1 //===--- CGClass.cpp - Emit LLVM Code for C++ classes -----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code dealing with C++ code generation of classes 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "ABIInfoImpl.h" 14 #include "CGBlocks.h" 15 #include "CGCXXABI.h" 16 #include "CGDebugInfo.h" 17 #include "CGRecordLayout.h" 18 #include "CodeGenFunction.h" 19 #include "TargetInfo.h" 20 #include "clang/AST/Attr.h" 21 #include "clang/AST/CXXInheritance.h" 22 #include "clang/AST/CharUnits.h" 23 #include "clang/AST/DeclTemplate.h" 24 #include "clang/AST/EvaluatedExprVisitor.h" 25 #include "clang/AST/RecordLayout.h" 26 #include "clang/AST/StmtCXX.h" 27 #include "clang/Basic/CodeGenOptions.h" 28 #include "clang/CodeGen/CGFunctionInfo.h" 29 #include "llvm/IR/Intrinsics.h" 30 #include "llvm/IR/Metadata.h" 31 #include "llvm/Support/SaveAndRestore.h" 32 #include "llvm/Transforms/Utils/SanitizerStats.h" 33 #include <optional> 34 35 using namespace clang; 36 using namespace CodeGen; 37 38 /// Return the best known alignment for an unknown pointer to a 39 /// particular class. 40 CharUnits CodeGenModule::getClassPointerAlignment(const CXXRecordDecl *RD) { 41 if (!RD->hasDefinition()) 42 return CharUnits::One(); // Hopefully won't be used anywhere. 43 44 auto &layout = getContext().getASTRecordLayout(RD); 45 46 // If the class is final, then we know that the pointer points to an 47 // object of that type and can use the full alignment. 48 if (RD->isEffectivelyFinal()) 49 return layout.getAlignment(); 50 51 // Otherwise, we have to assume it could be a subclass. 52 return layout.getNonVirtualAlignment(); 53 } 54 55 /// Return the smallest possible amount of storage that might be allocated 56 /// starting from the beginning of an object of a particular class. 57 /// 58 /// This may be smaller than sizeof(RD) if RD has virtual base classes. 59 CharUnits CodeGenModule::getMinimumClassObjectSize(const CXXRecordDecl *RD) { 60 if (!RD->hasDefinition()) 61 return CharUnits::One(); 62 63 auto &layout = getContext().getASTRecordLayout(RD); 64 65 // If the class is final, then we know that the pointer points to an 66 // object of that type and can use the full alignment. 67 if (RD->isEffectivelyFinal()) 68 return layout.getSize(); 69 70 // Otherwise, we have to assume it could be a subclass. 71 return std::max(layout.getNonVirtualSize(), CharUnits::One()); 72 } 73 74 /// Return the best known alignment for a pointer to a virtual base, 75 /// given the alignment of a pointer to the derived class. 76 CharUnits CodeGenModule::getVBaseAlignment(CharUnits actualDerivedAlign, 77 const CXXRecordDecl *derivedClass, 78 const CXXRecordDecl *vbaseClass) { 79 // The basic idea here is that an underaligned derived pointer might 80 // indicate an underaligned base pointer. 81 82 assert(vbaseClass->isCompleteDefinition()); 83 auto &baseLayout = getContext().getASTRecordLayout(vbaseClass); 84 CharUnits expectedVBaseAlign = baseLayout.getNonVirtualAlignment(); 85 86 return getDynamicOffsetAlignment(actualDerivedAlign, derivedClass, 87 expectedVBaseAlign); 88 } 89 90 CharUnits 91 CodeGenModule::getDynamicOffsetAlignment(CharUnits actualBaseAlign, 92 const CXXRecordDecl *baseDecl, 93 CharUnits expectedTargetAlign) { 94 // If the base is an incomplete type (which is, alas, possible with 95 // member pointers), be pessimistic. 96 if (!baseDecl->isCompleteDefinition()) 97 return std::min(actualBaseAlign, expectedTargetAlign); 98 99 auto &baseLayout = getContext().getASTRecordLayout(baseDecl); 100 CharUnits expectedBaseAlign = baseLayout.getNonVirtualAlignment(); 101 102 // If the class is properly aligned, assume the target offset is, too. 103 // 104 // This actually isn't necessarily the right thing to do --- if the 105 // class is a complete object, but it's only properly aligned for a 106 // base subobject, then the alignments of things relative to it are 107 // probably off as well. (Note that this requires the alignment of 108 // the target to be greater than the NV alignment of the derived 109 // class.) 110 // 111 // However, our approach to this kind of under-alignment can only 112 // ever be best effort; after all, we're never going to propagate 113 // alignments through variables or parameters. Note, in particular, 114 // that constructing a polymorphic type in an address that's less 115 // than pointer-aligned will generally trap in the constructor, 116 // unless we someday add some sort of attribute to change the 117 // assumed alignment of 'this'. So our goal here is pretty much 118 // just to allow the user to explicitly say that a pointer is 119 // under-aligned and then safely access its fields and vtables. 120 if (actualBaseAlign >= expectedBaseAlign) { 121 return expectedTargetAlign; 122 } 123 124 // Otherwise, we might be offset by an arbitrary multiple of the 125 // actual alignment. The correct adjustment is to take the min of 126 // the two alignments. 127 return std::min(actualBaseAlign, expectedTargetAlign); 128 } 129 130 Address CodeGenFunction::LoadCXXThisAddress() { 131 assert(CurFuncDecl && "loading 'this' without a func declaration?"); 132 auto *MD = cast<CXXMethodDecl>(CurFuncDecl); 133 134 // Lazily compute CXXThisAlignment. 135 if (CXXThisAlignment.isZero()) { 136 // Just use the best known alignment for the parent. 137 // TODO: if we're currently emitting a complete-object ctor/dtor, 138 // we can always use the complete-object alignment. 139 CXXThisAlignment = CGM.getClassPointerAlignment(MD->getParent()); 140 } 141 142 return makeNaturalAddressForPointer( 143 LoadCXXThis(), MD->getFunctionObjectParameterType(), CXXThisAlignment, 144 false, nullptr, nullptr, KnownNonNull); 145 } 146 147 /// Emit the address of a field using a member data pointer. 148 /// 149 /// \param E Only used for emergency diagnostics 150 Address 151 CodeGenFunction::EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 152 llvm::Value *memberPtr, 153 const MemberPointerType *memberPtrType, 154 LValueBaseInfo *BaseInfo, 155 TBAAAccessInfo *TBAAInfo) { 156 // Ask the ABI to compute the actual address. 157 llvm::Value *ptr = 158 CGM.getCXXABI().EmitMemberDataPointerAddress(*this, E, base, 159 memberPtr, memberPtrType); 160 161 QualType memberType = memberPtrType->getPointeeType(); 162 CharUnits memberAlign = 163 CGM.getNaturalTypeAlignment(memberType, BaseInfo, TBAAInfo); 164 memberAlign = 165 CGM.getDynamicOffsetAlignment(base.getAlignment(), 166 memberPtrType->getClass()->getAsCXXRecordDecl(), 167 memberAlign); 168 return Address(ptr, ConvertTypeForMem(memberPtrType->getPointeeType()), 169 memberAlign); 170 } 171 172 CharUnits CodeGenModule::computeNonVirtualBaseClassOffset( 173 const CXXRecordDecl *DerivedClass, CastExpr::path_const_iterator Start, 174 CastExpr::path_const_iterator End) { 175 CharUnits Offset = CharUnits::Zero(); 176 177 const ASTContext &Context = getContext(); 178 const CXXRecordDecl *RD = DerivedClass; 179 180 for (CastExpr::path_const_iterator I = Start; I != End; ++I) { 181 const CXXBaseSpecifier *Base = *I; 182 assert(!Base->isVirtual() && "Should not see virtual bases here!"); 183 184 // Get the layout. 185 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 186 187 const auto *BaseDecl = 188 cast<CXXRecordDecl>(Base->getType()->castAs<RecordType>()->getDecl()); 189 190 // Add the offset. 191 Offset += Layout.getBaseClassOffset(BaseDecl); 192 193 RD = BaseDecl; 194 } 195 196 return Offset; 197 } 198 199 llvm::Constant * 200 CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl, 201 CastExpr::path_const_iterator PathBegin, 202 CastExpr::path_const_iterator PathEnd) { 203 assert(PathBegin != PathEnd && "Base path should not be empty!"); 204 205 CharUnits Offset = 206 computeNonVirtualBaseClassOffset(ClassDecl, PathBegin, PathEnd); 207 if (Offset.isZero()) 208 return nullptr; 209 210 llvm::Type *PtrDiffTy = 211 getTypes().ConvertType(getContext().getPointerDiffType()); 212 213 return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity()); 214 } 215 216 /// Gets the address of a direct base class within a complete object. 217 /// This should only be used for (1) non-virtual bases or (2) virtual bases 218 /// when the type is known to be complete (e.g. in complete destructors). 219 /// 220 /// The object pointed to by 'This' is assumed to be non-null. 221 Address 222 CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(Address This, 223 const CXXRecordDecl *Derived, 224 const CXXRecordDecl *Base, 225 bool BaseIsVirtual) { 226 // 'this' must be a pointer (in some address space) to Derived. 227 assert(This.getElementType() == ConvertType(Derived)); 228 229 // Compute the offset of the virtual base. 230 CharUnits Offset; 231 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived); 232 if (BaseIsVirtual) 233 Offset = Layout.getVBaseClassOffset(Base); 234 else 235 Offset = Layout.getBaseClassOffset(Base); 236 237 // Shift and cast down to the base type. 238 // TODO: for complete types, this should be possible with a GEP. 239 Address V = This; 240 if (!Offset.isZero()) { 241 V = V.withElementType(Int8Ty); 242 V = Builder.CreateConstInBoundsByteGEP(V, Offset); 243 } 244 return V.withElementType(ConvertType(Base)); 245 } 246 247 static Address 248 ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, Address addr, 249 CharUnits nonVirtualOffset, 250 llvm::Value *virtualOffset, 251 const CXXRecordDecl *derivedClass, 252 const CXXRecordDecl *nearestVBase) { 253 // Assert that we have something to do. 254 assert(!nonVirtualOffset.isZero() || virtualOffset != nullptr); 255 256 // Compute the offset from the static and dynamic components. 257 llvm::Value *baseOffset; 258 if (!nonVirtualOffset.isZero()) { 259 llvm::Type *OffsetType = 260 (CGF.CGM.getTarget().getCXXABI().isItaniumFamily() && 261 CGF.CGM.getItaniumVTableContext().isRelativeLayout()) 262 ? CGF.Int32Ty 263 : CGF.PtrDiffTy; 264 baseOffset = 265 llvm::ConstantInt::get(OffsetType, nonVirtualOffset.getQuantity()); 266 if (virtualOffset) { 267 baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset); 268 } 269 } else { 270 baseOffset = virtualOffset; 271 } 272 273 // Apply the base offset. 274 llvm::Value *ptr = addr.emitRawPointer(CGF); 275 ptr = CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, ptr, baseOffset, "add.ptr"); 276 277 // If we have a virtual component, the alignment of the result will 278 // be relative only to the known alignment of that vbase. 279 CharUnits alignment; 280 if (virtualOffset) { 281 assert(nearestVBase && "virtual offset without vbase?"); 282 alignment = CGF.CGM.getVBaseAlignment(addr.getAlignment(), 283 derivedClass, nearestVBase); 284 } else { 285 alignment = addr.getAlignment(); 286 } 287 alignment = alignment.alignmentAtOffset(nonVirtualOffset); 288 289 return Address(ptr, CGF.Int8Ty, alignment); 290 } 291 292 Address CodeGenFunction::GetAddressOfBaseClass( 293 Address Value, const CXXRecordDecl *Derived, 294 CastExpr::path_const_iterator PathBegin, 295 CastExpr::path_const_iterator PathEnd, bool NullCheckValue, 296 SourceLocation Loc) { 297 assert(PathBegin != PathEnd && "Base path should not be empty!"); 298 299 CastExpr::path_const_iterator Start = PathBegin; 300 const CXXRecordDecl *VBase = nullptr; 301 302 // Sema has done some convenient canonicalization here: if the 303 // access path involved any virtual steps, the conversion path will 304 // *start* with a step down to the correct virtual base subobject, 305 // and hence will not require any further steps. 306 if ((*Start)->isVirtual()) { 307 VBase = cast<CXXRecordDecl>( 308 (*Start)->getType()->castAs<RecordType>()->getDecl()); 309 ++Start; 310 } 311 312 // Compute the static offset of the ultimate destination within its 313 // allocating subobject (the virtual base, if there is one, or else 314 // the "complete" object that we see). 315 CharUnits NonVirtualOffset = CGM.computeNonVirtualBaseClassOffset( 316 VBase ? VBase : Derived, Start, PathEnd); 317 318 // If there's a virtual step, we can sometimes "devirtualize" it. 319 // For now, that's limited to when the derived type is final. 320 // TODO: "devirtualize" this for accesses to known-complete objects. 321 if (VBase && Derived->hasAttr<FinalAttr>()) { 322 const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived); 323 CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase); 324 NonVirtualOffset += vBaseOffset; 325 VBase = nullptr; // we no longer have a virtual step 326 } 327 328 // Get the base pointer type. 329 llvm::Type *BaseValueTy = ConvertType((PathEnd[-1])->getType()); 330 llvm::Type *PtrTy = llvm::PointerType::get( 331 CGM.getLLVMContext(), Value.getType()->getPointerAddressSpace()); 332 333 QualType DerivedTy = getContext().getRecordType(Derived); 334 CharUnits DerivedAlign = CGM.getClassPointerAlignment(Derived); 335 336 // If the static offset is zero and we don't have a virtual step, 337 // just do a bitcast; null checks are unnecessary. 338 if (NonVirtualOffset.isZero() && !VBase) { 339 if (sanitizePerformTypeCheck()) { 340 SanitizerSet SkippedChecks; 341 SkippedChecks.set(SanitizerKind::Null, !NullCheckValue); 342 EmitTypeCheck(TCK_Upcast, Loc, Value.emitRawPointer(*this), DerivedTy, 343 DerivedAlign, SkippedChecks); 344 } 345 return Value.withElementType(BaseValueTy); 346 } 347 348 llvm::BasicBlock *origBB = nullptr; 349 llvm::BasicBlock *endBB = nullptr; 350 351 // Skip over the offset (and the vtable load) if we're supposed to 352 // null-check the pointer. 353 if (NullCheckValue) { 354 origBB = Builder.GetInsertBlock(); 355 llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull"); 356 endBB = createBasicBlock("cast.end"); 357 358 llvm::Value *isNull = Builder.CreateIsNull(Value); 359 Builder.CreateCondBr(isNull, endBB, notNullBB); 360 EmitBlock(notNullBB); 361 } 362 363 if (sanitizePerformTypeCheck()) { 364 SanitizerSet SkippedChecks; 365 SkippedChecks.set(SanitizerKind::Null, true); 366 EmitTypeCheck(VBase ? TCK_UpcastToVirtualBase : TCK_Upcast, Loc, 367 Value.emitRawPointer(*this), DerivedTy, DerivedAlign, 368 SkippedChecks); 369 } 370 371 // Compute the virtual offset. 372 llvm::Value *VirtualOffset = nullptr; 373 if (VBase) { 374 VirtualOffset = 375 CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase); 376 } 377 378 // Apply both offsets. 379 Value = ApplyNonVirtualAndVirtualOffset(*this, Value, NonVirtualOffset, 380 VirtualOffset, Derived, VBase); 381 382 // Cast to the destination type. 383 Value = Value.withElementType(BaseValueTy); 384 385 // Build a phi if we needed a null check. 