1 //===--- TargetInfo.cpp - Information about Target machine ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the TargetInfo interface. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/Basic/TargetInfo.h" 14 #include "clang/Basic/AddressSpaces.h" 15 #include "clang/Basic/CharInfo.h" 16 #include "clang/Basic/Diagnostic.h" 17 #include "clang/Basic/DiagnosticFrontend.h" 18 #include "clang/Basic/LangOptions.h" 19 #include "llvm/ADT/APFloat.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/Support/ErrorHandling.h" 22 #include "llvm/TargetParser/TargetParser.h" 23 #include <cstdlib> 24 using namespace clang; 25 26 static const LangASMap DefaultAddrSpaceMap = {0}; 27 // The fake address space map must have a distinct entry for each 28 // language-specific address space. 29 static const LangASMap FakeAddrSpaceMap = { 30 0, // Default 31 1, // opencl_global 32 3, // opencl_local 33 2, // opencl_constant 34 0, // opencl_private 35 4, // opencl_generic 36 5, // opencl_global_device 37 6, // opencl_global_host 38 7, // cuda_device 39 8, // cuda_constant 40 9, // cuda_shared 41 1, // sycl_global 42 5, // sycl_global_device 43 6, // sycl_global_host 44 3, // sycl_local 45 0, // sycl_private 46 10, // ptr32_sptr 47 11, // ptr32_uptr 48 12, // ptr64 49 13, // hlsl_groupshared 50 20, // wasm_funcref 51 }; 52 53 // TargetInfo Constructor. 54 TargetInfo::TargetInfo(const llvm::Triple &T) : Triple(T) { 55 // Set defaults. Defaults are set for a 32-bit RISC platform, like PPC or 56 // SPARC. These should be overridden by concrete targets as needed. 57 BigEndian = !T.isLittleEndian(); 58 TLSSupported = true; 59 VLASupported = true; 60 NoAsmVariants = false; 61 HasLegalHalfType = false; 62 HalfArgsAndReturns = false; 63 HasFloat128 = false; 64 HasIbm128 = false; 65 HasFloat16 = false; 66 HasBFloat16 = false; 67 HasFullBFloat16 = false; 68 HasLongDouble = true; 69 HasFPReturn = true; 70 HasFPTypes = true; 71 HasStrictFP = false; 72 PointerWidth = PointerAlign = 32; 73 BoolWidth = BoolAlign = 8; 74 IntWidth = IntAlign = 32; 75 LongWidth = LongAlign = 32; 76 LongLongWidth = LongLongAlign = 64; 77 Int128Align = 128; 78 79 // Fixed point default bit widths 80 ShortAccumWidth = ShortAccumAlign = 16; 81 AccumWidth = AccumAlign = 32; 82 LongAccumWidth = LongAccumAlign = 64; 83 ShortFractWidth = ShortFractAlign = 8; 84 FractWidth = FractAlign = 16; 85 LongFractWidth = LongFractAlign = 32; 86 87 // Fixed point default integral and fractional bit sizes 88 // We give the _Accum 1 fewer fractional bits than their corresponding _Fract 89 // types by default to have the same number of fractional bits between _Accum 90 // and _Fract types. 91 PaddingOnUnsignedFixedPoint = false; 92 ShortAccumScale = 7; 93 AccumScale = 15; 94 LongAccumScale = 31; 95 96 SuitableAlign = 64; 97 DefaultAlignForAttributeAligned = 128; 98 MinGlobalAlign = 0; 99 // From the glibc documentation, on GNU systems, malloc guarantees 16-byte 100 // alignment on 64-bit systems and 8-byte alignment on 32-bit systems. See 101 // https://www.gnu.org/software/libc/manual/html_node/Malloc-Examples.html. 102 // This alignment guarantee also applies to Windows and Android. On Darwin 103 // and OpenBSD, the alignment is 16 bytes on both 64-bit and 32-bit systems. 104 if (T.isGNUEnvironment() || T.isWindowsMSVCEnvironment() || T.isAndroid() || 105 T.isOHOSFamily()) 106 NewAlign = Triple.isArch64Bit() ? 128 : Triple.isArch32Bit() ? 64 : 0; 107 else if (T.isOSDarwin() || T.isOSOpenBSD()) 108 NewAlign = 128; 109 else 110 NewAlign = 0; // Infer from basic type alignment. 