     EmitFinalDestCopy(e->getType(), CGF.getOrCreateOpaqueLValueMapping(e));
698 }
699 
700 void
701 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
702   if (Dest.isPotentiallyAliased() &&
703       E->getType().isPODType(CGF.getContext())) {
704     // For a POD type, just emit a load of the lvalue + a copy, because our
705     // compound literal might alias the destination.
706     EmitAggLoadOfLValue(E);
707     return;
708   }
709 
710   AggValueSlot Slot = EnsureSlot(E->getType());
711 
712   // Block-scope compound literals are destroyed at the end of the enclosing
713   // scope in C.
714   bool Destruct =
715       !CGF.getLangOpts().CPlusPlus && !Slot.isExternallyDestructed();
716   if (Destruct)
717     Slot.setExternallyDestructed();
718 
719   CGF.EmitAggExpr(E->getInitializer(), Slot);
720 
721   if (Destruct)
722     if (QualType::DestructionKind DtorKind = E->getType().isDestructedType())
723       CGF.pushLifetimeExtendedDestroy(
724           CGF.getCleanupKind(DtorKind), Slot.getAddress(), E->getType(),
725           CGF.getDestroyer(DtorKind), DtorKind & EHCleanup);
726 }
727 
728 /// Attempt to look through various unimportant expressions to find a
729 /// cast of the given kind.
730 static Expr *findPeephole(Expr *op, CastKind kind, const ASTContext &ctx) {
731   op = op->IgnoreParenNoopCasts(ctx);
732   if (auto castE = dyn_cast<CastExpr>(op)) {
733     if (castE->getCastKind() == kind)
734       return castE->getSubExpr();
735   }
736   return nullptr;
737 }
738 
739 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
740   if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
741     CGF.CGM.EmitExplicitCastExprType(ECE, &CGF);
742   switch (E->getCastKind()) {
743   case CK_Dynamic: {
744     // FIXME: Can this actually happen? We have no test coverage for it.
745     assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
746     LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(),
747                                       CodeGenFunction::TCK_Load);
748     // FIXME: Do we also need to handle property references here?
749     if (LV.isSimple())
750       CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E));
751     else
752       CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
753 
754     if (!Dest.isIgnored())
755       CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
756     break;
757   }
758 
759   case CK_ToUnion: {
760     // Evaluate even if the destination is ignored.
761     if (Dest.isIgnored()) {
762       CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(),
763                       /*ignoreResult=*/true);
764       break;
765     }
766 
767     // GCC union extension
768     QualType Ty = E->getSubExpr()->getType();
769     Address CastPtr = Dest.getAddress().withElementType(CGF.ConvertType(Ty));
770     EmitInitializationToLValue(E->getSubExpr(),
771                                CGF.MakeAddrLValue(CastPtr, Ty));
772     break;
773   }
774 
775   case CK_LValueToRValueBitCast: {
776     if (Dest.isIgnored()) {
777       CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(),
778                       /*ignoreResult=*/true);
779       break;
780     }
781 
782     LValue SourceLV = CGF.EmitLValue(E->getSubExpr());
783     Address SourceAddress = SourceLV.getAddress().withElementType(CGF.Int8Ty);
784     Address DestAddress = Dest.getAddress().withElementType(CGF.Int8Ty);
785     llvm::Value *SizeVal = llvm::ConstantInt::get(
786         CGF.SizeTy,
787         CGF.getContext().getTypeSizeInChars(E->getType()).getQuantity());
788     Builder.CreateMemCpy(DestAddress, SourceAddress, SizeVal);
789     break;
790   }
791 
792   case CK_DerivedToBase:
793   case CK_BaseToDerived:
794   case CK_UncheckedDerivedToBase: {
795     llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: "
796                 "should have been unpacked before we got here");
797   }
798 
799   case CK_NonAtomicToAtomic:
800   case CK_AtomicToNonAtomic: {
801     bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic);
802 
803     // Determine the atomic and value types.
804     QualType atomicType = E->getSubExpr()->getType();
805     QualType valueType = E->getType();
806     if (isToAtomic) std::swap(atomicType, valueType);
807 
808     assert(atomicType->isAtomicType());
809     assert(CGF.getContext().hasSameUnqualifiedType(valueType,
810                           atomicType->castAs<AtomicType>()->getValueType()));
811 
812     // Just recurse normally if we're ignoring the result or the
813     // atomic type doesn't change representation.
814     if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) {
815       return Visit(E->getSubExpr());
816     }
817 
818     CastKind peepholeTarget =
819       (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic);
820 
821     // These two cases are reverses of each other; try to peephole them.
822     if (Expr *op =
823             findPeephole(E->getSubExpr(), peepholeTarget, CGF.getContext())) {
824       assert(CGF.getContext().hasSameUnqualifiedType(op->getType(),
825                                                      E->getType()) &&
826            "peephole significantly changed types?");
827       return Visit(op);
828     }
829 
830     // If we're converting an r-value of non-atomic type to an r-value
831     // of atomic type, just emit directly into the relevant sub-object.
832     if (isToAtomic) {
833       AggValueSlot valueDest = Dest;
834       if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) {
835         // Zero-initialize.  (Strictly speaking, we only need to initialize
836         // the padding at the end, but this is simpler.)
837         if (!Dest.isZeroed())
838           CGF.EmitNullInitialization(Dest.getAddress(), atomicType);
839 
840         // Build a GEP to refer to the subobject.
841         Address valueAddr =
842             CGF.Builder.CreateStructGEP(valueDest.getAddress(), 0);
843         valueDest = AggValueSlot::forAddr(valueAddr,
844                                           valueDest.getQualifiers(),
845                                           valueDest.isExternallyDestructed(),
846                                           valueDest.requiresGCollection(),
847                                           valueDest.isPotentiallyAliased(),
848                                           AggValueSlot::DoesNotOverlap,
849                                           AggValueSlot::IsZeroed);
850       }
851 
852       CGF.EmitAggExpr(E->getSubExpr(), valueDest);
853       return;
854     }
855 
856     // Otherwise, we're converting an atomic type to a non-atomic type.
857     // Make an atomic temporary, emit into that, and then copy the value out.
858     AggValueSlot atomicSlot =
859       CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp");
860     CGF.EmitAggExpr(E->getSubExpr(), atomicSlot);
861 
862     Address valueAddr = Builder.CreateStructGEP(atomicSlot.getAddress(), 0);
863     RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile());
864     return EmitFinalDestCopy(valueType, rvalue);
865   }
866   case CK_AddressSpaceConversion:
867      return Visit(E->getSubExpr());
868 
869   case CK_LValueToRValue:
870     // If we're loading from a volatile type, force the destination
871     // into existence.
