xref: /llvm-project/clang/lib/Analysis/ThreadSafetyCommon.cpp (revision 19c0a6b5eb3a0c0619fccc140740500737fdcd47)
1 //===- ThreadSafetyCommon.cpp ---------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Implementation of the interfaces declared in ThreadSafetyCommon.h
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/Analysis/Analyses/ThreadSafetyCommon.h"
14 #include "clang/AST/Attr.h"
15 #include "clang/AST/Decl.h"
16 #include "clang/AST/DeclCXX.h"
17 #include "clang/AST/DeclGroup.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/Expr.h"
20 #include "clang/AST/ExprCXX.h"
21 #include "clang/AST/OperationKinds.h"
22 #include "clang/AST/Stmt.h"
23 #include "clang/AST/Type.h"
24 #include "clang/Analysis/Analyses/ThreadSafetyTIL.h"
25 #include "clang/Analysis/CFG.h"
26 #include "clang/Basic/LLVM.h"
27 #include "clang/Basic/OperatorKinds.h"
28 #include "clang/Basic/Specifiers.h"
29 #include "llvm/ADT/StringExtras.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/Support/Casting.h"
32 #include <algorithm>
33 #include <cassert>
34 #include <string>
35 #include <utility>
36 
37 using namespace clang;
38 using namespace threadSafety;
39 
40 // From ThreadSafetyUtil.h
41 std::string threadSafety::getSourceLiteralString(const Expr *CE) {
42   switch (CE->getStmtClass()) {
43     case Stmt::IntegerLiteralClass:
44       return toString(cast<IntegerLiteral>(CE)->getValue(), 10, true);
45     case Stmt::StringLiteralClass: {
46       std::string ret("\"");
47       ret += cast<StringLiteral>(CE)->getString();
48       ret += "\"";
49       return ret;
50     }
51     case Stmt::CharacterLiteralClass:
52     case Stmt::CXXNullPtrLiteralExprClass:
53     case Stmt::GNUNullExprClass:
54     case Stmt::CXXBoolLiteralExprClass:
55     case Stmt::FloatingLiteralClass:
56     case Stmt::ImaginaryLiteralClass:
57     case Stmt::ObjCStringLiteralClass:
58     default:
59       return "#lit";
60   }
61 }
62 
63 // Return true if E is a variable that points to an incomplete Phi node.
64 static bool isIncompletePhi(const til::SExpr *E) {
65   if (const auto *Ph = dyn_cast<til::Phi>(E))
66     return Ph->status() == til::Phi::PH_Incomplete;
67   return false;
68 }
69 
70 using CallingContext = SExprBuilder::CallingContext;
71 
72 til::SExpr *SExprBuilder::lookupStmt(const Stmt *S) { return SMap.lookup(S); }
73 
74 til::SCFG *SExprBuilder::buildCFG(CFGWalker &Walker) {
75   Walker.walk(*this);
76   return Scfg;
77 }
78 
79 static bool isCalleeArrow(const Expr *E) {
80   const auto *ME = dyn_cast<MemberExpr>(E->IgnoreParenCasts());
81   return ME ? ME->isArrow() : false;
82 }
83 
84 static StringRef ClassifyDiagnostic(const CapabilityAttr *A) {
85   return A->getName();
86 }
87 
88 static StringRef ClassifyDiagnostic(QualType VDT) {
89   // We need to look at the declaration of the type of the value to determine
90   // which it is. The type should either be a record or a typedef, or a pointer
91   // or reference thereof.
92   if (const auto *RT = VDT->getAs<RecordType>()) {
93     if (const auto *RD = RT->getDecl())
94       if (const auto *CA = RD->getAttr<CapabilityAttr>())
95         return ClassifyDiagnostic(CA);
96   } else if (const auto *TT = VDT->getAs<TypedefType>()) {
97     if (const auto *TD = TT->getDecl())
98       if (const auto *CA = TD->getAttr<CapabilityAttr>())
99         return ClassifyDiagnostic(CA);
100   } else if (VDT->isPointerOrReferenceType())
101     return ClassifyDiagnostic(VDT->getPointeeType());
102 
103   return "mutex";
104 }
105 
106 /// Translate a clang expression in an attribute to a til::SExpr.
107 /// Constructs the context from D, DeclExp, and SelfDecl.
108 ///
109 /// \param AttrExp The expression to translate.
110 /// \param D       The declaration to which the attribute is attached.
111 /// \param DeclExp An expression involving the Decl to which the attribute
112 ///                is attached.  E.g. the call to a function.
113 /// \param Self    S-expression to substitute for a \ref CXXThisExpr in a call,
114 ///                or argument to a cleanup function.
115 CapabilityExpr SExprBuilder::translateAttrExpr(const Expr *AttrExp,
116                                                const NamedDecl *D,
117                                                const Expr *DeclExp,
118                                                til::SExpr *Self) {
119   // If we are processing a raw attribute expression, with no substitutions.
120   if (!DeclExp && !Self)
121     return translateAttrExpr(AttrExp, nullptr);
122 
123   CallingContext Ctx(nullptr, D);
124 
125   // Examine DeclExp to find SelfArg and FunArgs, which are used to substitute
126   // for formal parameters when we call buildMutexID later.
127   if (!DeclExp)
128     /* We'll use Self. */;
129   else if (const auto *ME = dyn_cast<MemberExpr>(DeclExp)) {
130     Ctx.SelfArg   = ME->getBase();
131     Ctx.SelfArrow = ME->isArrow();
132   } else if (const auto *CE = dyn_cast<CXXMemberCallExpr>(DeclExp)) {
133     Ctx.SelfArg   = CE->getImplicitObjectArgument();
134     Ctx.SelfArrow = isCalleeArrow(CE->getCallee());
135     Ctx.NumArgs   = CE->getNumArgs();
136     Ctx.FunArgs   = CE->getArgs();
137   } else if (const auto *CE = dyn_cast<CallExpr>(DeclExp)) {
138     // Calls to operators that are members need to be treated like member calls.
