xref: /llvm-project/clang/lib/CodeGen/CGClass.cpp (revision cfe26358e3051755961fb1f3b46328dc2c326895)
1 //===--- CGClass.cpp - Emit LLVM Code for C++ classes -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code dealing with C++ code generation of classes
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "ABIInfoImpl.h"
14 #include "CGBlocks.h"
15 #include "CGCXXABI.h"
16 #include "CGDebugInfo.h"
17 #include "CGRecordLayout.h"
18 #include "CodeGenFunction.h"
19 #include "TargetInfo.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/CXXInheritance.h"
22 #include "clang/AST/CharUnits.h"
23 #include "clang/AST/DeclTemplate.h"
24 #include "clang/AST/EvaluatedExprVisitor.h"
25 #include "clang/AST/RecordLayout.h"
26 #include "clang/AST/StmtCXX.h"
27 #include "clang/Basic/CodeGenOptions.h"
28 #include "clang/CodeGen/CGFunctionInfo.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/Metadata.h"
31 #include "llvm/Support/SaveAndRestore.h"
32 #include "llvm/Transforms/Utils/SanitizerStats.h"
33 #include <optional>
34 
35 using namespace clang;
36 using namespace CodeGen;
37 
38 /// Return the best known alignment for an unknown pointer to a
39 /// particular class.
40 CharUnits CodeGenModule::getClassPointerAlignment(const CXXRecordDecl *RD) {
41   if (!RD->hasDefinition())
42     return CharUnits::One(); // Hopefully won't be used anywhere.
43 
44   auto &layout = getContext().getASTRecordLayout(RD);
45 
46   // If the class is final, then we know that the pointer points to an
47   // object of that type and can use the full alignment.
48   if (RD->isEffectivelyFinal())
49     return layout.getAlignment();
50 
51   // Otherwise, we have to assume it could be a subclass.
52   return layout.getNonVirtualAlignment();
53 }
54 
55 /// Return the smallest possible amount of storage that might be allocated
56 /// starting from the beginning of an object of a particular class.
57 ///
58 /// This may be smaller than sizeof(RD) if RD has virtual base classes.
59 CharUnits CodeGenModule::getMinimumClassObjectSize(const CXXRecordDecl *RD) {
60   if (!RD->hasDefinition())
61     return CharUnits::One();
62 
63   auto &layout = getContext().getASTRecordLayout(RD);
64 
65   // If the class is final, then we know that the pointer points to an
66   // object of that type and can use the full alignment.
67   if (RD->isEffectivelyFinal())
68     return layout.getSize();
69 
70   // Otherwise, we have to assume it could be a subclass.
71   return std::max(layout.getNonVirtualSize(), CharUnits::One());
72 }
73 
74 /// Return the best known alignment for a pointer to a virtual base,
75 /// given the alignment of a pointer to the derived class.
76 CharUnits CodeGenModule::getVBaseAlignment(CharUnits actualDerivedAlign,
77                                            const CXXRecordDecl *derivedClass,
78                                            const CXXRecordDecl *vbaseClass) {
79   // The basic idea here is that an underaligned derived pointer might
80   // indicate an underaligned base pointer.
81 
82   assert(vbaseClass->isCompleteDefinition());
83   auto &baseLayout = getContext().getASTRecordLayout(vbaseClass);
84   CharUnits expectedVBaseAlign = baseLayout.getNonVirtualAlignment();
85 
86   return getDynamicOffsetAlignment(actualDerivedAlign, derivedClass,
87                                    expectedVBaseAlign);
88 }
89 
90 CharUnits
91 CodeGenModule::getDynamicOffsetAlignment(CharUnits actualBaseAlign,
92                                          const CXXRecordDecl *baseDecl,
93                                          CharUnits expectedTargetAlign) {
94   // If the base is an incomplete type (which is, alas, possible with
95   // member pointers), be pessimistic.
96   if (!baseDecl->isCompleteDefinition())
97     return std::min(actualBaseAlign, expectedTargetAlign);
98 
99   auto &baseLayout = getContext().getASTRecordLayout(baseDecl);
100   CharUnits expectedBaseAlign = baseLayout.getNonVirtualAlignment();
101 
102   // If the class is properly aligned, assume the target offset is, too.
103   //
104   // This actually isn't necessarily the right thing to do --- if the
105   // class is a complete object, but it's only properly aligned for a
106   // base subobject, then the alignments of things relative to it are
107   // probably off as well.  (Note that this requires the alignment of
108   // the target to be greater than the NV alignment of the derived
109   // class.)
110   //
111   // However, our approach to this kind of under-alignment can only
112   // ever be best effort; after all, we're never going to propagate
113   // alignments through variables or parameters.  Note, in particular,
114   // that constructing a polymorphic type in an address that's less
115   // than pointer-aligned will generally trap in the constructor,
116   // unless we someday add some sort of attribute to change the
117   // assumed alignment of 'this'.  So our goal here is pretty much
118   // just to allow the user to explicitly say that a pointer is
119   // under-aligned and then safely access its fields and vtables.
120   if (actualBaseAlign >= expectedBaseAlign) {
121     return expectedTargetAlign;
122   }
123 
124   // Otherwise, we might be offset by an arbitrary multiple of the
125   // actual alignment.  The correct adjustment is to take the min of
126   // the two alignments.
127   return std::min(actualBaseAlign, expectedTargetAlign);
128 }
129 
130 Address CodeGenFunction::LoadCXXThisAddress() {
131   assert(CurFuncDecl && "loading 'this' without a func declaration?");
132   auto *MD = cast<CXXMethodDecl>(CurFuncDecl);
133 
134   // Lazily compute CXXThisAlignment.
135   if (CXXThisAlignment.isZero()) {
136     // Just use the best known alignment for the parent.
137     // TODO: if we're currently emitting a complete-object ctor/dtor,
138     // we can always use the complete-object alignment.
139     CXXThisAlignment = CGM.getClassPointerAlignment(MD->getParent());
140   }
141 
142   return makeNaturalAddressForPointer(
143       LoadCXXThis(), MD->getFunctionObjectParameterType(), CXXThisAlignment,
144       false, nullptr, nullptr, KnownNonNull);
145 }
146 
147 /// Emit the address of a field using a member data pointer.
148 ///
149 /// \param E Only used for emergency diagnostics
150 Address
151 CodeGenFunction::EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
152                                                  llvm::Value *memberPtr,
153                                       const MemberPointerType *memberPtrType,
154                                                  LValueBaseInfo *BaseInfo,
155                                                  TBAAAccessInfo *TBAAInfo) {
156   // Ask the ABI to compute the actual address.
157   llvm::Value *ptr =
158     CGM.getCXXABI().EmitMemberDataPointerAddress(*this, E, base,
159                                                  memberPtr, memberPtrType);
160 
161   QualType memberType = memberPtrType->getPointeeType();
162   CharUnits memberAlign =
163       CGM.getNaturalTypeAlignment(memberType, BaseInfo, TBAAInfo);
164   memberAlign =
165     CGM.getDynamicOffsetAlignment(base.getAlignment(),
166                             memberPtrType->getClass()->getAsCXXRecordDecl(),
167                                   memberAlign);
168   return Address(ptr, ConvertTypeForMem(memberPtrType->getPointeeType()),
169                  memberAlign);
170 }
171 
172 CharUnits CodeGenModule::computeNonVirtualBaseClassOffset(
173     const CXXRecordDecl *DerivedClass, CastExpr::path_const_iterator Start,
174     CastExpr::path_const_iterator End) {
175   CharUnits Offset = CharUnits::Zero();
176 
177   const ASTContext &Context = getContext();
178   const CXXRecordDecl *RD = DerivedClass;
179 
180   for (CastExpr::path_const_iterator I = Start; I != End; ++I) {
181     const CXXBaseSpecifier *Base = *I;
182     assert(!Base->isVirtual() && "Should not see virtual bases here!");
183 
184     // Get the layout.
185     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
186 
187     const auto *BaseDecl =
188         cast<CXXRecordDecl>(Base->getType()->castAs<RecordType>()->getDecl());
189 
190     // Add the offset.
191     Offset += Layout.getBaseClassOffset(BaseDecl);
192 
193     RD = BaseDecl;
194   }
195 
196   return Offset;
197 }
198 
199 llvm::Constant *
200 CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl,
201                                    CastExpr::path_const_iterator PathBegin,
202                                    CastExpr::path_const_iterator PathEnd) {
203   assert(PathBegin != PathEnd && "Base path should not be empty!");
204 
205   CharUnits Offset =
206       computeNonVirtualBaseClassOffset(ClassDecl, PathBegin, PathEnd);
207   if (Offset.isZero())
208     return nullptr;
209 
210   llvm::Type *PtrDiffTy =
211       getTypes().ConvertType(getContext().getPointerDiffType());
212 
213   return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity());
214 }
215 
216 /// Gets the address of a direct base class within a complete object.
217 /// This should only be used for (1) non-virtual bases or (2) virtual bases
218 /// when the type is known to be complete (e.g. in complete destructors).
219 ///
220 /// The object pointed to by 'This' is assumed to be non-null.
221 Address
222 CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(Address This,
223                                                    const CXXRecordDecl *Derived,
224                                                    const CXXRecordDecl *Base,
225                                                    bool BaseIsVirtual) {
226   // 'this' must be a pointer (in some address space) to Derived.
227   assert(This.getElementType() == ConvertType(Derived));
228 
229   // Compute the offset of the virtual base.
230   CharUnits Offset;
231   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived);
232   if (BaseIsVirtual)
233     Offset = Layout.getVBaseClassOffset(Base);
234   else
235     Offset = Layout.getBaseClassOffset(Base);
236 
237   // Shift and cast down to the base type.
238   // TODO: for complete types, this should be possible with a GEP.
239   Address V = This;
240   if (!Offset.isZero()) {
241     V = V.withElementType(Int8Ty);
242     V = Builder.CreateConstInBoundsByteGEP(V, Offset);
243   }
244   return V.withElementType(ConvertType(Base));
245 }
246 
247 static Address
248 ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, Address addr,
249                                 CharUnits nonVirtualOffset,
250                                 llvm::Value *virtualOffset,
251                                 const CXXRecordDecl *derivedClass,
252                                 const CXXRecordDecl *nearestVBase) {
253   // Assert that we have something to do.
254   assert(!nonVirtualOffset.isZero() || virtualOffset != nullptr);
255 
256   // Compute the offset from the static and dynamic components.
257   llvm::Value *baseOffset;
258   if (!nonVirtualOffset.isZero()) {
259     llvm::Type *OffsetType =
260         (CGF.CGM.getTarget().getCXXABI().isItaniumFamily() &&
261          CGF.CGM.getItaniumVTableContext().isRelativeLayout())
262             ? CGF.Int32Ty
263             : CGF.PtrDiffTy;
264     baseOffset =
265         llvm::ConstantInt::get(OffsetType, nonVirtualOffset.getQuantity());
266     if (virtualOffset) {
267       baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset);
268     }
269   } else {
270     baseOffset = virtualOffset;
271   }
272 
273   // Apply the base offset.
274   llvm::Value *ptr = addr.emitRawPointer(CGF);
275   ptr = CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, ptr, baseOffset, "add.ptr");
276 
277   // If we have a virtual component, the alignment of the result will
278   // be relative only to the known alignment of that vbase.
279   CharUnits alignment;
280   if (virtualOffset) {
281     assert(nearestVBase && "virtual offset without vbase?");
282     alignment = CGF.CGM.getVBaseAlignment(addr.getAlignment(),
283                                           derivedClass, nearestVBase);
284   } else {
285     alignment = addr.getAlignment();
286   }
287   alignment = alignment.alignmentAtOffset(nonVirtualOffset);
288 
289   return Address(ptr, CGF.Int8Ty, alignment);
290 }
291 
292 Address CodeGenFunction::GetAddressOfBaseClass(
293     Address Value, const CXXRecordDecl *Derived,
294     CastExpr::path_const_iterator PathBegin,
295     CastExpr::path_const_iterator PathEnd, bool NullCheckValue,
296     SourceLocation Loc) {
297   assert(PathBegin != PathEnd && "Base path should not be empty!");
298 
299   CastExpr::path_const_iterator Start = PathBegin;
300   const CXXRecordDecl *VBase = nullptr;
301 
302   // Sema has done some convenient canonicalization here: if the
303   // access path involved any virtual steps, the conversion path will
304   // *start* with a step down to the correct virtual base subobject,
305   // and hence will not require any further steps.
306   if ((*Start)->isVirtual()) {
307     VBase = cast<CXXRecordDecl>(
308         (*Start)->getType()->castAs<RecordType>()->getDecl());
309     ++Start;
310   }
311 
312   // Compute the static offset of the ultimate destination within its
313   // allocating subobject (the virtual base, if there is one, or else
314   // the "complete" object that we see).
315   CharUnits NonVirtualOffset = CGM.computeNonVirtualBaseClassOffset(
316       VBase ? VBase : Derived, Start, PathEnd);
317 
318   // If there's a virtual step, we can sometimes "devirtualize" it.
319   // For now, that's limited to when the derived type is final.
320   // TODO: "devirtualize" this for accesses to known-complete objects.
321   if (VBase && Derived->hasAttr<FinalAttr>()) {
322     const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived);
323     CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase);
324     NonVirtualOffset += vBaseOffset;
325     VBase = nullptr; // we no longer have a virtual step
326   }
327 
328   // Get the base pointer type.
329   llvm::Type *BaseValueTy = ConvertType((PathEnd[-1])->getType());
330   llvm::Type *PtrTy = llvm::PointerType::get(
331       CGM.getLLVMContext(), Value.getType()->getPointerAddressSpace());
332 
333   QualType DerivedTy = getContext().getRecordType(Derived);
334   CharUnits DerivedAlign = CGM.getClassPointerAlignment(Derived);
335 
336   // If the static offset is zero and we don't have a virtual step,
337   // just do a bitcast; null checks are unnecessary.
338   if (NonVirtualOffset.isZero() && !VBase) {
339     if (sanitizePerformTypeCheck()) {
340       SanitizerSet SkippedChecks;
341       SkippedChecks.set(SanitizerKind::Null, !NullCheckValue);
342       EmitTypeCheck(TCK_Upcast, Loc, Value.emitRawPointer(*this), DerivedTy,
343                     DerivedAlign, SkippedChecks);
344     }
345     return Value.withElementType(BaseValueTy);
346   }
347 
348   llvm::BasicBlock *origBB = nullptr;
349   llvm::BasicBlock *endBB = nullptr;
350 
351   // Skip over the offset (and the vtable load) if we're supposed to
352   // null-check the pointer.
353   if (NullCheckValue) {
354     origBB = Builder.GetInsertBlock();
355     llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull");
356     endBB = createBasicBlock("cast.end");
357 
358     llvm::Value *isNull = Builder.CreateIsNull(Value);
359     Builder.CreateCondBr(isNull, endBB, notNullBB);
360     EmitBlock(notNullBB);
361   }
362 
363   if (sanitizePerformTypeCheck()) {
364     SanitizerSet SkippedChecks;
365     SkippedChecks.set(SanitizerKind::Null, true);
366     EmitTypeCheck(VBase ? TCK_UpcastToVirtualBase : TCK_Upcast, Loc,
367                   Value.emitRawPointer(*this), DerivedTy, DerivedAlign,
368                   SkippedChecks);
369   }
370 
371   // Compute the virtual offset.
372   llvm::Value *VirtualOffset = nullptr;
373   if (VBase) {
374     VirtualOffset =
375         CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase);
376   }
377 
378   // Apply both offsets.
379   Value = ApplyNonVirtualAndVirtualOffset(*this, Value, NonVirtualOffset,
380                                           VirtualOffset, Derived, VBase);
381 
382   // Cast to the destination type.
383   Value = Value.withElementType(BaseValueTy);
384 
385   // Build a phi if we needed a null check.
386   if (NullCheckValue) {
387     llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
388     Builder.CreateBr(endBB);
389     EmitBlock(endBB);
390 
391     llvm::PHINode *PHI = Builder.CreatePHI(PtrTy, 2, "cast.result");
392     PHI->addIncoming(Value.emitRawPointer(*this), notNullBB);
393     PHI->addIncoming(llvm::Constant::getNullValue(PtrTy), origBB);
394     Value = Value.withPointer(PHI, NotKnownNonNull);
395   }
396 
397   return Value;
398 }
399 
400 Address
401 CodeGenFunction::GetAddressOfDerivedClass(Address BaseAddr,
402                                           const CXXRecordDecl *Derived,
403                                         CastExpr::path_const_iterator PathBegin,
404                                           CastExpr::path_const_iterator PathEnd,
405                                           bool NullCheckValue) {
406   assert(PathBegin != PathEnd && "Base path should not be empty!");
407 
408   QualType DerivedTy =
409       getContext().getCanonicalType(getContext().getTagDeclType(Derived));
410   llvm::Type *DerivedValueTy = ConvertType(DerivedTy);
411 
412   llvm::Value *NonVirtualOffset =
413     CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd);
414 
415   if (!NonVirtualOffset) {
416     // No offset, we can just cast back.
