1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCall.h" 15 #include "ABIInfo.h" 16 #include "ABIInfoImpl.h" 17 #include "CGBlocks.h" 18 #include "CGCXXABI.h" 19 #include "CGCleanup.h" 20 #include "CGRecordLayout.h" 21 #include "CodeGenFunction.h" 22 #include "CodeGenModule.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/Attr.h" 25 #include "clang/AST/Decl.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/Basic/CodeGenOptions.h" 29 #include "clang/Basic/TargetInfo.h" 30 #include "clang/CodeGen/CGFunctionInfo.h" 31 #include "clang/CodeGen/SwiftCallingConv.h" 32 #include "llvm/ADT/StringExtras.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/IR/Assumptions.h" 35 #include "llvm/IR/AttributeMask.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/CallingConv.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/InlineAsm.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/Intrinsics.h" 42 #include "llvm/IR/Type.h" 43 #include "llvm/Transforms/Utils/Local.h" 44 #include <optional> 45 using namespace clang; 46 using namespace CodeGen; 47 48 /***/ 49 50 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) { 51 switch (CC) { 52 default: return llvm::CallingConv::C; 53 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall; 54 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall; 55 case CC_X86RegCall: return llvm::CallingConv::X86_RegCall; 56 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall; 57 case CC_Win64: return llvm::CallingConv::Win64; 58 case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV; 59 case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS; 60 case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 61 case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI; 62 // TODO: Add support for __pascal to LLVM. 63 case CC_X86Pascal: return llvm::CallingConv::C; 64 // TODO: Add support for __vectorcall to LLVM. 65 case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall; 66 case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall; 67 case CC_AArch64SVEPCS: return llvm::CallingConv::AArch64_SVE_VectorCall; 68 case CC_AMDGPUKernelCall: return llvm::CallingConv::AMDGPU_KERNEL; 69 case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC; 70 case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv(); 71 case CC_PreserveMost: return llvm::CallingConv::PreserveMost; 72 case CC_PreserveAll: return llvm::CallingConv::PreserveAll; 73 case CC_Swift: return llvm::CallingConv::Swift; 74 case CC_SwiftAsync: return llvm::CallingConv::SwiftTail; 75 case CC_M68kRTD: return llvm::CallingConv::M68k_RTD; 76 case CC_PreserveNone: return llvm::CallingConv::PreserveNone; 77 // clang-format off 78 case CC_RISCVVectorCall: return llvm::CallingConv::RISCV_VectorCall; 79 // clang-format on 80 } 81 } 82 83 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR 84 /// qualification. Either or both of RD and MD may be null. A null RD indicates 85 /// that there is no meaningful 'this' type, and a null MD can occur when 86 /// calling a method pointer. 87 CanQualType CodeGenTypes::DeriveThisType(const CXXRecordDecl *RD, 88 const CXXMethodDecl *MD) { 89 QualType RecTy; 90 if (RD) 91 RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal(); 92 else 93 RecTy = Context.VoidTy; 94 95 if (MD) 96 RecTy = Context.getAddrSpaceQualType(RecTy, MD->getMethodQualifiers().getAddressSpace()); 97 return Context.getPointerType(CanQualType::CreateUnsafe(RecTy)); 98 } 99 100 /// Returns the canonical formal type of the given C++ method. 101 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) { 102 return MD->getType()->getCanonicalTypeUnqualified() 103 .getAs<FunctionProtoType>(); 104 } 105 106 /// Returns the "extra-canonicalized" return type, which discards 107 /// qualifiers on the return type. Codegen doesn't care about them, 108 /// and it makes ABI code a little easier to be able to assume that 109 /// all parameter and return types are top-level unqualified. 110 static CanQualType GetReturnType(QualType RetTy) { 111 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType(); 112 } 113 114 /// Arrange the argument and result information for a value of the given 115 /// unprototyped freestanding function type. 116 const CGFunctionInfo & 117 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) { 118 // When translating an unprototyped function type, always use a 119 // variadic type. 120 return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(), 121 FnInfoOpts::None, {}, FTNP->getExtInfo(), {}, 122 RequiredArgs(0)); 123 } 124 125 static void addExtParameterInfosForCall( 126 llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 127 const FunctionProtoType *proto, 128 unsigned prefixArgs, 129 unsigned totalArgs) { 130 assert(proto->hasExtParameterInfos()); 131 assert(paramInfos.size() <= prefixArgs); 132 assert(proto->getNumParams() + prefixArgs <= totalArgs); 133 134 paramInfos.reserve(totalArgs); 135 136 // Add default infos for any prefix args that don't already have infos. 137 paramInfos.resize(prefixArgs); 138 139 // Add infos for the prototype. 140 for (const auto &ParamInfo : proto->getExtParameterInfos()) { 141 paramInfos.push_back(ParamInfo); 142 // pass_object_size params have no parameter info. 143 if (ParamInfo.hasPassObjectSize()) 144 paramInfos.emplace_back(); 145 } 146 147 assert(paramInfos.size() <= totalArgs && 148 "Did we forget to insert pass_object_size args?"); 149 // Add default infos for the variadic and/or suffix arguments. 150 paramInfos.resize(totalArgs); 151 } 152 153 /// Adds the formal parameters in FPT to the given prefix. If any parameter in 154 /// FPT has pass_object_size attrs, then we'll add parameters for those, too. 155 static void appendParameterTypes(const CodeGenTypes &CGT, 156 SmallVectorImpl<CanQualType> &prefix, 157 SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 158 CanQual<FunctionProtoType> FPT) { 159 // Fast path: don't touch param info if we don't need to. 160 if (!FPT->hasExtParameterInfos()) { 161 assert(paramInfos.empty() && 162 "We have paramInfos, but the prototype doesn't?"); 163 prefix.append(FPT->param_type_begin(), FPT->param_type_end()); 164 return; 165 } 166 167 unsigned PrefixSize = prefix.size(); 168 // In the vast majority of cases, we'll have precisely FPT->getNumParams() 169 // parameters; the only thing that can change this is the presence of 170 // pass_object_size. So, we preallocate for the common case. 171 prefix.reserve(prefix.size() + FPT->getNumParams()); 172 173 auto ExtInfos = FPT->getExtParameterInfos(); 174 assert(ExtInfos.size() == FPT->getNumParams()); 175 for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) { 176 prefix.push_back(FPT->getParamType(I)); 177 if (ExtInfos[I].hasPassObjectSize()) 178 prefix.push_back(CGT.getContext().getSizeType()); 179 } 180 181 addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize, 182 prefix.size()); 183 } 184 185 /// Arrange the LLVM function layout for a value of the given function 186 /// type, on top of any implicit parameters already stored. 187 static const CGFunctionInfo & 188 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod, 189 SmallVectorImpl<CanQualType> &prefix, 190 CanQual<FunctionProtoType> FTP) { 191 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 192 RequiredArgs Required = RequiredArgs::forPrototypePlus(FTP, prefix.size()); 193 // FIXME: Kill copy. 194 appendParameterTypes(CGT, prefix, paramInfos, FTP); 195 CanQualType resultType = FTP->getReturnType().getUnqualifiedType(); 196 197 FnInfoOpts opts = 198 instanceMethod ? FnInfoOpts::IsInstanceMethod : FnInfoOpts::None; 199 return CGT.arrangeLLVMFunctionInfo(resultType, opts, prefix, 200 FTP->getExtInfo(), paramInfos, Required); 201 } 202 203 /// Arrange the argument and result information for a value of the 204 /// given freestanding function type. 205 const CGFunctionInfo & 206 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) { 207 SmallVector<CanQualType, 16> argTypes; 208 return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes, 209 FTP); 210 } 211 212 static CallingConv getCallingConventionForDecl(const ObjCMethodDecl *D, 213 bool IsWindows) { 214 // Set the appropriate calling convention for the Function. 215 if (D->hasAttr<StdCallAttr>()) 216 return CC_X86StdCall; 217 218 if (D->hasAttr<FastCallAttr>()) 219 return CC_X86FastCall; 220 221 if (D->hasAttr<RegCallAttr>()) 222 return CC_X86RegCall; 223 224 if (D->hasAttr<ThisCallAttr>()) 225 return CC_X86ThisCall; 226 227 if (D->hasAttr<VectorCallAttr>()) 228 return CC_X86VectorCall; 229 230 if (D->hasAttr<PascalAttr>()) 231 return CC_X86Pascal; 232 233 if (PcsAttr *PCS = D->getAttr<PcsAttr>()) 234 return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP); 235 236 if (D->hasAttr<AArch64VectorPcsAttr>()) 237 return CC_AArch64VectorCall; 238 239 if (D->hasAttr<AArch64SVEPcsAttr>()) 240 return CC_AArch64SVEPCS; 241 242 if (D->hasAttr<AMDGPUKernelCallAttr>()) 243 return CC_AMDGPUKernelCall; 244 245 if (D->hasAttr<IntelOclBiccAttr>()) 246 return CC_IntelOclBicc; 247 248 if (D->hasAttr<MSABIAttr>()) 249 return IsWindows ? CC_C : CC_Win64; 250 251 if (D->hasAttr<SysVABIAttr>()) 252 return IsWindows ? CC_X86_64SysV : CC_C; 253 254 if (D->hasAttr<PreserveMostAttr>()) 255 return CC_PreserveMost; 256 257 if (D->hasAttr<PreserveAllAttr>()) 258 return CC_PreserveAll; 259 260 if (D->hasAttr<M68kRTDAttr>()) 261 return CC_M68kRTD; 262 263 if (D->hasAttr<PreserveNoneAttr>()) 264 return CC_PreserveNone; 265 266 if (D->hasAttr<RISCVVectorCCAttr>()) 267 return CC_RISCVVectorCall; 268 269 return CC_C; 270 } 271 272 /// Arrange the argument and result information for a call to an 273 /// unknown C++ non-static member function of the given abstract type. 274 /// (A null RD means we don't have any meaningful "this" argument type, 275 /// so fall back to a generic pointer type). 276 /// The member function must be an ordinary function, i.e. not a 277 /// constructor or destructor. 278 const CGFunctionInfo & 279 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD, 280 const FunctionProtoType *FTP, 281 const CXXMethodDecl *MD) { 282 SmallVector<CanQualType, 16> argTypes; 283 284 // Add the 'this' pointer. 285 argTypes.push_back(DeriveThisType(RD, MD)); 286 287 return ::arrangeLLVMFunctionInfo( 288 *this, /*instanceMethod=*/true, argTypes, 289 FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>()); 290 } 291 292 /// Set calling convention for CUDA/HIP kernel. 293 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM, 294 const FunctionDecl *FD) { 295 if (FD->hasAttr<CUDAGlobalAttr>()) { 296 const FunctionType *FT = FTy->getAs<FunctionType>(); 297 CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT); 298 FTy = FT->getCanonicalTypeUnqualified(); 299 } 300 } 301 302 /// Arrange the argument and result information for a declaration or 303 /// definition of the given C++ non-static member function. The 304 /// member function must be an ordinary function, i.e. not a 305 /// constructor or destructor. 306 const CGFunctionInfo & 307 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) { 308 assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!"); 309 assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!"); 310 311 CanQualType FT = GetFormalType(MD).getAs<Type>(); 312 setCUDAKernelCallingConvention(FT, CGM, MD); 313 auto prototype = FT.getAs<FunctionProtoType>(); 314 315 if (MD->isImplicitObjectMemberFunction()) { 316 // The abstract case is perfectly fine. 317 const CXXRecordDecl *ThisType = 318 getCXXABI().getThisArgumentTypeForMethod(MD); 319 return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD); 320 } 321 322 return arrangeFreeFunctionType(prototype); 323 } 324 325 bool CodeGenTypes::inheritingCtorHasParams( 326 const InheritedConstructor &Inherited, CXXCtorType Type) { 327 // Parameters are unnecessary if we're constructing a base class subobject 328 // and the inherited constructor lives in a virtual base. 329 return Type == Ctor_Complete || 330 !Inherited.getShadowDecl()->constructsVirtualBase() || 331 !Target.getCXXABI().hasConstructorVariants(); 332 } 333 334 const CGFunctionInfo & 335 CodeGenTypes::arrangeCXXStructorDeclaration(GlobalDecl GD) { 336 auto *MD = cast<CXXMethodDecl>(GD.getDecl()); 337 338 SmallVector<CanQualType, 16> argTypes; 339 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 340 341 const CXXRecordDecl *ThisType = getCXXABI().getThisArgumentTypeForMethod(GD); 342 argTypes.push_back(DeriveThisType(ThisType, MD)); 343 344 bool PassParams = true; 345 346 if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) { 347 // A base class inheriting constructor doesn't get forwarded arguments 348 // needed to construct a virtual base (or base class thereof). 349 if (auto Inherited = CD->getInheritedConstructor()) 350 PassParams = inheritingCtorHasParams(Inherited, GD.getCtorType()); 351 } 352 353 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 354 355 // Add the formal parameters. 356 if (PassParams) 357 appendParameterTypes(*this, argTypes, paramInfos, FTP); 358 359 CGCXXABI::AddedStructorArgCounts AddedArgs = 360 getCXXABI().buildStructorSignature(GD, argTypes); 361 if (!paramInfos.empty()) { 362 // Note: prefix implies after the first param. 363 if (AddedArgs.Prefix) 364 paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix, 365 FunctionProtoType::ExtParameterInfo{}); 366 if (AddedArgs.Suffix) 367 paramInfos.append(AddedArgs.Suffix, 368 FunctionProtoType::ExtParameterInfo{}); 369 } 370 371 RequiredArgs required = 372 (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size()) 373 : RequiredArgs::All); 374 375 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 376 CanQualType resultType = getCXXABI().HasThisReturn(GD) ? argTypes.front() 377 : getCXXABI().hasMostDerivedReturn(GD) 378 ? CGM.getContext().VoidPtrTy 379 : Context.VoidTy; 380 return arrangeLLVMFunctionInfo(resultType, FnInfoOpts::IsInstanceMethod, 381 argTypes, extInfo, paramInfos, required); 382 } 383 384 static SmallVector<CanQualType, 16> 385 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) { 386 SmallVector<CanQualType, 16> argTypes; 387 for (auto &arg : args) 388 argTypes.push_back(ctx.getCanonicalParamType(arg.Ty)); 389 return argTypes; 390 } 391 392 static SmallVector<CanQualType, 16> 393 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) { 394 SmallVector<CanQualType, 16> argTypes; 395 for (auto &arg : args) 396 argTypes.push_back(ctx.getCanonicalParamType(arg->getType())); 397 return argTypes; 398 } 399 400 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> 401 getExtParameterInfosForCall(const FunctionProtoType *proto, 402 unsigned prefixArgs, unsigned totalArgs) { 403 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result; 404 if (proto->hasExtParameterInfos()) { 405 addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs); 406 } 407 return result; 408 } 409 410 /// Arrange a call to a C++ method, passing the given arguments. 411 /// 412 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this` 413 /// parameter. 414 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of 415 /// args. 416 /// PassProtoArgs indicates whether `args` has args for the parameters in the 417 /// given CXXConstructorDecl. 418 const CGFunctionInfo & 419 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args, 420 const CXXConstructorDecl *D, 421 CXXCtorType CtorKind, 422 unsigned ExtraPrefixArgs, 423 unsigned ExtraSuffixArgs, 424 bool PassProtoArgs) { 425 // FIXME: Kill copy. 426 SmallVector<CanQualType, 16> ArgTypes; 427 for (const auto &Arg : args) 428 ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 429 430 // +1 for implicit this, which should always be args[0]. 431 unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs; 432 433 CanQual<FunctionProtoType> FPT = GetFormalType(D); 434 RequiredArgs Required = PassProtoArgs 435 ? RequiredArgs::forPrototypePlus( 436 FPT, TotalPrefixArgs + ExtraSuffixArgs) 437 : RequiredArgs::All; 438 439 GlobalDecl GD(D, CtorKind); 440 CanQualType ResultType = getCXXABI().HasThisReturn(GD) ? ArgTypes.front() 441 : getCXXABI().hasMostDerivedReturn(GD) 442 ? CGM.getContext().VoidPtrTy 443 : Context.VoidTy; 444 445 FunctionType::ExtInfo Info = FPT->getExtInfo(); 446 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos; 447 // If the prototype args are elided, we should only have ABI-specific args, 448 // which never have param info. 449 if (PassProtoArgs && FPT->hasExtParameterInfos()) { 450 // ABI-specific suffix arguments are treated the same as variadic arguments. 451 addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs, 452 ArgTypes.size()); 453 } 454 455 return arrangeLLVMFunctionInfo(ResultType, FnInfoOpts::IsInstanceMethod, 456 ArgTypes, Info, ParamInfos, Required); 457 } 458 459 /// Arrange the argument and result information for the declaration or 460 /// definition of the given function. 461 const CGFunctionInfo & 462 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) { 463 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 464 if (MD->isImplicitObjectMemberFunction()) 465 return arrangeCXXMethodDeclaration(MD); 466 467 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified(); 468 469 assert(isa<FunctionType>(FTy)); 470 setCUDAKernelCallingConvention(FTy, CGM, FD); 471 472 // When declaring a function without a prototype, always use a 473 // non-variadic type. 474 if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) { 475 return arrangeLLVMFunctionInfo(noProto->getReturnType(), FnInfoOpts::None, 476 {}, noProto->getExtInfo(), {}, 477 RequiredArgs::All); 478 } 479 480 return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>()); 481 } 482 483 /// Arrange the argument and result information for the declaration or 484 /// definition of an Objective-C method. 485 const CGFunctionInfo & 486 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) { 487 // It happens that this is the same as a call with no optional 488 // arguments, except also using the formal 'self' type. 489 return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType()); 490 } 491 492 /// Arrange the argument and result information for the function type 493 /// through which to perform a send to the given Objective-C method, 494 /// using the given receiver type. The receiver type is not always 495 /// the 'self' type of the method or even an Objective-C pointer type. 496 /// This is *not* the right method for actually performing such a 497 /// message send, due to the possibility of optional arguments. 498 const CGFunctionInfo & 499 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD, 500 QualType receiverType) { 501 SmallVector<CanQualType, 16> argTys; 502 SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos( 503 MD->isDirectMethod() ? 1 : 2); 504 argTys.push_back(Context.getCanonicalParamType(receiverType)); 505 if (!MD->isDirectMethod()) 506 argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType())); 507 // FIXME: Kill copy? 508 for (const auto *I : MD->parameters()) { 509 argTys.push_back(Context.getCanonicalParamType(I->getType())); 510 auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape( 511 I->hasAttr<NoEscapeAttr>()); 512 extParamInfos.push_back(extParamInfo); 513 } 514 515 FunctionType::ExtInfo einfo; 516 bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows(); 517 einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows)); 518 519 if (getContext().getLangOpts().ObjCAutoRefCount && 520 MD->hasAttr<NSReturnsRetainedAttr>()) 521 einfo = einfo.withProducesResult(true); 522 523 RequiredArgs required = 524 (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All); 525 526 return arrangeLLVMFunctionInfo(GetReturnType(MD->getReturnType()), 527 FnInfoOpts::None, argTys, einfo, extParamInfos, 528 required); 529 } 530 531 const CGFunctionInfo & 532 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType, 533 const CallArgList &args) { 534 auto argTypes = getArgTypesForCall(Context, args); 535 FunctionType::ExtInfo einfo; 536 537 return arrangeLLVMFunctionInfo(GetReturnType(returnType), FnInfoOpts::None, 538 argTypes, einfo, {}, RequiredArgs::All); 539 } 540 541 const CGFunctionInfo & 542 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) { 543 // FIXME: Do we need to handle ObjCMethodDecl? 544 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 545 546 if (isa<CXXConstructorDecl>(GD.getDecl()) || 547 isa<CXXDestructorDecl>(GD.getDecl())) 548 return arrangeCXXStructorDeclaration(GD); 549 550 return arrangeFunctionDeclaration(FD); 551 } 552 553 /// Arrange a thunk that takes 'this' as the first parameter followed by 554 /// varargs. Return a void pointer, regardless of the actual return type. 555 /// The body of the thunk will end in a musttail call to a function of the 556 /// correct type, and the caller will bitcast the function to the correct 557 /// prototype. 558 const CGFunctionInfo & 559 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) { 560 assert(MD->isVirtual() && "only methods have thunks"); 561 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 562 CanQualType ArgTys[] = {DeriveThisType(MD->getParent(), MD)}; 563 return arrangeLLVMFunctionInfo(Context.VoidTy, FnInfoOpts::None, ArgTys, 564 FTP->getExtInfo(), {}, RequiredArgs(1)); 565 } 566 567 const CGFunctionInfo & 568 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD, 569 CXXCtorType CT) { 570 assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure); 571 572 CanQual<FunctionProtoType> FTP = GetFormalType(CD); 573 SmallVector<CanQualType, 2> ArgTys; 574 const CXXRecordDecl *RD = CD->getParent(); 575 ArgTys.push_back(DeriveThisType(RD, CD)); 576 if (CT == Ctor_CopyingClosure) 577 ArgTys.push_back(*FTP->param_type_begin()); 578 if (RD->getNumVBases() > 0) 579 ArgTys.push_back(Context.IntTy); 580 CallingConv CC = Context.getDefaultCallingConvention( 581 /*IsVariadic=*/false, /*IsCXXMethod=*/true); 582 return arrangeLLVMFunctionInfo(Context.VoidTy, FnInfoOpts::IsInstanceMethod, 583 ArgTys, FunctionType::ExtInfo(CC), {}, 584 RequiredArgs::All); 585 } 586 587 /// Arrange a call as unto a free function, except possibly with an 588 /// additional number of formal parameters considered required. 589 static const CGFunctionInfo & 590 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT, 591 CodeGenModule &CGM, 592 const CallArgList &args, 593 const FunctionType *fnType, 594 unsigned numExtraRequiredArgs, 595 bool chainCall) { 596 assert(args.size() >= numExtraRequiredArgs); 597 598 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 599 600 // In most cases, there are no optional arguments. 601 RequiredArgs required = RequiredArgs::All; 602 603 // If we have a variadic prototype, the required arguments are the 604 // extra prefix plus the arguments in the prototype. 605 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) { 606 if (proto->isVariadic()) 607 required = RequiredArgs::forPrototypePlus(proto, numExtraRequiredArgs); 608 609 if (proto->hasExtParameterInfos()) 610 addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs, 611 args.size()); 612 613 // If we don't have a prototype at all, but we're supposed to 614 // explicitly use the variadic convention for unprototyped calls, 615 // treat all of the arguments as required but preserve the nominal 616 // possibility of variadics. 617 } else if (CGM.getTargetCodeGenInfo() 618 .isNoProtoCallVariadic(args, 619 cast<FunctionNoProtoType>(fnType))) { 620 required = RequiredArgs(args.size()); 621 } 622 623 // FIXME: Kill copy. 624 SmallVector<CanQualType, 16> argTypes; 625 for (const auto &arg : args) 626 argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty)); 627 FnInfoOpts opts = chainCall ? FnInfoOpts::IsChainCall : FnInfoOpts::None; 628 return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()), 629 opts, argTypes, fnType->getExtInfo(), 630 paramInfos, required); 631 } 632 633 /// Figure out the rules for calling a function with the given formal 634 /// type using the given arguments. The arguments are necessary 635 /// because the function might be unprototyped, in which case it's 636 /// target-dependent in crazy ways. 637 const CGFunctionInfo & 638 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args, 639 const FunctionType *fnType, 640 bool chainCall) { 641 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 642 chainCall ? 1 : 0, chainCall); 643 } 644 645 /// A block function is essentially a free function with an 646 /// extra implicit argument. 647 const CGFunctionInfo & 648 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args, 649 const FunctionType *fnType) { 650 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1, 651 /*chainCall=*/false); 652 } 653 654 const CGFunctionInfo & 655 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto, 656 const FunctionArgList ¶ms) { 657 auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size()); 658 auto argTypes = getArgTypesForDeclaration(Context, params); 659 660 return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()), 661 FnInfoOpts::None, argTypes, 662 proto->getExtInfo(), paramInfos, 663 RequiredArgs::forPrototypePlus(proto, 1)); 664 } 665 666 const CGFunctionInfo & 667 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType, 668 const CallArgList &args) { 669 // FIXME: Kill copy. 670 SmallVector<CanQualType, 16> argTypes; 671 for (const auto &Arg : args) 672 argTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 673 return arrangeLLVMFunctionInfo(GetReturnType(resultType), FnInfoOpts::None, 674 argTypes, FunctionType::ExtInfo(), 675 /*paramInfos=*/{}, RequiredArgs::All); 676 } 677 678 const CGFunctionInfo & 679 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType, 680 const FunctionArgList &args) { 681 auto argTypes = getArgTypesForDeclaration(Context, args); 682 683 return arrangeLLVMFunctionInfo(GetReturnType(resultType), FnInfoOpts::None, 684 argTypes, FunctionType::ExtInfo(), {}, 685 RequiredArgs::All); 686 } 687 688 const CGFunctionInfo & 689 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType, 690 ArrayRef<CanQualType> argTypes) { 691 return arrangeLLVMFunctionInfo(resultType, FnInfoOpts::None, argTypes, 692 FunctionType::ExtInfo(), {}, 693 RequiredArgs::All); 694 } 695 696 /// Arrange a call to a C++ method, passing the given arguments. 697 /// 698 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It 699 /// does not count `this`. 700 const CGFunctionInfo & 701 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args, 702 const FunctionProtoType *proto, 703 RequiredArgs required, 704 unsigned numPrefixArgs) { 705 assert(numPrefixArgs + 1 <= args.size() && 706 "Emitting a call with less args than the required prefix?"); 707 // Add one to account for `this`. It's a bit awkward here, but we don't count 708 // `this` in similar places elsewhere. 709 auto paramInfos = 710 getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size()); 711 712 // FIXME: Kill copy. 713 auto argTypes = getArgTypesForCall(Context, args); 714 715 FunctionType::ExtInfo info = proto->getExtInfo(); 716 return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()), 717 FnInfoOpts::IsInstanceMethod, argTypes, info, 718 paramInfos, required); 719 } 720 721 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() { 722 return arrangeLLVMFunctionInfo(getContext().VoidTy, FnInfoOpts::None, {}, 723 FunctionType::ExtInfo(), {}, 724 RequiredArgs::All); 725 } 726 727 const CGFunctionInfo & 728 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature, 729 const CallArgList &args) { 730 assert(signature.arg_size() <= args.size()); 731 if (signature.arg_size() == args.size()) 732 return signature; 733 734 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 735 auto sigParamInfos = signature.getExtParameterInfos(); 736 if (!sigParamInfos.empty()) { 737 paramInfos.append(sigParamInfos.begin(), sigParamInfos.end()); 738 paramInfos.resize(args.size()); 739 } 740 741 auto argTypes = getArgTypesForCall(Context, args); 742 743 assert(signature.getRequiredArgs().allowsOptionalArgs()); 744 FnInfoOpts opts = FnInfoOpts::None; 745 if (signature.isInstanceMethod()) 746 opts |= FnInfoOpts::IsInstanceMethod; 747 if (signature.isChainCall()) 748 opts |= FnInfoOpts::IsChainCall; 749 if (signature.isDelegateCall()) 750 opts |= FnInfoOpts::IsDelegateCall; 751 return arrangeLLVMFunctionInfo(signature.getReturnType(), opts, argTypes, 752 signature.getExtInfo(), paramInfos, 753 signature.getRequiredArgs()); 754 } 755 756 namespace clang { 757 namespace CodeGen { 758 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI); 759 } 760 } 761 762 /// Arrange the argument and result information for an abstract value 763 /// of a given function type. This is the method which all of the 764 /// above functions ultimately defer to. 765 const CGFunctionInfo &CodeGenTypes::arrangeLLVMFunctionInfo( 766 CanQualType resultType, FnInfoOpts opts, ArrayRef<CanQualType> argTypes, 767 FunctionType::ExtInfo info, 768 ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos, 769 RequiredArgs required) { 770 assert(llvm::all_of(argTypes, 771 [](CanQualType T) { return T.isCanonicalAsParam(); })); 772 773 // Lookup or create unique function info. 774 llvm::FoldingSetNodeID ID; 775 bool isInstanceMethod = 776 (opts & FnInfoOpts::IsInstanceMethod) == FnInfoOpts::IsInstanceMethod; 777 bool isChainCall = 778 (opts & FnInfoOpts::IsChainCall) == FnInfoOpts::IsChainCall; 779 bool isDelegateCall = 780 (opts & FnInfoOpts::IsDelegateCall) == FnInfoOpts::IsDelegateCall; 781 CGFunctionInfo::Profile(ID, isInstanceMethod, isChainCall, isDelegateCall, 782 info, paramInfos, required, resultType, argTypes); 783 784 void *insertPos = nullptr; 785 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos); 786 if (FI) 787 return *FI; 788 789 unsigned CC = ClangCallConvToLLVMCallConv(info.getCC()); 790 791 // Construct the function info. We co-allocate the ArgInfos. 