111 HalfWidth = 16; 112 HalfAlign = 16; 113 FloatWidth = 32; 114 FloatAlign = 32; 115 DoubleWidth = 64; 116 DoubleAlign = 64; 117 LongDoubleWidth = 64; 118 LongDoubleAlign = 64; 119 Float128Align = 128; 120 Ibm128Align = 128; 121 LargeArrayMinWidth = 0; 122 LargeArrayAlign = 0; 123 MaxAtomicPromoteWidth = MaxAtomicInlineWidth = 0; 124 MaxVectorAlign = 0; 125 MaxTLSAlign = 0; 126 SizeType = UnsignedLong; 127 PtrDiffType = SignedLong; 128 IntMaxType = SignedLongLong; 129 IntPtrType = SignedLong; 130 WCharType = SignedInt; 131 WIntType = SignedInt; 132 Char16Type = UnsignedShort; 133 Char32Type = UnsignedInt; 134 Int64Type = SignedLongLong; 135 Int16Type = SignedShort; 136 SigAtomicType = SignedInt; 137 ProcessIDType = SignedInt; 138 UseSignedCharForObjCBool = true; 139 UseBitFieldTypeAlignment = true; 140 UseZeroLengthBitfieldAlignment = false; 141 UseLeadingZeroLengthBitfield = true; 142 UseExplicitBitFieldAlignment = true; 143 ZeroLengthBitfieldBoundary = 0; 144 MaxAlignedAttribute = 0; 145 HalfFormat = &llvm::APFloat::IEEEhalf(); 146 FloatFormat = &llvm::APFloat::IEEEsingle(); 147 DoubleFormat = &llvm::APFloat::IEEEdouble(); 148 LongDoubleFormat = &llvm::APFloat::IEEEdouble(); 149 Float128Format = &llvm::APFloat::IEEEquad(); 150 Ibm128Format = &llvm::APFloat::PPCDoubleDouble(); 151 MCountName = "mcount"; 152 UserLabelPrefix = "_"; 153 RegParmMax = 0; 154 SSERegParmMax = 0; 155 HasAlignMac68kSupport = false; 156 HasBuiltinMSVaList = false; 157 IsRenderScriptTarget = false; 158 HasAArch64SVETypes = false; 159 HasRISCVVTypes = false; 160 AllowAMDGPUUnsafeFPAtomics = false; 161 ARMCDECoprocMask = 0; 162 163 // Default to no types using fpret. 164 RealTypeUsesObjCFPRetMask = 0; 165 166 // Default to not using fp2ret for __Complex long double 167 ComplexLongDoubleUsesFP2Ret = false; 168 169 // Set the C++ ABI based on the triple. 170 TheCXXABI.set(Triple.isKnownWindowsMSVCEnvironment() 171 ? TargetCXXABI::Microsoft 172 : TargetCXXABI::GenericItanium); 173 174 // Default to an empty address space map. 175 AddrSpaceMap = &DefaultAddrSpaceMap; 176 UseAddrSpaceMapMangling = false; 177 178 // Default to an unknown platform name. 179 PlatformName = "unknown"; 180 PlatformMinVersion = VersionTuple(); 181 182 MaxOpenCLWorkGroupSize = 1024; 183 184 MaxBitIntWidth.reset(); 185 } 186 187 // Out of line virtual dtor for TargetInfo. 188 TargetInfo::~TargetInfo() {} 189 190 void TargetInfo::resetDataLayout(StringRef DL, const char *ULP) { 191 DataLayoutString = DL.str(); 192 UserLabelPrefix = ULP; 193 } 194 195 bool 196 TargetInfo::checkCFProtectionBranchSupported(DiagnosticsEngine &Diags) const { 197 Diags.Report(diag::err_opt_not_valid_on_target) << "cf-protection=branch"; 198 return false; 199 } 200 201 bool 202 TargetInfo::checkCFProtectionReturnSupported(DiagnosticsEngine &Diags) const { 203 Diags.Report(diag::err_opt_not_valid_on_target) << "cf-protection=return"; 204 return false; 205 } 206 207 /// getTypeName - Return the user string for the specified integer type enum. 208 /// For example, SignedShort -> "short". 209 const char *TargetInfo::getTypeName(IntType T) { 210 switch (T) { 211 default: llvm_unreachable("not an integer!"); 212 case SignedChar: return "signed char"; 213 case UnsignedChar: return "unsigned char"; 214 case SignedShort: return "short"; 215 case UnsignedShort: return "unsigned short"; 216 case SignedInt: return "int"; 217 case UnsignedInt: return "unsigned int"; 218 case SignedLong: return "long int"; 219 case UnsignedLong: return "long unsigned int"; 220 case SignedLongLong: return "long long int"; 221 case UnsignedLongLong: return "long long unsigned int"; 222 } 223 } 224 225 /// getTypeConstantSuffix - Return the constant suffix for the specified 226 /// integer type enum. For example, SignedLong -> "L". 227 const char *TargetInfo::getTypeConstantSuffix(IntType T) const { 228 switch (T) { 229 default: llvm_unreachable("not an integer!"); 230 case SignedChar: 231 case SignedShort: 232 case SignedInt: return ""; 233 case SignedLong: return "L"; 234 case SignedLongLong: return "LL"; 235 case UnsignedChar: 236 if (getCharWidth() < getIntWidth()) 237 return ""; 238 [[fallthrough]]; 239 case UnsignedShort: 240 if (getShortWidth() < getIntWidth()) 241 return ""; 242 [[fallthrough]]; 243 case UnsignedInt: return "U"; 244 case UnsignedLong: return "UL"; 245 case UnsignedLongLong: return "ULL"; 246 } 247 } 248 249 /// getTypeFormatModifier - Return the printf format modifier for the 250 /// specified integer type enum. For example, SignedLong -> "l". 