1 //===- bolt/Passes/CacheMetrics.cpp - Metrics for instruction cache -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the CacheMetrics class and functions for showing metrics
10 // of cache lines.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "bolt/Passes/CacheMetrics.h"
15 #include "bolt/Core/BinaryBasicBlock.h"
16 #include "bolt/Core/BinaryFunction.h"
17 #include <unordered_map>
18
19 using namespace llvm;
20 using namespace bolt;
21
22 namespace {
23
24 /// The following constants are used to estimate the number of i-TLB cache
25 /// misses for a given code layout. Empirically the values result in high
26 /// correlations between the estimations and the perf measurements.
27 /// The constants do not affect the code layout algorithms.
28 constexpr unsigned ITLBPageSize = 4096;
29 constexpr unsigned ITLBEntries = 16;
30
31 /// Initialize and return a position map for binary basic blocks
extractBasicBlockInfo(const std::vector<BinaryFunction * > & BinaryFunctions,std::unordered_map<BinaryBasicBlock *,uint64_t> & BBAddr,std::unordered_map<BinaryBasicBlock *,uint64_t> & BBSize)32 void extractBasicBlockInfo(
33 const std::vector<BinaryFunction *> &BinaryFunctions,
34 std::unordered_map<BinaryBasicBlock *, uint64_t> &BBAddr,
35 std::unordered_map<BinaryBasicBlock *, uint64_t> &BBSize) {
36
37 for (BinaryFunction *BF : BinaryFunctions) {
38 const BinaryContext &BC = BF->getBinaryContext();
39 for (BinaryBasicBlock &BB : *BF) {
40 if (BF->isSimple() || BC.HasRelocations) {
41 // Use addresses/sizes as in the output binary
42 BBAddr[&BB] = BB.getOutputAddressRange().first;
43 BBSize[&BB] = BB.getOutputSize();
44 } else {
45 // Output ranges should match the input if the body hasn't changed
46 BBAddr[&BB] = BB.getInputAddressRange().first + BF->getAddress();
47 BBSize[&BB] = BB.getOriginalSize();
48 }
49 }
50 }
51 }
52
53 /// Calculate TSP metric, which quantifies the number of fallthrough jumps in
54 /// the ordering of basic blocks. The method returns a pair
55 /// (the number of fallthrough branches, the total number of branches)
56 std::pair<uint64_t, uint64_t>
calcTSPScore(const std::vector<BinaryFunction * > & BinaryFunctions,const std::unordered_map<BinaryBasicBlock *,uint64_t> & BBAddr,const std::unordered_map<BinaryBasicBlock *,uint64_t> & BBSize)57 calcTSPScore(const std::vector<BinaryFunction *> &BinaryFunctions,
58 const std::unordered_map<BinaryBasicBlock *, uint64_t> &BBAddr,
59 const std::unordered_map<BinaryBasicBlock *, uint64_t> &BBSize) {
60 uint64_t Score = 0;
61 uint64_t JumpCount = 0;
62 for (BinaryFunction *BF : BinaryFunctions) {
63 if (!BF->hasProfile())
64 continue;
65 for (BinaryBasicBlock *SrcBB : BF->getLayout().blocks()) {
66 auto BI = SrcBB->branch_info_begin();
67 for (BinaryBasicBlock *DstBB : SrcBB->successors()) {
68 if (SrcBB != DstBB && BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE) {
69 JumpCount += BI->Count;
70
71 auto BBAddrIt = BBAddr.find(SrcBB);
72 assert(BBAddrIt != BBAddr.end());
73 uint64_t SrcBBAddr = BBAddrIt->second;
74
75 auto BBSizeIt = BBSize.find(SrcBB);
76 assert(BBSizeIt != BBSize.end());
77 uint64_t SrcBBSize = BBSizeIt->second;
78
79 BBAddrIt = BBAddr.find(DstBB);
80 assert(BBAddrIt != BBAddr.end());
81 uint64_t DstBBAddr = BBAddrIt->second;
82
83 if (SrcBBAddr + SrcBBSize == DstBBAddr)
84 Score += BI->Count;
85 }
86 ++BI;
87 }
88 }
89 }
90 return std::make_pair(Score, JumpCount);
91 }
92
93 using Predecessors = std::vector<std::pair<BinaryFunction *, uint64_t>>;
94
95 /// Build a simplified version of the call graph: For every function, keep
96 /// its callers and the frequencies of the calls
97 std::unordered_map<const BinaryFunction *, Predecessors>
extractFunctionCalls(const std::vector<BinaryFunction * > & BinaryFunctions)98 extractFunctionCalls(const std::vector<BinaryFunction *> &BinaryFunctions) {
99 std::unordered_map<const BinaryFunction *, Predecessors> Calls;
100
101 for (BinaryFunction *SrcFunction : BinaryFunctions) {
102 const BinaryContext &BC = SrcFunction->getBinaryContext();
103 for (const BinaryBasicBlock *BB : SrcFunction->getLayout().blocks()) {
104 // Find call instructions and extract target symbols from each one
105 for (const MCInst &Inst : *BB) {
106 if (!BC.MIB->isCall(Inst))
107 continue;
108
109 // Call info
110 const MCSymbol *DstSym = BC.MIB->getTargetSymbol(Inst);
111 uint64_t Count = BB->getKnownExecutionCount();
112 // Ignore calls w/o information
113 if (DstSym == nullptr || Count == 0)
114 continue;
115
116 const BinaryFunction *DstFunction = BC.getFunctionForSymbol(DstSym);
117 // Ignore recursive calls
118 if (DstFunction == nullptr || DstFunction->getLayout().block_empty() ||
119 DstFunction == SrcFunction)
120 continue;
121
122 // Record the call
123 Calls[DstFunction].emplace_back(SrcFunction, Count);
124 }
125 }
126 }
127 return Calls;
128 }
129
130 /// Compute expected hit ratio of the i-TLB cache (optimized by HFSortPlus alg).