792 FI = CGFunctionInfo::create(CC, isInstanceMethod, isChainCall, isDelegateCall, 793 info, paramInfos, resultType, argTypes, required); 794 FunctionInfos.InsertNode(FI, insertPos); 795 796 bool inserted = FunctionsBeingProcessed.insert(FI).second; 797 (void)inserted; 798 assert(inserted && "Recursively being processed?"); 799 800 // Compute ABI information. 801 if (CC == llvm::CallingConv::SPIR_KERNEL) { 802 // Force target independent argument handling for the host visible 803 // kernel functions. 804 computeSPIRKernelABIInfo(CGM, *FI); 805 } else if (info.getCC() == CC_Swift || info.getCC() == CC_SwiftAsync) { 806 swiftcall::computeABIInfo(CGM, *FI); 807 } else { 808 CGM.getABIInfo().computeInfo(*FI); 809 } 810 811 // Loop over all of the computed argument and return value info. If any of 812 // them are direct or extend without a specified coerce type, specify the 813 // default now. 814 ABIArgInfo &retInfo = FI->getReturnInfo(); 815 if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr) 816 retInfo.setCoerceToType(ConvertType(FI->getReturnType())); 817 818 for (auto &I : FI->arguments()) 819 if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr) 820 I.info.setCoerceToType(ConvertType(I.type)); 821 822 bool erased = FunctionsBeingProcessed.erase(FI); (void)erased; 823 assert(erased && "Not in set?"); 824 825 return *FI; 826 } 827 828 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC, bool instanceMethod, 829 bool chainCall, bool delegateCall, 830 const FunctionType::ExtInfo &info, 831 ArrayRef<ExtParameterInfo> paramInfos, 832 CanQualType resultType, 833 ArrayRef<CanQualType> argTypes, 834 RequiredArgs required) { 835 assert(paramInfos.empty() || paramInfos.size() == argTypes.size()); 836 assert(!required.allowsOptionalArgs() || 837 required.getNumRequiredArgs() <= argTypes.size()); 838 839 void *buffer = 840 operator new(totalSizeToAlloc<ArgInfo, ExtParameterInfo>( 841 argTypes.size() + 1, paramInfos.size())); 842 843 CGFunctionInfo *FI = new(buffer) CGFunctionInfo(); 844 FI->CallingConvention = llvmCC; 845 FI->EffectiveCallingConvention = llvmCC; 846 FI->ASTCallingConvention = info.getCC(); 847 FI->InstanceMethod = instanceMethod; 848 FI->ChainCall = chainCall; 849 FI->DelegateCall = delegateCall; 850 FI->CmseNSCall = info.getCmseNSCall(); 851 FI->NoReturn = info.getNoReturn(); 852 FI->ReturnsRetained = info.getProducesResult(); 853 FI->NoCallerSavedRegs = info.getNoCallerSavedRegs(); 854 FI->NoCfCheck = info.getNoCfCheck(); 855 FI->Required = required; 856 FI->HasRegParm = info.getHasRegParm(); 857 FI->RegParm = info.getRegParm(); 858 FI->ArgStruct = nullptr; 859 FI->ArgStructAlign = 0; 860 FI->NumArgs = argTypes.size(); 861 FI->HasExtParameterInfos = !paramInfos.empty(); 862 FI->getArgsBuffer()[0].type = resultType; 863 FI->MaxVectorWidth = 0; 864 for (unsigned i = 0, e = argTypes.size(); i != e; ++i) 865 FI->getArgsBuffer()[i + 1].type = argTypes[i]; 866 for (unsigned i = 0, e = paramInfos.size(); i != e; ++i) 867 FI->getExtParameterInfosBuffer()[i] = paramInfos[i]; 868 return FI; 869 } 870 871 /***/ 872 873 namespace { 874 // ABIArgInfo::Expand implementation. 875 876 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded. 877 struct TypeExpansion { 878 enum TypeExpansionKind { 879 // Elements of constant arrays are expanded recursively. 880 TEK_ConstantArray, 881 // Record fields are expanded recursively (but if record is a union, only 882 // the field with the largest size is expanded). 883 TEK_Record, 884 // For complex types, real and imaginary parts are expanded recursively. 885 TEK_Complex, 886 // All other types are not expandable. 887 TEK_None 888 }; 889 890 const TypeExpansionKind Kind; 891 892 TypeExpansion(TypeExpansionKind K) : Kind(K) {} 893 virtual ~TypeExpansion() {} 894 }; 895 896 struct ConstantArrayExpansion : TypeExpansion { 897 QualType EltTy; 898 uint64_t NumElts; 899 900 ConstantArrayExpansion(QualType EltTy, uint64_t NumElts) 901 : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {} 902 static bool classof(const TypeExpansion *TE) { 903 return TE->Kind == TEK_ConstantArray; 904 } 905 }; 906 907 struct RecordExpansion : TypeExpansion { 908 SmallVector<const CXXBaseSpecifier *, 1> Bases; 909 910 SmallVector<const FieldDecl *, 1> Fields; 911 912 RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases, 913 SmallVector<const FieldDecl *, 1> &&Fields) 914 : TypeExpansion(TEK_Record), Bases(std::move(Bases)), 915 Fields(std::move(Fields)) {} 916 static bool classof(const TypeExpansion *TE) { 917 return TE->Kind == TEK_Record; 918 } 919 }; 920 921 struct ComplexExpansion : TypeExpansion { 922 QualType EltTy; 923 924 ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {} 925 static bool classof(const TypeExpansion *TE) { 926 return TE->Kind == TEK_Complex; 927 } 928 }; 929 930 struct NoExpansion : TypeExpansion { 931 NoExpansion() : TypeExpansion(TEK_None) {} 932 static bool classof(const TypeExpansion *TE) { 933 return TE->Kind == TEK_None; 934 } 935 }; 936 } // namespace 937 938 static std::unique_ptr<TypeExpansion> 939 getTypeExpansion(QualType Ty, const ASTContext &Context) { 940 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 941 return std::make_unique<ConstantArrayExpansion>(AT->getElementType(), 942 AT->getZExtSize()); 943 } 944 if (const RecordType *RT = Ty->getAs<RecordType>()) { 945 SmallVector<const CXXBaseSpecifier *, 1> Bases; 946 SmallVector<const FieldDecl *, 1> Fields; 947 const RecordDecl *RD = RT->getDecl(); 948 assert(!RD->hasFlexibleArrayMember() && 949 "Cannot expand structure with flexible array."); 950 if (RD->isUnion()) { 951 // Unions can be here only in degenerative cases - all the fields are same 952 // after flattening. Thus we have to use the "largest" field. 953 const FieldDecl *LargestFD = nullptr; 954 CharUnits UnionSize = CharUnits::Zero(); 955 956 for (const auto *FD : RD->fields()) { 957 if (FD->isZeroLengthBitField()) 958 continue; 959 assert(!FD->isBitField() && 960 "Cannot expand structure with bit-field members."); 961 CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType()); 962 if (UnionSize < FieldSize) { 963 UnionSize = FieldSize; 964 LargestFD = FD; 965 } 966 } 967 if (LargestFD) 968 Fields.push_back(LargestFD); 969 } else { 970 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 971 assert(!CXXRD->isDynamicClass() && 972 "cannot expand vtable pointers in dynamic classes"); 973 llvm::append_range(Bases, llvm::make_pointer_range(CXXRD->bases())); 974 } 975 976 for (const auto *FD : RD->fields()) { 977 if (FD->isZeroLengthBitField()) 978 continue; 979 assert(!FD->isBitField() && 980 "Cannot expand structure with bit-field members."); 981 Fields.push_back(FD); 982 } 983 } 984 return std::make_unique<RecordExpansion>(std::move(Bases), 985 std::move(Fields)); 986 } 987 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 988 return std::make_unique<ComplexExpansion>(CT->getElementType()); 989 } 990 return std::make_unique<NoExpansion>(); 991 } 992 993 static int getExpansionSize(QualType Ty, const ASTContext &Context) { 994 auto Exp = getTypeExpansion(Ty, Context); 995 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 996 return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context); 997 } 998 if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 999 int Res = 0; 1000 for (auto BS : RExp->Bases) 1001 Res += getExpansionSize(BS->getType(), Context); 1002 for (auto FD : RExp->Fields) 1003 Res += getExpansionSize(FD->getType(), Context); 1004 return Res; 1005 } 1006 if (isa<ComplexExpansion>(Exp.get())) 1007 return 2; 1008 assert(isa<NoExpansion>(Exp.get())); 1009 return 1; 1010 } 1011 1012 void 1013 CodeGenTypes::getExpandedTypes(QualType Ty, 1014 SmallVectorImpl<llvm::Type *>::iterator &TI) { 1015 auto Exp = getTypeExpansion(Ty, Context); 1016 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1017 for (int i = 0, n = CAExp->NumElts; i < n; i++) { 1018 getExpandedTypes(CAExp->EltTy, TI); 1019 } 1020 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1021 for (auto BS : RExp->Bases) 1022 getExpandedTypes(BS->getType(), TI); 1023 for (auto FD : RExp->Fields) 1024 getExpandedTypes(FD->getType(), TI); 1025 } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) { 1026 llvm::Type *EltTy = ConvertType(CExp->EltTy); 1027 *TI++ = EltTy; 1028 *TI++ = EltTy; 1029 } else { 1030 assert(isa<NoExpansion>(Exp.get())); 1031 *TI++ = ConvertType(Ty); 1032 } 1033 } 1034 1035 static void forConstantArrayExpansion(CodeGenFunction &CGF, 1036 ConstantArrayExpansion *CAE, 1037 Address BaseAddr, 1038 llvm::function_ref<void(Address)> Fn) { 1039 for (int i = 0, n = CAE->NumElts; i < n; i++) { 1040 Address EltAddr = CGF.Builder.CreateConstGEP2_32(BaseAddr, 0, i); 1041 Fn(EltAddr); 1042 } 1043 } 1044 1045 void CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV, 1046 llvm::Function::arg_iterator &AI) { 1047 assert(LV.isSimple() && 1048 "Unexpected non-simple lvalue during struct expansion."); 1049 1050 auto Exp = getTypeExpansion(Ty, getContext()); 1051 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1052 forConstantArrayExpansion( 1053 *this, CAExp, LV.getAddress(), [&](Address EltAddr) { 1054 LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy); 1055 ExpandTypeFromArgs(CAExp->EltTy, LV, AI); 1056 }); 1057 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1058 Address This = LV.getAddress(); 1059 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1060 // Perform a single step derived-to-base conversion. 1061 Address Base = 1062 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1063 /*NullCheckValue=*/false, SourceLocation()); 1064 LValue SubLV = MakeAddrLValue(Base, BS->getType()); 1065 1066 // Recurse onto bases. 1067 ExpandTypeFromArgs(BS->getType(), SubLV, AI); 1068 } 1069 for (auto FD : RExp->Fields) { 1070 // FIXME: What are the right qualifiers here? 1071 LValue SubLV = EmitLValueForFieldInitialization(LV, FD); 1072 ExpandTypeFromArgs(FD->getType(), SubLV, AI); 1073 } 1074 } else if (isa<ComplexExpansion>(Exp.get())) { 1075 auto realValue = &*AI++; 1076 auto imagValue = &*AI++; 1077 EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true); 1078 } else { 1079 // Call EmitStoreOfScalar except when the lvalue is a bitfield to emit a 1080 // primitive store. 1081 assert(isa<NoExpansion>(Exp.get())); 1082 llvm::Value *Arg = &*AI++; 1083 if (LV.isBitField()) { 1084 EmitStoreThroughLValue(RValue::get(Arg), LV); 1085 } else { 1086 // TODO: currently there are some places are inconsistent in what LLVM 1087 // pointer type they use (see D118744). Once clang uses opaque pointers 1088 // all LLVM pointer types will be the same and we can remove this check. 1089 if (Arg->getType()->isPointerTy()) { 1090 Address Addr = LV.getAddress(); 1091 Arg = Builder.CreateBitCast(Arg, Addr.getElementType()); 1092 } 1093 EmitStoreOfScalar(Arg, LV); 1094 } 1095 } 1096 } 1097 1098 void CodeGenFunction::ExpandTypeToArgs( 1099 QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, 1100 SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) { 1101 auto Exp = getTypeExpansion(Ty, getContext()); 1102 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1103 Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress() 1104 : Arg.getKnownRValue().getAggregateAddress(); 1105 forConstantArrayExpansion( 1106 *this, CAExp, Addr, [&](Address EltAddr) { 1107 CallArg EltArg = CallArg( 1108 convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()), 1109 CAExp->EltTy); 1110 ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs, 1111 IRCallArgPos); 1112 }); 1113 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1114 Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress() 1115 : Arg.getKnownRValue().getAggregateAddress(); 1116 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1117 // Perform a single step derived-to-base conversion. 1118 Address Base = 1119 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1120 /*NullCheckValue=*/false, SourceLocation()); 1121 CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType()); 1122 1123 // Recurse onto bases. 1124 ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs, 1125 IRCallArgPos); 1126 } 1127 1128 LValue LV = MakeAddrLValue(This, Ty); 1129 for (auto FD : RExp->Fields) { 1130 CallArg FldArg = 1131 CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType()); 1132 ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs, 1133 IRCallArgPos); 1134 } 1135 } else if (isa<ComplexExpansion>(Exp.get())) { 1136 ComplexPairTy CV = Arg.getKnownRValue().getComplexVal(); 1137 IRCallArgs[IRCallArgPos++] = CV.first; 1138 IRCallArgs[IRCallArgPos++] = CV.second; 1139 } else { 1140 assert(isa<NoExpansion>(Exp.get())); 1141 auto RV = Arg.getKnownRValue(); 1142 assert(RV.isScalar() && 1143 "Unexpected non-scalar rvalue during struct expansion."); 1144 1145 // Insert a bitcast as needed. 1146 llvm::Value *V = RV.getScalarVal(); 1147 if (IRCallArgPos < IRFuncTy->getNumParams() && 1148 V->getType() != IRFuncTy->getParamType(IRCallArgPos)) 1149 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos)); 1150 1151 IRCallArgs[IRCallArgPos++] = V; 1152 } 1153 } 1154 1155 /// Create a temporary allocation for the purposes of coercion. 1156 static RawAddress CreateTempAllocaForCoercion(CodeGenFunction &CGF, 1157 llvm::Type *Ty, 1158 CharUnits MinAlign, 1159 const Twine &Name = "tmp") { 1160 // Don't use an alignment that's worse than what LLVM would prefer. 1161 auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(Ty); 1162 CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign)); 1163 1164 return CGF.CreateTempAlloca(Ty, Align, Name + ".coerce"); 1165 } 1166 1167 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are 1168 /// accessing some number of bytes out of it, try to gep into the struct to get 1169 /// at its inner goodness. Dive as deep as possible without entering an element 1170 /// with an in-memory size smaller than DstSize. 1171 static Address 1172 EnterStructPointerForCoercedAccess(Address SrcPtr, 1173 llvm::StructType *SrcSTy, 1174 uint64_t DstSize, CodeGenFunction &CGF) { 1175 // We can't dive into a zero-element struct. 1176 if (SrcSTy->getNumElements() == 0) return SrcPtr; 1177 1178 llvm::Type *FirstElt = SrcSTy->getElementType(0); 1179 1180 // If the first elt is at least as large as what we're looking for, or if the 1181 // first element is the same size as the whole struct, we can enter it. The 1182 // comparison must be made on the store size and not the alloca size. Using 1183 // the alloca size may overstate the size of the load. 1184 uint64_t FirstEltSize = 1185 CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt); 1186 if (FirstEltSize < DstSize && 1187 FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy)) 1188 return SrcPtr; 1189 1190 // GEP into the first element. 1191 SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, "coerce.dive"); 1192 1193 // If the first element is a struct, recurse. 1194 llvm::Type *SrcTy = SrcPtr.getElementType(); 1195 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) 1196 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 1197 1198 return SrcPtr; 1199 } 1200 1201 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both 1202 /// are either integers or pointers. This does a truncation of the value if it 1203 /// is too large or a zero extension if it is too small. 1204 /// 1205 /// This behaves as if the value were coerced through memory, so on big-endian 1206 /// targets the high bits are preserved in a truncation, while little-endian 1207 /// targets preserve the low bits. 1208 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val, 1209 llvm::Type *Ty, 1210 CodeGenFunction &CGF) { 1211 if (Val->getType() == Ty) 1212 return Val; 1213 1214 if (isa<llvm::PointerType>(Val->getType())) { 1215 // If this is Pointer->Pointer avoid conversion to and from int. 1216 if (isa<llvm::PointerType>(Ty)) 1217 return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val"); 1218 1219 // Convert the pointer to an integer so we can play with its width. 1220 Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi"); 1221 } 1222 1223 llvm::Type *DestIntTy = Ty; 1224 if (isa<llvm::PointerType>(DestIntTy)) 1225 DestIntTy = CGF.IntPtrTy; 1226 1227 if (Val->getType() != DestIntTy) { 1228 const llvm::DataLayout &DL = CGF.CGM.getDataLayout(); 1229 if (DL.isBigEndian()) { 1230 // Preserve the high bits on big-endian targets. 1231 // That is what memory coercion does. 1232 uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType()); 1233 uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy); 1234 1235 if (SrcSize > DstSize) { 1236 Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits"); 1237 Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii"); 1238 } else { 1239 Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii"); 1240 Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits"); 1241 } 1242 } else { 1243 // Little-endian targets preserve the low bits. No shifts required. 1244 Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii"); 1245 } 1246 } 1247 1248 if (isa<llvm::PointerType>(Ty)) 1249 Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip"); 1250 return Val; 1251 } 1252 1253 1254 1255 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as 1256 /// a pointer to an object of type \arg Ty, known to be aligned to 1257 /// \arg SrcAlign bytes. 1258 /// 1259 /// This safely handles the case when the src type is smaller than the 1260 /// destination type; in this situation the values of bits which not 1261 /// present in the src are undefined. 1262 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty, 1263 CodeGenFunction &CGF) { 1264 llvm::Type *SrcTy = Src.getElementType(); 1265 1266 // If SrcTy and Ty are the same, just do a load. 1267 if (SrcTy == Ty) 1268 return CGF.Builder.CreateLoad(Src); 1269 1270 llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty); 1271 1272 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) { 1273 Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, 1274 DstSize.getFixedValue(), CGF); 1275 SrcTy = Src.getElementType(); 1276 } 1277 1278 llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1279 1280 // If the source and destination are integer or pointer types, just do an 1281 // extension or truncation to the desired type. 1282 if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) && 1283 (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) { 1284 llvm::Value *Load = CGF.Builder.CreateLoad(Src); 1285 return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF); 1286 } 1287 1288 // If load is legal, just bitcast the src pointer. 1289 if (!SrcSize.isScalable() && !DstSize.isScalable() && 1290 SrcSize.getFixedValue() >= DstSize.getFixedValue()) { 1291 // Generally SrcSize is never greater than DstSize, since this means we are 1292 // losing bits. However, this can happen in cases where the structure has 1293 // additional padding, for example due to a user specified alignment. 1294 // 1295 // FIXME: Assert that we aren't truncating non-padding bits when have access 1296 // to that information. 1297 Src = Src.withElementType(Ty); 1298 return CGF.Builder.CreateLoad(Src); 1299 } 1300 1301 // If coercing a fixed vector to a scalable vector for ABI compatibility, and 1302 // the types match, use the llvm.vector.insert intrinsic to perform the 1303 // conversion. 1304 if (auto *ScalableDstTy = dyn_cast<llvm::ScalableVectorType>(Ty)) { 1305 if (auto *FixedSrcTy = dyn_cast<llvm::FixedVectorType>(SrcTy)) { 1306 // If we are casting a fixed i8 vector to a scalable i1 predicate 1307 // vector, use a vector insert and bitcast the result. 1308 if (ScalableDstTy->getElementType()->isIntegerTy(1) && 1309 ScalableDstTy->getElementCount().isKnownMultipleOf(8) && 1310 FixedSrcTy->getElementType()->isIntegerTy(8)) { 1311 ScalableDstTy = llvm::ScalableVectorType::get( 1312 FixedSrcTy->getElementType(), 1313 ScalableDstTy->getElementCount().getKnownMinValue() / 8); 1314 } 1315 if (ScalableDstTy->getElementType() == FixedSrcTy->getElementType()) { 1316 auto *Load = CGF.Builder.CreateLoad(Src); 1317 auto *PoisonVec = llvm::PoisonValue::get(ScalableDstTy); 1318 auto *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty); 1319 llvm::Value *Result = CGF.Builder.CreateInsertVector( 1320 ScalableDstTy, PoisonVec, Load, Zero, "cast.scalable"); 1321 if (ScalableDstTy != Ty) 1322 Result = CGF.Builder.CreateBitCast(Result, Ty); 1323 return Result; 1324 } 1325 } 1326 } 1327 1328 // Otherwise do coercion through memory. This is stupid, but simple. 1329 RawAddress Tmp = 1330 CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment(), Src.getName()); 1331 CGF.Builder.CreateMemCpy( 1332 Tmp.getPointer(), Tmp.getAlignment().getAsAlign(), 1333 Src.emitRawPointer(CGF), Src.getAlignment().getAsAlign(), 1334 llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize.getKnownMinValue())); 1335 return CGF.Builder.CreateLoad(Tmp); 1336 } 1337 1338 void CodeGenFunction::CreateCoercedStore(llvm::Value *Src, Address Dst, 1339 llvm::TypeSize DstSize, 1340 bool DstIsVolatile) { 1341 if (!DstSize) 1342 return; 1343 1344 llvm::Type *SrcTy = Src->getType(); 1345 llvm::TypeSize SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy); 1346 1347 // GEP into structs to try to make types match. 1348 // FIXME: This isn't really that useful with opaque types, but it impacts a 1349 // lot of regression tests. 1350 if (SrcTy != Dst.getElementType()) { 1351 if (llvm::StructType *DstSTy = 1352 dyn_cast<llvm::StructType>(Dst.getElementType())) { 1353 assert(!SrcSize.isScalable()); 1354 Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, 1355 SrcSize.getFixedValue(), *this); 1356 } 1357 } 1358 1359 if (SrcSize.isScalable() || SrcSize <= DstSize) { 1360 if (SrcTy->isIntegerTy() && Dst.getElementType()->isPointerTy() && 1361 SrcSize == CGM.getDataLayout().getTypeAllocSize(Dst.getElementType())) { 1362 // If the value is supposed to be a pointer, convert it before storing it. 1363 Src = CoerceIntOrPtrToIntOrPtr(Src, Dst.getElementType(), *this); 1364 Builder.CreateStore(Src, Dst, DstIsVolatile); 1365 } else if (llvm::StructType *STy = 1366 dyn_cast<llvm::StructType>(Src->getType())) { 1367 // Prefer scalar stores to first-class aggregate stores. 1368 Dst = Dst.withElementType(SrcTy); 1369 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1370 Address EltPtr = Builder.CreateStructGEP(Dst, i); 1371 llvm::Value *Elt = Builder.CreateExtractValue(Src, i); 1372 Builder.CreateStore(Elt, EltPtr, DstIsVolatile); 1373 } 1374 } else { 1375 Builder.CreateStore(Src, Dst.withElementType(SrcTy), DstIsVolatile); 1376 } 1377 } else if (SrcTy->isIntegerTy()) { 1378 // If the source is a simple integer, coerce it directly. 1379 llvm::Type *DstIntTy = Builder.getIntNTy(DstSize.getFixedValue() * 8); 1380 Src = CoerceIntOrPtrToIntOrPtr(Src, DstIntTy, *this); 1381 Builder.CreateStore(Src, Dst.withElementType(DstIntTy), DstIsVolatile); 1382 } else { 1383 // Otherwise do coercion through memory. This is stupid, but 1384 // simple. 1385 1386 // Generally SrcSize is never greater than DstSize, since this means we are 1387 // losing bits. However, this can happen in cases where the structure has 1388 // additional padding, for example due to a user specified alignment. 1389 // 1390 // FIXME: Assert that we aren't truncating non-padding bits when have access 1391 // to that information. 1392 RawAddress Tmp = 1393 CreateTempAllocaForCoercion(*this, SrcTy, Dst.getAlignment()); 1394 Builder.CreateStore(Src, Tmp); 1395 Builder.CreateMemCpy(Dst.emitRawPointer(*this), 1396 Dst.getAlignment().getAsAlign(), Tmp.getPointer(), 1397 Tmp.getAlignment().getAsAlign(), 1398 Builder.CreateTypeSize(IntPtrTy, DstSize)); 1399 } 1400 } 1401 1402 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr, 1403 const ABIArgInfo &info) { 1404 if (unsigned offset = info.getDirectOffset()) { 1405 addr = addr.withElementType(CGF.Int8Ty); 1406 addr = CGF.Builder.CreateConstInBoundsByteGEP(addr, 1407 CharUnits::fromQuantity(offset)); 1408 addr = addr.withElementType(info.getCoerceToType()); 1409 } 1410 return addr; 1411 } 1412 1413 static std::pair<llvm::Value *, bool> 1414 CoerceScalableToFixed(CodeGenFunction &CGF, llvm::FixedVectorType *ToTy, 1415 llvm::ScalableVectorType *FromTy, llvm::Value *V, 1416 StringRef Name = "") { 1417 // If we are casting a scalable i1 predicate vector to a fixed i8 1418 // vector, first bitcast the source. 1419 if (FromTy->getElementType()->isIntegerTy(1) && 1420 FromTy->getElementCount().isKnownMultipleOf(8) && 1421 ToTy->getElementType() == CGF.Builder.getInt8Ty()) { 1422 FromTy = llvm::ScalableVectorType::get( 1423 ToTy->getElementType(), 1424 FromTy->getElementCount().getKnownMinValue() / 8); 1425 V = CGF.Builder.CreateBitCast(V, FromTy); 1426 } 1427 if (FromTy->getElementType() == ToTy->getElementType()) { 1428 llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty); 1429 1430 V->setName(Name + ".coerce"); 1431 V = CGF.Builder.CreateExtractVector(ToTy, V, Zero, "cast.fixed"); 1432 return {V, true}; 1433 } 1434 return {V, false}; 1435 } 1436 1437 namespace { 1438 1439 /// Encapsulates information about the way function arguments from 1440 /// CGFunctionInfo should be passed to actual LLVM IR function. 1441 class ClangToLLVMArgMapping { 1442 static const unsigned InvalidIndex = ~0U; 1443 unsigned InallocaArgNo; 1444 unsigned SRetArgNo; 1445 unsigned TotalIRArgs; 1446 1447 /// Arguments of LLVM IR function corresponding to single Clang argument. 1448 struct IRArgs { 1449 unsigned PaddingArgIndex; 1450 // Argument is expanded to IR arguments at positions 1451 // [FirstArgIndex, FirstArgIndex + NumberOfArgs). 1452 unsigned FirstArgIndex; 1453 unsigned NumberOfArgs; 1454 1455 IRArgs() 1456 : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex), 1457 NumberOfArgs(0) {} 1458 }; 1459 1460 SmallVector<IRArgs, 8> ArgInfo; 1461 1462 public: 1463 ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI, 1464 bool OnlyRequiredArgs = false) 1465 : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0), 1466 ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) { 1467 construct(Context, FI, OnlyRequiredArgs); 1468 } 1469 1470 bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; } 1471 unsigned getInallocaArgNo() const { 1472 assert(hasInallocaArg()); 1473 return InallocaArgNo; 1474 } 1475 1476 bool hasSRetArg() const { return SRetArgNo != InvalidIndex; } 1477 unsigned getSRetArgNo() const { 1478 assert(hasSRetArg()); 1479 return SRetArgNo; 1480 } 1481 1482 unsigned totalIRArgs() const { return TotalIRArgs; } 1483 1484 bool hasPaddingArg(unsigned ArgNo) const { 1485 assert(ArgNo < ArgInfo.size()); 1486 return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex; 1487 } 1488 unsigned getPaddingArgNo(unsigned ArgNo) const { 1489 assert(hasPaddingArg(ArgNo)); 1490 return ArgInfo[ArgNo].PaddingArgIndex; 1491 } 1492 1493 /// Returns index of first IR argument corresponding to ArgNo, and their 1494 /// quantity. 1495 std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const { 1496 assert(ArgNo < ArgInfo.size()); 1497 return std::make_pair(ArgInfo[ArgNo].FirstArgIndex, 1498 ArgInfo[ArgNo].NumberOfArgs); 1499 } 1500 1501 private: 1502 void construct(const ASTContext &Context, const CGFunctionInfo &FI, 1503 bool OnlyRequiredArgs); 1504 }; 1505 1506 void ClangToLLVMArgMapping::construct(const ASTContext &Context, 1507 const CGFunctionInfo &FI, 1508 bool OnlyRequiredArgs) { 1509 unsigned IRArgNo = 0; 1510 bool SwapThisWithSRet = false; 1511 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1512 1513 if (RetAI.getKind() == ABIArgInfo::Indirect) { 1514 SwapThisWithSRet = RetAI.isSRetAfterThis(); 1515 SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++; 1516 } 1517 1518 unsigned ArgNo = 0; 1519 unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size(); 1520 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs; 1521 ++I, ++ArgNo) { 1522 assert(I != FI.arg_end()); 1523 QualType ArgType = I->type; 1524 const ABIArgInfo &AI = I->info; 1525 // Collect data about IR arguments corresponding to Clang argument ArgNo. 1526 auto &IRArgs = ArgInfo[ArgNo]; 1527 1528 if (AI.getPaddingType()) 1529 IRArgs.PaddingArgIndex = IRArgNo++; 1530 1531 switch (AI.getKind()) { 1532 case ABIArgInfo::Extend: 1533 case ABIArgInfo::Direct: { 1534 // FIXME: handle sseregparm someday... 1535 llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType()); 1536 if (AI.isDirect() && AI.getCanBeFlattened() && STy) { 1537 IRArgs.NumberOfArgs = STy->getNumElements(); 1538 } else { 1539 IRArgs.NumberOfArgs = 1; 1540 } 1541 break; 1542 } 1543 case ABIArgInfo::Indirect: 1544 case ABIArgInfo::IndirectAliased: 1545 IRArgs.NumberOfArgs = 1; 1546 break; 1547 case ABIArgInfo::Ignore: 1548 case ABIArgInfo::InAlloca: 1549 // ignore and inalloca doesn't have matching LLVM parameters. 1550 IRArgs.NumberOfArgs = 0; 1551 break; 1552 case ABIArgInfo::CoerceAndExpand: 1553 IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size(); 1554 break; 1555 case ABIArgInfo::Expand: 1556 IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context); 1557 break; 1558 } 1559 1560 if (IRArgs.NumberOfArgs > 0) { 1561 IRArgs.FirstArgIndex = IRArgNo; 1562 IRArgNo += IRArgs.NumberOfArgs; 1563 } 1564 1565 // Skip over the sret parameter when it comes second. We already handled it 1566 // above. 