251 252 const char *TargetInfo::getTypeFormatModifier(IntType T) { 253 switch (T) { 254 default: llvm_unreachable("not an integer!"); 255 case SignedChar: 256 case UnsignedChar: return "hh"; 257 case SignedShort: 258 case UnsignedShort: return "h"; 259 case SignedInt: 260 case UnsignedInt: return ""; 261 case SignedLong: 262 case UnsignedLong: return "l"; 263 case SignedLongLong: 264 case UnsignedLongLong: return "ll"; 265 } 266 } 267 268 /// getTypeWidth - Return the width (in bits) of the specified integer type 269 /// enum. For example, SignedInt -> getIntWidth(). 270 unsigned TargetInfo::getTypeWidth(IntType T) const { 271 switch (T) { 272 default: llvm_unreachable("not an integer!"); 273 case SignedChar: 274 case UnsignedChar: return getCharWidth(); 275 case SignedShort: 276 case UnsignedShort: return getShortWidth(); 277 case SignedInt: 278 case UnsignedInt: return getIntWidth(); 279 case SignedLong: 280 case UnsignedLong: return getLongWidth(); 281 case SignedLongLong: 282 case UnsignedLongLong: return getLongLongWidth(); 283 }; 284 } 285 286 TargetInfo::IntType TargetInfo::getIntTypeByWidth( 287 unsigned BitWidth, bool IsSigned) const { 288 if (getCharWidth() == BitWidth) 289 return IsSigned ? SignedChar : UnsignedChar; 290 if (getShortWidth() == BitWidth) 291 return IsSigned ? SignedShort : UnsignedShort; 292 if (getIntWidth() == BitWidth) 293 return IsSigned ? SignedInt : UnsignedInt; 294 if (getLongWidth() == BitWidth) 295 return IsSigned ? SignedLong : UnsignedLong; 296 if (getLongLongWidth() == BitWidth) 297 return IsSigned ? SignedLongLong : UnsignedLongLong; 298 return NoInt; 299 } 300 301 TargetInfo::IntType TargetInfo::getLeastIntTypeByWidth(unsigned BitWidth, 302 bool IsSigned) const { 303 if (getCharWidth() >= BitWidth) 304 return IsSigned ? SignedChar : UnsignedChar; 305 if (getShortWidth() >= BitWidth) 306 return IsSigned ? SignedShort : UnsignedShort; 307 if (getIntWidth() >= BitWidth) 308 return IsSigned ? SignedInt : UnsignedInt; 309 if (getLongWidth() >= BitWidth) 310 return IsSigned ? SignedLong : UnsignedLong; 311 if (getLongLongWidth() >= BitWidth) 312 return IsSigned ? SignedLongLong : UnsignedLongLong; 313 return NoInt; 314 } 315 316 FloatModeKind TargetInfo::getRealTypeByWidth(unsigned BitWidth, 317 FloatModeKind ExplicitType) const { 318 if (getHalfWidth() == BitWidth) 319 return FloatModeKind::Half; 320 if (getFloatWidth() == BitWidth) 321 return FloatModeKind::Float; 322 if (getDoubleWidth() == BitWidth) 323 return FloatModeKind::Double; 324 325 switch (BitWidth) { 326 case 96: 327 if (&getLongDoubleFormat() == &llvm::APFloat::x87DoubleExtended()) 328 return FloatModeKind::LongDouble; 329 break; 330 case 128: 331 // The caller explicitly asked for an IEEE compliant type but we still 332 // have to check if the target supports it. 333 if (ExplicitType == FloatModeKind::Float128) 334 return hasFloat128Type() ? FloatModeKind::Float128 335 : FloatModeKind::NoFloat; 336 if (ExplicitType == FloatModeKind::Ibm128) 337 return hasIbm128Type() ? FloatModeKind::Ibm128 338 : FloatModeKind::NoFloat; 339 if (&getLongDoubleFormat() == &llvm::APFloat::PPCDoubleDouble() || 340 &getLongDoubleFormat() == &llvm::APFloat::IEEEquad()) 341 return FloatModeKind::LongDouble; 342 if (hasFloat128Type()) 343 return FloatModeKind::Float128; 344 break; 345 } 346 347 return FloatModeKind::NoFloat; 348 } 349 350 /// getTypeAlign - Return the alignment (in bits) of the specified integer type 351 /// enum. For example, SignedInt -> getIntAlign(). 352 unsigned TargetInfo::getTypeAlign(IntType T) const { 353 switch (T) { 354 default: llvm_unreachable("not an integer!"); 355 case SignedChar: 356 case UnsignedChar: return getCharAlign(); 357 case SignedShort: 358 case UnsignedShort: return getShortAlign(); 359 case SignedInt: 360 case UnsignedInt: return getIntAlign(); 361 case SignedLong: 362 case UnsignedLong: return getLongAlign(); 363 case SignedLongLong: 364 case UnsignedLongLong: return getLongLongAlign(); 365 }; 366 } 367 368 /// isTypeSigned - Return whether an integer types is signed. Returns true if 369 /// the type is signed; false otherwise. 