417     return BaseAddr.withElementType(DerivedValueTy);
418   }
419 
420   llvm::BasicBlock *CastNull = nullptr;
421   llvm::BasicBlock *CastNotNull = nullptr;
422   llvm::BasicBlock *CastEnd = nullptr;
423 
424   if (NullCheckValue) {
425     CastNull = createBasicBlock("cast.null");
426     CastNotNull = createBasicBlock("cast.notnull");
427     CastEnd = createBasicBlock("cast.end");
428 
429     llvm::Value *IsNull = Builder.CreateIsNull(BaseAddr);
430     Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
431     EmitBlock(CastNotNull);
432   }
433 
434   // Apply the offset.
435   Address Addr = BaseAddr.withElementType(Int8Ty);
436   Addr = Builder.CreateInBoundsGEP(
437       Addr, Builder.CreateNeg(NonVirtualOffset), Int8Ty,
438       CGM.getClassPointerAlignment(Derived), "sub.ptr");
439 
440   // Just cast.
441   Addr = Addr.withElementType(DerivedValueTy);
442 
443   // Produce a PHI if we had a null-check.
444   if (NullCheckValue) {
445     Builder.CreateBr(CastEnd);
446     EmitBlock(CastNull);
447     Builder.CreateBr(CastEnd);
448     EmitBlock(CastEnd);
449 
450     llvm::Value *Value = Addr.emitRawPointer(*this);
451     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
452     PHI->addIncoming(Value, CastNotNull);
453     PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
454     return Address(PHI, Addr.getElementType(),
455                    CGM.getClassPointerAlignment(Derived));
456   }
457 
458   return Addr;
459 }
460 
461 llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD,
462                                               bool ForVirtualBase,
463                                               bool Delegating) {
464   if (!CGM.getCXXABI().NeedsVTTParameter(GD)) {
465     // This constructor/destructor does not need a VTT parameter.
466     return nullptr;
467   }
468 
469   const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurCodeDecl)->getParent();
470   const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent();
471 
472   uint64_t SubVTTIndex;
473 
474   if (Delegating) {
475     // If this is a delegating constructor call, just load the VTT.
476     return LoadCXXVTT();
477   } else if (RD == Base) {
478     // If the record matches the base, this is the complete ctor/dtor
479     // variant calling the base variant in a class with virtual bases.
480     assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) &&
481            "doing no-op VTT offset in base dtor/ctor?");
482     assert(!ForVirtualBase && "Can't have same class as virtual base!");
483     SubVTTIndex = 0;
484   } else {
485     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
486     CharUnits BaseOffset = ForVirtualBase ?
487       Layout.getVBaseClassOffset(Base) :
488       Layout.getBaseClassOffset(Base);
489 
490     SubVTTIndex =
491       CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset));
492     assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!");
493   }
494 
495   if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
496     // A VTT parameter was passed to the constructor, use it.
497     llvm::Value *VTT = LoadCXXVTT();
498     return Builder.CreateConstInBoundsGEP1_64(VoidPtrTy, VTT, SubVTTIndex);
499   } else {
500     // We're the complete constructor, so get the VTT by name.
501     llvm::GlobalValue *VTT = CGM.getVTables().GetAddrOfVTT(RD);
502     return Builder.CreateConstInBoundsGEP2_64(
503         VTT->getValueType(), VTT, 0, SubVTTIndex);
504   }
505 }
506 
507 namespace {
508   /// Call the destructor for a direct base class.
509   struct CallBaseDtor final : EHScopeStack::Cleanup {
510     const CXXRecordDecl *BaseClass;
511     bool BaseIsVirtual;
512     CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual)
513       : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {}
514 
515     void Emit(CodeGenFunction &CGF, Flags flags) override {
516       const CXXRecordDecl *DerivedClass =
517         cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent();
518 
519       const CXXDestructorDecl *D = BaseClass->getDestructor();
520       // We are already inside a destructor, so presumably the object being
521       // destroyed should have the expected type.
522       QualType ThisTy = D->getFunctionObjectParameterType();
523       Address Addr =
524         CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThisAddress(),
525                                                   DerivedClass, BaseClass,
526                                                   BaseIsVirtual);
527       CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual,
528                                 /*Delegating=*/false, Addr, ThisTy);
529     }
530   };
531 
532   /// A visitor which checks whether an initializer uses 'this' in a
533   /// way which requires the vtable to be properly set.
534   struct DynamicThisUseChecker : ConstEvaluatedExprVisitor<DynamicThisUseChecker> {
535     typedef ConstEvaluatedExprVisitor<DynamicThisUseChecker> super;
536 
537     bool UsesThis;
538 
539     DynamicThisUseChecker(const ASTContext &C) : super(C), UsesThis(false) {}
540 
541     // Black-list all explicit and implicit references to 'this'.
542     //
543     // Do we need to worry about external references to 'this' derived
544     // from arbitrary code?  If so, then anything which runs arbitrary
545     // external code might potentially access the vtable.
546     void VisitCXXThisExpr(const CXXThisExpr *E) { UsesThis = true; }
547   };
548 } // end anonymous namespace
549 
550 static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) {
551   DynamicThisUseChecker Checker(C);
552   Checker.Visit(Init);
553   return Checker.UsesThis;
554 }
555 
556 static void EmitBaseInitializer(CodeGenFunction &CGF,
557                                 const CXXRecordDecl *ClassDecl,
558                                 CXXCtorInitializer *BaseInit) {
559   assert(BaseInit->isBaseInitializer() &&
560          "Must have base initializer!");
561 
562   Address ThisPtr = CGF.LoadCXXThisAddress();
563 
564   const Type *BaseType = BaseInit->getBaseClass();
565   const auto *BaseClassDecl =
566       cast<CXXRecordDecl>(BaseType->castAs<RecordType>()->getDecl());
567 
568   bool isBaseVirtual = BaseInit->isBaseVirtual();
569 
570   // If the initializer for the base (other than the constructor
571   // itself) accesses 'this' in any way, we need to initialize the
572   // vtables.
573   if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit()))
574     CGF.InitializeVTablePointers(ClassDecl);
575 
576   // We can pretend to be a complete class because it only matters for
577   // virtual bases, and we only do virtual bases for complete ctors.
578   Address V =
579     CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl,
580                                               BaseClassDecl,
581                                               isBaseVirtual);
582   AggValueSlot AggSlot =
583       AggValueSlot::forAddr(
584           V, Qualifiers(),
585           AggValueSlot::IsDestructed,
586           AggValueSlot::DoesNotNeedGCBarriers,
587           AggValueSlot::IsNotAliased,
588           CGF.getOverlapForBaseInit(ClassDecl, BaseClassDecl, isBaseVirtual));
589 
590   CGF.EmitAggExpr(BaseInit->getInit(), AggSlot);
591 
592   if (CGF.CGM.getLangOpts().Exceptions &&
593       !BaseClassDecl->hasTrivialDestructor())
594     CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl,
595                                           isBaseVirtual);
596 }
597 
598 static bool isMemcpyEquivalentSpecialMember(const CXXMethodDecl *D) {
599   auto *CD = dyn_cast<CXXConstructorDecl>(D);
600   if (!(CD && CD->isCopyOrMoveConstructor()) &&
601       !D->isCopyAssignmentOperator() && !D->isMoveAssignmentOperator())
602     return false;
603 
604   // We can emit a memcpy for a trivial copy or move constructor/assignment.
605   if (D->isTrivial() && !D->getParent()->mayInsertExtraPadding())
606     return true;
607 
608   // We *must* emit a memcpy for a defaulted union copy or move op.
609   if (D->getParent()->isUnion() && D->isDefaulted())
610     return true;
611 
612   return false;
613 }
614 
615 static void EmitLValueForAnyFieldInitialization(CodeGenFunction &CGF,
616                                                 CXXCtorInitializer *MemberInit,
617                                                 LValue &LHS) {
618   FieldDecl *Field = MemberInit->getAnyMember();
619   if (MemberInit->isIndirectMemberInitializer()) {
620     // If we are initializing an anonymous union field, drill down to the field.
621     IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember();
622     for (const auto *I : IndirectField->chain())
623       LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(I));
624   } else {
625     LHS = CGF.EmitLValueForFieldInitialization(LHS, Field);
626   }
627 }
628 
629 static void EmitMemberInitializer(CodeGenFunction &CGF,
630                                   const CXXRecordDecl *ClassDecl,
631                                   CXXCtorInitializer *MemberInit,
632                                   const CXXConstructorDecl *Constructor,
633                                   FunctionArgList &Args) {
634   ApplyDebugLocation Loc(CGF, MemberInit->getSourceLocation());
635   assert(MemberInit->isAnyMemberInitializer() &&
636          "Must have member initializer!");
637   assert(MemberInit->getInit() && "Must have initializer!");
638 
639   // non-static data member initializers.
640   FieldDecl *Field = MemberInit->getAnyMember();
641   QualType FieldType = Field->getType();
642 
643   llvm::Value *ThisPtr = CGF.LoadCXXThis();
644   QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
645   LValue LHS;
646 
647   // If a base constructor is being emitted, create an LValue that has the
648   // non-virtual alignment.
649   if (CGF.CurGD.getCtorType() == Ctor_Base)
650     LHS = CGF.MakeNaturalAlignPointeeAddrLValue(ThisPtr, RecordTy);
651   else
652     LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
653 
654   EmitLValueForAnyFieldInitialization(CGF, MemberInit, LHS);
655 
656   // Special case: if we are in a copy or move constructor, and we are copying
657   // an array of PODs or classes with trivial copy constructors, ignore the
658   // AST and perform the copy we know is equivalent.
659   // FIXME: This is hacky at best... if we had a bit more explicit information
660   // in the AST, we could generalize it more easily.
661   const ConstantArrayType *Array
662     = CGF.getContext().getAsConstantArrayType(FieldType);
663   if (Array && Constructor->isDefaulted() &&
664       Constructor->isCopyOrMoveConstructor()) {
665     QualType BaseElementTy = CGF.getContext().getBaseElementType(Array);
666     CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
667     if (BaseElementTy.isPODType(CGF.getContext()) ||
668         (CE && isMemcpyEquivalentSpecialMember(CE->getConstructor()))) {
669       unsigned SrcArgIndex =
670           CGF.CGM.getCXXABI().getSrcArgforCopyCtor(Constructor, Args);
671       llvm::Value *SrcPtr
672         = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex]));
673       LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
674       LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field);
675 
676       // Copy the aggregate.
677       CGF.EmitAggregateCopy(LHS, Src, FieldType, CGF.getOverlapForFieldInit(Field),
678                             LHS.isVolatileQualified());
679       // Ensure that we destroy the objects if an exception is thrown later in
680       // the constructor.
681       QualType::DestructionKind dtorKind = FieldType.isDestructedType();
682       if (CGF.needsEHCleanup(dtorKind))
683         CGF.pushEHDestroy(dtorKind, LHS.getAddress(), FieldType);
684       return;
685     }
686   }
687 
688   CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit());
689 }
690 
691 void CodeGenFunction::EmitInitializerForField(FieldDecl *Field, LValue LHS,
692                                               Expr *Init) {
693   QualType FieldType = Field->getType();
694   switch (getEvaluationKind(FieldType)) {
695   case TEK_Scalar:
696     if (LHS.isSimple()) {
697       EmitExprAsInit(Init, Field, LHS, false);
698     } else {
699       RValue RHS = RValue::get(EmitScalarExpr(Init));
700       EmitStoreThroughLValue(RHS, LHS);
701     }
702     break;
703   case TEK_Complex:
704     EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true);
705     break;
706   case TEK_Aggregate: {
707     AggValueSlot Slot = AggValueSlot::forLValue(
708         LHS, AggValueSlot::IsDestructed, AggValueSlot::DoesNotNeedGCBarriers,
709         AggValueSlot::IsNotAliased, getOverlapForFieldInit(Field),
710         AggValueSlot::IsNotZeroed,
711         // Checks are made by the code that calls constructor.
712         AggValueSlot::IsSanitizerChecked);
713     EmitAggExpr(Init, Slot);
714     break;
715   }
716   }
717 
718   // Ensure that we destroy this object if an exception is thrown
719   // later in the constructor.
720   QualType::DestructionKind dtorKind = FieldType.isDestructedType();
721   if (needsEHCleanup(dtorKind))
722     pushEHDestroy(dtorKind, LHS.getAddress(), FieldType);
723 }
724 
725 /// Checks whether the given constructor is a valid subject for the
726 /// complete-to-base constructor delegation optimization, i.e.
727 /// emitting the complete constructor as a simple call to the base
728 /// constructor.
729 bool CodeGenFunction::IsConstructorDelegationValid(
730     const CXXConstructorDecl *Ctor) {
731 
732   // Currently we disable the optimization for classes with virtual
733   // bases because (1) the addresses of parameter variables need to be
734   // consistent across all initializers but (2) the delegate function
735   // call necessarily creates a second copy of the parameter variable.
736   //
737   // The limiting example (purely theoretical AFAIK):
738   //   struct A { A(int &c) { c++; } };
739   //   struct B : virtual A {
740   //     B(int count) : A(count) { printf("%d\n", count); }
741   //   };
742   // ...although even this example could in principle be emitted as a
743   // delegation since the address of the parameter doesn't escape.
744   if (Ctor->getParent()->getNumVBases()) {
745     // TODO: white-list trivial vbase initializers.  This case wouldn't
746     // be subject to the restrictions below.
747 
748     // TODO: white-list cases where:
749     //  - there are no non-reference parameters to the constructor
750     //  - the initializers don't access any non-reference parameters
751     //  - the initializers don't take the address of non-reference
752     //    parameters
753     //  - etc.
754     // If we ever add any of the above cases, remember that:
755     //  - function-try-blocks will always exclude this optimization
756     //  - we need to perform the constructor prologue and cleanup in
757     //    EmitConstructorBody.
758 
759     return false;
760   }
761 
762   // We also disable the optimization for variadic functions because
763   // it's impossible to "re-pass" varargs.
764   if (Ctor->getType()->castAs<FunctionProtoType>()->isVariadic())
765     return false;
766 
767   // FIXME: Decide if we can do a delegation of a delegating constructor.
768   if (Ctor->isDelegatingConstructor())
769     return false;
770 
771   return true;
772 }
773 
774 // Emit code in ctor (Prologue==true) or dtor (Prologue==false)
775 // to poison the extra field paddings inserted under
776 // -fsanitize-address-field-padding=1|2.
777 void CodeGenFunction::EmitAsanPrologueOrEpilogue(bool Prologue) {
778   ASTContext &Context = getContext();
779   const CXXRecordDecl *ClassDecl =
780       Prologue ? cast<CXXConstructorDecl>(CurGD.getDecl())->getParent()
781                : cast<CXXDestructorDecl>(CurGD.getDecl())->getParent();
782   if (!ClassDecl->mayInsertExtraPadding()) return;
783 
784   struct SizeAndOffset {
785     uint64_t Size;
786     uint64_t Offset;
787   };
788 
789   unsigned PtrSize = CGM.getDataLayout().getPointerSizeInBits();
790   const ASTRecordLayout &Info = Context.getASTRecordLayout(ClassDecl);
791 
792   // Populate sizes and offsets of fields.
793   SmallVector<SizeAndOffset, 16> SSV(Info.getFieldCount());
794   for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i)
795     SSV[i].Offset =
796         Context.toCharUnitsFromBits(Info.getFieldOffset(i)).getQuantity();
797 
798   size_t NumFields = 0;
799   for (const auto *Field : ClassDecl->fields()) {
800     const FieldDecl *D = Field;
801     auto FieldInfo = Context.getTypeInfoInChars(D->getType());
802     CharUnits FieldSize = FieldInfo.Width;
803     assert(NumFields < SSV.size());
804     SSV[NumFields].Size = D->isBitField() ? 0 : FieldSize.getQuantity();
805     NumFields++;
806   }
807   assert(NumFields == SSV.size());
808   if (SSV.size() <= 1) return;
809 
810   // We will insert calls to __asan_* run-time functions.
811   // LLVM AddressSanitizer pass may decide to inline them later.