139     if (isa<CXXOperatorCallExpr>(CE) && isa<CXXMethodDecl>(D)) {
140       Ctx.SelfArg = CE->getArg(0);
141       Ctx.SelfArrow = false;
142       Ctx.NumArgs = CE->getNumArgs() - 1;
143       Ctx.FunArgs = CE->getArgs() + 1;
144     } else {
145       Ctx.NumArgs = CE->getNumArgs();
146       Ctx.FunArgs = CE->getArgs();
147     }
148   } else if (const auto *CE = dyn_cast<CXXConstructExpr>(DeclExp)) {
149     Ctx.SelfArg = nullptr;  // Will be set below
150     Ctx.NumArgs = CE->getNumArgs();
151     Ctx.FunArgs = CE->getArgs();
152   }
153 
154   // Usually we want to substitute the self-argument for "this", but lambdas
155   // are an exception: "this" on or in a lambda call operator doesn't refer
156   // to the lambda, but to captured "this" in the context it was created in.
157   // This can happen for operator calls and member calls, so fix it up here.
158   if (const auto *CMD = dyn_cast<CXXMethodDecl>(D))
159     if (CMD->getParent()->isLambda())
160       Ctx.SelfArg = nullptr;
161 
162   if (Self) {
163     assert(!Ctx.SelfArg && "Ambiguous self argument");
164     assert(isa<FunctionDecl>(D) && "Self argument requires function");
165     if (isa<CXXMethodDecl>(D))
166       Ctx.SelfArg = Self;
167     else
168       Ctx.FunArgs = Self;
169 
170     // If the attribute has no arguments, then assume the argument is "this".
171     if (!AttrExp)
172       return CapabilityExpr(
173           Self,
174           ClassifyDiagnostic(
175               cast<CXXMethodDecl>(D)->getFunctionObjectParameterType()),
176           false);
177     else  // For most attributes.
178       return translateAttrExpr(AttrExp, &Ctx);
179   }
180 
181   // If the attribute has no arguments, then assume the argument is "this".
182   if (!AttrExp)
183     return translateAttrExpr(cast<const Expr *>(Ctx.SelfArg), nullptr);
184   else  // For most attributes.
185     return translateAttrExpr(AttrExp, &Ctx);
186 }
187 
188 /// Translate a clang expression in an attribute to a til::SExpr.
189 // This assumes a CallingContext has already been created.
190 CapabilityExpr SExprBuilder::translateAttrExpr(const Expr *AttrExp,
191                                                CallingContext *Ctx) {
192   if (!AttrExp)
193     return CapabilityExpr();
194 
195   if (const auto* SLit = dyn_cast<StringLiteral>(AttrExp)) {
196     if (SLit->getString() == "*")
197       // The "*" expr is a universal lock, which essentially turns off
198       // checks until it is removed from the lockset.
199       return CapabilityExpr(new (Arena) til::Wildcard(), StringRef("wildcard"),
200                             false);
201     else
202       // Ignore other string literals for now.
203       return CapabilityExpr();
204   }
205 
206   bool Neg = false;
207   if (const auto *OE = dyn_cast<CXXOperatorCallExpr>(AttrExp)) {
208     if (OE->getOperator() == OO_Exclaim) {
209       Neg = true;
210       AttrExp = OE->getArg(0);
211     }
212   }
213   else if (const auto *UO = dyn_cast<UnaryOperator>(AttrExp)) {
214     if (UO->getOpcode() == UO_LNot) {
215       Neg = true;
216       AttrExp = UO->getSubExpr()->IgnoreImplicit();
217     }
218   }
219 
220   til::SExpr *E = translate(AttrExp, Ctx);
221 
222   // Trap mutex expressions like nullptr, or 0.
223   // Any literal value is nonsense.
224   if (!E || isa<til::Literal>(E))
225     return CapabilityExpr();
226 
227   StringRef Kind = ClassifyDiagnostic(AttrExp->getType());
228 
229   // Hack to deal with smart pointers -- strip off top-level pointer casts.
230   if (const auto *CE = dyn_cast<til::Cast>(E)) {
231     if (CE->castOpcode() == til::CAST_objToPtr)
232       return CapabilityExpr(CE->expr(), Kind, Neg);
233   }
234   return CapabilityExpr(E, Kind, Neg);
235 }
236 
237 til::LiteralPtr *SExprBuilder::createVariable(const VarDecl *VD) {
238   return new (Arena) til::LiteralPtr(VD);
239 }
240 
241 std::pair<til::LiteralPtr *, StringRef>
242 SExprBuilder::createThisPlaceholder(const Expr *Exp) {
243   return {new (Arena) til::LiteralPtr(nullptr),
244           ClassifyDiagnostic(Exp->getType())};
245 }
246 
247 // Translate a clang statement or expression to a TIL expression.
248 // Also performs substitution of variables; Ctx provides the context.
249 // Dispatches on the type of S.
250 til::SExpr *SExprBuilder::translate(const Stmt *S, CallingContext *Ctx) {
251   if (!S)
252     return nullptr;
253 
254   // Check if S has already been translated and cached.
255   // This handles the lookup of SSA names for DeclRefExprs here.