386 if (NullCheckValue) { 387 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 388 Builder.CreateBr(endBB); 389 EmitBlock(endBB); 390 391 llvm::PHINode *PHI = Builder.CreatePHI(PtrTy, 2, "cast.result"); 392 PHI->addIncoming(Value.emitRawPointer(*this), notNullBB); 393 PHI->addIncoming(llvm::Constant::getNullValue(PtrTy), origBB); 394 Value = Value.withPointer(PHI, NotKnownNonNull); 395 } 396 397 return Value; 398 } 399 400 Address 401 CodeGenFunction::GetAddressOfDerivedClass(Address BaseAddr, 402 const CXXRecordDecl *Derived, 403 CastExpr::path_const_iterator PathBegin, 404 CastExpr::path_const_iterator PathEnd, 405 bool NullCheckValue) { 406 assert(PathBegin != PathEnd && "Base path should not be empty!"); 407 408 QualType DerivedTy = 409 getContext().getCanonicalType(getContext().getTagDeclType(Derived)); 410 llvm::Type *DerivedValueTy = ConvertType(DerivedTy); 411 412 llvm::Value *NonVirtualOffset = 413 CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd); 414 415 if (!NonVirtualOffset) { 416 // No offset, we can just cast back. 417 return BaseAddr.withElementType(DerivedValueTy); 418 } 419 420 llvm::BasicBlock *CastNull = nullptr; 421 llvm::BasicBlock *CastNotNull = nullptr; 422 llvm::BasicBlock *CastEnd = nullptr; 423 424 if (NullCheckValue) { 425 CastNull = createBasicBlock("cast.null"); 426 CastNotNull = createBasicBlock("cast.notnull"); 427 CastEnd = createBasicBlock("cast.end"); 428 429 llvm::Value *IsNull = Builder.CreateIsNull(BaseAddr); 430 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 431 EmitBlock(CastNotNull); 432 } 433 434 // Apply the offset. 435 Address Addr = BaseAddr.withElementType(Int8Ty); 436 Addr = Builder.CreateInBoundsGEP( 437 Addr, Builder.CreateNeg(NonVirtualOffset), Int8Ty, 438 CGM.getClassPointerAlignment(Derived), "sub.ptr"); 439 440 // Just cast. 441 Addr = Addr.withElementType(DerivedValueTy); 442 443 // Produce a PHI if we had a null-check. 444 if (NullCheckValue) { 445 Builder.CreateBr(CastEnd); 446 EmitBlock(CastNull); 447 Builder.CreateBr(CastEnd); 448 EmitBlock(CastEnd); 449 450 llvm::Value *Value = Addr.emitRawPointer(*this); 451 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 452 PHI->addIncoming(Value, CastNotNull); 453 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 454 return Address(PHI, Addr.getElementType(), 455 CGM.getClassPointerAlignment(Derived)); 456 } 457 458 return Addr; 459 } 460 461 llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD, 462 bool ForVirtualBase, 463 bool Delegating) { 464 if (!CGM.getCXXABI().NeedsVTTParameter(GD)) { 465 // This constructor/destructor does not need a VTT parameter. 466 return nullptr; 467 } 468 469 const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurCodeDecl)->getParent(); 470 const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent(); 471 472 uint64_t SubVTTIndex; 473 474 if (Delegating) { 475 // If this is a delegating constructor call, just load the VTT. 476 return LoadCXXVTT(); 477 } else if (RD == Base) { 478 // If the record matches the base, this is the complete ctor/dtor 479 // variant calling the base variant in a class with virtual bases. 480 assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) && 481 "doing no-op VTT offset in base dtor/ctor?"); 482 assert(!ForVirtualBase && "Can't have same class as virtual base!"); 483 SubVTTIndex = 0; 484 } else { 485 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 486 CharUnits BaseOffset = ForVirtualBase ? 487 Layout.getVBaseClassOffset(Base) : 488 Layout.getBaseClassOffset(Base); 489 490 SubVTTIndex = 491 CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset)); 492 assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!"); 493 } 494 495 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) { 496 // A VTT parameter was passed to the constructor, use it. 497 llvm::Value *VTT = LoadCXXVTT(); 498 return Builder.CreateConstInBoundsGEP1_64(VoidPtrTy, VTT, SubVTTIndex); 499 } else { 500 // We're the complete constructor, so get the VTT by name. 501 llvm::GlobalValue *VTT = CGM.getVTables().GetAddrOfVTT(RD); 502 return Builder.CreateConstInBoundsGEP2_64( 503 VTT->getValueType(), VTT, 0, SubVTTIndex); 504 } 505 } 506 507 namespace { 508 /// Call the destructor for a direct base class. 509 struct CallBaseDtor final : EHScopeStack::Cleanup { 510 const CXXRecordDecl *BaseClass; 511 bool BaseIsVirtual; 512 CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual) 513 : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {} 514 515 void Emit(CodeGenFunction &CGF, Flags flags) override { 516 const CXXRecordDecl *DerivedClass = 517 cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent(); 518 519 const CXXDestructorDecl *D = BaseClass->getDestructor(); 520 // We are already inside a destructor, so presumably the object being 521 // destroyed should have the expected type. 522 QualType ThisTy = D->getFunctionObjectParameterType(); 523 Address Addr = 524 CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThisAddress(), 525 DerivedClass, BaseClass, 526 BaseIsVirtual); 527 CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual, 528 /*Delegating=*/false, Addr, ThisTy); 529 } 530 }; 531 532 /// A visitor which checks whether an initializer uses 'this' in a 533 /// way which requires the vtable to be properly set. 534 struct DynamicThisUseChecker : ConstEvaluatedExprVisitor<DynamicThisUseChecker> { 535 typedef ConstEvaluatedExprVisitor<DynamicThisUseChecker> super; 536 537 bool UsesThis; 538 539 DynamicThisUseChecker(const ASTContext &C) : super(C), UsesThis(false) {} 540 541 // Black-list all explicit and implicit references to 'this'. 542 // 543 // Do we need to worry about external references to 'this' derived 544 // from arbitrary code? If so, then anything which runs arbitrary 545 // external code might potentially access the vtable. 546 void VisitCXXThisExpr(const CXXThisExpr *E) { UsesThis = true; } 547 }; 548 } // end anonymous namespace 549 550 static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) { 551 DynamicThisUseChecker Checker(C); 552 Checker.Visit(Init); 553 return Checker.UsesThis; 554 } 555 556 static void EmitBaseInitializer(CodeGenFunction &CGF, 557 const CXXRecordDecl *ClassDecl, 558 CXXCtorInitializer *BaseInit) { 559 assert(BaseInit->isBaseInitializer() && 560 "Must have base initializer!"); 561 562 Address ThisPtr = CGF.LoadCXXThisAddress(); 563 564 const Type *BaseType = BaseInit->getBaseClass(); 565 const auto *BaseClassDecl = 566 cast<CXXRecordDecl>(BaseType->castAs<RecordType>()->getDecl()); 567 568 bool isBaseVirtual = BaseInit->isBaseVirtual(); 569 570 // If the initializer for the base (other than the constructor 571 // itself) accesses 'this' in any way, we need to initialize the 572 // vtables. 573 if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit())) 574 CGF.InitializeVTablePointers(ClassDecl); 575 576 // We can pretend to be a complete class because it only matters for 577 // virtual bases, and we only do virtual bases for complete ctors. 578 Address V = 579 CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl, 580 BaseClassDecl, 581 isBaseVirtual); 582 AggValueSlot AggSlot = 583 AggValueSlot::forAddr( 584 V, Qualifiers(), 585 AggValueSlot::IsDestructed, 586 AggValueSlot::DoesNotNeedGCBarriers, 587 AggValueSlot::IsNotAliased, 588 CGF.getOverlapForBaseInit(ClassDecl, BaseClassDecl, isBaseVirtual)); 589 590 CGF.EmitAggExpr(BaseInit->getInit(), AggSlot); 591 592 if (CGF.CGM.getLangOpts().Exceptions && 593 !BaseClassDecl->hasTrivialDestructor()) 594 CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl, 595 isBaseVirtual); 596 } 597 598 static bool isMemcpyEquivalentSpecialMember(const CXXMethodDecl *D) { 599 auto *CD = dyn_cast<CXXConstructorDecl>(D); 600 if (!(CD && CD->isCopyOrMoveConstructor()) && 601 !D->isCopyAssignmentOperator() && !D->isMoveAssignmentOperator()) 602 return false; 603 604 // We can emit a memcpy for a trivial copy or move constructor/assignment. 605 if (D->isTrivial() && !D->getParent()->mayInsertExtraPadding()) 606 return true; 607 608 // We *must* emit a memcpy for a defaulted union copy or move op. 609 if (D->getParent()->isUnion() && D->isDefaulted()) 610 return true; 611 612 return false; 613 } 614 615 static void EmitLValueForAnyFieldInitialization(CodeGenFunction &CGF, 616 CXXCtorInitializer *MemberInit, 617 LValue &LHS) { 618 FieldDecl *Field = MemberInit->getAnyMember(); 619 if (MemberInit->isIndirectMemberInitializer()) { 620 // If we are initializing an anonymous union field, drill down to the field. 621 IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember(); 622 for (const auto *I : IndirectField->chain()) 623 LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(I)); 624 } else { 625 LHS = CGF.EmitLValueForFieldInitialization(LHS, Field); 626 } 627 } 628 629 static void EmitMemberInitializer(CodeGenFunction &CGF, 630 const CXXRecordDecl *ClassDecl, 631 CXXCtorInitializer *MemberInit, 632 const CXXConstructorDecl *Constructor, 633 FunctionArgList &Args) { 634 ApplyDebugLocation Loc(CGF, MemberInit->getSourceLocation()); 635 assert(MemberInit->isAnyMemberInitializer() && 636 "Must have member initializer!"); 637 assert(MemberInit->getInit() && "Must have initializer!"); 638 639 // non-static data member initializers. 640 FieldDecl *Field = MemberInit->getAnyMember(); 641 QualType FieldType = Field->getType(); 642 643 llvm::Value *ThisPtr = CGF.LoadCXXThis(); 644 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 645 LValue LHS; 646 647 // If a base constructor is being emitted, create an LValue that has the 648 // non-virtual alignment. 649 if (CGF.CurGD.getCtorType() == Ctor_Base) 650 LHS = CGF.MakeNaturalAlignPointeeAddrLValue(ThisPtr, RecordTy); 651 else 652 LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy); 653 654 EmitLValueForAnyFieldInitialization(CGF, MemberInit, LHS); 655 656 // Special case: if we are in a copy or move constructor, and we are copying 657 // an array of PODs or classes with trivial copy constructors, ignore the 658 // AST and perform the copy we know is equivalent. 659 // FIXME: This is hacky at best... if we had a bit more explicit information 660 // in the AST, we could generalize it more easily. 661 const ConstantArrayType *Array 662 = CGF.getContext().getAsConstantArrayType(FieldType); 663 if (Array && Constructor->isDefaulted() && 664 Constructor->isCopyOrMoveConstructor()) { 665 QualType BaseElementTy = CGF.getContext().getBaseElementType(Array); 666 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit()); 667 if (BaseElementTy.isPODType(CGF.getContext()) || 668 (CE && isMemcpyEquivalentSpecialMember(CE->getConstructor()))) { 669 unsigned SrcArgIndex = 670 CGF.CGM.getCXXABI().getSrcArgforCopyCtor(Constructor, Args); 671 llvm::Value *SrcPtr 672 = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex])); 673 LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy); 674 LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field); 675 676 // Copy the aggregate. 677 CGF.EmitAggregateCopy(LHS, Src, FieldType, CGF.getOverlapForFieldInit(Field), 678 LHS.isVolatileQualified()); 679 // Ensure that we destroy the objects if an exception is thrown later in 680 // the constructor. 681 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 682 if (CGF.needsEHCleanup(dtorKind)) 683 CGF.pushEHDestroy(dtorKind, LHS.getAddress(), FieldType); 684 return; 685 } 686 } 687 688 CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit()); 689 } 690 691 void CodeGenFunction::EmitInitializerForField(FieldDecl *Field, LValue LHS, 692 Expr *Init) { 693 QualType FieldType = Field->getType(); 694 switch (getEvaluationKind(FieldType)) { 695 case TEK_Scalar: 696 if (LHS.isSimple()) { 697 EmitExprAsInit(Init, Field, LHS, false); 698 } else { 699 RValue RHS = RValue::get(EmitScalarExpr(Init)); 700 EmitStoreThroughLValue(RHS, LHS); 701 } 702 break; 703 case TEK_Complex: 704 EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true); 705 break; 706 case TEK_Aggregate: { 707 AggValueSlot Slot = AggValueSlot::forLValue( 708 LHS, AggValueSlot::IsDestructed, AggValueSlot::DoesNotNeedGCBarriers, 709 AggValueSlot::IsNotAliased, getOverlapForFieldInit(Field), 710 AggValueSlot::IsNotZeroed, 711 // Checks are made by the code that calls constructor. 712 AggValueSlot::IsSanitizerChecked); 713 EmitAggExpr(Init, Slot); 714 break; 715 } 716 } 717 718 // Ensure that we destroy this object if an exception is thrown 719 // later in the constructor. 720 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 721 if (needsEHCleanup(dtorKind)) 722 pushEHDestroy(dtorKind, LHS.getAddress(), FieldType); 723 } 724 725 /// Checks whether the given constructor is a valid subject for the 726 /// complete-to-base constructor delegation optimization, i.e. 727 /// emitting the complete constructor as a simple call to the base 728 /// constructor. 729 bool CodeGenFunction::IsConstructorDelegationValid( 730 const CXXConstructorDecl *Ctor) { 731 732 // Currently we disable the optimization for classes with virtual 733 // bases because (1) the addresses of parameter variables need to be 734 // consistent across all initializers but (2) the delegate function 735 // call necessarily creates a second copy of the parameter variable. 736 // 737 // The limiting example (purely theoretical AFAIK): 738 // struct A { A(int &c) { c++; } }; 739 // struct B : virtual A { 740 // B(int count) : A(count) { printf("%d\n", count); } 741 // }; 742 // ...although even this example could in principle be emitted as a 743 // delegation since the address of the parameter doesn't escape. 744 if (Ctor->getParent()->getNumVBases()) { 745 // TODO: white-list trivial vbase initializers. This case wouldn't 746 // be subject to the restrictions below. 747 748 // TODO: white-list cases where: 749 // - there are no non-reference parameters to the constructor 750 // - the initializers don't access any non-reference parameters 751 // - the initializers don't take the address of non-reference 752 // parameters 753 // - etc. 754 // If we ever add any of the above cases, remember that: 755 // - function-try-blocks will always exclude this optimization 756 // - we need to perform the constructor prologue and cleanup in 757 // EmitConstructorBody. 758 759 return false; 760 } 761 762 // We also disable the optimization for variadic functions because 763 // it's impossible to "re-pass" varargs. 764 if (Ctor->getType()->castAs<FunctionProtoType>()->isVariadic()) 765 return false; 766 767 // FIXME: Decide if we can do a delegation of a delegating constructor. 768 if (Ctor->isDelegatingConstructor()) 769 return false; 770 771 return true; 772 } 773 774 // Emit code in ctor (Prologue==true) or dtor (Prologue==false) 775 // to poison the extra field paddings inserted under 776 // -fsanitize-address-field-padding=1|2. 777 void CodeGenFunction::EmitAsanPrologueOrEpilogue(bool Prologue) { 778 ASTContext &Context = getContext(); 779 const CXXRecordDecl *ClassDecl = 780 Prologue ? cast<CXXConstructorDecl>(CurGD.getDecl())->getParent() 781 : cast<CXXDestructorDecl>(CurGD.getDecl())->getParent(); 782 if (!ClassDecl->mayInsertExtraPadding()) return; 783 784 struct SizeAndOffset { 785 uint64_t Size; 786 uint64_t Offset; 787 }; 788 789 unsigned PtrSize = CGM.getDataLayout().getPointerSizeInBits(); 790 const ASTRecordLayout &Info = Context.getASTRecordLayout(ClassDecl); 791 792 // Populate sizes and offsets of fields. 