812   llvm::Type *Args[2] = {IntPtrTy, IntPtrTy};
813   llvm::FunctionType *FTy =
814       llvm::FunctionType::get(CGM.VoidTy, Args, false);
815   llvm::FunctionCallee F = CGM.CreateRuntimeFunction(
816       FTy, Prologue ? "__asan_poison_intra_object_redzone"
817                     : "__asan_unpoison_intra_object_redzone");
818 
819   llvm::Value *ThisPtr = LoadCXXThis();
820   ThisPtr = Builder.CreatePtrToInt(ThisPtr, IntPtrTy);
821   uint64_t TypeSize = Info.getNonVirtualSize().getQuantity();
822   // For each field check if it has sufficient padding,
823   // if so (un)poison it with a call.
824   for (size_t i = 0; i < SSV.size(); i++) {
825     uint64_t AsanAlignment = 8;
826     uint64_t NextField = i == SSV.size() - 1 ? TypeSize : SSV[i + 1].Offset;
827     uint64_t PoisonSize = NextField - SSV[i].Offset - SSV[i].Size;
828     uint64_t EndOffset = SSV[i].Offset + SSV[i].Size;
829     if (PoisonSize < AsanAlignment || !SSV[i].Size ||
830         (NextField % AsanAlignment) != 0)
831       continue;
832     Builder.CreateCall(
833         F, {Builder.CreateAdd(ThisPtr, Builder.getIntN(PtrSize, EndOffset)),
834             Builder.getIntN(PtrSize, PoisonSize)});
835   }
836 }
837 
838 /// EmitConstructorBody - Emits the body of the current constructor.
839 void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) {
840   EmitAsanPrologueOrEpilogue(true);
841   const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl());
842   CXXCtorType CtorType = CurGD.getCtorType();
843 
844   assert((CGM.getTarget().getCXXABI().hasConstructorVariants() ||
845           CtorType == Ctor_Complete) &&
846          "can only generate complete ctor for this ABI");
847 
848   // Before we go any further, try the complete->base constructor
849   // delegation optimization.
850   if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) &&
851       CGM.getTarget().getCXXABI().hasConstructorVariants()) {
852     EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args, Ctor->getEndLoc());
853     return;
854   }
855 
856   const FunctionDecl *Definition = nullptr;
857   Stmt *Body = Ctor->getBody(Definition);
858   assert(Definition == Ctor && "emitting wrong constructor body");
859 
860   // Enter the function-try-block before the constructor prologue if
861   // applicable.
862   bool IsTryBody = isa_and_nonnull<CXXTryStmt>(Body);
863   if (IsTryBody)
864     EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
865 
866   incrementProfileCounter(Body);
867   maybeCreateMCDCCondBitmap();
868 
869   RunCleanupsScope RunCleanups(*this);
870 
871   // TODO: in restricted cases, we can emit the vbase initializers of
872   // a complete ctor and then delegate to the base ctor.
873 
874   // Emit the constructor prologue, i.e. the base and member
875   // initializers.
876   EmitCtorPrologue(Ctor, CtorType, Args);
877 
878   // Emit the body of the statement.
879   if (IsTryBody)
880     EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
881   else if (Body)
882     EmitStmt(Body);
883 
884   // Emit any cleanup blocks associated with the member or base
885   // initializers, which includes (along the exceptional path) the
886   // destructors for those members and bases that were fully
887   // constructed.
888   RunCleanups.ForceCleanup();
889 
890   if (IsTryBody)
891     ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
892 }
893 
894 namespace {
895   /// RAII object to indicate that codegen is copying the value representation
896   /// instead of the object representation. Useful when copying a struct or
897   /// class which has uninitialized members and we're only performing
898   /// lvalue-to-rvalue conversion on the object but not its members.
899   class CopyingValueRepresentation {
900   public:
901     explicit CopyingValueRepresentation(CodeGenFunction &CGF)
902         : CGF(CGF), OldSanOpts(CGF.SanOpts) {
903       CGF.SanOpts.set(SanitizerKind::Bool, false);
904       CGF.SanOpts.set(SanitizerKind::Enum, false);
905     }
906     ~CopyingValueRepresentation() {
907       CGF.SanOpts = OldSanOpts;
908     }
909   private:
910     CodeGenFunction &CGF;
911     SanitizerSet OldSanOpts;
912   };
913 } // end anonymous namespace
914 
915 namespace {
916   class FieldMemcpyizer {
917   public:
918     FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl,
919                     const VarDecl *SrcRec)
920       : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec),
921         RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)),
922         FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0),
923         LastFieldOffset(0), LastAddedFieldIndex(0) {}
924 
925     bool isMemcpyableField(FieldDecl *F) const {
926       // Never memcpy fields when we are adding poisoned paddings.
927       if (CGF.getContext().getLangOpts().SanitizeAddressFieldPadding)
928         return false;
929       Qualifiers Qual = F->getType().getQualifiers();
930       if (Qual.hasVolatile() || Qual.hasObjCLifetime())
931         return false;
932       return true;
933     }
934 
935     void addMemcpyableField(FieldDecl *F) {
936       if (isEmptyFieldForLayout(CGF.getContext(), F))
937         return;
938       if (!FirstField)
939         addInitialField(F);
940       else
941         addNextField(F);
942     }
943 
944     CharUnits getMemcpySize(uint64_t FirstByteOffset) const {
945       ASTContext &Ctx = CGF.getContext();
946       unsigned LastFieldSize =
947           LastField->isBitField()
948               ? LastField->getBitWidthValue()
949               : Ctx.toBits(
950                     Ctx.getTypeInfoDataSizeInChars(LastField->getType()).Width);
951       uint64_t MemcpySizeBits = LastFieldOffset + LastFieldSize -
952                                 FirstByteOffset + Ctx.getCharWidth() - 1;
953       CharUnits MemcpySize = Ctx.toCharUnitsFromBits(MemcpySizeBits);
954       return MemcpySize;
955     }
956 
957     void emitMemcpy() {
958       // Give the subclass a chance to bail out if it feels the memcpy isn't
959       // worth it (e.g. Hasn't aggregated enough data).
960       if (!FirstField) {
961         return;
962       }
963 
964       uint64_t FirstByteOffset;
965       if (FirstField->isBitField()) {
966         const CGRecordLayout &RL =
967           CGF.getTypes().getCGRecordLayout(FirstField->getParent());
968         const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField);
969         // FirstFieldOffset is not appropriate for bitfields,
970         // we need to use the storage offset instead.
971         FirstByteOffset = CGF.getContext().toBits(BFInfo.StorageOffset);
972       } else {
973         FirstByteOffset = FirstFieldOffset;
974       }
975 
976       CharUnits MemcpySize = getMemcpySize(FirstByteOffset);
977       QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
978       Address ThisPtr = CGF.LoadCXXThisAddress();
979       LValue DestLV = CGF.MakeAddrLValue(ThisPtr, RecordTy);
980       LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField);
981       llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec));
982       LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
983       LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField);
984 
985       emitMemcpyIR(
986           Dest.isBitField() ? Dest.getBitFieldAddress() : Dest.getAddress(),
987           Src.isBitField() ? Src.getBitFieldAddress() : Src.getAddress(),
988           MemcpySize);
989       reset();
990     }
991 
992     void reset() {
993       FirstField = nullptr;
994     }
995 
996   protected:
997     CodeGenFunction &CGF;
998     const CXXRecordDecl *ClassDecl;
999 
1000   private:
1001     void emitMemcpyIR(Address DestPtr, Address SrcPtr, CharUnits Size) {
1002       DestPtr = DestPtr.withElementType(CGF.Int8Ty);
1003       SrcPtr = SrcPtr.withElementType(CGF.Int8Ty);
1004       CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity());
1005     }
1006 
1007     void addInitialField(FieldDecl *F) {
1008       FirstField = F;
1009       LastField = F;
1010       FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex());
1011       LastFieldOffset = FirstFieldOffset;
1012       LastAddedFieldIndex = F->getFieldIndex();
1013     }
1014 
1015     void addNextField(FieldDecl *F) {
1016       // For the most part, the following invariant will hold:
1017       //   F->getFieldIndex() == LastAddedFieldIndex + 1
1018       // The one exception is that Sema won't add a copy-initializer for an
1019       // unnamed bitfield, which will show up here as a gap in the sequence.
1020       assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 &&
1021              "Cannot aggregate fields out of order.");
1022       LastAddedFieldIndex = F->getFieldIndex();
1023 
1024       // The 'first' and 'last' fields are chosen by offset, rather than field
1025       // index. This allows the code to support bitfields, as well as regular
1026       // fields.
1027       uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex());
1028       if (FOffset < FirstFieldOffset) {
1029         FirstField = F;
1030         FirstFieldOffset = FOffset;
1031       } else if (FOffset >= LastFieldOffset) {
1032         LastField = F;
1033         LastFieldOffset = FOffset;
1034       }
1035     }
1036 
1037     const VarDecl *SrcRec;
1038     const ASTRecordLayout &RecLayout;
1039     FieldDecl *FirstField;
1040     FieldDecl *LastField;
1041     uint64_t FirstFieldOffset, LastFieldOffset;
1042     unsigned LastAddedFieldIndex;
1043   };
1044 
1045   class ConstructorMemcpyizer : public FieldMemcpyizer {
1046   private:
1047     /// Get source argument for copy constructor. Returns null if not a copy
1048     /// constructor.
1049     static const VarDecl *getTrivialCopySource(CodeGenFunction &CGF,
1050                                                const CXXConstructorDecl *CD,
1051                                                FunctionArgList &Args) {
1052       if (CD->isCopyOrMoveConstructor() && CD->isDefaulted())
1053         return Args[CGF.CGM.getCXXABI().getSrcArgforCopyCtor(CD, Args)];
1054       return nullptr;
1055     }
1056 
1057     // Returns true if a CXXCtorInitializer represents a member initialization
1058     // that can be rolled into a memcpy.
1059     bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const {
1060       if (!MemcpyableCtor)
1061         return false;
1062       FieldDecl *Field = MemberInit->getMember();
1063       assert(Field && "No field for member init.");
1064       QualType FieldType = Field->getType();
1065       CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
1066 
1067       // Bail out on non-memcpyable, not-trivially-copyable members.
1068       if (!(CE && isMemcpyEquivalentSpecialMember(CE->getConstructor())) &&
1069           !(FieldType.isTriviallyCopyableType(CGF.getContext()) ||
1070             FieldType->isReferenceType()))
1071         return false;
1072 
1073       // Bail out on volatile fields.
1074       if (!isMemcpyableField(Field))
1075         return false;
1076 
1077       // Otherwise we're good.
1078       return true;
1079     }
1080 
1081   public:
1082     ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD,
1083                           FunctionArgList &Args)
1084       : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CGF, CD, Args)),
1085         ConstructorDecl(CD),
1086         MemcpyableCtor(CD->isDefaulted() &&
1087                        CD->isCopyOrMoveConstructor() &&
1088                        CGF.getLangOpts().getGC() == LangOptions::NonGC),
1089         Args(Args) { }
1090 
1091     void addMemberInitializer(CXXCtorInitializer *MemberInit) {
1092       if (isMemberInitMemcpyable(MemberInit)) {
1093         AggregatedInits.push_back(MemberInit);
1094         addMemcpyableField(MemberInit->getMember());
1095       } else {
1096         emitAggregatedInits();
1097         EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit,
1098                               ConstructorDecl, Args);
1099       }
1100     }
1101 
1102     void emitAggregatedInits() {
1103       if (AggregatedInits.size() <= 1) {
1104         // This memcpy is too small to be worthwhile. Fall back on default
1105         // codegen.
1106         if (!AggregatedInits.empty()) {
1107           CopyingValueRepresentation CVR(CGF);
1108           EmitMemberInitializer(CGF, ConstructorDecl->getParent(),
1109                                 AggregatedInits[0], ConstructorDecl, Args);
1110           AggregatedInits.clear();
1111         }
1112         reset();
1113         return;
1114       }
1115 
1116       pushEHDestructors();
1117       emitMemcpy();
1118       AggregatedInits.clear();
1119     }
1120 
1121     void pushEHDestructors() {
1122       Address ThisPtr = CGF.LoadCXXThisAddress();
1123       QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
1124       LValue LHS = CGF.MakeAddrLValue(ThisPtr, RecordTy);
1125 
1126       for (unsigned i = 0; i < AggregatedInits.size(); ++i) {
1127         CXXCtorInitializer *MemberInit = AggregatedInits[i];
1128         QualType FieldType = MemberInit->getAnyMember()->getType();
1129         QualType::DestructionKind dtorKind = FieldType.isDestructedType();
1130         if (!CGF.needsEHCleanup(dtorKind))
1131           continue;
1132         LValue FieldLHS = LHS;
1133         EmitLValueForAnyFieldInitialization(CGF, MemberInit, FieldLHS);
1134         CGF.pushEHDestroy(dtorKind, FieldLHS.getAddress(), FieldType);
1135       }
1136     }
1137 
1138     void finish() {
1139       emitAggregatedInits();
1140     }
1141 
1142   private:
1143     const CXXConstructorDecl *ConstructorDecl;
1144     bool MemcpyableCtor;
1145     FunctionArgList &Args;
1146     SmallVector<CXXCtorInitializer*, 16> AggregatedInits;
1147   };
1148 
1149   class AssignmentMemcpyizer : public FieldMemcpyizer {
1150   private:
1151     // Returns the memcpyable field copied by the given statement, if one
1152     // exists. Otherwise returns null.
1153     FieldDecl *getMemcpyableField(Stmt *S) {
1154       if (!AssignmentsMemcpyable)
1155         return nullptr;
1156       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) {
1157         // Recognise trivial assignments.
1158         if (BO->getOpcode() != BO_Assign)
1159           return nullptr;
1160         MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS());
1161         if (!ME)
1162           return nullptr;
1163         FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
1164         if (!Field || !isMemcpyableField(Field))
1165           return nullptr;
1166         Stmt *RHS = BO->getRHS();
1167         if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS))
1168           RHS = EC->getSubExpr();
1169         if (!RHS)
1170           return nullptr;
1171         if (MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS)) {
1172           if (ME2->getMemberDecl() == Field)
1173             return Field;
1174         }
1175         return nullptr;
1176       } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) {
1177         CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl());
1178         if (!(MD && isMemcpyEquivalentSpecialMember(MD)))
1179           return nullptr;
1180         MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument());
1181         if (!IOA)
1182           return nullptr;
1183         FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl());
1184         if (!Field || !isMemcpyableField(Field))
1185           return nullptr;
1186         MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0));
1187         if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl()))
1188           return nullptr;
1189         return Field;
1190       } else if (CallExpr *CE = dyn_cast<CallExpr>(S)) {
1191         FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1192         if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy)
1193           return nullptr;
1194         Expr *DstPtr = CE->getArg(0);
1195         if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr))
1196           DstPtr = DC->getSubExpr();
1197         UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr);
1198         if (!DUO || DUO->getOpcode() != UO_AddrOf)
1199           return nullptr;
1200         MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr());
1201         if (!ME)
1202           return nullptr;
1203         FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
1204         if (!Field || !isMemcpyableField(Field))
1205           return nullptr;
1206         Expr *SrcPtr = CE->getArg(1);
1207         if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr))
1208           SrcPtr = SC->getSubExpr();
1209         UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr);
1210         if (!SUO || SUO->getOpcode() != UO_AddrOf)
1211           return nullptr;
1212         MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr());
1213         if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl()))
1214           return nullptr;
1215         return Field;
1216       }
1217 
1218       return nullptr;
1219     }
1220 
1221     bool AssignmentsMemcpyable;
1222     SmallVector<Stmt*, 16> AggregatedStmts;
1223 
1224   public:
1225     AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD,
1226                          FunctionArgList &Args)
1227       : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]),
1228         AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) {
1229       assert(Args.size() == 2);
1230     }
1231 
1232     void emitAssignment(Stmt *S) {
1233       FieldDecl *F = getMemcpyableField(S);
1234       if (F) {
1235         addMemcpyableField(F);
1236         AggregatedStmts.push_back(S);
1237       } else {
1238         emitAggregatedStmts();
1239         CGF.EmitStmt(S);
1240       }
1241     }
1242 
1243     void emitAggregatedStmts() {
1244       if (AggregatedStmts.size() <= 1) {
1245         if (!AggregatedStmts.empty()) {
1246           CopyingValueRepresentation CVR(CGF);
1247           CGF.EmitStmt(AggregatedStmts[0]);
1248         }
1249         reset();
1250       }
1251 
1252       emitMemcpy();
1253       AggregatedStmts.clear();
1254     }
1255 
1256     void finish() {
1257       emitAggregatedStmts();
1258     }
1259   };
1260 } // end anonymous namespace
1261 
1262 static bool isInitializerOfDynamicClass(const CXXCtorInitializer *BaseInit) {
1263   const Type *BaseType = BaseInit->getBaseClass();
1264   const auto *BaseClassDecl =
1265       cast<CXXRecordDecl>(BaseType->castAs<RecordType>()->getDecl());
1266   return BaseClassDecl->isDynamicClass();
1267 }
1268 
1269 /// EmitCtorPrologue - This routine generates necessary code to initialize
1270 /// base classes and non-static data members belonging to this constructor.