256   if (til::SExpr *E = lookupStmt(S))
257     return E;
258 
259   switch (S->getStmtClass()) {
260   case Stmt::DeclRefExprClass:
261     return translateDeclRefExpr(cast<DeclRefExpr>(S), Ctx);
262   case Stmt::CXXThisExprClass:
263     return translateCXXThisExpr(cast<CXXThisExpr>(S), Ctx);
264   case Stmt::MemberExprClass:
265     return translateMemberExpr(cast<MemberExpr>(S), Ctx);
266   case Stmt::ObjCIvarRefExprClass:
267     return translateObjCIVarRefExpr(cast<ObjCIvarRefExpr>(S), Ctx);
268   case Stmt::CallExprClass:
269     return translateCallExpr(cast<CallExpr>(S), Ctx);
270   case Stmt::CXXMemberCallExprClass:
271     return translateCXXMemberCallExpr(cast<CXXMemberCallExpr>(S), Ctx);
272   case Stmt::CXXOperatorCallExprClass:
273     return translateCXXOperatorCallExpr(cast<CXXOperatorCallExpr>(S), Ctx);
274   case Stmt::UnaryOperatorClass:
275     return translateUnaryOperator(cast<UnaryOperator>(S), Ctx);
276   case Stmt::BinaryOperatorClass:
277   case Stmt::CompoundAssignOperatorClass:
278     return translateBinaryOperator(cast<BinaryOperator>(S), Ctx);
279 
280   case Stmt::ArraySubscriptExprClass:
281     return translateArraySubscriptExpr(cast<ArraySubscriptExpr>(S), Ctx);
282   case Stmt::ConditionalOperatorClass:
283     return translateAbstractConditionalOperator(
284              cast<ConditionalOperator>(S), Ctx);
285   case Stmt::BinaryConditionalOperatorClass:
286     return translateAbstractConditionalOperator(
287              cast<BinaryConditionalOperator>(S), Ctx);
288 
289   // We treat these as no-ops
290   case Stmt::ConstantExprClass:
291     return translate(cast<ConstantExpr>(S)->getSubExpr(), Ctx);
292   case Stmt::ParenExprClass:
293     return translate(cast<ParenExpr>(S)->getSubExpr(), Ctx);
294   case Stmt::ExprWithCleanupsClass:
295     return translate(cast<ExprWithCleanups>(S)->getSubExpr(), Ctx);
296   case Stmt::CXXBindTemporaryExprClass:
297     return translate(cast<CXXBindTemporaryExpr>(S)->getSubExpr(), Ctx);
298   case Stmt::MaterializeTemporaryExprClass:
299     return translate(cast<MaterializeTemporaryExpr>(S)->getSubExpr(), Ctx);
300 
301   // Collect all literals
302   case Stmt::CharacterLiteralClass:
303   case Stmt::CXXNullPtrLiteralExprClass:
304   case Stmt::GNUNullExprClass:
305   case Stmt::CXXBoolLiteralExprClass:
306   case Stmt::FloatingLiteralClass:
307   case Stmt::ImaginaryLiteralClass:
308   case Stmt::IntegerLiteralClass:
309   case Stmt::StringLiteralClass:
310   case Stmt::ObjCStringLiteralClass:
311     return new (Arena) til::Literal(cast<Expr>(S));
312 
313   case Stmt::DeclStmtClass:
314     return translateDeclStmt(cast<DeclStmt>(S), Ctx);
315   default:
316     break;
317   }
318   if (const auto *CE = dyn_cast<CastExpr>(S))
319     return translateCastExpr(CE, Ctx);
320 
321   return new (Arena) til::Undefined(S);
322 }
323 
324 til::SExpr *SExprBuilder::translateDeclRefExpr(const DeclRefExpr *DRE,
325                                                CallingContext *Ctx) {
326   const auto *VD = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl());
327 
328   // Function parameters require substitution and/or renaming.
329   if (const auto *PV = dyn_cast<ParmVarDecl>(VD)) {
330     unsigned I = PV->getFunctionScopeIndex();
331     const DeclContext *D = PV->getDeclContext();
332     if (Ctx && Ctx->FunArgs) {
333       const Decl *Canonical = Ctx->AttrDecl->getCanonicalDecl();
334       if (isa<FunctionDecl>(D)
335               ? (cast<FunctionDecl>(D)->getCanonicalDecl() == Canonical)
336               : (cast<ObjCMethodDecl>(D)->getCanonicalDecl() == Canonical)) {
337         // Substitute call arguments for references to function parameters
338         if (const Expr *const *FunArgs =
339                 dyn_cast<const Expr *const *>(Ctx->FunArgs)) {
340           assert(I < Ctx->NumArgs);
341           return translate(FunArgs[I], Ctx->Prev);
342         }
343 
344         assert(I == 0);
345         return cast<til::SExpr *>(Ctx->FunArgs);
346       }
347     }
348     // Map the param back to the param of the original function declaration
349     // for consistent comparisons.
350     VD = isa<FunctionDecl>(D)
351              ? cast<FunctionDecl>(D)->getCanonicalDecl()->getParamDecl(I)
352              : cast<ObjCMethodDecl>(D)->getCanonicalDecl()->getParamDecl(I);
353   }
354 
355   // For non-local variables, treat it as a reference to a named object.
356   return new (Arena) til::LiteralPtr(VD);
357 }
358 
359 til::SExpr *SExprBuilder::translateCXXThisExpr(const CXXThisExpr *TE,
360                                                CallingContext *Ctx) {
361   // Substitute for 'this'
362   if (Ctx && Ctx->SelfArg) {
363     if (const auto *SelfArg = dyn_cast<const Expr *>(Ctx->SelfArg))
364       return translate(SelfArg, Ctx->Prev);
365     else
366       return cast<til::SExpr *>(Ctx->SelfArg);
367   }
368   assert(SelfVar && "We have no variable for 'this'!");
369   return SelfVar;
370 }
371 
372 static const ValueDecl *getValueDeclFromSExpr(const til::SExpr *E) {
373   if (const auto *V = dyn_cast<til::Variable>(E))
374     return V->clangDecl();
375   if (const auto *Ph = dyn_cast<til::Phi>(E))
376     return Ph->clangDecl();
377   if (const auto *P = dyn_cast<til::Project>(E))
378     return P->clangDecl();
379   if (const auto *L = dyn_cast<til::LiteralPtr>(E))
380     return L->clangDecl();
381   return nullptr;
382 }
383 
384 static bool hasAnyPointerType(const til::SExpr *E) {
385   auto *VD = getValueDeclFromSExpr(E);
386   if (VD && VD->getType()->isAnyPointerType())
387     return true;
388   if (const auto *C = dyn_cast<til::Cast>(E))
389     return C->castOpcode() == til::CAST_objToPtr;
390 
391   return false;
392 }
393 
394 // Grab the very first declaration of virtual method D
395 static const CXXMethodDecl *getFirstVirtualDecl(const CXXMethodDecl *D) {
396   while (true) {
397     D = D->getCanonicalDecl();
398     auto OverriddenMethods = D->overridden_methods();
399     if (OverriddenMethods.begin() == OverriddenMethods.end())
400       return D;  // Method does not override anything
401     // FIXME: this does not work with multiple inheritance.