793 SmallVector<SizeAndOffset, 16> SSV(Info.getFieldCount()); 794 for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) 795 SSV[i].Offset = 796 Context.toCharUnitsFromBits(Info.getFieldOffset(i)).getQuantity(); 797 798 size_t NumFields = 0; 799 for (const auto *Field : ClassDecl->fields()) { 800 const FieldDecl *D = Field; 801 auto FieldInfo = Context.getTypeInfoInChars(D->getType()); 802 CharUnits FieldSize = FieldInfo.Width; 803 assert(NumFields < SSV.size()); 804 SSV[NumFields].Size = D->isBitField() ? 0 : FieldSize.getQuantity(); 805 NumFields++; 806 } 807 assert(NumFields == SSV.size()); 808 if (SSV.size() <= 1) return; 809 810 // We will insert calls to __asan_* run-time functions. 811 // LLVM AddressSanitizer pass may decide to inline them later. 812 llvm::Type *Args[2] = {IntPtrTy, IntPtrTy}; 813 llvm::FunctionType *FTy = 814 llvm::FunctionType::get(CGM.VoidTy, Args, false); 815 llvm::FunctionCallee F = CGM.CreateRuntimeFunction( 816 FTy, Prologue ? "__asan_poison_intra_object_redzone" 817 : "__asan_unpoison_intra_object_redzone"); 818 819 llvm::Value *ThisPtr = LoadCXXThis(); 820 ThisPtr = Builder.CreatePtrToInt(ThisPtr, IntPtrTy); 821 uint64_t TypeSize = Info.getNonVirtualSize().getQuantity(); 822 // For each field check if it has sufficient padding, 823 // if so (un)poison it with a call. 824 for (size_t i = 0; i < SSV.size(); i++) { 825 uint64_t AsanAlignment = 8; 826 uint64_t NextField = i == SSV.size() - 1 ? TypeSize : SSV[i + 1].Offset; 827 uint64_t PoisonSize = NextField - SSV[i].Offset - SSV[i].Size; 828 uint64_t EndOffset = SSV[i].Offset + SSV[i].Size; 829 if (PoisonSize < AsanAlignment || !SSV[i].Size || 830 (NextField % AsanAlignment) != 0) 831 continue; 832 Builder.CreateCall( 833 F, {Builder.CreateAdd(ThisPtr, Builder.getIntN(PtrSize, EndOffset)), 834 Builder.getIntN(PtrSize, PoisonSize)}); 835 } 836 } 837 838 /// EmitConstructorBody - Emits the body of the current constructor. 839 void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) { 840 EmitAsanPrologueOrEpilogue(true); 841 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl()); 842 CXXCtorType CtorType = CurGD.getCtorType(); 843 844 assert((CGM.getTarget().getCXXABI().hasConstructorVariants() || 845 CtorType == Ctor_Complete) && 846 "can only generate complete ctor for this ABI"); 847 848 // Before we go any further, try the complete->base constructor 849 // delegation optimization. 850 if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) && 851 CGM.getTarget().getCXXABI().hasConstructorVariants()) { 852 EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args, Ctor->getEndLoc()); 853 return; 854 } 855 856 const FunctionDecl *Definition = nullptr; 857 Stmt *Body = Ctor->getBody(Definition); 858 assert(Definition == Ctor && "emitting wrong constructor body"); 859 860 // Enter the function-try-block before the constructor prologue if 861 // applicable. 862 bool IsTryBody = isa_and_nonnull<CXXTryStmt>(Body); 863 if (IsTryBody) 864 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true); 865 866 incrementProfileCounter(Body); 867 maybeCreateMCDCCondBitmap(); 868 869 RunCleanupsScope RunCleanups(*this); 870 871 // TODO: in restricted cases, we can emit the vbase initializers of 872 // a complete ctor and then delegate to the base ctor. 873 874 // Emit the constructor prologue, i.e. the base and member 875 // initializers. 876 EmitCtorPrologue(Ctor, CtorType, Args); 877 878 // Emit the body of the statement. 879 if (IsTryBody) 880 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock()); 881 else if (Body) 882 EmitStmt(Body); 883 884 // Emit any cleanup blocks associated with the member or base 885 // initializers, which includes (along the exceptional path) the 886 // destructors for those members and bases that were fully 887 // constructed. 888 RunCleanups.ForceCleanup(); 889 890 if (IsTryBody) 891 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true); 892 } 893 894 namespace { 895 /// RAII object to indicate that codegen is copying the value representation 896 /// instead of the object representation. Useful when copying a struct or 897 /// class which has uninitialized members and we're only performing 898 /// lvalue-to-rvalue conversion on the object but not its members. 899 class CopyingValueRepresentation { 900 public: 901 explicit CopyingValueRepresentation(CodeGenFunction &CGF) 902 : CGF(CGF), OldSanOpts(CGF.SanOpts) { 903 CGF.SanOpts.set(SanitizerKind::Bool, false); 904 CGF.SanOpts.set(SanitizerKind::Enum, false); 905 } 906 ~CopyingValueRepresentation() { 907 CGF.SanOpts = OldSanOpts; 908 } 909 private: 910 CodeGenFunction &CGF; 911 SanitizerSet OldSanOpts; 912 }; 913 } // end anonymous namespace 914 915 namespace { 916 class FieldMemcpyizer { 917 public: 918 FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl, 919 const VarDecl *SrcRec) 920 : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec), 921 RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)), 922 FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0), 923 LastFieldOffset(0), LastAddedFieldIndex(0) {} 924 925 bool isMemcpyableField(FieldDecl *F) const { 926 // Never memcpy fields when we are adding poisoned paddings. 927 if (CGF.getContext().getLangOpts().SanitizeAddressFieldPadding) 928 return false; 929 Qualifiers Qual = F->getType().getQualifiers(); 930 if (Qual.hasVolatile() || Qual.hasObjCLifetime()) 931 return false; 932 return true; 933 } 934 935 void addMemcpyableField(FieldDecl *F) { 936 if (isEmptyFieldForLayout(CGF.getContext(), F)) 937 return; 938 if (!FirstField) 939 addInitialField(F); 940 else 941 addNextField(F); 942 } 943 944 CharUnits getMemcpySize(uint64_t FirstByteOffset) const { 945 ASTContext &Ctx = CGF.getContext(); 946 unsigned LastFieldSize = 947 LastField->isBitField() 948 ? LastField->getBitWidthValue() 949 : Ctx.toBits( 950 Ctx.getTypeInfoDataSizeInChars(LastField->getType()).Width); 951 uint64_t MemcpySizeBits = LastFieldOffset + LastFieldSize - 952 FirstByteOffset + Ctx.getCharWidth() - 1; 953 CharUnits MemcpySize = Ctx.toCharUnitsFromBits(MemcpySizeBits); 954 return MemcpySize; 955 } 956 957 void emitMemcpy() { 958 // Give the subclass a chance to bail out if it feels the memcpy isn't 959 // worth it (e.g. Hasn't aggregated enough data). 960 if (!FirstField) { 961 return; 962 } 963 964 uint64_t FirstByteOffset; 965 if (FirstField->isBitField()) { 966 const CGRecordLayout &RL = 967 CGF.getTypes().getCGRecordLayout(FirstField->getParent()); 968 const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField); 969 // FirstFieldOffset is not appropriate for bitfields, 970 // we need to use the storage offset instead. 971 FirstByteOffset = CGF.getContext().toBits(BFInfo.StorageOffset); 972 } else { 973 FirstByteOffset = FirstFieldOffset; 974 } 975 976 CharUnits MemcpySize = getMemcpySize(FirstByteOffset); 977 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 978 Address ThisPtr = CGF.LoadCXXThisAddress(); 979 LValue DestLV = CGF.MakeAddrLValue(ThisPtr, RecordTy); 980 LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField); 981 llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec)); 982 LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy); 983 LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField); 984 985 emitMemcpyIR( 986 Dest.isBitField() ? Dest.getBitFieldAddress() : Dest.getAddress(), 987 Src.isBitField() ? Src.getBitFieldAddress() : Src.getAddress(), 988 MemcpySize); 989 reset(); 990 } 991 992 void reset() { 993 FirstField = nullptr; 994 } 995 996 protected: 997 CodeGenFunction &CGF; 998 const CXXRecordDecl *ClassDecl; 999 1000 private: 1001 void emitMemcpyIR(Address DestPtr, Address SrcPtr, CharUnits Size) { 1002 DestPtr = DestPtr.withElementType(CGF.Int8Ty); 1003 SrcPtr = SrcPtr.withElementType(CGF.Int8Ty); 1004 CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity()); 1005 } 1006 1007 void addInitialField(FieldDecl *F) { 1008 FirstField = F; 1009 LastField = F; 1010 FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex()); 1011 LastFieldOffset = FirstFieldOffset; 1012 LastAddedFieldIndex = F->getFieldIndex(); 1013 } 1014 1015 void addNextField(FieldDecl *F) { 1016 // For the most part, the following invariant will hold: 1017 // F->getFieldIndex() == LastAddedFieldIndex + 1 1018 // The one exception is that Sema won't add a copy-initializer for an 1019 // unnamed bitfield, which will show up here as a gap in the sequence. 1020 assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 && 1021 "Cannot aggregate fields out of order."); 1022 LastAddedFieldIndex = F->getFieldIndex(); 1023 1024 // The 'first' and 'last' fields are chosen by offset, rather than field 1025 // index. This allows the code to support bitfields, as well as regular 1026 // fields. 1027 uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex()); 1028 if (FOffset < FirstFieldOffset) { 1029 FirstField = F; 1030 FirstFieldOffset = FOffset; 1031 } else if (FOffset >= LastFieldOffset) { 1032 LastField = F; 1033 LastFieldOffset = FOffset; 1034 } 1035 } 1036 1037 const VarDecl *SrcRec; 1038 const ASTRecordLayout &RecLayout; 1039 FieldDecl *FirstField; 1040 FieldDecl *LastField; 1041 uint64_t FirstFieldOffset, LastFieldOffset; 1042 unsigned LastAddedFieldIndex; 1043 }; 1044 1045 class ConstructorMemcpyizer : public FieldMemcpyizer { 1046 private: 1047 /// Get source argument for copy constructor. Returns null if not a copy 1048 /// constructor. 1049 static const VarDecl *getTrivialCopySource(CodeGenFunction &CGF, 1050 const CXXConstructorDecl *CD, 1051 FunctionArgList &Args) { 1052 if (CD->isCopyOrMoveConstructor() && CD->isDefaulted()) 1053 return Args[CGF.CGM.getCXXABI().getSrcArgforCopyCtor(CD, Args)]; 1054 return nullptr; 1055 } 1056 1057 // Returns true if a CXXCtorInitializer represents a member initialization 1058 // that can be rolled into a memcpy. 1059 bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const { 1060 if (!MemcpyableCtor) 1061 return false; 1062 FieldDecl *Field = MemberInit->getMember(); 1063 assert(Field && "No field for member init."); 1064 QualType FieldType = Field->getType(); 1065 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit()); 1066 1067 // Bail out on non-memcpyable, not-trivially-copyable members. 1068 if (!(CE && isMemcpyEquivalentSpecialMember(CE->getConstructor())) && 1069 !(FieldType.isTriviallyCopyableType(CGF.getContext()) || 1070 FieldType->isReferenceType())) 1071 return false; 1072 1073 // Bail out on volatile fields. 1074 if (!isMemcpyableField(Field)) 1075 return false; 1076 1077 // Otherwise we're good. 1078 return true; 1079 } 1080 1081 public: 1082 ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD, 1083 FunctionArgList &Args) 1084 : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CGF, CD, Args)), 1085 ConstructorDecl(CD), 1086 MemcpyableCtor(CD->isDefaulted() && 1087 CD->isCopyOrMoveConstructor() && 1088 CGF.getLangOpts().getGC() == LangOptions::NonGC), 1089 Args(Args) { } 1090 1091 void addMemberInitializer(CXXCtorInitializer *MemberInit) { 1092 if (isMemberInitMemcpyable(MemberInit)) { 1093 AggregatedInits.push_back(MemberInit); 1094 addMemcpyableField(MemberInit->getMember()); 1095 } else { 1096 emitAggregatedInits(); 1097 EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit, 1098 ConstructorDecl, Args); 1099 } 1100 } 1101 1102 void emitAggregatedInits() { 1103 if (AggregatedInits.size() <= 1) { 1104 // This memcpy is too small to be worthwhile. Fall back on default 1105 // codegen. 1106 if (!AggregatedInits.empty()) { 1107 CopyingValueRepresentation CVR(CGF); 1108 EmitMemberInitializer(CGF, ConstructorDecl->getParent(), 1109 AggregatedInits[0], ConstructorDecl, Args); 1110 AggregatedInits.clear(); 1111 } 1112 reset(); 1113 return; 1114 } 1115 1116 pushEHDestructors(); 1117 emitMemcpy(); 1118 AggregatedInits.clear(); 1119 } 1120 1121 void pushEHDestructors() { 1122 Address ThisPtr = CGF.LoadCXXThisAddress(); 1123 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 1124 LValue LHS = CGF.MakeAddrLValue(ThisPtr, RecordTy); 1125 1126 for (unsigned i = 0; i < AggregatedInits.size(); ++i) { 1127 CXXCtorInitializer *MemberInit = AggregatedInits[i]; 1128 QualType FieldType = MemberInit->getAnyMember()->getType(); 1129 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 1130 if (!CGF.needsEHCleanup(dtorKind)) 1131 continue; 1132 LValue FieldLHS = LHS; 1133 EmitLValueForAnyFieldInitialization(CGF, MemberInit, FieldLHS); 1134 CGF.pushEHDestroy(dtorKind, FieldLHS.getAddress(), FieldType); 1135 } 1136 } 1137 1138 void finish() { 1139 emitAggregatedInits(); 1140 } 1141 1142 private: 1143 const CXXConstructorDecl *ConstructorDecl; 1144 bool MemcpyableCtor; 1145 FunctionArgList &Args; 1146 SmallVector<CXXCtorInitializer*, 16> AggregatedInits; 1147 }; 1148 1149 class AssignmentMemcpyizer : public FieldMemcpyizer { 1150 private: 1151 // Returns the memcpyable field copied by the given statement, if one 1152 // exists. Otherwise returns null. 1153 FieldDecl *getMemcpyableField(Stmt *S) { 1154 if (!AssignmentsMemcpyable) 1155 return nullptr; 1156 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) { 1157 // Recognise trivial assignments. 1158 if (BO->getOpcode() != BO_Assign) 1159 return nullptr; 1160 MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS()); 1161 if (!ME) 1162 return nullptr; 1163 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl()); 1164 if (!Field || !isMemcpyableField(Field)) 1165 return nullptr; 1166 Stmt *RHS = BO->getRHS(); 1167 if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS)) 1168 RHS = EC->getSubExpr(); 1169 if (!RHS) 1170 return nullptr; 1171 if (MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS)) { 1172 if (ME2->getMemberDecl() == Field) 1173 return Field; 1174 } 1175 return nullptr; 1176 } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) { 1177 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl()); 1178 if (!