1567 if (IRArgNo == 1 && SwapThisWithSRet) 1568 IRArgNo++; 1569 } 1570 assert(ArgNo == ArgInfo.size()); 1571 1572 if (FI.usesInAlloca()) 1573 InallocaArgNo = IRArgNo++; 1574 1575 TotalIRArgs = IRArgNo; 1576 } 1577 } // namespace 1578 1579 /***/ 1580 1581 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) { 1582 const auto &RI = FI.getReturnInfo(); 1583 return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet()); 1584 } 1585 1586 bool CodeGenModule::ReturnTypeHasInReg(const CGFunctionInfo &FI) { 1587 const auto &RI = FI.getReturnInfo(); 1588 return RI.getInReg(); 1589 } 1590 1591 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) { 1592 return ReturnTypeUsesSRet(FI) && 1593 getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs(); 1594 } 1595 1596 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) { 1597 if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) { 1598 switch (BT->getKind()) { 1599 default: 1600 return false; 1601 case BuiltinType::Float: 1602 return getTarget().useObjCFPRetForRealType(FloatModeKind::Float); 1603 case BuiltinType::Double: 1604 return getTarget().useObjCFPRetForRealType(FloatModeKind::Double); 1605 case BuiltinType::LongDouble: 1606 return getTarget().useObjCFPRetForRealType(FloatModeKind::LongDouble); 1607 } 1608 } 1609 1610 return false; 1611 } 1612 1613 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) { 1614 if (const ComplexType *CT = ResultType->getAs<ComplexType>()) { 1615 if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) { 1616 if (BT->getKind() == BuiltinType::LongDouble) 1617 return getTarget().useObjCFP2RetForComplexLongDouble(); 1618 } 1619 } 1620 1621 return false; 1622 } 1623 1624 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) { 1625 const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD); 1626 return GetFunctionType(FI); 1627 } 1628 1629 llvm::FunctionType * 1630 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) { 1631 1632 bool Inserted = FunctionsBeingProcessed.insert(&FI).second; 1633 (void)Inserted; 1634 assert(Inserted && "Recursively being processed?"); 1635 1636 llvm::Type *resultType = nullptr; 1637 const ABIArgInfo &retAI = FI.getReturnInfo(); 1638 switch (retAI.getKind()) { 1639 case ABIArgInfo::Expand: 1640 case ABIArgInfo::IndirectAliased: 1641 llvm_unreachable("Invalid ABI kind for return argument"); 1642 1643 case ABIArgInfo::Extend: 1644 case ABIArgInfo::Direct: 1645 resultType = retAI.getCoerceToType(); 1646 break; 1647 1648 case ABIArgInfo::InAlloca: 1649 if (retAI.getInAllocaSRet()) { 1650 // sret things on win32 aren't void, they return the sret pointer. 1651 QualType ret = FI.getReturnType(); 1652 unsigned addressSpace = CGM.getTypes().getTargetAddressSpace(ret); 1653 resultType = llvm::PointerType::get(getLLVMContext(), addressSpace); 1654 } else { 1655 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1656 } 1657 break; 1658 1659 case ABIArgInfo::Indirect: 1660 case ABIArgInfo::Ignore: 1661 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1662 break; 1663 1664 case ABIArgInfo::CoerceAndExpand: 1665 resultType = retAI.getUnpaddedCoerceAndExpandType(); 1666 break; 1667 } 1668 1669 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true); 1670 SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs()); 1671 1672 // Add type for sret argument. 1673 if (IRFunctionArgs.hasSRetArg()) { 1674 QualType Ret = FI.getReturnType(); 1675 unsigned AddressSpace = CGM.getTypes().getTargetAddressSpace(Ret); 1676 ArgTypes[IRFunctionArgs.getSRetArgNo()] = 1677 llvm::PointerType::get(getLLVMContext(), AddressSpace); 1678 } 1679 1680 // Add type for inalloca argument. 1681 if (IRFunctionArgs.hasInallocaArg()) 1682 ArgTypes[IRFunctionArgs.getInallocaArgNo()] = 1683 llvm::PointerType::getUnqual(getLLVMContext()); 1684 1685 // Add in all of the required arguments. 1686 unsigned ArgNo = 0; 1687 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 1688 ie = it + FI.getNumRequiredArgs(); 1689 for (; it != ie; ++it, ++ArgNo) { 1690 const ABIArgInfo &ArgInfo = it->info; 1691 1692 // Insert a padding type to ensure proper alignment. 1693 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 1694 ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 1695 ArgInfo.getPaddingType(); 1696 1697 unsigned FirstIRArg, NumIRArgs; 1698 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 1699 1700 switch (ArgInfo.getKind()) { 1701 case ABIArgInfo::Ignore: 1702 case ABIArgInfo::InAlloca: 1703 assert(NumIRArgs == 0); 1704 break; 1705 1706 case ABIArgInfo::Indirect: 1707 assert(NumIRArgs == 1); 1708 // indirect arguments are always on the stack, which is alloca addr space. 1709 ArgTypes[FirstIRArg] = llvm::PointerType::get( 1710 getLLVMContext(), CGM.getDataLayout().getAllocaAddrSpace()); 1711 break; 1712 case ABIArgInfo::IndirectAliased: 1713 assert(NumIRArgs == 1); 1714 ArgTypes[FirstIRArg] = llvm::PointerType::get( 1715 getLLVMContext(), ArgInfo.getIndirectAddrSpace()); 1716 break; 1717 case ABIArgInfo::Extend: 1718 case ABIArgInfo::Direct: { 1719 // Fast-isel and the optimizer generally like scalar values better than 1720 // FCAs, so we flatten them if this is safe to do for this argument. 1721 llvm::Type *argType = ArgInfo.getCoerceToType(); 1722 llvm::StructType *st = dyn_cast<llvm::StructType>(argType); 1723 if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 1724 assert(NumIRArgs == st->getNumElements()); 1725 for (unsigned i = 0, e = st->getNumElements(); i != e; ++i) 1726 ArgTypes[FirstIRArg + i] = st->getElementType(i); 1727 } else { 1728 assert(NumIRArgs == 1); 1729 ArgTypes[FirstIRArg] = argType; 1730 } 1731 break; 1732 } 1733 1734 case ABIArgInfo::CoerceAndExpand: { 1735 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1736 for (auto *EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) { 1737 *ArgTypesIter++ = EltTy; 1738 } 1739 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1740 break; 1741 } 1742 1743 case ABIArgInfo::Expand: 1744 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1745 getExpandedTypes(it->type, ArgTypesIter); 1746 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1747 break; 1748 } 1749 } 1750 1751 bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased; 1752 assert(Erased && "Not in set?"); 1753 1754 return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic()); 1755 } 1756 1757 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) { 1758 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1759 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 1760 1761 if (!isFuncTypeConvertible(FPT)) 1762 return llvm::StructType::get(getLLVMContext()); 1763 1764 return GetFunctionType(GD); 1765 } 1766 1767 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx, 1768 llvm::AttrBuilder &FuncAttrs, 1769 const FunctionProtoType *FPT) { 1770 if (!FPT) 1771 return; 1772 1773 if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) && 1774 FPT->isNothrow()) 1775 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1776 1777 unsigned SMEBits = FPT->getAArch64SMEAttributes(); 1778 if (SMEBits & FunctionType::SME_PStateSMEnabledMask) 1779 FuncAttrs.addAttribute("aarch64_pstate_sm_enabled"); 1780 if (SMEBits & FunctionType::SME_PStateSMCompatibleMask) 1781 FuncAttrs.addAttribute("aarch64_pstate_sm_compatible"); 1782 if (SMEBits & FunctionType::SME_AgnosticZAStateMask) 1783 FuncAttrs.addAttribute("aarch64_za_state_agnostic"); 1784 1785 // ZA 1786 if (FunctionType::getArmZAState(SMEBits) == FunctionType::ARM_Preserves) 1787 FuncAttrs.addAttribute("aarch64_preserves_za"); 1788 if (FunctionType::getArmZAState(SMEBits) == FunctionType::ARM_In) 1789 FuncAttrs.addAttribute("aarch64_in_za"); 1790 if (FunctionType::getArmZAState(SMEBits) == FunctionType::ARM_Out) 1791 FuncAttrs.addAttribute("aarch64_out_za"); 1792 if (FunctionType::getArmZAState(SMEBits) == FunctionType::ARM_InOut) 1793 FuncAttrs.addAttribute("aarch64_inout_za"); 1794 1795 // ZT0 1796 if (FunctionType::getArmZT0State(SMEBits) == FunctionType::ARM_Preserves) 1797 FuncAttrs.addAttribute("aarch64_preserves_zt0"); 1798 if (FunctionType::getArmZT0State(SMEBits) == FunctionType::ARM_In) 1799 FuncAttrs.addAttribute("aarch64_in_zt0"); 1800 if (FunctionType::getArmZT0State(SMEBits) == FunctionType::ARM_Out) 1801 FuncAttrs.addAttribute("aarch64_out_zt0"); 1802 if (FunctionType::getArmZT0State(SMEBits) == FunctionType::ARM_InOut) 1803 FuncAttrs.addAttribute("aarch64_inout_zt0"); 1804 } 1805 1806 static void AddAttributesFromOMPAssumes(llvm::AttrBuilder &FuncAttrs, 1807 const Decl *Callee) { 1808 if (!Callee) 1809 return; 1810 1811 SmallVector<StringRef, 4> Attrs; 1812 1813 for (const OMPAssumeAttr *AA : Callee->specific_attrs<OMPAssumeAttr>()) 1814 AA->getAssumption().split(Attrs, ","); 1815 1816 if (!Attrs.empty()) 1817 FuncAttrs.addAttribute(llvm::AssumptionAttrKey, 1818 llvm::join(Attrs.begin(), Attrs.end(), ",")); 1819 } 1820 1821 bool CodeGenModule::MayDropFunctionReturn(const ASTContext &Context, 1822 QualType ReturnType) const { 1823 // We can't just discard the return value for a record type with a 1824 // complex destructor or a non-trivially copyable type. 1825 if (const RecordType *RT = 1826 ReturnType.getCanonicalType()->getAs<RecordType>()) { 1827 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1828 return ClassDecl->hasTrivialDestructor(); 1829 } 1830 return ReturnType.isTriviallyCopyableType(Context); 1831 } 1832 1833 static bool HasStrictReturn(const CodeGenModule &Module, QualType RetTy, 1834 const Decl *TargetDecl) { 1835 // As-is msan can not tolerate noundef mismatch between caller and 1836 // implementation. Mismatch is possible for e.g. indirect calls from C-caller 1837 // into C++. Such mismatches lead to confusing false reports. To avoid 1838 // expensive workaround on msan we enforce initialization event in uncommon 1839 // cases where it's allowed. 1840 if (Module.getLangOpts().Sanitize.has(SanitizerKind::Memory)) 1841 return true; 1842 // C++ explicitly makes returning undefined values UB. C's rule only applies 1843 // to used values, so we never mark them noundef for now. 1844 if (!Module.getLangOpts().CPlusPlus) 1845 return false; 1846 if (TargetDecl) { 1847 if (const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(TargetDecl)) { 1848 if (FDecl->isExternC()) 1849 return false; 1850 } else if (const VarDecl *VDecl = dyn_cast<VarDecl>(TargetDecl)) { 1851 // Function pointer. 1852 if (VDecl->isExternC()) 1853 return false; 1854 } 1855 } 1856 1857 // We don't want to be too aggressive with the return checking, unless 1858 // it's explicit in the code opts or we're using an appropriate sanitizer. 1859 // Try to respect what the programmer intended. 1860 return Module.getCodeGenOpts().StrictReturn || 1861 !Module.MayDropFunctionReturn(Module.getContext(), RetTy) || 1862 Module.getLangOpts().Sanitize.has(SanitizerKind::Return); 1863 } 1864 1865 /// Add denormal-fp-math and denormal-fp-math-f32 as appropriate for the 1866 /// requested denormal behavior, accounting for the overriding behavior of the 1867 /// -f32 case. 1868 static void addDenormalModeAttrs(llvm::DenormalMode FPDenormalMode, 1869 llvm::DenormalMode FP32DenormalMode, 1870 llvm::AttrBuilder &FuncAttrs) { 1871 if (FPDenormalMode != llvm::DenormalMode::getDefault()) 1872 FuncAttrs.addAttribute("denormal-fp-math", FPDenormalMode.str()); 1873 1874 if (FP32DenormalMode != FPDenormalMode && FP32DenormalMode.isValid()) 1875 FuncAttrs.addAttribute("denormal-fp-math-f32", FP32DenormalMode.str()); 1876 } 1877 1878 /// Add default attributes to a function, which have merge semantics under 1879 /// -mlink-builtin-bitcode and should not simply overwrite any existing 1880 /// attributes in the linked library. 1881 static void 1882 addMergableDefaultFunctionAttributes(const CodeGenOptions &CodeGenOpts, 1883 llvm::AttrBuilder &FuncAttrs) { 1884 addDenormalModeAttrs(CodeGenOpts.FPDenormalMode, CodeGenOpts.FP32DenormalMode, 1885 FuncAttrs); 1886 } 1887 1888 static void getTrivialDefaultFunctionAttributes( 1889 StringRef Name, bool HasOptnone, const CodeGenOptions &CodeGenOpts, 1890 const LangOptions &LangOpts, bool AttrOnCallSite, 1891 llvm::AttrBuilder &FuncAttrs) { 1892 // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed. 1893 if (!HasOptnone) { 1894 if (CodeGenOpts.OptimizeSize) 1895 FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize); 1896 if (CodeGenOpts.OptimizeSize == 2) 1897 FuncAttrs.addAttribute(llvm::Attribute::MinSize); 1898 } 1899 1900 if (CodeGenOpts.DisableRedZone) 1901 FuncAttrs.addAttribute(llvm::Attribute::NoRedZone); 1902 if (CodeGenOpts.IndirectTlsSegRefs) 1903 FuncAttrs.addAttribute("indirect-tls-seg-refs"); 1904 if (CodeGenOpts.NoImplicitFloat) 1905 FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat); 1906 1907 if (AttrOnCallSite) { 1908 // Attributes that should go on the call site only. 1909 // FIXME: Look for 'BuiltinAttr' on the function rather than re-checking 1910 // the -fno-builtin-foo list. 1911 if (!CodeGenOpts.SimplifyLibCalls || LangOpts.isNoBuiltinFunc(Name)) 1912 FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin); 1913 if (!CodeGenOpts.TrapFuncName.empty()) 1914 FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName); 1915 } else { 1916 switch (CodeGenOpts.getFramePointer()) { 1917 case CodeGenOptions::FramePointerKind::None: 1918 // This is the default behavior. 1919 break; 1920 case CodeGenOptions::FramePointerKind::Reserved: 1921 case CodeGenOptions::FramePointerKind::NonLeaf: 1922 case CodeGenOptions::FramePointerKind::All: 1923 FuncAttrs.addAttribute("frame-pointer", 1924 CodeGenOptions::getFramePointerKindName( 1925 CodeGenOpts.getFramePointer())); 1926 } 1927 1928 if (CodeGenOpts.LessPreciseFPMAD) 1929 FuncAttrs.addAttribute("less-precise-fpmad", "true"); 1930 1931 if (CodeGenOpts.NullPointerIsValid) 1932 FuncAttrs.addAttribute(llvm::Attribute::NullPointerIsValid); 1933 1934 if (LangOpts.getDefaultExceptionMode() == LangOptions::FPE_Ignore) 1935 FuncAttrs.addAttribute("no-trapping-math", "true"); 1936 1937 // TODO: Are these all needed? 1938 // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags. 1939 if (LangOpts.NoHonorInfs) 1940 FuncAttrs.addAttribute("no-infs-fp-math", "true"); 1941 if (LangOpts.NoHonorNaNs) 1942 FuncAttrs.addAttribute("no-nans-fp-math", "true"); 1943 if (LangOpts.ApproxFunc) 1944 FuncAttrs.addAttribute("approx-func-fp-math", "true"); 1945 if (LangOpts.AllowFPReassoc && LangOpts.AllowRecip && 1946 LangOpts.NoSignedZero && LangOpts.ApproxFunc && 1947 (LangOpts.getDefaultFPContractMode() == 1948 LangOptions::FPModeKind::FPM_Fast || 1949 LangOpts.getDefaultFPContractMode() == 1950 LangOptions::FPModeKind::FPM_FastHonorPragmas)) 1951 FuncAttrs.addAttribute("unsafe-fp-math", "true"); 1952 if (CodeGenOpts.SoftFloat) 1953 FuncAttrs.addAttribute("use-soft-float", "true"); 1954 FuncAttrs.addAttribute("stack-protector-buffer-size", 1955 llvm::utostr(CodeGenOpts.SSPBufferSize)); 1956 if (LangOpts.NoSignedZero) 1957 FuncAttrs.addAttribute("no-signed-zeros-fp-math", "true"); 1958 1959 // TODO: Reciprocal estimate codegen options should apply to instructions? 1960 const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals; 1961 if (!Recips.empty()) 1962 FuncAttrs.addAttribute("reciprocal-estimates", 1963 llvm::join(Recips, ",")); 1964 1965 if (!CodeGenOpts.PreferVectorWidth.empty() && 1966 CodeGenOpts.PreferVectorWidth != "none") 1967 FuncAttrs.addAttribute("prefer-vector-width", 1968 CodeGenOpts.PreferVectorWidth); 1969 1970 if (CodeGenOpts.StackRealignment) 1971 FuncAttrs.addAttribute("stackrealign"); 1972 if (CodeGenOpts.Backchain) 1973 FuncAttrs.addAttribute("backchain"); 1974 if (CodeGenOpts.EnableSegmentedStacks) 1975 FuncAttrs.addAttribute("split-stack"); 1976 1977 if (CodeGenOpts.SpeculativeLoadHardening) 1978 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening); 1979 1980 // Add zero-call-used-regs attribute. 1981 switch (CodeGenOpts.getZeroCallUsedRegs()) { 1982 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::Skip: 1983 FuncAttrs.removeAttribute("zero-call-used-regs"); 1984 break; 1985 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedGPRArg: 1986 FuncAttrs.addAttribute("zero-call-used-regs", "used-gpr-arg"); 1987 break; 1988 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedGPR: 1989 FuncAttrs.addAttribute("zero-call-used-regs", "used-gpr"); 1990 break; 1991 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedArg: 1992 FuncAttrs.addAttribute("zero-call-used-regs", "used-arg"); 1993 break; 1994 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::Used: 1995 FuncAttrs.addAttribute("zero-call-used-regs", "used"); 1996 break; 1997 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllGPRArg: 1998 FuncAttrs.addAttribute("zero-call-used-regs", "all-gpr-arg"); 1999 break; 2000 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllGPR: 2001 FuncAttrs.addAttribute("zero-call-used-regs", "all-gpr"); 2002 break; 2003 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllArg: 2004 FuncAttrs.addAttribute("zero-call-used-regs", "all-arg"); 2005 break; 2006 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::All: 2007 FuncAttrs.addAttribute("zero-call-used-regs", "all"); 2008 break; 2009 } 2010 } 2011 2012 if (LangOpts.assumeFunctionsAreConvergent()) { 2013 // Conservatively, mark all functions and calls in CUDA and OpenCL as 2014 // convergent (meaning, they may call an intrinsically convergent op, such 2015 // as __syncthreads() / barrier(), and so can't have certain optimizations 2016 // applied around them). LLVM will remove this attribute where it safely 2017 // can. 2018 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 2019 } 2020 2021 // TODO: NoUnwind attribute should be added for other GPU modes HIP, 2022 // OpenMP offload. AFAIK, neither of them support exceptions in device code. 2023 if ((LangOpts.CUDA && LangOpts.CUDAIsDevice) || LangOpts.OpenCL || 2024 LangOpts.SYCLIsDevice) { 2025 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 2026 } 2027 2028 if (CodeGenOpts.SaveRegParams && !AttrOnCallSite) 2029 FuncAttrs.addAttribute("save-reg-params"); 2030 2031 for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) { 2032 StringRef Var, Value; 2033 std::tie(Var, Value) = Attr.split('='); 2034 FuncAttrs.addAttribute(Var, Value); 2035 } 2036 2037 TargetInfo::BranchProtectionInfo BPI(LangOpts); 2038 TargetCodeGenInfo::initBranchProtectionFnAttributes(BPI, FuncAttrs); 2039 } 2040 2041 /// Merges `target-features` from \TargetOpts and \F, and sets the result in 2042 /// \FuncAttr 2043 /// * features from \F are always kept 2044 /// * a feature from \TargetOpts is kept if itself and its opposite are absent 2045 /// from \F 2046 static void 2047 overrideFunctionFeaturesWithTargetFeatures(llvm::AttrBuilder &FuncAttr, 2048 const llvm::Function &F, 2049 const TargetOptions &TargetOpts) { 2050 auto FFeatures = F.getFnAttribute("target-features"); 2051 2052 llvm::StringSet<> MergedNames; 2053 SmallVector<StringRef> MergedFeatures; 2054 MergedFeatures.reserve(TargetOpts.Features.size()); 2055 2056 auto AddUnmergedFeatures = [&](auto &&FeatureRange) { 2057 for (StringRef Feature : FeatureRange) { 2058 if (Feature.empty()) 2059 continue; 2060 assert(Feature[0] == '+' || Feature[0] == '-'); 2061 StringRef Name = Feature.drop_front(1); 2062 bool Merged = !MergedNames.insert(Name).second; 2063 if (!Merged) 2064 MergedFeatures.push_back(Feature); 2065 } 2066 }; 2067 2068 if (FFeatures.isValid()) 2069 AddUnmergedFeatures(llvm::split(FFeatures.getValueAsString(), ',')); 2070 AddUnmergedFeatures(TargetOpts.Features); 2071 2072 if (!MergedFeatures.empty()) { 2073 llvm::sort(MergedFeatures); 2074 FuncAttr.addAttribute("target-features", llvm::join(MergedFeatures, ",")); 2075 } 2076 } 2077 2078 void CodeGen::mergeDefaultFunctionDefinitionAttributes( 2079 llvm::Function &F, const CodeGenOptions &CodeGenOpts, 2080 const LangOptions &LangOpts, const TargetOptions &TargetOpts, 2081 bool WillInternalize) { 2082 2083 llvm::AttrBuilder FuncAttrs(F.getContext()); 2084 // Here we only extract the options that are relevant compared to the version 2085 // from GetCPUAndFeaturesAttributes. 2086 if (!TargetOpts.CPU.empty()) 2087 FuncAttrs.addAttribute("target-cpu", TargetOpts.CPU); 2088 if (!TargetOpts.TuneCPU.empty()) 2089 FuncAttrs.addAttribute("tune-cpu", TargetOpts.TuneCPU); 2090 2091 ::getTrivialDefaultFunctionAttributes(F.getName(), F.hasOptNone(), 2092 CodeGenOpts, LangOpts, 2093 /*AttrOnCallSite=*/false, FuncAttrs); 2094 2095 if (!WillInternalize && F.isInterposable()) { 2096 // Do not promote "dynamic" denormal-fp-math to this translation unit's 2097 // setting for weak functions that won't be internalized. The user has no 2098 // real control for how builtin bitcode is linked, so we shouldn't assume 2099 // later copies will use a consistent mode. 2100 F.addFnAttrs(FuncAttrs); 2101 return; 2102 } 2103 2104 llvm::AttributeMask AttrsToRemove; 2105 2106 llvm::DenormalMode DenormModeToMerge = F.getDenormalModeRaw(); 2107 llvm::DenormalMode DenormModeToMergeF32 = F.getDenormalModeF32Raw(); 2108 llvm::DenormalMode Merged = 2109 CodeGenOpts.FPDenormalMode.mergeCalleeMode(DenormModeToMerge); 2110 llvm::DenormalMode MergedF32 = CodeGenOpts.FP32DenormalMode; 2111 2112 if (DenormModeToMergeF32.isValid()) { 2113 MergedF32 = 2114 CodeGenOpts.FP32DenormalMode.mergeCalleeMode(DenormModeToMergeF32); 2115 } 2116 2117 if (Merged == llvm::DenormalMode::getDefault()) { 2118 AttrsToRemove.addAttribute("denormal-fp-math"); 2119 } else if (Merged != DenormModeToMerge) { 2120 // Overwrite existing attribute 2121 FuncAttrs.addAttribute("denormal-fp-math", 2122 CodeGenOpts.FPDenormalMode.str()); 2123 } 2124 2125 if (MergedF32 == llvm::DenormalMode::getDefault()) { 2126 AttrsToRemove.addAttribute("denormal-fp-math-f32"); 2127 } else if (MergedF32 != DenormModeToMergeF32) { 2128 // Overwrite existing attribute 2129 FuncAttrs.addAttribute("denormal-fp-math-f32", 2130 CodeGenOpts.FP32DenormalMode.str()); 2131 } 2132 2133 F.removeFnAttrs(AttrsToRemove); 2134 addDenormalModeAttrs(Merged, MergedF32, FuncAttrs); 2135 2136 overrideFunctionFeaturesWithTargetFeatures(FuncAttrs, F, TargetOpts); 2137 2138 F.addFnAttrs(FuncAttrs); 2139 } 2140 2141 void CodeGenModule::getTrivialDefaultFunctionAttributes( 2142 StringRef Name, bool HasOptnone, bool AttrOnCallSite, 2143 llvm::AttrBuilder &FuncAttrs) { 2144 ::getTrivialDefaultFunctionAttributes(Name, HasOptnone, getCodeGenOpts(), 2145 getLangOpts(), AttrOnCallSite, 2146 FuncAttrs); 2147 } 2148 2149 void CodeGenModule::getDefaultFunctionAttributes(StringRef Name, 2150 bool HasOptnone, 2151 bool AttrOnCallSite, 2152 llvm::AttrBuilder &FuncAttrs) { 2153 getTrivialDefaultFunctionAttributes(Name, HasOptnone, AttrOnCallSite, 2154 FuncAttrs); 2155 // If we're just getting the default, get the default values for mergeable 2156 // attributes. 2157 if (!AttrOnCallSite) 2158 addMergableDefaultFunctionAttributes(CodeGenOpts, FuncAttrs); 2159 } 2160 2161 void CodeGenModule::addDefaultFunctionDefinitionAttributes( 2162 llvm::AttrBuilder &attrs) { 2163 getDefaultFunctionAttributes(/*function name*/ "", /*optnone*/ false, 2164 /*for call*/ false, attrs); 2165 GetCPUAndFeaturesAttributes(GlobalDecl(), attrs); 2166 } 2167 2168 static void addNoBuiltinAttributes(llvm::AttrBuilder &FuncAttrs, 2169 const LangOptions &LangOpts, 2170 const NoBuiltinAttr *NBA = nullptr) { 2171 auto AddNoBuiltinAttr = [&FuncAttrs](StringRef BuiltinName) { 2172 SmallString<32> AttributeName; 2173 AttributeName += "no-builtin-"; 2174 AttributeName += BuiltinName; 2175 FuncAttrs.addAttribute(AttributeName); 2176 }; 2177 2178 // First, handle the language options passed through -fno-builtin. 2179 if (LangOpts.NoBuiltin) { 2180 // -fno-builtin disables them all. 2181 FuncAttrs.addAttribute("no-builtins"); 2182 return; 2183 } 2184 2185 // Then, add attributes for builtins specified through -fno-builtin-<name>. 2186 llvm::for_each(LangOpts.NoBuiltinFuncs, AddNoBuiltinAttr); 2187 2188 // Now, let's check the __attribute__((no_builtin("...")) attribute added to 2189 // the source. 2190 if (!NBA) 2191 return; 2192 2193 // If there is a wildcard in the builtin names specified through the 2194 // attribute, disable them all. 2195 if (llvm::is_contained(NBA->builtinNames(), "*")) { 2196 FuncAttrs.addAttribute("no-builtins"); 2197 return; 2198 } 2199 2200 // And last, add the rest of the builtin names. 2201 llvm::for_each(NBA->builtinNames(), AddNoBuiltinAttr); 2202 } 2203 2204 static bool DetermineNoUndef(QualType QTy, CodeGenTypes &Types, 2205 const llvm::DataLayout &DL, const ABIArgInfo &AI, 2206 bool CheckCoerce = true) { 2207 llvm::Type *Ty = Types.ConvertTypeForMem(QTy); 2208 if (AI.getKind() == ABIArgInfo::Indirect || 2209 AI.getKind() == ABIArgInfo::IndirectAliased) 2210 return true; 2211 if (AI.getKind() == ABIArgInfo::Extend && !AI.isNoExt()) 2212 return true; 2213 if (!DL.typeSizeEqualsStoreSize(Ty)) 2214 // TODO: This will result in a modest amount of values not marked noundef 2215 // when they could be. We care about values that *invisibly* contain undef 2216 // bits from the perspective of LLVM IR. 2217 return false; 2218 if (CheckCoerce && AI.canHaveCoerceToType()) { 2219 llvm::Type *CoerceTy = AI.getCoerceToType(); 2220 if (llvm::TypeSize::isKnownGT(DL.getTypeSizeInBits(CoerceTy), 2221 DL.getTypeSizeInBits(Ty))) 2222 // If we're coercing to a type with a greater size than the canonical one, 2223 // we're introducing new undef bits. 2224 // Coercing to a type of smaller or equal size is ok, as we know that 2225 // there's no internal padding (typeSizeEqualsStoreSize). 2226 return false; 2227 } 2228 if (QTy->isBitIntType()) 2229 return true; 2230 if (QTy->isReferenceType()) 2231 return true; 2232 if (QTy->isNullPtrType()) 2233 return false; 2234 if (QTy->isMemberPointerType()) 2235 // TODO: Some member pointers are `noundef`, but it depends on the ABI. For 2236 // now, never mark them. 2237 return false; 2238 if (QTy->isScalarType()) { 2239 if (const ComplexType *Complex = dyn_cast<ComplexType>(QTy)) 2240 return DetermineNoUndef(Complex->getElementType(), Types, DL, AI, false); 2241 return true; 2242 } 2243 if (const VectorType *Vector = dyn_cast<VectorType>(QTy)) 2244 return DetermineNoUndef(Vector->getElementType(), Types, DL, AI, false); 2245 if (const MatrixType *Matrix = dyn_cast<MatrixType>(QTy)) 2246 return DetermineNoUndef(Matrix->getElementType(), Types, DL, AI, false); 2247 if (const ArrayType *Array = dyn_cast<ArrayType>(QTy)) 2248 return DetermineNoUndef(Array->getElementType(), Types, DL, AI, false); 2249 2250 // TODO: Some structs may be `noundef`, in specific situations. 2251 return false; 2252 } 2253 2254 /// Check if the argument of a function has maybe_undef attribute. 2255 static bool IsArgumentMaybeUndef(const Decl *TargetDecl, 2256 unsigned NumRequiredArgs, unsigned ArgNo) { 2257 const auto *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl); 2258 if (!FD) 2259 return false; 2260 2261 // Assume variadic arguments do not have maybe_undef attribute. 2262 if (ArgNo >= NumRequiredArgs) 2263 return false; 2264 2265 // Check if argument has maybe_undef attribute. 2266 if (ArgNo < FD->getNumParams()) { 2267 const ParmVarDecl *Param = FD->getParamDecl(ArgNo); 2268 if (Param && Param->hasAttr<MaybeUndefAttr>()) 2269 return true; 2270 } 2271 2272 return false; 2273 } 2274 2275 /// Test if it's legal to apply nofpclass for the given parameter type and it's 2276 /// lowered IR type. 2277 static bool canApplyNoFPClass(const ABIArgInfo &AI, QualType ParamType, 2278 bool IsReturn) { 2279 // Should only apply to FP types in the source, not ABI promoted. 2280 if (!ParamType->hasFloatingRepresentation()) 2281 return false; 2282 2283 // The promoted-to IR type also needs to support nofpclass. 2284 llvm::Type *IRTy = AI.getCoerceToType(); 2285 if (llvm::AttributeFuncs::isNoFPClassCompatibleType(IRTy)) 2286 return true; 2287 2288 if (llvm::StructType *ST = dyn_cast<llvm::StructType>(IRTy)) { 2289 return !IsReturn && AI.getCanBeFlattened() && 2290 llvm::all_of(ST->elements(), [](llvm::Type *Ty) { 2291 return llvm::AttributeFuncs::isNoFPClassCompatibleType(Ty); 2292 }); 2293 } 2294 2295 return false; 2296 } 2297 2298 /// Return the nofpclass mask that can be applied to floating-point parameters. 2299 static llvm::FPClassTest getNoFPClassTestMask(const LangOptions &LangOpts) { 2300 llvm::FPClassTest Mask = llvm::fcNone; 2301 if (LangOpts.NoHonorInfs) 2302 Mask |= llvm::fcInf; 2303 if (LangOpts.NoHonorNaNs) 2304 Mask |= llvm::fcNan; 2305 return Mask; 2306 } 2307 2308 void CodeGenModule::AdjustMemoryAttribute(StringRef Name, 2309 CGCalleeInfo CalleeInfo, 2310 llvm::AttributeList &Attrs) { 2311 if (Attrs.getMemoryEffects().getModRef() == llvm::ModRefInfo::NoModRef) { 2312 Attrs = Attrs.removeFnAttribute(getLLVMContext(), llvm::Attribute::Memory); 2313 llvm::Attribute MemoryAttr = llvm::Attribute::getWithMemoryEffects( 2314 getLLVMContext(), llvm::MemoryEffects::writeOnly()); 2315 Attrs = Attrs.addFnAttribute(getLLVMContext(), MemoryAttr); 2316 } 2317 } 2318 2319 /// Construct the IR attribute list of a function or call. 2320 /// 2321 /// When adding an attribute, please consider where it should be handled: 2322 /// 2323 /// - getDefaultFunctionAttributes is for attributes that are essentially 2324 /// part of the global target configuration (but perhaps can be 2325 /// overridden on a per-function basis). Adding attributes there 2326 /// will cause them to also be set in frontends that build on Clang's 2327 /// target-configuration logic, as well as for code defined in library 2328 /// modules such as CUDA's libdevice. 