1 #include "lib9.h"
2 #include "draw.h"
3 #include "memdraw.h"
4 #include "pool.h"
5
6 extern Pool* imagmem;
7 int drawdebug;
8 static int tablesbuilt;
9
10 /* perfect approximation to NTSC = .299r+.587g+.114b when 0 ≤ r,g,b < 256 */
11 #define RGB2K(r,g,b) ((156763*(r)+307758*(g)+59769*(b))>>19)
12
13 /*
14 * for 0 ≤ x ≤ 255*255, (x*0x0101+0x100)>>16 is a perfect approximation.
15 * for 0 ≤ x < (1<<16), x/255 = ((x+1)*0x0101)>>16 is a perfect approximation.
16 * the last one is perfect for all up to 1<<16, avoids a multiply, but requires a rathole.
17 */
18 /* #define DIV255(x) (((x)*257+256)>>16) */
19 #define DIV255(x) ((((x)+1)*257)>>16)
20 /* #define DIV255(x) (tmp=(x)+1, (tmp+(tmp>>8))>>8) */
21
22 #define MUL(x, y, t) (t = (x)*(y)+128, (t+(t>>8))>>8)
23 #define MASK13 0xFF00FF00
24 #define MASK02 0x00FF00FF
25 #define MUL13(a, x, t) (t = (a)*(((x)&MASK13)>>8)+0x800080, ((t+((t>>8)&MASK02))>>8)&MASK02)
26 #define MUL02(a, x, t) (t = (a)*(((x)&MASK02)>>0)+0x800080, ((t+((t>>8)&MASK02))>>8)&MASK02)
27 #define MUL0123(a, x, s, t) ((MUL13(a, x, s)<<8)|MUL02(a, x, t))
28
29 #define MUL2(u, v, x, y) (t = (u)*(v)+(x)*(y)+256, (t+(t>>8))>>8)
30
31 #define BWADD(x, y) ((((x)&MASK13)+((y)&MASK13))&MASK13|(((x)&MASK02)+((y)&MASK02))&MASK02)
32
33 static void mktables(void);
34 typedef int Subdraw(Memdrawparam*);
35 static Subdraw chardraw, alphadraw, memoptdraw;
36
37 static Memimage* memones;
38 static Memimage* memzeros;
39 Memimage *memwhite;
40 Memimage *memblack;
41 Memimage *memtransparent;
42 Memimage *memopaque;
43
44 int _ifmt(Fmt*);
45
46 void
memimageinit(void)47 memimageinit(void)
48 {
49 static int didinit = 0;
50 char *n;
51
52 if(didinit)
53 return;
54
55 didinit = 1;
56
57 n = poolname(imagmem);
58 if(strcmp(n, "Image") == 0 || strcmp(n, "image") == 0)
59 poolsetcompact(imagmem, memimagemove);
60 mktables();
61 _memmkcmap();
62
63 fmtinstall('R', Rfmt);
64 fmtinstall('P', Pfmt);
65 fmtinstall('b', _ifmt);
66
67 memones = allocmemimage(Rect(0,0,1,1), GREY1);
68 memones->flags |= Frepl;
69 memones->clipr = Rect(-0x3FFFFFF, -0x3FFFFFF, 0x3FFFFFF, 0x3FFFFFF);
70 *byteaddr(memones, ZP) = ~0;
71
72 memzeros = allocmemimage(Rect(0,0,1,1), GREY1);
73 memzeros->flags |= Frepl;
74 memzeros->clipr = Rect(-0x3FFFFFF, -0x3FFFFFF, 0x3FFFFFF, 0x3FFFFFF);
75 *byteaddr(memzeros, ZP) = 0;
76
77 if(memones == nil || memzeros == nil)
78 assert(0 /*cannot initialize memimage library */); /* RSC BUG */
79
80 memwhite = memones;
81 memblack = memzeros;
82 memopaque = memones;
83 memtransparent = memzeros;
84 }
85
86 static ulong imgtorgba(Memimage*, ulong);
87 static ulong rgbatoimg(Memimage*, ulong);
88 static ulong pixelbits(Memimage*, Point);
89
90 #define DBG if(0)
91 void
memimagedraw(Memimage * dst,Rectangle r,Memimage * src,Point p0,Memimage * mask,Point p1,int op)92 memimagedraw(Memimage *dst, Rectangle r, Memimage *src, Point p0, Memimage *mask, Point p1, int op)
93 {
94 Memdrawparam par;
95