(MD && isMemcpyEquivalentSpecialMember(MD))) 1179 return nullptr; 1180 MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument()); 1181 if (!IOA) 1182 return nullptr; 1183 FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl()); 1184 if (!Field || !isMemcpyableField(Field)) 1185 return nullptr; 1186 MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0)); 1187 if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl())) 1188 return nullptr; 1189 return Field; 1190 } else if (CallExpr *CE = dyn_cast<CallExpr>(S)) { 1191 FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl()); 1192 if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy) 1193 return nullptr; 1194 Expr *DstPtr = CE->getArg(0); 1195 if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr)) 1196 DstPtr = DC->getSubExpr(); 1197 UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr); 1198 if (!DUO || DUO->getOpcode() != UO_AddrOf) 1199 return nullptr; 1200 MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr()); 1201 if (!ME) 1202 return nullptr; 1203 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl()); 1204 if (!Field || !isMemcpyableField(Field)) 1205 return nullptr; 1206 Expr *SrcPtr = CE->getArg(1); 1207 if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr)) 1208 SrcPtr = SC->getSubExpr(); 1209 UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr); 1210 if (!SUO || SUO->getOpcode() != UO_AddrOf) 1211 return nullptr; 1212 MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr()); 1213 if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl())) 1214 return nullptr; 1215 return Field; 1216 } 1217 1218 return nullptr; 1219 } 1220 1221 bool AssignmentsMemcpyable; 1222 SmallVector<Stmt*, 16> AggregatedStmts; 1223 1224 public: 1225 AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD, 1226 FunctionArgList &Args) 1227 : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]), 1228 AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) { 1229 assert(Args.size() == 2); 1230 } 1231 1232 void emitAssignment(Stmt *S) { 1233 FieldDecl *F = getMemcpyableField(S); 1234 if (F) { 1235 addMemcpyableField(F); 1236 AggregatedStmts.push_back(S); 1237 } else { 1238 emitAggregatedStmts(); 1239 CGF.EmitStmt(S); 1240 } 1241 } 1242 1243 void emitAggregatedStmts() { 1244 if (AggregatedStmts.size() <= 1) { 1245 if (!AggregatedStmts.empty()) { 1246 CopyingValueRepresentation CVR(CGF); 1247 CGF.EmitStmt(AggregatedStmts[0]); 1248 } 1249 reset(); 1250 } 1251 1252 emitMemcpy(); 1253 AggregatedStmts.clear(); 1254 } 1255 1256 void finish() { 1257 emitAggregatedStmts(); 1258 } 1259 }; 1260 } // end anonymous namespace 1261 1262 static bool isInitializerOfDynamicClass(const CXXCtorInitializer *BaseInit) { 1263 const Type *BaseType = BaseInit->getBaseClass(); 1264 const auto *BaseClassDecl = 1265 cast<CXXRecordDecl>(BaseType->castAs<RecordType>()->getDecl()); 1266 return BaseClassDecl->isDynamicClass(); 1267 } 1268 1269 /// EmitCtorPrologue - This routine generates necessary code to initialize 1270 /// base classes and non-static data members belonging to this constructor. 1271 void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD, 1272 CXXCtorType CtorType, 1273 FunctionArgList &Args) { 1274 if (CD->isDelegatingConstructor()) 1275 return EmitDelegatingCXXConstructorCall(CD, Args); 1276 1277 const CXXRecordDecl *ClassDecl = CD->getParent(); 1278 1279 CXXConstructorDecl::init_const_iterator B = CD->init_begin(), 1280 E = CD->init_end(); 1281 1282 // Virtual base initializers first, if any. They aren't needed if: 1283 // - This is a base ctor variant 1284 // - There are no vbases 1285 // - The class is abstract, so a complete object of it cannot be constructed 1286 // 1287 // The check for an abstract class is necessary because sema may not have 1288 // marked virtual base destructors referenced. 1289 bool ConstructVBases = CtorType != Ctor_Base && 1290 ClassDecl->getNumVBases() != 0 && 1291 !ClassDecl->isAbstract(); 1292 1293 // In the Microsoft C++ ABI, there are no constructor variants. Instead, the 1294 // constructor of a class with virtual bases takes an additional parameter to 1295 // conditionally construct the virtual bases. Emit that check here. 1296 llvm::BasicBlock *BaseCtorContinueBB = nullptr; 1297 if (ConstructVBases && 1298 !CGM.getTarget().getCXXABI().hasConstructorVariants()) { 1299 BaseCtorContinueBB = 1300 CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl); 1301 assert(BaseCtorContinueBB); 1302 } 1303 1304 for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) { 1305 if (!ConstructVBases) 1306 continue; 1307 SaveAndRestore ThisRAII(CXXThisValue); 1308 if (CGM.getCodeGenOpts().StrictVTablePointers && 1309 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1310 isInitializerOfDynamicClass(*B)) 1311 CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis()); 1312 EmitBaseInitializer(*this, ClassDecl, *B); 1313 } 1314 1315 if (BaseCtorContinueBB) { 1316 // Complete object handler should continue to the remaining initializers. 1317 Builder.CreateBr(BaseCtorContinueBB); 1318 EmitBlock(BaseCtorContinueBB); 1319 } 1320 1321 // Then, non-virtual base initializers. 1322 for (; B != E && (*B)->isBaseInitializer(); B++) { 1323 assert(!(*B)->isBaseVirtual()); 1324 SaveAndRestore ThisRAII(CXXThisValue); 1325 if (CGM.getCodeGenOpts().StrictVTablePointers && 1326 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1327 isInitializerOfDynamicClass(*B)) 1328 CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis()); 1329 EmitBaseInitializer(*this, ClassDecl, *B); 1330 } 1331 1332 InitializeVTablePointers(ClassDecl); 1333 1334 // And finally, initialize class members. 1335 FieldConstructionScope FCS(*this, LoadCXXThisAddress()); 1336 ConstructorMemcpyizer CM(*this, CD, Args); 1337 for (; B != E; B++) { 1338 CXXCtorInitializer *Member = (*B); 1339 assert(!Member->isBaseInitializer()); 1340 assert(Member->isAnyMemberInitializer() && 1341 "Delegating initializer on non-delegating constructor"); 1342 CM.addMemberInitializer(Member); 1343 } 1344 CM.finish(); 1345 } 1346 1347 static bool 1348 FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field); 1349 1350 static bool 1351 HasTrivialDestructorBody(ASTContext &Context, 1352 const CXXRecordDecl *BaseClassDecl, 1353 const CXXRecordDecl *MostDerivedClassDecl) 1354 { 1355 // If the destructor is trivial we don't have to check anything else. 1356 if (BaseClassDecl->hasTrivialDestructor()) 1357 return true; 1358 1359 if (!BaseClassDecl->getDestructor()->hasTrivialBody()) 1360 return false; 1361 1362 // Check fields. 1363 for (const auto *Field : BaseClassDecl->fields()) 1364 if (!FieldHasTrivialDestructorBody(Context, Field)) 1365 return false; 1366 1367 // Check non-virtual bases. 1368 for (const auto &I : BaseClassDecl->bases()) { 1369 if (I.isVirtual()) 1370 continue; 1371 1372 const CXXRecordDecl *NonVirtualBase = 1373 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 1374 if (!HasTrivialDestructorBody(Context, NonVirtualBase, 1375 MostDerivedClassDecl)) 1376 return false; 1377 } 1378 1379 if (BaseClassDecl == MostDerivedClassDecl) { 1380 // Check virtual bases. 1381 for (const auto &I : BaseClassDecl->vbases()) { 1382 const CXXRecordDecl *VirtualBase = 1383 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 1384 if (!HasTrivialDestructorBody(Context, VirtualBase, 1385 MostDerivedClassDecl)) 1386 return false; 1387 } 1388 } 1389 1390 return true; 1391 } 1392 1393 static bool 1394 FieldHasTrivialDestructorBody(ASTContext &Context, 1395 const FieldDecl *Field) 1396 { 1397 QualType FieldBaseElementType = Context.getBaseElementType(Field->getType()); 1398 1399 const RecordType *RT = FieldBaseElementType->getAs<RecordType>(); 1400 if (!RT) 1401 return true; 1402 1403 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 1404 1405 // The destructor for an implicit anonymous union member is never invoked. 1406 if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion()) 1407 return true; 1408 1409 return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl); 1410 } 1411 1412 /// CanSkipVTablePointerInitialization - Check whether we need to initialize 1413 /// any vtable pointers before calling this destructor. 1414 static bool CanSkipVTablePointerInitialization(CodeGenFunction &CGF, 1415 const CXXDestructorDecl *Dtor) { 1416 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1417 if (!ClassDecl->isDynamicClass()) 1418 return true; 1419 1420 // For a final class, the vtable pointer is known to already point to the 1421 // class's vtable. 1422 if (ClassDecl->isEffectivelyFinal()) 1423 return true; 1424 1425 if (!Dtor->hasTrivialBody()) 1426 return false; 1427 1428 // Check the fields. 1429 for (const auto *Field : ClassDecl->fields()) 1430 if (!FieldHasTrivialDestructorBody(CGF.getContext(), Field)) 1431 return false; 1432 1433 return true; 1434 } 1435 1436 /// EmitDestructorBody - Emits the body of the current destructor. 1437 void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) { 1438 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl()); 1439 CXXDtorType DtorType = CurGD.getDtorType(); 1440 1441 // For an abstract class, non-base destructors are never used (and can't 1442 // be emitted in general, because vbase dtors may not have been validated 1443 // by Sema), but the Itanium ABI doesn't make them optional and Clang may 1444 // in fact emit references to them from other compilations, so emit them 1445 // as functions containing a trap instruction. 1446 if (DtorType != Dtor_Base && Dtor->getParent()->isAbstract()) { 1447 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 1448 TrapCall->setDoesNotReturn(); 1449 TrapCall->setDoesNotThrow(); 1450 Builder.CreateUnreachable(); 1451 Builder.ClearInsertionPoint(); 1452 return; 1453 } 1454 1455 Stmt *Body = Dtor->getBody(); 1456 if (Body) { 1457 incrementProfileCounter(Body); 1458 maybeCreateMCDCCondBitmap(); 1459 } 1460 1461 // The call to operator delete in a deleting destructor happens 1462 // outside of the function-try-block, which means it's always 1463 // possible to delegate the destructor body to the complete 1464 // destructor. Do so. 1465 if (DtorType == Dtor_Deleting) { 1466 RunCleanupsScope DtorEpilogue(*this); 1467 EnterDtorCleanups(Dtor, Dtor_Deleting); 1468 if (HaveInsertPoint()) { 1469 QualType ThisTy = Dtor->getFunctionObjectParameterType(); 1470 EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false, 1471 /*Delegating=*/false, LoadCXXThisAddress(), ThisTy); 1472 } 1473 return; 1474 } 1475 1476 // If the body is a function-try-block, enter the try before 1477 // anything else. 1478 bool isTryBody = isa_and_nonnull<CXXTryStmt>(Body); 1479 if (isTryBody) 1480 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true); 1481 EmitAsanPrologueOrEpilogue(false); 1482 1483 // Enter the epilogue cleanups. 1484 RunCleanupsScope DtorEpilogue(*this); 1485 1486 // If this is the complete variant, just invoke the base variant; 1487 // the epilogue will destruct the virtual bases. But we can't do 1488 // this optimization if the body is a function-try-block, because 1489 // we'd introduce *two* handler blocks. In the Microsoft ABI, we 1490 // always delegate because we might not have a definition in this TU. 1491 switch (DtorType) { 1492 case Dtor_Comdat: llvm_unreachable("not expecting a COMDAT"); 1493 case Dtor_Deleting: llvm_unreachable("already handled deleting case"); 1494 1495 case Dtor_Complete: 1496 assert((Body || getTarget().getCXXABI().isMicrosoft()) && 1497 "can't emit a dtor without a body for non-Microsoft ABIs"); 1498 1499 // Enter the cleanup scopes for virtual bases. 1500 EnterDtorCleanups(Dtor, Dtor_Complete); 1501 1502 if (!isTryBody) { 1503 QualType ThisTy = Dtor->getFunctionObjectParameterType(); 1504 EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false, 1505 /*Delegating=*/false, LoadCXXThisAddress(), ThisTy); 1506 break; 1507 } 1508 1509 // Fallthrough: act like we're in the base variant. 1510 [[fallthrough]]; 1511 1512 case Dtor_Base: 1513 assert(Body); 1514 1515 // Enter the cleanup scopes for fields and non-virtual bases. 1516 EnterDtorCleanups(Dtor, Dtor_Base); 1517 1518 // Initialize the vtable pointers before entering the body. 1519 if (!CanSkipVTablePointerInitialization(*this, Dtor)) { 1520 // Insert the llvm.launder.invariant.group intrinsic before initializing 1521 // the vptrs to cancel any previous assumptions we might have made. 1522 if (CGM.getCodeGenOpts().StrictVTablePointers && 1523 CGM.getCodeGenOpts().OptimizationLevel > 0) 1524 CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis()); 1525 InitializeVTablePointers(Dtor->getParent()); 1526 } 1527 1528 if (isTryBody) 1529 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock()); 1530 else if (Body) 1531 EmitStmt(Body); 1532 else { 1533 assert(Dtor->isImplicit() && "bodyless dtor not implicit"); 1534 // nothing to do besides what's in the epilogue 1535 } 1536 // -fapple-kext must inline any call to this dtor into 1537 // the caller's body. 1538 if (getLangOpts().AppleKext) 1539 CurFn->addFnAttr(llvm::Attribute::AlwaysInline); 1540 1541 break; 1542 } 1543 1544 // Jump out through the epilogue cleanups. 1545 DtorEpilogue.ForceCleanup(); 1546 1547 // Exit the try if applicable. 1548 if (isTryBody) 1549 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true); 1550 } 1551 1552 void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) { 1553 const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl()); 1554 const Stmt *RootS = AssignOp->getBody(); 1555 assert(isa<CompoundStmt>(RootS) && 1556 "Body of an implicit assignment operator should be compound stmt."); 1557 const CompoundStmt *RootCS = cast<CompoundStmt>(RootS); 1558 1559 LexicalScope Scope(*this, RootCS->getSourceRange()); 1560 1561 incrementProfileCounter(RootCS); 1562 maybeCreateMCDCCondBitmap(); 1563 AssignmentMemcpyizer AM(*this, AssignOp, Args); 1564 for (auto *I : RootCS->body()) 1565 AM.emitAssignment(I); 1566 AM.finish(); 1567 } 1568 1569 namespace { 1570 llvm::Value *LoadThisForDtorDelete(CodeGenFunction &CGF, 1571 const CXXDestructorDecl *DD) { 1572 if (Expr *ThisArg = DD->getOperatorDeleteThisArg()) 1573 return CGF.EmitScalarExpr(ThisArg); 1574 return CGF.LoadCXXThis(); 1575 } 1576 1577 /// Call the operator delete associated with the current destructor. 1578 struct CallDtorDelete final : EHScopeStack::Cleanup { 1579 CallDtorDelete() {} 1580 1581 void Emit(CodeGenFunction &CGF, Flags flags) override { 1582 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl); 1583 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1584 CGF.EmitDeleteCall(Dtor->getOperatorDelete(), 1585 LoadThisForDtorDelete(CGF, Dtor), 1586 CGF.getContext().getTagDeclType(ClassDecl)); 1587 } 1588 }; 1589 1590 void EmitConditionalDtorDeleteCall(CodeGenFunction &CGF, 1591 llvm::Value *ShouldDeleteCondition, 1592 bool ReturnAfterDelete) { 1593 llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete"); 1594 llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue"); 1595 llvm::Value *ShouldCallDelete 1596 = CGF.Builder.CreateIsNull(ShouldDeleteCondition); 1597 CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB); 1598 1599 CGF.EmitBlock(callDeleteBB); 1600 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl); 1601 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1602 CGF.EmitDeleteCall(Dtor->getOperatorDelete(), 1603 LoadThisForDtorDelete(CGF, Dtor), 1604 CGF.getContext().getTagDeclType(ClassDecl)); 1605 assert(Dtor->getOperatorDelete()->isDestroyingOperatorDelete() == 1606 ReturnAfterDelete && 1607 "unexpected value for ReturnAfterDelete"); 1608 if (ReturnAfterDelete) 1609 CGF.EmitBranchThroughCleanup(CGF.ReturnBlock); 1610 else 1611 CGF.Builder.CreateBr(continueBB); 1612 1613 CGF.EmitBlock(continueBB); 1614 } 1615 1616 struct CallDtorDeleteConditional final : EHScopeStack::Cleanup { 1617 llvm::Value *ShouldDeleteCondition; 1618 1619 public: 1620 CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition) 1621 : ShouldDeleteCondition(ShouldDeleteCondition) { 1622 assert(ShouldDeleteCondition != nullptr); 1623 } 1624 1625 void Emit(CodeGenFunction &CGF, Flags flags) override { 1626 EmitConditionalDtorDeleteCall(CGF, ShouldDeleteCondition, 1627 /*ReturnAfterDelete*/false); 1628 } 1629 }; 1630 1631 class DestroyField final : public EHScopeStack::Cleanup { 1632 const FieldDecl *field; 1633 CodeGenFunction::Destroyer *destroyer; 1634 bool useEHCleanupForArray; 1635 1636 public: 1637 DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer, 1638 bool useEHCleanupForArray) 1639 : field(field), destroyer(destroyer), 1640 useEHCleanupForArray(useEHCleanupForArray) {} 1641 1642 void Emit(CodeGenFunction &CGF, Flags flags) override { 1643 // Find the address of the field. 