2329 /// 2330 /// - ConstructAttributeList builds on top of getDefaultFunctionAttributes 2331 /// and adds declaration-specific, convention-specific, and 2332 /// frontend-specific logic. The last is of particular importance: 2333 /// attributes that restrict how the frontend generates code must be 2334 /// added here rather than getDefaultFunctionAttributes. 2335 /// 2336 void CodeGenModule::ConstructAttributeList(StringRef Name, 2337 const CGFunctionInfo &FI, 2338 CGCalleeInfo CalleeInfo, 2339 llvm::AttributeList &AttrList, 2340 unsigned &CallingConv, 2341 bool AttrOnCallSite, bool IsThunk) { 2342 llvm::AttrBuilder FuncAttrs(getLLVMContext()); 2343 llvm::AttrBuilder RetAttrs(getLLVMContext()); 2344 2345 // Collect function IR attributes from the CC lowering. 2346 // We'll collect the paramete and result attributes later. 2347 CallingConv = FI.getEffectiveCallingConvention(); 2348 if (FI.isNoReturn()) 2349 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 2350 if (FI.isCmseNSCall()) 2351 FuncAttrs.addAttribute("cmse_nonsecure_call"); 2352 2353 // Collect function IR attributes from the callee prototype if we have one. 2354 AddAttributesFromFunctionProtoType(getContext(), FuncAttrs, 2355 CalleeInfo.getCalleeFunctionProtoType()); 2356 2357 const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl(); 2358 2359 // Attach assumption attributes to the declaration. If this is a call 2360 // site, attach assumptions from the caller to the call as well. 2361 AddAttributesFromOMPAssumes(FuncAttrs, TargetDecl); 2362 2363 bool HasOptnone = false; 2364 // The NoBuiltinAttr attached to the target FunctionDecl. 2365 const NoBuiltinAttr *NBA = nullptr; 2366 2367 // Some ABIs may result in additional accesses to arguments that may 2368 // otherwise not be present. 2369 auto AddPotentialArgAccess = [&]() { 2370 llvm::Attribute A = FuncAttrs.getAttribute(llvm::Attribute::Memory); 2371 if (A.isValid()) 2372 FuncAttrs.addMemoryAttr(A.getMemoryEffects() | 2373 llvm::MemoryEffects::argMemOnly()); 2374 }; 2375 2376 // Collect function IR attributes based on declaration-specific 2377 // information. 2378 // FIXME: handle sseregparm someday... 2379 if (TargetDecl) { 2380 if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) 2381 FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice); 2382 if (TargetDecl->hasAttr<NoThrowAttr>()) 2383 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 2384 if (TargetDecl->hasAttr<NoReturnAttr>()) 2385 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 2386 if (TargetDecl->hasAttr<ColdAttr>()) 2387 FuncAttrs.addAttribute(llvm::Attribute::Cold); 2388 if (TargetDecl->hasAttr<HotAttr>()) 2389 FuncAttrs.addAttribute(llvm::Attribute::Hot); 2390 if (TargetDecl->hasAttr<NoDuplicateAttr>()) 2391 FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate); 2392 if (TargetDecl->hasAttr<ConvergentAttr>()) 2393 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 2394 2395 if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 2396 AddAttributesFromFunctionProtoType( 2397 getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>()); 2398 if (AttrOnCallSite && Fn->isReplaceableGlobalAllocationFunction()) { 2399 // A sane operator new returns a non-aliasing pointer. 2400 auto Kind = Fn->getDeclName().getCXXOverloadedOperator(); 2401 if (getCodeGenOpts().AssumeSaneOperatorNew && 2402 (Kind == OO_New || Kind == OO_Array_New)) 2403 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 2404 } 2405 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn); 2406 const bool IsVirtualCall = MD && MD->isVirtual(); 2407 // Don't use [[noreturn]], _Noreturn or [[no_builtin]] for a call to a 2408 // virtual function. These attributes are not inherited by overloads. 2409 if (!(AttrOnCallSite && IsVirtualCall)) { 2410 if (Fn->isNoReturn()) 2411 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 2412 NBA = Fn->getAttr<NoBuiltinAttr>(); 2413 } 2414 } 2415 2416 if (isa<FunctionDecl>(TargetDecl) || isa<VarDecl>(TargetDecl)) { 2417 // Only place nomerge attribute on call sites, never functions. This 2418 // allows it to work on indirect virtual function calls. 2419 if (AttrOnCallSite && TargetDecl->hasAttr<NoMergeAttr>()) 2420 FuncAttrs.addAttribute(llvm::Attribute::NoMerge); 2421 } 2422 2423 // 'const', 'pure' and 'noalias' attributed functions are also nounwind. 2424 if (TargetDecl->hasAttr<ConstAttr>()) { 2425 FuncAttrs.addMemoryAttr(llvm::MemoryEffects::none()); 2426 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 2427 // gcc specifies that 'const' functions have greater restrictions than 2428 // 'pure' functions, so they also cannot have infinite loops. 2429 FuncAttrs.addAttribute(llvm::Attribute::WillReturn); 2430 } else if (TargetDecl->hasAttr<PureAttr>()) { 2431 FuncAttrs.addMemoryAttr(llvm::MemoryEffects::readOnly()); 2432 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 2433 // gcc specifies that 'pure' functions cannot have infinite loops. 2434 FuncAttrs.addAttribute(llvm::Attribute::WillReturn); 2435 } else if (TargetDecl->hasAttr<NoAliasAttr>()) { 2436 FuncAttrs.addMemoryAttr(llvm::MemoryEffects::inaccessibleOrArgMemOnly()); 2437 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 2438 } 2439 if (TargetDecl->hasAttr<RestrictAttr>()) 2440 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 2441 if (TargetDecl->hasAttr<ReturnsNonNullAttr>() && 2442 !CodeGenOpts.NullPointerIsValid) 2443 RetAttrs.addAttribute(llvm::Attribute::NonNull); 2444 if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>()) 2445 FuncAttrs.addAttribute("no_caller_saved_registers"); 2446 if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>()) 2447 FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck); 2448 if (TargetDecl->hasAttr<LeafAttr>()) 2449 FuncAttrs.addAttribute(llvm::Attribute::NoCallback); 2450 if (TargetDecl->hasAttr<BPFFastCallAttr>()) 2451 FuncAttrs.addAttribute("bpf_fastcall"); 2452 2453 HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>(); 2454 if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) { 2455 std::optional<unsigned> NumElemsParam; 2456 if (AllocSize->getNumElemsParam().isValid()) 2457 NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex(); 2458 FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(), 2459 NumElemsParam); 2460 } 2461 2462 if (TargetDecl->hasAttr<OpenCLKernelAttr>()) { 2463 if (getLangOpts().OpenCLVersion <= 120) { 2464 // OpenCL v1.2 Work groups are always uniform 2465 FuncAttrs.addAttribute("uniform-work-group-size", "true"); 2466 } else { 2467 // OpenCL v2.0 Work groups may be whether uniform or not. 2468 // '-cl-uniform-work-group-size' compile option gets a hint 2469 // to the compiler that the global work-size be a multiple of 2470 // the work-group size specified to clEnqueueNDRangeKernel 2471 // (i.e. work groups are uniform). 2472 FuncAttrs.addAttribute( 2473 "uniform-work-group-size", 2474 llvm::toStringRef(getLangOpts().OffloadUniformBlock)); 2475 } 2476 } 2477 2478 if (TargetDecl->hasAttr<CUDAGlobalAttr>() && 2479 getLangOpts().OffloadUniformBlock) 2480 FuncAttrs.addAttribute("uniform-work-group-size", "true"); 2481 2482 if (TargetDecl->hasAttr<ArmLocallyStreamingAttr>()) 2483 FuncAttrs.addAttribute("aarch64_pstate_sm_body"); 2484 } 2485 2486 // Attach "no-builtins" attributes to: 2487 // * call sites: both `nobuiltin` and "no-builtins" or "no-builtin-<name>". 2488 // * definitions: "no-builtins" or "no-builtin-<name>" only. 2489 // The attributes can come from: 2490 // * LangOpts: -ffreestanding, -fno-builtin, -fno-builtin-<name> 2491 // * FunctionDecl attributes: __attribute__((no_builtin(...))) 2492 addNoBuiltinAttributes(FuncAttrs, getLangOpts(), NBA); 2493 2494 // Collect function IR attributes based on global settiings. 2495 getDefaultFunctionAttributes(Name, HasOptnone, AttrOnCallSite, FuncAttrs); 2496 2497 // Override some default IR attributes based on declaration-specific 2498 // information. 2499 if (TargetDecl) { 2500 if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>()) 2501 FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening); 2502 if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>()) 2503 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening); 2504 if (TargetDecl->hasAttr<NoSplitStackAttr>()) 2505 FuncAttrs.removeAttribute("split-stack"); 2506 if (TargetDecl->hasAttr<ZeroCallUsedRegsAttr>()) { 2507 // A function "__attribute__((...))" overrides the command-line flag. 2508 auto Kind = 2509 TargetDecl->getAttr<ZeroCallUsedRegsAttr>()->getZeroCallUsedRegs(); 2510 FuncAttrs.removeAttribute("zero-call-used-regs"); 2511 FuncAttrs.addAttribute( 2512 "zero-call-used-regs", 2513 ZeroCallUsedRegsAttr::ConvertZeroCallUsedRegsKindToStr(Kind)); 2514 } 2515 2516 // Add NonLazyBind attribute to function declarations when -fno-plt 2517 // is used. 2518 // FIXME: what if we just haven't processed the function definition 2519 // yet, or if it's an external definition like C99 inline? 2520 if (CodeGenOpts.NoPLT) { 2521 if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 2522 if (!Fn->isDefined() && !AttrOnCallSite) { 2523 FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind); 2524 } 2525 } 2526 } 2527 // Remove 'convergent' if requested. 2528 if (TargetDecl->hasAttr<NoConvergentAttr>()) 2529 FuncAttrs.removeAttribute(llvm::Attribute::Convergent); 2530 } 2531 2532 // Add "sample-profile-suffix-elision-policy" attribute for internal linkage 2533 // functions with -funique-internal-linkage-names. 2534 if (TargetDecl && CodeGenOpts.UniqueInternalLinkageNames) { 2535 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 2536 if (!FD->isExternallyVisible()) 2537 FuncAttrs.addAttribute("sample-profile-suffix-elision-policy", 2538 "selected"); 2539 } 2540 } 2541 2542 // Collect non-call-site function IR attributes from declaration-specific 2543 // information. 2544 if (!AttrOnCallSite) { 2545 if (TargetDecl && TargetDecl->hasAttr<CmseNSEntryAttr>()) 2546 FuncAttrs.addAttribute("cmse_nonsecure_entry"); 2547 2548 // Whether tail calls are enabled. 2549 auto shouldDisableTailCalls = [&] { 2550 // Should this be honored in getDefaultFunctionAttributes? 2551 if (CodeGenOpts.DisableTailCalls) 2552 return true; 2553 2554 if (!TargetDecl) 2555 return false; 2556 2557 if (TargetDecl->hasAttr<DisableTailCallsAttr>() || 2558 TargetDecl->hasAttr<AnyX86InterruptAttr>()) 2559 return true; 2560 2561 if (CodeGenOpts.NoEscapingBlockTailCalls) { 2562 if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl)) 2563 if (!BD->doesNotEscape()) 2564 return true; 2565 } 2566 2567 return false; 2568 }; 2569 if (shouldDisableTailCalls()) 2570 FuncAttrs.addAttribute("disable-tail-calls", "true"); 2571 2572 // CPU/feature overrides. addDefaultFunctionDefinitionAttributes 2573 // handles these separately to set them based on the global defaults. 2574 GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs); 2575 } 2576 2577 // Collect attributes from arguments and return values. 2578 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI); 2579 2580 QualType RetTy = FI.getReturnType(); 2581 const ABIArgInfo &RetAI = FI.getReturnInfo(); 2582 const llvm::DataLayout &DL = getDataLayout(); 2583 2584 // Determine if the return type could be partially undef 2585 if (CodeGenOpts.EnableNoundefAttrs && 2586 HasStrictReturn(*this, RetTy, TargetDecl)) { 2587 if (!RetTy->isVoidType() && RetAI.getKind() != ABIArgInfo::Indirect && 2588 DetermineNoUndef(RetTy, getTypes(), DL, RetAI)) 2589 RetAttrs.addAttribute(llvm::Attribute::NoUndef); 2590 } 2591 2592 switch (RetAI.getKind()) { 2593 case ABIArgInfo::Extend: 2594 if (RetAI.isSignExt()) 2595 RetAttrs.addAttribute(llvm::Attribute::SExt); 2596 else if (RetAI.isZeroExt()) 2597 RetAttrs.addAttribute(llvm::Attribute::ZExt); 2598 else 2599 RetAttrs.addAttribute(llvm::Attribute::NoExt); 2600 [[fallthrough]]; 2601 case ABIArgInfo::Direct: 2602 if (RetAI.getInReg()) 2603 RetAttrs.addAttribute(llvm::Attribute::InReg); 2604 2605 if (canApplyNoFPClass(RetAI, RetTy, true)) 2606 RetAttrs.addNoFPClassAttr(getNoFPClassTestMask(getLangOpts())); 2607 2608 break; 2609 case ABIArgInfo::Ignore: 2610 break; 2611 2612 case ABIArgInfo::InAlloca: 2613 case ABIArgInfo::Indirect: { 2614 // inalloca and sret disable readnone and readonly 2615 AddPotentialArgAccess(); 2616 break; 2617 } 2618 2619 case ABIArgInfo::CoerceAndExpand: 2620 break; 2621 2622 case ABIArgInfo::Expand: 2623 case ABIArgInfo::IndirectAliased: 2624 llvm_unreachable("Invalid ABI kind for return argument"); 2625 } 2626 2627 if (!IsThunk) { 2628 // FIXME: fix this properly, https://reviews.llvm.org/D100388 2629 if (const auto *RefTy = RetTy->getAs<ReferenceType>()) { 2630 QualType PTy = RefTy->getPointeeType(); 2631 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 2632 RetAttrs.addDereferenceableAttr( 2633 getMinimumObjectSize(PTy).getQuantity()); 2634 if (getTypes().getTargetAddressSpace(PTy) == 0 && 2635 !CodeGenOpts.NullPointerIsValid) 2636 RetAttrs.addAttribute(llvm::Attribute::NonNull); 2637 if (PTy->isObjectType()) { 2638 llvm::Align Alignment = 2639 getNaturalPointeeTypeAlignment(RetTy).getAsAlign(); 2640 RetAttrs.addAlignmentAttr(Alignment); 2641 } 2642 } 2643 } 2644 2645 bool hasUsedSRet = false; 2646 SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs()); 2647 2648 // Attach attributes to sret. 2649 if (IRFunctionArgs.hasSRetArg()) { 2650 llvm::AttrBuilder SRETAttrs(getLLVMContext()); 2651 SRETAttrs.addStructRetAttr(getTypes().ConvertTypeForMem(RetTy)); 2652 SRETAttrs.addAttribute(llvm::Attribute::Writable); 2653 SRETAttrs.addAttribute(llvm::Attribute::DeadOnUnwind); 2654 hasUsedSRet = true; 2655 if (RetAI.getInReg()) 2656 SRETAttrs.addAttribute(llvm::Attribute::InReg); 2657 SRETAttrs.addAlignmentAttr(RetAI.getIndirectAlign().getQuantity()); 2658 ArgAttrs[IRFunctionArgs.getSRetArgNo()] = 2659 llvm::AttributeSet::get(getLLVMContext(), SRETAttrs); 2660 } 2661 2662 // Attach attributes to inalloca argument. 2663 if (IRFunctionArgs.hasInallocaArg()) { 2664 llvm::AttrBuilder Attrs(getLLVMContext()); 2665 Attrs.addInAllocaAttr(FI.getArgStruct()); 2666 ArgAttrs[IRFunctionArgs.getInallocaArgNo()] = 2667 llvm::AttributeSet::get(getLLVMContext(), Attrs); 2668 } 2669 2670 // Apply `nonnull`, `dereferencable(N)` and `align N` to the `this` argument, 2671 // unless this is a thunk function. 2672 // FIXME: fix this properly, https://reviews.llvm.org/D100388 2673 if (FI.isInstanceMethod() && !IRFunctionArgs.hasInallocaArg() && 2674 !FI.arg_begin()->type->isVoidPointerType() && !IsThunk) { 2675 auto IRArgs = IRFunctionArgs.getIRArgs(0); 2676 2677 assert(IRArgs.second == 1 && "Expected only a single `this` pointer."); 2678 2679 llvm::AttrBuilder Attrs(getLLVMContext()); 2680 2681 QualType ThisTy = 2682 FI.arg_begin()->type.getTypePtr()->getPointeeType(); 2683 2684 if (!CodeGenOpts.NullPointerIsValid && 2685 getTypes().getTargetAddressSpace(FI.arg_begin()->type) == 0) { 2686 Attrs.addAttribute(llvm::Attribute::NonNull); 2687 Attrs.addDereferenceableAttr(getMinimumObjectSize(ThisTy).getQuantity()); 2688 } else { 2689 // FIXME dereferenceable should be correct here, regardless of 2690 // NullPointerIsValid. However, dereferenceable currently does not always 2691 // respect NullPointerIsValid and may imply nonnull and break the program. 2692 // See https://reviews.llvm.org/D66618 for discussions. 2693 Attrs.addDereferenceableOrNullAttr( 2694 getMinimumObjectSize( 2695 FI.arg_begin()->type.castAs<PointerType>()->getPointeeType()) 2696 .getQuantity()); 2697 } 2698 2699 llvm::Align Alignment = 2700 getNaturalTypeAlignment(ThisTy, /*BaseInfo=*/nullptr, 2701 /*TBAAInfo=*/nullptr, /*forPointeeType=*/true) 2702 .getAsAlign(); 2703 Attrs.addAlignmentAttr(Alignment); 2704 2705 ArgAttrs[IRArgs.first] = llvm::AttributeSet::get(getLLVMContext(), Attrs); 2706 } 2707 2708 unsigned ArgNo = 0; 2709 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(), 2710 E = FI.arg_end(); 2711 I != E; ++I, ++ArgNo) { 2712 QualType ParamType = I->type; 2713 const ABIArgInfo &AI = I->info; 2714 llvm::AttrBuilder Attrs(getLLVMContext()); 2715 2716 // Add attribute for padding argument, if necessary. 2717 if (IRFunctionArgs.hasPaddingArg(ArgNo)) { 2718 if (AI.getPaddingInReg()) { 2719 ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 2720 llvm::AttributeSet::get( 2721 getLLVMContext(), 2722 llvm::AttrBuilder(getLLVMContext()).addAttribute(llvm::Attribute::InReg)); 2723 } 2724 } 2725 2726 // Decide whether the argument we're handling could be partially undef 2727 if (CodeGenOpts.EnableNoundefAttrs && 2728 DetermineNoUndef(ParamType, getTypes(), DL, AI)) { 2729 Attrs.addAttribute(llvm::Attribute::NoUndef); 2730 } 2731 2732 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we 2733 // have the corresponding parameter variable. It doesn't make 2734 // sense to do it here because parameters are so messed up. 2735 switch (AI.getKind()) { 2736 case ABIArgInfo::Extend: 2737 if (AI.isSignExt()) 2738 Attrs.addAttribute(llvm::Attribute::SExt); 2739 else if (AI.isZeroExt()) 2740 Attrs.addAttribute(llvm::Attribute::ZExt); 2741 else 2742 Attrs.addAttribute(llvm::Attribute::NoExt); 2743 [[fallthrough]]; 2744 case ABIArgInfo::Direct: 2745 if (ArgNo == 0 && FI.isChainCall()) 2746 Attrs.addAttribute(llvm::Attribute::Nest); 2747 else if (AI.getInReg()) 2748 Attrs.addAttribute(llvm::Attribute::InReg); 2749 Attrs.addStackAlignmentAttr(llvm::MaybeAlign(AI.getDirectAlign())); 2750 2751 if (canApplyNoFPClass(AI, ParamType, false)) 2752 Attrs.addNoFPClassAttr(getNoFPClassTestMask(getLangOpts())); 2753 break; 2754 case ABIArgInfo::Indirect: { 2755 if (AI.getInReg()) 2756 Attrs.addAttribute(llvm::Attribute::InReg); 2757 2758 if (AI.getIndirectByVal()) 2759 Attrs.addByValAttr(getTypes().ConvertTypeForMem(ParamType)); 2760 2761 auto *Decl = ParamType->getAsRecordDecl(); 2762 if (CodeGenOpts.PassByValueIsNoAlias && Decl && 2763 Decl->getArgPassingRestrictions() == 2764 RecordArgPassingKind::CanPassInRegs) 2765 // When calling the function, the pointer passed in will be the only 2766 // reference to the underlying object. Mark it accordingly. 2767 Attrs.addAttribute(llvm::Attribute::NoAlias); 2768 2769 // TODO: We could add the byref attribute if not byval, but it would 2770 // require updating many testcases. 2771 2772 CharUnits Align = AI.getIndirectAlign(); 2773 2774 // In a byval argument, it is important that the required 2775 // alignment of the type is honored, as LLVM might be creating a 2776 // *new* stack object, and needs to know what alignment to give 2777 // it. (Sometimes it can deduce a sensible alignment on its own, 2778 // but not if clang decides it must emit a packed struct, or the 2779 // user specifies increased alignment requirements.) 2780 // 2781 // This is different from indirect *not* byval, where the object 2782 // exists already, and the align attribute is purely 2783 // informative. 2784 assert(!Align.isZero()); 2785 2786 // For now, only add this when we have a byval argument. 2787 // TODO: be less lazy about updating test cases. 2788 if (AI.getIndirectByVal()) 2789 Attrs.addAlignmentAttr(Align.getQuantity()); 2790 2791 // byval disables readnone and readonly. 2792 AddPotentialArgAccess(); 2793 break; 2794 } 2795 case ABIArgInfo::IndirectAliased: { 2796 CharUnits Align = AI.getIndirectAlign(); 2797 Attrs.addByRefAttr(getTypes().ConvertTypeForMem(ParamType)); 2798 Attrs.addAlignmentAttr(Align.getQuantity()); 2799 break; 2800 } 2801 case ABIArgInfo::Ignore: 2802 case ABIArgInfo::Expand: 2803 case ABIArgInfo::CoerceAndExpand: 2804 break; 2805 2806 case ABIArgInfo::InAlloca: 2807 // inalloca disables readnone and readonly. 2808 AddPotentialArgAccess(); 2809 continue; 2810 } 2811 2812 if (const auto *RefTy = ParamType->getAs<ReferenceType>()) { 2813 QualType PTy = RefTy->getPointeeType(); 2814 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 2815 Attrs.addDereferenceableAttr( 2816 getMinimumObjectSize(PTy).getQuantity()); 2817 if (getTypes().getTargetAddressSpace(PTy) == 0 && 2818 !CodeGenOpts.NullPointerIsValid) 2819 Attrs.addAttribute(llvm::Attribute::NonNull); 2820 if (PTy->isObjectType()) { 2821 llvm::Align Alignment = 2822 getNaturalPointeeTypeAlignment(ParamType).getAsAlign(); 2823 Attrs.addAlignmentAttr(Alignment); 2824 } 2825 } 2826 2827 // From OpenCL spec v3.0.10 section 6.3.5 Alignment of Types: 2828 // > For arguments to a __kernel function declared to be a pointer to a 2829 // > data type, the OpenCL compiler can assume that the pointee is always 2830 // > appropriately aligned as required by the data type. 2831 if (TargetDecl && TargetDecl->hasAttr<OpenCLKernelAttr>() && 2832 ParamType->isPointerType()) { 2833 QualType PTy = ParamType->getPointeeType(); 2834 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) { 2835 llvm::Align Alignment = 2836 getNaturalPointeeTypeAlignment(ParamType).getAsAlign(); 2837 Attrs.addAlignmentAttr(Alignment); 2838 } 2839 } 2840 2841 switch (FI.getExtParameterInfo(ArgNo).getABI()) { 2842 case ParameterABI::HLSLOut: 2843 case ParameterABI::HLSLInOut: 2844 Attrs.addAttribute(llvm::Attribute::NoAlias); 2845 break; 2846 case ParameterABI::Ordinary: 2847 break; 2848 2849 case ParameterABI::SwiftIndirectResult: { 2850 // Add 'sret' if we haven't already used it for something, but 2851 // only if the result is void. 2852 if (!hasUsedSRet && RetTy->isVoidType()) { 2853 Attrs.addStructRetAttr(getTypes().ConvertTypeForMem(ParamType)); 2854 hasUsedSRet = true; 2855 } 2856 2857 // Add 'noalias' in either case. 2858 Attrs.addAttribute(llvm::Attribute::NoAlias); 2859 2860 // Add 'dereferenceable' and 'alignment'. 2861 auto PTy = ParamType->getPointeeType(); 2862 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) { 2863 auto info = getContext().getTypeInfoInChars(PTy); 2864 Attrs.addDereferenceableAttr(info.Width.getQuantity()); 2865 Attrs.addAlignmentAttr(info.Align.getAsAlign()); 2866 } 2867 break; 2868 } 2869 2870 case ParameterABI::SwiftErrorResult: 2871 Attrs.addAttribute(llvm::Attribute::SwiftError); 2872 break; 2873 2874 case ParameterABI::SwiftContext: 2875 Attrs.addAttribute(llvm::Attribute::SwiftSelf); 2876 break; 2877 2878 case ParameterABI::SwiftAsyncContext: 2879 Attrs.addAttribute(llvm::Attribute::SwiftAsync); 2880 break; 2881 } 2882 2883 if (FI.getExtParameterInfo(ArgNo).isNoEscape()) 2884 Attrs.addCapturesAttr(llvm::CaptureInfo::none()); 2885 2886 if (Attrs.hasAttributes()) { 2887 unsigned FirstIRArg, NumIRArgs; 2888 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2889 for (unsigned i = 0; i < NumIRArgs; i++) 2890 ArgAttrs[FirstIRArg + i] = ArgAttrs[FirstIRArg + i].addAttributes( 2891 getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), Attrs)); 2892 } 2893 } 2894 assert(ArgNo == FI.arg_size()); 2895 2896 AttrList = llvm::AttributeList::get( 2897 getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs), 2898 llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs); 2899 } 2900 2901 /// An argument came in as a promoted argument; demote it back to its 2902 /// declared type. 2903 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF, 2904 const VarDecl *var, 2905 llvm::Value *value) { 2906 llvm::Type *varType = CGF.ConvertType(var->getType()); 2907 2908 // This can happen with promotions that actually don't change the 2909 // underlying type, like the enum promotions. 2910 if (value->getType() == varType) return value; 2911 2912 assert((varType->isIntegerTy() || varType->isFloatingPointTy()) 2913 && "unexpected promotion type"); 2914 2915 if (isa<llvm::IntegerType>(varType)) 2916 return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote"); 2917 2918 return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote"); 2919 } 2920 2921 /// Returns the attribute (either parameter attribute, or function 2922 /// attribute), which declares argument ArgNo to be non-null. 2923 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD, 2924 QualType ArgType, unsigned ArgNo) { 2925 // FIXME: __attribute__((nonnull)) can also be applied to: 2926 // - references to pointers, where the pointee is known to be 2927 // nonnull (apparently a Clang extension) 2928 // - transparent unions containing pointers 2929 // In the former case, LLVM IR cannot represent the constraint. In 2930 // the latter case, we have no guarantee that the transparent union 2931 // is in fact passed as a pointer. 2932 if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType()) 2933 return nullptr; 2934 // First, check attribute on parameter itself. 2935 if (PVD) { 2936 if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>()) 2937 return ParmNNAttr; 2938 } 2939 // Check function attributes. 2940 if (!FD) 2941 return nullptr; 2942 for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) { 2943 if (NNAttr->isNonNull(ArgNo)) 2944 return NNAttr; 2945 } 2946 return nullptr; 2947 } 2948 2949 namespace { 2950 struct CopyBackSwiftError final : EHScopeStack::Cleanup { 2951 Address Temp; 2952 Address Arg; 2953 CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {} 2954 void Emit(CodeGenFunction &CGF, Flags flags) override { 2955 llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp); 2956 CGF.Builder.CreateStore(errorValue, Arg); 2957 } 2958 }; 2959 } 2960 2961 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, 2962 llvm::Function *Fn, 2963 const FunctionArgList &Args) { 2964 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) 2965 // Naked functions don't have prologues. 2966 return; 2967 2968 // If this is an implicit-return-zero function, go ahead and 2969 // initialize the return value. TODO: it might be nice to have 2970 // a more general mechanism for this that didn't require synthesized 2971 // return statements. 2972 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) { 2973 if (FD->hasImplicitReturnZero()) { 2974 QualType RetTy = FD->getReturnType().getUnqualifiedType(); 2975 llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); 2976 llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); 2977 Builder.CreateStore(Zero, ReturnValue); 2978 } 2979 } 2980 2981 // FIXME: We no longer need the types from FunctionArgList; lift up and 2982 // simplify. 2983 2984 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI); 2985 assert(Fn->arg_size() == IRFunctionArgs.totalIRArgs()); 2986 2987 // If we're using inalloca, all the memory arguments are GEPs off of the last 2988 // parameter, which is a pointer to the complete memory area. 2989 Address ArgStruct = Address::invalid(); 2990 if (IRFunctionArgs.hasInallocaArg()) 2991 ArgStruct = Address(Fn->getArg(IRFunctionArgs.getInallocaArgNo()), 2992 FI.getArgStruct(), FI.getArgStructAlignment()); 2993 2994 // Name the struct return parameter. 2995 if (IRFunctionArgs.hasSRetArg()) { 2996 auto AI = Fn->getArg(IRFunctionArgs.getSRetArgNo()); 2997 AI->setName("agg.result"); 2998 AI->addAttr(llvm::Attribute::NoAlias); 2999 } 3000 3001 // Track if we received the parameter as a pointer (indirect, byval, or 3002 // inalloca). If already have a pointer, EmitParmDecl doesn't need to copy it 3003 // into a local alloca for us. 3004 SmallVector<ParamValue, 16> ArgVals; 3005 ArgVals.reserve(Args.size()); 3006 3007 // Create a pointer value for every parameter declaration. This usually 3008 // entails copying one or more LLVM IR arguments into an alloca. Don't push 3009 // any cleanups or do anything that might unwind. We do that separately, so 3010 // we can push the cleanups in the correct order for the ABI. 3011 assert(FI.arg_size() == Args.size() && 3012 "Mismatch between function signature & arguments."); 3013 unsigned ArgNo = 0; 3014 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); 3015 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 3016 i != e; ++i, ++info_it, ++ArgNo) { 3017 const VarDecl *Arg = *i; 3018 const ABIArgInfo &ArgI = info_it->info; 3019 3020 bool isPromoted = 3021 isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted(); 3022 // We are converting from ABIArgInfo type to VarDecl type directly, unless 3023 // the parameter is promoted. In this case we convert to 3024 // CGFunctionInfo::ArgInfo type with subsequent argument demotion. 3025 QualType Ty = isPromoted ? info_it->type : Arg->getType(); 3026 assert(hasScalarEvaluationKind(Ty) == 3027 hasScalarEvaluationKind(Arg->getType())); 3028 3029 unsigned FirstIRArg, NumIRArgs; 3030 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 3031 3032 switch (ArgI.getKind()) { 3033 case ABIArgInfo::InAlloca: { 3034 assert(NumIRArgs == 0); 3035 auto FieldIndex = ArgI.getInAllocaFieldIndex(); 3036 Address V = 3037 Builder.CreateStructGEP(ArgStruct, FieldIndex, Arg->getName()); 3038 if (ArgI.getInAllocaIndirect()) 3039 V = Address(Builder.CreateLoad(V), ConvertTypeForMem(Ty), 3040 getContext().getTypeAlignInChars(Ty)); 3041 ArgVals.push_back(ParamValue::forIndirect(V)); 3042 break; 3043 } 3044 3045 case ABIArgInfo::Indirect: 3046 case ABIArgInfo::IndirectAliased: { 3047 assert(NumIRArgs == 1); 3048 Address ParamAddr = makeNaturalAddressForPointer( 3049 Fn->getArg(FirstIRArg), Ty, ArgI.getIndirectAlign(), false, nullptr, 3050 nullptr, KnownNonNull); 3051 3052 if (!hasScalarEvaluationKind(Ty)) { 3053 // Aggregates and complex variables are accessed by reference. All we 3054 // need to do is realign the value, if requested. Also, if the address 3055 // may be aliased, copy it to ensure that the parameter variable is 3056 // mutable and has a unique adress, as C requires. 3057 if (ArgI.getIndirectRealign() || ArgI.isIndirectAliased()) { 3058 RawAddress AlignedTemp = CreateMemTemp(Ty, "coerce"); 3059 3060 // Copy from the incoming argument pointer to the temporary with the 3061 // appropriate alignment. 