872     if (E->getSubExpr()->getType().isVolatileQualified()) {
873       bool Destruct =
874           !Dest.isExternallyDestructed() &&
875           E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct;
876       if (Destruct)
877         Dest.setExternallyDestructed();
878       EnsureDest(E->getType());
879       Visit(E->getSubExpr());
880 
881       if (Destruct)
882         CGF.pushDestroy(QualType::DK_nontrivial_c_struct, Dest.getAddress(),
883                         E->getType());
884 
885       return;
886     }
887 
888     [[fallthrough]];
889 
890   case CK_HLSLArrayRValue:
891     Visit(E->getSubExpr());
892     break;
893 
894   case CK_NoOp:
895   case CK_UserDefinedConversion:
896   case CK_ConstructorConversion:
897     assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
898                                                    E->getType()) &&
899            "Implicit cast types must be compatible");
900     Visit(E->getSubExpr());
901     break;
902 
903   case CK_LValueBitCast:
904     llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
905 
906   case CK_Dependent:
907   case CK_BitCast:
908   case CK_ArrayToPointerDecay:
909   case CK_FunctionToPointerDecay:
910   case CK_NullToPointer:
911   case CK_NullToMemberPointer:
912   case CK_BaseToDerivedMemberPointer:
913   case CK_DerivedToBaseMemberPointer:
914   case CK_MemberPointerToBoolean:
915   case CK_ReinterpretMemberPointer:
916   case CK_IntegralToPointer:
917   case CK_PointerToIntegral:
918   case CK_PointerToBoolean:
919   case CK_ToVoid:
920   case CK_VectorSplat:
921   case CK_IntegralCast:
922   case CK_BooleanToSignedIntegral:
923   case CK_IntegralToBoolean:
924   case CK_IntegralToFloating:
925   case CK_FloatingToIntegral:
926   case CK_FloatingToBoolean:
927   case CK_FloatingCast:
928   case CK_CPointerToObjCPointerCast:
929   case CK_BlockPointerToObjCPointerCast:
930   case CK_AnyPointerToBlockPointerCast:
931   case CK_ObjCObjectLValueCast:
932   case CK_FloatingRealToComplex:
933   case CK_FloatingComplexToReal:
934   case CK_FloatingComplexToBoolean:
935   case CK_FloatingComplexCast:
936   case CK_FloatingComplexToIntegralComplex:
937   case CK_IntegralRealToComplex:
938   case CK_IntegralComplexToReal:
939   case CK_IntegralComplexToBoolean:
940   case CK_IntegralComplexCast:
941   case CK_IntegralComplexToFloatingComplex:
942   case CK_ARCProduceObject:
943   case CK_ARCConsumeObject:
944   case CK_ARCReclaimReturnedObject:
945   case CK_ARCExtendBlockObject:
946   case CK_CopyAndAutoreleaseBlockObject:
947   case CK_BuiltinFnToFnPtr:
948   case CK_ZeroToOCLOpaqueType:
949   case CK_MatrixCast:
950   case CK_HLSLVectorTruncation:
951 
952   case CK_IntToOCLSampler:
953   case CK_FloatingToFixedPoint:
954   case CK_FixedPointToFloating:
955   case CK_FixedPointCast:
956   case CK_FixedPointToBoolean:
957   case CK_FixedPointToIntegral:
958   case CK_IntegralToFixedPoint:
959     llvm_unreachable("cast kind invalid for aggregate types");
960   }
961 }
962 
963 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
964   if (E->getCallReturnType(CGF.getContext())->isReferenceType()) {
965     EmitAggLoadOfLValue(E);
966     return;
967   }
968 
969   withReturnValueSlot(E, [&](ReturnValueSlot Slot) {
970     return CGF.EmitCallExpr(E, Slot);
971   });
972 }
973 
974 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
975   withReturnValueSlot(E, [&](ReturnValueSlot Slot) {
976     return CGF.EmitObjCMessageExpr(E, Slot);
977   });
978 }
979 
980 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
981   CGF.EmitIgnoredExpr(E->getLHS());
982   Visit(E->getRHS());
983 }
984 
985 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
986   CodeGenFunction::StmtExprEvaluation eval(CGF);
987   CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
988 }
989 
990 enum CompareKind {
991   CK_Less,
992   CK_Greater,
993   CK_Equal,
994 };
995 
996 static llvm::Value *EmitCompare(CGBuilderTy &Builder, CodeGenFunction &CGF,
997                                 const BinaryOperator *E, llvm::Value *LHS,
998                                 llvm::Value *RHS, CompareKind Kind,
999                                 const char *NameSuffix = "") {
1000   QualType ArgTy = E->getLHS()->getType();
1001   if (const ComplexType *CT = ArgTy->getAs<ComplexType>())
1002     ArgTy = CT->getElementType();
1003 
1004   if (const auto *MPT = ArgTy->getAs<MemberPointerType>()) {
1005     assert(Kind == CK_Equal &&
1006            "member pointers may only be compared for equality");
1007     return CGF.CGM.getCXXABI().EmitMemberPointerComparison(
1008         CGF, LHS, RHS, MPT, /*IsInequality*/ false);
1009   }
1010 
1011   // Compute the comparison instructions for the specified comparison kind.
1012   struct CmpInstInfo {
1013     const char *Name;
1014     llvm::CmpInst::Predicate FCmp;
1015     llvm::CmpInst::Predicate SCmp;
1016     llvm::CmpInst::Predicate UCmp;
1017   };
1018   CmpInstInfo InstInfo = [&]() -> CmpInstInfo {
1019     using FI = llvm::FCmpInst;
1020     using II = llvm::ICmpInst;
1021     switch (Kind) {
1022     case CK_Less:
1023       return {"cmp.lt", FI::FCMP_OLT, II::ICMP_SLT, II::ICMP_ULT};
1024     case CK_Greater:
1025       return {"cmp.gt", FI::FCMP_OGT, II::ICMP_SGT, II::ICMP_UGT};
1026     case CK_Equal:
1027       return {"cmp.eq", FI::FCMP_OEQ, II::ICMP_EQ, II::ICMP_EQ};
1028     }
1029     llvm_unreachable("Unrecognised CompareKind enum");
1030   }();
1031 
1032   if (ArgTy->hasFloatingRepresentation())
1033     return Builder.CreateFCmp(InstInfo.FCmp, LHS, RHS,
1034                               llvm::Twine(InstInfo.Name) + NameSuffix);
1035   if (ArgTy->isIntegralOrEnumerationType() || ArgTy->isPointerType()) {
1036     auto Inst =
1037         ArgTy->hasSignedIntegerRepresentation() ? InstInfo.SCmp : InstInfo.UCmp;
1038     return Builder.CreateICmp(Inst, LHS, RHS,
1039                               llvm::Twine(InstInfo.Name) + NameSuffix);
1040   }
1041 
1042   llvm_unreachable("unsupported aggregate binary expression should have "
1043                    "already been handled");
1044 }
1045 
1046 void AggExprEmitter::VisitBinCmp(const BinaryOperator *E) {
1047   using llvm::BasicBlock;
1048   using llvm::PHINode;
1049   using llvm::Value;
1050   assert(CGF.getContext().hasSameType(E->getLHS()->getType(),
1051                                       E->getRHS()->getType()));
1052   const ComparisonCategoryInfo &CmpInfo =
1053       CGF.getContext().CompCategories.getInfoForType(E->getType());
1054   assert(CmpInfo.Record->isTriviallyCopyable() &&
1055          "cannot copy non-trivially copyable aggregate");
1056 
1057   QualType ArgTy = E->getLHS()->getType();
1058 
1059   if (!ArgTy->isIntegralOrEnumerationType() && !ArgTy->isRealFloatingType() &&
1060       !ArgTy->isNullPtrType() && !ArgTy->isPointerType() &&
1061       !ArgTy->isMemberPointerType() && !ArgTy->isAnyComplexType()) {
1062     return CGF.ErrorUnsupported(E, "aggregate three-way comparison");
1063   }
1064   bool IsComplex = ArgTy->isAnyComplexType();
1065 
1066   // Evaluate the operands to the expression and extract their values.
1067   auto EmitOperand = [&](Expr *E) -> std::pair<Value *, Value *> {
1068     RValue RV = CGF.EmitAnyExpr(E);
1069     if (RV.isScalar())
1070       return {RV.getScalarVal(), nullptr};
1071     if (RV.isAggregate())
1072       return {RV.getAggregatePointer(E->getType(), CGF), nullptr};
1073     assert(RV.isComplex());
1074     return RV.getComplexVal();
1075   };
1076   auto LHSValues = EmitOperand(E->getLHS()),
1077        RHSValues = EmitOperand(E->getRHS());
1078 
1079   auto EmitCmp = [&](CompareKind K) {
1080     Value *Cmp = EmitCompare(Builder, CGF, E, LHSValues.first, RHSValues.first,
1081                              K, IsComplex ? ".r" : "");
1082     if (!IsComplex)
1083       return Cmp;
1084     assert(K == CompareKind::CK_Equal);
1085     Value *CmpImag = EmitCompare(Builder, CGF, E, LHSValues.second,
1086                                  RHSValues.second, K, ".i");
1087     return Builder.CreateAnd(Cmp, CmpImag, "and.eq");
1088   };
1089   auto EmitCmpRes = [&](const ComparisonCategoryInfo::ValueInfo *VInfo) {
1090     return Builder.getInt(VInfo->getIntValue());
1091   };
1092 
1093   Value *Select;
1094   if (ArgTy->isNullPtrType()) {
1095     Select = EmitCmpRes(CmpInfo.getEqualOrEquiv());
1096   } else if (!CmpInfo.isPartial()) {
1097     Value *SelectOne =
1098         Builder.CreateSelect(EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()),
1099                              EmitCmpRes(CmpInfo.getGreater()), "sel.lt");
1100     Select = Builder.CreateSelect(EmitCmp(CK_Equal),
1101                                   EmitCmpRes(CmpInfo.getEqualOrEquiv()),
1102                                   SelectOne, "sel.eq");
1103   } else {
1104     Value *SelectEq = Builder.CreateSelect(
1105         EmitCmp(CK_Equal), EmitCmpRes(CmpInfo.getEqualOrEquiv()),
1106         EmitCmpRes(CmpInfo.getUnordered()), "sel.eq");
1107     Value *SelectGT = Builder.CreateSelect(EmitCmp(CK_Greater),
1108                                            EmitCmpRes(CmpInfo.getGreater()),
1109                                            SelectEq, "sel.gt");
1110     Select = Builder.CreateSelect(
1111         EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()), SelectGT, "sel.lt");
1112   }
1113   // Create the return value in the destination slot.