131 /// Given an assignment of functions to the i-TLB pages), we divide all
132 /// functions calls into two categories:
133 /// - 'short' ones that have a caller-callee distance less than a page;
134 /// - 'long' ones where the distance exceeds a page.
135 /// The short calls are likely to result in a i-TLB cache hit. For the long
136 /// ones, the hit/miss result depends on the 'hotness' of the page (i.e., how
137 /// often the page is accessed). Assuming that functions are sent to the i-TLB
138 /// cache in a random order, the probability that a page is present in the cache
139 /// is proportional to the number of samples corresponding to the functions on
140 /// the page. The following procedure detects short and long calls, and
141 /// estimates the expected number of cache misses for the long ones.
expectedCacheHitRatio(const std::vector<BinaryFunction * > & BinaryFunctions,const std::unordered_map<BinaryBasicBlock *,uint64_t> & BBAddr,const std::unordered_map<BinaryBasicBlock *,uint64_t> & BBSize)142 double expectedCacheHitRatio(
143 const std::vector<BinaryFunction *> &BinaryFunctions,
144 const std::unordered_map<BinaryBasicBlock *, uint64_t> &BBAddr,
145 const std::unordered_map<BinaryBasicBlock *, uint64_t> &BBSize) {
146 std::unordered_map<const BinaryFunction *, Predecessors> Calls =
147 extractFunctionCalls(BinaryFunctions);
148 // Compute 'hotness' of the functions
149 double TotalSamples = 0;
150 std::unordered_map<BinaryFunction *, double> FunctionSamples;
151 for (BinaryFunction *BF : BinaryFunctions) {
152 double Samples = 0;
153 for (std::pair<BinaryFunction *, uint64_t> Pair : Calls[BF])
154 Samples += Pair.second;
155 Samples = std::max(Samples, (double)BF->getKnownExecutionCount());
156 FunctionSamples[BF] = Samples;
157 TotalSamples += Samples;
158 }
159
160 // Compute 'hotness' of the pages
161 std::unordered_map<uint64_t, double> PageSamples;
162 for (BinaryFunction *BF : BinaryFunctions) {
163 if (BF->getLayout().block_empty())
164 continue;
165 auto BBAddrIt = BBAddr.find(BF->getLayout().block_front());
166 assert(BBAddrIt != BBAddr.end());
167 const uint64_t Page = BBAddrIt->second / ITLBPageSize;
168
169 auto FunctionSamplesIt = FunctionSamples.find(BF);
170 assert(FunctionSamplesIt != FunctionSamples.end());
171 PageSamples[Page] += FunctionSamplesIt->second;
172 }
173
174 // Computing the expected number of misses for every function
175 double Misses = 0;
176 for (BinaryFunction *BF : BinaryFunctions) {
177 // Skip the function if it has no samples
178 auto FunctionSamplesIt = FunctionSamples.find(BF);
179 assert(FunctionSamplesIt != FunctionSamples.end());
180 double Samples = FunctionSamplesIt->second;
181 if (BF->getLayout().block_empty() || Samples == 0.0)
182 continue;
183
184 auto BBAddrIt = BBAddr.find(BF->getLayout().block_front());
185 assert(BBAddrIt != BBAddr.end());
186 const uint64_t Page = BBAddrIt->second / ITLBPageSize;
187 // The probability that the page is not present in the cache
188 const double MissProb =
189 pow(1.0 - PageSamples[Page] / TotalSamples, ITLBEntries);
190
191 // Processing all callers of the function
192 for (std::pair<BinaryFunction *, uint64_t> Pair : Calls[BF]) {
193 BinaryFunction *SrcFunction = Pair.first;
194
195 BBAddrIt = BBAddr.find(SrcFunction->getLayout().block_front());
196 assert(BBAddrIt != BBAddr.end());
197 const uint64_t SrcPage = BBAddrIt->second / ITLBPageSize;
198 // Is this a 'long' or a 'short' call?