1271 void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD,
1272                                        CXXCtorType CtorType,
1273                                        FunctionArgList &Args) {
1274   if (CD->isDelegatingConstructor())
1275     return EmitDelegatingCXXConstructorCall(CD, Args);
1276 
1277   const CXXRecordDecl *ClassDecl = CD->getParent();
1278 
1279   CXXConstructorDecl::init_const_iterator B = CD->init_begin(),
1280                                           E = CD->init_end();
1281 
1282   // Virtual base initializers first, if any. They aren't needed if:
1283   // - This is a base ctor variant
1284   // - There are no vbases
1285   // - The class is abstract, so a complete object of it cannot be constructed
1286   //
1287   // The check for an abstract class is necessary because sema may not have
1288   // marked virtual base destructors referenced.
1289   bool ConstructVBases = CtorType != Ctor_Base &&
1290                          ClassDecl->getNumVBases() != 0 &&
1291                          !ClassDecl->isAbstract();
1292 
1293   // In the Microsoft C++ ABI, there are no constructor variants. Instead, the
1294   // constructor of a class with virtual bases takes an additional parameter to
1295   // conditionally construct the virtual bases. Emit that check here.
1296   llvm::BasicBlock *BaseCtorContinueBB = nullptr;
1297   if (ConstructVBases &&
1298       !CGM.getTarget().getCXXABI().hasConstructorVariants()) {
1299     BaseCtorContinueBB =
1300         CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl);
1301     assert(BaseCtorContinueBB);
1302   }
1303 
1304   for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) {
1305     if (!ConstructVBases)
1306       continue;
1307     SaveAndRestore ThisRAII(CXXThisValue);
1308     if (CGM.getCodeGenOpts().StrictVTablePointers &&
1309         CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1310         isInitializerOfDynamicClass(*B))
1311       CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis());
1312     EmitBaseInitializer(*this, ClassDecl, *B);
1313   }
1314 
1315   if (BaseCtorContinueBB) {
1316     // Complete object handler should continue to the remaining initializers.
1317     Builder.CreateBr(BaseCtorContinueBB);
1318     EmitBlock(BaseCtorContinueBB);
1319   }
1320 
1321   // Then, non-virtual base initializers.
1322   for (; B != E && (*B)->isBaseInitializer(); B++) {
1323     assert(!(*B)->isBaseVirtual());
1324     SaveAndRestore ThisRAII(CXXThisValue);
1325     if (CGM.getCodeGenOpts().StrictVTablePointers &&
1326         CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1327         isInitializerOfDynamicClass(*B))
1328       CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis());
1329     EmitBaseInitializer(*this, ClassDecl, *B);
1330   }
1331 
1332   InitializeVTablePointers(ClassDecl);
1333 
1334   // And finally, initialize class members.
1335   FieldConstructionScope FCS(*this, LoadCXXThisAddress());
1336   ConstructorMemcpyizer CM(*this, CD, Args);
1337   for (; B != E; B++) {
1338     CXXCtorInitializer *Member = (*B);
1339     assert(!Member->isBaseInitializer());
1340     assert(Member->isAnyMemberInitializer() &&
1341            "Delegating initializer on non-delegating constructor");
1342     CM.addMemberInitializer(Member);
1343   }
1344   CM.finish();
1345 }
1346 
1347 static bool
1348 FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field);
1349 
1350 static bool
1351 HasTrivialDestructorBody(ASTContext &Context,
1352                          const CXXRecordDecl *BaseClassDecl,
1353                          const CXXRecordDecl *MostDerivedClassDecl)
1354 {
1355   // If the destructor is trivial we don't have to check anything else.
1356   if (BaseClassDecl->hasTrivialDestructor())
1357     return true;
1358 
1359   if (!BaseClassDecl->getDestructor()->hasTrivialBody())
1360     return false;
1361 
1362   // Check fields.
1363   for (const auto *Field : BaseClassDecl->fields())
1364     if (!FieldHasTrivialDestructorBody(Context, Field))
1365       return false;
1366 
1367   // Check non-virtual bases.
1368   for (const auto &I : BaseClassDecl->bases()) {
1369     if (I.isVirtual())
1370       continue;
1371 
1372     const CXXRecordDecl *NonVirtualBase =
1373       cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
1374     if (!HasTrivialDestructorBody(Context, NonVirtualBase,
1375                                   MostDerivedClassDecl))
1376       return false;
1377   }
1378 
1379   if (BaseClassDecl == MostDerivedClassDecl) {
1380     // Check virtual bases.
1381     for (const auto &I : BaseClassDecl->vbases()) {
1382       const CXXRecordDecl *VirtualBase =
1383         cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
1384       if (!HasTrivialDestructorBody(Context, VirtualBase,
1385                                     MostDerivedClassDecl))
1386         return false;
1387     }
1388   }
1389 
1390   return true;
1391 }
1392 
1393 static bool
1394 FieldHasTrivialDestructorBody(ASTContext &Context,
1395                                           const FieldDecl *Field)
1396 {
1397   QualType FieldBaseElementType = Context.getBaseElementType(Field->getType());
1398 
1399   const RecordType *RT = FieldBaseElementType->getAs<RecordType>();
1400   if (!RT)
1401     return true;
1402 
1403   CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1404 
1405   // The destructor for an implicit anonymous union member is never invoked.
1406   if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
1407     return true;
1408 
1409   return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl);
1410 }
1411 
1412 /// CanSkipVTablePointerInitialization - Check whether we need to initialize
1413 /// any vtable pointers before calling this destructor.
1414 static bool CanSkipVTablePointerInitialization(CodeGenFunction &CGF,
1415                                                const CXXDestructorDecl *Dtor) {
1416   const CXXRecordDecl *ClassDecl = Dtor->getParent();
1417   if (!ClassDecl->isDynamicClass())
1418     return true;
1419 
1420   // For a final class, the vtable pointer is known to already point to the
1421   // class's vtable.
1422   if (ClassDecl->isEffectivelyFinal())
1423     return true;
1424 
1425   if (!Dtor->hasTrivialBody())
1426     return false;
1427 
1428   // Check the fields.
1429   for (const auto *Field : ClassDecl->fields())
1430     if (!FieldHasTrivialDestructorBody(CGF.getContext(), Field))
1431       return false;
1432 
1433   return true;
1434 }
1435 
1436 /// EmitDestructorBody - Emits the body of the current destructor.
1437 void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) {
1438   const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl());
1439   CXXDtorType DtorType = CurGD.getDtorType();
1440 
1441   // For an abstract class, non-base destructors are never used (and can't
1442   // be emitted in general, because vbase dtors may not have been validated
1443   // by Sema), but the Itanium ABI doesn't make them optional and Clang may
1444   // in fact emit references to them from other compilations, so emit them
1445   // as functions containing a trap instruction.
1446   if (DtorType != Dtor_Base && Dtor->getParent()->isAbstract()) {
1447     llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
1448     TrapCall->setDoesNotReturn();
1449     TrapCall->setDoesNotThrow();
1450     Builder.CreateUnreachable();
1451     Builder.ClearInsertionPoint();
1452     return;
1453   }
1454 
1455   Stmt *Body = Dtor->getBody();
1456   if (Body) {
1457     incrementProfileCounter(Body);
1458     maybeCreateMCDCCondBitmap();
1459   }
1460 
1461   // The call to operator delete in a deleting destructor happens
1462   // outside of the function-try-block, which means it's always
1463   // possible to delegate the destructor body to the complete
1464   // destructor.  Do so.
1465   if (DtorType == Dtor_Deleting) {
1466     RunCleanupsScope DtorEpilogue(*this);
1467     EnterDtorCleanups(Dtor, Dtor_Deleting);
1468     if (HaveInsertPoint()) {
1469       QualType ThisTy = Dtor->getFunctionObjectParameterType();
1470       EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false,
1471                             /*Delegating=*/false, LoadCXXThisAddress(), ThisTy);
1472     }
1473     return;
1474   }
1475 
1476   // If the body is a function-try-block, enter the try before
1477   // anything else.
1478   bool isTryBody = isa_and_nonnull<CXXTryStmt>(Body);
1479   if (isTryBody)
1480     EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
1481   EmitAsanPrologueOrEpilogue(false);
1482 
1483   // Enter the epilogue cleanups.
1484   RunCleanupsScope DtorEpilogue(*this);
1485 
1486   // If this is the complete variant, just invoke the base variant;
1487   // the epilogue will destruct the virtual bases.  But we can't do
1488   // this optimization if the body is a function-try-block, because
1489   // we'd introduce *two* handler blocks.  In the Microsoft ABI, we
1490   // always delegate because we might not have a definition in this TU.
1491   switch (DtorType) {
1492   case Dtor_Comdat: llvm_unreachable("not expecting a COMDAT");
1493   case Dtor_Deleting: llvm_unreachable("already handled deleting case");
1494 
1495   case Dtor_Complete:
1496     assert((Body || getTarget().getCXXABI().isMicrosoft()) &&
1497            "can't emit a dtor without a body for non-Microsoft ABIs");
1498 
1499     // Enter the cleanup scopes for virtual bases.
1500     EnterDtorCleanups(Dtor, Dtor_Complete);
1501 
1502     if (!isTryBody) {
1503       QualType ThisTy = Dtor->getFunctionObjectParameterType();
1504       EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false,
1505                             /*Delegating=*/false, LoadCXXThisAddress(), ThisTy);
1506       break;
1507     }
1508 
1509     // Fallthrough: act like we're in the base variant.
1510     [[fallthrough]];
1511 
1512   case Dtor_Base:
1513     assert(Body);
1514 
1515     // Enter the cleanup scopes for fields and non-virtual bases.
1516     EnterDtorCleanups(Dtor, Dtor_Base);
1517 
1518     // Initialize the vtable pointers before entering the body.
1519     if (!CanSkipVTablePointerInitialization(*this, Dtor)) {
1520       // Insert the llvm.launder.invariant.group intrinsic before initializing
1521       // the vptrs to cancel any previous assumptions we might have made.
1522       if (CGM.getCodeGenOpts().StrictVTablePointers &&
1523           CGM.getCodeGenOpts().OptimizationLevel > 0)
1524         CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis());
1525       InitializeVTablePointers(Dtor->getParent());
1526     }
1527 
1528     if (isTryBody)
1529       EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
1530     else if (Body)
1531       EmitStmt(Body);
1532     else {
1533       assert(Dtor->isImplicit() && "bodyless dtor not implicit");
1534       // nothing to do besides what's in the epilogue
1535     }
1536     // -fapple-kext must inline any call to this dtor into
1537     // the caller's body.
1538     if (getLangOpts().AppleKext)
1539       CurFn->addFnAttr(llvm::Attribute::AlwaysInline);
1540 
1541     break;
1542   }
1543 
1544   // Jump out through the epilogue cleanups.
1545   DtorEpilogue.ForceCleanup();
1546 
1547   // Exit the try if applicable.
1548   if (isTryBody)
1549     ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
1550 }
1551 
1552 void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) {
1553   const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl());
1554   const Stmt *RootS = AssignOp->getBody();
1555   assert(isa<CompoundStmt>(RootS) &&
1556          "Body of an implicit assignment operator should be compound stmt.");
1557   const CompoundStmt *RootCS = cast<CompoundStmt>(RootS);
1558 
1559   LexicalScope Scope(*this, RootCS->getSourceRange());
1560 
1561   incrementProfileCounter(RootCS);
1562   maybeCreateMCDCCondBitmap();
1563   AssignmentMemcpyizer AM(*this, AssignOp, Args);
1564   for (auto *I : RootCS->body())
1565     AM.emitAssignment(I);
1566   AM.finish();
1567 }
1568 
1569 namespace {
1570   llvm::Value *LoadThisForDtorDelete(CodeGenFunction &CGF,
1571                                      const CXXDestructorDecl *DD) {
1572     if (Expr *ThisArg = DD->getOperatorDeleteThisArg())
1573       return CGF.EmitScalarExpr(ThisArg);
1574     return CGF.LoadCXXThis();
1575   }
1576 
1577   /// Call the operator delete associated with the current destructor.
1578   struct CallDtorDelete final : EHScopeStack::Cleanup {
1579     CallDtorDelete() {}
1580 
1581     void Emit(CodeGenFunction &CGF, Flags flags) override {
1582       const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
1583       const CXXRecordDecl *ClassDecl = Dtor->getParent();
1584       CGF.EmitDeleteCall(Dtor->getOperatorDelete(),
1585                          LoadThisForDtorDelete(CGF, Dtor),
1586                          CGF.getContext().getTagDeclType(ClassDecl));
1587     }
1588   };
1589 
1590   void EmitConditionalDtorDeleteCall(CodeGenFunction &CGF,
1591                                      llvm::Value *ShouldDeleteCondition,
1592                                      bool ReturnAfterDelete) {
1593     llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete");
1594     llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue");
1595     llvm::Value *ShouldCallDelete
1596       = CGF.Builder.CreateIsNull(ShouldDeleteCondition);
1597     CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB);
1598 
1599     CGF.EmitBlock(callDeleteBB);
1600     const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
1601     const CXXRecordDecl *ClassDecl = Dtor->getParent();
1602     CGF.EmitDeleteCall(Dtor->getOperatorDelete(),
1603                        LoadThisForDtorDelete(CGF, Dtor),
1604                        CGF.getContext().getTagDeclType(ClassDecl));
1605     assert(Dtor->getOperatorDelete()->isDestroyingOperatorDelete() ==
1606                ReturnAfterDelete &&
1607            "unexpected value for ReturnAfterDelete");
1608     if (ReturnAfterDelete)
1609       CGF.EmitBranchThroughCleanup(CGF.ReturnBlock);
1610     else
1611       CGF.Builder.CreateBr(continueBB);
1612 
1613     CGF.EmitBlock(continueBB);
1614   }
1615 
1616   struct CallDtorDeleteConditional final : EHScopeStack::Cleanup {
1617     llvm::Value *ShouldDeleteCondition;
1618 
1619   public:
1620     CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition)
1621         : ShouldDeleteCondition(ShouldDeleteCondition) {
1622       assert(ShouldDeleteCondition != nullptr);
1623     }
1624 
1625     void Emit(CodeGenFunction &CGF, Flags flags) override {
1626       EmitConditionalDtorDeleteCall(CGF, ShouldDeleteCondition,
1627                                     /*ReturnAfterDelete*/false);
1628     }
1629   };
1630 
1631   class DestroyField  final : public EHScopeStack::Cleanup {
1632     const FieldDecl *field;
1633     CodeGenFunction::Destroyer *destroyer;
1634     bool useEHCleanupForArray;
1635 
1636   public:
1637     DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer,
1638                  bool useEHCleanupForArray)
1639         : field(field), destroyer(destroyer),
1640           useEHCleanupForArray(useEHCleanupForArray) {}
1641 
1642     void Emit(CodeGenFunction &CGF, Flags flags) override {
1643       // Find the address of the field.
1644       Address thisValue = CGF.LoadCXXThisAddress();
1645       QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent());
1646       LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy);
1647       LValue LV = CGF.EmitLValueForField(ThisLV, field);
1648       assert(LV.isSimple());
1649 
1650       CGF.emitDestroy(LV.getAddress(), field->getType(), destroyer,
1651                       flags.isForNormalCleanup() && useEHCleanupForArray);
1652     }
1653   };
1654 
1655   class DeclAsInlineDebugLocation {
1656     CGDebugInfo *DI;
1657     llvm::MDNode *InlinedAt;
1658     std::optional<ApplyDebugLocation> Location;
1659 
1660   public:
1661     DeclAsInlineDebugLocation(CodeGenFunction &CGF, const NamedDecl &Decl)
1662         : DI(CGF.getDebugInfo()) {
1663       if (!DI)
1664         return;
1665       InlinedAt = DI->getInlinedAt();
1666       DI->setInlinedAt(CGF.Builder.getCurrentDebugLocation());
1667       Location.emplace(CGF, Decl.getLocation());
1668     }
1669 
1670     ~DeclAsInlineDebugLocation() {
1671       if (!DI)
1672         return;
1673       Location.reset();
1674       DI->setInlinedAt(InlinedAt);
1675     }
1676   };
1677 
1678   static void EmitSanitizerDtorCallback(
1679       CodeGenFunction &CGF, StringRef Name, llvm::Value *Ptr,
1680       std::optional<CharUnits::QuantityType> PoisonSize = {}) {
1681     CodeGenFunction::SanitizerScope SanScope(&CGF);
1682     // Pass in void pointer and size of region as arguments to runtime
1683     // function
1684     SmallVector<llvm::Value *, 2> Args = {Ptr};
1685     SmallVector<llvm::Type *, 2> ArgTypes = {CGF.VoidPtrTy};
1686 
1687     if (PoisonSize.has_value()) {
1688       Args.emplace_back(llvm::ConstantInt::get(CGF.SizeTy, *PoisonSize));
1689       ArgTypes.emplace_back(CGF.SizeTy);
1690     }
1691 
1692     llvm::FunctionType *FnType =
1693         llvm::FunctionType::get(CGF.VoidTy, ArgTypes, false);
1694     llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(FnType, Name);
1695 
1696     CGF.EmitNounwindRuntimeCall(Fn, Args);
1697   }
1698 
1699   static void
1700   EmitSanitizerDtorFieldsCallback(CodeGenFunction &CGF, llvm::Value *Ptr,
1701                                   CharUnits::QuantityType PoisonSize) {
1702     EmitSanitizerDtorCallback(CGF, "__sanitizer_dtor_callback_fields", Ptr,
1703                               PoisonSize);
1704   }
1705 
1706   /// Poison base class with a trivial destructor.