1114   EnsureDest(E->getType());
1115   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1116 
1117   // Emit the address of the first (and only) field in the comparison category
1118   // type, and initialize it from the constant integer value selected above.
1119   LValue FieldLV = CGF.EmitLValueForFieldInitialization(
1120       DestLV, *CmpInfo.Record->field_begin());
1121   CGF.EmitStoreThroughLValue(RValue::get(Select), FieldLV, /*IsInit*/ true);
1122 
1123   // All done! The result is in the Dest slot.
1124 }
1125 
1126 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
1127   if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
1128     VisitPointerToDataMemberBinaryOperator(E);
1129   else
1130     CGF.ErrorUnsupported(E, "aggregate binary expression");
1131 }
1132 
1133 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
1134                                                     const BinaryOperator *E) {
1135   LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
1136   EmitFinalDestCopy(E->getType(), LV);
1137 }
1138 
1139 /// Is the value of the given expression possibly a reference to or
1140 /// into a __block variable?
1141 static bool isBlockVarRef(const Expr *E) {
1142   // Make sure we look through parens.
1143   E = E->IgnoreParens();
1144 
1145   // Check for a direct reference to a __block variable.
1146   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
1147     const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
1148     return (var && var->hasAttr<BlocksAttr>());
1149   }
1150 
1151   // More complicated stuff.
1152 
1153   // Binary operators.
1154   if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) {
1155     // For an assignment or pointer-to-member operation, just care
1156     // about the LHS.
1157     if (op->isAssignmentOp() || op->isPtrMemOp())
1158       return isBlockVarRef(op->getLHS());
1159 
1160     // For a comma, just care about the RHS.
1161     if (op->getOpcode() == BO_Comma)
1162       return isBlockVarRef(op->getRHS());
1163 
1164     // FIXME: pointer arithmetic?
1165     return false;
1166 
1167   // Check both sides of a conditional operator.
1168   } else if (const AbstractConditionalOperator *op
1169                = dyn_cast<AbstractConditionalOperator>(E)) {
1170     return isBlockVarRef(op->getTrueExpr())
1171         || isBlockVarRef(op->getFalseExpr());
1172 
1173   // OVEs are required to support BinaryConditionalOperators.
1174   } else if (const OpaqueValueExpr *op
1175                = dyn_cast<OpaqueValueExpr>(E)) {
1176     if (const Expr *src = op->getSourceExpr())
1177       return isBlockVarRef(src);
1178 
1179   // Casts are necessary to get things like (*(int*)&var) = foo().
1180   // We don't really care about the kind of cast here, except
1181   // we don't want to look through l2r casts, because it's okay
1182   // to get the *value* in a __block variable.
1183   } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) {
1184     if (cast->getCastKind() == CK_LValueToRValue)
1185       return false;
1186     return isBlockVarRef(cast->getSubExpr());
1187 
1188   // Handle unary operators.  Again, just aggressively look through
1189   // it, ignoring the operation.
1190   } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) {
1191     return isBlockVarRef(uop->getSubExpr());
1192 
1193   // Look into the base of a field access.
1194   } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
1195     return isBlockVarRef(mem->getBase());
1196 
1197   // Look into the base of a subscript.
1198   } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) {
1199     return isBlockVarRef(sub->getBase());
1200   }
1201 
1202   return false;
1203 }
1204 
1205 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
1206   // For an assignment to work, the value on the right has
1207   // to be compatible with the value on the left.
1208   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
1209                                                  E->getRHS()->getType())
1210          && "Invalid assignment");
1211 
1212   // If the LHS might be a __block variable, and the RHS can
1213   // potentially cause a block copy, we need to evaluate the RHS first
1214   // so that the assignment goes the right place.
1215   // This is pretty semantically fragile.
1216   if (isBlockVarRef(E->getLHS()) &&
1217       E->getRHS()->HasSideEffects(CGF.getContext())) {
1218     // Ensure that we have a destination, and evaluate the RHS into that.
1219     EnsureDest(E->getRHS()->getType());
1220     Visit(E->getRHS());
1221 
1222     // Now emit the LHS and copy into it.
1223     LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
1224 
1225     // That copy is an atomic copy if the LHS is atomic.
1226     if (LHS.getType()->isAtomicType() ||
1227         CGF.LValueIsSuitableForInlineAtomic(LHS)) {
1228       CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
1229       return;
1230     }
1231 
1232     EmitCopy(E->getLHS()->getType(),
1233              AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
1234                                      needsGC(E->getLHS()->getType()),
1235                                      AggValueSlot::IsAliased,
1236                                      AggValueSlot::MayOverlap),
1237              Dest);
1238     return;
1239   }
1240 
1241   LValue LHS = CGF.EmitLValue(E->getLHS());
1242 
1243   // If we have an atomic type, evaluate into the destination and then
1244   // do an atomic copy.
1245   if (LHS.getType()->isAtomicType() ||
1246       CGF.LValueIsSuitableForInlineAtomic(LHS)) {
1247     EnsureDest(E->getRHS()->getType());
1248     Visit(E->getRHS());
1249     CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
1250     return;
1251   }
1252 
1253   // Codegen the RHS so that it stores directly into the LHS.
1254   AggValueSlot LHSSlot = AggValueSlot::forLValue(
1255       LHS, AggValueSlot::IsDestructed, needsGC(E->getLHS()->getType()),
1256       AggValueSlot::IsAliased, AggValueSlot::MayOverlap);
1257   // A non-volatile aggregate destination might have volatile member.
1258   if (!LHSSlot.isVolatile() &&
1259       CGF.hasVolatileMember(E->getLHS()->getType()))
1260     LHSSlot.setVolatile(true);
1261 
1262   CGF.EmitAggExpr(E->getRHS(), LHSSlot);
1263 
1264   // Copy into the destination if the assignment isn't ignored.
1265   EmitFinalDestCopy(E->getType(), LHS);
1266 
1267   if (!Dest.isIgnored() && !Dest.isExternallyDestructed() &&
1268       E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
1269     CGF.pushDestroy(QualType::DK_nontrivial_c_struct, Dest.getAddress(),
1270                     E->getType());
1271 }
1272 
1273 void AggExprEmitter::
1274 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
1275   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
1276   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
1277   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
1278 
1279   // Bind the common expression if necessary.
1280   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
1281 
1282   CodeGenFunction::ConditionalEvaluation eval(CGF);
1283   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock,
1284                            CGF.getProfileCount(E));
1285 
1286   // Save whether the destination's lifetime is externally managed.
1287   bool isExternallyDestructed = Dest.isExternallyDestructed();
1288   bool destructNonTrivialCStruct =
1289       !isExternallyDestructed &&
1290       E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct;
1291   isExternallyDestructed |= destructNonTrivialCStruct;
1292   Dest.setExternallyDestructed(isExternallyDestructed);
1293 
1294   eval.begin(CGF);
1295   CGF.EmitBlock(LHSBlock);
1296   if (llvm::EnableSingleByteCoverage)
1297     CGF.incrementProfileCounter(E->getTrueExpr());
1298   else
1299     CGF.incrementProfileCounter(E);
1300   Visit(E->getTrueExpr());
1301   eval.end(CGF);
1302 
1303   assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
1304   CGF.Builder.CreateBr(ContBlock);
1305 
1306   // If the result of an agg expression is unused, then the emission
1307   // of the LHS might need to create a destination slot.  That's fine
1308   // with us, and we can safely emit the RHS into the same slot, but
1309   // we shouldn't claim that it's already being destructed.