1644 Address thisValue = CGF.LoadCXXThisAddress(); 1645 QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent()); 1646 LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy); 1647 LValue LV = CGF.EmitLValueForField(ThisLV, field); 1648 assert(LV.isSimple()); 1649 1650 CGF.emitDestroy(LV.getAddress(), field->getType(), destroyer, 1651 flags.isForNormalCleanup() && useEHCleanupForArray); 1652 } 1653 }; 1654 1655 class DeclAsInlineDebugLocation { 1656 CGDebugInfo *DI; 1657 llvm::MDNode *InlinedAt; 1658 std::optional<ApplyDebugLocation> Location; 1659 1660 public: 1661 DeclAsInlineDebugLocation(CodeGenFunction &CGF, const NamedDecl &Decl) 1662 : DI(CGF.getDebugInfo()) { 1663 if (!DI) 1664 return; 1665 InlinedAt = DI->getInlinedAt(); 1666 DI->setInlinedAt(CGF.Builder.getCurrentDebugLocation()); 1667 Location.emplace(CGF, Decl.getLocation()); 1668 } 1669 1670 ~DeclAsInlineDebugLocation() { 1671 if (!DI) 1672 return; 1673 Location.reset(); 1674 DI->setInlinedAt(InlinedAt); 1675 } 1676 }; 1677 1678 static void EmitSanitizerDtorCallback( 1679 CodeGenFunction &CGF, StringRef Name, llvm::Value *Ptr, 1680 std::optional<CharUnits::QuantityType> PoisonSize = {}) { 1681 CodeGenFunction::SanitizerScope SanScope(&CGF); 1682 // Pass in void pointer and size of region as arguments to runtime 1683 // function 1684 SmallVector<llvm::Value *, 2> Args = {Ptr}; 1685 SmallVector<llvm::Type *, 2> ArgTypes = {CGF.VoidPtrTy}; 1686 1687 if (PoisonSize.has_value()) { 1688 Args.emplace_back(llvm::ConstantInt::get(CGF.SizeTy, *PoisonSize)); 1689 ArgTypes.emplace_back(CGF.SizeTy); 1690 } 1691 1692 llvm::FunctionType *FnType = 1693 llvm::FunctionType::get(CGF.VoidTy, ArgTypes, false); 1694 llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(FnType, Name); 1695 1696 CGF.EmitNounwindRuntimeCall(Fn, Args); 1697 } 1698 1699 static void 1700 EmitSanitizerDtorFieldsCallback(CodeGenFunction &CGF, llvm::Value *Ptr, 1701 CharUnits::QuantityType PoisonSize) { 1702 EmitSanitizerDtorCallback(CGF, "__sanitizer_dtor_callback_fields", Ptr, 1703 PoisonSize); 1704 } 1705 1706 /// Poison base class with a trivial destructor. 1707 struct SanitizeDtorTrivialBase final : EHScopeStack::Cleanup { 1708 const CXXRecordDecl *BaseClass; 1709 bool BaseIsVirtual; 1710 SanitizeDtorTrivialBase(const CXXRecordDecl *Base, bool BaseIsVirtual) 1711 : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {} 1712 1713 void Emit(CodeGenFunction &CGF, Flags flags) override { 1714 const CXXRecordDecl *DerivedClass = 1715 cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent(); 1716 1717 Address Addr = CGF.GetAddressOfDirectBaseInCompleteClass( 1718 CGF.LoadCXXThisAddress(), DerivedClass, BaseClass, BaseIsVirtual); 1719 1720 const ASTRecordLayout &BaseLayout = 1721 CGF.getContext().getASTRecordLayout(BaseClass); 1722 CharUnits BaseSize = BaseLayout.getSize(); 1723 1724 if (!BaseSize.isPositive()) 1725 return; 1726 1727 // Use the base class declaration location as inline DebugLocation. All 1728 // fields of the class are destroyed. 1729 DeclAsInlineDebugLocation InlineHere(CGF, *BaseClass); 1730 EmitSanitizerDtorFieldsCallback(CGF, Addr.emitRawPointer(CGF), 1731 BaseSize.getQuantity()); 1732 1733 // Prevent the current stack frame from disappearing from the stack trace. 1734 CGF.CurFn->addFnAttr("disable-tail-calls", "true"); 1735 } 1736 }; 1737 1738 class SanitizeDtorFieldRange final : public EHScopeStack::Cleanup { 1739 const CXXDestructorDecl *Dtor; 1740 unsigned StartIndex; 1741 unsigned EndIndex; 1742 1743 public: 1744 SanitizeDtorFieldRange(const CXXDestructorDecl *Dtor, unsigned StartIndex, 1745 unsigned EndIndex) 1746 : Dtor(Dtor), StartIndex(StartIndex), EndIndex(EndIndex) {} 1747 1748 // Generate function call for handling object poisoning. 1749 // Disables tail call elimination, to prevent the current stack frame 1750 // from disappearing from the stack trace. 1751 void Emit(CodeGenFunction &CGF, Flags flags) override { 1752 const ASTContext &Context = CGF.getContext(); 1753 const ASTRecordLayout &Layout = 1754 Context.getASTRecordLayout(Dtor->getParent()); 1755 1756 // It's a first trivial field so it should be at the begining of a char, 1757 // still round up start offset just in case. 1758 CharUnits PoisonStart = Context.toCharUnitsFromBits( 1759 Layout.getFieldOffset(StartIndex) + Context.getCharWidth() - 1); 1760 llvm::ConstantInt *OffsetSizePtr = 1761 llvm::ConstantInt::get(CGF.SizeTy, PoisonStart.getQuantity()); 1762 1763 llvm::Value *OffsetPtr = 1764 CGF.Builder.CreateGEP(CGF.Int8Ty, CGF.LoadCXXThis(), OffsetSizePtr); 1765 1766 CharUnits PoisonEnd; 1767 if (EndIndex >= Layout.getFieldCount()) { 1768 PoisonEnd = Layout.getNonVirtualSize(); 1769 } else { 1770 PoisonEnd = 1771 Context.toCharUnitsFromBits(Layout.getFieldOffset(EndIndex)); 1772 } 1773 CharUnits PoisonSize = PoisonEnd - PoisonStart; 1774 if (!PoisonSize.isPositive()) 1775 return; 1776 1777 // Use the top field declaration location as inline DebugLocation. 1778 DeclAsInlineDebugLocation InlineHere( 1779 CGF, **std::next(Dtor->getParent()->field_begin(), StartIndex)); 1780 EmitSanitizerDtorFieldsCallback(CGF, OffsetPtr, PoisonSize.getQuantity()); 1781 1782 // Prevent the current stack frame from disappearing from the stack trace. 1783 CGF.CurFn->addFnAttr("disable-tail-calls", "true"); 1784 } 1785 }; 1786 1787 class SanitizeDtorVTable final : public EHScopeStack::Cleanup { 1788 const CXXDestructorDecl *Dtor; 1789 1790 public: 1791 SanitizeDtorVTable(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {} 1792 1793 // Generate function call for handling vtable pointer poisoning. 1794 void Emit(CodeGenFunction &CGF, Flags flags) override { 1795 assert(Dtor->getParent()->isDynamicClass()); 1796 (void)Dtor; 1797 // Poison vtable and vtable ptr if they exist for this class. 1798 llvm::Value *VTablePtr = CGF.LoadCXXThis(); 1799 1800 // Pass in void pointer and size of region as arguments to runtime 1801 // function 1802 EmitSanitizerDtorCallback(CGF, "__sanitizer_dtor_callback_vptr", 1803 VTablePtr); 1804 } 1805 }; 1806 1807 class SanitizeDtorCleanupBuilder { 1808 ASTContext &Context; 1809 EHScopeStack &EHStack; 1810 const CXXDestructorDecl *DD; 1811 std::optional<unsigned> StartIndex; 1812 1813 public: 1814 SanitizeDtorCleanupBuilder(ASTContext &Context, EHScopeStack &EHStack, 1815 const CXXDestructorDecl *DD) 1816 : Context(Context), EHStack(EHStack), DD(DD), StartIndex(std::nullopt) {} 1817 void PushCleanupForField(const FieldDecl *Field) { 1818 if (isEmptyFieldForLayout(Context, Field)) 1819 return; 1820 unsigned FieldIndex = Field->getFieldIndex(); 1821 if (FieldHasTrivialDestructorBody(Context, Field)) { 1822 if (!StartIndex) 1823 StartIndex = FieldIndex; 1824 } else if (StartIndex) { 1825 EHStack.pushCleanup<SanitizeDtorFieldRange>(NormalAndEHCleanup, DD, 1826 *StartIndex, FieldIndex); 1827 StartIndex = std::nullopt; 1828 } 1829 } 1830 void End() { 1831 if (StartIndex) 1832 EHStack.pushCleanup<SanitizeDtorFieldRange>(NormalAndEHCleanup, DD, 1833 *StartIndex, -1); 1834 } 1835 }; 1836 } // end anonymous namespace 1837 1838 /// Emit all code that comes at the end of class's 1839 /// destructor. This is to call destructors on members and base classes 1840 /// in reverse order of their construction. 1841 /// 1842 /// For a deleting destructor, this also handles the case where a destroying 1843 /// operator delete completely overrides the definition. 1844 void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD, 1845 CXXDtorType DtorType) { 1846 assert((!DD->isTrivial() || DD->hasAttr<DLLExportAttr>()) && 1847 "Should not emit dtor epilogue for non-exported trivial dtor!"); 1848 1849 // The deleting-destructor phase just needs to call the appropriate 1850 // operator delete that Sema picked up. 1851 if (DtorType == Dtor_Deleting) { 1852 assert(DD->getOperatorDelete() && 1853 "operator delete missing - EnterDtorCleanups"); 1854 if (CXXStructorImplicitParamValue) { 1855 // If there is an implicit param to the deleting dtor, it's a boolean 1856 // telling whether this is a deleting destructor. 1857 if (DD->getOperatorDelete()->isDestroyingOperatorDelete()) 1858 EmitConditionalDtorDeleteCall(*this, CXXStructorImplicitParamValue, 1859 /*ReturnAfterDelete*/true); 1860 else 1861 EHStack.pushCleanup<CallDtorDeleteConditional>( 1862 NormalAndEHCleanup, CXXStructorImplicitParamValue); 1863 } else { 1864 if (DD->getOperatorDelete()->isDestroyingOperatorDelete()) { 1865 const CXXRecordDecl *ClassDecl = DD->getParent(); 1866 EmitDeleteCall(DD->getOperatorDelete(), 1867 LoadThisForDtorDelete(*this, DD), 1868 getContext().getTagDeclType(ClassDecl)); 1869 EmitBranchThroughCleanup(ReturnBlock); 1870 } else { 1871 EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup); 1872 } 1873 } 1874 return; 1875 } 1876 1877 const CXXRecordDecl *ClassDecl = DD->getParent(); 1878 1879 // Unions have no bases and do not call field destructors. 1880 if (ClassDecl->isUnion()) 1881 return; 1882 1883 // The complete-destructor phase just destructs all the virtual bases. 1884 if (DtorType == Dtor_Complete) { 1885 // Poison the vtable pointer such that access after the base 1886 // and member destructors are invoked is invalid. 1887 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1888 SanOpts.has(SanitizerKind::Memory) && ClassDecl->getNumVBases() && 1889 ClassDecl->isPolymorphic()) 1890 EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD); 1891 1892 // We push them in the forward order so that they'll be popped in 1893 // the reverse order. 1894 for (const auto &Base : ClassDecl->vbases()) { 1895 auto *BaseClassDecl = 1896 cast<CXXRecordDecl>(Base.getType()->castAs<RecordType>()->getDecl()); 1897 1898 if (BaseClassDecl->hasTrivialDestructor()) { 1899 // Under SanitizeMemoryUseAfterDtor, poison the trivial base class 1900 // memory. For non-trival base classes the same is done in the class 1901 // destructor. 1902 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1903 SanOpts.has(SanitizerKind::Memory) && !BaseClassDecl->isEmpty()) 1904 EHStack.pushCleanup<SanitizeDtorTrivialBase>(NormalAndEHCleanup, 1905 BaseClassDecl, 1906 /*BaseIsVirtual*/ true); 1907 } else { 1908 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, BaseClassDecl, 1909 /*BaseIsVirtual*/ true); 1910 } 1911 } 1912 1913 return; 1914 } 1915 1916 assert(DtorType == Dtor_Base); 1917 // Poison the vtable pointer if it has no virtual bases, but inherits 1918 // virtual functions. 1919 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1920 SanOpts.has(SanitizerKind::Memory) && !ClassDecl->getNumVBases() && 1921 ClassDecl->isPolymorphic()) 1922 EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD); 1923 1924 // Destroy non-virtual bases. 1925 for (const auto &Base : ClassDecl->bases()) { 1926 // Ignore virtual bases. 1927 if (Base.isVirtual()) 1928 continue; 1929 1930 CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl(); 1931 1932 if (BaseClassDecl->hasTrivialDestructor()) { 1933 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1934 SanOpts.has(SanitizerKind::Memory) && !BaseClassDecl->isEmpty()) 1935 EHStack.pushCleanup<SanitizeDtorTrivialBase>(NormalAndEHCleanup, 1936 BaseClassDecl, 1937 /*BaseIsVirtual*/ false); 1938 } else { 1939 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, BaseClassDecl, 1940 /*BaseIsVirtual*/ false); 1941 } 1942 } 1943 1944 // Poison fields such that access after their destructors are 1945 // invoked, and before the base class destructor runs, is invalid. 1946 bool SanitizeFields = CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1947 SanOpts.has(SanitizerKind::Memory); 1948 SanitizeDtorCleanupBuilder SanitizeBuilder(getContext(), EHStack, DD); 1949 1950 // Destroy direct fields. 1951 for (const auto *Field : ClassDecl->fields()) { 1952 if (SanitizeFields) 1953 SanitizeBuilder.PushCleanupForField(Field); 1954 1955 QualType type = Field->getType(); 1956 QualType::DestructionKind dtorKind = type.isDestructedType(); 1957 if (!dtorKind) 1958 continue; 1959 1960 // Anonymous union members do not have their destructors called. 1961 const RecordType *RT = type->getAsUnionType(); 1962 if (RT && RT->getDecl()->isAnonymousStructOrUnion()) 1963 continue; 1964 1965 CleanupKind cleanupKind = getCleanupKind(dtorKind); 1966 EHStack.pushCleanup<DestroyField>( 1967 cleanupKind, Field, getDestroyer(dtorKind), cleanupKind & EHCleanup); 1968 } 1969 1970 if (SanitizeFields) 1971 SanitizeBuilder.End(); 1972 } 1973 1974 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular 1975 /// constructor for each of several members of an array. 1976 /// 1977 /// \param ctor the constructor to call for each element 1978 /// \param arrayType the type of the array to initialize 1979 /// \param arrayBegin an arrayType* 1980 /// \param zeroInitialize true if each element should be 1981 /// zero-initialized before it is constructed 1982 void CodeGenFunction::EmitCXXAggrConstructorCall( 1983 const CXXConstructorDecl *ctor, const ArrayType *arrayType, 1984 Address arrayBegin, const CXXConstructExpr *E, bool NewPointerIsChecked, 1985 bool zeroInitialize) { 1986 QualType elementType; 1987 llvm::Value *numElements = 1988 emitArrayLength(arrayType, elementType, arrayBegin); 1989 1990 EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin, E, 1991 NewPointerIsChecked, zeroInitialize); 1992 } 1993 1994 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular 1995 /// constructor for each of several members of an array. 1996 /// 1997 /// \param ctor the constructor to call for each element 1998 /// \param numElements the number of elements in the array; 1999 /// may be zero 2000 /// \param arrayBase a T*, where T is the type constructed by ctor 2001 /// \param zeroInitialize true if each element should be 2002 /// zero-initialized before it is constructed 2003 void CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor, 2004 llvm::Value *numElements, 2005 Address arrayBase, 2006 const CXXConstructExpr *E, 2007 bool NewPointerIsChecked, 2008 bool zeroInitialize) { 2009 // It's legal for numElements to be zero. This can happen both 2010 // dynamically, because x can be zero in 'new A[x]', and statically, 2011 // because of GCC extensions that permit zero-length arrays. There 2012 // are probably legitimate places where we could assume that this 2013 // doesn't happen, but it's not clear that it's worth it. 2014 llvm::BranchInst *zeroCheckBranch = nullptr; 2015 2016 // Optimize for a constant count. 