xref: /llvm-project/clang-tools-extra/clang-tidy/misc/NoRecursionCheck.cpp (revision 7d2ea6c422d3f5712b7253407005e1a465a76946)
1 //===--- NoRecursionCheck.cpp - clang-tidy --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "NoRecursionCheck.h"
10 #include "clang/AST/ASTContext.h"
11 #include "clang/ASTMatchers/ASTMatchFinder.h"
12 #include "clang/Analysis/CallGraph.h"
13 #include "llvm/ADT/DenseMapInfo.h"
14 #include "llvm/ADT/SCCIterator.h"
15 
16 using namespace clang::ast_matchers;
17 
18 namespace clang::tidy::misc {
19 
20 namespace {
21 
22 /// Much like SmallSet, with two differences:
23 /// 1. It can *only* be constructed from an ArrayRef<>. If the element count
24 ///    is small, there is no copy and said storage *must* outlive us.
25 /// 2. it is immutable, the way it was constructed it will stay.
26 template <typename T, unsigned SmallSize> class ImmutableSmallSet {
27   ArrayRef<T> Vector;
28   llvm::DenseSet<T> Set;
29 
30   static_assert(SmallSize <= 32, "N should be small");
31 
isSmall() const32   bool isSmall() const { return Set.empty(); }
33 
34 public:
35   using size_type = size_t;
36 
37   ImmutableSmallSet() = delete;
38   ImmutableSmallSet(const ImmutableSmallSet &) = delete;
39   ImmutableSmallSet(ImmutableSmallSet &&) = delete;
40   T &operator=(const ImmutableSmallSet &) = delete;
41   T &operator=(ImmutableSmallSet &&) = delete;
42 
43   // WARNING: Storage *must* outlive us if we decide that the size is small.
ImmutableSmallSet(ArrayRef<T> Storage)44   ImmutableSmallSet(ArrayRef<T> Storage) {
45     // Is size small-enough to just keep using the existing storage?
46     if (Storage.size() <= SmallSize) {
47       Vector = Storage;
48       return;
49     }
50 
51     // We've decided that it isn't performant to keep using vector.
52     // Let's migrate the data into Set.
53     Set.reserve(Storage.size());
54     Set.insert(Storage.begin(), Storage.end());
55   }
56 
57   /// count - Return 1 if the element is in the set, 0 otherwise.
count(const T & V) const58   size_type count(const T &V) const {
59     if (isSmall()) {
60       // Since the collection is small, just do a linear search.
61       return llvm::is_contained(Vector, V) ? 1 : 0;
62     }
63 
64     return Set.count(V);
65   }
66 };
67 
68 /// Much like SmallSetVector, but with one difference:
69 /// when the size is \p SmallSize or less, when checking whether an element is
70 /// already in the set or not, we perform linear search over the vector,
71 /// but if the size is larger than \p SmallSize, we look in set.
72 /// FIXME: upstream this into SetVector/SmallSetVector itself.
73 template <typename T, unsigned SmallSize> class SmartSmallSetVector {
74 public:
75   using size_type = size_t;
76 
77 private:
78   SmallVector<T, SmallSize> Vector;
79   llvm::DenseSet<T> Set;
80 
81   static_assert(SmallSize <= 32, "N should be small");
82 
83   // Are we still using Vector for uniqness tracking?
isSmall() const84   bool isSmall() const { return Set.empty(); }
85 
86   // Will one more entry cause Vector to switch away from small-size storage?
entiretyOfVectorSmallSizeIsOccupied() const87   bool entiretyOfVectorSmallSizeIsOccupied() const {
88     assert(isSmall() && Vector.size() <= SmallSize &&
89            "Shouldn't ask if we have already [should have] migrated into Set.");
90     return Vector.size() == SmallSize;
91   }
92 
populateSet()93   void populateSet() {
94     assert(Set.empty() && "Should not have already utilized the Set.");
95     // Magical growth factor prediction - to how many elements do we expect to
96     // sanely grow after switching away from small-size storage?