1707   struct SanitizeDtorTrivialBase final : EHScopeStack::Cleanup {
1708     const CXXRecordDecl *BaseClass;
1709     bool BaseIsVirtual;
1710     SanitizeDtorTrivialBase(const CXXRecordDecl *Base, bool BaseIsVirtual)
1711         : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {}
1712 
1713     void Emit(CodeGenFunction &CGF, Flags flags) override {
1714       const CXXRecordDecl *DerivedClass =
1715           cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent();
1716 
1717       Address Addr = CGF.GetAddressOfDirectBaseInCompleteClass(
1718           CGF.LoadCXXThisAddress(), DerivedClass, BaseClass, BaseIsVirtual);
1719 
1720       const ASTRecordLayout &BaseLayout =
1721           CGF.getContext().getASTRecordLayout(BaseClass);
1722       CharUnits BaseSize = BaseLayout.getSize();
1723 
1724       if (!BaseSize.isPositive())
1725         return;
1726 
1727       // Use the base class declaration location as inline DebugLocation. All
1728       // fields of the class are destroyed.
1729       DeclAsInlineDebugLocation InlineHere(CGF, *BaseClass);
1730       EmitSanitizerDtorFieldsCallback(CGF, Addr.emitRawPointer(CGF),
1731                                       BaseSize.getQuantity());
1732 
1733       // Prevent the current stack frame from disappearing from the stack trace.
1734       CGF.CurFn->addFnAttr("disable-tail-calls", "true");
1735     }
1736   };
1737 
1738   class SanitizeDtorFieldRange final : public EHScopeStack::Cleanup {
1739     const CXXDestructorDecl *Dtor;
1740     unsigned StartIndex;
1741     unsigned EndIndex;
1742 
1743   public:
1744     SanitizeDtorFieldRange(const CXXDestructorDecl *Dtor, unsigned StartIndex,
1745                            unsigned EndIndex)
1746         : Dtor(Dtor), StartIndex(StartIndex), EndIndex(EndIndex) {}
1747 
1748     // Generate function call for handling object poisoning.
1749     // Disables tail call elimination, to prevent the current stack frame
1750     // from disappearing from the stack trace.
1751     void Emit(CodeGenFunction &CGF, Flags flags) override {
1752       const ASTContext &Context = CGF.getContext();
1753       const ASTRecordLayout &Layout =
1754           Context.getASTRecordLayout(Dtor->getParent());
1755 
1756       // It's a first trivial field so it should be at the begining of a char,
1757       // still round up start offset just in case.
1758       CharUnits PoisonStart = Context.toCharUnitsFromBits(
1759           Layout.getFieldOffset(StartIndex) + Context.getCharWidth() - 1);
1760       llvm::ConstantInt *OffsetSizePtr =
1761           llvm::ConstantInt::get(CGF.SizeTy, PoisonStart.getQuantity());
1762 
1763       llvm::Value *OffsetPtr =
1764           CGF.Builder.CreateGEP(CGF.Int8Ty, CGF.LoadCXXThis(), OffsetSizePtr);
1765 
1766       CharUnits PoisonEnd;
1767       if (EndIndex >= Layout.getFieldCount()) {
1768         PoisonEnd = Layout.getNonVirtualSize();
1769       } else {
1770         PoisonEnd =
1771             Context.toCharUnitsFromBits(Layout.getFieldOffset(EndIndex));
1772       }
1773       CharUnits PoisonSize = PoisonEnd - PoisonStart;
1774       if (!PoisonSize.isPositive())
1775         return;
1776 
1777       // Use the top field declaration location as inline DebugLocation.
1778       DeclAsInlineDebugLocation InlineHere(
1779           CGF, **std::next(Dtor->getParent()->field_begin(), StartIndex));
1780       EmitSanitizerDtorFieldsCallback(CGF, OffsetPtr, PoisonSize.getQuantity());
1781 
1782       // Prevent the current stack frame from disappearing from the stack trace.
1783       CGF.CurFn->addFnAttr("disable-tail-calls", "true");
1784     }
1785   };
1786 
1787  class SanitizeDtorVTable final : public EHScopeStack::Cleanup {
1788     const CXXDestructorDecl *Dtor;
1789 
1790   public:
1791     SanitizeDtorVTable(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {}
1792 
1793     // Generate function call for handling vtable pointer poisoning.
1794     void Emit(CodeGenFunction &CGF, Flags flags) override {
1795       assert(Dtor->getParent()->isDynamicClass());
1796       (void)Dtor;
1797       // Poison vtable and vtable ptr if they exist for this class.
1798       llvm::Value *VTablePtr = CGF.LoadCXXThis();
1799 
1800       // Pass in void pointer and size of region as arguments to runtime
1801       // function
1802       EmitSanitizerDtorCallback(CGF, "__sanitizer_dtor_callback_vptr",
1803                                 VTablePtr);
1804     }
1805  };
1806 
1807  class SanitizeDtorCleanupBuilder {
1808    ASTContext &Context;
1809    EHScopeStack &EHStack;
1810    const CXXDestructorDecl *DD;
1811    std::optional<unsigned> StartIndex;
1812 
1813  public:
1814    SanitizeDtorCleanupBuilder(ASTContext &Context, EHScopeStack &EHStack,
1815                               const CXXDestructorDecl *DD)
1816        : Context(Context), EHStack(EHStack), DD(DD), StartIndex(std::nullopt) {}
1817    void PushCleanupForField(const FieldDecl *Field) {
1818      if (isEmptyFieldForLayout(Context, Field))
1819        return;
1820      unsigned FieldIndex = Field->getFieldIndex();
1821      if (FieldHasTrivialDestructorBody(Context, Field)) {
1822        if (!StartIndex)
1823          StartIndex = FieldIndex;
1824      } else if (StartIndex) {
1825        EHStack.pushCleanup<SanitizeDtorFieldRange>(NormalAndEHCleanup, DD,
1826                                                    *StartIndex, FieldIndex);
1827        StartIndex = std::nullopt;
1828      }
1829    }
1830    void End() {
1831      if (StartIndex)
1832        EHStack.pushCleanup<SanitizeDtorFieldRange>(NormalAndEHCleanup, DD,
1833                                                    *StartIndex, -1);
1834    }
1835  };
1836 } // end anonymous namespace
1837 
1838 /// Emit all code that comes at the end of class's
1839 /// destructor. This is to call destructors on members and base classes
1840 /// in reverse order of their construction.
1841 ///
1842 /// For a deleting destructor, this also handles the case where a destroying
1843 /// operator delete completely overrides the definition.
1844 void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD,
1845                                         CXXDtorType DtorType) {
1846   assert((!DD->isTrivial() || DD->hasAttr<DLLExportAttr>()) &&
1847          "Should not emit dtor epilogue for non-exported trivial dtor!");
1848 
1849   // The deleting-destructor phase just needs to call the appropriate
1850   // operator delete that Sema picked up.
1851   if (DtorType == Dtor_Deleting) {
1852     assert(DD->getOperatorDelete() &&
1853            "operator delete missing - EnterDtorCleanups");
1854     if (CXXStructorImplicitParamValue) {
1855       // If there is an implicit param to the deleting dtor, it's a boolean
1856       // telling whether this is a deleting destructor.
1857       if (DD->getOperatorDelete()->isDestroyingOperatorDelete())
1858         EmitConditionalDtorDeleteCall(*this, CXXStructorImplicitParamValue,
1859                                       /*ReturnAfterDelete*/true);
1860       else
1861         EHStack.pushCleanup<CallDtorDeleteConditional>(
1862             NormalAndEHCleanup, CXXStructorImplicitParamValue);
1863     } else {
1864       if (DD->getOperatorDelete()->isDestroyingOperatorDelete()) {
1865         const CXXRecordDecl *ClassDecl = DD->getParent();
1866         EmitDeleteCall(DD->getOperatorDelete(),
1867                        LoadThisForDtorDelete(*this, DD),
1868                        getContext().getTagDeclType(ClassDecl));
1869         EmitBranchThroughCleanup(ReturnBlock);
1870       } else {
1871         EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup);
1872       }
1873     }
1874     return;
1875   }
1876 
1877   const CXXRecordDecl *ClassDecl = DD->getParent();
1878 
1879   // Unions have no bases and do not call field destructors.
1880   if (ClassDecl->isUnion())
1881     return;
1882 
1883   // The complete-destructor phase just destructs all the virtual bases.
1884   if (DtorType == Dtor_Complete) {
1885     // Poison the vtable pointer such that access after the base
1886     // and member destructors are invoked is invalid.
1887     if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1888         SanOpts.has(SanitizerKind::Memory) && ClassDecl->getNumVBases() &&
1889         ClassDecl->isPolymorphic())
1890       EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD);
1891 
1892     // We push them in the forward order so that they'll be popped in
1893     // the reverse order.
1894     for (const auto &Base : ClassDecl->vbases()) {
1895       auto *BaseClassDecl =
1896           cast<CXXRecordDecl>(Base.getType()->castAs<RecordType>()->getDecl());
1897 
1898       if (BaseClassDecl->hasTrivialDestructor()) {
1899         // Under SanitizeMemoryUseAfterDtor, poison the trivial base class
1900         // memory. For non-trival base classes the same is done in the class
1901         // destructor.
1902         if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1903             SanOpts.has(SanitizerKind::Memory) && !BaseClassDecl->isEmpty())
1904           EHStack.pushCleanup<SanitizeDtorTrivialBase>(NormalAndEHCleanup,
1905                                                        BaseClassDecl,
1906                                                        /*BaseIsVirtual*/ true);
1907       } else {
1908         EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, BaseClassDecl,
1909                                           /*BaseIsVirtual*/ true);
1910       }
1911     }
1912 
1913     return;
1914   }
1915 
1916   assert(DtorType == Dtor_Base);
1917   // Poison the vtable pointer if it has no virtual bases, but inherits
1918   // virtual functions.
1919   if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1920       SanOpts.has(SanitizerKind::Memory) && !ClassDecl->getNumVBases() &&
1921       ClassDecl->isPolymorphic())
1922     EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD);
1923 
1924   // Destroy non-virtual bases.
1925   for (const auto &Base : ClassDecl->bases()) {
1926     // Ignore virtual bases.
1927     if (Base.isVirtual())
1928       continue;
1929 
1930     CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl();
1931 
1932     if (BaseClassDecl->hasTrivialDestructor()) {
1933       if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1934           SanOpts.has(SanitizerKind::Memory) && !BaseClassDecl->isEmpty())
1935         EHStack.pushCleanup<SanitizeDtorTrivialBase>(NormalAndEHCleanup,
1936                                                      BaseClassDecl,
1937                                                      /*BaseIsVirtual*/ false);
1938     } else {
1939       EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, BaseClassDecl,
1940                                         /*BaseIsVirtual*/ false);
1941     }
1942   }
1943 
1944   // Poison fields such that access after their destructors are
1945   // invoked, and before the base class destructor runs, is invalid.
1946   bool SanitizeFields = CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1947                         SanOpts.has(SanitizerKind::Memory);
1948   SanitizeDtorCleanupBuilder SanitizeBuilder(getContext(), EHStack, DD);
1949 
1950   // Destroy direct fields.
1951   for (const auto *Field : ClassDecl->fields()) {
1952     if (SanitizeFields)
1953       SanitizeBuilder.PushCleanupForField(Field);
1954 
1955     QualType type = Field->getType();
1956     QualType::DestructionKind dtorKind = type.isDestructedType();
1957     if (!dtorKind)
1958       continue;
1959 
1960     // Anonymous union members do not have their destructors called.
1961     const RecordType *RT = type->getAsUnionType();
1962     if (RT && RT->getDecl()->isAnonymousStructOrUnion())
1963       continue;
1964 
1965     CleanupKind cleanupKind = getCleanupKind(dtorKind);
1966     EHStack.pushCleanup<DestroyField>(
1967         cleanupKind, Field, getDestroyer(dtorKind), cleanupKind & EHCleanup);
1968   }
1969 
1970   if (SanitizeFields)
1971     SanitizeBuilder.End();
1972 }
1973 
1974 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1975 /// constructor for each of several members of an array.
1976 ///
1977 /// \param ctor the constructor to call for each element
1978 /// \param arrayType the type of the array to initialize
1979 /// \param arrayBegin an arrayType*
1980 /// \param zeroInitialize true if each element should be
1981 ///   zero-initialized before it is constructed
1982 void CodeGenFunction::EmitCXXAggrConstructorCall(
1983     const CXXConstructorDecl *ctor, const ArrayType *arrayType,
1984     Address arrayBegin, const CXXConstructExpr *E, bool NewPointerIsChecked,
1985     bool zeroInitialize) {
1986   QualType elementType;
1987   llvm::Value *numElements =
1988     emitArrayLength(arrayType, elementType, arrayBegin);
1989 
1990   EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin, E,
1991                              NewPointerIsChecked, zeroInitialize);
1992 }
1993 
1994 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1995 /// constructor for each of several members of an array.
1996 ///
1997 /// \param ctor the constructor to call for each element
1998 /// \param numElements the number of elements in the array;
1999 ///   may be zero
2000 /// \param arrayBase a T*, where T is the type constructed by ctor
2001 /// \param zeroInitialize true if each element should be
2002 ///   zero-initialized before it is constructed
2003 void CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor,
2004                                                  llvm::Value *numElements,
2005                                                  Address arrayBase,
2006                                                  const CXXConstructExpr *E,
2007                                                  bool NewPointerIsChecked,
2008                                                  bool zeroInitialize) {
2009   // It's legal for numElements to be zero.  This can happen both
2010   // dynamically, because x can be zero in 'new A[x]', and statically,
2011   // because of GCC extensions that permit zero-length arrays.  There
2012   // are probably legitimate places where we could assume that this
2013   // doesn't happen, but it's not clear that it's worth it.
2014   llvm::BranchInst *zeroCheckBranch = nullptr;
2015 
2016   // Optimize for a constant count.
2017   llvm::ConstantInt *constantCount
2018     = dyn_cast<llvm::ConstantInt>(numElements);
2019   if (constantCount) {
2020     // Just skip out if the constant count is zero.
2021     if (constantCount->isZero()) return;
2022 
2023   // Otherwise, emit the check.
2024   } else {
2025     llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop");
2026     llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty");
2027     zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB);
2028     EmitBlock(loopBB);
2029   }
2030 
2031   // Find the end of the array.
2032   llvm::Type *elementType = arrayBase.getElementType();
2033   llvm::Value *arrayBegin = arrayBase.emitRawPointer(*this);
2034   llvm::Value *arrayEnd = Builder.CreateInBoundsGEP(
2035       elementType, arrayBegin, numElements, "arrayctor.end");
2036 
2037   // Enter the loop, setting up a phi for the current location to initialize.
2038   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
2039   llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop");
2040   EmitBlock(loopBB);
2041   llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2,
2042                                          "arrayctor.cur");
2043   cur->addIncoming(arrayBegin, entryBB);
2044 
2045   // Inside the loop body, emit the constructor call on the array element.
2046 
2047   // The alignment of the base, adjusted by the size of a single element,
2048   // provides a conservative estimate of the alignment of every element.
2049   // (This assumes we never start tracking offsetted alignments.)
2050   //
2051   // Note that these are complete objects and so we don't need to
2052   // use the non-virtual size or alignment.