2017 llvm::ConstantInt *constantCount 2018 = dyn_cast<llvm::ConstantInt>(numElements); 2019 if (constantCount) { 2020 // Just skip out if the constant count is zero. 2021 if (constantCount->isZero()) return; 2022 2023 // Otherwise, emit the check. 2024 } else { 2025 llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop"); 2026 llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty"); 2027 zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB); 2028 EmitBlock(loopBB); 2029 } 2030 2031 // Find the end of the array. 2032 llvm::Type *elementType = arrayBase.getElementType(); 2033 llvm::Value *arrayBegin = arrayBase.emitRawPointer(*this); 2034 llvm::Value *arrayEnd = Builder.CreateInBoundsGEP( 2035 elementType, arrayBegin, numElements, "arrayctor.end"); 2036 2037 // Enter the loop, setting up a phi for the current location to initialize. 2038 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 2039 llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop"); 2040 EmitBlock(loopBB); 2041 llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2, 2042 "arrayctor.cur"); 2043 cur->addIncoming(arrayBegin, entryBB); 2044 2045 // Inside the loop body, emit the constructor call on the array element. 2046 2047 // The alignment of the base, adjusted by the size of a single element, 2048 // provides a conservative estimate of the alignment of every element. 2049 // (This assumes we never start tracking offsetted alignments.) 2050 // 2051 // Note that these are complete objects and so we don't need to 2052 // use the non-virtual size or alignment. 2053 QualType type = getContext().getTypeDeclType(ctor->getParent()); 2054 CharUnits eltAlignment = 2055 arrayBase.getAlignment() 2056 .alignmentOfArrayElement(getContext().getTypeSizeInChars(type)); 2057 Address curAddr = Address(cur, elementType, eltAlignment); 2058 2059 // Zero initialize the storage, if requested. 2060 if (zeroInitialize) 2061 EmitNullInitialization(curAddr, type); 2062 2063 // C++ [class.temporary]p4: 2064 // There are two contexts in which temporaries are destroyed at a different 2065 // point than the end of the full-expression. The first context is when a 2066 // default constructor is called to initialize an element of an array. 2067 // If the constructor has one or more default arguments, the destruction of 2068 // every temporary created in a default argument expression is sequenced 2069 // before the construction of the next array element, if any. 2070 2071 { 2072 RunCleanupsScope Scope(*this); 2073 2074 // Evaluate the constructor and its arguments in a regular 2075 // partial-destroy cleanup. 2076 if (getLangOpts().Exceptions && 2077 !ctor->getParent()->hasTrivialDestructor()) { 2078 Destroyer *destroyer = destroyCXXObject; 2079 pushRegularPartialArrayCleanup(arrayBegin, cur, type, eltAlignment, 2080 *destroyer); 2081 } 2082 auto currAVS = AggValueSlot::forAddr( 2083 curAddr, type.getQualifiers(), AggValueSlot::IsDestructed, 2084 AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased, 2085 AggValueSlot::DoesNotOverlap, AggValueSlot::IsNotZeroed, 2086 NewPointerIsChecked ? AggValueSlot::IsSanitizerChecked 2087 : AggValueSlot::IsNotSanitizerChecked); 2088 EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/false, 2089 /*Delegating=*/false, currAVS, E); 2090 } 2091 2092 // Go to the next element. 2093 llvm::Value *next = Builder.CreateInBoundsGEP( 2094 elementType, cur, llvm::ConstantInt::get(SizeTy, 1), "arrayctor.next"); 2095 cur->addIncoming(next, Builder.GetInsertBlock()); 2096 2097 // Check whether that's the end of the loop. 2098 llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done"); 2099 llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont"); 2100 Builder.CreateCondBr(done, contBB, loopBB); 2101 2102 // Patch the earlier check to skip over the loop. 2103 if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB); 2104 2105 EmitBlock(contBB); 2106 } 2107 2108 void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF, 2109 Address addr, 2110 QualType type) { 2111 const RecordType *rtype = type->castAs<RecordType>(); 2112 const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl()); 2113 const CXXDestructorDecl *dtor = record->getDestructor(); 2114 assert(!dtor->isTrivial()); 2115 CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false, 2116 /*Delegating=*/false, addr, type); 2117 } 2118 2119 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D, 2120 CXXCtorType Type, 2121 bool ForVirtualBase, 2122 bool Delegating, 2123 AggValueSlot ThisAVS, 2124 const CXXConstructExpr *E) { 2125 CallArgList Args; 2126 Address This = ThisAVS.getAddress(); 2127 LangAS SlotAS = ThisAVS.getQualifiers().getAddressSpace(); 2128 LangAS ThisAS = D->getFunctionObjectParameterType().getAddressSpace(); 2129 llvm::Value *ThisPtr = 2130 getAsNaturalPointerTo(This, D->getThisType()->getPointeeType()); 2131 2132 if (SlotAS != ThisAS) { 2133 unsigned TargetThisAS = getContext().getTargetAddressSpace(ThisAS); 2134 llvm::Type *NewType = 2135 llvm::PointerType::get(getLLVMContext(), TargetThisAS); 2136 ThisPtr = getTargetHooks().performAddrSpaceCast(*this, ThisPtr, ThisAS, 2137 SlotAS, NewType); 2138 } 2139 2140 // Push the this ptr. 2141 Args.add(RValue::get(ThisPtr), D->getThisType()); 2142 2143 // If this is a trivial constructor, emit a memcpy now before we lose 2144 // the alignment information on the argument. 2145 // FIXME: It would be better to preserve alignment information into CallArg. 2146 if (isMemcpyEquivalentSpecialMember(D)) { 2147 assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor"); 2148 2149 const Expr *Arg = E->getArg(0); 2150 LValue Src = EmitLValue(Arg); 2151 QualType DestTy = getContext().getTypeDeclType(D->getParent()); 2152 LValue Dest = MakeAddrLValue(This, DestTy); 2153 EmitAggregateCopyCtor(Dest, Src, ThisAVS.mayOverlap()); 2154 return; 2155 } 2156 2157 // Add the rest of the user-supplied arguments. 2158 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); 2159 EvaluationOrder Order = E->isListInitialization() 2160 ? EvaluationOrder::ForceLeftToRight 2161 : EvaluationOrder::Default; 2162 EmitCallArgs(Args, FPT, E->arguments(), E->getConstructor(), 2163 /*ParamsToSkip*/ 0, Order); 2164 2165 EmitCXXConstructorCall(D, Type, ForVirtualBase, Delegating, This, Args, 2166 ThisAVS.mayOverlap(), E->getExprLoc(), 2167 ThisAVS.isSanitizerChecked()); 2168 } 2169 2170 static bool canEmitDelegateCallArgs(CodeGenFunction &CGF, 2171 const CXXConstructorDecl *Ctor, 2172 CXXCtorType Type, CallArgList &Args) { 2173 // We can't forward a variadic call. 2174 if (Ctor->isVariadic()) 2175 return false; 2176 2177 if (CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 2178 // If the parameters are callee-cleanup, it's not safe to forward. 2179 for (auto *P : Ctor->parameters()) 2180 if (P->needsDestruction(CGF.getContext())) 2181 return false; 2182 2183 // Likewise if they're inalloca. 2184 const CGFunctionInfo &Info = 2185 CGF.CGM.getTypes().arrangeCXXConstructorCall(Args, Ctor, Type, 0, 0); 2186 if (Info.usesInAlloca()) 2187 return false; 2188 } 2189 2190 // Anything else should be OK. 2191 return true; 2192 } 2193 2194 void CodeGenFunction::EmitCXXConstructorCall( 2195 const CXXConstructorDecl *D, CXXCtorType Type, bool ForVirtualBase, 2196 bool Delegating, Address This, CallArgList &Args, 2197 AggValueSlot::Overlap_t Overlap, SourceLocation Loc, 2198 bool NewPointerIsChecked, llvm::CallBase **CallOrInvoke) { 2199 const CXXRecordDecl *ClassDecl = D->getParent(); 2200 2201 if (!NewPointerIsChecked) 2202 EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, Loc, This, 2203 getContext().getRecordType(ClassDecl), CharUnits::Zero()); 2204 2205 if (D->isTrivial() && D->isDefaultConstructor()) { 2206 assert(Args.size() == 1 && "trivial default ctor with args"); 2207 return; 2208 } 2209 2210 // If this is a trivial constructor, just emit what's needed. If this is a 2211 // union copy constructor, we must emit a memcpy, because the AST does not 2212 // model that copy. 2213 if (isMemcpyEquivalentSpecialMember(D)) { 2214 assert(Args.size() == 2 && "unexpected argcount for trivial ctor"); 2215 QualType SrcTy = D->getParamDecl(0)->getType().getNonReferenceType(); 2216 Address Src = makeNaturalAddressForPointer( 2217 Args[1].getRValue(*this).getScalarVal(), SrcTy); 2218 LValue SrcLVal = MakeAddrLValue(Src, SrcTy); 2219 QualType DestTy = getContext().getTypeDeclType(ClassDecl); 2220 LValue DestLVal = MakeAddrLValue(This, DestTy); 2221 EmitAggregateCopyCtor(DestLVal, SrcLVal, Overlap); 2222 return; 2223 } 2224 2225 bool PassPrototypeArgs = true; 2226 // Check whether we can actually emit the constructor before trying to do so. 2227 if (auto Inherited = D->getInheritedConstructor()) { 2228 PassPrototypeArgs = getTypes().inheritingCtorHasParams(Inherited, Type); 2229 if (PassPrototypeArgs && !canEmitDelegateCallArgs(*this, D, Type, Args)) { 2230 EmitInlinedInheritingCXXConstructorCall(D, Type, ForVirtualBase, 2231 Delegating, Args); 2232 return; 2233 } 2234 } 2235 2236 // Insert any ABI-specific implicit constructor arguments. 2237 CGCXXABI::AddedStructorArgCounts ExtraArgs = 2238 CGM.getCXXABI().addImplicitConstructorArgs(*this, D, Type, ForVirtualBase, 2239 Delegating, Args); 2240 2241 // Emit the call. 2242 llvm::Constant *CalleePtr = CGM.getAddrOfCXXStructor(GlobalDecl(D, Type)); 2243 const CGFunctionInfo &Info = CGM.getTypes().arrangeCXXConstructorCall( 2244 Args, D, Type, ExtraArgs.Prefix, ExtraArgs.Suffix, PassPrototypeArgs); 2245 CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(D, Type)); 2246 EmitCall(Info, Callee, ReturnValueSlot(), Args, CallOrInvoke, false, Loc); 2247 2248 // Generate vtable assumptions if we're constructing a complete object 2249 // with a vtable. We don't do this for base subobjects for two reasons: 2250 // first, it's incorrect for classes with virtual bases, and second, we're 2251 // about to overwrite the vptrs anyway. 2252 // We also have to make sure if we can refer to vtable: 2253 // - Otherwise we can refer to vtable if it's safe to speculatively emit. 2254 // FIXME: If vtable is used by ctor/dtor, or if vtable is external and we are 2255 // sure that definition of vtable is not hidden, 2256 // then we are always safe to refer to it. 2257 // FIXME: It looks like InstCombine is very inefficient on dealing with 2258 // assumes. Make assumption loads require -fstrict-vtable-pointers temporarily. 2259 if (CGM.getCodeGenOpts().OptimizationLevel > 0 && 2260 ClassDecl->isDynamicClass() && Type != Ctor_Base && 2261 CGM.getCXXABI().canSpeculativelyEmitVTable(ClassDecl) && 2262 CGM.getCodeGenOpts().StrictVTablePointers) 2263 EmitVTableAssumptionLoads(ClassDecl, This); 2264 } 2265 2266 void CodeGenFunction::EmitInheritedCXXConstructorCall( 2267 const CXXConstructorDecl *D, bool ForVirtualBase, Address This, 2268 bool InheritedFromVBase, const CXXInheritedCtorInitExpr *E) { 2269 CallArgList Args; 2270 CallArg ThisArg(RValue::get(getAsNaturalPointerTo( 2271 This, D->getThisType()->getPointeeType())), 2272 D->getThisType()); 2273 2274 // Forward the parameters. 2275 if (InheritedFromVBase && 2276 CGM.getTarget().getCXXABI().hasConstructorVariants()) { 2277 // Nothing to do; this construction is not responsible for constructing 2278 // the base class containing the inherited constructor. 2279 // FIXME: Can we just pass undef's for the remaining arguments if we don't 2280 // have constructor variants? 2281 Args.push_back(ThisArg); 2282 } else if (!CXXInheritedCtorInitExprArgs.empty()) { 2283 // The inheriting constructor was inlined; just inject its arguments. 2284 assert(CXXInheritedCtorInitExprArgs.size() >= D->getNumParams() && 2285 "wrong number of parameters for inherited constructor call"); 2286 Args = CXXInheritedCtorInitExprArgs; 2287 Args[0] = ThisArg; 2288 } else { 2289 // The inheriting constructor was not inlined. Emit delegating arguments. 2290 Args.push_back(ThisArg); 2291 const auto *OuterCtor = cast<CXXConstructorDecl>(CurCodeDecl); 2292 assert(OuterCtor->getNumParams() == D->getNumParams()); 2293 assert(!OuterCtor->isVariadic() && "should have been inlined"); 2294 2295 for (const auto *Param : OuterCtor->parameters()) { 2296 assert(getContext().hasSameUnqualifiedType( 2297 OuterCtor->getParamDecl(Param->getFunctionScopeIndex())->getType(), 2298 Param->getType())); 2299 EmitDelegateCallArg(Args, Param, E->getLocation()); 2300 2301 // Forward __attribute__(pass_object_size). 2302 if (Param->hasAttr<PassObjectSizeAttr>()) { 2303 auto *POSParam = SizeArguments[Param]; 2304 assert(POSParam && "missing pass_object_size value for forwarding"); 2305 EmitDelegateCallArg(Args, POSParam, E->getLocation()); 2306 } 2307 } 2308 } 2309 2310 EmitCXXConstructorCall(D, Ctor_Base, ForVirtualBase, /*Delegating*/false, 2311 This, Args, AggValueSlot::MayOverlap, 2312 E->getLocation(), /*NewPointerIsChecked*/true); 2313 } 2314 2315 void CodeGenFunction::EmitInlinedInheritingCXXConstructorCall( 2316 const CXXConstructorDecl *Ctor, CXXCtorType CtorType, bool ForVirtualBase, 2317 bool Delegating, CallArgList &Args) { 2318 GlobalDecl GD(Ctor, CtorType); 2319 InlinedInheritingConstructorScope Scope(*this, GD); 2320 ApplyInlineDebugLocation DebugScope(*this, GD); 2321 RunCleanupsScope RunCleanups(*this); 2322 2323 // Save the arguments to be passed to the inherited constructor. 2324 CXXInheritedCtorInitExprArgs = Args; 2325 2326 FunctionArgList Params; 2327 QualType RetType = BuildFunctionArgList(CurGD, Params); 2328 FnRetTy = RetType; 2329 2330 // Insert any ABI-specific implicit constructor arguments. 2331 CGM.getCXXABI().addImplicitConstructorArgs(*this, Ctor, CtorType, 2332 ForVirtualBase, Delegating, Args); 2333 2334 // Emit a simplified prolog. We only need to emit the implicit params. 2335 assert(Args.size() >= Params.size() && "too few arguments for call"); 2336 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 2337 if (I < Params.size() && isa<ImplicitParamDecl>(Params[I])) { 2338 const RValue &RV = Args[I].getRValue(*this); 2339 assert(!RV.isComplex() && "complex indirect params not supported"); 2340 ParamValue Val = RV.isScalar() 2341 ? ParamValue::forDirect(RV.getScalarVal()) 2342 : ParamValue::forIndirect(RV.getAggregateAddress()); 2343 EmitParmDecl(*Params[I], Val, I + 1); 2344 } 2345 } 2346 2347 // Create a return value slot if the ABI implementation wants one. 2348 // FIXME: This is dumb, we should ask the ABI not to try to set the return 2349 // value instead. 2350 if (!RetType->isVoidType()) 2351 ReturnValue = CreateIRTemp(RetType, "retval.inhctor"); 2352 2353 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 2354 CXXThisValue = CXXABIThisValue; 2355 2356 // Directly emit the constructor initializers. 