402     D = *OverriddenMethods.begin();
403   }
404   return nullptr;
405 }
406 
407 til::SExpr *SExprBuilder::translateMemberExpr(const MemberExpr *ME,
408                                               CallingContext *Ctx) {
409   til::SExpr *BE = translate(ME->getBase(), Ctx);
410   til::SExpr *E  = new (Arena) til::SApply(BE);
411 
412   const auto *D = cast<ValueDecl>(ME->getMemberDecl()->getCanonicalDecl());
413   if (const auto *VD = dyn_cast<CXXMethodDecl>(D))
414     D = getFirstVirtualDecl(VD);
415 
416   til::Project *P = new (Arena) til::Project(E, D);
417   if (hasAnyPointerType(BE))
418     P->setArrow(true);
419   return P;
420 }
421 
422 til::SExpr *SExprBuilder::translateObjCIVarRefExpr(const ObjCIvarRefExpr *IVRE,
423                                                    CallingContext *Ctx) {
424   til::SExpr *BE = translate(IVRE->getBase(), Ctx);
425   til::SExpr *E = new (Arena) til::SApply(BE);
426 
427   const auto *D = cast<ObjCIvarDecl>(IVRE->getDecl()->getCanonicalDecl());
428 
429   til::Project *P = new (Arena) til::Project(E, D);
430   if (hasAnyPointerType(BE))
431     P->setArrow(true);
432   return P;
433 }
434 
435 til::SExpr *SExprBuilder::translateCallExpr(const CallExpr *CE,
436                                             CallingContext *Ctx,
437                                             const Expr *SelfE) {
438   if (CapabilityExprMode) {
439     // Handle LOCK_RETURNED
440     if (const FunctionDecl *FD = CE->getDirectCallee()) {
441       FD = FD->getMostRecentDecl();
442       if (LockReturnedAttr *At = FD->getAttr<LockReturnedAttr>()) {
443         CallingContext LRCallCtx(Ctx);
444         LRCallCtx.AttrDecl = CE->getDirectCallee();
445         LRCallCtx.SelfArg = SelfE;
446         LRCallCtx.NumArgs = CE->getNumArgs();
447         LRCallCtx.FunArgs = CE->getArgs();
448         return const_cast<til::SExpr *>(
449             translateAttrExpr(At->getArg(), &LRCallCtx).sexpr());
450       }
451     }
452   }
453 
454   til::SExpr *E = translate(CE->getCallee(), Ctx);
455   for (const auto *Arg : CE->arguments()) {
456     til::SExpr *A = translate(Arg, Ctx);
457     E = new (Arena) til::Apply(E, A);
458   }
459   return new (Arena) til::Call(E, CE);
460 }
461 
462 til::SExpr *SExprBuilder::translateCXXMemberCallExpr(
463     const CXXMemberCallExpr *ME, CallingContext *Ctx) {
464   if (CapabilityExprMode) {
465     // Ignore calls to get() on smart pointers.
466     if (ME->getMethodDecl()->getNameAsString() == "get" &&
467         ME->getNumArgs() == 0) {
468       auto *E = translate(ME->getImplicitObjectArgument(), Ctx);
469       return new (Arena) til::Cast(til::CAST_objToPtr, E);
470       // return E;
471     }
472   }
473   return translateCallExpr(cast<CallExpr>(ME), Ctx,
474                            ME->getImplicitObjectArgument());
475 }
476 
477 til::SExpr *SExprBuilder::translateCXXOperatorCallExpr(
478     const CXXOperatorCallExpr *OCE, CallingContext *Ctx) {
479   if (CapabilityExprMode) {
480     // Ignore operator * and operator -> on smart pointers.
481     OverloadedOperatorKind k = OCE->getOperator();
482     if (k == OO_Star || k == OO_Arrow) {
483       auto *E = translate(OCE->getArg(0), Ctx);
484       return new (Arena) til::Cast(til::CAST_objToPtr, E);
485       // return E;
486     }
487   }
488   return translateCallExpr(cast<CallExpr>(OCE), Ctx);
489 }
490 
491 til::SExpr *SExprBuilder::translateUnaryOperator(const UnaryOperator *UO,
492                                                  CallingContext *Ctx) {
493   switch (UO->getOpcode()) {
494   case UO_PostInc:
495   case UO_PostDec:
496   case UO_PreInc:
497   case UO_PreDec:
498     return new (Arena) til::Undefined(UO);
499 
500   case UO_AddrOf:
501     if (CapabilityExprMode) {
502       // interpret &Graph::mu_ as an existential.
503       if (const auto *DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr())) {
504         if (DRE->getDecl()->isCXXInstanceMember()) {
505           // This is a pointer-to-member expression, e.g. &MyClass::mu_.
506           // We interpret this syntax specially, as a wildcard.