1310   Dest.setExternallyDestructed(isExternallyDestructed);
1311 
1312   eval.begin(CGF);
1313   CGF.EmitBlock(RHSBlock);
1314   if (llvm::EnableSingleByteCoverage)
1315     CGF.incrementProfileCounter(E->getFalseExpr());
1316   Visit(E->getFalseExpr());
1317   eval.end(CGF);
1318 
1319   if (destructNonTrivialCStruct)
1320     CGF.pushDestroy(QualType::DK_nontrivial_c_struct, Dest.getAddress(),
1321                     E->getType());
1322 
1323   CGF.EmitBlock(ContBlock);
1324   if (llvm::EnableSingleByteCoverage)
1325     CGF.incrementProfileCounter(E);
1326 }
1327 
1328 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
1329   Visit(CE->getChosenSubExpr());
1330 }
1331 
1332 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
1333   Address ArgValue = Address::invalid();
1334   CGF.EmitVAArg(VE, ArgValue, Dest);
1335 
1336   // If EmitVAArg fails, emit an error.
1337   if (!ArgValue.isValid()) {
1338     CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
1339     return;
1340   }
1341 }
1342 
1343 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
1344   // Ensure that we have a slot, but if we already do, remember
1345   // whether it was externally destructed.
1346   bool wasExternallyDestructed = Dest.isExternallyDestructed();
1347   EnsureDest(E->getType());
1348 
1349   // We're going to push a destructor if there isn't already one.
1350   Dest.setExternallyDestructed();
1351 
1352   Visit(E->getSubExpr());
1353 
1354   // Push that destructor we promised.
1355   if (!wasExternallyDestructed)
1356     CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddress());
1357 }
1358 
1359 void
1360 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
1361   AggValueSlot Slot = EnsureSlot(E->getType());
1362   CGF.EmitCXXConstructExpr(E, Slot);
1363 }
1364 
1365 void AggExprEmitter::VisitCXXInheritedCtorInitExpr(
1366     const CXXInheritedCtorInitExpr *E) {
1367   AggValueSlot Slot = EnsureSlot(E->getType());
1368   CGF.EmitInheritedCXXConstructorCall(
1369       E->getConstructor(), E->constructsVBase(), Slot.getAddress(),
1370       E->inheritedFromVBase(), E);
1371 }
1372 
1373 void
1374 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) {
1375   AggValueSlot Slot = EnsureSlot(E->getType());
1376   LValue SlotLV = CGF.MakeAddrLValue(Slot.getAddress(), E->getType());
1377 
1378   // We'll need to enter cleanup scopes in case any of the element
1379   // initializers throws an exception or contains branch out of the expressions.
1380   CodeGenFunction::CleanupDeactivationScope scope(CGF);
1381 
1382   CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin();
1383   for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(),
1384                                                e = E->capture_init_end();
1385        i != e; ++i, ++CurField) {
1386     // Emit initialization
1387     LValue LV = CGF.EmitLValueForFieldInitialization(SlotLV, *CurField);
1388     if (CurField->hasCapturedVLAType()) {
1389       CGF.EmitLambdaVLACapture(CurField->getCapturedVLAType(), LV);
1390       continue;
1391     }
1392 
1393     EmitInitializationToLValue(*i, LV);
1394 
1395     // Push a destructor if necessary.
1396     if (QualType::DestructionKind DtorKind =
1397             CurField->getType().isDestructedType()) {
1398       assert(LV.isSimple());
1399       if (DtorKind)
1400         CGF.pushDestroyAndDeferDeactivation(NormalAndEHCleanup, LV.getAddress(),
1401                                             CurField->getType(),
1402                                             CGF.getDestroyer(DtorKind), false);
1403     }
1404   }
1405 }
1406 
1407 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
1408   CodeGenFunction::RunCleanupsScope cleanups(CGF);
1409   Visit(E->getSubExpr());
1410 }
1411 
1412 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
1413   QualType T = E->getType();
1414   AggValueSlot Slot = EnsureSlot(T);
1415   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1416 }
1417 
1418 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
1419   QualType T = E->getType();
1420   AggValueSlot Slot = EnsureSlot(T);
1421   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1422 }
1423 
1424 /// Determine whether the given cast kind is known to always convert values
1425 /// with all zero bits in their value representation to values with all zero
1426 /// bits in their value representation.
1427 static bool castPreservesZero(const CastExpr *CE) {
1428   switch (CE->getCastKind()) {
1429     // No-ops.
1430   case CK_NoOp:
1431   case CK_UserDefinedConversion:
1432   case CK_ConstructorConversion:
1433   case CK_BitCast:
1434   case CK_ToUnion:
1435   case CK_ToVoid:
1436     // Conversions between (possibly-complex) integral, (possibly-complex)
1437     // floating-point, and bool.
1438   case CK_BooleanToSignedIntegral:
1439   case CK_FloatingCast:
1440   case CK_FloatingComplexCast:
1441   case CK_FloatingComplexToBoolean:
1442   case CK_FloatingComplexToIntegralComplex:
1443   case CK_FloatingComplexToReal:
1444   case CK_FloatingRealToComplex:
1445   case CK_FloatingToBoolean:
1446   case CK_FloatingToIntegral:
1447   case CK_IntegralCast:
1448   case CK_IntegralComplexCast:
1449   case CK_IntegralComplexToBoolean:
1450   case CK_IntegralComplexToFloatingComplex:
1451   case CK_IntegralComplexToReal:
1452   case CK_IntegralRealToComplex:
1453   case CK_IntegralToBoolean:
1454   case CK_IntegralToFloating:
1455     // Reinterpreting integers as pointers and vice versa.
1456   case CK_IntegralToPointer:
1457   case CK_PointerToIntegral:
1458     // Language extensions.
1459   case CK_VectorSplat:
1460   case CK_MatrixCast:
1461   case CK_NonAtomicToAtomic:
1462   case CK_AtomicToNonAtomic:
1463   case CK_HLSLVectorTruncation:
1464     return true;
1465 
1466   case CK_BaseToDerivedMemberPointer:
1467   case CK_DerivedToBaseMemberPointer:
1468   case CK_MemberPointerToBoolean:
1469   case CK_NullToMemberPointer:
1470   case CK_ReinterpretMemberPointer:
1471     // FIXME: ABI-dependent.
1472     return false;
1473 
1474   case CK_AnyPointerToBlockPointerCast:
1475   case CK_BlockPointerToObjCPointerCast:
1476   case CK_CPointerToObjCPointerCast:
1477   case CK_ObjCObjectLValueCast:
1478   case CK_IntToOCLSampler:
1479   case CK_ZeroToOCLOpaqueType:
1480     // FIXME: Check these.
1481     return false;
1482 
1483   case CK_FixedPointCast:
1484   case CK_FixedPointToBoolean:
1485   case CK_FixedPointToFloating:
1486   case CK_FixedPointToIntegral:
1487   case CK_FloatingToFixedPoint:
1488   case CK_IntegralToFixedPoint:
1489     // FIXME: Do all fixed-point types represent zero as all 0 bits?
1490     return false;
1491 
1492   case CK_AddressSpaceConversion:
1493   case CK_BaseToDerived:
1494   case CK_DerivedToBase:
1495   case CK_Dynamic:
1496   case CK_NullToPointer:
1497   case CK_PointerToBoolean:
1498     // FIXME: Preserves zeroes only if zero pointers and null pointers have the
1499     // same representation in all involved address spaces.
1500     return false;
1501 
1502   case CK_ARCConsumeObject:
1503   case CK_ARCExtendBlockObject:
1504   case CK_ARCProduceObject:
1505   case CK_ARCReclaimReturnedObject:
1506   case CK_CopyAndAutoreleaseBlockObject:
1507   case CK_ArrayToPointerDecay:
1508   case CK_FunctionToPointerDecay:
1509   case CK_BuiltinFnToFnPtr:
1510   case CK_Dependent:
1511   case CK_LValueBitCast:
1512   case CK_LValueToRValue:
1513   case CK_LValueToRValueBitCast:
1514   case CK_UncheckedDerivedToBase:
1515   case CK_HLSLArrayRValue:
1516     return false;
1517   }
1518   llvm_unreachable("Unhandled clang::CastKind enum");
1519 }
1520 
1521 /// isSimpleZero - If emitting this value will obviously just cause a store of
1522 /// zero to memory, return true.  This can return false if uncertain, so it just
1523 /// handles simple cases.