3062 // 3063 // FIXME: We should have a common utility for generating an aggregate 3064 // copy. 3065 CharUnits Size = getContext().getTypeSizeInChars(Ty); 3066 Builder.CreateMemCpy( 3067 AlignedTemp.getPointer(), AlignedTemp.getAlignment().getAsAlign(), 3068 ParamAddr.emitRawPointer(*this), 3069 ParamAddr.getAlignment().getAsAlign(), 3070 llvm::ConstantInt::get(IntPtrTy, Size.getQuantity())); 3071 ParamAddr = AlignedTemp; 3072 } 3073 ArgVals.push_back(ParamValue::forIndirect(ParamAddr)); 3074 } else { 3075 // Load scalar value from indirect argument. 3076 llvm::Value *V = 3077 EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc()); 3078 3079 if (isPromoted) 3080 V = emitArgumentDemotion(*this, Arg, V); 3081 ArgVals.push_back(ParamValue::forDirect(V)); 3082 } 3083 break; 3084 } 3085 3086 case ABIArgInfo::Extend: 3087 case ABIArgInfo::Direct: { 3088 auto AI = Fn->getArg(FirstIRArg); 3089 llvm::Type *LTy = ConvertType(Arg->getType()); 3090 3091 // Prepare parameter attributes. So far, only attributes for pointer 3092 // parameters are prepared. See 3093 // http://llvm.org/docs/LangRef.html#paramattrs. 3094 if (ArgI.getDirectOffset() == 0 && LTy->isPointerTy() && 3095 ArgI.getCoerceToType()->isPointerTy()) { 3096 assert(NumIRArgs == 1); 3097 3098 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) { 3099 // Set `nonnull` attribute if any. 3100 if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(), 3101 PVD->getFunctionScopeIndex()) && 3102 !CGM.getCodeGenOpts().NullPointerIsValid) 3103 AI->addAttr(llvm::Attribute::NonNull); 3104 3105 QualType OTy = PVD->getOriginalType(); 3106 if (const auto *ArrTy = 3107 getContext().getAsConstantArrayType(OTy)) { 3108 // A C99 array parameter declaration with the static keyword also 3109 // indicates dereferenceability, and if the size is constant we can 3110 // use the dereferenceable attribute (which requires the size in 3111 // bytes). 3112 if (ArrTy->getSizeModifier() == ArraySizeModifier::Static) { 3113 QualType ETy = ArrTy->getElementType(); 3114 llvm::Align Alignment = 3115 CGM.getNaturalTypeAlignment(ETy).getAsAlign(); 3116 AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr(Alignment)); 3117 uint64_t ArrSize = ArrTy->getZExtSize(); 3118 if (!ETy->isIncompleteType() && ETy->isConstantSizeType() && 3119 ArrSize) { 3120 llvm::AttrBuilder Attrs(getLLVMContext()); 3121 Attrs.addDereferenceableAttr( 3122 getContext().getTypeSizeInChars(ETy).getQuantity() * 3123 ArrSize); 3124 AI->addAttrs(Attrs); 3125 } else if (getContext().getTargetInfo().getNullPointerValue( 3126 ETy.getAddressSpace()) == 0 && 3127 !CGM.getCodeGenOpts().NullPointerIsValid) { 3128 AI->addAttr(llvm::Attribute::NonNull); 3129 } 3130 } 3131 } else if (const auto *ArrTy = 3132 getContext().getAsVariableArrayType(OTy)) { 3133 // For C99 VLAs with the static keyword, we don't know the size so 3134 // we can't use the dereferenceable attribute, but in addrspace(0) 3135 // we know that it must be nonnull. 3136 if (ArrTy->getSizeModifier() == ArraySizeModifier::Static) { 3137 QualType ETy = ArrTy->getElementType(); 3138 llvm::Align Alignment = 3139 CGM.getNaturalTypeAlignment(ETy).getAsAlign(); 3140 AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr(Alignment)); 3141 if (!getTypes().getTargetAddressSpace(ETy) && 3142 !CGM.getCodeGenOpts().NullPointerIsValid) 3143 AI->addAttr(llvm::Attribute::NonNull); 3144 } 3145 } 3146 3147 // Set `align` attribute if any. 3148 const auto *AVAttr = PVD->getAttr<AlignValueAttr>(); 3149 if (!AVAttr) 3150 if (const auto *TOTy = OTy->getAs<TypedefType>()) 3151 AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>(); 3152 if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) { 3153 // If alignment-assumption sanitizer is enabled, we do *not* add 3154 // alignment attribute here, but emit normal alignment assumption, 3155 // so the UBSAN check could function. 3156 llvm::ConstantInt *AlignmentCI = 3157 cast<llvm::ConstantInt>(EmitScalarExpr(AVAttr->getAlignment())); 3158 uint64_t AlignmentInt = 3159 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment); 3160 if (AI->getParamAlign().valueOrOne() < AlignmentInt) { 3161 AI->removeAttr(llvm::Attribute::AttrKind::Alignment); 3162 AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr( 3163 llvm::Align(AlignmentInt))); 3164 } 3165 } 3166 } 3167 3168 // Set 'noalias' if an argument type has the `restrict` qualifier. 3169 if (Arg->getType().isRestrictQualified()) 3170 AI->addAttr(llvm::Attribute::NoAlias); 3171 } 3172 3173 // Prepare the argument value. If we have the trivial case, handle it 3174 // with no muss and fuss. 3175 if (!isa<llvm::StructType>(ArgI.getCoerceToType()) && 3176 ArgI.getCoerceToType() == ConvertType(Ty) && 3177 ArgI.getDirectOffset() == 0) { 3178 assert(NumIRArgs == 1); 3179 3180 // LLVM expects swifterror parameters to be used in very restricted 3181 // ways. Copy the value into a less-restricted temporary. 3182 llvm::Value *V = AI; 3183 if (FI.getExtParameterInfo(ArgNo).getABI() 3184 == ParameterABI::SwiftErrorResult) { 3185 QualType pointeeTy = Ty->getPointeeType(); 3186 assert(pointeeTy->isPointerType()); 3187 RawAddress temp = 3188 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 3189 Address arg = makeNaturalAddressForPointer( 3190 V, pointeeTy, getContext().getTypeAlignInChars(pointeeTy)); 3191 llvm::Value *incomingErrorValue = Builder.CreateLoad(arg); 3192 Builder.CreateStore(incomingErrorValue, temp); 3193 V = temp.getPointer(); 3194 3195 // Push a cleanup to copy the value back at the end of the function. 3196 // The convention does not guarantee that the value will be written 3197 // back if the function exits with an unwind exception. 3198 EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg); 3199 } 3200 3201 // Ensure the argument is the correct type. 3202 if (V->getType() != ArgI.getCoerceToType()) 3203 V = Builder.CreateBitCast(V, ArgI.getCoerceToType()); 3204 3205 if (isPromoted) 3206 V = emitArgumentDemotion(*this, Arg, V); 3207 3208 // Because of merging of function types from multiple decls it is 3209 // possible for the type of an argument to not match the corresponding 3210 // type in the function type. Since we are codegening the callee 3211 // in here, add a cast to the argument type. 3212 llvm::Type *LTy = ConvertType(Arg->getType()); 3213 if (V->getType() != LTy) 3214 V = Builder.CreateBitCast(V, LTy); 3215 3216 ArgVals.push_back(ParamValue::forDirect(V)); 3217 break; 3218 } 3219 3220 // VLST arguments are coerced to VLATs at the function boundary for 3221 // ABI consistency. If this is a VLST that was coerced to 3222 // a VLAT at the function boundary and the types match up, use 3223 // llvm.vector.extract to convert back to the original VLST. 3224 if (auto *VecTyTo = dyn_cast<llvm::FixedVectorType>(ConvertType(Ty))) { 3225 llvm::Value *ArgVal = Fn->getArg(FirstIRArg); 3226 if (auto *VecTyFrom = 3227 dyn_cast<llvm::ScalableVectorType>(ArgVal->getType())) { 3228 auto [Coerced, Extracted] = CoerceScalableToFixed( 3229 *this, VecTyTo, VecTyFrom, ArgVal, Arg->getName()); 3230 if (Extracted) { 3231 assert(NumIRArgs == 1); 3232 ArgVals.push_back(ParamValue::forDirect(Coerced)); 3233 break; 3234 } 3235 } 3236 } 3237 3238 llvm::StructType *STy = 3239 dyn_cast<llvm::StructType>(ArgI.getCoerceToType()); 3240 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg), 3241 Arg->getName()); 3242 3243 // Pointer to store into. 3244 Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI); 3245 3246 // Fast-isel and the optimizer generally like scalar values better than 3247 // FCAs, so we flatten them if this is safe to do for this argument. 3248 if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy && 3249 STy->getNumElements() > 1) { 3250 llvm::TypeSize StructSize = CGM.getDataLayout().getTypeAllocSize(STy); 3251 llvm::TypeSize PtrElementSize = 3252 CGM.getDataLayout().getTypeAllocSize(Ptr.getElementType()); 3253 if (StructSize.isScalable()) { 3254 assert(STy->containsHomogeneousScalableVectorTypes() && 3255 "ABI only supports structure with homogeneous scalable vector " 3256 "type"); 3257 assert(StructSize == PtrElementSize && 3258 "Only allow non-fractional movement of structure with" 3259 "homogeneous scalable vector type"); 3260 assert(STy->getNumElements() == NumIRArgs); 3261 3262 llvm::Value *LoadedStructValue = llvm::PoisonValue::get(STy); 3263 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3264 auto *AI = Fn->getArg(FirstIRArg + i); 3265 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 3266 LoadedStructValue = 3267 Builder.CreateInsertValue(LoadedStructValue, AI, i); 3268 } 3269 3270 Builder.CreateStore(LoadedStructValue, Ptr); 3271 } else { 3272 uint64_t SrcSize = StructSize.getFixedValue(); 3273 uint64_t DstSize = PtrElementSize.getFixedValue(); 3274 3275 Address AddrToStoreInto = Address::invalid(); 3276 if (SrcSize <= DstSize) { 3277 AddrToStoreInto = Ptr.withElementType(STy); 3278 } else { 3279 AddrToStoreInto = 3280 CreateTempAlloca(STy, Alloca.getAlignment(), "coerce"); 3281 } 3282 3283 assert(STy->getNumElements() == NumIRArgs); 3284 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3285 auto AI = Fn->getArg(FirstIRArg + i); 3286 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 3287 Address EltPtr = Builder.CreateStructGEP(AddrToStoreInto, i); 3288 Builder.CreateStore(AI, EltPtr); 3289 } 3290 3291 if (SrcSize > DstSize) { 3292 Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize); 3293 } 3294 } 3295 } else { 3296 // Simple case, just do a coerced store of the argument into the alloca. 3297 assert(NumIRArgs == 1); 3298 auto AI = Fn->getArg(FirstIRArg); 3299 AI->setName(Arg->getName() + ".coerce"); 3300 CreateCoercedStore( 3301 AI, Ptr, 3302 llvm::TypeSize::getFixed( 3303 getContext().getTypeSizeInChars(Ty).getQuantity() - 3304 ArgI.getDirectOffset()), 3305 /*DstIsVolatile=*/false); 3306 } 3307 3308 // Match to what EmitParmDecl is expecting for this type. 3309 if (CodeGenFunction::hasScalarEvaluationKind(Ty)) { 3310 llvm::Value *V = 3311 EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc()); 3312 if (isPromoted) 3313 V = emitArgumentDemotion(*this, Arg, V); 3314 ArgVals.push_back(ParamValue::forDirect(V)); 3315 } else { 3316 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 3317 } 3318 break; 3319 } 3320 3321 case ABIArgInfo::CoerceAndExpand: { 3322 // Reconstruct into a temporary. 3323 Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 3324 ArgVals.push_back(ParamValue::forIndirect(alloca)); 3325 3326 auto coercionType = ArgI.getCoerceAndExpandType(); 3327 auto unpaddedCoercionType = ArgI.getUnpaddedCoerceAndExpandType(); 3328 auto *unpaddedStruct = dyn_cast<llvm::StructType>(unpaddedCoercionType); 3329 3330 alloca = alloca.withElementType(coercionType); 3331 3332 unsigned argIndex = FirstIRArg; 3333 unsigned unpaddedIndex = 0; 3334 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 3335 llvm::Type *eltType = coercionType->getElementType(i); 3336 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) 3337 continue; 3338 3339 auto eltAddr = Builder.CreateStructGEP(alloca, i); 3340 llvm::Value *elt = Fn->getArg(argIndex++); 3341 3342 auto paramType = unpaddedStruct 3343 ? unpaddedStruct->getElementType(unpaddedIndex++) 3344 : unpaddedCoercionType; 3345 3346 if (auto *VecTyTo = dyn_cast<llvm::FixedVectorType>(eltType)) { 3347 if (auto *VecTyFrom = dyn_cast<llvm::ScalableVectorType>(paramType)) { 3348 bool Extracted; 3349 std::tie(elt, Extracted) = CoerceScalableToFixed( 3350 *this, VecTyTo, VecTyFrom, elt, elt->getName()); 3351 assert(Extracted && "Unexpected scalable to fixed vector coercion"); 3352 } 3353 } 3354 Builder.CreateStore(elt, eltAddr); 3355 } 3356 assert(argIndex == FirstIRArg + NumIRArgs); 3357 break; 3358 } 3359 3360 case ABIArgInfo::Expand: { 3361 // If this structure was expanded into multiple arguments then 3362 // we need to create a temporary and reconstruct it from the 3363 // arguments. 3364 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 3365 LValue LV = MakeAddrLValue(Alloca, Ty); 3366 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 3367 3368 auto FnArgIter = Fn->arg_begin() + FirstIRArg; 3369 ExpandTypeFromArgs(Ty, LV, FnArgIter); 3370 assert(FnArgIter == Fn->arg_begin() + FirstIRArg + NumIRArgs); 3371 for (unsigned i = 0, e = NumIRArgs; i != e; ++i) { 3372 auto AI = Fn->getArg(FirstIRArg + i); 3373 AI->setName(Arg->getName() + "." + Twine(i)); 3374 } 3375 break; 3376 } 3377 3378 case ABIArgInfo::Ignore: 3379 assert(NumIRArgs == 0); 3380 // Initialize the local variable appropriately. 3381 if (!hasScalarEvaluationKind(Ty)) { 3382 ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty))); 3383 } else { 3384 llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType())); 3385 ArgVals.push_back(ParamValue::forDirect(U)); 3386 } 3387 break; 3388 } 3389 } 3390 3391 if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 3392 for (int I = Args.size() - 1; I >= 0; --I) 3393 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 3394 } else { 3395 for (unsigned I = 0, E = Args.size(); I != E; ++I) 3396 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 3397 } 3398 } 3399 3400 static void eraseUnusedBitCasts(llvm::Instruction *insn) { 3401 while (insn->use_empty()) { 3402 llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn); 3403 if (!bitcast) return; 3404 3405 // This is "safe" because we would have used a ConstantExpr otherwise. 3406 insn = cast<llvm::Instruction>(bitcast->getOperand(0)); 3407 bitcast->eraseFromParent(); 3408 } 3409 } 3410 3411 /// Try to emit a fused autorelease of a return result. 3412 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF, 3413 llvm::Value *result) { 3414 // We must be immediately followed the cast. 3415 llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock(); 3416 if (BB->empty()) return nullptr; 3417 if (&BB->back() != result) return nullptr; 3418 3419 llvm::Type *resultType = result->getType(); 3420 3421 // result is in a BasicBlock and is therefore an Instruction. 3422 llvm::Instruction *generator = cast<llvm::Instruction>(result); 3423 3424 SmallVector<llvm::Instruction *, 4> InstsToKill; 3425 3426 // Look for: 3427 // %generator = bitcast %type1* %generator2 to %type2* 3428 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) { 3429 // We would have emitted this as a constant if the operand weren't 3430 // an Instruction. 3431 generator = cast<llvm::Instruction>(bitcast->getOperand(0)); 3432 3433 // Require the generator to be immediately followed by the cast. 3434 if (generator->getNextNode() != bitcast) 3435 return nullptr; 3436 3437 InstsToKill.push_back(bitcast); 3438 } 3439 3440 // Look for: 3441 // %generator = call i8* @objc_retain(i8* %originalResult) 3442 // or 3443 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult) 3444 llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator); 3445 if (!call) return nullptr; 3446 3447 bool doRetainAutorelease; 3448 3449 if (call->getCalledOperand() == CGF.CGM.getObjCEntrypoints().objc_retain) { 3450 doRetainAutorelease = true; 3451 } else if (call->getCalledOperand() == 3452 CGF.CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue) { 3453 doRetainAutorelease = false; 3454 3455 // If we emitted an assembly marker for this call (and the 3456 // ARCEntrypoints field should have been set if so), go looking 3457 // for that call. If we can't find it, we can't do this 3458 // optimization. But it should always be the immediately previous 3459 // instruction, unless we needed bitcasts around the call. 3460 if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) { 3461 llvm::Instruction *prev = call->getPrevNode(); 3462 assert(prev); 3463 if (isa<llvm::BitCastInst>(prev)) { 3464 prev = prev->getPrevNode(); 3465 assert(prev); 3466 } 3467 assert(isa<llvm::CallInst>(prev)); 3468 assert(cast<llvm::CallInst>(prev)->getCalledOperand() == 3469 CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker); 3470 InstsToKill.push_back(prev); 3471 } 3472 } else { 3473 return nullptr; 3474 } 3475 3476 result = call->getArgOperand(0); 3477 InstsToKill.push_back(call); 3478 3479 // Keep killing bitcasts, for sanity. Note that we no longer care 3480 // about precise ordering as long as there's exactly one use. 3481 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) { 3482 if (!bitcast->hasOneUse()) break; 3483 InstsToKill.push_back(bitcast); 3484 result = bitcast->getOperand(0); 3485 } 3486 3487 // Delete all the unnecessary instructions, from latest to earliest. 3488 for (auto *I : InstsToKill) 3489 I->eraseFromParent(); 3490 3491 // Do the fused retain/autorelease if we were asked to. 3492 if (doRetainAutorelease) 3493 result = CGF.EmitARCRetainAutoreleaseReturnValue(result); 3494 3495 // Cast back to the result type. 3496 return CGF.Builder.CreateBitCast(result, resultType); 3497 } 3498 3499 /// If this is a +1 of the value of an immutable 'self', remove it. 3500 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF, 3501 llvm::Value *result) { 3502 // This is only applicable to a method with an immutable 'self'. 3503 const ObjCMethodDecl *method = 3504 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl); 3505 if (!method) return nullptr; 3506 const VarDecl *self = method->getSelfDecl(); 3507 if (!self->getType().isConstQualified()) return nullptr; 3508 3509 // Look for a retain call. Note: stripPointerCasts looks through returned arg 3510 // functions, which would cause us to miss the retain. 3511 llvm::CallInst *retainCall = dyn_cast<llvm::CallInst>(result); 3512 if (!retainCall || retainCall->getCalledOperand() != 3513 CGF.CGM.getObjCEntrypoints().objc_retain) 3514 return nullptr; 3515 3516 // Look for an ordinary load of 'self'. 3517 llvm::Value *retainedValue = retainCall->getArgOperand(0); 3518 llvm::LoadInst *load = 3519 dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts()); 3520 if (!load || load->isAtomic() || load->isVolatile() || 3521 load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getBasePointer()) 3522 return nullptr; 3523 3524 // Okay! Burn it all down. This relies for correctness on the 3525 // assumption that the retain is emitted as part of the return and 3526 // that thereafter everything is used "linearly". 3527 llvm::Type *resultType = result->getType(); 3528 eraseUnusedBitCasts(cast<llvm::Instruction>(result)); 3529 assert(retainCall->use_empty()); 3530 retainCall->eraseFromParent(); 3531 eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue)); 3532 3533 return CGF.Builder.CreateBitCast(load, resultType); 3534 } 3535 3536 /// Emit an ARC autorelease of the result of a function. 3537 /// 3538 /// \return the value to actually return from the function 3539 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF, 3540 llvm::Value *result) { 3541 // If we're returning 'self', kill the initial retain. This is a 3542 // heuristic attempt to "encourage correctness" in the really unfortunate 3543 // case where we have a return of self during a dealloc and we desperately 3544 // need to avoid the possible autorelease. 3545 if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result)) 3546 return self; 3547 3548 // At -O0, try to emit a fused retain/autorelease. 3549 if (CGF.shouldUseFusedARCCalls()) 3550 if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result)) 3551 return fused; 3552 3553 return CGF.EmitARCAutoreleaseReturnValue(result); 3554 } 3555 3556 /// Heuristically search for a dominating store to the return-value slot. 3557 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) { 3558 llvm::Value *ReturnValuePtr = CGF.ReturnValue.getBasePointer(); 3559 3560 // Check if a User is a store which pointerOperand is the ReturnValue. 3561 // We are looking for stores to the ReturnValue, not for stores of the 3562 // ReturnValue to some other location. 3563 auto GetStoreIfValid = [&CGF, 3564 ReturnValuePtr](llvm::User *U) -> llvm::StoreInst * { 3565 auto *SI = dyn_cast<llvm::StoreInst>(U); 3566 if (!SI || SI->getPointerOperand() != ReturnValuePtr || 3567 SI->getValueOperand()->getType() != CGF.ReturnValue.getElementType()) 3568 return nullptr; 3569 // These aren't actually possible for non-coerced returns, and we 3570 // only care about non-coerced returns on this code path. 3571 // All memory instructions inside __try block are volatile. 3572 assert(!SI->isAtomic() && 3573 (!SI->isVolatile() || CGF.currentFunctionUsesSEHTry())); 3574 return SI; 3575 }; 3576 // If there are multiple uses of the return-value slot, just check 3577 // for something immediately preceding the IP. Sometimes this can 3578 // happen with how we generate implicit-returns; it can also happen 3579 // with noreturn cleanups. 3580 if (!ReturnValuePtr->hasOneUse()) { 3581 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 3582 if (IP->empty()) return nullptr; 3583 3584 // Look at directly preceding instruction, skipping bitcasts, lifetime 3585 // markers, and fake uses and their operands. 3586 const llvm::Instruction *LoadIntoFakeUse = nullptr; 3587 for (llvm::Instruction &I : make_range(IP->rbegin(), IP->rend())) { 3588 // Ignore instructions that are just loads for fake uses; the load should 3589 // immediately precede the fake use, so we only need to remember the 3590 // operand for the last fake use seen. 3591 if (LoadIntoFakeUse == &I) 3592 continue; 3593 if (isa<llvm::BitCastInst>(&I)) 3594 continue; 3595 if (auto *II = dyn_cast<llvm::IntrinsicInst>(&I)) { 3596 if (II->getIntrinsicID() == llvm::Intrinsic::lifetime_end) 3597 continue; 3598 3599 if (II->getIntrinsicID() == llvm::Intrinsic::fake_use) { 3600 LoadIntoFakeUse = dyn_cast<llvm::Instruction>(II->getArgOperand(0)); 3601 continue; 3602 } 3603 } 3604 return GetStoreIfValid(&I); 3605 } 3606 return nullptr; 3607 } 3608 3609 llvm::StoreInst *store = GetStoreIfValid(ReturnValuePtr->user_back()); 3610 if (!store) return nullptr; 3611 3612 // Now do a first-and-dirty dominance check: just walk up the 3613 // single-predecessors chain from the current insertion point. 3614 llvm::BasicBlock *StoreBB = store->getParent(); 3615 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 3616 llvm::SmallPtrSet<llvm::BasicBlock *, 4> SeenBBs; 3617 while (IP != StoreBB) { 3618 if (!SeenBBs.insert(IP).second || !(IP = IP->getSinglePredecessor())) 3619 return nullptr; 3620 } 3621 3622 // Okay, the store's basic block dominates the insertion point; we 3623 // can do our thing. 3624 return store; 3625 } 3626 3627 // Helper functions for EmitCMSEClearRecord 3628 3629 // Set the bits corresponding to a field having width `BitWidth` and located at 3630 // offset `BitOffset` (from the least significant bit) within a storage unit of 3631 // `Bits.size()` bytes. Each element of `Bits` corresponds to one target byte. 3632 // Use little-endian layout, i.e.`Bits[0]` is the LSB. 3633 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int BitOffset, 3634 int BitWidth, int CharWidth) { 3635 assert(CharWidth <= 64); 3636 assert(static_cast<unsigned>(BitWidth) <= Bits.size() * CharWidth); 3637 3638 int Pos = 0; 3639 if (BitOffset >= CharWidth) { 3640 Pos += BitOffset / CharWidth; 3641 BitOffset = BitOffset % CharWidth; 3642 } 3643 3644 const uint64_t Used = (uint64_t(1) << CharWidth) - 1; 3645 if (BitOffset + BitWidth >= CharWidth) { 3646 Bits[Pos++] |= (Used << BitOffset) & Used; 3647 BitWidth -= CharWidth - BitOffset; 3648 BitOffset = 0; 3649 } 3650 3651 while (BitWidth >= CharWidth) { 3652 Bits[Pos++] = Used; 3653 BitWidth -= CharWidth; 3654 } 3655 3656 if (BitWidth > 0) 3657 Bits[Pos++] |= (Used >> (CharWidth - BitWidth)) << BitOffset; 3658 } 3659 3660 // Set the bits corresponding to a field having width `BitWidth` and located at 3661 // offset `BitOffset` (from the least significant bit) within a storage unit of 3662 // `StorageSize` bytes, located at `StorageOffset` in `Bits`. Each element of 3663 // `Bits` corresponds to one target byte. Use target endian layout. 3664 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int StorageOffset, 3665 int StorageSize, int BitOffset, int BitWidth, 3666 int CharWidth, bool BigEndian) { 3667 3668 SmallVector<uint64_t, 8> TmpBits(StorageSize); 3669 setBitRange(TmpBits, BitOffset, BitWidth, CharWidth); 3670 3671 if (BigEndian) 3672 std::reverse(TmpBits.begin(), TmpBits.end()); 3673 3674 for (uint64_t V : TmpBits) 3675 Bits[StorageOffset++] |= V; 3676 } 3677 3678 static void setUsedBits(CodeGenModule &, QualType, int, 3679 SmallVectorImpl<uint64_t> &); 3680 3681 // Set the bits in `Bits`, which correspond to the value representations of 3682 // the actual members of the record type `RTy`. Note that this function does 3683 // not handle base classes, virtual tables, etc, since they cannot happen in 3684 // CMSE function arguments or return. The bit mask corresponds to the target 3685 // memory layout, i.e. it's endian dependent. 3686 static void setUsedBits(CodeGenModule &CGM, const RecordType *RTy, int Offset, 3687 SmallVectorImpl<uint64_t> &Bits) { 3688 ASTContext &Context = CGM.getContext(); 3689 int CharWidth = Context.getCharWidth(); 3690 const RecordDecl *RD = RTy->getDecl()->getDefinition(); 3691 const ASTRecordLayout &ASTLayout = Context.getASTRecordLayout(RD); 3692 const CGRecordLayout &Layout = CGM.getTypes().getCGRecordLayout(RD); 3693 3694 int Idx = 0; 3695 for (auto I = RD->field_begin(), E = RD->field_end(); I != E; ++I, ++Idx) { 3696 const FieldDecl *F = *I; 3697 3698 if (F->isUnnamedBitField() || F->isZeroLengthBitField() || 3699 F->getType()->isIncompleteArrayType()) 3700 continue; 3701 3702 if (F->isBitField()) { 3703 const CGBitFieldInfo &BFI = Layout.getBitFieldInfo(F); 3704 setBitRange(Bits, Offset + BFI.StorageOffset.getQuantity(), 3705 BFI.StorageSize / CharWidth, BFI.Offset, 3706 BFI.Size, CharWidth, 3707 CGM.getDataLayout().isBigEndian()); 3708 continue; 3709 } 3710 3711 setUsedBits(CGM, F->getType(), 3712 Offset + ASTLayout.getFieldOffset(Idx) / CharWidth, Bits); 3713 } 3714 } 3715 3716 // Set the bits in `Bits`, which correspond to the value representations of 3717 // the elements of an array type `ATy`. 3718 static void setUsedBits(CodeGenModule &CGM, const ConstantArrayType *ATy, 3719 int Offset, SmallVectorImpl<uint64_t> &Bits) { 3720 const ASTContext &Context = CGM.getContext(); 3721 3722 QualType ETy = Context.getBaseElementType(ATy); 3723 int Size = Context.getTypeSizeInChars(ETy).getQuantity(); 3724 SmallVector<uint64_t, 4> TmpBits(Size); 3725 setUsedBits(CGM, ETy, 0, TmpBits); 3726 3727 for (int I = 0, N = Context.getConstantArrayElementCount(ATy); I < N; ++I) { 3728 auto Src = TmpBits.begin(); 3729 auto Dst = Bits.begin() + Offset + I * Size; 3730 for (int J = 0; J < Size; ++J) 3731 *Dst++ |= *Src++; 3732 } 3733 } 3734 3735 // Set the bits in `Bits`, which correspond to the value representations of 3736 // the type `QTy`. 3737 static void setUsedBits(CodeGenModule &CGM, QualType QTy, int Offset, 3738 SmallVectorImpl<uint64_t> &Bits) { 3739 if (const auto *RTy = QTy->getAs<RecordType>()) 3740 return setUsedBits(CGM, RTy, Offset, Bits); 3741 3742 ASTContext &Context = CGM.getContext(); 3743 if (const auto *ATy = Context.getAsConstantArrayType(QTy)) 3744 return setUsedBits(CGM, ATy, Offset, Bits); 3745 3746 int Size = Context.getTypeSizeInChars(QTy).getQuantity(); 3747 if (Size <= 0) 3748 return; 3749 3750 std::fill_n(Bits.begin() + Offset, Size, 3751 (uint64_t(1) << Context.getCharWidth()) - 1); 3752 } 3753 3754 static uint64_t buildMultiCharMask(const SmallVectorImpl<uint64_t> &Bits, 3755 int Pos, int Size, int CharWidth, 3756 bool BigEndian) { 3757 assert(Size > 0); 3758 uint64_t Mask = 0; 3759 if (BigEndian) { 3760 for (auto P = Bits.begin() + Pos, E = Bits.begin() + Pos + Size; P != E; 3761 ++P) 3762 Mask = (Mask << CharWidth) | *P; 3763 } else { 3764 auto P = Bits.begin() + Pos + Size, End = Bits.begin() + Pos; 3765 do 3766 Mask = (Mask << CharWidth) | *--P; 3767 while (P != End); 3768 } 3769 return Mask; 3770 } 3771 3772 // Emit code to clear the bits in a record, which aren't a part of any user 3773 // declared member, when the record is a function return. 3774 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src, 3775 llvm::IntegerType *ITy, 3776 QualType QTy) { 3777 assert(Src->getType() == ITy); 3778 assert(ITy->getScalarSizeInBits() <= 64); 3779 3780 const llvm::DataLayout &DataLayout = CGM.getDataLayout(); 3781 int Size = DataLayout.getTypeStoreSize(ITy); 3782 SmallVector<uint64_t, 4> Bits(Size); 3783 setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits); 3784 3785 int CharWidth = CGM.getContext().getCharWidth(); 3786 uint64_t Mask = 3787 buildMultiCharMask(Bits, 0, Size, CharWidth, DataLayout.isBigEndian()); 3788 3789 return Builder.CreateAnd(Src, Mask, "cmse.clear"); 3790 } 3791 3792 // Emit code to clear the bits in a record, which aren't a part of any user 3793 // declared member, when the record is a function argument. 3794 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src, 3795 llvm::ArrayType *ATy, 3796 QualType QTy) { 3797 const llvm::DataLayout &DataLayout = CGM.getDataLayout(); 3798 int Size = DataLayout.getTypeStoreSize(ATy); 3799 SmallVector<uint64_t, 16> Bits(Size); 3800 setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits); 3801 3802 // Clear each element of the LLVM array. 3803 int CharWidth = CGM.getContext().getCharWidth(); 3804 int CharsPerElt = 3805 ATy->getArrayElementType()->getScalarSizeInBits() / CharWidth; 3806 int MaskIndex = 0; 3807 llvm::Value *R = llvm::PoisonValue::get(ATy); 3808 for (int I = 0, N = ATy->getArrayNumElements(); I != N; ++I) { 3809 uint64_t Mask = buildMultiCharMask(Bits, MaskIndex, CharsPerElt, CharWidth, 3810 DataLayout.isBigEndian()); 3811 MaskIndex += CharsPerElt; 3812 llvm::Value *T0 = Builder.CreateExtractValue(Src, I); 3813 llvm::Value *T1 = Builder.CreateAnd(T0, Mask, "cmse.clear"); 3814 R = Builder.CreateInsertValue(R, T1, I); 3815 } 3816 3817 return R; 3818 } 3819 3820 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI, 3821 bool EmitRetDbgLoc, 3822 SourceLocation EndLoc) { 3823 if (FI.isNoReturn()) { 3824 // Noreturn functions don't return. 