2357 EmitCtorPrologue(Ctor, CtorType, Params); 2358 } 2359 2360 void CodeGenFunction::EmitVTableAssumptionLoad(const VPtr &Vptr, Address This) { 2361 llvm::Value *VTableGlobal = 2362 CGM.getCXXABI().getVTableAddressPoint(Vptr.Base, Vptr.VTableClass); 2363 if (!VTableGlobal) 2364 return; 2365 2366 // We can just use the base offset in the complete class. 2367 CharUnits NonVirtualOffset = Vptr.Base.getBaseOffset(); 2368 2369 if (!NonVirtualOffset.isZero()) 2370 This = 2371 ApplyNonVirtualAndVirtualOffset(*this, This, NonVirtualOffset, nullptr, 2372 Vptr.VTableClass, Vptr.NearestVBase); 2373 2374 llvm::Value *VPtrValue = 2375 GetVTablePtr(This, VTableGlobal->getType(), Vptr.VTableClass); 2376 llvm::Value *Cmp = 2377 Builder.CreateICmpEQ(VPtrValue, VTableGlobal, "cmp.vtables"); 2378 Builder.CreateAssumption(Cmp); 2379 } 2380 2381 void CodeGenFunction::EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, 2382 Address This) { 2383 if (CGM.getCXXABI().doStructorsInitializeVPtrs(ClassDecl)) 2384 for (const VPtr &Vptr : getVTablePointers(ClassDecl)) 2385 EmitVTableAssumptionLoad(Vptr, This); 2386 } 2387 2388 void 2389 CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 2390 Address This, Address Src, 2391 const CXXConstructExpr *E) { 2392 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); 2393 2394 CallArgList Args; 2395 2396 // Push the this ptr. 2397 Args.add(RValue::get(getAsNaturalPointerTo(This, D->getThisType())), 2398 D->getThisType()); 2399 2400 // Push the src ptr. 2401 QualType QT = *(FPT->param_type_begin()); 2402 llvm::Type *t = CGM.getTypes().ConvertType(QT); 2403 llvm::Value *Val = getAsNaturalPointerTo(Src, D->getThisType()); 2404 llvm::Value *SrcVal = Builder.CreateBitCast(Val, t); 2405 Args.add(RValue::get(SrcVal), QT); 2406 2407 // Skip over first argument (Src). 2408 EmitCallArgs(Args, FPT, drop_begin(E->arguments(), 1), E->getConstructor(), 2409 /*ParamsToSkip*/ 1); 2410 2411 EmitCXXConstructorCall(D, Ctor_Complete, /*ForVirtualBase*/false, 2412 /*Delegating*/false, This, Args, 2413 AggValueSlot::MayOverlap, E->getExprLoc(), 2414 /*NewPointerIsChecked*/false); 2415 } 2416 2417 void 2418 CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 2419 CXXCtorType CtorType, 2420 const FunctionArgList &Args, 2421 SourceLocation Loc) { 2422 CallArgList DelegateArgs; 2423 2424 FunctionArgList::const_iterator I = Args.begin(), E = Args.end(); 2425 assert(I != E && "no parameters to constructor"); 2426 2427 // this 2428 Address This = LoadCXXThisAddress(); 2429 DelegateArgs.add(RValue::get(getAsNaturalPointerTo( 2430 This, (*I)->getType()->getPointeeType())), 2431 (*I)->getType()); 2432 ++I; 2433 2434 // FIXME: The location of the VTT parameter in the parameter list is 2435 // specific to the Itanium ABI and shouldn't be hardcoded here. 2436 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) { 2437 assert(I != E && "cannot skip vtt parameter, already done with args"); 2438 assert((*I)->getType()->isPointerType() && 2439 "skipping parameter not of vtt type"); 2440 ++I; 2441 } 2442 2443 // Explicit arguments. 2444 for (; I != E; ++I) { 2445 const VarDecl *param = *I; 2446 // FIXME: per-argument source location 2447 EmitDelegateCallArg(DelegateArgs, param, Loc); 2448 } 2449 2450 EmitCXXConstructorCall(Ctor, CtorType, /*ForVirtualBase=*/false, 2451 /*Delegating=*/true, This, DelegateArgs, 2452 AggValueSlot::MayOverlap, Loc, 2453 /*NewPointerIsChecked=*/true); 2454 } 2455 2456 namespace { 2457 struct CallDelegatingCtorDtor final : EHScopeStack::Cleanup { 2458 const CXXDestructorDecl *Dtor; 2459 Address Addr; 2460 CXXDtorType Type; 2461 2462 CallDelegatingCtorDtor(const CXXDestructorDecl *D, Address Addr, 2463 CXXDtorType Type) 2464 : Dtor(D), Addr(Addr), Type(Type) {} 2465 2466 void Emit(CodeGenFunction &CGF, Flags flags) override { 2467 // We are calling the destructor from within the constructor. 2468 // Therefore, "this" should have the expected type. 2469 QualType ThisTy = Dtor->getFunctionObjectParameterType(); 2470 CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false, 2471 /*Delegating=*/true, Addr, ThisTy); 2472 } 2473 }; 2474 } // end anonymous namespace 2475 2476 void 2477 CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2478 const FunctionArgList &Args) { 2479 assert(Ctor->isDelegatingConstructor()); 2480 2481 Address ThisPtr = LoadCXXThisAddress(); 2482 2483 AggValueSlot AggSlot = 2484 AggValueSlot::forAddr(ThisPtr, Qualifiers(), 2485 AggValueSlot::IsDestructed, 2486 AggValueSlot::DoesNotNeedGCBarriers, 2487 AggValueSlot::IsNotAliased, 2488 AggValueSlot::MayOverlap, 2489 AggValueSlot::IsNotZeroed, 2490 // Checks are made by the code that calls constructor. 2491 AggValueSlot::IsSanitizerChecked); 2492 2493 EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot); 2494 2495 const CXXRecordDecl *ClassDecl = Ctor->getParent(); 2496 if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) { 2497 CXXDtorType Type = 2498 CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base; 2499 2500 EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup, 2501 ClassDecl->getDestructor(), 2502 ThisPtr, Type); 2503 } 2504 } 2505 2506 void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD, 2507 CXXDtorType Type, 2508 bool ForVirtualBase, 2509 bool Delegating, Address This, 2510 QualType ThisTy) { 2511 CGM.getCXXABI().EmitDestructorCall(*this, DD, Type, ForVirtualBase, 2512 Delegating, This, ThisTy); 2513 } 2514 2515 namespace { 2516 struct CallLocalDtor final : EHScopeStack::Cleanup { 2517 const CXXDestructorDecl *Dtor; 2518 Address Addr; 2519 QualType Ty; 2520 2521 CallLocalDtor(const CXXDestructorDecl *D, Address Addr, QualType Ty) 2522 : Dtor(D), Addr(Addr), Ty(Ty) {} 2523 2524 void Emit(CodeGenFunction &CGF, Flags flags) override { 2525 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 2526 /*ForVirtualBase=*/false, 2527 /*Delegating=*/false, Addr, Ty); 2528 } 2529 }; 2530 } // end anonymous namespace 2531 2532 void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D, 2533 QualType T, Address Addr) { 2534 EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr, T); 2535 } 2536 2537 void CodeGenFunction::PushDestructorCleanup(QualType T, Address Addr) { 2538 CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl(); 2539 if (!ClassDecl) return; 2540 if (ClassDecl->hasTrivialDestructor()) return; 2541 2542 const CXXDestructorDecl *D = ClassDecl->getDestructor(); 2543 assert(D && D->isUsed() && "destructor not marked as used!"); 2544 PushDestructorCleanup(D, T, Addr); 2545 } 2546 2547 void CodeGenFunction::InitializeVTablePointer(const VPtr &Vptr) { 2548 // Compute the address point. 2549 llvm::Value *VTableAddressPoint = 2550 CGM.getCXXABI().getVTableAddressPointInStructor( 2551 *this, Vptr.VTableClass, Vptr.Base, Vptr.NearestVBase); 2552 2553 if (!VTableAddressPoint) 2554 return; 2555 2556 // Compute where to store the address point. 2557 llvm::Value *VirtualOffset = nullptr; 2558 CharUnits NonVirtualOffset = CharUnits::Zero(); 2559 2560 if (CGM.getCXXABI().isVirtualOffsetNeededForVTableField(*this, Vptr)) { 2561 // We need to use the virtual base offset offset because the virtual base 2562 // might have a different offset in the most derived class. 2563 2564 VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset( 2565 *this, LoadCXXThisAddress(), Vptr.VTableClass, Vptr.NearestVBase); 2566 NonVirtualOffset = Vptr.OffsetFromNearestVBase; 2567 } else { 2568 // We can just use the base offset in the complete class. 2569 NonVirtualOffset = Vptr.Base.getBaseOffset(); 2570 } 2571 2572 // Apply the offsets. 2573 Address VTableField = LoadCXXThisAddress(); 2574 if (!NonVirtualOffset.isZero() || VirtualOffset) 2575 VTableField = ApplyNonVirtualAndVirtualOffset( 2576 *this, VTableField, NonVirtualOffset, VirtualOffset, Vptr.VTableClass, 2577 Vptr.NearestVBase); 2578 2579 // Finally, store the address point. Use the same LLVM types as the field to 2580 // support optimization. 2581 unsigned GlobalsAS = CGM.getDataLayout().getDefaultGlobalsAddressSpace(); 2582 llvm::Type *PtrTy = llvm::PointerType::get(CGM.getLLVMContext(), GlobalsAS); 2583 // vtable field is derived from `this` pointer, therefore they should be in 2584 // the same addr space. Note that this might not be LLVM address space 0. 2585 VTableField = VTableField.withElementType(PtrTy); 2586 2587 if (auto AuthenticationInfo = CGM.getVTablePointerAuthInfo( 2588 this, Vptr.Base.getBase(), VTableField.emitRawPointer(*this))) 2589 VTableAddressPoint = 2590 EmitPointerAuthSign(*AuthenticationInfo, VTableAddressPoint); 2591 2592 llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField); 2593 TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(PtrTy); 2594 CGM.DecorateInstructionWithTBAA(Store, TBAAInfo); 2595 if (CGM.getCodeGenOpts().OptimizationLevel > 0 && 2596 CGM.getCodeGenOpts().StrictVTablePointers) 2597 CGM.DecorateInstructionWithInvariantGroup(Store, Vptr.VTableClass); 2598 } 2599 2600 CodeGenFunction::VPtrsVector 2601 CodeGenFunction::getVTablePointers(const CXXRecordDecl *VTableClass) { 2602 CodeGenFunction::VPtrsVector VPtrsResult; 2603 VisitedVirtualBasesSetTy VBases; 2604 getVTablePointers(BaseSubobject(VTableClass, CharUnits::Zero()), 2605 /*NearestVBase=*/nullptr, 2606 /*OffsetFromNearestVBase=*/CharUnits::Zero(), 2607 /*BaseIsNonVirtualPrimaryBase=*/false, VTableClass, VBases, 2608 VPtrsResult); 2609 return VPtrsResult; 2610 } 2611 2612 void CodeGenFunction::getVTablePointers(BaseSubobject Base, 2613 const CXXRecordDecl *NearestVBase, 2614 CharUnits OffsetFromNearestVBase, 2615 bool BaseIsNonVirtualPrimaryBase, 2616 const CXXRecordDecl *VTableClass, 2617 VisitedVirtualBasesSetTy &VBases, 2618 VPtrsVector &Vptrs) { 2619 // If this base is a non-virtual primary base the address point has already 2620 // been set. 2621 if (!BaseIsNonVirtualPrimaryBase) { 2622 // Initialize the vtable pointer for this base. 2623 VPtr Vptr = {Base, NearestVBase, OffsetFromNearestVBase, VTableClass}; 2624 Vptrs.push_back(Vptr); 2625 } 2626 2627 const CXXRecordDecl *RD = Base.getBase(); 2628 2629 // Traverse bases. 2630 for (const auto &I : RD->bases()) { 2631 auto *BaseDecl = 2632 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 2633 2634 // Ignore classes without a vtable. 2635 if (!BaseDecl->isDynamicClass()) 2636 continue; 2637 2638 CharUnits BaseOffset; 2639 CharUnits BaseOffsetFromNearestVBase; 2640 bool BaseDeclIsNonVirtualPrimaryBase; 2641 2642 if (I.isVirtual()) { 2643 // Check if we've visited this virtual base before. 2644 if (!VBases.insert(BaseDecl).second) 2645 continue; 2646 2647 const ASTRecordLayout &Layout = 2648 getContext().getASTRecordLayout(VTableClass); 2649 2650 BaseOffset = Layout.getVBaseClassOffset(BaseDecl); 2651 BaseOffsetFromNearestVBase = CharUnits::Zero(); 2652 BaseDeclIsNonVirtualPrimaryBase = false; 2653 } else { 2654 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2655 2656 BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl); 2657 BaseOffsetFromNearestVBase = 2658 OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl); 2659 BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl; 2660 } 2661 2662 getVTablePointers( 2663 BaseSubobject(BaseDecl, BaseOffset), 2664 I.isVirtual() ? BaseDecl : NearestVBase, BaseOffsetFromNearestVBase, 2665 BaseDeclIsNonVirtualPrimaryBase, VTableClass, VBases, Vptrs); 2666 } 2667 } 2668 2669 void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) { 2670 // Ignore classes without a vtable. 2671 if (!RD->isDynamicClass()) 2672 return; 2673 2674 // Initialize the vtable pointers for this class and all of its bases. 2675 if (CGM.getCXXABI().doStructorsInitializeVPtrs(RD)) 2676 for (const VPtr &Vptr : getVTablePointers(RD)) 2677 InitializeVTablePointer(Vptr); 2678 2679 if (RD->getNumVBases()) 2680 CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD); 2681 } 2682 2683 llvm::Value *CodeGenFunction::GetVTablePtr(Address This, 2684 llvm::Type *VTableTy, 2685 const CXXRecordDecl *RD, 2686 VTableAuthMode AuthMode) { 2687 Address VTablePtrSrc = This.withElementType(VTableTy); 2688 llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable"); 2689 TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(VTableTy); 2690 CGM.DecorateInstructionWithTBAA(VTable, TBAAInfo); 2691 2692 if (auto AuthenticationInfo = 2693 CGM.getVTablePointerAuthInfo(this, RD, This.emitRawPointer(*this))) { 2694 if (AuthMode != VTableAuthMode::UnsafeUbsanStrip) { 2695 VTable = cast<llvm::Instruction>( 2696 EmitPointerAuthAuth(*AuthenticationInfo, VTable)); 2697 if (AuthMode == VTableAuthMode::MustTrap) { 2698 // This is clearly suboptimal but until we have an ability 2699 // to rely on the authentication intrinsic trapping and force 2700 // an authentication to occur we don't really have a choice. 2701 VTable = 2702 cast<llvm::Instruction>(Builder.CreateBitCast(VTable, Int8PtrTy)); 2703 Builder.CreateLoad(RawAddress(VTable, Int8Ty, CGM.getPointerAlign()), 2704 /* IsVolatile */ true); 2705 } 2706 } else { 2707 VTable = cast<llvm::Instruction>(EmitPointerAuthAuth( 2708 CGPointerAuthInfo(0, PointerAuthenticationMode::Strip, false, false, 2709 nullptr), 2710 VTable)); 2711 } 2712 } 2713 2714 if (CGM.getCodeGenOpts().OptimizationLevel > 0 && 2715 CGM.getCodeGenOpts().StrictVTablePointers) 2716 CGM.DecorateInstructionWithInvariantGroup(VTable, RD); 2717 2718 return VTable; 2719 } 2720 2721 // If a class has a single non-virtual base and does not introduce or override 2722 // virtual member functions or fields, it will have the same layout as its base. 2723 // This function returns the least derived such class. 2724 // 2725 // Casting an instance of a base class to such a derived class is technically 2726 // undefined behavior, but it is a relatively common hack for introducing member 2727 // functions on class instances with specific properties (e.g. llvm::Operator) 2728 // that works under most compilers and should not have security implications, so 2729 // we allow it by default. It can be disabled with -fsanitize=cfi-cast-strict. 2730 static const CXXRecordDecl * 2731 LeastDerivedClassWithSameLayout(const CXXRecordDecl *RD) { 2732 if (!RD->field_empty()) 2733 return RD; 2734 2735 if (RD->getNumVBases() != 0) 2736 return RD; 2737 2738 if (RD->getNumBases() != 1) 2739 return RD; 2740 2741 for (const CXXMethodDecl *MD : RD->methods()) { 2742 if (MD->isVirtual()) { 2743 // Virtual member functions are only ok if they are implicit destructors 2744 // because the implicit destructor will have the same semantics as the 2745 // base class's destructor if no fields are added. 2746 if (isa<CXXDestructorDecl>(MD) && MD->isImplicit()) 2747 continue; 2748 return RD; 2749 } 2750 } 2751 2752 return LeastDerivedClassWithSameLayout( 2753 RD->bases_begin()->getType()->getAsCXXRecordDecl()); 2754 } 2755 2756 void CodeGenFunction::EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, 2757 llvm::Value *VTable, 2758 SourceLocation Loc) { 2759 if (SanOpts.has(SanitizerKind::CFIVCall)) 2760 EmitVTablePtrCheckForCall(RD, VTable, CodeGenFunction::CFITCK_VCall, Loc); 2761 else if (CGM.getCodeGenOpts().WholeProgramVTables && 2762 // Don't insert type test assumes if we are forcing public 2763 // visibility. 