1524 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
1525   E = E->IgnoreParens();
1526   while (auto *CE = dyn_cast<CastExpr>(E)) {
1527     if (!castPreservesZero(CE))
1528       break;
1529     E = CE->getSubExpr()->IgnoreParens();
1530   }
1531 
1532   // 0
1533   if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
1534     return IL->getValue() == 0;
1535   // +0.0
1536   if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
1537     return FL->getValue().isPosZero();
1538   // int()
1539   if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
1540       CGF.getTypes().isZeroInitializable(E->getType()))
1541     return true;
1542   // (int*)0 - Null pointer expressions.
1543   if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
1544     return ICE->getCastKind() == CK_NullToPointer &&
1545            CGF.getTypes().isPointerZeroInitializable(E->getType()) &&
1546            !E->HasSideEffects(CGF.getContext());
1547   // '\0'
1548   if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
1549     return CL->getValue() == 0;
1550 
1551   // Otherwise, hard case: conservatively return false.
1552   return false;
1553 }
1554 
1555 
1556 void
1557 AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) {
1558   QualType type = LV.getType();
1559   // FIXME: Ignore result?
1560   // FIXME: Are initializers affected by volatile?
1561   if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
1562     // Storing "i32 0" to a zero'd memory location is a noop.
1563     return;
1564   } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) {
1565     return EmitNullInitializationToLValue(LV);
1566   } else if (isa<NoInitExpr>(E)) {
1567     // Do nothing.
1568     return;
1569   } else if (type->isReferenceType()) {
1570     RValue RV = CGF.EmitReferenceBindingToExpr(E);
1571     return CGF.EmitStoreThroughLValue(RV, LV);
1572   }
1573 
1574   CGF.EmitInitializationToLValue(E, LV, Dest.isZeroed());
1575 }
1576 
1577 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
1578   QualType type = lv.getType();
1579 
1580   // If the destination slot is already zeroed out before the aggregate is
1581   // copied into it, we don't have to emit any zeros here.
1582   if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
1583     return;
1584 
1585   if (CGF.hasScalarEvaluationKind(type)) {
1586     // For non-aggregates, we can store the appropriate null constant.
1587     llvm::Value *null = CGF.CGM.EmitNullConstant(type);
1588     // Note that the following is not equivalent to
1589     // EmitStoreThroughBitfieldLValue for ARC types.
1590     if (lv.isBitField()) {
1591       CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv);
1592     } else {
1593       assert(lv.isSimple());
1594       CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true);
1595     }
1596   } else {
1597     // There's a potential optimization opportunity in combining
1598     // memsets; that would be easy for arrays, but relatively
1599     // difficult for structures with the current code.
1600     CGF.EmitNullInitialization(lv.getAddress(), lv.getType());
1601   }
1602 }
1603 
1604 void AggExprEmitter::VisitCXXParenListInitExpr(CXXParenListInitExpr *E) {
1605   VisitCXXParenListOrInitListExpr(E, E->getInitExprs(),
1606                                   E->getInitializedFieldInUnion(),
1607                                   E->getArrayFiller());
1608 }
1609 
1610 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
1611   if (E->hadArrayRangeDesignator())
1612     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1613 
1614   if (E->isTransparent())
1615     return Visit(E->getInit(0));
1616 
1617   VisitCXXParenListOrInitListExpr(
1618       E, E->inits(), E->getInitializedFieldInUnion(), E->getArrayFiller());
1619 }
1620 
1621 void AggExprEmitter::VisitCXXParenListOrInitListExpr(
1622     Expr *ExprToVisit, ArrayRef<Expr *> InitExprs,
1623     FieldDecl *InitializedFieldInUnion, Expr *ArrayFiller) {
1624 #if 0
1625   // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
1626   // (Length of globals? Chunks of zeroed-out space?).
1627   //
1628   // If we can, prefer a copy from a global; this is a lot less code for long
1629   // globals, and it's easier for the current optimizers to analyze.
1630   if (llvm::Constant *C =
1631           CGF.CGM.EmitConstantExpr(ExprToVisit, ExprToVisit->getType(), &CGF)) {
1632     llvm::GlobalVariable* GV =
1633     new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
1634                              llvm::GlobalValue::InternalLinkage, C, "");
1635     EmitFinalDestCopy(ExprToVisit->getType(),
1636                       CGF.MakeAddrLValue(GV, ExprToVisit->getType()));
1637     return;
1638   }
1639 #endif
1640 
1641   AggValueSlot Dest = EnsureSlot(ExprToVisit->getType());
1642 
1643   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), ExprToVisit->getType());
1644 
1645   // Handle initialization of an array.
1646   if (ExprToVisit->getType()->isConstantArrayType()) {
1647     auto AType = cast<llvm::ArrayType>(Dest.getAddress().getElementType());
1648     EmitArrayInit(Dest.getAddress(), AType, ExprToVisit->getType(), ExprToVisit,
1649                   InitExprs, ArrayFiller);
1650     return;
1651   } else if (ExprToVisit->getType()->isVariableArrayType()) {
1652     // A variable array type that has an initializer can only do empty
1653     // initialization. And because this feature is not exposed as an extension
1654     // in C++, we can safely memset the array memory to zero.
1655     assert(InitExprs.size() == 0 &&
1656            "you can only use an empty initializer with VLAs");
1657     CGF.EmitNullInitialization(Dest.getAddress(), ExprToVisit->getType());
1658     return;
1659   }
1660 
1661   assert(ExprToVisit->getType()->isRecordType() &&
1662          "Only support structs/unions here!");
1663 
1664   // Do struct initialization; this code just sets each individual member
1665   // to the approprate value.  This makes bitfield support automatic;
1666   // the disadvantage is that the generated code is more difficult for
1667   // the optimizer, especially with bitfields.
1668   unsigned NumInitElements = InitExprs.size();
1669   RecordDecl *record = ExprToVisit->getType()->castAs<RecordType>()->getDecl();
1670 
1671   // We'll need to enter cleanup scopes in case any of the element
1672   // initializers throws an exception.
1673   SmallVector<EHScopeStack::stable_iterator, 16> cleanups;
1674   CodeGenFunction::CleanupDeactivationScope DeactivateCleanups(CGF);
1675 
1676   unsigned curInitIndex = 0;
1677 
1678   // Emit initialization of base classes.
1679   if (auto *CXXRD = dyn_cast<CXXRecordDecl>(record)) {
1680     assert(NumInitElements >= CXXRD->getNumBases() &&
1681            "missing initializer for base class");
1682     for (auto &Base : CXXRD->bases()) {
1683       assert(!Base.isVirtual() && "should not see vbases here");
1684       auto *BaseRD = Base.getType()->getAsCXXRecordDecl();
1685       Address V = CGF.GetAddressOfDirectBaseInCompleteClass(
1686           Dest.getAddress(), CXXRD, BaseRD,
1687           /*isBaseVirtual*/ false);
1688       AggValueSlot AggSlot = AggValueSlot::forAddr(
1689           V, Qualifiers(),
1690           AggValueSlot::IsDestructed,
1691           AggValueSlot::DoesNotNeedGCBarriers,
1692           AggValueSlot::IsNotAliased,
1693           CGF.getOverlapForBaseInit(CXXRD, BaseRD, Base.isVirtual()));
1694       CGF.EmitAggExpr(InitExprs[curInitIndex++], AggSlot);
1695 
1696       if (QualType::DestructionKind dtorKind =
1697               Base.getType().isDestructedType())
1698         CGF.pushDestroyAndDeferDeactivation(dtorKind, V, Base.getType());
1699     }
1700   }
1701 
1702   // Prepare a 'this' for CXXDefaultInitExprs.
1703   CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddress());
1704 
1705   const bool ZeroInitPadding =
1706       CGF.CGM.shouldZeroInitPadding() && !Dest.isZeroed();
1707 
1708   if (record->isUnion()) {
1709     // Only initialize one field of a union. The field itself is
1710     // specified by the initializer list.