2053   QualType type = getContext().getTypeDeclType(ctor->getParent());
2054   CharUnits eltAlignment =
2055     arrayBase.getAlignment()
2056              .alignmentOfArrayElement(getContext().getTypeSizeInChars(type));
2057   Address curAddr = Address(cur, elementType, eltAlignment);
2058 
2059   // Zero initialize the storage, if requested.
2060   if (zeroInitialize)
2061     EmitNullInitialization(curAddr, type);
2062 
2063   // C++ [class.temporary]p4:
2064   // There are two contexts in which temporaries are destroyed at a different
2065   // point than the end of the full-expression. The first context is when a
2066   // default constructor is called to initialize an element of an array.
2067   // If the constructor has one or more default arguments, the destruction of
2068   // every temporary created in a default argument expression is sequenced
2069   // before the construction of the next array element, if any.
2070 
2071   {
2072     RunCleanupsScope Scope(*this);
2073 
2074     // Evaluate the constructor and its arguments in a regular
2075     // partial-destroy cleanup.
2076     if (getLangOpts().Exceptions &&
2077         !ctor->getParent()->hasTrivialDestructor()) {
2078       Destroyer *destroyer = destroyCXXObject;
2079       pushRegularPartialArrayCleanup(arrayBegin, cur, type, eltAlignment,
2080                                      *destroyer);
2081     }
2082     auto currAVS = AggValueSlot::forAddr(
2083         curAddr, type.getQualifiers(), AggValueSlot::IsDestructed,
2084         AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased,
2085         AggValueSlot::DoesNotOverlap, AggValueSlot::IsNotZeroed,
2086         NewPointerIsChecked ? AggValueSlot::IsSanitizerChecked
2087                             : AggValueSlot::IsNotSanitizerChecked);
2088     EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/false,
2089                            /*Delegating=*/false, currAVS, E);
2090   }
2091 
2092   // Go to the next element.
2093   llvm::Value *next = Builder.CreateInBoundsGEP(
2094       elementType, cur, llvm::ConstantInt::get(SizeTy, 1), "arrayctor.next");
2095   cur->addIncoming(next, Builder.GetInsertBlock());
2096 
2097   // Check whether that's the end of the loop.
2098   llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done");
2099   llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont");
2100   Builder.CreateCondBr(done, contBB, loopBB);
2101 
2102   // Patch the earlier check to skip over the loop.
2103   if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB);
2104 
2105   EmitBlock(contBB);
2106 }
2107 
2108 void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF,
2109                                        Address addr,
2110                                        QualType type) {
2111   const RecordType *rtype = type->castAs<RecordType>();
2112   const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl());
2113   const CXXDestructorDecl *dtor = record->getDestructor();
2114   assert(!dtor->isTrivial());
2115   CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false,
2116                             /*Delegating=*/false, addr, type);
2117 }
2118 
2119 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D,
2120                                              CXXCtorType Type,
2121                                              bool ForVirtualBase,
2122                                              bool Delegating,
2123                                              AggValueSlot ThisAVS,
2124                                              const CXXConstructExpr *E) {
2125   CallArgList Args;
2126   Address This = ThisAVS.getAddress();
2127   LangAS SlotAS = ThisAVS.getQualifiers().getAddressSpace();
2128   LangAS ThisAS = D->getFunctionObjectParameterType().getAddressSpace();
2129   llvm::Value *ThisPtr =
2130       getAsNaturalPointerTo(This, D->getThisType()->getPointeeType());
2131 
2132   if (SlotAS != ThisAS) {
2133     unsigned TargetThisAS = getContext().getTargetAddressSpace(ThisAS);
2134     llvm::Type *NewType =
2135         llvm::PointerType::get(getLLVMContext(), TargetThisAS);
2136     ThisPtr = getTargetHooks().performAddrSpaceCast(*this, ThisPtr, ThisAS,
2137                                                     SlotAS, NewType);
2138   }
2139 
2140   // Push the this ptr.
2141   Args.add(RValue::get(ThisPtr), D->getThisType());
2142 
2143   // If this is a trivial constructor, emit a memcpy now before we lose
2144   // the alignment information on the argument.
2145   // FIXME: It would be better to preserve alignment information into CallArg.
2146   if (isMemcpyEquivalentSpecialMember(D)) {
2147     assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
2148 
2149     const Expr *Arg = E->getArg(0);
2150     LValue Src = EmitLValue(Arg);
2151     QualType DestTy = getContext().getTypeDeclType(D->getParent());
2152     LValue Dest = MakeAddrLValue(This, DestTy);
2153     EmitAggregateCopyCtor(Dest, Src, ThisAVS.mayOverlap());
2154     return;
2155   }
2156 
2157   // Add the rest of the user-supplied arguments.
2158   const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
2159   EvaluationOrder Order = E->isListInitialization()
2160                               ? EvaluationOrder::ForceLeftToRight
2161                               : EvaluationOrder::Default;
2162   EmitCallArgs(Args, FPT, E->arguments(), E->getConstructor(),
2163                /*ParamsToSkip*/ 0, Order);
2164 
2165   EmitCXXConstructorCall(D, Type, ForVirtualBase, Delegating, This, Args,
2166                          ThisAVS.mayOverlap(), E->getExprLoc(),
2167                          ThisAVS.isSanitizerChecked());
2168 }
2169 
2170 static bool canEmitDelegateCallArgs(CodeGenFunction &CGF,
2171                                     const CXXConstructorDecl *Ctor,
2172                                     CXXCtorType Type, CallArgList &Args) {
2173   // We can't forward a variadic call.
2174   if (Ctor->isVariadic())
2175     return false;
2176 
2177   if (CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2178     // If the parameters are callee-cleanup, it's not safe to forward.
2179     for (auto *P : Ctor->parameters())
2180       if (P->needsDestruction(CGF.getContext()))
2181         return false;
2182 
2183     // Likewise if they're inalloca.
2184     const CGFunctionInfo &Info =
2185         CGF.CGM.getTypes().arrangeCXXConstructorCall(Args, Ctor, Type, 0, 0);
2186     if (Info.usesInAlloca())
2187       return false;
2188   }
2189 
2190   // Anything else should be OK.
2191   return true;
2192 }
2193 
2194 void CodeGenFunction::EmitCXXConstructorCall(
2195     const CXXConstructorDecl *D, CXXCtorType Type, bool ForVirtualBase,
2196     bool Delegating, Address This, CallArgList &Args,
2197     AggValueSlot::Overlap_t Overlap, SourceLocation Loc,
2198     bool NewPointerIsChecked, llvm::CallBase **CallOrInvoke) {
2199   const CXXRecordDecl *ClassDecl = D->getParent();
2200 
2201   if (!NewPointerIsChecked)
2202     EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, Loc, This,
2203                   getContext().getRecordType(ClassDecl), CharUnits::Zero());
2204 
2205   if (D->isTrivial() && D->isDefaultConstructor()) {
2206     assert(Args.size() == 1 && "trivial default ctor with args");
2207     return;
2208   }
2209 
2210   // If this is a trivial constructor, just emit what's needed. If this is a
2211   // union copy constructor, we must emit a memcpy, because the AST does not
2212   // model that copy.
2213   if (isMemcpyEquivalentSpecialMember(D)) {
2214     assert(Args.size() == 2 && "unexpected argcount for trivial ctor");
2215     QualType SrcTy = D->getParamDecl(0)->getType().getNonReferenceType();
2216     Address Src = makeNaturalAddressForPointer(
2217         Args[1].getRValue(*this).getScalarVal(), SrcTy);
2218     LValue SrcLVal = MakeAddrLValue(Src, SrcTy);
2219     QualType DestTy = getContext().getTypeDeclType(ClassDecl);
2220     LValue DestLVal = MakeAddrLValue(This, DestTy);
2221     EmitAggregateCopyCtor(DestLVal, SrcLVal, Overlap);
2222     return;
2223   }
2224 
2225   bool PassPrototypeArgs = true;
2226   // Check whether we can actually emit the constructor before trying to do so.
2227   if (auto Inherited = D->getInheritedConstructor()) {
2228     PassPrototypeArgs = getTypes().inheritingCtorHasParams(Inherited, Type);
2229     if (PassPrototypeArgs && !canEmitDelegateCallArgs(*this, D, Type, Args)) {
2230       EmitInlinedInheritingCXXConstructorCall(D, Type, ForVirtualBase,
2231                                               Delegating, Args);
2232       return;
2233     }
2234   }
2235 
2236   // Insert any ABI-specific implicit constructor arguments.
2237   CGCXXABI::AddedStructorArgCounts ExtraArgs =
2238       CGM.getCXXABI().addImplicitConstructorArgs(*this, D, Type, ForVirtualBase,
2239                                                  Delegating, Args);
2240 
2241   // Emit the call.
2242   llvm::Constant *CalleePtr = CGM.getAddrOfCXXStructor(GlobalDecl(D, Type));
2243   const CGFunctionInfo &Info = CGM.getTypes().arrangeCXXConstructorCall(
2244       Args, D, Type, ExtraArgs.Prefix, ExtraArgs.Suffix, PassPrototypeArgs);
2245   CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(D, Type));
2246   EmitCall(Info, Callee, ReturnValueSlot(), Args, CallOrInvoke, false, Loc);
2247 
2248   // Generate vtable assumptions if we're constructing a complete object
2249   // with a vtable.  We don't do this for base subobjects for two reasons:
2250   // first, it's incorrect for classes with virtual bases, and second, we're
2251   // about to overwrite the vptrs anyway.
2252   // We also have to make sure if we can refer to vtable:
2253   // - Otherwise we can refer to vtable if it's safe to speculatively emit.
2254   // FIXME: If vtable is used by ctor/dtor, or if vtable is external and we are
2255   // sure that definition of vtable is not hidden,
2256   // then we are always safe to refer to it.
2257   // FIXME: It looks like InstCombine is very inefficient on dealing with
2258   // assumes. Make assumption loads require -fstrict-vtable-pointers temporarily.
2259   if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2260       ClassDecl->isDynamicClass() && Type != Ctor_Base &&
2261       CGM.getCXXABI().canSpeculativelyEmitVTable(ClassDecl) &&
2262       CGM.getCodeGenOpts().StrictVTablePointers)
2263     EmitVTableAssumptionLoads(ClassDecl, This);
2264 }
2265 
2266 void CodeGenFunction::EmitInheritedCXXConstructorCall(
2267     const CXXConstructorDecl *D, bool ForVirtualBase, Address This,
2268     bool InheritedFromVBase, const CXXInheritedCtorInitExpr *E) {
2269   CallArgList Args;
2270   CallArg ThisArg(RValue::get(getAsNaturalPointerTo(
2271                       This, D->getThisType()->getPointeeType())),
2272                   D->getThisType());
2273 
2274   // Forward the parameters.
2275   if (InheritedFromVBase &&
2276       CGM.getTarget().getCXXABI().hasConstructorVariants()) {
2277     // Nothing to do; this construction is not responsible for constructing
2278     // the base class containing the inherited constructor.
2279     // FIXME: Can we just pass undef's for the remaining arguments if we don't
2280     // have constructor variants?
2281     Args.push_back(ThisArg);
2282   } else if (!CXXInheritedCtorInitExprArgs.empty()) {
2283     // The inheriting constructor was inlined; just inject its arguments.
2284     assert(CXXInheritedCtorInitExprArgs.size() >= D->getNumParams() &&
2285            "wrong number of parameters for inherited constructor call");
2286     Args = CXXInheritedCtorInitExprArgs;
2287     Args[0] = ThisArg;
2288   } else {
2289     // The inheriting constructor was not inlined. Emit delegating arguments.
2290     Args.push_back(ThisArg);
2291     const auto *OuterCtor = cast<CXXConstructorDecl>(CurCodeDecl);
2292     assert(OuterCtor->getNumParams() == D->getNumParams());
2293     assert(!OuterCtor->isVariadic() && "should have been inlined");
2294 
2295     for (const auto *Param : OuterCtor->parameters()) {
2296       assert(getContext().hasSameUnqualifiedType(
2297           OuterCtor->getParamDecl(Param->getFunctionScopeIndex())->getType(),
2298           Param->getType()));
2299       EmitDelegateCallArg(Args, Param, E->getLocation());
2300 
2301       // Forward __attribute__(pass_object_size).
2302       if (Param->hasAttr<PassObjectSizeAttr>()) {
2303         auto *POSParam = SizeArguments[Param];
2304         assert(POSParam && "missing pass_object_size value for forwarding");
2305         EmitDelegateCallArg(Args, POSParam, E->getLocation());
2306       }
2307     }
2308   }
2309 
2310   EmitCXXConstructorCall(D, Ctor_Base, ForVirtualBase, /*Delegating*/false,
2311                          This, Args, AggValueSlot::MayOverlap,
2312                          E->getLocation(), /*NewPointerIsChecked*/true);
2313 }
2314 
2315 void CodeGenFunction::EmitInlinedInheritingCXXConstructorCall(
2316     const CXXConstructorDecl *Ctor, CXXCtorType CtorType, bool ForVirtualBase,
2317     bool Delegating, CallArgList &Args) {
2318   GlobalDecl GD(Ctor, CtorType);
2319   InlinedInheritingConstructorScope Scope(*this, GD);
2320   ApplyInlineDebugLocation DebugScope(*this, GD);
2321   RunCleanupsScope RunCleanups(*this);
2322 
2323   // Save the arguments to be passed to the inherited constructor.
2324   CXXInheritedCtorInitExprArgs = Args;
2325 
2326   FunctionArgList Params;
2327   QualType RetType = BuildFunctionArgList(CurGD, Params);
2328   FnRetTy = RetType;
2329 
2330   // Insert any ABI-specific implicit constructor arguments.
2331   CGM.getCXXABI().addImplicitConstructorArgs(*this, Ctor, CtorType,
2332                                              ForVirtualBase, Delegating, Args);
2333 
2334   // Emit a simplified prolog. We only need to emit the implicit params.
2335   assert(Args.size() >= Params.size() && "too few arguments for call");
2336   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
2337     if (I < Params.size() && isa<ImplicitParamDecl>(Params[I])) {
2338       const RValue &RV = Args[I].getRValue(*this);
2339       assert(!RV.isComplex() && "complex indirect params not supported");
2340       ParamValue Val = RV.isScalar()
2341                            ? ParamValue::forDirect(RV.getScalarVal())
2342                            : ParamValue::forIndirect(RV.getAggregateAddress());
2343       EmitParmDecl(*Params[I], Val, I + 1);
2344     }
2345   }
2346 
2347   // Create a return value slot if the ABI implementation wants one.
2348   // FIXME: This is dumb, we should ask the ABI not to try to set the return
2349   // value instead.
2350   if (!RetType->isVoidType())
2351     ReturnValue = CreateIRTemp(RetType, "retval.inhctor");
2352 
2353   CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
2354   CXXThisValue = CXXABIThisValue;
2355 
2356   // Directly emit the constructor initializers.
2357   EmitCtorPrologue(Ctor, CtorType, Params);
2358 }
2359 
2360 void CodeGenFunction::EmitVTableAssumptionLoad(const VPtr &Vptr, Address This) {
2361   llvm::Value *VTableGlobal =
2362       CGM.getCXXABI().getVTableAddressPoint(Vptr.Base, Vptr.VTableClass);
2363   if (!VTableGlobal)
2364     return;
2365 
2366   // We can just use the base offset in the complete class.
2367   CharUnits NonVirtualOffset = Vptr.Base.getBaseOffset();
2368 
2369   if (!NonVirtualOffset.isZero())
2370     This =
2371         ApplyNonVirtualAndVirtualOffset(*this, This, NonVirtualOffset, nullptr,
2372                                         Vptr.VTableClass, Vptr.NearestVBase);
2373 
2374   llvm::Value *VPtrValue =
2375       GetVTablePtr(This, VTableGlobal->getType(), Vptr.VTableClass);
2376   llvm::Value *Cmp =
2377       Builder.CreateICmpEQ(VPtrValue, VTableGlobal, "cmp.vtables");
2378   Builder.CreateAssumption(Cmp);
2379 }
2380 
2381 void CodeGenFunction::EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl,
2382                                                 Address This) {
2383   if (CGM.getCXXABI().doStructorsInitializeVPtrs(ClassDecl))
2384     for (const VPtr &Vptr : getVTablePointers(ClassDecl))
2385       EmitVTableAssumptionLoad(Vptr, This);
2386 }
2387 
2388 void
2389 CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2390                                                 Address This, Address Src,
2391                                                 const CXXConstructExpr *E) {
2392   const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
2393 
2394   CallArgList Args;
2395 
2396   // Push the this ptr.
2397   Args.add(RValue::get(getAsNaturalPointerTo(This, D->getThisType())),
2398            D->getThisType());
2399 
2400   // Push the src ptr.