199 if (Page != SrcPage) {
200 // This is a miss
201 Misses += MissProb * Pair.second;
202 }
203 Samples -= Pair.second;
204 }
205 assert(Samples >= 0.0 && "Function samples computed incorrectly");
206 // The remaining samples likely come from the jitted code
207 Misses += Samples * MissProb;
208 }
209
210 return 100.0 * (1.0 - Misses / TotalSamples);
211 }
212
213 } // namespace
214
printAll(raw_ostream & OS,const std::vector<BinaryFunction * > & BFs)215 void CacheMetrics::printAll(raw_ostream &OS,
216 const std::vector<BinaryFunction *> &BFs) {
217 // Stats related to hot-cold code splitting
218 size_t NumFunctions = 0;
219 size_t NumProfiledFunctions = 0;
220 size_t NumHotFunctions = 0;
221 size_t NumBlocks = 0;
222 size_t NumHotBlocks = 0;
223
224 size_t TotalCodeMinAddr = std::numeric_limits<size_t>::max();
225 size_t TotalCodeMaxAddr = 0;
226 size_t HotCodeMinAddr = std::numeric_limits<size_t>::max();
227 size_t HotCodeMaxAddr = 0;
228
229 for (BinaryFunction *BF : BFs) {
230 NumFunctions++;
231 if (BF->hasProfile())
232 NumProfiledFunctions++;
233 if (BF->hasValidIndex())
234 NumHotFunctions++;
235 for (const BinaryBasicBlock &BB : *BF) {
236 NumBlocks++;
237 size_t BBAddrMin = BB.getOutputAddressRange().first;
238 size_t BBAddrMax = BB.getOutputAddressRange().second;
239 TotalCodeMinAddr = std::min(TotalCodeMinAddr, BBAddrMin);
240 TotalCodeMaxAddr = std::max(TotalCodeMaxAddr, BBAddrMax);
241 if (BF->hasValidIndex() && !BB.isCold()) {
242 NumHotBlocks++;
243 HotCodeMinAddr = std::min(HotCodeMinAddr, BBAddrMin);
244 HotCodeMaxAddr = std::max(HotCodeMaxAddr, BBAddrMax);
245 }
246 }
247 }
248
249 OS << format(" There are %zu functions;", NumFunctions)
250 << format(" %zu (%.2lf%%) are in the hot section,", NumHotFunctions,
251 100.0 * NumHotFunctions / NumFunctions)
252 << format(" %zu (%.2lf%%) have profile\n", NumProfiledFunctions,
253 100.0 * NumProfiledFunctions / NumFunctions);
254 OS << format(" There are %zu basic blocks;", NumBlocks)
255 << format(" %zu (%.2lf%%) are in the hot section\n", NumHotBlocks,
256 100.0 * NumHotBlocks / NumBlocks);
257
258 assert(TotalCodeMinAddr <= TotalCodeMaxAddr && "incorrect output addresses");
259 size_t HotCodeSize = HotCodeMaxAddr - HotCodeMinAddr;
260 size_t TotalCodeSize = TotalCodeMaxAddr - TotalCodeMinAddr;
261
262 size_t HugePage2MB = 2 << 20;
263 OS << format(" Hot code takes %.2lf%% of binary (%zu bytes out of %zu, "
264 "%.2lf huge pages)\n",
265 100.0 * HotCodeSize / TotalCodeSize, HotCodeSize, TotalCodeSize,
266 double(HotCodeSize) / HugePage2MB);
267
268 // Stats related to expected cache performance
269 std::unordered_map<BinaryBasicBlock *, uint64_t> BBAddr;
270 std::unordered_map<BinaryBasicBlock *, uint64_t> BBSize;
271 extractBasicBlockInfo(BFs, BBAddr, BBSize);
272
273 OS << " Expected i-TLB cache hit ratio: "
274 << format("%.2lf%%\n", expectedCacheHitRatio(BFs, BBAddr, BBSize));
275
276 auto Stats = calcTSPScore(BFs, BBAddr, BBSize);
277 OS << " TSP score: "
278 << format("%.2lf%% (%zu out of %zu)\n",
279 100.0 * Stats.first / std::max<uint64_t>(Stats.second, 1),
280 Stats.first, Stats.second);
281 }
282