1711     if (!InitializedFieldInUnion) {
1712       // Empty union; we have nothing to do.
1713 
1714 #ifndef NDEBUG
1715       // Make sure that it's really an empty and not a failure of
1716       // semantic analysis.
1717       for (const auto *Field : record->fields())
1718         assert(
1719             (Field->isUnnamedBitField() || Field->isAnonymousStructOrUnion()) &&
1720             "Only unnamed bitfields or anonymous class allowed");
1721 #endif
1722       return;
1723     }
1724 
1725     // FIXME: volatility
1726     FieldDecl *Field = InitializedFieldInUnion;
1727 
1728     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field);
1729     if (NumInitElements) {
1730       // Store the initializer into the field
1731       EmitInitializationToLValue(InitExprs[0], FieldLoc);
1732       if (ZeroInitPadding) {
1733         uint64_t TotalSize = CGF.getContext().toBits(
1734             Dest.getPreferredSize(CGF.getContext(), DestLV.getType()));
1735         uint64_t FieldSize = CGF.getContext().getTypeSize(FieldLoc.getType());
1736         DoZeroInitPadding(FieldSize, TotalSize, nullptr);
1737       }
1738     } else {
1739       // Default-initialize to null.
1740       if (ZeroInitPadding)
1741         EmitNullInitializationToLValue(DestLV);
1742       else
1743         EmitNullInitializationToLValue(FieldLoc);
1744     }
1745     return;
1746   }
1747 
1748   // Here we iterate over the fields; this makes it simpler to both
1749   // default-initialize fields and skip over unnamed fields.
1750   const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(record);
1751   uint64_t PaddingStart = 0;
1752 
1753   for (const auto *field : record->fields()) {
1754     // We're done once we hit the flexible array member.
1755     if (field->getType()->isIncompleteArrayType())
1756       break;
1757 
1758     // Always skip anonymous bitfields.
1759     if (field->isUnnamedBitField())
1760       continue;
1761 
1762     // We're done if we reach the end of the explicit initializers, we
1763     // have a zeroed object, and the rest of the fields are
1764     // zero-initializable.
1765     if (curInitIndex == NumInitElements && Dest.isZeroed() &&
1766         CGF.getTypes().isZeroInitializable(ExprToVisit->getType()))
1767       break;
1768 
1769     if (ZeroInitPadding)
1770       DoZeroInitPadding(PaddingStart,
1771                         Layout.getFieldOffset(field->getFieldIndex()), field);
1772 
1773     LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, field);
1774     // We never generate write-barries for initialized fields.
1775     LV.setNonGC(true);
1776 
1777     if (curInitIndex < NumInitElements) {
1778       // Store the initializer into the field.
1779       EmitInitializationToLValue(InitExprs[curInitIndex++], LV);
1780     } else {
1781       // We're out of initializers; default-initialize to null
1782       EmitNullInitializationToLValue(LV);
1783     }
1784 
1785     // Push a destructor if necessary.
1786     // FIXME: if we have an array of structures, all explicitly
1787     // initialized, we can end up pushing a linear number of cleanups.
1788     if (QualType::DestructionKind dtorKind
1789           = field->getType().isDestructedType()) {
1790       assert(LV.isSimple());
1791       if (dtorKind) {
1792         CGF.pushDestroyAndDeferDeactivation(NormalAndEHCleanup, LV.getAddress(),
1793                                             field->getType(),
1794                                             CGF.getDestroyer(dtorKind), false);
1795       }
1796     }
1797   }
1798   if (ZeroInitPadding) {
1799     uint64_t TotalSize = CGF.getContext().toBits(
1800         Dest.getPreferredSize(CGF.getContext(), DestLV.getType()));
1801     DoZeroInitPadding(PaddingStart, TotalSize, nullptr);
1802   }
1803 }
1804 
1805 void AggExprEmitter::DoZeroInitPadding(uint64_t &PaddingStart,
1806                                        uint64_t PaddingEnd,
1807                                        const FieldDecl *NextField) {
1808 
1809   auto InitBytes = [&](uint64_t StartBit, uint64_t EndBit) {
1810     CharUnits Start = CGF.getContext().toCharUnitsFromBits(StartBit);
1811     CharUnits End = CGF.getContext().toCharUnitsFromBits(EndBit);
1812     Address Addr = Dest.getAddress().withElementType(CGF.CharTy);
1813     if (!Start.isZero())
1814       Addr = Builder.CreateConstGEP(Addr, Start.getQuantity());
1815     llvm::Constant *SizeVal = Builder.getInt64((End - Start).getQuantity());
1816     CGF.Builder.CreateMemSet(Addr, Builder.getInt8(0), SizeVal, false);
1817   };
1818 
1819   if (NextField != nullptr && NextField->isBitField()) {
1820     // For bitfield, zero init StorageSize before storing the bits. So we don't
1821     // need to handle big/little endian.
1822     const CGRecordLayout &RL =
1823         CGF.getTypes().getCGRecordLayout(NextField->getParent());
1824     const CGBitFieldInfo &Info = RL.getBitFieldInfo(NextField);
1825     uint64_t StorageStart = CGF.getContext().toBits(Info.StorageOffset);
1826     if (StorageStart + Info.StorageSize > PaddingStart) {
1827       if (StorageStart > PaddingStart)
1828         InitBytes(PaddingStart, StorageStart);
1829       Address Addr = Dest.getAddress();
1830       if (!Info.StorageOffset.isZero())
1831         Addr = Builder.CreateConstGEP(Addr.withElementType(CGF.CharTy),
1832                                       Info.StorageOffset.getQuantity());
1833       Addr = Addr.withElementType(
1834           llvm::Type::getIntNTy(CGF.getLLVMContext(), Info.StorageSize));
1835       Builder.CreateStore(Builder.getIntN(Info.StorageSize, 0), Addr);
1836       PaddingStart = StorageStart + Info.StorageSize;
1837     }
1838     return;
1839   }
1840 
1841   if (PaddingStart < PaddingEnd)
1842     InitBytes(PaddingStart, PaddingEnd);
1843   if (NextField != nullptr)
1844     PaddingStart =
1845         PaddingEnd + CGF.getContext().getTypeSize(NextField->getType());
1846 }
1847 
1848 void AggExprEmitter::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E,
1849                                             llvm::Value *outerBegin) {
1850   // Emit the common subexpression.
1851   CodeGenFunction::OpaqueValueMapping binding(CGF, E->getCommonExpr());
1852 
1853   Address destPtr = EnsureSlot(E->getType()).getAddress();
1854   uint64_t numElements = E->getArraySize().getZExtValue();
1855 
1856   if (!numElements)
1857     return;
1858 
1859   // destPtr is an array*. Construct an elementType* by drilling down a level.
1860   llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
1861   llvm::Value *indices[] = {zero, zero};
1862   llvm::Value *begin = Builder.CreateInBoundsGEP(destPtr.getElementType(),
1863                                                  destPtr.emitRawPointer(CGF),
1864                                                  indices, "arrayinit.begin");
1865 
1866   // Prepare to special-case multidimensional array initialization: we avoid
1867   // emitting multiple destructor loops in that case.
1868   if (!outerBegin)
1869     outerBegin = begin;
1870   ArrayInitLoopExpr *InnerLoop = dyn_cast<ArrayInitLoopExpr>(E->getSubExpr());
1871 
1872   QualType elementType =
1873       CGF.getContext().getAsArrayType(E->getType())->getElementType();
1874   CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
1875   CharUnits elementAlign =
1876       destPtr.getAlignment().alignmentOfArrayElement(elementSize);
1877   llvm::Type *llvmElementType = CGF.ConvertTypeForMem(elementType);
1878 
1879   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1880   llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
1881 
1882   // Jump into the body.
1883   CGF.EmitBlock(bodyBB);
1884   llvm::PHINode *index =
1885       Builder.CreatePHI(zero->getType(), 2, "arrayinit.index");
1886   index->addIncoming(zero, entryBB);
1887   llvm::Value *element =
1888       Builder.CreateInBoundsGEP(llvmElementType, begin, index);
1889 
1890   // Prepare for a cleanup.