370 bool TargetInfo::isTypeSigned(IntType T) { 371 switch (T) { 372 default: llvm_unreachable("not an integer!"); 373 case SignedChar: 374 case SignedShort: 375 case SignedInt: 376 case SignedLong: 377 case SignedLongLong: 378 return true; 379 case UnsignedChar: 380 case UnsignedShort: 381 case UnsignedInt: 382 case UnsignedLong: 383 case UnsignedLongLong: 384 return false; 385 }; 386 } 387 388 /// adjust - Set forced language options. 389 /// Apply changes to the target information with respect to certain 390 /// language options which change the target configuration and adjust 391 /// the language based on the target options where applicable. 392 void TargetInfo::adjust(DiagnosticsEngine &Diags, LangOptions &Opts) { 393 if (Opts.NoBitFieldTypeAlign) 394 UseBitFieldTypeAlignment = false; 395 396 switch (Opts.WCharSize) { 397 default: llvm_unreachable("invalid wchar_t width"); 398 case 0: break; 399 case 1: WCharType = Opts.WCharIsSigned ? SignedChar : UnsignedChar; break; 400 case 2: WCharType = Opts.WCharIsSigned ? SignedShort : UnsignedShort; break; 401 case 4: WCharType = Opts.WCharIsSigned ? SignedInt : UnsignedInt; break; 402 } 403 404 if (Opts.AlignDouble) { 405 DoubleAlign = LongLongAlign = 64; 406 LongDoubleAlign = 64; 407 } 408 409 if (Opts.OpenCL) { 410 // OpenCL C requires specific widths for types, irrespective of 411 // what these normally are for the target. 412 // We also define long long and long double here, although the 413 // OpenCL standard only mentions these as "reserved". 414 IntWidth = IntAlign = 32; 415 LongWidth = LongAlign = 64; 416 LongLongWidth = LongLongAlign = 128; 417 HalfWidth = HalfAlign = 16; 418 FloatWidth = FloatAlign = 32; 419 420 // Embedded 32-bit targets (OpenCL EP) might have double C type 421 // defined as float. Let's not override this as it might lead 422 // to generating illegal code that uses 64bit doubles. 423 if (DoubleWidth != FloatWidth) { 424 DoubleWidth = DoubleAlign = 64; 425 DoubleFormat = &llvm::APFloat::IEEEdouble(); 426 } 427 LongDoubleWidth = LongDoubleAlign = 128; 428 429 unsigned MaxPointerWidth = getMaxPointerWidth(); 430 assert(MaxPointerWidth == 32 || MaxPointerWidth == 64); 431 bool Is32BitArch = MaxPointerWidth == 32; 432 SizeType = Is32BitArch ? UnsignedInt : UnsignedLong; 433 PtrDiffType = Is32BitArch ? SignedInt : SignedLong; 434 IntPtrType = Is32BitArch ? SignedInt : SignedLong; 435 436 IntMaxType = SignedLongLong; 437 Int64Type = SignedLong; 438 439 HalfFormat = &llvm::APFloat::IEEEhalf(); 440 FloatFormat = &llvm::APFloat::IEEEsingle(); 441 LongDoubleFormat = &llvm::APFloat::IEEEquad(); 442 443 // OpenCL C v3.0 s6.7.5 - The generic address space requires support for 444 // OpenCL C 2.0 or OpenCL C 3.0 with the __opencl_c_generic_address_space 445 // feature 446 // OpenCL C v3.0 s6.2.1 - OpenCL pipes require support of OpenCL C 2.0 447 // or later and __opencl_c_pipes feature 448 // FIXME: These language options are also defined in setLangDefaults() 449 // for OpenCL C 2.0 but with no access to target capabilities. Target 450 // should be immutable once created and thus these language options need 451 // to be defined only once. 452 if (Opts.getOpenCLCompatibleVersion() == 300) { 453 const auto &OpenCLFeaturesMap = getSupportedOpenCLOpts(); 454 Opts.OpenCLGenericAddressSpace = hasFeatureEnabled( 455 OpenCLFeaturesMap, "__opencl_c_generic_address_space"); 456 Opts.OpenCLPipes = 457 hasFeatureEnabled(OpenCLFeaturesMap, "__opencl_c_pipes"); 458 Opts.Blocks = 459 hasFeatureEnabled(OpenCLFeaturesMap, "__opencl_c_device_enqueue"); 460 } 461 } 462 463 if (Opts.DoubleSize) { 464 if (Opts.DoubleSize == 32) { 465 DoubleWidth = 32; 466 LongDoubleWidth = 32; 467 DoubleFormat = &llvm::APFloat::IEEEsingle(); 468 LongDoubleFormat = &llvm::APFloat::IEEEsingle(); 469 } else if (Opts.DoubleSize == 64) { 470 DoubleWidth = 64; 471 LongDoubleWidth = 64; 472 DoubleFormat = &llvm::APFloat::IEEEdouble(); 473 LongDoubleFormat = &llvm::APFloat::IEEEdouble(); 474 } 475 } 476 477 if (Opts.LongDoubleSize) { 478 if (Opts.LongDoubleSize == DoubleWidth) { 479 LongDoubleWidth = DoubleWidth; 480 LongDoubleAlign = DoubleAlign; 481 LongDoubleFormat = DoubleFormat; 482 } else if (Opts.LongDoubleSize == 128) { 483 LongDoubleWidth = LongDoubleAlign = 128; 484 LongDoubleFormat = &llvm::APFloat::IEEEquad(); 485 } else