507           auto *W = new (Arena) til::Wildcard();
508           return new (Arena) til::Project(W, DRE->getDecl());
509         }
510       }
511     }
512     // otherwise, & is a no-op
513     return translate(UO->getSubExpr(), Ctx);
514 
515   // We treat these as no-ops
516   case UO_Deref:
517   case UO_Plus:
518     return translate(UO->getSubExpr(), Ctx);
519 
520   case UO_Minus:
521     return new (Arena)
522       til::UnaryOp(til::UOP_Minus, translate(UO->getSubExpr(), Ctx));
523   case UO_Not:
524     return new (Arena)
525       til::UnaryOp(til::UOP_BitNot, translate(UO->getSubExpr(), Ctx));
526   case UO_LNot:
527     return new (Arena)
528       til::UnaryOp(til::UOP_LogicNot, translate(UO->getSubExpr(), Ctx));
529 
530   // Currently unsupported
531   case UO_Real:
532   case UO_Imag:
533   case UO_Extension:
534   case UO_Coawait:
535     return new (Arena) til::Undefined(UO);
536   }
537   return new (Arena) til::Undefined(UO);
538 }
539 
540 til::SExpr *SExprBuilder::translateBinOp(til::TIL_BinaryOpcode Op,
541                                          const BinaryOperator *BO,
542                                          CallingContext *Ctx, bool Reverse) {
543    til::SExpr *E0 = translate(BO->getLHS(), Ctx);
544    til::SExpr *E1 = translate(BO->getRHS(), Ctx);
545    if (Reverse)
546      return new (Arena) til::BinaryOp(Op, E1, E0);
547    else
548      return new (Arena) til::BinaryOp(Op, E0, E1);
549 }
550 
551 til::SExpr *SExprBuilder::translateBinAssign(til::TIL_BinaryOpcode Op,
552                                              const BinaryOperator *BO,
553                                              CallingContext *Ctx,
554                                              bool Assign) {
555   const Expr *LHS = BO->getLHS();
556   const Expr *RHS = BO->getRHS();
557   til::SExpr *E0 = translate(LHS, Ctx);
558   til::SExpr *E1 = translate(RHS, Ctx);
559 
560   const ValueDecl *VD = nullptr;
561   til::SExpr *CV = nullptr;
562   if (const auto *DRE = dyn_cast<DeclRefExpr>(LHS)) {
563     VD = DRE->getDecl();
564     CV = lookupVarDecl(VD);
565   }
566 
567   if (!Assign) {
568     til::SExpr *Arg = CV ? CV : new (Arena) til::Load(E0);
569     E1 = new (Arena) til::BinaryOp(Op, Arg, E1);
570     E1 = addStatement(E1, nullptr, VD);
571   }
572   if (VD && CV)
573     return updateVarDecl(VD, E1);
574   return new (Arena) til::Store(E0, E1);
575 }
576 
577 til::SExpr *SExprBuilder::translateBinaryOperator(const BinaryOperator *BO,
578                                                   CallingContext *Ctx) {
579   switch (BO->getOpcode()) {
580   case BO_PtrMemD:
581   case BO_PtrMemI:
582     return new (Arena) til::Undefined(BO);
583 
584   case BO_Mul:  return translateBinOp(til::BOP_Mul, BO, Ctx);
585   case BO_Div:  return translateBinOp(til::BOP_Div, BO, Ctx);
586   case BO_Rem:  return translateBinOp(til::BOP_Rem, BO, Ctx);
587   case BO_Add:  return translateBinOp(til::BOP_Add, BO, Ctx);
588   case BO_Sub:  return translateBinOp(til::BOP_Sub, BO, Ctx);
589   case BO_Shl:  return translateBinOp(til::BOP_Shl, BO, Ctx);
590   case BO_Shr:  return translateBinOp(til::BOP_Shr, BO, Ctx);
591   case BO_LT:   return translateBinOp(til::BOP_Lt,  BO, Ctx);
592   case BO_GT:   return translateBinOp(til::BOP_Lt,  BO, Ctx, true);
593   case BO_LE:   return translateBinOp(til::BOP_Leq, BO, Ctx);
594   case BO_GE:   return translateBinOp(til::BOP_Leq, BO, Ctx, true);
595   case BO_EQ:   return translateBinOp(til::BOP_Eq,  BO, Ctx);
596   case BO_NE:   return translateBinOp(til::BOP_Neq, BO, Ctx);
597   case BO_Cmp:  return translateBinOp(til::BOP_Cmp, BO, Ctx);
598   case BO_And:  return translateBinOp(til::BOP_BitAnd,   BO, Ctx);
599   case BO_Xor:  return translateBinOp(til::BOP_BitXor,   BO, Ctx);
600   case BO_Or:   return translateBinOp(til::BOP_BitOr,    BO, Ctx);
601   case BO_LAnd: return translateBinOp(til::BOP_LogicAnd, BO, Ctx);
602   case BO_LOr:  return translateBinOp(til::BOP_LogicOr,  BO, Ctx);
603 
604   case BO_Assign:    return translateBinAssign(til::BOP_Eq,  BO, Ctx, true);
605   case BO_MulAssign: return translateBinAssign(til::BOP_Mul, BO, Ctx);
606   case BO_DivAssign: return translateBinAssign(til::BOP_Div, BO, Ctx);
607   case BO_RemAssign: return translateBinAssign(til::BOP_Rem, BO, Ctx);
608   case BO_AddAssign: return translateBinAssign(til::BOP_Add, BO, Ctx);
609   case BO_SubAssign: return translateBinAssign(til::BOP_Sub, BO, Ctx);
610   case BO_ShlAssign: return translateBinAssign(til::BOP_Shl, BO, Ctx);
611   case BO_ShrAssign: return translateBinAssign(til::BOP_Shr, BO, Ctx);
612   case BO_AndAssign: return translateBinAssign(til::BOP_BitAnd, BO, Ctx);
613   case BO_XorAssign: return translateBinAssign(til::BOP_BitXor, BO, Ctx);
614   case BO_OrAssign:  return translateBinAssign(til::BOP_BitOr,  BO, Ctx);
615 
616   case BO_Comma:
617     // The clang CFG should have already processed both sides.
618     return translate(BO->getRHS(), Ctx);
619   }
620   return new (Arena) til::Undefined(BO);
621 }
622 
623 til::SExpr *SExprBuilder::translateCastExpr(const CastExpr *CE,
624                                             CallingContext *Ctx) {
625   CastKind K = CE->getCastKind();
626   switch (K) {
627   case CK_LValueToRValue: {
628     if (const auto *DRE = dyn_cast<DeclRefExpr>(CE->getSubExpr())) {
629       til::SExpr *E0 = lookupVarDecl(DRE->getDecl());
630       if (E0)
631         return E0;
632     }
633     til::SExpr *E0 = translate(CE->getSubExpr(), Ctx);
634     return E0;
635     // FIXME!! -- get Load working properly
636     // return new (Arena) til::Load(E0);
637   }
638   case CK_NoOp:
639   case CK_DerivedToBase:
640   case CK_UncheckedDerivedToBase:
641   case CK_ArrayToPointerDecay:
642   case CK_FunctionToPointerDecay: {
643     til::SExpr *E0 = translate(CE->getSubExpr(), Ctx);
644     return E0;
645   }
646   default: {
647     // FIXME: handle different kinds of casts.