2764 !CGM.AlwaysHasLTOVisibilityPublic(RD)) { 2765 QualType Ty = QualType(RD->getTypeForDecl(), 0); 2766 llvm::Metadata *MD = CGM.CreateMetadataIdentifierForType(Ty); 2767 llvm::Value *TypeId = 2768 llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD); 2769 2770 // If we already know that the call has hidden LTO visibility, emit 2771 // @llvm.type.test(). Otherwise emit @llvm.public.type.test(), which WPD 2772 // will convert to @llvm.type.test() if we assert at link time that we have 2773 // whole program visibility. 2774 llvm::Intrinsic::ID IID = CGM.HasHiddenLTOVisibility(RD) 2775 ? llvm::Intrinsic::type_test 2776 : llvm::Intrinsic::public_type_test; 2777 llvm::Value *TypeTest = 2778 Builder.CreateCall(CGM.getIntrinsic(IID), {VTable, TypeId}); 2779 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::assume), TypeTest); 2780 } 2781 } 2782 2783 void CodeGenFunction::EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, 2784 llvm::Value *VTable, 2785 CFITypeCheckKind TCK, 2786 SourceLocation Loc) { 2787 if (!SanOpts.has(SanitizerKind::CFICastStrict)) 2788 RD = LeastDerivedClassWithSameLayout(RD); 2789 2790 EmitVTablePtrCheck(RD, VTable, TCK, Loc); 2791 } 2792 2793 void CodeGenFunction::EmitVTablePtrCheckForCast(QualType T, Address Derived, 2794 bool MayBeNull, 2795 CFITypeCheckKind TCK, 2796 SourceLocation Loc) { 2797 if (!getLangOpts().CPlusPlus) 2798 return; 2799 2800 auto *ClassTy = T->getAs<RecordType>(); 2801 if (!ClassTy) 2802 return; 2803 2804 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassTy->getDecl()); 2805 2806 if (!ClassDecl->isCompleteDefinition() || !ClassDecl->isDynamicClass()) 2807 return; 2808 2809 if (!SanOpts.has(SanitizerKind::CFICastStrict)) 2810 ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl); 2811 2812 llvm::BasicBlock *ContBlock = nullptr; 2813 2814 if (MayBeNull) { 2815 llvm::Value *DerivedNotNull = 2816 Builder.CreateIsNotNull(Derived.emitRawPointer(*this), "cast.nonnull"); 2817 2818 llvm::BasicBlock *CheckBlock = createBasicBlock("cast.check"); 2819 ContBlock = createBasicBlock("cast.cont"); 2820 2821 Builder.CreateCondBr(DerivedNotNull, CheckBlock, ContBlock); 2822 2823 EmitBlock(CheckBlock); 2824 } 2825 2826 llvm::Value *VTable; 2827 std::tie(VTable, ClassDecl) = 2828 CGM.getCXXABI().LoadVTablePtr(*this, Derived, ClassDecl); 2829 2830 EmitVTablePtrCheck(ClassDecl, VTable, TCK, Loc); 2831 2832 if (MayBeNull) { 2833 Builder.CreateBr(ContBlock); 2834 EmitBlock(ContBlock); 2835 } 2836 } 2837 2838 void CodeGenFunction::EmitVTablePtrCheck(const CXXRecordDecl *RD, 2839 llvm::Value *VTable, 2840 CFITypeCheckKind TCK, 2841 SourceLocation Loc) { 2842 if (!CGM.getCodeGenOpts().SanitizeCfiCrossDso && 2843 !CGM.HasHiddenLTOVisibility(RD)) 2844 return; 2845 2846 SanitizerKind::SanitizerOrdinal M; 2847 llvm::SanitizerStatKind SSK; 2848 switch (TCK) { 2849 case CFITCK_VCall: 2850 M = SanitizerKind::SO_CFIVCall; 2851 SSK = llvm::SanStat_CFI_VCall; 2852 break; 2853 case CFITCK_NVCall: 2854 M = SanitizerKind::SO_CFINVCall; 2855 SSK = llvm::SanStat_CFI_NVCall; 2856 break; 2857 case CFITCK_DerivedCast: 2858 M = SanitizerKind::SO_CFIDerivedCast; 2859 SSK = llvm::SanStat_CFI_DerivedCast; 2860 break; 2861 case CFITCK_UnrelatedCast: 2862 M = SanitizerKind::SO_CFIUnrelatedCast; 2863 SSK = llvm::SanStat_CFI_UnrelatedCast; 2864 break; 2865 case CFITCK_ICall: 2866 case CFITCK_NVMFCall: 2867 case CFITCK_VMFCall: 2868 llvm_unreachable("unexpected sanitizer kind"); 2869 } 2870 2871 std::string TypeName = RD->getQualifiedNameAsString(); 2872 if (getContext().getNoSanitizeList().containsType( 2873 SanitizerMask::bitPosToMask(M), TypeName)) 2874 return; 2875 2876 SanitizerScope SanScope(this); 2877 EmitSanitizerStatReport(SSK); 2878 2879 llvm::Metadata *MD = 2880 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 2881 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 2882 2883 llvm::Value *TypeTest = Builder.CreateCall( 2884 CGM.getIntrinsic(llvm::Intrinsic::type_test), {VTable, TypeId}); 2885 2886 llvm::Constant *StaticData[] = { 2887 llvm::ConstantInt::get(Int8Ty, TCK), 2888 EmitCheckSourceLocation(Loc), 2889 EmitCheckTypeDescriptor(QualType(RD->getTypeForDecl(), 0)), 2890 }; 2891 2892 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 2893 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 2894 EmitCfiSlowPathCheck(M, TypeTest, CrossDsoTypeId, VTable, StaticData); 2895 return; 2896 } 2897 2898 if (CGM.getCodeGenOpts().SanitizeTrap.has(M)) { 2899 EmitTrapCheck(TypeTest, SanitizerHandler::CFICheckFail); 2900 return; 2901 } 2902 2903 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 2904 CGM.getLLVMContext(), 2905 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 2906 llvm::Value *ValidVtable = Builder.CreateCall( 2907 CGM.getIntrinsic(llvm::Intrinsic::type_test), {VTable, AllVtables}); 2908 EmitCheck(std::make_pair(TypeTest, M), SanitizerHandler::CFICheckFail, 2909 StaticData, {VTable, ValidVtable}); 2910 } 2911 2912 bool CodeGenFunction::ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD) { 2913 if (!CGM.getCodeGenOpts().WholeProgramVTables || 2914 !CGM.HasHiddenLTOVisibility(RD)) 2915 return false; 2916 2917 if (CGM.getCodeGenOpts().VirtualFunctionElimination) 2918 return true; 2919 2920 if (!SanOpts.has(SanitizerKind::CFIVCall) || 2921 !CGM.getCodeGenOpts().SanitizeTrap.has(SanitizerKind::CFIVCall)) 2922 return false; 2923 2924 std::string TypeName = RD->getQualifiedNameAsString(); 2925 return !getContext().getNoSanitizeList().containsType(SanitizerKind::CFIVCall, 2926 TypeName); 2927 } 2928 2929 llvm::Value *CodeGenFunction::EmitVTableTypeCheckedLoad( 2930 const CXXRecordDecl *RD, llvm::Value *VTable, llvm::Type *VTableTy, 2931 uint64_t VTableByteOffset) { 2932 SanitizerScope SanScope(this); 2933 2934 EmitSanitizerStatReport(llvm::SanStat_CFI_VCall); 2935 2936 llvm::Metadata *MD = 2937 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 2938 llvm::Value *TypeId = llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD); 2939 2940 llvm::Value *CheckedLoad = Builder.CreateCall( 2941 CGM.getIntrinsic(llvm::Intrinsic::type_checked_load), 2942 {VTable, llvm::ConstantInt::get(Int32Ty, VTableByteOffset), TypeId}); 2943 llvm::Value *CheckResult = Builder.CreateExtractValue(CheckedLoad, 1); 2944 2945 std::string TypeName = RD->getQualifiedNameAsString(); 2946 if (SanOpts.has(SanitizerKind::CFIVCall) && 2947 !getContext().getNoSanitizeList().containsType(SanitizerKind::CFIVCall, 2948 TypeName)) { 2949 EmitCheck(std::make_pair(CheckResult, SanitizerKind::SO_CFIVCall), 2950 SanitizerHandler::CFICheckFail, {}, {}); 2951 } 2952 2953 return Builder.CreateBitCast(Builder.CreateExtractValue(CheckedLoad, 0), 2954 VTableTy); 2955 } 2956 2957 void CodeGenFunction::EmitForwardingCallToLambda( 2958 const CXXMethodDecl *callOperator, CallArgList &callArgs, 2959 const CGFunctionInfo *calleeFnInfo, llvm::Constant *calleePtr) { 2960 // Get the address of the call operator. 2961 if (!calleeFnInfo) 2962 calleeFnInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(callOperator); 2963 2964 if (!calleePtr) 2965 calleePtr = 2966 CGM.GetAddrOfFunction(GlobalDecl(callOperator), 2967 CGM.getTypes().GetFunctionType(*calleeFnInfo)); 2968 2969 // Prepare the return slot. 2970 const FunctionProtoType *FPT = 2971 callOperator->getType()->castAs<FunctionProtoType>(); 2972 QualType resultType = FPT->getReturnType(); 2973 ReturnValueSlot returnSlot; 2974 if (!resultType->isVoidType() && 2975 calleeFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 2976 !hasScalarEvaluationKind(calleeFnInfo->getReturnType())) 2977 returnSlot = 2978 ReturnValueSlot(ReturnValue, resultType.isVolatileQualified(), 2979 /*IsUnused=*/false, /*IsExternallyDestructed=*/true); 2980 2981 // We don't need to separately arrange the call arguments because 2982 // the call can't be variadic anyway --- it's impossible to forward 2983 // variadic arguments. 2984 2985 // Now emit our call. 2986 auto callee = CGCallee::forDirect(calleePtr, GlobalDecl(callOperator)); 2987 RValue RV = EmitCall(*calleeFnInfo, callee, returnSlot, callArgs); 2988 2989 // If necessary, copy the returned value into the slot. 2990 if (!resultType->isVoidType() && returnSlot.isNull()) { 2991 if (getLangOpts().ObjCAutoRefCount && resultType->isObjCRetainableType()) { 2992 RV = RValue::get(EmitARCRetainAutoreleasedReturnValue(RV.getScalarVal())); 2993 } 2994 EmitReturnOfRValue(RV, resultType); 2995 } else 2996 EmitBranchThroughCleanup(ReturnBlock); 2997 } 2998 2999 void CodeGenFunction::EmitLambdaBlockInvokeBody() { 3000 const BlockDecl *BD = BlockInfo->getBlockDecl(); 3001 const VarDecl *variable = BD->capture_begin()->getVariable(); 3002 const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl(); 3003 const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator(); 3004 3005 if (CallOp->isVariadic()) { 3006 // FIXME: Making this work correctly is nasty because it requires either 3007 // cloning the body of the call operator or making the call operator 3008 // forward. 3009 CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function"); 3010 return; 3011 } 3012 3013 // Start building arguments for forwarding call 3014 CallArgList CallArgs; 3015 3016 QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda)); 3017 Address ThisPtr = GetAddrOfBlockDecl(variable); 3018 CallArgs.add(RValue::get(getAsNaturalPointerTo(ThisPtr, ThisType)), ThisType); 3019 3020 // Add the rest of the parameters. 3021 for (auto *param : BD->parameters()) 3022 EmitDelegateCallArg(CallArgs, param, param->getBeginLoc()); 3023 3024 assert(!Lambda->isGenericLambda() && 3025 "generic lambda interconversion to block not implemented"); 3026 EmitForwardingCallToLambda(CallOp, CallArgs); 3027 } 3028 3029 void CodeGenFunction::EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD) { 3030 if (MD->isVariadic()) { 3031 // FIXME: Making this work correctly is nasty because it requires either 3032 // cloning the body of the call operator or making the call operator 3033 // forward. 3034 CGM.ErrorUnsupported(MD, "lambda conversion to variadic function"); 3035 return; 3036 } 3037 3038 const CXXRecordDecl *Lambda = MD->getParent(); 3039 3040 // Start building arguments for forwarding call 3041 CallArgList CallArgs; 3042 3043 QualType LambdaType = getContext().getRecordType(Lambda); 3044 QualType ThisType = getContext().getPointerType(LambdaType); 3045 Address ThisPtr = CreateMemTemp(LambdaType, "unused.capture"); 3046 CallArgs.add(RValue::get(ThisPtr.emitRawPointer(*this)), ThisType); 3047 3048 EmitLambdaDelegatingInvokeBody(MD, CallArgs); 3049 } 3050 3051 void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD, 3052 CallArgList &CallArgs) { 3053 // Add the rest of the forwarded parameters. 3054 for (auto *Param : MD->parameters()) 3055 EmitDelegateCallArg(CallArgs, Param, Param->getBeginLoc()); 3056 3057 const CXXRecordDecl *Lambda = MD->getParent(); 3058 const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator(); 3059 // For a generic lambda, find the corresponding call operator specialization 3060 // to which the call to the static-invoker shall be forwarded. 3061 if (Lambda->isGenericLambda()) { 3062 assert(MD->isFunctionTemplateSpecialization()); 3063 const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs(); 3064 FunctionTemplateDecl *CallOpTemplate = CallOp->getDescribedFunctionTemplate(); 3065 void *InsertPos = nullptr; 3066 FunctionDecl *CorrespondingCallOpSpecialization = 3067 CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos); 3068 assert(CorrespondingCallOpSpecialization); 3069 CallOp = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization); 3070 } 3071 3072 // Special lambda forwarding when there are inalloca parameters. 3073 if (hasInAllocaArg(MD)) { 3074 const CGFunctionInfo *ImplFnInfo = nullptr; 3075 llvm::Function *ImplFn = nullptr; 3076 EmitLambdaInAllocaImplFn(CallOp, &ImplFnInfo, &ImplFn); 3077 3078 EmitForwardingCallToLambda(CallOp, CallArgs, ImplFnInfo, ImplFn); 3079 return; 3080 } 3081 3082 EmitForwardingCallToLambda(CallOp, CallArgs); 3083 } 3084 3085 void CodeGenFunction::EmitLambdaInAllocaCallOpBody(const CXXMethodDecl *MD) { 3086 if (MD->isVariadic()) { 3087 // FIXME: Making this work correctly is nasty because it requires either 3088 // cloning the body of the call operator or making the call operator forward. 3089 CGM.ErrorUnsupported(MD, "lambda conversion to variadic function"); 3090 return; 3091 } 3092 3093 // Forward %this argument. 3094 CallArgList CallArgs; 3095 QualType LambdaType = getContext().getRecordType(MD->getParent()); 3096 QualType ThisType = getContext().getPointerType(LambdaType); 3097 llvm::Value *ThisArg = CurFn->getArg(0); 3098 CallArgs.add(RValue::get(ThisArg), ThisType); 3099 3100 EmitLambdaDelegatingInvokeBody(MD, CallArgs); 3101 } 3102 3103 void CodeGenFunction::EmitLambdaInAllocaImplFn( 3104 const CXXMethodDecl *CallOp, const CGFunctionInfo **ImplFnInfo, 3105 llvm::Function **ImplFn) { 3106 const CGFunctionInfo &FnInfo = 3107 CGM.getTypes().arrangeCXXMethodDeclaration(CallOp); 3108 llvm::Function *CallOpFn = 3109 cast<llvm::Function>(CGM.GetAddrOfFunction(GlobalDecl(CallOp))); 3110 3111 // Emit function containing the original call op body. __invoke will delegate 3112 // to this function. 3113 SmallVector<CanQualType, 4> ArgTypes; 3114 for (auto I = FnInfo.arg_begin(); I != FnInfo.arg_end(); ++I) 3115 ArgTypes.push_back(I->type); 3116 *ImplFnInfo = &CGM.getTypes().arrangeLLVMFunctionInfo( 3117 FnInfo.getReturnType(), FnInfoOpts::IsDelegateCall, ArgTypes, 3118 FnInfo.getExtInfo(), {}, FnInfo.getRequiredArgs()); 3119 3120 // Create mangled name as if this was a method named __impl. If for some 3121 // reason the name doesn't look as expected then just tack __impl to the 3122 // front. 3123 // TODO: Use the name mangler to produce the right name instead of using 3124 // string replacement. 3125 StringRef CallOpName = CallOpFn->getName(); 3126 std::string ImplName; 3127 if (size_t Pos = CallOpName.find_first_of("<lambda")) 3128 ImplName = ("?__impl@" + CallOpName.drop_front(Pos)).str(); 3129 else 3130 ImplName = ("__impl" + CallOpName).str(); 3131 3132 llvm::Function *Fn = CallOpFn->getParent()->getFunction(ImplName); 3133 if (!Fn) { 3134 Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(**ImplFnInfo), 3135 llvm::GlobalValue::InternalLinkage, ImplName, 3136 CGM.getModule()); 3137 CGM.SetInternalFunctionAttributes(CallOp, Fn, **ImplFnInfo); 3138 3139 const GlobalDecl &GD = GlobalDecl(CallOp); 3140 const auto *D = cast<FunctionDecl>(GD.getDecl()); 3141 CodeGenFunction(CGM).GenerateCode(GD, Fn, **ImplFnInfo); 3142 CGM.SetLLVMFunctionAttributesForDefinition(D, Fn); 3143 } 3144 *ImplFn = Fn; 3145 } 3146