if (Opts.LongDoubleSize == 80) { 486 LongDoubleFormat = &llvm::APFloat::x87DoubleExtended(); 487 if (getTriple().isWindowsMSVCEnvironment()) { 488 LongDoubleWidth = 128; 489 LongDoubleAlign = 128; 490 } else { // Linux 491 if (getTriple().getArch() == llvm::Triple::x86) { 492 LongDoubleWidth = 96; 493 LongDoubleAlign = 32; 494 } else { 495 LongDoubleWidth = 128; 496 LongDoubleAlign = 128; 497 } 498 } 499 } 500 } 501 502 if (Opts.NewAlignOverride) 503 NewAlign = Opts.NewAlignOverride * getCharWidth(); 504 505 // Each unsigned fixed point type has the same number of fractional bits as 506 // its corresponding signed type. 507 PaddingOnUnsignedFixedPoint |= Opts.PaddingOnUnsignedFixedPoint; 508 CheckFixedPointBits(); 509 510 if (Opts.ProtectParens && !checkArithmeticFenceSupported()) { 511 Diags.Report(diag::err_opt_not_valid_on_target) << "-fprotect-parens"; 512 Opts.ProtectParens = false; 513 } 514 515 if (Opts.MaxBitIntWidth) 516 MaxBitIntWidth = static_cast<unsigned>(Opts.MaxBitIntWidth); 517 518 if (Opts.FakeAddressSpaceMap) 519 AddrSpaceMap = &FakeAddrSpaceMap; 520 } 521 522 bool TargetInfo::initFeatureMap( 523 llvm::StringMap<bool> &Features, DiagnosticsEngine &Diags, StringRef CPU, 524 const std::vector<std::string> &FeatureVec) const { 525 for (const auto &F : FeatureVec) { 526 StringRef Name = F; 527 if (Name.empty()) 528 continue; 529 // Apply the feature via the target. 530 if (Name[0] != '+' && Name[0] != '-') 531 Diags.Report(diag::warn_fe_backend_invalid_feature_flag) << Name; 532 else 533 setFeatureEnabled(Features, Name.substr(1), Name[0] == '+'); 534 } 535 return true; 536 } 537 538 ParsedTargetAttr TargetInfo::parseTargetAttr(StringRef Features) const { 539 ParsedTargetAttr Ret; 540 if (Features == "default") 541 return Ret; 542 SmallVector<StringRef, 1> AttrFeatures; 543 Features.split(AttrFeatures, ","); 544 545 // Grab the various features and prepend a "+" to turn on the feature to 546 // the backend and add them to our existing set of features. 547 for (auto &Feature : AttrFeatures) { 548 // Go ahead and trim whitespace rather than either erroring or 549 // accepting it weirdly. 550 Feature = Feature.trim(); 551 552 // TODO: Support the fpmath option. It will require checking 553 // overall feature validity for the function with the rest of the 554 // attributes on the function. 555 if (Feature.starts_with("fpmath=")) 556 continue; 557 558 if (Feature.starts_with("branch-protection=")) { 559 Ret.BranchProtection = Feature.split('=').second.trim(); 560 continue; 561 } 562 563 // While we're here iterating check for a different target cpu. 564 if (Feature.starts_with("arch=")) { 565 if (!Ret.CPU.empty()) 566 Ret.Duplicate = "arch="; 567 else 568 Ret.CPU = Feature.split("=").second.trim(); 569 } else if (Feature.starts_with("tune=")) { 570 if (!Ret.Tune.empty()) 571 Ret.Duplicate = "tune="; 572 else 573 Ret.Tune = Feature.split("=").second.trim(); 574 } else if (Feature.starts_with("no-")) 575 Ret.Features.push_back("-" + Feature.split("-").second.str()); 576 else 577 Ret.Features.push_back("+" + Feature.str()); 578 } 579 return Ret; 580 } 581 582 TargetInfo::CallingConvKind 583 TargetInfo::getCallingConvKind(bool ClangABICompat4) const { 584 if (getCXXABI() != TargetCXXABI::Microsoft && 585 (ClangABICompat4 || getTriple().isPS4())) 586 return CCK_ClangABI4OrPS4; 587 return CCK_Default; 588 } 589 590 bool TargetInfo::areDefaultedSMFStillPOD(const LangOptions &LangOpts) const { 591 return LangOpts.getClangABICompat() > LangOptions::ClangABI::Ver15; 592 } 593 594 LangAS TargetInfo::getOpenCLTypeAddrSpace(OpenCLTypeKind TK) const { 595 switch (TK) { 596 case OCLTK_Image: 597 case OCLTK_Pipe: 598 return LangAS::opencl_global; 599 600 case OCLTK_Sampler: 601 return LangAS::opencl_constant; 602 603 default: 604 return LangAS::Default; 605 } 606 } 607 608 //===----------------------------------------------------------------------===// 609 610 611 static StringRef removeGCCRegisterPrefix(StringRef Name) { 612 if (Name[0] == '%' || Name[0] == '#') 613 Name = Name.substr(1); 614 615 return Name; 616 } 617 618 /// isValidClobber - Returns whether the passed in string is 619 /// a valid clobber in an inline asm statement. This is used by 620 /// Sema. 621 bool TargetInfo::isValidClobber(StringRef Name) const { 622 return (isValidGCCRegisterName(Name) || Name == "memory" || Name == "cc" || 623 Name == "unwind"); 624 } 625 626 /// isValidGCCRegisterName - Returns whether the passed in string 627 /// is a valid register name according to GCC. This is used by Sema for 628 /// inline asm statements. 