1891   QualType::DestructionKind dtorKind = elementType.isDestructedType();
1892   EHScopeStack::stable_iterator cleanup;
1893   if (CGF.needsEHCleanup(dtorKind) && !InnerLoop) {
1894     if (outerBegin->getType() != element->getType())
1895       outerBegin = Builder.CreateBitCast(outerBegin, element->getType());
1896     CGF.pushRegularPartialArrayCleanup(outerBegin, element, elementType,
1897                                        elementAlign,
1898                                        CGF.getDestroyer(dtorKind));
1899     cleanup = CGF.EHStack.stable_begin();
1900   } else {
1901     dtorKind = QualType::DK_none;
1902   }
1903 
1904   // Emit the actual filler expression.
1905   {
1906     // Temporaries created in an array initialization loop are destroyed
1907     // at the end of each iteration.
1908     CodeGenFunction::RunCleanupsScope CleanupsScope(CGF);
1909     CodeGenFunction::ArrayInitLoopExprScope Scope(CGF, index);
1910     LValue elementLV = CGF.MakeAddrLValue(
1911         Address(element, llvmElementType, elementAlign), elementType);
1912 
1913     if (InnerLoop) {
1914       // If the subexpression is an ArrayInitLoopExpr, share its cleanup.
1915       auto elementSlot = AggValueSlot::forLValue(
1916           elementLV, AggValueSlot::IsDestructed,
1917           AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased,
1918           AggValueSlot::DoesNotOverlap);
1919       AggExprEmitter(CGF, elementSlot, false)
1920           .VisitArrayInitLoopExpr(InnerLoop, outerBegin);
1921     } else
1922       EmitInitializationToLValue(E->getSubExpr(), elementLV);
1923   }
1924 
1925   // Move on to the next element.
1926   llvm::Value *nextIndex = Builder.CreateNUWAdd(
1927       index, llvm::ConstantInt::get(CGF.SizeTy, 1), "arrayinit.next");
1928   index->addIncoming(nextIndex, Builder.GetInsertBlock());
1929 
1930   // Leave the loop if we're done.
1931   llvm::Value *done = Builder.CreateICmpEQ(
1932       nextIndex, llvm::ConstantInt::get(CGF.SizeTy, numElements),
1933       "arrayinit.done");
1934   llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
1935   Builder.CreateCondBr(done, endBB, bodyBB);
1936 
1937   CGF.EmitBlock(endBB);
1938 
1939   // Leave the partial-array cleanup if we entered one.
1940   if (dtorKind)
1941     CGF.DeactivateCleanupBlock(cleanup, index);
1942 }
1943 
1944 void AggExprEmitter::VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E) {
1945   AggValueSlot Dest = EnsureSlot(E->getType());
1946 
1947   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1948   EmitInitializationToLValue(E->getBase(), DestLV);
1949   VisitInitListExpr(E->getUpdater());
1950 }
1951 
1952 //===----------------------------------------------------------------------===//
1953 //                        Entry Points into this File
1954 //===----------------------------------------------------------------------===//
1955 
1956 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of
1957 /// non-zero bytes that will be stored when outputting the initializer for the
1958 /// specified initializer expression.
1959 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
1960   if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E))
1961     E = MTE->getSubExpr();
1962   E = E->IgnoreParenNoopCasts(CGF.getContext());
1963 
1964   // 0 and 0.0 won't require any non-zero stores!
1965   if (isSimpleZero(E, CGF)) return CharUnits::Zero();
1966 
1967   // If this is an initlist expr, sum up the size of sizes of the (present)
1968   // elements.  If this is something weird, assume the whole thing is non-zero.
1969   const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
1970   while (ILE && ILE->isTransparent())
1971     ILE = dyn_cast<InitListExpr>(ILE->getInit(0));
1972   if (!ILE || !CGF.getTypes().isZeroInitializable(ILE->getType()))
1973     return CGF.getContext().getTypeSizeInChars(E->getType());
1974 
1975   // InitListExprs for structs have to be handled carefully.  If there are
1976   // reference members, we need to consider the size of the reference, not the
1977   // referencee.  InitListExprs for unions and arrays can't have references.
1978   if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
1979     if (!RT->isUnionType()) {
1980       RecordDecl *SD = RT->getDecl();
1981       CharUnits NumNonZeroBytes = CharUnits::Zero();
1982 
1983       unsigned ILEElement = 0;
1984       if (auto *CXXRD = dyn_cast<CXXRecordDecl>(SD))
1985         while (ILEElement != CXXRD->getNumBases())
1986           NumNonZeroBytes +=
1987               GetNumNonZeroBytesInInit(ILE->getInit(ILEElement++), CGF);
1988       for (const auto *Field : SD->fields()) {
1989         // We're done once we hit the flexible array member or run out of
1990         // InitListExpr elements.
1991         if (Field->getType()->isIncompleteArrayType() ||
1992             ILEElement == ILE->getNumInits())
1993           break;
1994         if (Field->isUnnamedBitField())
1995           continue;
1996 
1997         const Expr *E = ILE->getInit(ILEElement++);
1998 
1999         // Reference values are always non-null and have the width of a pointer.
2000         if (Field->getType()->isReferenceType())
2001           NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
2002               CGF.getTarget().getPointerWidth(LangAS::Default));
2003         else
2004           NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
2005       }
2006 
2007       return NumNonZeroBytes;
2008     }
2009   }
2010 
2011   // FIXME: This overestimates the number of non-zero bytes for bit-fields.
2012   CharUnits NumNonZeroBytes = CharUnits::Zero();
2013   for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
2014     NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
2015   return NumNonZeroBytes;
2016 }
2017 
2018 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
2019 /// zeros in it, emit a memset and avoid storing the individual zeros.
2020 ///
2021 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
2022                                      CodeGenFunction &CGF) {
2023   // If the slot is already known to be zeroed, nothing to do.  Don't mess with
2024   // volatile stores.
2025   if (Slot.isZeroed() || Slot.isVolatile() || !Slot.getAddress().isValid())
2026     return;
2027 
2028   // C++ objects with a user-declared constructor don't need zero'ing.
2029   if (CGF.getLangOpts().CPlusPlus)
2030     if (const RecordType *RT = CGF.getContext()
2031                        .getBaseElementType(E->getType())->getAs<RecordType>()) {
2032       const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2033       if (RD->hasUserDeclaredConstructor())
2034         return;
2035     }
2036 
2037   // If the type is 16-bytes or smaller, prefer individual stores over memset.
2038   CharUnits Size = Slot.getPreferredSize(CGF.getContext(), E->getType());
2039   if (Size <= CharUnits::fromQuantity(16))
2040     return;
2041 
2042   // Check to see if over 3/4 of the initializer are known to be zero.  If so,
2043   // we prefer to emit memset + individual stores for the rest.
2044   CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
2045   if (NumNonZeroBytes*4 > Size)
2046     return;
2047 
2048   // Okay, it seems like a good idea to use an initial memset, emit the call.
2049   llvm::Constant *SizeVal = CGF.Builder.getInt64(Size.getQuantity());
2050 
2051   Address Loc = Slot.getAddress().withElementType(CGF.Int8Ty);
2052   CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, false);
2053 
2054   // Tell the AggExprEmitter that the slot is known zero.
2055   Slot.setZeroed();
2056 }
2057 
2058 
2059 
2060 
2061 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
2062 /// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
2063 /// the value of the aggregate expression is not needed.  If VolatileDest is
2064 /// true, DestPtr cannot be 0.
2065 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) {
2066   assert(E && hasAggregateEvaluationKind(E->getType()) &&
2067          "Invalid aggregate expression to emit");
2068   assert((Slot.getAddress().isValid() || Slot.isIgnored()) &&
2069          "slot has bits but no address");
2070 
2071   // Optimize the slot if possible.