97     const size_t NewMaxElts = 4 * Vector.size();
98     Vector.reserve(NewMaxElts);
99     Set.reserve(NewMaxElts);
100     Set.insert(Vector.begin(), Vector.end());
101   }
102 
103   /// count - Return 1 if the element is in the set, 0 otherwise.
count(const T & V) const104   size_type count(const T &V) const {
105     if (isSmall()) {
106       // Since the collection is small, just do a linear search.
107       return llvm::is_contained(Vector, V) ? 1 : 0;
108     }
109     // Look-up in the Set.
110     return Set.count(V);
111   }
112 
setInsert(const T & V)113   bool setInsert(const T &V) {
114     if (count(V) != 0)
115       return false; // Already exists.
116     // Does not exist, Can/need to record it.
117     if (isSmall()) { // Are we still using Vector for uniqness tracking?
118       // Will one more entry fit within small-sized Vector?
119       if (!entiretyOfVectorSmallSizeIsOccupied())
120         return true; // We'll insert into vector right afterwards anyway.
121       // Time to switch to Set.
122       populateSet();
123     }
124     // Set time!
125     // Note that this must be after `populateSet()` might have been called.
126     bool SetInsertionSucceeded = Set.insert(V).second;
127     (void)SetInsertionSucceeded;
128     assert(SetInsertionSucceeded && "We did check that no such value existed");
129     return true;
130   }
131 
132 public:
133   /// Insert a new element into the SmartSmallSetVector.
134   /// \returns true if the element was inserted into the SmartSmallSetVector.
insert(const T & X)135   bool insert(const T &X) {
136     bool Result = setInsert(X);
137     if (Result)
138       Vector.push_back(X);
139     return Result;
140   }
141 
142   /// Clear the SmartSmallSetVector and return the underlying vector.
takeVector()143   decltype(Vector) takeVector() {
144     Set.clear();
145     return std::move(Vector);
146   }
147 };
148 
149 constexpr unsigned SmallCallStackSize = 16;
150 constexpr unsigned SmallSCCSize = 32;
151 
152 using CallStackTy =
153     llvm::SmallVector<CallGraphNode::CallRecord, SmallCallStackSize>;
154 
155 // In given SCC, find *some* call stack that will be cyclic.
156 // This will only find *one* such stack, it might not be the smallest one,
157 // and there may be other loops.
pathfindSomeCycle(ArrayRef<CallGraphNode * > SCC)158 CallStackTy pathfindSomeCycle(ArrayRef<CallGraphNode *> SCC) {
159   // We'll need to be able to performantly look up whether some CallGraphNode
160   // is in SCC or not, so cache all the SCC elements in a set.
161   const ImmutableSmallSet<CallGraphNode *, SmallSCCSize> SCCElts(SCC);
162 
163   // Is node N part if the current SCC?
164   auto NodeIsPartOfSCC = [&SCCElts](CallGraphNode *N) {
165     return SCCElts.count(N) != 0;
166   };
167 
168   // Track the call stack that will cause a cycle.
169   SmartSmallSetVector<CallGraphNode::CallRecord, SmallCallStackSize>
170       CallStackSet;
171 
172   // Arbitrarily take the first element of SCC as entry point.
173   CallGraphNode::CallRecord EntryNode(SCC.front(), /*CallExpr=*/nullptr);
174   // Continue recursing into subsequent callees that are part of this SCC,
175   // and are thus known to be part of the call graph loop, until loop forms.
176   CallGraphNode::CallRecord *Node = &EntryNode;
177   while (true) {
178     // Did we see this node before?
179     if (!CallStackSet.insert(*Node))
180       break; // Cycle completed! Note that didn't insert the node into stack!
181     // Else, perform depth-first traversal: out of all callees, pick first one
182     // that is part of this SCC. This is not guaranteed to yield shortest cycle.
183     Node = llvm::find_if(Node->Callee->callees(), NodeIsPartOfSCC);
184   }
185 
186   // Note that we failed to insert the last node, that completes the cycle.
187   // But we really want to have it. So insert it manually into stack only.