629 bool TargetInfo::isValidGCCRegisterName(StringRef Name) const { 630 if (Name.empty()) 631 return false; 632 633 // Get rid of any register prefix. 634 Name = removeGCCRegisterPrefix(Name); 635 if (Name.empty()) 636 return false; 637 638 ArrayRef<const char *> Names = getGCCRegNames(); 639 640 // If we have a number it maps to an entry in the register name array. 641 if (isDigit(Name[0])) { 642 unsigned n; 643 if (!Name.getAsInteger(0, n)) 644 return n < Names.size(); 645 } 646 647 // Check register names. 648 if (llvm::is_contained(Names, Name)) 649 return true; 650 651 // Check any additional names that we have. 652 for (const AddlRegName &ARN : getGCCAddlRegNames()) 653 for (const char *AN : ARN.Names) { 654 if (!AN) 655 break; 656 // Make sure the register that the additional name is for is within 657 // the bounds of the register names from above. 658 if (AN == Name && ARN.RegNum < Names.size()) 659 return true; 660 } 661 662 // Now check aliases. 663 for (const GCCRegAlias &GRA : getGCCRegAliases()) 664 for (const char *A : GRA.Aliases) { 665 if (!A) 666 break; 667 if (A == Name) 668 return true; 669 } 670 671 return false; 672 } 673 674 StringRef TargetInfo::getNormalizedGCCRegisterName(StringRef Name, 675 bool ReturnCanonical) const { 676 assert(isValidGCCRegisterName(Name) && "Invalid register passed in"); 677 678 // Get rid of any register prefix. 679 Name = removeGCCRegisterPrefix(Name); 680 681 ArrayRef<const char *> Names = getGCCRegNames(); 682 683 // First, check if we have a number. 684 if (isDigit(Name[0])) { 685 unsigned n; 686 if (!Name.getAsInteger(0, n)) { 687 assert(n < Names.size() && "Out of bounds register number!"); 688 return Names[n]; 689 } 690 } 691 692 // Check any additional names that we have. 693 for (const AddlRegName &ARN : getGCCAddlRegNames()) 694 for (const char *AN : ARN.Names) { 695 if (!AN) 696 break; 697 // Make sure the register that the additional name is for is within 698 // the bounds of the register names from above. 699 if (AN == Name && ARN.RegNum < Names.size()) 700 return ReturnCanonical ? Names[ARN.RegNum] : Name; 701 } 702 703 // Now check aliases. 704 for (const GCCRegAlias &RA : getGCCRegAliases()) 705 for (const char *A : RA.Aliases) { 706 if (!A) 707 break; 708 if (A == Name) 709 return RA.Register; 710 } 711 712 return Name; 713 } 714 715 bool TargetInfo::validateOutputConstraint(ConstraintInfo &Info) const { 716 const char *Name = Info.getConstraintStr().c_str(); 717 // An output constraint must start with '=' or '+' 718 if (*Name != '=' && *Name != '+') 719 return false; 720 721 if (*Name == '+') 722 Info.setIsReadWrite(); 723 724 Name++; 725 while (*Name) { 726 switch (*Name) { 727 default: 728 if (!validateAsmConstraint(Name, Info)) { 729 // FIXME: We temporarily return false 730 // so we can add more constraints as we hit it. 731 // Eventually, an unknown constraint should just be treated as 'g'. 732 return false; 733 } 734 break; 735 case '&': // early clobber. 736 Info.setEarlyClobber(); 737 break; 738 case '%': // commutative. 739 // FIXME: Check that there is a another register after this one. 740 break; 741 case 'r': // general register. 742 Info.setAllowsRegister(); 743 break; 744 case 'm': // memory operand. 745 case 'o': // offsetable memory operand. 746 case 'V': // non-offsetable memory operand. 747 case '<': // autodecrement memory operand. 748 case '>': // autoincrement memory operand. 749 Info.setAllowsMemory(); 750 break; 751 case 'g': // general register, memory operand or immediate integer. 752 case 'X': // any operand. 753 Info.setAllowsRegister(); 754 Info.setAllowsMemory(); 755 break; 756 case ',': // multiple alternative constraint. Pass it. 757 // Handle additional optional '=' or '+' modifiers. 