3825 EmitUnreachable(EndLoc); 3826 return; 3827 } 3828 3829 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) { 3830 // Naked functions don't have epilogues. 3831 Builder.CreateUnreachable(); 3832 return; 3833 } 3834 3835 // Functions with no result always return void. 3836 if (!ReturnValue.isValid()) { 3837 Builder.CreateRetVoid(); 3838 return; 3839 } 3840 3841 llvm::DebugLoc RetDbgLoc; 3842 llvm::Value *RV = nullptr; 3843 QualType RetTy = FI.getReturnType(); 3844 const ABIArgInfo &RetAI = FI.getReturnInfo(); 3845 3846 switch (RetAI.getKind()) { 3847 case ABIArgInfo::InAlloca: 3848 // Aggregates get evaluated directly into the destination. Sometimes we 3849 // need to return the sret value in a register, though. 3850 assert(hasAggregateEvaluationKind(RetTy)); 3851 if (RetAI.getInAllocaSRet()) { 3852 llvm::Function::arg_iterator EI = CurFn->arg_end(); 3853 --EI; 3854 llvm::Value *ArgStruct = &*EI; 3855 llvm::Value *SRet = Builder.CreateStructGEP( 3856 FI.getArgStruct(), ArgStruct, RetAI.getInAllocaFieldIndex()); 3857 llvm::Type *Ty = 3858 cast<llvm::GetElementPtrInst>(SRet)->getResultElementType(); 3859 RV = Builder.CreateAlignedLoad(Ty, SRet, getPointerAlign(), "sret"); 3860 } 3861 break; 3862 3863 case ABIArgInfo::Indirect: { 3864 auto AI = CurFn->arg_begin(); 3865 if (RetAI.isSRetAfterThis()) 3866 ++AI; 3867 switch (getEvaluationKind(RetTy)) { 3868 case TEK_Complex: { 3869 ComplexPairTy RT = 3870 EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc); 3871 EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy), 3872 /*isInit*/ true); 3873 break; 3874 } 3875 case TEK_Aggregate: 3876 // Do nothing; aggregates get evaluated directly into the destination. 3877 break; 3878 case TEK_Scalar: { 3879 LValueBaseInfo BaseInfo; 3880 TBAAAccessInfo TBAAInfo; 3881 CharUnits Alignment = 3882 CGM.getNaturalTypeAlignment(RetTy, &BaseInfo, &TBAAInfo); 3883 Address ArgAddr(&*AI, ConvertType(RetTy), Alignment); 3884 LValue ArgVal = 3885 LValue::MakeAddr(ArgAddr, RetTy, getContext(), BaseInfo, TBAAInfo); 3886 EmitStoreOfScalar( 3887 EmitLoadOfScalar(MakeAddrLValue(ReturnValue, RetTy), EndLoc), ArgVal, 3888 /*isInit*/ true); 3889 break; 3890 } 3891 } 3892 break; 3893 } 3894 3895 case ABIArgInfo::Extend: 3896 case ABIArgInfo::Direct: 3897 if (RetAI.getCoerceToType() == ConvertType(RetTy) && 3898 RetAI.getDirectOffset() == 0) { 3899 // The internal return value temp always will have pointer-to-return-type 3900 // type, just do a load. 3901 3902 // If there is a dominating store to ReturnValue, we can elide 3903 // the load, zap the store, and usually zap the alloca. 3904 if (llvm::StoreInst *SI = 3905 findDominatingStoreToReturnValue(*this)) { 3906 // Reuse the debug location from the store unless there is 3907 // cleanup code to be emitted between the store and return 3908 // instruction. 3909 if (EmitRetDbgLoc && !AutoreleaseResult) 3910 RetDbgLoc = SI->getDebugLoc(); 3911 // Get the stored value and nuke the now-dead store. 3912 RV = SI->getValueOperand(); 3913 SI->eraseFromParent(); 3914 3915 // Otherwise, we have to do a simple load. 3916 } else { 3917 RV = Builder.CreateLoad(ReturnValue); 3918 } 3919 } else { 3920 // If the value is offset in memory, apply the offset now. 3921 Address V = emitAddressAtOffset(*this, ReturnValue, RetAI); 3922 3923 RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this); 3924 } 3925 3926 // In ARC, end functions that return a retainable type with a call 3927 // to objc_autoreleaseReturnValue. 3928 if (AutoreleaseResult) { 3929 #ifndef NDEBUG 3930 // Type::isObjCRetainabletype has to be called on a QualType that hasn't 3931 // been stripped of the typedefs, so we cannot use RetTy here. Get the 3932 // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from 3933 // CurCodeDecl or BlockInfo. 3934 QualType RT; 3935 3936 if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl)) 3937 RT = FD->getReturnType(); 3938 else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl)) 3939 RT = MD->getReturnType(); 3940 else if (isa<BlockDecl>(CurCodeDecl)) 3941 RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType(); 3942 else 3943 llvm_unreachable("Unexpected function/method type"); 3944 3945 assert(getLangOpts().ObjCAutoRefCount && 3946 !FI.isReturnsRetained() && 3947 RT->isObjCRetainableType()); 3948 #endif 3949 RV = emitAutoreleaseOfResult(*this, RV); 3950 } 3951 3952 break; 3953 3954 case ABIArgInfo::Ignore: 3955 break; 3956 3957 case ABIArgInfo::CoerceAndExpand: { 3958 auto coercionType = RetAI.getCoerceAndExpandType(); 3959 auto unpaddedCoercionType = RetAI.getUnpaddedCoerceAndExpandType(); 3960 auto *unpaddedStruct = dyn_cast<llvm::StructType>(unpaddedCoercionType); 3961 3962 // Load all of the coerced elements out into results. 3963 llvm::SmallVector<llvm::Value*, 4> results; 3964 Address addr = ReturnValue.withElementType(coercionType); 3965 unsigned unpaddedIndex = 0; 3966 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 3967 auto coercedEltType = coercionType->getElementType(i); 3968 if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType)) 3969 continue; 3970 3971 auto eltAddr = Builder.CreateStructGEP(addr, i); 3972 llvm::Value *elt = CreateCoercedLoad( 3973 eltAddr, 3974 unpaddedStruct ? unpaddedStruct->getElementType(unpaddedIndex++) 3975 : unpaddedCoercionType, 3976 *this); 3977 results.push_back(elt); 3978 } 3979 3980 // If we have one result, it's the single direct result type. 3981 if (results.size() == 1) { 3982 RV = results[0]; 3983 3984 // Otherwise, we need to make a first-class aggregate. 3985 } else { 3986 // Construct a return type that lacks padding elements. 3987 llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType(); 3988 3989 RV = llvm::PoisonValue::get(returnType); 3990 for (unsigned i = 0, e = results.size(); i != e; ++i) { 3991 RV = Builder.CreateInsertValue(RV, results[i], i); 3992 } 3993 } 3994 break; 3995 } 3996 case ABIArgInfo::Expand: 3997 case ABIArgInfo::IndirectAliased: 3998 llvm_unreachable("Invalid ABI kind for return argument"); 3999 } 4000 4001 llvm::Instruction *Ret; 4002 if (RV) { 4003 if (CurFuncDecl && CurFuncDecl->hasAttr<CmseNSEntryAttr>()) { 4004 // For certain return types, clear padding bits, as they may reveal 4005 // sensitive information. 4006 // Small struct/union types are passed as integers. 4007 auto *ITy = dyn_cast<llvm::IntegerType>(RV->getType()); 4008 if (ITy != nullptr && isa<RecordType>(RetTy.getCanonicalType())) 4009 RV = EmitCMSEClearRecord(RV, ITy, RetTy); 4010 } 4011 EmitReturnValueCheck(RV); 4012 Ret = Builder.CreateRet(RV); 4013 } else { 4014 Ret = Builder.CreateRetVoid(); 4015 } 4016 4017 if (RetDbgLoc) 4018 Ret->setDebugLoc(std::move(RetDbgLoc)); 4019 } 4020 4021 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) { 4022 // A current decl may not be available when emitting vtable thunks. 4023 if (!CurCodeDecl) 4024 return; 4025 4026 // If the return block isn't reachable, neither is this check, so don't emit 4027 // it. 4028 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) 4029 return; 4030 4031 ReturnsNonNullAttr *RetNNAttr = nullptr; 4032 if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) 4033 RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>(); 4034 4035 if (!RetNNAttr && !requiresReturnValueNullabilityCheck()) 4036 return; 4037 4038 // Prefer the returns_nonnull attribute if it's present. 4039 SourceLocation AttrLoc; 4040 SanitizerKind::SanitizerOrdinal CheckKind; 4041 SanitizerHandler Handler; 4042 if (RetNNAttr) { 4043 assert(!requiresReturnValueNullabilityCheck() && 4044 "Cannot check nullability and the nonnull attribute"); 4045 AttrLoc = RetNNAttr->getLocation(); 4046 CheckKind = SanitizerKind::SO_ReturnsNonnullAttribute; 4047 Handler = SanitizerHandler::NonnullReturn; 4048 } else { 4049 if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl)) 4050 if (auto *TSI = DD->getTypeSourceInfo()) 4051 if (auto FTL = TSI->getTypeLoc().getAsAdjusted<FunctionTypeLoc>()) 4052 AttrLoc = FTL.getReturnLoc().findNullabilityLoc(); 4053 CheckKind = SanitizerKind::SO_NullabilityReturn; 4054 Handler = SanitizerHandler::NullabilityReturn; 4055 } 4056 4057 SanitizerScope SanScope(this); 4058 4059 // Make sure the "return" source location is valid. If we're checking a 4060 // nullability annotation, make sure the preconditions for the check are met. 4061 llvm::BasicBlock *Check = createBasicBlock("nullcheck"); 4062 llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck"); 4063 llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load"); 4064 llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr); 4065 if (requiresReturnValueNullabilityCheck()) 4066 CanNullCheck = 4067 Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition); 4068 Builder.CreateCondBr(CanNullCheck, Check, NoCheck); 4069 EmitBlock(Check); 4070 4071 // Now do the null check. 4072 llvm::Value *Cond = Builder.CreateIsNotNull(RV); 4073 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)}; 4074 llvm::Value *DynamicData[] = {SLocPtr}; 4075 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData); 4076 4077 EmitBlock(NoCheck); 4078 4079 #ifndef NDEBUG 4080 // The return location should not be used after the check has been emitted. 4081 ReturnLocation = Address::invalid(); 4082 #endif 4083 } 4084 4085 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) { 4086 const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); 4087 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; 4088 } 4089 4090 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF, 4091 QualType Ty) { 4092 // FIXME: Generate IR in one pass, rather than going back and fixing up these 4093 // placeholders. 4094 llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty); 4095 llvm::Type *IRPtrTy = llvm::PointerType::getUnqual(CGF.getLLVMContext()); 4096 llvm::Value *Placeholder = llvm::PoisonValue::get(IRPtrTy); 4097 4098 // FIXME: When we generate this IR in one pass, we shouldn't need 4099 // this win32-specific alignment hack. 4100 CharUnits Align = CharUnits::fromQuantity(4); 4101 Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align); 4102 4103 return AggValueSlot::forAddr(Address(Placeholder, IRTy, Align), 4104 Ty.getQualifiers(), 4105 AggValueSlot::IsNotDestructed, 4106 AggValueSlot::DoesNotNeedGCBarriers, 4107 AggValueSlot::IsNotAliased, 4108 AggValueSlot::DoesNotOverlap); 4109 } 4110 4111 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args, 4112 const VarDecl *param, 4113 SourceLocation loc) { 4114 // StartFunction converted the ABI-lowered parameter(s) into a 4115 // local alloca. We need to turn that into an r-value suitable 4116 // for EmitCall. 4117 Address local = GetAddrOfLocalVar(param); 4118 4119 QualType type = param->getType(); 4120 4121 // GetAddrOfLocalVar returns a pointer-to-pointer for references, 4122 // but the argument needs to be the original pointer. 4123 if (type->isReferenceType()) { 4124 args.add(RValue::get(Builder.CreateLoad(local)), type); 4125 4126 // In ARC, move out of consumed arguments so that the release cleanup 4127 // entered by StartFunction doesn't cause an over-release. This isn't 4128 // optimal -O0 code generation, but it should get cleaned up when 4129 // optimization is enabled. This also assumes that delegate calls are 4130 // performed exactly once for a set of arguments, but that should be safe. 4131 } else if (getLangOpts().ObjCAutoRefCount && 4132 param->hasAttr<NSConsumedAttr>() && 4133 type->isObjCRetainableType()) { 4134 llvm::Value *ptr = Builder.CreateLoad(local); 4135 auto null = 4136 llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType())); 4137 Builder.CreateStore(null, local); 4138 args.add(RValue::get(ptr), type); 4139 4140 // For the most part, we just need to load the alloca, except that 4141 // aggregate r-values are actually pointers to temporaries. 4142 } else { 4143 args.add(convertTempToRValue(local, type, loc), type); 4144 } 4145 4146 // Deactivate the cleanup for the callee-destructed param that was pushed. 4147 if (type->isRecordType() && !CurFuncIsThunk && 4148 type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee() && 4149 param->needsDestruction(getContext())) { 4150 EHScopeStack::stable_iterator cleanup = 4151 CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param)); 4152 assert(cleanup.isValid() && 4153 "cleanup for callee-destructed param not recorded"); 4154 // This unreachable is a temporary marker which will be removed later. 4155 llvm::Instruction *isActive = Builder.CreateUnreachable(); 4156 args.addArgCleanupDeactivation(cleanup, isActive); 4157 } 4158 } 4159 4160 static bool isProvablyNull(llvm::Value *addr) { 4161 return llvm::isa_and_nonnull<llvm::ConstantPointerNull>(addr); 4162 } 4163 4164 static bool isProvablyNonNull(Address Addr, CodeGenFunction &CGF) { 4165 return llvm::isKnownNonZero(Addr.getBasePointer(), CGF.CGM.getDataLayout()); 4166 } 4167 4168 /// Emit the actual writing-back of a writeback. 4169 static void emitWriteback(CodeGenFunction &CGF, 4170 const CallArgList::Writeback &writeback) { 4171 const LValue &srcLV = writeback.Source; 4172 Address srcAddr = srcLV.getAddress(); 4173 assert(!isProvablyNull(srcAddr.getBasePointer()) && 4174 "shouldn't have writeback for provably null argument"); 4175 4176 if (writeback.WritebackExpr) { 4177 CGF.EmitIgnoredExpr(writeback.WritebackExpr); 4178 4179 if (writeback.LifetimeSz) 4180 CGF.EmitLifetimeEnd(writeback.LifetimeSz, 4181 writeback.Temporary.getBasePointer()); 4182 return; 4183 } 4184 4185 llvm::BasicBlock *contBB = nullptr; 4186 4187 // If the argument wasn't provably non-null, we need to null check 4188 // before doing the store. 4189 bool provablyNonNull = isProvablyNonNull(srcAddr, CGF); 4190 4191 if (!provablyNonNull) { 4192 llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback"); 4193 contBB = CGF.createBasicBlock("icr.done"); 4194 4195 llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull"); 4196 CGF.Builder.CreateCondBr(isNull, contBB, writebackBB); 4197 CGF.EmitBlock(writebackBB); 4198 } 4199 4200 // Load the value to writeback. 4201 llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary); 4202 4203 // Cast it back, in case we're writing an id to a Foo* or something. 4204 value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(), 4205 "icr.writeback-cast"); 4206 4207 // Perform the writeback. 4208 4209 // If we have a "to use" value, it's something we need to emit a use 4210 // of. This has to be carefully threaded in: if it's done after the 4211 // release it's potentially undefined behavior (and the optimizer 4212 // will ignore it), and if it happens before the retain then the 4213 // optimizer could move the release there. 4214 if (writeback.ToUse) { 4215 assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong); 4216 4217 // Retain the new value. No need to block-copy here: the block's 4218 // being passed up the stack. 4219 value = CGF.EmitARCRetainNonBlock(value); 4220 4221 // Emit the intrinsic use here. 4222 CGF.EmitARCIntrinsicUse(writeback.ToUse); 4223 4224 // Load the old value (primitively). 4225 llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation()); 4226 4227 // Put the new value in place (primitively). 4228 CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false); 4229 4230 // Release the old value. 4231 CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime()); 4232 4233 // Otherwise, we can just do a normal lvalue store. 4234 } else { 4235 CGF.EmitStoreThroughLValue(RValue::get(value), srcLV); 4236 } 4237 4238 // Jump to the continuation block. 4239 if (!provablyNonNull) 4240 CGF.EmitBlock(contBB); 4241 } 4242 4243 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF, 4244 const CallArgList &CallArgs) { 4245 ArrayRef<CallArgList::CallArgCleanup> Cleanups = 4246 CallArgs.getCleanupsToDeactivate(); 4247 // Iterate in reverse to increase the likelihood of popping the cleanup. 4248 for (const auto &I : llvm::reverse(Cleanups)) { 4249 CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP); 4250 I.IsActiveIP->eraseFromParent(); 4251 } 4252 } 4253 4254 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) { 4255 if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens())) 4256 if (uop->getOpcode() == UO_AddrOf) 4257 return uop->getSubExpr(); 4258 return nullptr; 4259 } 4260 4261 /// Emit an argument that's being passed call-by-writeback. That is, 4262 /// we are passing the address of an __autoreleased temporary; it 4263 /// might be copy-initialized with the current value of the given 4264 /// address, but it will definitely be copied out of after the call. 4265 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args, 4266 const ObjCIndirectCopyRestoreExpr *CRE) { 4267 LValue srcLV; 4268 4269 // Make an optimistic effort to emit the address as an l-value. 4270 // This can fail if the argument expression is more complicated. 4271 if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) { 4272 srcLV = CGF.EmitLValue(lvExpr); 4273 4274 // Otherwise, just emit it as a scalar. 4275 } else { 4276 Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr()); 4277 4278 QualType srcAddrType = 4279 CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType(); 4280 srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType); 4281 } 4282 Address srcAddr = srcLV.getAddress(); 4283 4284 // The dest and src types don't necessarily match in LLVM terms 4285 // because of the crazy ObjC compatibility rules. 4286 4287 llvm::PointerType *destType = 4288 cast<llvm::PointerType>(CGF.ConvertType(CRE->getType())); 4289 llvm::Type *destElemType = 4290 CGF.ConvertTypeForMem(CRE->getType()->getPointeeType()); 4291 4292 // If the address is a constant null, just pass the appropriate null. 4293 if (isProvablyNull(srcAddr.getBasePointer())) { 4294 args.add(RValue::get(llvm::ConstantPointerNull::get(destType)), 4295 CRE->getType()); 4296 return; 4297 } 4298 4299 // Create the temporary. 4300 Address temp = 4301 CGF.CreateTempAlloca(destElemType, CGF.getPointerAlign(), "icr.temp"); 4302 // Loading an l-value can introduce a cleanup if the l-value is __weak, 4303 // and that cleanup will be conditional if we can't prove that the l-value 4304 // isn't null, so we need to register a dominating point so that the cleanups 4305 // system will make valid IR. 4306 CodeGenFunction::ConditionalEvaluation condEval(CGF); 4307 4308 // Zero-initialize it if we're not doing a copy-initialization. 4309 bool shouldCopy = CRE->shouldCopy(); 4310 if (!shouldCopy) { 4311 llvm::Value *null = 4312 llvm::ConstantPointerNull::get(cast<llvm::PointerType>(destElemType)); 4313 CGF.Builder.CreateStore(null, temp); 4314 } 4315 4316 llvm::BasicBlock *contBB = nullptr; 4317 llvm::BasicBlock *originBB = nullptr; 4318 4319 // If the address is *not* known to be non-null, we need to switch. 4320 llvm::Value *finalArgument; 4321 4322 bool provablyNonNull = isProvablyNonNull(srcAddr, CGF); 4323 4324 if (provablyNonNull) { 4325 finalArgument = temp.emitRawPointer(CGF); 4326 } else { 4327 llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull"); 4328 4329 finalArgument = CGF.Builder.CreateSelect( 4330 isNull, llvm::ConstantPointerNull::get(destType), 4331 temp.emitRawPointer(CGF), "icr.argument"); 4332 4333 // If we need to copy, then the load has to be conditional, which 4334 // means we need control flow. 4335 if (shouldCopy) { 4336 originBB = CGF.Builder.GetInsertBlock(); 4337 contBB = CGF.createBasicBlock("icr.cont"); 4338 llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy"); 4339 CGF.Builder.CreateCondBr(isNull, contBB, copyBB); 4340 CGF.EmitBlock(copyBB); 4341 condEval.begin(CGF); 4342 } 4343 } 4344 4345 llvm::Value *valueToUse = nullptr; 4346 4347 // Perform a copy if necessary. 4348 if (shouldCopy) { 4349 RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation()); 4350 assert(srcRV.isScalar()); 4351 4352 llvm::Value *src = srcRV.getScalarVal(); 4353 src = CGF.Builder.CreateBitCast(src, destElemType, "icr.cast"); 4354 4355 // Use an ordinary store, not a store-to-lvalue. 4356 CGF.Builder.CreateStore(src, temp); 4357 4358 // If optimization is enabled, and the value was held in a 4359 // __strong variable, we need to tell the optimizer that this 4360 // value has to stay alive until we're doing the store back. 4361 // This is because the temporary is effectively unretained, 4362 // and so otherwise we can violate the high-level semantics. 4363 if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 && 4364 srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) { 4365 valueToUse = src; 4366 } 4367 } 4368 4369 // Finish the control flow if we needed it. 4370 if (shouldCopy && !provablyNonNull) { 4371 llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock(); 4372 CGF.EmitBlock(contBB); 4373 4374 // Make a phi for the value to intrinsically use. 4375 if (valueToUse) { 4376 llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2, 4377 "icr.to-use"); 4378 phiToUse->addIncoming(valueToUse, copyBB); 4379 phiToUse->addIncoming(llvm::PoisonValue::get(valueToUse->getType()), 4380 originBB); 4381 valueToUse = phiToUse; 4382 } 4383 4384 condEval.end(CGF); 4385 } 4386 4387 args.addWriteback(srcLV, temp, valueToUse); 4388 args.add(RValue::get(finalArgument), CRE->getType()); 4389 } 4390 4391 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) { 4392 assert(!StackBase); 4393 4394 // Save the stack. 4395 StackBase = CGF.Builder.CreateStackSave("inalloca.save"); 4396 } 4397 4398 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const { 4399 if (StackBase) { 4400 // Restore the stack after the call. 4401 CGF.Builder.CreateStackRestore(StackBase); 4402 } 4403 } 4404 4405 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType, 4406 SourceLocation ArgLoc, 4407 AbstractCallee AC, 4408 unsigned ParmNum) { 4409 if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) || 4410 SanOpts.has(SanitizerKind::NullabilityArg))) 4411 return; 4412 4413 // The param decl may be missing in a variadic function. 4414 auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr; 4415 unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum; 4416 4417 // Prefer the nonnull attribute if it's present. 4418 const NonNullAttr *NNAttr = nullptr; 4419 if (SanOpts.has(SanitizerKind::NonnullAttribute)) 4420 NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo); 4421 4422 bool CanCheckNullability = false; 4423 if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD && 4424 !PVD->getType()->isRecordType()) { 4425 auto Nullability = PVD->getType()->getNullability(); 4426 CanCheckNullability = Nullability && 4427 *Nullability == NullabilityKind::NonNull && 4428 PVD->getTypeSourceInfo(); 4429 } 4430 4431 if (!NNAttr && !CanCheckNullability) 4432 return; 4433 4434 SourceLocation AttrLoc; 4435 SanitizerKind::SanitizerOrdinal CheckKind; 4436 SanitizerHandler Handler; 4437 if (NNAttr) { 4438 AttrLoc = NNAttr->getLocation(); 4439 CheckKind = SanitizerKind::SO_NonnullAttribute; 4440 Handler = SanitizerHandler::NonnullArg; 4441 } else { 4442 AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc(); 4443 CheckKind = SanitizerKind::SO_NullabilityArg; 4444 Handler = SanitizerHandler::NullabilityArg; 4445 } 4446 4447 SanitizerScope SanScope(this); 4448 llvm::Value *Cond = EmitNonNullRValueCheck(RV, ArgType); 4449 llvm::Constant *StaticData[] = { 4450 EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc), 4451 llvm::ConstantInt::get(Int32Ty, ArgNo + 1), 4452 }; 4453 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, {}); 4454 } 4455 4456 void CodeGenFunction::EmitNonNullArgCheck(Address Addr, QualType ArgType, 4457 SourceLocation ArgLoc, 4458 AbstractCallee AC, unsigned ParmNum) { 4459 if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) || 4460 SanOpts.has(SanitizerKind::NullabilityArg))) 4461 return; 4462 4463 EmitNonNullArgCheck(RValue::get(Addr, *this), ArgType, ArgLoc, AC, ParmNum); 4464 } 4465 4466 // Check if the call is going to use the inalloca convention. This needs to 4467 // agree with CGFunctionInfo::usesInAlloca. The CGFunctionInfo is arranged 4468 // later, so we can't check it directly. 4469 static bool hasInAllocaArgs(CodeGenModule &CGM, CallingConv ExplicitCC, 4470 ArrayRef<QualType> ArgTypes) { 4471 // The Swift calling conventions don't go through the target-specific 4472 // argument classification, they never use inalloca. 4473 // TODO: Consider limiting inalloca use to only calling conventions supported 4474 // by MSVC. 4475 if (ExplicitCC == CC_Swift || ExplicitCC == CC_SwiftAsync) 4476 return false; 4477 if (!CGM.getTarget().getCXXABI().isMicrosoft()) 4478 return false; 4479 return llvm::any_of(ArgTypes, [&](QualType Ty) { 4480 return isInAllocaArgument(CGM.getCXXABI(), Ty); 4481 }); 4482 } 4483 4484 #ifndef NDEBUG 4485 // Determine whether the given argument is an Objective-C method 4486 // that may have type parameters in its signature. 4487 static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) { 4488 const DeclContext *dc = method->getDeclContext(); 4489 if (const ObjCInterfaceDecl *classDecl = dyn_cast<ObjCInterfaceDecl>(dc)) { 4490 return classDecl->getTypeParamListAsWritten(); 4491 } 4492 4493 if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) { 4494 return catDecl->getTypeParamList(); 4495 } 4496 4497 return false; 4498 } 4499 #endif 4500 4501 /// EmitCallArgs - Emit call arguments for a function. 4502 void CodeGenFunction::EmitCallArgs( 4503 CallArgList &Args, PrototypeWrapper Prototype, 4504 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 4505 AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) { 4506 SmallVector<QualType, 16> ArgTypes; 4507 4508 assert((ParamsToSkip == 0 || Prototype.P) && 4509 "Can't skip parameters if type info is not provided"); 4510 4511 // This variable only captures *explicitly* written conventions, not those 4512 // applied by default via command line flags or target defaults, such as 4513 // thiscall, aapcs, stdcall via -mrtd, etc. Computing that correctly would 4514 // require knowing if this is a C++ instance method or being able to see 4515 // unprototyped FunctionTypes. 4516 CallingConv ExplicitCC = CC_C; 4517 4518 // First, if a prototype was provided, use those argument types. 4519 bool IsVariadic = false; 4520 if (Prototype.P) { 4521 const auto *MD = dyn_cast<const ObjCMethodDecl *>(Prototype.P); 4522 if (MD) { 4523 IsVariadic = MD->isVariadic(); 4524 ExplicitCC = getCallingConventionForDecl( 4525 MD, CGM.getTarget().getTriple().isOSWindows()); 4526 ArgTypes.assign(MD->param_type_begin() + ParamsToSkip, 4527 MD->param_type_end()); 4528 } else { 4529 const auto *FPT = cast<const FunctionProtoType *>(Prototype.P); 4530 IsVariadic = FPT->isVariadic(); 4531 ExplicitCC = FPT->getExtInfo().getCC(); 4532 ArgTypes.assign(FPT->param_type_begin() + ParamsToSkip, 4533 FPT->param_type_end()); 4534 } 4535 4536 #ifndef NDEBUG 4537 // Check that the prototyped types match the argument expression types. 4538 bool isGenericMethod = MD && isObjCMethodWithTypeParams(MD); 4539 CallExpr::const_arg_iterator Arg = ArgRange.begin(); 4540 for (QualType Ty : ArgTypes) { 4541 assert(Arg != ArgRange.end() && "Running over edge of argument list!"); 4542 assert( 4543 (isGenericMethod || Ty->isVariablyModifiedType() || 4544 Ty.getNonReferenceType()->isObjCRetainableType() || 4545 getContext() 4546 .getCanonicalType(Ty.getNonReferenceType()) 4547 .getTypePtr() == 4548 getContext().getCanonicalType((*Arg)->getType()).getTypePtr()) && 4549 "type mismatch in call argument!"); 4550 ++Arg; 4551 } 4552 4553 // Either we've emitted all the call args, or we have a call to variadic 4554 // function. 4555 assert((Arg == ArgRange.end() || IsVariadic) && 4556 "Extra arguments in non-variadic function!"); 4557 #endif 4558 } 4559 4560 // If we still have any arguments, emit them using the type of the argument. 4561 for (auto *A : llvm::drop_begin(ArgRange, ArgTypes.size())) 4562 ArgTypes.push_back(IsVariadic ? getVarArgType(A) : A->getType()); 4563 assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin())); 4564 4565 // We must evaluate arguments from right to left in the MS C++ ABI, 4566 // because arguments are destroyed left to right in the callee. As a special 4567 // case, there are certain language constructs that require left-to-right 4568 // evaluation, and in those cases we consider the evaluation order requirement 4569 // to trump the "destruction order is reverse construction order" guarantee. 4570 bool LeftToRight = 4571 CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee() 4572 ? Order == EvaluationOrder::ForceLeftToRight 4573 : Order != EvaluationOrder::ForceRightToLeft; 4574 4575 auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg, 4576 RValue EmittedArg) { 4577 if (!AC.hasFunctionDecl() || I >= AC.getNumParams()) 4578 return; 4579 auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>(); 4580 if (PS == nullptr) 4581 return; 4582 4583 const auto &Context = getContext(); 4584 auto SizeTy = Context.getSizeType(); 4585 auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy)); 4586 assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?"); 4587 llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T, 4588 EmittedArg.getScalarVal(), 4589 PS->isDynamic()); 4590 Args.add(RValue::get(V), SizeTy); 4591 // If we're emitting args in reverse, be sure to do so with 4592 // pass_object_size, as well. 4593 if (!LeftToRight) 4594 std::swap(Args.back(), *(&Args.back() - 1)); 4595 }; 4596 4597 // Insert a stack save if we're going to need any inalloca args. 4598 if (hasInAllocaArgs(CGM, ExplicitCC, ArgTypes)) { 4599 assert(getTarget().getTriple().getArch() == llvm::Triple::x86 && 4600 "inalloca only supported on x86"); 4601 Args.allocateArgumentMemory(*this); 4602 } 4603 4604 // Evaluate each argument in the appropriate order. 