648     til::SExpr *E0 = translate(CE->getSubExpr(), Ctx);
649     if (CapabilityExprMode)
650       return E0;
651     return new (Arena) til::Cast(til::CAST_none, E0);
652   }
653   }
654 }
655 
656 til::SExpr *
657 SExprBuilder::translateArraySubscriptExpr(const ArraySubscriptExpr *E,
658                                           CallingContext *Ctx) {
659   til::SExpr *E0 = translate(E->getBase(), Ctx);
660   til::SExpr *E1 = translate(E->getIdx(), Ctx);
661   return new (Arena) til::ArrayIndex(E0, E1);
662 }
663 
664 til::SExpr *
665 SExprBuilder::translateAbstractConditionalOperator(
666     const AbstractConditionalOperator *CO, CallingContext *Ctx) {
667   auto *C = translate(CO->getCond(), Ctx);
668   auto *T = translate(CO->getTrueExpr(), Ctx);
669   auto *E = translate(CO->getFalseExpr(), Ctx);
670   return new (Arena) til::IfThenElse(C, T, E);
671 }
672 
673 til::SExpr *
674 SExprBuilder::translateDeclStmt(const DeclStmt *S, CallingContext *Ctx) {
675   DeclGroupRef DGrp = S->getDeclGroup();
676   for (auto *I : DGrp) {
677     if (auto *VD = dyn_cast_or_null<VarDecl>(I)) {
678       Expr *E = VD->getInit();
679       til::SExpr* SE = translate(E, Ctx);
680 
681       // Add local variables with trivial type to the variable map
682       QualType T = VD->getType();
683       if (T.isTrivialType(VD->getASTContext()))
684         return addVarDecl(VD, SE);
685       else {
686         // TODO: add alloca
687       }
688     }
689   }
690   return nullptr;
691 }
692 
693 // If (E) is non-trivial, then add it to the current basic block, and
694 // update the statement map so that S refers to E.  Returns a new variable
695 // that refers to E.
696 // If E is trivial returns E.
697 til::SExpr *SExprBuilder::addStatement(til::SExpr* E, const Stmt *S,
698                                        const ValueDecl *VD) {
699   if (!E || !CurrentBB || E->block() || til::ThreadSafetyTIL::isTrivial(E))
700     return E;
701   if (VD)
702     E = new (Arena) til::Variable(E, VD);
703   CurrentInstructions.push_back(E);
704   if (S)
705     insertStmt(S, E);
706   return E;
707 }
708 
709 // Returns the current value of VD, if known, and nullptr otherwise.
710 til::SExpr *SExprBuilder::lookupVarDecl(const ValueDecl *VD) {
711   auto It = LVarIdxMap.find(VD);
712   if (It != LVarIdxMap.end()) {
713     assert(CurrentLVarMap[It->second].first == VD);
714     return CurrentLVarMap[It->second].second;
715   }
716   return nullptr;
717 }
718 
719 // if E is a til::Variable, update its clangDecl.
720 static void maybeUpdateVD(til::SExpr *E, const ValueDecl *VD) {
721   if (!E)
722     return;
723   if (auto *V = dyn_cast<til::Variable>(E)) {
724     if (!V->clangDecl())
725       V->setClangDecl(VD);
726   }
727 }
728 
729 // Adds a new variable declaration.
730 til::SExpr *SExprBuilder::addVarDecl(const ValueDecl *VD, til::SExpr *E) {
731   maybeUpdateVD(E, VD);
732   LVarIdxMap.insert(std::make_pair(VD, CurrentLVarMap.size()));
733   CurrentLVarMap.makeWritable();
734   CurrentLVarMap.push_back(std::make_pair(VD, E));
735   return E;
736 }
737 
738 // Updates a current variable declaration.  (E.g. by assignment)
739 til::SExpr *SExprBuilder::updateVarDecl(const ValueDecl *VD, til::SExpr *E) {
740   maybeUpdateVD(E, VD);
741   auto It = LVarIdxMap.find(VD);
742   if (It == LVarIdxMap.end()) {
743     til::SExpr *Ptr = new (Arena) til::LiteralPtr(VD);
744     til::SExpr *St  = new (Arena) til::Store(Ptr, E);
745     return St;
746   }
747   CurrentLVarMap.makeWritable();
748   CurrentLVarMap.elem(It->second).second = E;
749   return E;
750 }
751 
752 // Make a Phi node in the current block for the i^th variable in CurrentVarMap.
753 // If E != null, sets Phi[CurrentBlockInfo->ArgIndex] = E.
754 // If E == null, this is a backedge and will be set later.
755 void SExprBuilder::makePhiNodeVar(unsigned i, unsigned NPreds, til::SExpr *E) {
756   unsigned ArgIndex = CurrentBlockInfo->ProcessedPredecessors;
757   assert(ArgIndex > 0 && ArgIndex < NPreds);
758 
759   til::SExpr *CurrE = CurrentLVarMap[i].second;
760   if (CurrE->block() == CurrentBB) {
761     // We already have a Phi node in the current block,
762     // so just add the new variable to the Phi node.
763     auto *Ph = dyn_cast<til::Phi>(CurrE);
764     assert(Ph && "Expecting Phi node.");
765     if (E)
766       Ph->values()[ArgIndex] = E;
767     return;
768   }
769 
770   // Make a new phi node: phi(..., E)
771   // All phi args up to the current index are set to the current value.