96 if(mask == nil)
97 mask = memopaque;
98
99 DBG print("memimagedraw %p/%luX %R @ %p %p/%luX %P %p/%luX %P... ", dst, dst->chan, r, dst->data->bdata, src, src->chan, p0, mask, mask->chan, p1);
100
101 if(drawclip(dst, &r, src, &p0, mask, &p1, &par.sr, &par.mr) == 0){
102 // if(drawdebug)
103 // iprint("empty clipped rectangle\n");
104 return;
105 }
106
107 if(op < Clear || op > SoverD){
108 // if(drawdebug)
109 // iprint("op out of range: %d\n", op);
110 return;
111 }
112
113 par.op = op;
114 par.dst = dst;
115 par.r = r;
116 par.src = src;
117 /* par.sr set by drawclip */
118 par.mask = mask;
119 /* par.mr set by drawclip */
120
121 par.state = 0;
122 if(src->flags&Frepl){
123 par.state |= Replsrc;
124 if(Dx(src->r)==1 && Dy(src->r)==1){
125 par.sval = pixelbits(src, src->r.min);
126 par.state |= Simplesrc;
127 par.srgba = imgtorgba(src, par.sval);
128 par.sdval = rgbatoimg(dst, par.srgba);
129 if((par.srgba&0xFF) == 0 && (op&DoutS)){
130 // if (drawdebug) iprint("fill with transparent source\n");
131 return; /* no-op successfully handled */
132 }
133 }
134 }
135
136 if(mask->flags & Frepl){
137 par.state |= Replmask;
138 if(Dx(mask->r)==1 && Dy(mask->r)==1){
139 par.mval = pixelbits(mask, mask->r.min);
140 if(par.mval == 0 && (op&DoutS)){
141 // if(drawdebug) iprint("fill with zero mask\n");
142 return; /* no-op successfully handled */
143 }
144 par.state |= Simplemask;
145 if(par.mval == ~0)
146 par.state |= Fullmask;
147 par.mrgba = imgtorgba(mask, par.mval);
148 }
149 }
150
151 // if(drawdebug)
152 // iprint("dr %R sr %R mr %R...", r, par.sr, par.mr);
153 DBG print("draw dr %R sr %R mr %R %lux\n", r, par.sr, par.mr, par.state);
154
155 /*
156 * Now that we've clipped the parameters down to be consistent, we
157 * simply try sub-drawing routines in order until we find one that was able
158 * to handle us. If the sub-drawing routine returns zero, it means it was
159 * unable to satisfy the request, so we do not return.
160 */
161
162 /*
163 * Hardware support. Each video driver provides this function,
164 * which checks to see if there is anything it can help with.
165 * There could be an if around this checking to see if dst is in video memory.
166 */
167 DBG print("test hwdraw\n");
168 if(hwdraw(&par)){
169 //if(drawdebug) iprint("hw handled\n");
170 DBG print("hwdraw handled\n");
171 return;
172 }
173 /*
174 * Optimizations using memmove and memset.
175 */
176 DBG print("test memoptdraw\n");
177 if(memoptdraw(&par)){
178 //if(drawdebug) iprint("memopt handled\n");
179 DBG print("memopt handled\n");
180 return;
181 }
182
183 /*
184 * Character drawing.
185 * Solid source color being painted through a boolean mask onto a high res image.
186 */
187 DBG print("test chardraw\n");
188 if(chardraw(&par)){
189 //if(drawdebug) iprint("chardraw handled\n");
190 DBG print("chardraw handled\n");
191 return;
192 }
193
194 /*
195 * General calculation-laden case that does alpha for each pixel.