2072   CheckAggExprForMemSetUse(Slot, E, *this);
2073 
2074   AggExprEmitter(*this, Slot, Slot.isIgnored()).Visit(const_cast<Expr*>(E));
2075 }
2076 
2077 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
2078   assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!");
2079   Address Temp = CreateMemTemp(E->getType());
2080   LValue LV = MakeAddrLValue(Temp, E->getType());
2081   EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed,
2082                                          AggValueSlot::DoesNotNeedGCBarriers,
2083                                          AggValueSlot::IsNotAliased,
2084                                          AggValueSlot::DoesNotOverlap));
2085   return LV;
2086 }
2087 
2088 void CodeGenFunction::EmitAggFinalDestCopy(QualType Type, AggValueSlot Dest,
2089                                            const LValue &Src,
2090                                            ExprValueKind SrcKind) {
2091   return AggExprEmitter(*this, Dest, Dest.isIgnored())
2092       .EmitFinalDestCopy(Type, Src, SrcKind);
2093 }
2094 
2095 AggValueSlot::Overlap_t
2096 CodeGenFunction::getOverlapForFieldInit(const FieldDecl *FD) {
2097   if (!FD->hasAttr<NoUniqueAddressAttr>() || !FD->getType()->isRecordType())
2098     return AggValueSlot::DoesNotOverlap;
2099 
2100   // Empty fields can overlap earlier fields.
2101   if (FD->getType()->getAsCXXRecordDecl()->isEmpty())
2102     return AggValueSlot::MayOverlap;
2103 
2104   // If the field lies entirely within the enclosing class's nvsize, its tail
2105   // padding cannot overlap any already-initialized object. (The only subobjects
2106   // with greater addresses that might already be initialized are vbases.)
2107   const RecordDecl *ClassRD = FD->getParent();
2108   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(ClassRD);
2109   if (Layout.getFieldOffset(FD->getFieldIndex()) +
2110           getContext().getTypeSize(FD->getType()) <=
2111       (uint64_t)getContext().toBits(Layout.getNonVirtualSize()))
2112     return AggValueSlot::DoesNotOverlap;
2113 
2114   // The tail padding may contain values we need to preserve.
2115   return AggValueSlot::MayOverlap;
2116 }
2117 
2118 AggValueSlot::Overlap_t CodeGenFunction::getOverlapForBaseInit(
2119     const CXXRecordDecl *RD, const CXXRecordDecl *BaseRD, bool IsVirtual) {
2120   // If the most-derived object is a field declared with [[no_unique_address]],
2121   // the tail padding of any virtual base could be reused for other subobjects
2122   // of that field's class.
2123   if (IsVirtual)
2124     return AggValueSlot::MayOverlap;
2125 
2126   // Empty bases can overlap earlier bases.
2127   if (BaseRD->isEmpty())
2128     return AggValueSlot::MayOverlap;
2129 
2130   // If the base class is laid out entirely within the nvsize of the derived
2131   // class, its tail padding cannot yet be initialized, so we can issue
2132   // stores at the full width of the base class.
2133   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2134   if (Layout.getBaseClassOffset(BaseRD) +
2135           getContext().getASTRecordLayout(BaseRD).getSize() <=
2136       Layout.getNonVirtualSize())
2137     return AggValueSlot::DoesNotOverlap;
2138 
2139   // The tail padding may contain values we need to preserve.
2140   return AggValueSlot::MayOverlap;
2141 }
2142 
2143 void CodeGenFunction::EmitAggregateCopy(LValue Dest, LValue Src, QualType Ty,
2144                                         AggValueSlot::Overlap_t MayOverlap,
2145                                         bool isVolatile) {
2146   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
2147 
2148   Address DestPtr = Dest.getAddress();
2149   Address SrcPtr = Src.getAddress();
2150 
2151   if (getLangOpts().CPlusPlus) {
2152     if (const RecordType *RT = Ty->getAs<RecordType>()) {
2153       CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
2154       assert((Record->hasTrivialCopyConstructor() ||
2155               Record->hasTrivialCopyAssignment() ||
2156               Record->hasTrivialMoveConstructor() ||
2157               Record->hasTrivialMoveAssignment() ||
2158               Record->hasAttr<TrivialABIAttr>() || Record->isUnion()) &&
2159              "Trying to aggregate-copy a type without a trivial copy/move "
2160              "constructor or assignment operator");
2161       // Ignore empty classes in C++.
2162       if (Record->isEmpty())
2163         return;
2164     }
2165   }
2166 
2167   if (getLangOpts().CUDAIsDevice) {
2168     if (Ty->isCUDADeviceBuiltinSurfaceType()) {
2169       if (getTargetHooks().emitCUDADeviceBuiltinSurfaceDeviceCopy(*this, Dest,
2170                                                                   Src))
2171         return;
2172     } else if (Ty->isCUDADeviceBuiltinTextureType()) {
2173       if (getTargetHooks().emitCUDADeviceBuiltinTextureDeviceCopy(*this, Dest,
2174                                                                   Src))
2175         return;
2176     }
2177   }
2178 
2179   // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
2180   // C99 6.5.16.1p3, which states "If the value being stored in an object is
2181   // read from another object that overlaps in anyway the storage of the first
2182   // object, then the overlap shall be exact and the two objects shall have
2183   // qualified or unqualified versions of a compatible type."
2184   //
2185   // memcpy is not defined if the source and destination pointers are exactly
2186   // equal, but other compilers do this optimization, and almost every memcpy
2187   // implementation handles this case safely.  If there is a libc that does not
2188   // safely handle this, we can add a target hook.
2189 
2190   // Get data size info for this aggregate. Don't copy the tail padding if this
2191   // might be a potentially-overlapping subobject, since the tail padding might
2192   // be occupied by a different object. Otherwise, copying it is fine.
2193   TypeInfoChars TypeInfo;
2194   if (MayOverlap)
2195     TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty);
2196   else
2197     TypeInfo = getContext().getTypeInfoInChars(Ty);
2198 
2199   llvm::Value *SizeVal = nullptr;
2200   if (TypeInfo.Width.isZero()) {
2201     // But note that getTypeInfo returns 0 for a VLA.
2202     if (auto *VAT = dyn_cast_or_null<VariableArrayType>(
2203             getContext().getAsArrayType(Ty))) {
2204       QualType BaseEltTy;
2205       SizeVal = emitArrayLength(VAT, BaseEltTy, DestPtr);
2206       TypeInfo = getContext().getTypeInfoInChars(BaseEltTy);
2207       assert(!TypeInfo.Width.isZero());
2208       SizeVal = Builder.CreateNUWMul(
2209           SizeVal,
2210           llvm::ConstantInt::get(SizeTy, TypeInfo.Width.getQuantity()));
2211     }
2212   }
2213   if (!SizeVal) {
2214     SizeVal = llvm::ConstantInt::get(SizeTy, TypeInfo.Width.getQuantity());
2215   }
2216 
2217   // FIXME: If we have a volatile struct, the optimizer can remove what might
2218   // appear to be `extra' memory ops:
2219   //
2220   // volatile struct { int i; } a, b;
2221   //
2222   // int main() {
2223   //   a = b;
2224   //   a = b;
2225   // }
2226   //
2227   // we need to use a different call here.  We use isVolatile to indicate when
2228   // either the source or the destination is volatile.
2229 
2230   DestPtr = DestPtr.withElementType(Int8Ty);
2231   SrcPtr = SrcPtr.withElementType(Int8Ty);
2232 
2233   // Don't do any of the memmove_collectable tests if GC isn't set.
2234   if (CGM.getLangOpts().getGC() == LangOptions::NonGC) {
2235     // fall through
2236   } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
2237     RecordDecl *Record = RecordTy->getDecl();
2238     if (Record->hasObjectMember()) {
2239       CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
2240                                                     SizeVal);
2241       return;
2242     }
2243   } else if (Ty->isArrayType()) {
2244     QualType BaseType = getContext().getBaseElementType(Ty);
2245     if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
2246       if (RecordTy->getDecl()->hasObjectMember()) {
2247         CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
2248                                                       SizeVal);
2249         return;
2250       }
2251     }
2252   }
2253 
2254   auto Inst = Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, isVolatile);
2255 
2256   // Determine the metadata to describe the position of any padding in this
2257   // memcpy, as well as the TBAA tags for the members of the struct, in case
2258   // the optimizer wishes to expand it in to scalar memory operations.
2259   if (llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty))
2260     Inst->setMetadata(llvm::LLVMContext::MD_tbaa_struct, TBAAStructTag);
2261 
2262   if (CGM.getCodeGenOpts().NewStructPathTBAA) {
2263     TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForMemoryTransfer(
2264         Dest.getTBAAInfo(), Src.getTBAAInfo());
2265     CGM.DecorateInstructionWithTBAA(Inst, TBAAInfo);
2266   }
2267 }
2268