772   til::Phi *Ph = new (Arena) til::Phi(Arena, NPreds);
773   Ph->values().setValues(NPreds, nullptr);
774   for (unsigned PIdx = 0; PIdx < ArgIndex; ++PIdx)
775     Ph->values()[PIdx] = CurrE;
776   if (E)
777     Ph->values()[ArgIndex] = E;
778   Ph->setClangDecl(CurrentLVarMap[i].first);
779   // If E is from a back-edge, or either E or CurrE are incomplete, then
780   // mark this node as incomplete; we may need to remove it later.
781   if (!E || isIncompletePhi(E) || isIncompletePhi(CurrE))
782     Ph->setStatus(til::Phi::PH_Incomplete);
783 
784   // Add Phi node to current block, and update CurrentLVarMap[i]
785   CurrentArguments.push_back(Ph);
786   if (Ph->status() == til::Phi::PH_Incomplete)
787     IncompleteArgs.push_back(Ph);
788 
789   CurrentLVarMap.makeWritable();
790   CurrentLVarMap.elem(i).second = Ph;
791 }
792 
793 // Merge values from Map into the current variable map.
794 // This will construct Phi nodes in the current basic block as necessary.
795 void SExprBuilder::mergeEntryMap(LVarDefinitionMap Map) {
796   assert(CurrentBlockInfo && "Not processing a block!");
797 
798   if (!CurrentLVarMap.valid()) {
799     // Steal Map, using copy-on-write.
800     CurrentLVarMap = std::move(Map);
801     return;
802   }
803   if (CurrentLVarMap.sameAs(Map))
804     return;  // Easy merge: maps from different predecessors are unchanged.
805 
806   unsigned NPreds = CurrentBB->numPredecessors();
807   unsigned ESz = CurrentLVarMap.size();
808   unsigned MSz = Map.size();
809   unsigned Sz  = std::min(ESz, MSz);
810 
811   for (unsigned i = 0; i < Sz; ++i) {
812     if (CurrentLVarMap[i].first != Map[i].first) {
813       // We've reached the end of variables in common.
814       CurrentLVarMap.makeWritable();
815       CurrentLVarMap.downsize(i);
816       break;
817     }
818     if (CurrentLVarMap[i].second != Map[i].second)
819       makePhiNodeVar(i, NPreds, Map[i].second);
820   }
821   if (ESz > MSz) {
822     CurrentLVarMap.makeWritable();
823     CurrentLVarMap.downsize(Map.size());
824   }
825 }
826 
827 // Merge a back edge into the current variable map.
828 // This will create phi nodes for all variables in the variable map.
829 void SExprBuilder::mergeEntryMapBackEdge() {
830   // We don't have definitions for variables on the backedge, because we
831   // haven't gotten that far in the CFG.  Thus, when encountering a back edge,
832   // we conservatively create Phi nodes for all variables.  Unnecessary Phi
833   // nodes will be marked as incomplete, and stripped out at the end.
834   //
835   // An Phi node is unnecessary if it only refers to itself and one other
836   // variable, e.g. x = Phi(y, y, x)  can be reduced to x = y.
837 
838   assert(CurrentBlockInfo && "Not processing a block!");
839 
840   if (CurrentBlockInfo->HasBackEdges)
841     return;
842   CurrentBlockInfo->HasBackEdges = true;
843 
844   CurrentLVarMap.makeWritable();
845   unsigned Sz = CurrentLVarMap.size();
846   unsigned NPreds = CurrentBB->numPredecessors();
847 
848   for (unsigned i = 0; i < Sz; ++i)
849     makePhiNodeVar(i, NPreds, nullptr);
850 }
851 
852 // Update the phi nodes that were initially created for a back edge
853 // once the variable definitions have been computed.
854 // I.e., merge the current variable map into the phi nodes for Blk.
855 void SExprBuilder::mergePhiNodesBackEdge(const CFGBlock *Blk) {
856   til::BasicBlock *BB = lookupBlock(Blk);
857   unsigned ArgIndex = BBInfo[Blk->getBlockID()].ProcessedPredecessors;
858   assert(ArgIndex > 0 && ArgIndex < BB->numPredecessors());
859 
860   for (til::SExpr *PE : BB->arguments()) {
861     auto *Ph = dyn_cast_or_null<til::Phi>(PE);
862     assert(Ph && "Expecting Phi Node.");
863     assert(Ph->values()[ArgIndex] == nullptr && "Wrong index for back edge.");
864 
865     til::SExpr *E = lookupVarDecl(Ph->clangDecl());
866     assert(E && "Couldn't find local variable for Phi node.");
867     Ph->values()[ArgIndex] = E;
868   }
869 }
870 
871 void SExprBuilder::enterCFG(CFG *Cfg, const NamedDecl *D,
872                             const CFGBlock *First) {
873   // Perform initial setup operations.
874   unsigned NBlocks = Cfg->getNumBlockIDs();
875   Scfg = new (Arena) til::SCFG(Arena, NBlocks);
876 
877   // allocate all basic blocks immediately, to handle forward references.
878   BBInfo.resize(NBlocks);
879   BlockMap.resize(NBlocks, nullptr);
880   // create map from clang blockID to til::BasicBlocks
881   for (auto *B : *Cfg) {
882     auto *BB = new (Arena) til::BasicBlock(Arena);
883     BB->reserveInstructions(B->size());
884     BlockMap[B->getBlockID()] = BB;
885   }
886 
887   CurrentBB = lookupBlock(&Cfg->getEntry());
888   auto Parms = isa<ObjCMethodDecl>(D) ? cast<ObjCMethodDecl>(D)->parameters()
889                                       : cast<FunctionDecl>(D)->parameters();
890   for (auto *Pm : Parms) {
891     QualType T = Pm->getType();
892     if (!T.isTrivialType(Pm->getASTContext()))
893       continue;
894 
895     // Add parameters to local variable map.
896     // FIXME: right now we emulate params with loads; that should be fixed.