196 */
197 DBG print("do alphadraw\n");
198 alphadraw(&par);
199 //if(drawdebug) iprint("alphadraw handled\n");
200 DBG print("alphadraw handled\n");
201 }
202 #undef DBG
203
204 /*
205 * Clip the destination rectangle further based on the properties of the
206 * source and mask rectangles. Once the destination rectangle is properly
207 * clipped, adjust the source and mask rectangles to be the same size.
208 * Then if source or mask is replicated, move its clipped rectangle
209 * so that its minimum point falls within the repl rectangle.
210 *
211 * Return zero if the final rectangle is null.
212 */
213 int
drawclip(Memimage * dst,Rectangle * r,Memimage * src,Point * p0,Memimage * mask,Point * p1,Rectangle * sr,Rectangle * mr)214 drawclip(Memimage *dst, Rectangle *r, Memimage *src, Point *p0, Memimage *mask, Point *p1, Rectangle *sr, Rectangle *mr)
215 {
216 Point rmin, delta;
217 int splitcoords;
218 Rectangle omr;
219
220 if(r->min.x>=r->max.x || r->min.y>=r->max.y)
221 return 0;
222 splitcoords = (p0->x!=p1->x) || (p0->y!=p1->y);
223 /* clip to destination */
224 rmin = r->min;
225 if(!rectclip(r, dst->r) || !rectclip(r, dst->clipr))
226 return 0;
227 /* move mask point */
228 p1->x += r->min.x-rmin.x;
229 p1->y += r->min.y-rmin.y;
230 /* move source point */
231 p0->x += r->min.x-rmin.x;
232 p0->y += r->min.y-rmin.y;
233 /* map destination rectangle into source */
234 sr->min = *p0;
235 sr->max.x = p0->x+Dx(*r);
236 sr->max.y = p0->y+Dy(*r);
237 /* sr is r in source coordinates; clip to source */
238 if(!(src->flags&Frepl) && !rectclip(sr, src->r))
239 return 0;
240 if(!rectclip(sr, src->clipr))
241 return 0;
242 /* compute and clip rectangle in mask */
243 if(splitcoords){
244 /* move mask point with source */
245 p1->x += sr->min.x-p0->x;
246 p1->y += sr->min.y-p0->y;
247 mr->min = *p1;
248 mr->max.x = p1->x+Dx(*sr);
249 mr->max.y = p1->y+Dy(*sr);
250 omr = *mr;
251 /* mr is now rectangle in mask; clip it */
252 if(!(mask->flags&Frepl) && !rectclip(mr, mask->r))
253 return 0;
254 if(!rectclip(mr, mask->clipr))
255 return 0;
256 /* reflect any clips back to source */
257 sr->min.x += mr->min.x-omr.min.x;
258 sr->min.y += mr->min.y-omr.min.y;
259 sr->max.x += mr->max.x-omr.max.x;
260 sr->max.y += mr->max.y-omr.max.y;
261 *p1 = mr->min;
262 }else{
263 if(!(mask->flags&Frepl) && !rectclip(sr, mask->r))
264 return 0;
265 if(!rectclip(sr, mask->clipr))
266 return 0;
267 *p1 = sr->min;
268 }
269
270 /* move source clipping back to destination */
271 delta.x = r->min.x - p0->x;
272 delta.y = r->min.y - p0->y;
273 r->min.x = sr->min.x + delta.x;
274 r->min.y = sr->min.y + delta.y;
275 r->max.x = sr->max.x + delta.x;
276 r->max.y = sr->max.y + delta.y;
277
278 /* move source rectangle so sr->min is in src->r */
279 if(src->flags&Frepl) {
280 delta.x = drawreplxy(src->r.min.x, src->r.max.x, sr->min.x) - sr->min.x;
281 delta.y = drawreplxy(src->r.min.y, src->r.max.y, sr->min.y) - sr->min.y;
282 sr->min.x += delta.x;
283 sr->min.y += delta.y;
284 sr->max.x += delta.x;
285 sr->max.y += delta.y;
286 }
287 *p0 = sr->min;
288
289 /* move mask point so it is in mask->r */
290 *p1 = drawrepl(mask->r, *p1);
291 mr->min = *p1;
292 mr->max.x = p1->x+Dx(*sr);
293 mr->max.y = p1->y+Dy(*sr);
294
295 assert(Dx(*sr) == Dx(*mr) && Dx(*mr) == Dx(*r));
296 assert(Dy(*sr) == Dy(*mr) && Dy(*mr) == Dy(*r));
297 assert(ptinrect(*p0, src->r));
298 assert(ptinrect(*p1, mask->r));
299 assert(ptinrect(r->min, dst->r));
300
301 return 1;
302 }
303
304 /*
305 * Conversion tables.