2401   QualType QT = *(FPT->param_type_begin());
2402   llvm::Type *t = CGM.getTypes().ConvertType(QT);
2403   llvm::Value *Val = getAsNaturalPointerTo(Src, D->getThisType());
2404   llvm::Value *SrcVal = Builder.CreateBitCast(Val, t);
2405   Args.add(RValue::get(SrcVal), QT);
2406 
2407   // Skip over first argument (Src).
2408   EmitCallArgs(Args, FPT, drop_begin(E->arguments(), 1), E->getConstructor(),
2409                /*ParamsToSkip*/ 1);
2410 
2411   EmitCXXConstructorCall(D, Ctor_Complete, /*ForVirtualBase*/false,
2412                          /*Delegating*/false, This, Args,
2413                          AggValueSlot::MayOverlap, E->getExprLoc(),
2414                          /*NewPointerIsChecked*/false);
2415 }
2416 
2417 void
2418 CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
2419                                                 CXXCtorType CtorType,
2420                                                 const FunctionArgList &Args,
2421                                                 SourceLocation Loc) {
2422   CallArgList DelegateArgs;
2423 
2424   FunctionArgList::const_iterator I = Args.begin(), E = Args.end();
2425   assert(I != E && "no parameters to constructor");
2426 
2427   // this
2428   Address This = LoadCXXThisAddress();
2429   DelegateArgs.add(RValue::get(getAsNaturalPointerTo(
2430                        This, (*I)->getType()->getPointeeType())),
2431                    (*I)->getType());
2432   ++I;
2433 
2434   // FIXME: The location of the VTT parameter in the parameter list is
2435   // specific to the Itanium ABI and shouldn't be hardcoded here.
2436   if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
2437     assert(I != E && "cannot skip vtt parameter, already done with args");
2438     assert((*I)->getType()->isPointerType() &&
2439            "skipping parameter not of vtt type");
2440     ++I;
2441   }
2442 
2443   // Explicit arguments.
2444   for (; I != E; ++I) {
2445     const VarDecl *param = *I;
2446     // FIXME: per-argument source location
2447     EmitDelegateCallArg(DelegateArgs, param, Loc);
2448   }
2449 
2450   EmitCXXConstructorCall(Ctor, CtorType, /*ForVirtualBase=*/false,
2451                          /*Delegating=*/true, This, DelegateArgs,
2452                          AggValueSlot::MayOverlap, Loc,
2453                          /*NewPointerIsChecked=*/true);
2454 }
2455 
2456 namespace {
2457   struct CallDelegatingCtorDtor final : EHScopeStack::Cleanup {
2458     const CXXDestructorDecl *Dtor;
2459     Address Addr;
2460     CXXDtorType Type;
2461 
2462     CallDelegatingCtorDtor(const CXXDestructorDecl *D, Address Addr,
2463                            CXXDtorType Type)
2464       : Dtor(D), Addr(Addr), Type(Type) {}
2465 
2466     void Emit(CodeGenFunction &CGF, Flags flags) override {
2467       // We are calling the destructor from within the constructor.
2468       // Therefore, "this" should have the expected type.
2469       QualType ThisTy = Dtor->getFunctionObjectParameterType();
2470       CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false,
2471                                 /*Delegating=*/true, Addr, ThisTy);
2472     }
2473   };
2474 } // end anonymous namespace
2475 
2476 void
2477 CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2478                                                   const FunctionArgList &Args) {
2479   assert(Ctor->isDelegatingConstructor());
2480 
2481   Address ThisPtr = LoadCXXThisAddress();
2482 
2483   AggValueSlot AggSlot =
2484     AggValueSlot::forAddr(ThisPtr, Qualifiers(),
2485                           AggValueSlot::IsDestructed,
2486                           AggValueSlot::DoesNotNeedGCBarriers,
2487                           AggValueSlot::IsNotAliased,
2488                           AggValueSlot::MayOverlap,
2489                           AggValueSlot::IsNotZeroed,
2490                           // Checks are made by the code that calls constructor.
2491                           AggValueSlot::IsSanitizerChecked);
2492 
2493   EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot);
2494 
2495   const CXXRecordDecl *ClassDecl = Ctor->getParent();
2496   if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) {
2497     CXXDtorType Type =
2498       CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base;
2499 
2500     EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup,
2501                                                 ClassDecl->getDestructor(),
2502                                                 ThisPtr, Type);
2503   }
2504 }
2505 
2506 void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD,
2507                                             CXXDtorType Type,
2508                                             bool ForVirtualBase,
2509                                             bool Delegating, Address This,
2510                                             QualType ThisTy) {
2511   CGM.getCXXABI().EmitDestructorCall(*this, DD, Type, ForVirtualBase,
2512                                      Delegating, This, ThisTy);
2513 }
2514 
2515 namespace {
2516   struct CallLocalDtor final : EHScopeStack::Cleanup {
2517     const CXXDestructorDecl *Dtor;
2518     Address Addr;
2519     QualType Ty;
2520 
2521     CallLocalDtor(const CXXDestructorDecl *D, Address Addr, QualType Ty)
2522         : Dtor(D), Addr(Addr), Ty(Ty) {}
2523 
2524     void Emit(CodeGenFunction &CGF, Flags flags) override {
2525       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
2526                                 /*ForVirtualBase=*/false,
2527                                 /*Delegating=*/false, Addr, Ty);
2528     }
2529   };
2530 } // end anonymous namespace
2531 
2532 void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D,
2533                                             QualType T, Address Addr) {
2534   EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr, T);
2535 }
2536 
2537 void CodeGenFunction::PushDestructorCleanup(QualType T, Address Addr) {
2538   CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl();
2539   if (!ClassDecl) return;
2540   if (ClassDecl->hasTrivialDestructor()) return;
2541 
2542   const CXXDestructorDecl *D = ClassDecl->getDestructor();
2543   assert(D && D->isUsed() && "destructor not marked as used!");
2544   PushDestructorCleanup(D, T, Addr);
2545 }
2546 
2547 void CodeGenFunction::InitializeVTablePointer(const VPtr &Vptr) {
2548   // Compute the address point.
2549   llvm::Value *VTableAddressPoint =
2550       CGM.getCXXABI().getVTableAddressPointInStructor(
2551           *this, Vptr.VTableClass, Vptr.Base, Vptr.NearestVBase);
2552 
2553   if (!VTableAddressPoint)
2554     return;
2555 
2556   // Compute where to store the address point.
2557   llvm::Value *VirtualOffset = nullptr;
2558   CharUnits NonVirtualOffset = CharUnits::Zero();
2559 
2560   if (CGM.getCXXABI().isVirtualOffsetNeededForVTableField(*this, Vptr)) {
2561     // We need to use the virtual base offset offset because the virtual base
2562     // might have a different offset in the most derived class.
2563 
2564     VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset(
2565         *this, LoadCXXThisAddress(), Vptr.VTableClass, Vptr.NearestVBase);
2566     NonVirtualOffset = Vptr.OffsetFromNearestVBase;
2567   } else {
2568     // We can just use the base offset in the complete class.
2569     NonVirtualOffset = Vptr.Base.getBaseOffset();
2570   }
2571 
2572   // Apply the offsets.
2573   Address VTableField = LoadCXXThisAddress();
2574   if (!NonVirtualOffset.isZero() || VirtualOffset)
2575     VTableField = ApplyNonVirtualAndVirtualOffset(
2576         *this, VTableField, NonVirtualOffset, VirtualOffset, Vptr.VTableClass,
2577         Vptr.NearestVBase);
2578 
2579   // Finally, store the address point. Use the same LLVM types as the field to
2580   // support optimization.
2581   unsigned GlobalsAS = CGM.getDataLayout().getDefaultGlobalsAddressSpace();
2582   llvm::Type *PtrTy = llvm::PointerType::get(CGM.getLLVMContext(), GlobalsAS);
2583   // vtable field is derived from `this` pointer, therefore they should be in
2584   // the same addr space. Note that this might not be LLVM address space 0.
2585   VTableField = VTableField.withElementType(PtrTy);
2586 
2587   if (auto AuthenticationInfo = CGM.getVTablePointerAuthInfo(
2588           this, Vptr.Base.getBase(), VTableField.emitRawPointer(*this)))
2589     VTableAddressPoint =
2590         EmitPointerAuthSign(*AuthenticationInfo, VTableAddressPoint);
2591 
2592   llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField);
2593   TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(PtrTy);
2594   CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
2595   if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2596       CGM.getCodeGenOpts().StrictVTablePointers)
2597     CGM.DecorateInstructionWithInvariantGroup(Store, Vptr.VTableClass);
2598 }
2599 
2600 CodeGenFunction::VPtrsVector
2601 CodeGenFunction::getVTablePointers(const CXXRecordDecl *VTableClass) {
2602   CodeGenFunction::VPtrsVector VPtrsResult;
2603   VisitedVirtualBasesSetTy VBases;
2604   getVTablePointers(BaseSubobject(VTableClass, CharUnits::Zero()),
2605                     /*NearestVBase=*/nullptr,
2606                     /*OffsetFromNearestVBase=*/CharUnits::Zero(),
2607                     /*BaseIsNonVirtualPrimaryBase=*/false, VTableClass, VBases,
2608                     VPtrsResult);
2609   return VPtrsResult;
2610 }
2611 
2612 void CodeGenFunction::getVTablePointers(BaseSubobject Base,
2613                                         const CXXRecordDecl *NearestVBase,
2614                                         CharUnits OffsetFromNearestVBase,
2615                                         bool BaseIsNonVirtualPrimaryBase,
2616                                         const CXXRecordDecl *VTableClass,
2617                                         VisitedVirtualBasesSetTy &VBases,
2618                                         VPtrsVector &Vptrs) {
2619   // If this base is a non-virtual primary base the address point has already
2620   // been set.
2621   if (!BaseIsNonVirtualPrimaryBase) {
2622     // Initialize the vtable pointer for this base.
2623     VPtr Vptr = {Base, NearestVBase, OffsetFromNearestVBase, VTableClass};
2624     Vptrs.push_back(Vptr);
2625   }
2626 
2627   const CXXRecordDecl *RD = Base.getBase();
2628 
2629   // Traverse bases.
2630   for (const auto &I : RD->bases()) {
2631     auto *BaseDecl =
2632         cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
2633 
2634     // Ignore classes without a vtable.
2635     if (!BaseDecl->isDynamicClass())
2636       continue;
2637 
2638     CharUnits BaseOffset;
2639     CharUnits BaseOffsetFromNearestVBase;
2640     bool BaseDeclIsNonVirtualPrimaryBase;
2641 
2642     if (I.isVirtual()) {
2643       // Check if we've visited this virtual base before.
2644       if (!VBases.insert(BaseDecl).second)
2645         continue;
2646 
2647       const ASTRecordLayout &Layout =
2648         getContext().getASTRecordLayout(VTableClass);
2649 
2650       BaseOffset = Layout.getVBaseClassOffset(BaseDecl);
2651       BaseOffsetFromNearestVBase = CharUnits::Zero();
2652       BaseDeclIsNonVirtualPrimaryBase = false;
2653     } else {
2654       const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2655 
2656       BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl);
2657       BaseOffsetFromNearestVBase =
2658         OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl);
2659       BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl;
2660     }
2661 
2662     getVTablePointers(
2663         BaseSubobject(BaseDecl, BaseOffset),
2664         I.isVirtual() ? BaseDecl : NearestVBase, BaseOffsetFromNearestVBase,
2665         BaseDeclIsNonVirtualPrimaryBase, VTableClass, VBases, Vptrs);
2666   }
2667 }
2668 
2669 void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) {
2670   // Ignore classes without a vtable.
2671   if (!RD->isDynamicClass())
2672     return;
2673 
2674   // Initialize the vtable pointers for this class and all of its bases.
2675   if (CGM.getCXXABI().doStructorsInitializeVPtrs(RD))
2676     for (const VPtr &Vptr : getVTablePointers(RD))
2677       InitializeVTablePointer(Vptr);
2678 
2679   if (RD->getNumVBases())
2680     CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD);
2681 }
2682 
2683 llvm::Value *CodeGenFunction::GetVTablePtr(Address This,
2684                                            llvm::Type *VTableTy,
2685                                            const CXXRecordDecl *RD,
2686                                            VTableAuthMode AuthMode) {
2687   Address VTablePtrSrc = This.withElementType(VTableTy);
2688   llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable");
2689   TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(VTableTy);
2690   CGM.DecorateInstructionWithTBAA(VTable, TBAAInfo);
2691 
2692   if (auto AuthenticationInfo =
2693           CGM.getVTablePointerAuthInfo(this, RD, This.emitRawPointer(*this))) {
2694     if (AuthMode != VTableAuthMode::UnsafeUbsanStrip) {
2695       VTable = cast<llvm::Instruction>(
2696           EmitPointerAuthAuth(*AuthenticationInfo, VTable));
2697       if (AuthMode == VTableAuthMode::MustTrap) {
2698         // This is clearly suboptimal but until we have an ability
2699         // to rely on the authentication intrinsic trapping and force
2700         // an authentication to occur we don't really have a choice.
2701         VTable =
2702             cast<llvm::Instruction>(Builder.CreateBitCast(VTable, Int8PtrTy));
2703         Builder.CreateLoad(RawAddress(VTable, Int8Ty, CGM.getPointerAlign()),
2704                            /* IsVolatile */ true);
2705       }
2706     } else {
2707       VTable = cast<llvm::Instruction>(EmitPointerAuthAuth(
2708           CGPointerAuthInfo(0, PointerAuthenticationMode::Strip, false, false,
2709                             nullptr),
2710           VTable));
2711     }
2712   }
2713 
2714   if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2715       CGM.getCodeGenOpts().StrictVTablePointers)
2716     CGM.DecorateInstructionWithInvariantGroup(VTable, RD);
2717 
2718   return VTable;
2719 }
2720 
2721 // If a class has a single non-virtual base and does not introduce or override
2722 // virtual member functions or fields, it will have the same layout as its base.
2723 // This function returns the least derived such class.
2724 //
2725 // Casting an instance of a base class to such a derived class is technically
2726 // undefined behavior, but it is a relatively common hack for introducing member
2727 // functions on class instances with specific properties (e.g. llvm::Operator)
2728 // that works under most compilers and should not have security implications, so
2729 // we allow it by default. It can be disabled with -fsanitize=cfi-cast-strict.
2730 static const CXXRecordDecl *
2731 LeastDerivedClassWithSameLayout(const CXXRecordDecl *RD) {
2732   if (!RD->field_empty())
2733     return RD;
2734 
2735   if (RD->getNumVBases() != 0)
2736     return RD;
2737 
2738   if (RD->getNumBases() != 1)
2739     return RD;
2740 
2741   for (const CXXMethodDecl *MD : RD->methods()) {
2742     if (MD->isVirtual()) {
2743       // Virtual member functions are only ok if they are implicit destructors
2744       // because the implicit destructor will have the same semantics as the
2745       // base class's destructor if no fields are added.
2746       if (isa<CXXDestructorDecl>(MD) && MD->isImplicit())
2747         continue;
2748       return RD;
2749     }
2750   }
2751 
2752   return LeastDerivedClassWithSameLayout(
2753       RD->bases_begin()->getType()->getAsCXXRecordDecl());
2754 }
2755 
2756 void CodeGenFunction::EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
2757                                                    llvm::Value *VTable,
2758                                                    SourceLocation Loc) {
2759   if (SanOpts.has(SanitizerKind::CFIVCall))
2760     EmitVTablePtrCheckForCall(RD, VTable, CodeGenFunction::CFITCK_VCall, Loc);
2761   else if (CGM.getCodeGenOpts().WholeProgramVTables &&
2762            // Don't insert type test assumes if we are forcing public
2763            // visibility.
2764            !CGM.AlwaysHasLTOVisibilityPublic(RD)) {
2765     QualType Ty = QualType(RD->getTypeForDecl(), 0);
2766     llvm::Metadata *MD = CGM.CreateMetadataIdentifierForType(Ty);
2767     llvm::Value *TypeId =
2768         llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD);
2769 
2770     // If we already know that the call has hidden LTO visibility, emit
2771     // @llvm.type.test(). Otherwise emit @llvm.public.type.test(), which WPD
2772     // will convert to @llvm.type.test() if we assert at link time that we have
2773     // whole program visibility.