4605 size_t CallArgsStart = Args.size(); 4606 for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) { 4607 unsigned Idx = LeftToRight ? I : E - I - 1; 4608 CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx; 4609 unsigned InitialArgSize = Args.size(); 4610 // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of 4611 // the argument and parameter match or the objc method is parameterized. 4612 assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) || 4613 getContext().hasSameUnqualifiedType((*Arg)->getType(), 4614 ArgTypes[Idx]) || 4615 (isa<ObjCMethodDecl>(AC.getDecl()) && 4616 isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) && 4617 "Argument and parameter types don't match"); 4618 EmitCallArg(Args, *Arg, ArgTypes[Idx]); 4619 // In particular, we depend on it being the last arg in Args, and the 4620 // objectsize bits depend on there only being one arg if !LeftToRight. 4621 assert(InitialArgSize + 1 == Args.size() && 4622 "The code below depends on only adding one arg per EmitCallArg"); 4623 (void)InitialArgSize; 4624 // Since pointer argument are never emitted as LValue, it is safe to emit 4625 // non-null argument check for r-value only. 4626 if (!Args.back().hasLValue()) { 4627 RValue RVArg = Args.back().getKnownRValue(); 4628 EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC, 4629 ParamsToSkip + Idx); 4630 // @llvm.objectsize should never have side-effects and shouldn't need 4631 // destruction/cleanups, so we can safely "emit" it after its arg, 4632 // regardless of right-to-leftness 4633 MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg); 4634 } 4635 } 4636 4637 if (!LeftToRight) { 4638 // Un-reverse the arguments we just evaluated so they match up with the LLVM 4639 // IR function. 4640 std::reverse(Args.begin() + CallArgsStart, Args.end()); 4641 4642 // Reverse the writebacks to match the MSVC ABI. 4643 Args.reverseWritebacks(); 4644 } 4645 } 4646 4647 namespace { 4648 4649 struct DestroyUnpassedArg final : EHScopeStack::Cleanup { 4650 DestroyUnpassedArg(Address Addr, QualType Ty) 4651 : Addr(Addr), Ty(Ty) {} 4652 4653 Address Addr; 4654 QualType Ty; 4655 4656 void Emit(CodeGenFunction &CGF, Flags flags) override { 4657 QualType::DestructionKind DtorKind = Ty.isDestructedType(); 4658 if (DtorKind == QualType::DK_cxx_destructor) { 4659 const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor(); 4660 assert(!Dtor->isTrivial()); 4661 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false, 4662 /*Delegating=*/false, Addr, Ty); 4663 } else { 4664 CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty)); 4665 } 4666 } 4667 }; 4668 4669 struct DisableDebugLocationUpdates { 4670 CodeGenFunction &CGF; 4671 bool disabledDebugInfo; 4672 DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) { 4673 if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo())) 4674 CGF.disableDebugInfo(); 4675 } 4676 ~DisableDebugLocationUpdates() { 4677 if (disabledDebugInfo) 4678 CGF.enableDebugInfo(); 4679 } 4680 }; 4681 4682 } // end anonymous namespace 4683 4684 RValue CallArg::getRValue(CodeGenFunction &CGF) const { 4685 if (!HasLV) 4686 return RV; 4687 LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty); 4688 CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap, 4689 LV.isVolatile()); 4690 IsUsed = true; 4691 return RValue::getAggregate(Copy.getAddress()); 4692 } 4693 4694 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const { 4695 LValue Dst = CGF.MakeAddrLValue(Addr, Ty); 4696 if (!HasLV && RV.isScalar()) 4697 CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*isInit=*/true); 4698 else if (!HasLV && RV.isComplex()) 4699 CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true); 4700 else { 4701 auto Addr = HasLV ? LV.getAddress() : RV.getAggregateAddress(); 4702 LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty); 4703 // We assume that call args are never copied into subobjects. 4704 CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap, 4705 HasLV ? LV.isVolatileQualified() 4706 : RV.isVolatileQualified()); 4707 } 4708 IsUsed = true; 4709 } 4710 4711 void CodeGenFunction::EmitWritebacks(const CallArgList &args) { 4712 for (const auto &I : args.writebacks()) 4713 emitWriteback(*this, I); 4714 } 4715 4716 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E, 4717 QualType type) { 4718 DisableDebugLocationUpdates Dis(*this, E); 4719 if (const ObjCIndirectCopyRestoreExpr *CRE 4720 = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) { 4721 assert(getLangOpts().ObjCAutoRefCount); 4722 return emitWritebackArg(*this, args, CRE); 4723 } 4724 4725 // Add writeback for HLSLOutParamExpr. 4726 // Needs to be before the assert below because HLSLOutArgExpr is an LValue 4727 // and is not a reference. 4728 if (const HLSLOutArgExpr *OE = dyn_cast<HLSLOutArgExpr>(E)) { 4729 EmitHLSLOutArgExpr(OE, args, type); 4730 return; 4731 } 4732 4733 assert(type->isReferenceType() == E->isGLValue() && 4734 "reference binding to unmaterialized r-value!"); 4735 4736 if (E->isGLValue()) { 4737 assert(E->getObjectKind() == OK_Ordinary); 4738 return args.add(EmitReferenceBindingToExpr(E), type); 4739 } 4740 4741 bool HasAggregateEvalKind = hasAggregateEvaluationKind(type); 4742 4743 // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee. 4744 // However, we still have to push an EH-only cleanup in case we unwind before 4745 // we make it to the call. 4746 if (type->isRecordType() && 4747 type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) { 4748 // If we're using inalloca, use the argument memory. Otherwise, use a 4749 // temporary. 4750 AggValueSlot Slot = args.isUsingInAlloca() 4751 ? createPlaceholderSlot(*this, type) : CreateAggTemp(type, "agg.tmp"); 4752 4753 bool DestroyedInCallee = true, NeedsCleanup = true; 4754 if (const auto *RD = type->getAsCXXRecordDecl()) 4755 DestroyedInCallee = RD->hasNonTrivialDestructor(); 4756 else 4757 NeedsCleanup = type.isDestructedType(); 4758 4759 if (DestroyedInCallee) 4760 Slot.setExternallyDestructed(); 4761 4762 EmitAggExpr(E, Slot); 4763 RValue RV = Slot.asRValue(); 4764 args.add(RV, type); 4765 4766 if (DestroyedInCallee && NeedsCleanup) { 4767 // Create a no-op GEP between the placeholder and the cleanup so we can 4768 // RAUW it successfully. It also serves as a marker of the first 4769 // instruction where the cleanup is active. 4770 pushFullExprCleanup<DestroyUnpassedArg>(NormalAndEHCleanup, 4771 Slot.getAddress(), type); 4772 // This unreachable is a temporary marker which will be removed later. 4773 llvm::Instruction *IsActive = 4774 Builder.CreateFlagLoad(llvm::Constant::getNullValue(Int8PtrTy)); 4775 args.addArgCleanupDeactivation(EHStack.stable_begin(), IsActive); 4776 } 4777 return; 4778 } 4779 4780 if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) && 4781 cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue && 4782 !type->isArrayParameterType()) { 4783 LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr()); 4784 assert(L.isSimple()); 4785 args.addUncopiedAggregate(L, type); 4786 return; 4787 } 4788 4789 args.add(EmitAnyExprToTemp(E), type); 4790 } 4791 4792 QualType CodeGenFunction::getVarArgType(const Expr *Arg) { 4793 // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC 4794 // implicitly widens null pointer constants that are arguments to varargs 4795 // functions to pointer-sized ints. 4796 if (!getTarget().getTriple().isOSWindows()) 4797 return Arg->getType(); 4798 4799 if (Arg->getType()->isIntegerType() && 4800 getContext().getTypeSize(Arg->getType()) < 4801 getContext().getTargetInfo().getPointerWidth(LangAS::Default) && 4802 Arg->isNullPointerConstant(getContext(), 4803 Expr::NPC_ValueDependentIsNotNull)) { 4804 return getContext().getIntPtrType(); 4805 } 4806 4807 return Arg->getType(); 4808 } 4809 4810 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 4811 // optimizer it can aggressively ignore unwind edges. 4812 void 4813 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) { 4814 if (CGM.getCodeGenOpts().OptimizationLevel != 0 && 4815 !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions) 4816 Inst->setMetadata("clang.arc.no_objc_arc_exceptions", 4817 CGM.getNoObjCARCExceptionsMetadata()); 4818 } 4819 4820 /// Emits a call to the given no-arguments nounwind runtime function. 4821 llvm::CallInst * 4822 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4823 const llvm::Twine &name) { 4824 return EmitNounwindRuntimeCall(callee, ArrayRef<llvm::Value *>(), name); 4825 } 4826 4827 /// Emits a call to the given nounwind runtime function. 4828 llvm::CallInst * 4829 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4830 ArrayRef<Address> args, 4831 const llvm::Twine &name) { 4832 SmallVector<llvm::Value *, 3> values; 4833 for (auto arg : args) 4834 values.push_back(arg.emitRawPointer(*this)); 4835 return EmitNounwindRuntimeCall(callee, values, name); 4836 } 4837 4838 llvm::CallInst * 4839 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4840 ArrayRef<llvm::Value *> args, 4841 const llvm::Twine &name) { 4842 llvm::CallInst *call = EmitRuntimeCall(callee, args, name); 4843 call->setDoesNotThrow(); 4844 return call; 4845 } 4846 4847 /// Emits a simple call (never an invoke) to the given no-arguments 4848 /// runtime function. 4849 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee, 4850 const llvm::Twine &name) { 4851 return EmitRuntimeCall(callee, {}, name); 4852 } 4853 4854 // Calls which may throw must have operand bundles indicating which funclet 4855 // they are nested within. 4856 SmallVector<llvm::OperandBundleDef, 1> 4857 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) { 4858 // There is no need for a funclet operand bundle if we aren't inside a 4859 // funclet. 4860 if (!CurrentFuncletPad) 4861 return (SmallVector<llvm::OperandBundleDef, 1>()); 4862 4863 // Skip intrinsics which cannot throw (as long as they don't lower into 4864 // regular function calls in the course of IR transformations). 4865 if (auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts())) { 4866 if (CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow()) { 4867 auto IID = CalleeFn->getIntrinsicID(); 4868 if (!llvm::IntrinsicInst::mayLowerToFunctionCall(IID)) 4869 return (SmallVector<llvm::OperandBundleDef, 1>()); 4870 } 4871 } 4872 4873 SmallVector<llvm::OperandBundleDef, 1> BundleList; 4874 BundleList.emplace_back("funclet", CurrentFuncletPad); 4875 return BundleList; 4876 } 4877 4878 /// Emits a simple call (never an invoke) to the given runtime function. 4879 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee, 4880 ArrayRef<llvm::Value *> args, 4881 const llvm::Twine &name) { 4882 llvm::CallInst *call = Builder.CreateCall( 4883 callee, args, getBundlesForFunclet(callee.getCallee()), name); 4884 call->setCallingConv(getRuntimeCC()); 4885 4886 if (CGM.shouldEmitConvergenceTokens() && call->isConvergent()) 4887 return cast<llvm::CallInst>(addConvergenceControlToken(call)); 4888 return call; 4889 } 4890 4891 /// Emits a call or invoke to the given noreturn runtime function. 4892 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke( 4893 llvm::FunctionCallee callee, ArrayRef<llvm::Value *> args) { 4894 SmallVector<llvm::OperandBundleDef, 1> BundleList = 4895 getBundlesForFunclet(callee.getCallee()); 4896 4897 if (getInvokeDest()) { 4898 llvm::InvokeInst *invoke = 4899 Builder.CreateInvoke(callee, 4900 getUnreachableBlock(), 4901 getInvokeDest(), 4902 args, 4903 BundleList); 4904 invoke->setDoesNotReturn(); 4905 invoke->setCallingConv(getRuntimeCC()); 4906 } else { 4907 llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList); 4908 call->setDoesNotReturn(); 4909 call->setCallingConv(getRuntimeCC()); 4910 Builder.CreateUnreachable(); 4911 } 4912 } 4913 4914 /// Emits a call or invoke instruction to the given nullary runtime function. 4915 llvm::CallBase * 4916 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4917 const Twine &name) { 4918 return EmitRuntimeCallOrInvoke(callee, {}, name); 4919 } 4920 4921 /// Emits a call or invoke instruction to the given runtime function. 4922 llvm::CallBase * 4923 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4924 ArrayRef<llvm::Value *> args, 4925 const Twine &name) { 4926 llvm::CallBase *call = EmitCallOrInvoke(callee, args, name); 4927 call->setCallingConv(getRuntimeCC()); 4928 return call; 4929 } 4930 4931 /// Emits a call or invoke instruction to the given function, depending 4932 /// on the current state of the EH stack. 4933 llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::FunctionCallee Callee, 4934 ArrayRef<llvm::Value *> Args, 4935 const Twine &Name) { 4936 llvm::BasicBlock *InvokeDest = getInvokeDest(); 4937 SmallVector<llvm::OperandBundleDef, 1> BundleList = 4938 getBundlesForFunclet(Callee.getCallee()); 4939 4940 llvm::CallBase *Inst; 4941 if (!InvokeDest) 4942 Inst = Builder.CreateCall(Callee, Args, BundleList, Name); 4943 else { 4944 llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont"); 4945 Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList, 4946 Name); 4947 EmitBlock(ContBB); 4948 } 4949 4950 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 4951 // optimizer it can aggressively ignore unwind edges. 4952 if (CGM.getLangOpts().ObjCAutoRefCount) 4953 AddObjCARCExceptionMetadata(Inst); 4954 4955 return Inst; 4956 } 4957 4958 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old, 4959 llvm::Value *New) { 4960 DeferredReplacements.push_back( 4961 std::make_pair(llvm::WeakTrackingVH(Old), New)); 4962 } 4963 4964 namespace { 4965 4966 /// Specify given \p NewAlign as the alignment of return value attribute. If 4967 /// such attribute already exists, re-set it to the maximal one of two options. 4968 [[nodiscard]] llvm::AttributeList 4969 maybeRaiseRetAlignmentAttribute(llvm::LLVMContext &Ctx, 4970 const llvm::AttributeList &Attrs, 4971 llvm::Align NewAlign) { 4972 llvm::Align CurAlign = Attrs.getRetAlignment().valueOrOne(); 4973 if (CurAlign >= NewAlign) 4974 return Attrs; 4975 llvm::Attribute AlignAttr = llvm::Attribute::getWithAlignment(Ctx, NewAlign); 4976 return Attrs.removeRetAttribute(Ctx, llvm::Attribute::AttrKind::Alignment) 4977 .addRetAttribute(Ctx, AlignAttr); 4978 } 4979 4980 template <typename AlignedAttrTy> class AbstractAssumeAlignedAttrEmitter { 4981 protected: 4982 CodeGenFunction &CGF; 4983 4984 /// We do nothing if this is, or becomes, nullptr. 4985 const AlignedAttrTy *AA = nullptr; 4986 4987 llvm::Value *Alignment = nullptr; // May or may not be a constant. 4988 llvm::ConstantInt *OffsetCI = nullptr; // Constant, hopefully zero. 4989 4990 AbstractAssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl) 4991 : CGF(CGF_) { 4992 if (!FuncDecl) 4993 return; 4994 AA = FuncDecl->getAttr<AlignedAttrTy>(); 4995 } 4996 4997 public: 4998 /// If we can, materialize the alignment as an attribute on return value. 4999 [[nodiscard]] llvm::AttributeList 5000 TryEmitAsCallSiteAttribute(const llvm::AttributeList &Attrs) { 5001 if (!AA || OffsetCI || CGF.SanOpts.has(SanitizerKind::Alignment)) 5002 return Attrs; 5003 const auto *AlignmentCI = dyn_cast<llvm::ConstantInt>(Alignment); 5004 if (!AlignmentCI) 5005 return Attrs; 5006 // We may legitimately have non-power-of-2 alignment here. 5007 // If so, this is UB land, emit it via `@llvm.assume` instead. 5008 if (!AlignmentCI->getValue().isPowerOf2()) 5009 return Attrs; 5010 llvm::AttributeList NewAttrs = maybeRaiseRetAlignmentAttribute( 5011 CGF.getLLVMContext(), Attrs, 5012 llvm::Align( 5013 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment))); 5014 AA = nullptr; // We're done. Disallow doing anything else. 5015 return NewAttrs; 5016 } 5017 5018 /// Emit alignment assumption. 5019 /// This is a general fallback that we take if either there is an offset, 5020 /// or the alignment is variable or we are sanitizing for alignment. 5021 void EmitAsAnAssumption(SourceLocation Loc, QualType RetTy, RValue &Ret) { 5022 if (!AA) 5023 return; 5024 CGF.emitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc, 5025 AA->getLocation(), Alignment, OffsetCI); 5026 AA = nullptr; // We're done. Disallow doing anything else. 5027 } 5028 }; 5029 5030 /// Helper data structure to emit `AssumeAlignedAttr`. 5031 class AssumeAlignedAttrEmitter final 5032 : public AbstractAssumeAlignedAttrEmitter<AssumeAlignedAttr> { 5033 public: 5034 AssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl) 5035 : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) { 5036 if (!AA) 5037 return; 5038 // It is guaranteed that the alignment/offset are constants. 5039 Alignment = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AA->getAlignment())); 5040 if (Expr *Offset = AA->getOffset()) { 5041 OffsetCI = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(Offset)); 5042 if (OffsetCI->isNullValue()) // Canonicalize zero offset to no offset. 5043 OffsetCI = nullptr; 5044 } 5045 } 5046 }; 5047 5048 /// Helper data structure to emit `AllocAlignAttr`. 5049 class AllocAlignAttrEmitter final 5050 : public AbstractAssumeAlignedAttrEmitter<AllocAlignAttr> { 5051 public: 5052 AllocAlignAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl, 5053 const CallArgList &CallArgs) 5054 : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) { 5055 if (!AA) 5056 return; 5057 // Alignment may or may not be a constant, and that is okay. 5058 Alignment = CallArgs[AA->getParamIndex().getLLVMIndex()] 5059 .getRValue(CGF) 5060 .getScalarVal(); 5061 } 5062 }; 5063 5064 } // namespace 5065 5066 static unsigned getMaxVectorWidth(const llvm::Type *Ty) { 5067 if (auto *VT = dyn_cast<llvm::VectorType>(Ty)) 5068 return VT->getPrimitiveSizeInBits().getKnownMinValue(); 5069 if (auto *AT = dyn_cast<llvm::ArrayType>(Ty)) 5070 return getMaxVectorWidth(AT->getElementType()); 5071 5072 unsigned MaxVectorWidth = 0; 5073 if (auto *ST = dyn_cast<llvm::StructType>(Ty)) 5074 for (auto *I : ST->elements()) 5075 MaxVectorWidth = std::max(MaxVectorWidth, getMaxVectorWidth(I)); 5076 return MaxVectorWidth; 5077 } 5078 5079 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, 5080 const CGCallee &Callee, 5081 ReturnValueSlot ReturnValue, 5082 const CallArgList &CallArgs, 5083 llvm::CallBase **callOrInvoke, bool IsMustTail, 5084 SourceLocation Loc, 5085 bool IsVirtualFunctionPointerThunk) { 5086 // FIXME: We no longer need the types from CallArgs; lift up and simplify. 5087 5088 assert(Callee.isOrdinary() || Callee.isVirtual()); 5089 5090 // Handle struct-return functions by passing a pointer to the 5091 // location that we would like to return into. 5092 QualType RetTy = CallInfo.getReturnType(); 5093 const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); 5094 5095 llvm::FunctionType *IRFuncTy = getTypes().GetFunctionType(CallInfo); 5096 5097 const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl(); 5098 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 5099 // We can only guarantee that a function is called from the correct 5100 // context/function based on the appropriate target attributes, 5101 // so only check in the case where we have both always_inline and target 5102 // since otherwise we could be making a conditional call after a check for 5103 // the proper cpu features (and it won't cause code generation issues due to 5104 // function based code generation). 5105 if (TargetDecl->hasAttr<AlwaysInlineAttr>() && 5106 (TargetDecl->hasAttr<TargetAttr>() || 5107 (CurFuncDecl && CurFuncDecl->hasAttr<TargetAttr>()))) 5108 checkTargetFeatures(Loc, FD); 5109 } 5110 5111 // Some architectures (such as x86-64) have the ABI changed based on 5112 // attribute-target/features. Give them a chance to diagnose. 5113 const FunctionDecl *CallerDecl = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); 5114 const FunctionDecl *CalleeDecl = dyn_cast_or_null<FunctionDecl>(TargetDecl); 5115 CGM.getTargetCodeGenInfo().checkFunctionCallABI(CGM, Loc, CallerDecl, 5116 CalleeDecl, CallArgs, RetTy); 5117 5118 // 1. Set up the arguments. 5119 5120 // If we're using inalloca, insert the allocation after the stack save. 5121 // FIXME: Do this earlier rather than hacking it in here! 5122 RawAddress ArgMemory = RawAddress::invalid(); 5123 if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) { 5124 const llvm::DataLayout &DL = CGM.getDataLayout(); 5125 llvm::Instruction *IP = CallArgs.getStackBase(); 5126 llvm::AllocaInst *AI; 5127 if (IP) { 5128 IP = IP->getNextNode(); 5129 AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(), "argmem", 5130 IP->getIterator()); 5131 } else { 5132 AI = CreateTempAlloca(ArgStruct, "argmem"); 5133 } 5134 auto Align = CallInfo.getArgStructAlignment(); 5135 AI->setAlignment(Align.getAsAlign()); 5136 AI->setUsedWithInAlloca(true); 5137 assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca()); 5138 ArgMemory = RawAddress(AI, ArgStruct, Align); 5139 } 5140 5141 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo); 5142 SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs()); 5143 5144 // If the call returns a temporary with struct return, create a temporary 5145 // alloca to hold the result, unless one is given to us. 5146 Address SRetPtr = Address::invalid(); 5147 RawAddress SRetAlloca = RawAddress::invalid(); 5148 llvm::Value *UnusedReturnSizePtr = nullptr; 5149 if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) { 5150 // For virtual function pointer thunks and musttail calls, we must always 5151 // forward an incoming SRet pointer to the callee, because a local alloca 5152 // would be de-allocated before the call. These cases both guarantee that 5153 // there will be an incoming SRet argument of the correct type. 5154 if ((IsVirtualFunctionPointerThunk || IsMustTail) && RetAI.isIndirect()) { 5155 SRetPtr = makeNaturalAddressForPointer(CurFn->arg_begin() + 5156 IRFunctionArgs.getSRetArgNo(), 5157 RetTy, CharUnits::fromQuantity(1)); 5158 } else if (!ReturnValue.isNull()) { 5159 SRetPtr = ReturnValue.getAddress(); 5160 } else { 5161 SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca); 5162 if (HaveInsertPoint() && ReturnValue.isUnused()) { 5163 llvm::TypeSize size = 5164 CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy)); 5165 UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer()); 5166 } 5167 } 5168 if (IRFunctionArgs.hasSRetArg()) { 5169 IRCallArgs[IRFunctionArgs.getSRetArgNo()] = 5170 getAsNaturalPointerTo(SRetPtr, RetTy); 5171 } else if (RetAI.isInAlloca()) { 5172 Address Addr = 5173 Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex()); 5174 Builder.CreateStore(getAsNaturalPointerTo(SRetPtr, RetTy), Addr); 5175 } 5176 } 5177 5178 RawAddress swiftErrorTemp = RawAddress::invalid(); 5179 Address swiftErrorArg = Address::invalid(); 5180 5181 // When passing arguments using temporary allocas, we need to add the 5182 // appropriate lifetime markers. This vector keeps track of all the lifetime 5183 // markers that need to be ended right after the call. 5184 SmallVector<CallLifetimeEnd, 2> CallLifetimeEndAfterCall; 5185 5186 // Translate all of the arguments as necessary to match the IR lowering. 5187 assert(CallInfo.arg_size() == CallArgs.size() && 5188 "Mismatch between function signature & arguments."); 5189 unsigned ArgNo = 0; 5190 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); 5191 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); 5192 I != E; ++I, ++info_it, ++ArgNo) { 5193 const ABIArgInfo &ArgInfo = info_it->info; 5194 5195 // Insert a padding argument to ensure proper alignment. 5196 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 5197 IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 5198 llvm::UndefValue::get(ArgInfo.getPaddingType()); 5199 5200 unsigned FirstIRArg, NumIRArgs; 5201 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 5202 5203 bool ArgHasMaybeUndefAttr = 5204 IsArgumentMaybeUndef(TargetDecl, CallInfo.getNumRequiredArgs(), ArgNo); 5205 5206 switch (ArgInfo.getKind()) { 5207 case ABIArgInfo::InAlloca: { 5208 assert(NumIRArgs == 0); 5209 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 5210 if (I->isAggregate()) { 5211 RawAddress Addr = I->hasLValue() 5212 ? I->getKnownLValue().getAddress() 5213 : I->getKnownRValue().getAggregateAddress(); 5214 llvm::Instruction *Placeholder = 5215 cast<llvm::Instruction>(Addr.getPointer()); 5216 5217 if (!ArgInfo.getInAllocaIndirect()) { 5218 // Replace the placeholder with the appropriate argument slot GEP. 5219 CGBuilderTy::InsertPoint IP = Builder.saveIP(); 5220 Builder.SetInsertPoint(Placeholder); 5221 Addr = Builder.CreateStructGEP(ArgMemory, 5222 ArgInfo.getInAllocaFieldIndex()); 5223 Builder.restoreIP(IP); 5224 } else { 5225 // For indirect things such as overaligned structs, replace the 5226 // placeholder with a regular aggregate temporary alloca. Store the 5227 // address of this alloca into the struct. 5228 Addr = CreateMemTemp(info_it->type, "inalloca.indirect.tmp"); 5229 Address ArgSlot = Builder.CreateStructGEP( 5230 ArgMemory, ArgInfo.getInAllocaFieldIndex()); 5231 Builder.CreateStore(Addr.getPointer(), ArgSlot); 5232 } 5233 deferPlaceholderReplacement(Placeholder, Addr.getPointer()); 5234 } else if (ArgInfo.getInAllocaIndirect()) { 5235 // Make a temporary alloca and store the address of it into the argument 5236 // struct. 5237 RawAddress Addr = CreateMemTempWithoutCast( 5238 I->Ty, getContext().getTypeAlignInChars(I->Ty), 5239 "indirect-arg-temp"); 5240 I->copyInto(*this, Addr); 5241 Address ArgSlot = 5242 Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex()); 5243 Builder.CreateStore(Addr.getPointer(), ArgSlot); 5244 } else { 5245 // Store the RValue into the argument struct. 5246 Address Addr = 5247 Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex()); 5248 Addr = Addr.withElementType(ConvertTypeForMem(I->Ty)); 5249 I->copyInto(*this, Addr); 5250 } 5251 break; 5252 } 5253 5254 case ABIArgInfo::Indirect: 5255 case ABIArgInfo::IndirectAliased: { 5256 assert(NumIRArgs == 1); 5257 if (I->isAggregate()) { 5258 // We want to avoid creating an unnecessary temporary+copy here; 5259 // however, we need one in three cases: 5260 // 1. If the argument is not byval, and we are required to copy the 5261 // source. (This case doesn't occur on any common architecture.) 5262 // 2. If the argument is byval, RV is not sufficiently aligned, and 5263 // we cannot force it to be sufficiently aligned. 5264 // 3. If the argument is byval, but RV is not located in default 5265 // or alloca address space. 5266 Address Addr = I->hasLValue() 5267 ? I->getKnownLValue().getAddress() 5268 : I->getKnownRValue().getAggregateAddress(); 5269 CharUnits Align = ArgInfo.getIndirectAlign(); 5270 const llvm::DataLayout *TD = &CGM.getDataLayout(); 5271 5272 assert((FirstIRArg >= IRFuncTy->getNumParams() || 5273 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() == 5274 TD->getAllocaAddrSpace()) && 5275 "indirect argument must be in alloca address space"); 5276 5277 bool NeedCopy = false; 5278 if (Addr.getAlignment() < Align && 5279 llvm::getOrEnforceKnownAlignment(Addr.emitRawPointer(*this), 5280 Align.getAsAlign(), 5281 *TD) < Align.getAsAlign()) { 5282 NeedCopy = true; 5283 } else if (I->hasLValue()) { 5284 auto LV = I->getKnownLValue(); 5285 auto AS = LV.getAddressSpace(); 5286 5287 bool isByValOrRef = 5288 ArgInfo.isIndirectAliased() || ArgInfo.getIndirectByVal(); 5289 5290 if (!isByValOrRef || 5291 (LV.getAlignment() < getContext().getTypeAlignInChars(I->Ty))) { 5292 NeedCopy = true; 5293 } 5294 if (!getLangOpts().OpenCL) { 5295 if ((isByValOrRef && 5296 (AS != LangAS::Default && 5297 AS != CGM.getASTAllocaAddressSpace()))) { 5298 NeedCopy = true; 5299 } 5300 } 5301 // For OpenCL even if RV is located in default or alloca address space 5302 // we don't want to perform address space cast for it. 5303 else if ((isByValOrRef && 5304 Addr.getType()->getAddressSpace() != IRFuncTy-> 5305 getParamType(FirstIRArg)->getPointerAddressSpace())) { 5306 NeedCopy = true; 5307 } 5308 } 5309 5310 if (!NeedCopy) { 5311 // Skip the extra memcpy call. 5312 llvm::Value *V = getAsNaturalPointerTo(Addr, I->Ty); 5313 auto *T = llvm::PointerType::get( 5314 CGM.getLLVMContext(), CGM.getDataLayout().getAllocaAddrSpace()); 5315 5316 llvm::Value *Val = getTargetHooks().performAddrSpaceCast( 5317 *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T, 5318 true); 5319 if (ArgHasMaybeUndefAttr) 5320 Val = Builder.CreateFreeze(Val); 5321 IRCallArgs[FirstIRArg] = Val; 5322 break; 5323 } 5324 } else if (I->getType()->isArrayParameterType()) { 5325 // Don't produce a temporary for ArrayParameterType arguments. 5326 // ArrayParameterType arguments are only created from 5327 // HLSL_ArrayRValue casts and HLSLOutArgExpr expressions, both 5328 // of which create temporaries already. This allows us to just use the 5329 // scalar for the decayed array pointer as the argument directly. 5330 IRCallArgs[FirstIRArg] = I->getKnownRValue().getScalarVal(); 5331 break; 5332 } 5333 5334 // For non-aggregate args and aggregate args meeting conditions above 5335 // we need to create an aligned temporary, and copy to it. 5336 RawAddress AI = CreateMemTempWithoutCast( 5337 I->Ty, ArgInfo.getIndirectAlign(), "byval-temp"); 5338 llvm::Value *Val = getAsNaturalPointerTo(AI, I->Ty); 5339 if (ArgHasMaybeUndefAttr) 5340 Val = Builder.CreateFreeze(Val); 5341 IRCallArgs[FirstIRArg] = Val; 5342 5343 // Emit lifetime markers for the temporary alloca. 