897     til::SExpr *Lp = new (Arena) til::LiteralPtr(Pm);
898     til::SExpr *Ld = new (Arena) til::Load(Lp);
899     til::SExpr *V  = addStatement(Ld, nullptr, Pm);
900     addVarDecl(Pm, V);
901   }
902 }
903 
904 void SExprBuilder::enterCFGBlock(const CFGBlock *B) {
905   // Initialize TIL basic block and add it to the CFG.
906   CurrentBB = lookupBlock(B);
907   CurrentBB->reservePredecessors(B->pred_size());
908   Scfg->add(CurrentBB);
909 
910   CurrentBlockInfo = &BBInfo[B->getBlockID()];
911 
912   // CurrentLVarMap is moved to ExitMap on block exit.
913   // FIXME: the entry block will hold function parameters.
914   // assert(!CurrentLVarMap.valid() && "CurrentLVarMap already initialized.");
915 }
916 
917 void SExprBuilder::handlePredecessor(const CFGBlock *Pred) {
918   // Compute CurrentLVarMap on entry from ExitMaps of predecessors
919 
920   CurrentBB->addPredecessor(BlockMap[Pred->getBlockID()]);
921   BlockInfo *PredInfo = &BBInfo[Pred->getBlockID()];
922   assert(PredInfo->UnprocessedSuccessors > 0);
923 
924   if (--PredInfo->UnprocessedSuccessors == 0)
925     mergeEntryMap(std::move(PredInfo->ExitMap));
926   else
927     mergeEntryMap(PredInfo->ExitMap.clone());
928 
929   ++CurrentBlockInfo->ProcessedPredecessors;
930 }
931 
932 void SExprBuilder::handlePredecessorBackEdge(const CFGBlock *Pred) {
933   mergeEntryMapBackEdge();
934 }
935 
936 void SExprBuilder::enterCFGBlockBody(const CFGBlock *B) {
937   // The merge*() methods have created arguments.
938   // Push those arguments onto the basic block.
939   CurrentBB->arguments().reserve(
940     static_cast<unsigned>(CurrentArguments.size()), Arena);
941   for (auto *A : CurrentArguments)
942     CurrentBB->addArgument(A);
943 }
944 
945 void SExprBuilder::handleStatement(const Stmt *S) {
946   til::SExpr *E = translate(S, nullptr);
947   addStatement(E, S);
948 }
949 
950 void SExprBuilder::handleDestructorCall(const VarDecl *VD,
951                                         const CXXDestructorDecl *DD) {
952   til::SExpr *Sf = new (Arena) til::LiteralPtr(VD);
953   til::SExpr *Dr = new (Arena) til::LiteralPtr(DD);
954   til::SExpr *Ap = new (Arena) til::Apply(Dr, Sf);
955   til::SExpr *E = new (Arena) til::Call(Ap);
956   addStatement(E, nullptr);
957 }
958 
959 void SExprBuilder::exitCFGBlockBody(const CFGBlock *B) {
960   CurrentBB->instructions().reserve(
961     static_cast<unsigned>(CurrentInstructions.size()), Arena);
962   for (auto *V : CurrentInstructions)
963     CurrentBB->addInstruction(V);
964 
965   // Create an appropriate terminator
966   unsigned N = B->succ_size();
967   auto It = B->succ_begin();
968   if (N == 1) {
969     til::BasicBlock *BB = *It ? lookupBlock(*It) : nullptr;
970     // TODO: set index
971     unsigned Idx = BB ? BB->findPredecessorIndex(CurrentBB) : 0;
972     auto *Tm = new (Arena) til::Goto(BB, Idx);
973     CurrentBB->setTerminator(Tm);
974   }
975   else if (N == 2) {
976     til::SExpr *C = translate(B->getTerminatorCondition(true), nullptr);
977     til::BasicBlock *BB1 = *It ? lookupBlock(*It) : nullptr;
978     ++It;
979     til::BasicBlock *BB2 = *It ? lookupBlock(*It) : nullptr;
980     // FIXME: make sure these aren't critical edges.
981     auto *Tm = new (Arena) til::Branch(C, BB1, BB2);
982     CurrentBB->setTerminator(Tm);
983   }
984 }
985 
986 void SExprBuilder::handleSuccessor(const CFGBlock *Succ) {
987   ++CurrentBlockInfo->UnprocessedSuccessors;
988 }
989 
990 void SExprBuilder::handleSuccessorBackEdge(const CFGBlock *Succ) {
991   mergePhiNodesBackEdge(Succ);
992   ++BBInfo[Succ->getBlockID()].ProcessedPredecessors;
993 }
994 
995 void SExprBuilder::exitCFGBlock(const CFGBlock *B) {
996   CurrentArguments.clear();
997   CurrentInstructions.clear();
998   CurrentBlockInfo->ExitMap = std::move(CurrentLVarMap);
999   CurrentBB = nullptr;
1000   CurrentBlockInfo = nullptr;
1001 }
1002 
1003 void SExprBuilder::exitCFG(const CFGBlock *Last) {
1004   for (auto *Ph : IncompleteArgs) {
1005     if (Ph->status() == til::Phi::PH_Incomplete)
1006       simplifyIncompleteArg(Ph);
1007   }
1008 
1009   CurrentArguments.clear();
1010   CurrentInstructions.clear();
1011   IncompleteArgs.clear();
1012 }
1013 
1014 #ifndef NDEBUG
1015 namespace {
1016 
1017 class TILPrinter :
1018     public til::PrettyPrinter<TILPrinter, llvm::raw_ostream> {};
1019 
1020 } // namespace
1021 
1022 namespace clang {
1023 namespace threadSafety {
1024 
1025 void printSCFG(CFGWalker &Walker) {
1026   llvm::BumpPtrAllocator Bpa;
1027   til::MemRegionRef Arena(&Bpa);
1028   SExprBuilder SxBuilder(Arena);
1029   til::SCFG *Scfg = SxBuilder.buildCFG(Walker);
1030   TILPrinter::print(Scfg, llvm::errs());
1031 }
1032 
1033 } // namespace threadSafety
1034 } // namespace clang
1035 #endif // NDEBUG
1036