758 if (Name[1] == '=' || Name[1] == '+') 759 Name++; 760 break; 761 case '#': // Ignore as constraint. 762 while (Name[1] && Name[1] != ',') 763 Name++; 764 break; 765 case '?': // Disparage slightly code. 766 case '!': // Disparage severely. 767 case '*': // Ignore for choosing register preferences. 768 case 'i': // Ignore i,n,E,F as output constraints (match from the other 769 // chars) 770 case 'n': 771 case 'E': 772 case 'F': 773 break; // Pass them. 774 } 775 776 Name++; 777 } 778 779 // Early clobber with a read-write constraint which doesn't permit registers 780 // is invalid. 781 if (Info.earlyClobber() && Info.isReadWrite() && !Info.allowsRegister()) 782 return false; 783 784 // If a constraint allows neither memory nor register operands it contains 785 // only modifiers. Reject it. 786 return Info.allowsMemory() || Info.allowsRegister(); 787 } 788 789 bool TargetInfo::resolveSymbolicName(const char *&Name, 790 ArrayRef<ConstraintInfo> OutputConstraints, 791 unsigned &Index) const { 792 assert(*Name == '[' && "Symbolic name did not start with '['"); 793 Name++; 794 const char *Start = Name; 795 while (*Name && *Name != ']') 796 Name++; 797 798 if (!*Name) { 799 // Missing ']' 800 return false; 801 } 802 803 std::string SymbolicName(Start, Name - Start); 804 805 for (Index = 0; Index != OutputConstraints.size(); ++Index) 806 if (SymbolicName == OutputConstraints[Index].getName()) 807 return true; 808 809 return false; 810 } 811 812 bool TargetInfo::validateInputConstraint( 813 MutableArrayRef<ConstraintInfo> OutputConstraints, 814 ConstraintInfo &Info) const { 815 const char *Name = Info.ConstraintStr.c_str(); 816 817 if (!*Name) 818 return false; 819 820 while (*Name) { 821 switch (*Name) { 822 default: 823 // Check if we have a matching constraint 824 if (*Name >= '0' && *Name <= '9') { 825 const char *DigitStart = Name; 826 while (Name[1] >= '0' && Name[1] <= '9') 827 Name++; 828 const char *DigitEnd = Name; 829 unsigned i; 830 if (StringRef(DigitStart, DigitEnd - DigitStart + 1) 831 .getAsInteger(10, i)) 832 return false; 833 834 // Check if matching constraint is out of bounds. 835 if (i >= OutputConstraints.size()) return false; 836 837 // A number must refer to an output only operand. 838 if (OutputConstraints[i].isReadWrite()) 839 return false; 840 841 // If the constraint is already tied, it must be tied to the 842 // same operand referenced to by the number. 843 if (Info.hasTiedOperand() && Info.getTiedOperand() != i) 844 return false; 845 846 // The constraint should have the same info as the respective 847 // output constraint. 848 Info.setTiedOperand(i, OutputConstraints[i]); 849 } else if (!validateAsmConstraint(Name, Info)) { 850 // FIXME: This error return is in place temporarily so we can 851 // add more constraints as we hit it. Eventually, an unknown 852 // constraint should just be treated as 'g'. 853 return false; 854 } 855 break; 856 case '[': { 857 unsigned Index = 0; 858 if (!resolveSymbolicName(Name, OutputConstraints, Index)) 859 return false; 860 861 // If the constraint is already tied, it must be tied to the 862 // same operand referenced to by the number. 863 if (Info.hasTiedOperand() && Info.getTiedOperand() != Index) 864 return false; 865 866 // A number must refer to an output only operand. 867 if (OutputConstraints[Index].isReadWrite()) 868 return false; 869 870 Info.setTiedOperand(Index, OutputConstraints[Index]); 871 break; 872 } 873 case '%': // commutative 874 // FIXME: Fail if % is used with the last operand. 875 break; 876 case 'i': // immediate integer. 877 break; 878 case 'n': // immediate integer with a known value. 879 Info.setRequiresImmediate(); 880 break; 881 case 'I': // Various constant constraints with target-specific meanings. 882 case 'J': 883 case 'K': 884 case 'L': 885 case 'M': 886 case 'N': 887 case 'O': 888 case 'P': 889 if (!validateAsmConstraint(Name, Info)) 890 return false; 891 break; 892 case 'r': // general register. 893 Info.setAllowsRegister(); 894 break; 895 case 'm': // memory operand. 896 case 'o': // offsettable memory operand. 