188   CallStackTy CallStack = CallStackSet.takeVector();
189   CallStack.emplace_back(*Node);
190 
191   return CallStack;
192 }
193 
194 } // namespace
195 
registerMatchers(MatchFinder * Finder)196 void NoRecursionCheck::registerMatchers(MatchFinder *Finder) {
197   Finder->addMatcher(translationUnitDecl().bind("TUDecl"), this);
198 }
199 
handleSCC(ArrayRef<CallGraphNode * > SCC)200 void NoRecursionCheck::handleSCC(ArrayRef<CallGraphNode *> SCC) {
201   assert(!SCC.empty() && "Empty SCC does not make sense.");
202 
203   // First of all, call out every strongly connected function.
204   for (CallGraphNode *N : SCC) {
205     FunctionDecl *D = N->getDefinition();
206     diag(D->getLocation(), "function %0 is within a recursive call chain") << D;
207   }
208 
209   // Now, SCC only tells us about strongly connected function declarations in
210   // the call graph. It doesn't *really* tell us about the cycles they form.
211   // And there may be more than one cycle in SCC.
212   // So let's form a call stack that eventually exposes *some* cycle.
213   const CallStackTy EventuallyCyclicCallStack = pathfindSomeCycle(SCC);
214   assert(!EventuallyCyclicCallStack.empty() && "We should've found the cycle");
215 
216   // While last node of the call stack does cause a loop, due to the way we
217   // pathfind the cycle, the loop does not necessarily begin at the first node
218   // of the call stack, so drop front nodes of the call stack until it does.
219   const auto CyclicCallStack =
220       ArrayRef<CallGraphNode::CallRecord>(EventuallyCyclicCallStack)
221           .drop_until([LastNode = EventuallyCyclicCallStack.back()](
222                           CallGraphNode::CallRecord FrontNode) {
223             return FrontNode == LastNode;
224           });
225   assert(CyclicCallStack.size() >= 2 && "Cycle requires at least 2 frames");
226 
227   // Which function we decided to be the entry point that lead to the recursion?
228   FunctionDecl *CycleEntryFn = CyclicCallStack.front().Callee->getDefinition();
229   // And now, for ease of understanding, let's print the call sequence that
230   // forms the cycle in question.
231   diag(CycleEntryFn->getLocation(),
232        "example recursive call chain, starting from function %0",
233        DiagnosticIDs::Note)
234       << CycleEntryFn;
235   for (int CurFrame = 1, NumFrames = CyclicCallStack.size();
236        CurFrame != NumFrames; ++CurFrame) {
237     CallGraphNode::CallRecord PrevNode = CyclicCallStack[CurFrame - 1];
238     CallGraphNode::CallRecord CurrNode = CyclicCallStack[CurFrame];
239 
240     Decl *PrevDecl = PrevNode.Callee->getDecl();
241     Decl *CurrDecl = CurrNode.Callee->getDecl();
242 
243     diag(CurrNode.CallExpr->getBeginLoc(),
244          "Frame #%0: function %1 calls function %2 here:", DiagnosticIDs::Note)
245         << CurFrame << cast<NamedDecl>(PrevDecl) << cast<NamedDecl>(CurrDecl);
246   }
247 
248   diag(CyclicCallStack.back().CallExpr->getBeginLoc(),
249        "... which was the starting point of the recursive call chain; there "
250        "may be other cycles",
251        DiagnosticIDs::Note);
252 }
253 
check(const MatchFinder::MatchResult & Result)254 void NoRecursionCheck::check(const MatchFinder::MatchResult &Result) {
255   // Build call graph for the entire translation unit.
256   const auto *TU = Result.Nodes.getNodeAs<TranslationUnitDecl>("TUDecl");
257   CallGraph CG;
258   CG.addToCallGraph(const_cast<TranslationUnitDecl *>(TU));
259 
260   // Look for cycles in call graph,
261   // by looking for Strongly Connected Components (SCC's)
262   for (llvm::scc_iterator<CallGraph *> SCCI = llvm::scc_begin(&CG),
263                                        SCCE = llvm::scc_end(&CG);
264        SCCI != SCCE; ++SCCI) {
265     if (!SCCI.hasCycle()) // We only care about cycles, not standalone nodes.
266       continue;
267     handleSCC(*SCCI);
268   }
269 }
270 
271 } // namespace clang::tidy::misc
272