2774     llvm::Intrinsic::ID IID = CGM.HasHiddenLTOVisibility(RD)
2775                                   ? llvm::Intrinsic::type_test
2776                                   : llvm::Intrinsic::public_type_test;
2777     llvm::Value *TypeTest =
2778         Builder.CreateCall(CGM.getIntrinsic(IID), {VTable, TypeId});
2779     Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::assume), TypeTest);
2780   }
2781 }
2782 
2783 void CodeGenFunction::EmitVTablePtrCheckForCall(const CXXRecordDecl *RD,
2784                                                 llvm::Value *VTable,
2785                                                 CFITypeCheckKind TCK,
2786                                                 SourceLocation Loc) {
2787   if (!SanOpts.has(SanitizerKind::CFICastStrict))
2788     RD = LeastDerivedClassWithSameLayout(RD);
2789 
2790   EmitVTablePtrCheck(RD, VTable, TCK, Loc);
2791 }
2792 
2793 void CodeGenFunction::EmitVTablePtrCheckForCast(QualType T, Address Derived,
2794                                                 bool MayBeNull,
2795                                                 CFITypeCheckKind TCK,
2796                                                 SourceLocation Loc) {
2797   if (!getLangOpts().CPlusPlus)
2798     return;
2799 
2800   auto *ClassTy = T->getAs<RecordType>();
2801   if (!ClassTy)
2802     return;
2803 
2804   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassTy->getDecl());
2805 
2806   if (!ClassDecl->isCompleteDefinition() || !ClassDecl->isDynamicClass())
2807     return;
2808 
2809   if (!SanOpts.has(SanitizerKind::CFICastStrict))
2810     ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl);
2811 
2812   llvm::BasicBlock *ContBlock = nullptr;
2813 
2814   if (MayBeNull) {
2815     llvm::Value *DerivedNotNull =
2816         Builder.CreateIsNotNull(Derived.emitRawPointer(*this), "cast.nonnull");
2817 
2818     llvm::BasicBlock *CheckBlock = createBasicBlock("cast.check");
2819     ContBlock = createBasicBlock("cast.cont");
2820 
2821     Builder.CreateCondBr(DerivedNotNull, CheckBlock, ContBlock);
2822 
2823     EmitBlock(CheckBlock);
2824   }
2825 
2826   llvm::Value *VTable;
2827   std::tie(VTable, ClassDecl) =
2828       CGM.getCXXABI().LoadVTablePtr(*this, Derived, ClassDecl);
2829 
2830   EmitVTablePtrCheck(ClassDecl, VTable, TCK, Loc);
2831 
2832   if (MayBeNull) {
2833     Builder.CreateBr(ContBlock);
2834     EmitBlock(ContBlock);
2835   }
2836 }
2837 
2838 void CodeGenFunction::EmitVTablePtrCheck(const CXXRecordDecl *RD,
2839                                          llvm::Value *VTable,
2840                                          CFITypeCheckKind TCK,
2841                                          SourceLocation Loc) {
2842   if (!CGM.getCodeGenOpts().SanitizeCfiCrossDso &&
2843       !CGM.HasHiddenLTOVisibility(RD))
2844     return;
2845 
2846   SanitizerKind::SanitizerOrdinal M;
2847   llvm::SanitizerStatKind SSK;
2848   switch (TCK) {
2849   case CFITCK_VCall:
2850     M = SanitizerKind::SO_CFIVCall;
2851     SSK = llvm::SanStat_CFI_VCall;
2852     break;
2853   case CFITCK_NVCall:
2854     M = SanitizerKind::SO_CFINVCall;
2855     SSK = llvm::SanStat_CFI_NVCall;
2856     break;
2857   case CFITCK_DerivedCast:
2858     M = SanitizerKind::SO_CFIDerivedCast;
2859     SSK = llvm::SanStat_CFI_DerivedCast;
2860     break;
2861   case CFITCK_UnrelatedCast:
2862     M = SanitizerKind::SO_CFIUnrelatedCast;
2863     SSK = llvm::SanStat_CFI_UnrelatedCast;
2864     break;
2865   case CFITCK_ICall:
2866   case CFITCK_NVMFCall:
2867   case CFITCK_VMFCall:
2868     llvm_unreachable("unexpected sanitizer kind");
2869   }
2870 
2871   std::string TypeName = RD->getQualifiedNameAsString();
2872   if (getContext().getNoSanitizeList().containsType(
2873           SanitizerMask::bitPosToMask(M), TypeName))
2874     return;
2875 
2876   SanitizerScope SanScope(this);
2877   EmitSanitizerStatReport(SSK);
2878 
2879   llvm::Metadata *MD =
2880       CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
2881   llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
2882 
2883   llvm::Value *TypeTest = Builder.CreateCall(
2884       CGM.getIntrinsic(llvm::Intrinsic::type_test), {VTable, TypeId});
2885 
2886   llvm::Constant *StaticData[] = {
2887       llvm::ConstantInt::get(Int8Ty, TCK),
2888       EmitCheckSourceLocation(Loc),
2889       EmitCheckTypeDescriptor(QualType(RD->getTypeForDecl(), 0)),
2890   };
2891 
2892   auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
2893   if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
2894     EmitCfiSlowPathCheck(M, TypeTest, CrossDsoTypeId, VTable, StaticData);
2895     return;
2896   }
2897 
2898   if (CGM.getCodeGenOpts().SanitizeTrap.has(M)) {
2899     EmitTrapCheck(TypeTest, SanitizerHandler::CFICheckFail);
2900     return;
2901   }
2902 
2903   llvm::Value *AllVtables = llvm::MetadataAsValue::get(
2904       CGM.getLLVMContext(),
2905       llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
2906   llvm::Value *ValidVtable = Builder.CreateCall(
2907       CGM.getIntrinsic(llvm::Intrinsic::type_test), {VTable, AllVtables});
2908   EmitCheck(std::make_pair(TypeTest, M), SanitizerHandler::CFICheckFail,
2909             StaticData, {VTable, ValidVtable});
2910 }
2911 
2912 bool CodeGenFunction::ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD) {
2913   if (!CGM.getCodeGenOpts().WholeProgramVTables ||
2914       !CGM.HasHiddenLTOVisibility(RD))
2915     return false;
2916 
2917   if (CGM.getCodeGenOpts().VirtualFunctionElimination)
2918     return true;
2919 
2920   if (!SanOpts.has(SanitizerKind::CFIVCall) ||
2921       !CGM.getCodeGenOpts().SanitizeTrap.has(SanitizerKind::CFIVCall))
2922     return false;
2923 
2924   std::string TypeName = RD->getQualifiedNameAsString();
2925   return !getContext().getNoSanitizeList().containsType(SanitizerKind::CFIVCall,
2926                                                         TypeName);
2927 }
2928 
2929 llvm::Value *CodeGenFunction::EmitVTableTypeCheckedLoad(
2930     const CXXRecordDecl *RD, llvm::Value *VTable, llvm::Type *VTableTy,
2931     uint64_t VTableByteOffset) {
2932   SanitizerScope SanScope(this);
2933 
2934   EmitSanitizerStatReport(llvm::SanStat_CFI_VCall);
2935 
2936   llvm::Metadata *MD =
2937       CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
2938   llvm::Value *TypeId = llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD);
2939 
2940   llvm::Value *CheckedLoad = Builder.CreateCall(
2941       CGM.getIntrinsic(llvm::Intrinsic::type_checked_load),
2942       {VTable, llvm::ConstantInt::get(Int32Ty, VTableByteOffset), TypeId});
2943   llvm::Value *CheckResult = Builder.CreateExtractValue(CheckedLoad, 1);
2944 
2945   std::string TypeName = RD->getQualifiedNameAsString();
2946   if (SanOpts.has(SanitizerKind::CFIVCall) &&
2947       !getContext().getNoSanitizeList().containsType(SanitizerKind::CFIVCall,
2948                                                      TypeName)) {
2949     EmitCheck(std::make_pair(CheckResult, SanitizerKind::SO_CFIVCall),
2950               SanitizerHandler::CFICheckFail, {}, {});
2951   }
2952 
2953   return Builder.CreateBitCast(Builder.CreateExtractValue(CheckedLoad, 0),
2954                                VTableTy);
2955 }
2956 
2957 void CodeGenFunction::EmitForwardingCallToLambda(
2958     const CXXMethodDecl *callOperator, CallArgList &callArgs,
2959     const CGFunctionInfo *calleeFnInfo, llvm::Constant *calleePtr) {
2960   // Get the address of the call operator.
2961   if (!calleeFnInfo)
2962     calleeFnInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(callOperator);
2963 
2964   if (!calleePtr)
2965     calleePtr =
2966         CGM.GetAddrOfFunction(GlobalDecl(callOperator),
2967                               CGM.getTypes().GetFunctionType(*calleeFnInfo));
2968 
2969   // Prepare the return slot.
2970   const FunctionProtoType *FPT =
2971     callOperator->getType()->castAs<FunctionProtoType>();
2972   QualType resultType = FPT->getReturnType();
2973   ReturnValueSlot returnSlot;
2974   if (!resultType->isVoidType() &&
2975       calleeFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
2976       !hasScalarEvaluationKind(calleeFnInfo->getReturnType()))
2977     returnSlot =
2978         ReturnValueSlot(ReturnValue, resultType.isVolatileQualified(),
2979                         /*IsUnused=*/false, /*IsExternallyDestructed=*/true);
2980 
2981   // We don't need to separately arrange the call arguments because
2982   // the call can't be variadic anyway --- it's impossible to forward
2983   // variadic arguments.
2984 
2985   // Now emit our call.
2986   auto callee = CGCallee::forDirect(calleePtr, GlobalDecl(callOperator));
2987   RValue RV = EmitCall(*calleeFnInfo, callee, returnSlot, callArgs);
2988 
2989   // If necessary, copy the returned value into the slot.
2990   if (!resultType->isVoidType() && returnSlot.isNull()) {
2991     if (getLangOpts().ObjCAutoRefCount && resultType->isObjCRetainableType()) {
2992       RV = RValue::get(EmitARCRetainAutoreleasedReturnValue(RV.getScalarVal()));
2993     }
2994     EmitReturnOfRValue(RV, resultType);
2995   } else
2996     EmitBranchThroughCleanup(ReturnBlock);
2997 }
2998 
2999 void CodeGenFunction::EmitLambdaBlockInvokeBody() {
3000   const BlockDecl *BD = BlockInfo->getBlockDecl();
3001   const VarDecl *variable = BD->capture_begin()->getVariable();
3002   const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl();
3003   const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator();
3004 
3005   if (CallOp->isVariadic()) {
3006     // FIXME: Making this work correctly is nasty because it requires either
3007     // cloning the body of the call operator or making the call operator
3008     // forward.
3009     CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function");
3010     return;
3011   }
3012 
3013   // Start building arguments for forwarding call
3014   CallArgList CallArgs;
3015 
3016   QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
3017   Address ThisPtr = GetAddrOfBlockDecl(variable);
3018   CallArgs.add(RValue::get(getAsNaturalPointerTo(ThisPtr, ThisType)), ThisType);
3019 
3020   // Add the rest of the parameters.
3021   for (auto *param : BD->parameters())
3022     EmitDelegateCallArg(CallArgs, param, param->getBeginLoc());
3023 
3024   assert(!Lambda->isGenericLambda() &&
3025             "generic lambda interconversion to block not implemented");
3026   EmitForwardingCallToLambda(CallOp, CallArgs);
3027 }
3028 
3029 void CodeGenFunction::EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD) {
3030   if (MD->isVariadic()) {
3031     // FIXME: Making this work correctly is nasty because it requires either
3032     // cloning the body of the call operator or making the call operator
3033     // forward.
3034     CGM.ErrorUnsupported(MD, "lambda conversion to variadic function");
3035     return;
3036   }
3037 
3038   const CXXRecordDecl *Lambda = MD->getParent();
3039 
3040   // Start building arguments for forwarding call
3041   CallArgList CallArgs;
3042 
3043   QualType LambdaType = getContext().getRecordType(Lambda);
3044   QualType ThisType = getContext().getPointerType(LambdaType);
3045   Address ThisPtr = CreateMemTemp(LambdaType, "unused.capture");
3046   CallArgs.add(RValue::get(ThisPtr.emitRawPointer(*this)), ThisType);
3047 
3048   EmitLambdaDelegatingInvokeBody(MD, CallArgs);
3049 }
3050 
3051 void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD,
3052                                                      CallArgList &CallArgs) {
3053   // Add the rest of the forwarded parameters.
3054   for (auto *Param : MD->parameters())
3055     EmitDelegateCallArg(CallArgs, Param, Param->getBeginLoc());
3056 
3057   const CXXRecordDecl *Lambda = MD->getParent();
3058   const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator();
3059   // For a generic lambda, find the corresponding call operator specialization
3060   // to which the call to the static-invoker shall be forwarded.
3061   if (Lambda->isGenericLambda()) {
3062     assert(MD->isFunctionTemplateSpecialization());
3063     const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs();
3064     FunctionTemplateDecl *CallOpTemplate = CallOp->getDescribedFunctionTemplate();
3065     void *InsertPos = nullptr;
3066     FunctionDecl *CorrespondingCallOpSpecialization =
3067         CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos);
3068     assert(CorrespondingCallOpSpecialization);
3069     CallOp = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization);
3070   }
3071 
3072   // Special lambda forwarding when there are inalloca parameters.
3073   if (hasInAllocaArg(MD)) {
3074     const CGFunctionInfo *ImplFnInfo = nullptr;
3075     llvm::Function *ImplFn = nullptr;
3076     EmitLambdaInAllocaImplFn(CallOp, &ImplFnInfo, &ImplFn);
3077 
3078     EmitForwardingCallToLambda(CallOp, CallArgs, ImplFnInfo, ImplFn);
3079     return;
3080   }
3081 
3082   EmitForwardingCallToLambda(CallOp, CallArgs);
3083 }
3084 
3085 void CodeGenFunction::EmitLambdaInAllocaCallOpBody(const CXXMethodDecl *MD) {
3086   if (MD->isVariadic()) {
3087     // FIXME: Making this work correctly is nasty because it requires either
3088     // cloning the body of the call operator or making the call operator forward.
3089     CGM.ErrorUnsupported(MD, "lambda conversion to variadic function");
3090     return;
3091   }
3092 
3093   // Forward %this argument.
3094   CallArgList CallArgs;
3095   QualType LambdaType = getContext().getRecordType(MD->getParent());
3096   QualType ThisType = getContext().getPointerType(LambdaType);
3097   llvm::Value *ThisArg = CurFn->getArg(0);
3098   CallArgs.add(RValue::get(ThisArg), ThisType);
3099 
3100   EmitLambdaDelegatingInvokeBody(MD, CallArgs);
3101 }
3102 
3103 void CodeGenFunction::EmitLambdaInAllocaImplFn(
3104     const CXXMethodDecl *CallOp, const CGFunctionInfo **ImplFnInfo,
3105     llvm::Function **ImplFn) {
3106   const CGFunctionInfo &FnInfo =
3107       CGM.getTypes().arrangeCXXMethodDeclaration(CallOp);
3108   llvm::Function *CallOpFn =
3109       cast<llvm::Function>(CGM.GetAddrOfFunction(GlobalDecl(CallOp)));
3110 
3111   // Emit function containing the original call op body. __invoke will delegate
3112   // to this function.
3113   SmallVector<CanQualType, 4> ArgTypes;
3114   for (auto I = FnInfo.arg_begin(); I != FnInfo.arg_end(); ++I)
3115     ArgTypes.push_back(I->type);
3116   *ImplFnInfo = &CGM.getTypes().arrangeLLVMFunctionInfo(
3117       FnInfo.getReturnType(), FnInfoOpts::IsDelegateCall, ArgTypes,
3118       FnInfo.getExtInfo(), {}, FnInfo.getRequiredArgs());
3119 
3120   // Create mangled name as if this was a method named __impl. If for some
3121   // reason the name doesn't look as expected then just tack __impl to the
3122   // front.
3123   // TODO: Use the name mangler to produce the right name instead of using
3124   // string replacement.
3125   StringRef CallOpName = CallOpFn->getName();
3126   std::string ImplName;
3127   if (size_t Pos = CallOpName.find_first_of("<lambda"))
3128     ImplName = ("?__impl@" + CallOpName.drop_front(Pos)).str();
3129   else
3130     ImplName = ("__impl" + CallOpName).str();
3131 
3132   llvm::Function *Fn = CallOpFn->getParent()->getFunction(ImplName);
3133   if (!Fn) {
3134     Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(**ImplFnInfo),
3135                                 llvm::GlobalValue::InternalLinkage, ImplName,
3136                                 CGM.getModule());
3137     CGM.SetInternalFunctionAttributes(CallOp, Fn, **ImplFnInfo);
3138 
3139     const GlobalDecl &GD = GlobalDecl(CallOp);
3140     const auto *D = cast<FunctionDecl>(GD.getDecl());
3141     CodeGenFunction(CGM).GenerateCode(GD, Fn, **ImplFnInfo);
3142     CGM.SetLLVMFunctionAttributesForDefinition(D, Fn);
3143   }
3144   *ImplFn = Fn;
3145 }
3146