897 case 'V': // non-offsettable memory operand. 898 case '<': // autodecrement memory operand. 899 case '>': // autoincrement memory operand. 900 Info.setAllowsMemory(); 901 break; 902 case 'g': // general register, memory operand or immediate integer. 903 case 'X': // any operand. 904 Info.setAllowsRegister(); 905 Info.setAllowsMemory(); 906 break; 907 case 'E': // immediate floating point. 908 case 'F': // immediate floating point. 909 case 'p': // address operand. 910 break; 911 case ',': // multiple alternative constraint. Ignore comma. 912 break; 913 case '#': // Ignore as constraint. 914 while (Name[1] && Name[1] != ',') 915 Name++; 916 break; 917 case '?': // Disparage slightly code. 918 case '!': // Disparage severely. 919 case '*': // Ignore for choosing register preferences. 920 break; // Pass them. 921 } 922 923 Name++; 924 } 925 926 return true; 927 } 928 929 void TargetInfo::CheckFixedPointBits() const { 930 // Check that the number of fractional and integral bits (and maybe sign) can 931 // fit into the bits given for a fixed point type. 932 assert(ShortAccumScale + getShortAccumIBits() + 1 <= ShortAccumWidth); 933 assert(AccumScale + getAccumIBits() + 1 <= AccumWidth); 934 assert(LongAccumScale + getLongAccumIBits() + 1 <= LongAccumWidth); 935 assert(getUnsignedShortAccumScale() + getUnsignedShortAccumIBits() <= 936 ShortAccumWidth); 937 assert(getUnsignedAccumScale() + getUnsignedAccumIBits() <= AccumWidth); 938 assert(getUnsignedLongAccumScale() + getUnsignedLongAccumIBits() <= 939 LongAccumWidth); 940 941 assert(getShortFractScale() + 1 <= ShortFractWidth); 942 assert(getFractScale() + 1 <= FractWidth); 943 assert(getLongFractScale() + 1 <= LongFractWidth); 944 assert(getUnsignedShortFractScale() <= ShortFractWidth); 945 assert(getUnsignedFractScale() <= FractWidth); 946 assert(getUnsignedLongFractScale() <= LongFractWidth); 947 948 // Each unsigned fract type has either the same number of fractional bits 949 // as, or one more fractional bit than, its corresponding signed fract type. 950 assert(getShortFractScale() == getUnsignedShortFractScale() || 951 getShortFractScale() == getUnsignedShortFractScale() - 1); 952 assert(getFractScale() == getUnsignedFractScale() || 953 getFractScale() == getUnsignedFractScale() - 1); 954 assert(getLongFractScale() == getUnsignedLongFractScale() || 955 getLongFractScale() == getUnsignedLongFractScale() - 1); 956 957 // When arranged in order of increasing rank (see 6.3.1.3a), the number of 958 // fractional bits is nondecreasing for each of the following sets of 959 // fixed-point types: 960 // - signed fract types 961 // - unsigned fract types 962 // - signed accum types 963 // - unsigned accum types. 964 assert(getLongFractScale() >= getFractScale() && 965 getFractScale() >= getShortFractScale()); 966 assert(getUnsignedLongFractScale() >= getUnsignedFractScale() && 967 getUnsignedFractScale() >= getUnsignedShortFractScale()); 968 assert(LongAccumScale >= AccumScale && AccumScale >= ShortAccumScale); 969 assert(getUnsignedLongAccumScale() >= getUnsignedAccumScale() && 970 getUnsignedAccumScale() >= getUnsignedShortAccumScale()); 971 972 // When arranged in order of increasing rank (see 6.3.1.3a), the number of 973 // integral bits is nondecreasing for each of the following sets of 974 // fixed-point types: 975 // - signed accum types 976 // - unsigned accum types 977 assert(getLongAccumIBits() >= getAccumIBits() && 978 getAccumIBits() >= getShortAccumIBits()); 979 assert(getUnsignedLongAccumIBits() >= getUnsignedAccumIBits() && 980 getUnsignedAccumIBits() >= getUnsignedShortAccumIBits()); 981 982 // Each signed accum type has at least as many integral bits as its 983 // corresponding unsigned accum type. 984 assert(getShortAccumIBits() >= getUnsignedShortAccumIBits()); 985 assert(getAccumIBits() >= getUnsignedAccumIBits()); 986 assert(getLongAccumIBits() >= getUnsignedLongAccumIBits()); 987 } 988 989 void TargetInfo::copyAuxTarget(const TargetInfo *Aux) { 990 auto *Target = static_cast<TransferrableTargetInfo*>(this); 991 auto *Src = static_cast<const TransferrableTargetInfo*>(Aux); 992 *Target = *Src; 993 } 994