5344 llvm::TypeSize ByvalTempElementSize = 5345 CGM.getDataLayout().getTypeAllocSize(AI.getElementType()); 5346 llvm::Value *LifetimeSize = 5347 EmitLifetimeStart(ByvalTempElementSize, AI.getPointer()); 5348 5349 // Add cleanup code to emit the end lifetime marker after the call. 5350 if (LifetimeSize) // In case we disabled lifetime markers. 5351 CallLifetimeEndAfterCall.emplace_back(AI, LifetimeSize); 5352 5353 // Generate the copy. 5354 I->copyInto(*this, AI); 5355 break; 5356 } 5357 5358 case ABIArgInfo::Ignore: 5359 assert(NumIRArgs == 0); 5360 break; 5361 5362 case ABIArgInfo::Extend: 5363 case ABIArgInfo::Direct: { 5364 if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) && 5365 ArgInfo.getCoerceToType() == ConvertType(info_it->type) && 5366 ArgInfo.getDirectOffset() == 0) { 5367 assert(NumIRArgs == 1); 5368 llvm::Value *V; 5369 if (!I->isAggregate()) 5370 V = I->getKnownRValue().getScalarVal(); 5371 else 5372 V = Builder.CreateLoad( 5373 I->hasLValue() ? I->getKnownLValue().getAddress() 5374 : I->getKnownRValue().getAggregateAddress()); 5375 5376 // Implement swifterror by copying into a new swifterror argument. 5377 // We'll write back in the normal path out of the call. 5378 if (CallInfo.getExtParameterInfo(ArgNo).getABI() 5379 == ParameterABI::SwiftErrorResult) { 5380 assert(!swiftErrorTemp.isValid() && "multiple swifterror args"); 5381 5382 QualType pointeeTy = I->Ty->getPointeeType(); 5383 swiftErrorArg = makeNaturalAddressForPointer( 5384 V, pointeeTy, getContext().getTypeAlignInChars(pointeeTy)); 5385 5386 swiftErrorTemp = 5387 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 5388 V = swiftErrorTemp.getPointer(); 5389 cast<llvm::AllocaInst>(V)->setSwiftError(true); 5390 5391 llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg); 5392 Builder.CreateStore(errorValue, swiftErrorTemp); 5393 } 5394 5395 // We might have to widen integers, but we should never truncate. 5396 if (ArgInfo.getCoerceToType() != V->getType() && 5397 V->getType()->isIntegerTy()) 5398 V = Builder.CreateZExt(V, ArgInfo.getCoerceToType()); 5399 5400 // If the argument doesn't match, perform a bitcast to coerce it. This 5401 // can happen due to trivial type mismatches. 5402 if (FirstIRArg < IRFuncTy->getNumParams() && 5403 V->getType() != IRFuncTy->getParamType(FirstIRArg)) 5404 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg)); 5405 5406 if (ArgHasMaybeUndefAttr) 5407 V = Builder.CreateFreeze(V); 5408 IRCallArgs[FirstIRArg] = V; 5409 break; 5410 } 5411 5412 llvm::StructType *STy = 5413 dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType()); 5414 5415 // FIXME: Avoid the conversion through memory if possible. 5416 Address Src = Address::invalid(); 5417 if (!I->isAggregate()) { 5418 Src = CreateMemTemp(I->Ty, "coerce"); 5419 I->copyInto(*this, Src); 5420 } else { 5421 Src = I->hasLValue() ? I->getKnownLValue().getAddress() 5422 : I->getKnownRValue().getAggregateAddress(); 5423 } 5424 5425 // If the value is offset in memory, apply the offset now. 5426 Src = emitAddressAtOffset(*this, Src, ArgInfo); 5427 5428 // Fast-isel and the optimizer generally like scalar values better than 5429 // FCAs, so we flatten them if this is safe to do for this argument. 5430 if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 5431 llvm::Type *SrcTy = Src.getElementType(); 5432 llvm::TypeSize SrcTypeSize = 5433 CGM.getDataLayout().getTypeAllocSize(SrcTy); 5434 llvm::TypeSize DstTypeSize = CGM.getDataLayout().getTypeAllocSize(STy); 5435 if (SrcTypeSize.isScalable()) { 5436 assert(STy->containsHomogeneousScalableVectorTypes() && 5437 "ABI only supports structure with homogeneous scalable vector " 5438 "type"); 5439 assert(SrcTypeSize == DstTypeSize && 5440 "Only allow non-fractional movement of structure with " 5441 "homogeneous scalable vector type"); 5442 assert(NumIRArgs == STy->getNumElements()); 5443 5444 llvm::Value *StoredStructValue = 5445 Builder.CreateLoad(Src, Src.getName() + ".tuple"); 5446 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 5447 llvm::Value *Extract = Builder.CreateExtractValue( 5448 StoredStructValue, i, Src.getName() + ".extract" + Twine(i)); 5449 IRCallArgs[FirstIRArg + i] = Extract; 5450 } 5451 } else { 5452 uint64_t SrcSize = SrcTypeSize.getFixedValue(); 5453 uint64_t DstSize = DstTypeSize.getFixedValue(); 5454 5455 // If the source type is smaller than the destination type of the 5456 // coerce-to logic, copy the source value into a temp alloca the size 5457 // of the destination type to allow loading all of it. The bits past 5458 // the source value are left undef. 5459 if (SrcSize < DstSize) { 5460 Address TempAlloca = CreateTempAlloca(STy, Src.getAlignment(), 5461 Src.getName() + ".coerce"); 5462 Builder.CreateMemCpy(TempAlloca, Src, SrcSize); 5463 Src = TempAlloca; 5464 } else { 5465 Src = Src.withElementType(STy); 5466 } 5467 5468 assert(NumIRArgs == STy->getNumElements()); 5469 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 5470 Address EltPtr = Builder.CreateStructGEP(Src, i); 5471 llvm::Value *LI = Builder.CreateLoad(EltPtr); 5472 if (ArgHasMaybeUndefAttr) 5473 LI = Builder.CreateFreeze(LI); 5474 IRCallArgs[FirstIRArg + i] = LI; 5475 } 5476 } 5477 } else { 5478 // In the simple case, just pass the coerced loaded value. 5479 assert(NumIRArgs == 1); 5480 llvm::Value *Load = 5481 CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this); 5482 5483 if (CallInfo.isCmseNSCall()) { 5484 // For certain parameter types, clear padding bits, as they may reveal 5485 // sensitive information. 5486 // Small struct/union types are passed as integer arrays. 5487 auto *ATy = dyn_cast<llvm::ArrayType>(Load->getType()); 5488 if (ATy != nullptr && isa<RecordType>(I->Ty.getCanonicalType())) 5489 Load = EmitCMSEClearRecord(Load, ATy, I->Ty); 5490 } 5491 5492 if (ArgHasMaybeUndefAttr) 5493 Load = Builder.CreateFreeze(Load); 5494 IRCallArgs[FirstIRArg] = Load; 5495 } 5496 5497 break; 5498 } 5499 5500 case ABIArgInfo::CoerceAndExpand: { 5501 auto coercionType = ArgInfo.getCoerceAndExpandType(); 5502 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 5503 auto unpaddedCoercionType = ArgInfo.getUnpaddedCoerceAndExpandType(); 5504 auto *unpaddedStruct = dyn_cast<llvm::StructType>(unpaddedCoercionType); 5505 5506 llvm::Value *tempSize = nullptr; 5507 Address addr = Address::invalid(); 5508 RawAddress AllocaAddr = RawAddress::invalid(); 5509 if (I->isAggregate()) { 5510 addr = I->hasLValue() ? I->getKnownLValue().getAddress() 5511 : I->getKnownRValue().getAggregateAddress(); 5512 5513 } else { 5514 RValue RV = I->getKnownRValue(); 5515 assert(RV.isScalar()); // complex should always just be direct 5516 5517 llvm::Type *scalarType = RV.getScalarVal()->getType(); 5518 auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType); 5519 auto scalarAlign = CGM.getDataLayout().getPrefTypeAlign(scalarType); 5520 5521 // Materialize to a temporary. 5522 addr = CreateTempAlloca( 5523 RV.getScalarVal()->getType(), 5524 CharUnits::fromQuantity(std::max(layout->getAlignment(), scalarAlign)), 5525 "tmp", 5526 /*ArraySize=*/nullptr, &AllocaAddr); 5527 tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer()); 5528 5529 Builder.CreateStore(RV.getScalarVal(), addr); 5530 } 5531 5532 addr = addr.withElementType(coercionType); 5533 5534 unsigned IRArgPos = FirstIRArg; 5535 unsigned unpaddedIndex = 0; 5536 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 5537 llvm::Type *eltType = coercionType->getElementType(i); 5538 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 5539 Address eltAddr = Builder.CreateStructGEP(addr, i); 5540 llvm::Value *elt = CreateCoercedLoad( 5541 eltAddr, 5542 unpaddedStruct ? unpaddedStruct->getElementType(unpaddedIndex++) 5543 : unpaddedCoercionType, 5544 *this); 5545 if (ArgHasMaybeUndefAttr) 5546 elt = Builder.CreateFreeze(elt); 5547 IRCallArgs[IRArgPos++] = elt; 5548 } 5549 assert(IRArgPos == FirstIRArg + NumIRArgs); 5550 5551 if (tempSize) { 5552 EmitLifetimeEnd(tempSize, AllocaAddr.getPointer()); 5553 } 5554 5555 break; 5556 } 5557 5558 case ABIArgInfo::Expand: { 5559 unsigned IRArgPos = FirstIRArg; 5560 ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos); 5561 assert(IRArgPos == FirstIRArg + NumIRArgs); 5562 break; 5563 } 5564 } 5565 } 5566 5567 const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this); 5568 llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer(); 5569 5570 // If we're using inalloca, set up that argument. 5571 if (ArgMemory.isValid()) { 5572 llvm::Value *Arg = ArgMemory.getPointer(); 5573 assert(IRFunctionArgs.hasInallocaArg()); 5574 IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg; 5575 } 5576 5577 // 2. Prepare the function pointer. 5578 5579 // If the callee is a bitcast of a non-variadic function to have a 5580 // variadic function pointer type, check to see if we can remove the 5581 // bitcast. This comes up with unprototyped functions. 5582 // 5583 // This makes the IR nicer, but more importantly it ensures that we 5584 // can inline the function at -O0 if it is marked always_inline. 5585 auto simplifyVariadicCallee = [](llvm::FunctionType *CalleeFT, 5586 llvm::Value *Ptr) -> llvm::Function * { 5587 if (!CalleeFT->isVarArg()) 5588 return nullptr; 5589 5590 // Get underlying value if it's a bitcast 5591 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr)) { 5592 if (CE->getOpcode() == llvm::Instruction::BitCast) 5593 Ptr = CE->getOperand(0); 5594 } 5595 5596 llvm::Function *OrigFn = dyn_cast<llvm::Function>(Ptr); 5597 if (!OrigFn) 5598 return nullptr; 5599 5600 llvm::FunctionType *OrigFT = OrigFn->getFunctionType(); 5601 5602 // If the original type is variadic, or if any of the component types 5603 // disagree, we cannot remove the cast. 5604 if (OrigFT->isVarArg() || 5605 OrigFT->getNumParams() != CalleeFT->getNumParams() || 5606 OrigFT->getReturnType() != CalleeFT->getReturnType()) 5607 return nullptr; 5608 5609 for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i) 5610 if (OrigFT->getParamType(i) != CalleeFT->getParamType(i)) 5611 return nullptr; 5612 5613 return OrigFn; 5614 }; 5615 5616 if (llvm::Function *OrigFn = simplifyVariadicCallee(IRFuncTy, CalleePtr)) { 5617 CalleePtr = OrigFn; 5618 IRFuncTy = OrigFn->getFunctionType(); 5619 } 5620 5621 // 3. Perform the actual call. 5622 5623 // Deactivate any cleanups that we're supposed to do immediately before 5624 // the call. 5625 if (!CallArgs.getCleanupsToDeactivate().empty()) 5626 deactivateArgCleanupsBeforeCall(*this, CallArgs); 5627 5628 // Assert that the arguments we computed match up. The IR verifier 5629 // will catch this, but this is a common enough source of problems 5630 // during IRGen changes that it's way better for debugging to catch 5631 // it ourselves here. 5632 #ifndef NDEBUG 5633 assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg()); 5634 for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 5635 // Inalloca argument can have different type. 5636 if (IRFunctionArgs.hasInallocaArg() && 5637 i == IRFunctionArgs.getInallocaArgNo()) 5638 continue; 5639 if (i < IRFuncTy->getNumParams()) 5640 assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i)); 5641 } 5642 #endif 5643 5644 // Update the largest vector width if any arguments have vector types. 5645 for (unsigned i = 0; i < IRCallArgs.size(); ++i) 5646 LargestVectorWidth = std::max(LargestVectorWidth, 5647 getMaxVectorWidth(IRCallArgs[i]->getType())); 5648 5649 // Compute the calling convention and attributes. 5650 unsigned CallingConv; 5651 llvm::AttributeList Attrs; 5652 CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo, 5653 Callee.getAbstractInfo(), Attrs, CallingConv, 5654 /*AttrOnCallSite=*/true, 5655 /*IsThunk=*/false); 5656 5657 if (CallingConv == llvm::CallingConv::X86_VectorCall && 5658 getTarget().getTriple().isWindowsArm64EC()) { 5659 CGM.Error(Loc, "__vectorcall calling convention is not currently " 5660 "supported"); 5661 } 5662 5663 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) { 5664 if (FD->hasAttr<StrictFPAttr>()) 5665 // All calls within a strictfp function are marked strictfp 5666 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::StrictFP); 5667 5668 // If -ffast-math is enabled and the function is guarded by an 5669 // '__attribute__((optnone)) adjust the memory attribute so the BE emits the 5670 // library call instead of the intrinsic. 5671 if (FD->hasAttr<OptimizeNoneAttr>() && getLangOpts().FastMath) 5672 CGM.AdjustMemoryAttribute(CalleePtr->getName(), Callee.getAbstractInfo(), 5673 Attrs); 5674 } 5675 // Add call-site nomerge attribute if exists. 5676 if (InNoMergeAttributedStmt) 5677 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoMerge); 5678 5679 // Add call-site noinline attribute if exists. 5680 if (InNoInlineAttributedStmt) 5681 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoInline); 5682 5683 // Add call-site always_inline attribute if exists. 5684 // Note: This corresponds to the [[clang::always_inline]] statement attribute. 5685 if (InAlwaysInlineAttributedStmt && 5686 !CGM.getTargetCodeGenInfo().wouldInliningViolateFunctionCallABI( 5687 CallerDecl, CalleeDecl)) 5688 Attrs = 5689 Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::AlwaysInline); 5690 5691 // Remove call-site convergent attribute if requested. 5692 if (InNoConvergentAttributedStmt) 5693 Attrs = 5694 Attrs.removeFnAttribute(getLLVMContext(), llvm::Attribute::Convergent); 5695 5696 // Apply some call-site-specific attributes. 5697 // TODO: work this into building the attribute set. 5698 5699 // Apply always_inline to all calls within flatten functions. 5700 // FIXME: should this really take priority over __try, below? 5701 if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() && 5702 !InNoInlineAttributedStmt && 5703 !(TargetDecl && TargetDecl->hasAttr<NoInlineAttr>()) && 5704 !CGM.getTargetCodeGenInfo().wouldInliningViolateFunctionCallABI( 5705 CallerDecl, CalleeDecl)) { 5706 Attrs = 5707 Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::AlwaysInline); 5708 } 5709 5710 // Disable inlining inside SEH __try blocks. 5711 if (isSEHTryScope()) { 5712 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoInline); 5713 } 5714 5715 // Decide whether to use a call or an invoke. 5716 bool CannotThrow; 5717 if (currentFunctionUsesSEHTry()) { 5718 // SEH cares about asynchronous exceptions, so everything can "throw." 5719 CannotThrow = false; 5720 } else if (isCleanupPadScope() && 5721 EHPersonality::get(*this).isMSVCXXPersonality()) { 5722 // The MSVC++ personality will implicitly terminate the program if an 5723 // exception is thrown during a cleanup outside of a try/catch. 5724 // We don't need to model anything in IR to get this behavior. 5725 CannotThrow = true; 5726 } else { 5727 // Otherwise, nounwind call sites will never throw. 5728 CannotThrow = Attrs.hasFnAttr(llvm::Attribute::NoUnwind); 5729 5730 if (auto *FPtr = dyn_cast<llvm::Function>(CalleePtr)) 5731 if (FPtr->hasFnAttribute(llvm::Attribute::NoUnwind)) 5732 CannotThrow = true; 5733 } 5734 5735 // If we made a temporary, be sure to clean up after ourselves. Note that we 5736 // can't depend on being inside of an ExprWithCleanups, so we need to manually 5737 // pop this cleanup later on. Being eager about this is OK, since this 5738 // temporary is 'invisible' outside of the callee. 5739 if (UnusedReturnSizePtr) 5740 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca, 5741 UnusedReturnSizePtr); 5742 5743 llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest(); 5744 5745 SmallVector<llvm::OperandBundleDef, 1> BundleList = 5746 getBundlesForFunclet(CalleePtr); 5747 5748 if (SanOpts.has(SanitizerKind::KCFI) && 5749 !isa_and_nonnull<FunctionDecl>(TargetDecl)) 5750 EmitKCFIOperandBundle(ConcreteCallee, BundleList); 5751 5752 // Add the pointer-authentication bundle. 5753 EmitPointerAuthOperandBundle(ConcreteCallee.getPointerAuthInfo(), BundleList); 5754 5755 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) 5756 if (FD->hasAttr<StrictFPAttr>()) 5757 // All calls within a strictfp function are marked strictfp 5758 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::StrictFP); 5759 5760 AssumeAlignedAttrEmitter AssumeAlignedAttrEmitter(*this, TargetDecl); 5761 Attrs = AssumeAlignedAttrEmitter.TryEmitAsCallSiteAttribute(Attrs); 5762 5763 AllocAlignAttrEmitter AllocAlignAttrEmitter(*this, TargetDecl, CallArgs); 5764 Attrs = AllocAlignAttrEmitter.TryEmitAsCallSiteAttribute(Attrs); 5765 5766 // Emit the actual call/invoke instruction. 5767 llvm::CallBase *CI; 5768 if (!InvokeDest) { 5769 CI = Builder.CreateCall(IRFuncTy, CalleePtr, IRCallArgs, BundleList); 5770 } else { 5771 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); 5772 CI = Builder.CreateInvoke(IRFuncTy, CalleePtr, Cont, InvokeDest, IRCallArgs, 5773 BundleList); 5774 EmitBlock(Cont); 5775 } 5776 if (CI->getCalledFunction() && CI->getCalledFunction()->hasName() && 5777 CI->getCalledFunction()->getName().starts_with("_Z4sqrt")) { 5778 SetSqrtFPAccuracy(CI); 5779 } 5780 if (callOrInvoke) 5781 *callOrInvoke = CI; 5782 5783 // If this is within a function that has the guard(nocf) attribute and is an 5784 // indirect call, add the "guard_nocf" attribute to this call to indicate that 5785 // Control Flow Guard checks should not be added, even if the call is inlined. 5786 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) { 5787 if (const auto *A = FD->getAttr<CFGuardAttr>()) { 5788 if (A->getGuard() == CFGuardAttr::GuardArg::nocf && !CI->getCalledFunction()) 5789 Attrs = Attrs.addFnAttribute(getLLVMContext(), "guard_nocf"); 5790 } 5791 } 5792 5793 // Apply the attributes and calling convention. 5794 CI->setAttributes(Attrs); 5795 CI->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 5796 5797 // Apply various metadata. 5798 5799 if (!CI->getType()->isVoidTy()) 5800 CI->setName("call"); 5801 5802 if (CGM.shouldEmitConvergenceTokens() && CI->isConvergent()) 5803 CI = addConvergenceControlToken(CI); 5804 5805 // Update largest vector width from the return type. 5806 LargestVectorWidth = 5807 std::max(LargestVectorWidth, getMaxVectorWidth(CI->getType())); 5808 5809 // Insert instrumentation or attach profile metadata at indirect call sites. 5810 // For more details, see the comment before the definition of 5811 // IPVK_IndirectCallTarget in InstrProfData.inc. 5812 if (!CI->getCalledFunction()) 5813 PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget, 5814 CI, CalleePtr); 5815 5816 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 5817 // optimizer it can aggressively ignore unwind edges. 5818 if (CGM.getLangOpts().ObjCAutoRefCount) 5819 AddObjCARCExceptionMetadata(CI); 5820 5821 // Set tail call kind if necessary. 5822 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) { 5823 if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>()) 5824 Call->setTailCallKind(llvm::CallInst::TCK_NoTail); 5825 else if (IsMustTail) { 5826 if (getTarget().getTriple().isPPC()) { 5827 if (getTarget().getTriple().isOSAIX()) 5828 CGM.getDiags().Report(Loc, diag::err_aix_musttail_unsupported); 5829 else if (!getTarget().hasFeature("pcrelative-memops")) { 5830 if (getTarget().hasFeature("longcall")) 5831 CGM.getDiags().Report(Loc, diag::err_ppc_impossible_musttail) << 0; 5832 else if (Call->isIndirectCall()) 5833 CGM.getDiags().Report(Loc, diag::err_ppc_impossible_musttail) << 1; 5834 else if (isa_and_nonnull<FunctionDecl>(TargetDecl)) { 5835 if (!cast<FunctionDecl>(TargetDecl)->isDefined()) 5836 // The undefined callee may be a forward declaration. Without 5837 // knowning all symbols in the module, we won't know the symbol is 5838 // defined or not. Collect all these symbols for later diagnosing. 5839 CGM.addUndefinedGlobalForTailCall( 5840 {cast<FunctionDecl>(TargetDecl), Loc}); 5841 else { 5842 llvm::GlobalValue::LinkageTypes Linkage = CGM.getFunctionLinkage( 5843 GlobalDecl(cast<FunctionDecl>(TargetDecl))); 5844 if (llvm::GlobalValue::isWeakForLinker(Linkage) || 5845 llvm::GlobalValue::isDiscardableIfUnused(Linkage)) 5846 CGM.getDiags().Report(Loc, diag::err_ppc_impossible_musttail) 5847 << 2; 5848 } 5849 } 5850 } 5851 } 5852 Call->setTailCallKind(llvm::CallInst::TCK_MustTail); 5853 } 5854 } 5855 5856 // Add metadata for calls to MSAllocator functions 5857 if (getDebugInfo() && TargetDecl && 5858 TargetDecl->hasAttr<MSAllocatorAttr>()) 5859 getDebugInfo()->addHeapAllocSiteMetadata(CI, RetTy->getPointeeType(), Loc); 5860 5861 // Add metadata if calling an __attribute__((error(""))) or warning fn. 5862 if (TargetDecl && TargetDecl->hasAttr<ErrorAttr>()) { 5863 llvm::ConstantInt *Line = 5864 llvm::ConstantInt::get(Int64Ty, Loc.getRawEncoding()); 5865 llvm::ConstantAsMetadata *MD = llvm::ConstantAsMetadata::get(Line); 5866 llvm::MDTuple *MDT = llvm::MDNode::get(getLLVMContext(), {MD}); 5867 CI->setMetadata("srcloc", MDT); 5868 } 5869 5870 // 4. Finish the call. 5871 5872 // If the call doesn't return, finish the basic block and clear the 5873 // insertion point; this allows the rest of IRGen to discard 5874 // unreachable code. 5875 if (CI->doesNotReturn()) { 5876 if (UnusedReturnSizePtr) 5877 PopCleanupBlock(); 5878 5879 // Strip away the noreturn attribute to better diagnose unreachable UB. 5880 if (SanOpts.has(SanitizerKind::Unreachable)) { 5881 // Also remove from function since CallBase::hasFnAttr additionally checks 5882 // attributes of the called function. 5883 if (auto *F = CI->getCalledFunction()) 5884 F->removeFnAttr(llvm::Attribute::NoReturn); 5885 CI->removeFnAttr(llvm::Attribute::NoReturn); 5886 5887 // Avoid incompatibility with ASan which relies on the `noreturn` 5888 // attribute to insert handler calls. 5889 if (SanOpts.hasOneOf(SanitizerKind::Address | 5890 SanitizerKind::KernelAddress)) { 5891 SanitizerScope SanScope(this); 5892 llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder); 5893 Builder.SetInsertPoint(CI); 5894 auto *FnType = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 5895 llvm::FunctionCallee Fn = 5896 CGM.CreateRuntimeFunction(FnType, "__asan_handle_no_return"); 5897 EmitNounwindRuntimeCall(Fn); 5898 } 5899 } 5900 5901 EmitUnreachable(Loc); 5902 Builder.ClearInsertionPoint(); 5903 5904 // FIXME: For now, emit a dummy basic block because expr emitters in 5905 // generally are not ready to handle emitting expressions at unreachable 5906 // points. 5907 EnsureInsertPoint(); 5908 5909 // Return a reasonable RValue. 5910 return GetUndefRValue(RetTy); 5911 } 5912 5913 // If this is a musttail call, return immediately. We do not branch to the 5914 // epilogue in this case. 5915 if (IsMustTail) { 5916 for (auto it = EHStack.find(CurrentCleanupScopeDepth); it != EHStack.end(); 5917 ++it) { 5918 EHCleanupScope *Cleanup = dyn_cast<EHCleanupScope>(&*it); 5919 if (!(Cleanup && Cleanup->getCleanup()->isRedundantBeforeReturn())) 5920 CGM.ErrorUnsupported(MustTailCall, "tail call skipping over cleanups"); 5921 } 5922 if (CI->getType()->isVoidTy()) 5923 Builder.CreateRetVoid(); 5924 else 5925 Builder.CreateRet(CI); 5926 Builder.ClearInsertionPoint(); 5927 EnsureInsertPoint(); 5928 return GetUndefRValue(RetTy); 5929 } 5930 5931 // Perform the swifterror writeback. 5932 if (swiftErrorTemp.isValid()) { 5933 llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp); 5934 Builder.CreateStore(errorResult, swiftErrorArg); 5935 } 5936 5937 // Emit any call-associated writebacks immediately. Arguably this 5938 // should happen after any return-value munging. 5939 if (CallArgs.hasWritebacks()) 5940 EmitWritebacks(CallArgs); 5941 5942 // The stack cleanup for inalloca arguments has to run out of the normal 5943 // lexical order, so deactivate it and run it manually here. 5944 CallArgs.freeArgumentMemory(*this); 5945 5946 // Extract the return value. 5947 RValue Ret; 5948 5949 // If the current function is a virtual function pointer thunk, avoid copying 5950 // the return value of the musttail call to a temporary. 5951 if (IsVirtualFunctionPointerThunk) { 5952 Ret = RValue::get(CI); 5953 } else { 5954 Ret = [&] { 5955 switch (RetAI.getKind()) { 5956 case ABIArgInfo::CoerceAndExpand: { 5957 auto coercionType = RetAI.getCoerceAndExpandType(); 5958 5959 Address addr = SRetPtr.withElementType(coercionType); 5960 5961 assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType()); 5962 bool requiresExtract = isa<llvm::StructType>(CI->getType()); 5963 5964 unsigned unpaddedIndex = 0; 5965 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 5966 llvm::Type *eltType = coercionType->getElementType(i); 5967 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) 5968 continue; 5969 Address eltAddr = Builder.CreateStructGEP(addr, i); 5970 llvm::Value *elt = CI; 5971 if (requiresExtract) 5972 elt = Builder.CreateExtractValue(elt, unpaddedIndex++); 5973 else 5974 assert(unpaddedIndex == 0); 5975 Builder.CreateStore(elt, eltAddr); 5976 } 5977 [[fallthrough]]; 5978 } 5979 5980 case ABIArgInfo::InAlloca: 5981 case ABIArgInfo::Indirect: { 5982 RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation()); 5983 if (UnusedReturnSizePtr) 5984 PopCleanupBlock(); 5985 return ret; 5986 } 5987 5988 case ABIArgInfo::Ignore: 5989 // If we are ignoring an argument that had a result, make sure to 5990 // construct the appropriate return value for our caller. 5991 return GetUndefRValue(RetTy); 5992 5993 case ABIArgInfo::Extend: 5994 case ABIArgInfo::Direct: { 5995 llvm::Type *RetIRTy = ConvertType(RetTy); 5996 if (RetAI.getCoerceToType() == RetIRTy && 5997 RetAI.getDirectOffset() == 0) { 5998 switch (getEvaluationKind(RetTy)) { 5999 case TEK_Complex: { 6000 llvm::Value *Real = Builder.CreateExtractValue(CI, 0); 6001 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); 6002 return RValue::getComplex(std::make_pair(Real, Imag)); 6003 } 6004 case TEK_Aggregate: 6005 break; 6006 case TEK_Scalar: { 6007 // If the argument doesn't match, perform a bitcast to coerce it. 6008 // This can happen due to trivial type mismatches. 6009 llvm::Value *V = CI; 6010 if (V->getType() != RetIRTy) 6011 V = Builder.CreateBitCast(V, RetIRTy); 6012 return RValue::get(V); 6013 } 6014 } 6015 } 6016 6017 // If coercing a fixed vector from a scalable vector for ABI 6018 // compatibility, and the types match, use the llvm.vector.extract 6019 // intrinsic to perform the conversion. 6020 if (auto *FixedDstTy = dyn_cast<llvm::FixedVectorType>(RetIRTy)) { 6021 llvm::Value *V = CI; 6022 if (auto *ScalableSrcTy = 6023 dyn_cast<llvm::ScalableVectorType>(V->getType())) { 6024 if (FixedDstTy->getElementType() == 6025 ScalableSrcTy->getElementType()) { 6026 llvm::Value *Zero = llvm::Constant::getNullValue(CGM.Int64Ty); 6027 V = Builder.CreateExtractVector(FixedDstTy, V, Zero, 6028 "cast.fixed"); 6029 return RValue::get(V); 6030 } 6031 } 6032 } 6033 6034 Address DestPtr = ReturnValue.getValue(); 6035 bool DestIsVolatile = ReturnValue.isVolatile(); 6036 uint64_t DestSize = 6037 getContext().getTypeInfoDataSizeInChars(RetTy).Width.getQuantity(); 6038 6039 if (!DestPtr.isValid()) { 6040 DestPtr = CreateMemTemp(RetTy, "coerce"); 6041 DestIsVolatile = false; 6042 DestSize = getContext().getTypeSizeInChars(RetTy).getQuantity(); 6043 } 6044 6045 // An empty record can overlap other data (if declared with 6046 // no_unique_address); omit the store for such types - as there is no 6047 // actual data to store. 6048 if (!isEmptyRecord(getContext(), RetTy, true)) { 6049 // If the value is offset in memory, apply the offset now. 6050 Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI); 6051 CreateCoercedStore( 6052 CI, StorePtr, 6053 llvm::TypeSize::getFixed(DestSize - RetAI.getDirectOffset()), 6054 DestIsVolatile); 6055 } 6056 6057 return convertTempToRValue(DestPtr, RetTy, SourceLocation()); 6058 } 6059 6060 case ABIArgInfo::Expand: 6061 case ABIArgInfo::IndirectAliased: 6062 llvm_unreachable("Invalid ABI kind for return argument"); 6063 } 6064 6065 llvm_unreachable("Unhandled ABIArgInfo::Kind"); 6066 }(); 6067 } 6068 6069 // Emit the assume_aligned check on the return value. 6070 if (Ret.isScalar() && TargetDecl) { 6071 AssumeAlignedAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret); 6072 AllocAlignAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret); 6073 } 6074 6075 // Explicitly call CallLifetimeEnd::Emit just to re-use the code even though 6076 // we can't use the full cleanup mechanism. 6077 for (CallLifetimeEnd &LifetimeEnd : CallLifetimeEndAfterCall) 6078 LifetimeEnd.Emit(*this, /*Flags=*/{}); 6079 6080 if (!ReturnValue.isExternallyDestructed() && 6081 RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct) 6082 pushDestroy(QualType::DK_nontrivial_c_struct, Ret.getAggregateAddress(), 6083 RetTy); 6084 6085 return Ret; 6086 } 6087 6088 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const { 6089 if (isVirtual()) { 6090 const CallExpr *CE = getVirtualCallExpr(); 6091 return CGF.CGM.getCXXABI().getVirtualFunctionPointer( 6092 CGF, getVirtualMethodDecl(), getThisAddress(), getVirtualFunctionType(), 6093 CE ? CE->getBeginLoc() : SourceLocation()); 6094 } 6095 6096 return *this; 6097 } 6098 6099 /* VarArg handling */ 6100 6101 RValue CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr, 6102 AggValueSlot Slot) { 6103 VAListAddr = VE->isMicrosoftABI() ? EmitMSVAListRef(VE->getSubExpr()) 6104 : EmitVAListRef(VE->getSubExpr()); 6105 QualType Ty = VE->getType(); 6106 if (Ty->isVariablyModifiedType()) 6107 EmitVariablyModifiedType(Ty); 6108 if (VE->isMicrosoftABI()) 6109 return CGM.getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty, Slot); 6110 return CGM.getABIInfo().EmitVAArg(*this, VAListAddr, Ty, Slot); 6111 } 6112