306 */
307 static uchar replbit[1+8][256]; /* replbit[x][y] is the replication of the x-bit quantity y to 8-bit depth */
308
309 /*
310 * bitmap of how to replicate n bits to fill 8, for 1 ≤ n ≤ 8.
311 * the X's are where to put the bottom (ones) bit of the n-bit pattern.
312 * only the top 8 bits of the result are actually used.
313 * (the lower 8 bits are needed to get bits in the right place
314 * when n is not a divisor of 8.)
315 *
316 * Should check to see if its easier to just refer to replmul than
317 * use the precomputed values in replbit. On PCs it may well
318 * be; on machines with slow multiply instructions it probably isn't.
319 */
320 #define a ((((((((((((((((0
321 #define X *2+1)
322 #define _ *2)
323 static int replmul[1+8] = {
324 0,
325 a X X X X X X X X X X X X X X X X,
326 a _ X _ X _ X _ X _ X _ X _ X _ X,
327 a _ _ X _ _ X _ _ X _ _ X _ _ X _,
328 a _ _ _ X _ _ _ X _ _ _ X _ _ _ X,
329 a _ _ _ _ X _ _ _ _ X _ _ _ _ X _,
330 a _ _ _ _ _ X _ _ _ _ _ X _ _ _ _,
331 a _ _ _ _ _ _ X _ _ _ _ _ _ X _ _,
332 a _ _ _ _ _ _ _ X _ _ _ _ _ _ _ X,
333 };
334 #undef a
335 #undef X
336 #undef _
337
338 static void
mktables(void)339 mktables(void)
340 {
341 int i, j, small;
342
343 if(tablesbuilt)
344 return;
345
346 fmtinstall('R', Rfmt);
347 fmtinstall('P', Pfmt);
348 tablesbuilt = 1;
349
350 /* bit replication up to 8 bits */
351 for(i=0; i<256; i++){
352 for(j=0; j<=8; j++){ /* j <= 8 [sic] */
353 small = i & ((1<<j)-1);
354 replbit[j][i] = (small*replmul[j])>>8;
355 }
356 }
357 }
358
359 static uchar ones = 0xff;
360
361 /*
362 * General alpha drawing case. Can handle anything.
363 */
364 typedef struct Buffer Buffer;
365 struct Buffer {
366 /* used by most routines */
367 uchar *red;
368 uchar *grn;
369 uchar *blu;
370 uchar *alpha;
371 uchar *grey;
372 ulong *rgba;
373 int delta; /* number of bytes to add to pointer to get next pixel to the right */
374
375 /* used by boolcalc* for mask data */
376 uchar *m; /* ptr to mask data r.min byte; like p->bytermin */
377 int mskip; /* no. of left bits to skip in *m */
378 uchar *bm; /* ptr to mask data img->r.min byte; like p->bytey0s */
379 int bmskip; /* no. of left bits to skip in *bm */
380 uchar *em; /* ptr to mask data img->r.max.x byte; like p->bytey0e */
381 int emskip; /* no. of right bits to skip in *em */
382 };
383
384 typedef struct Param Param;
385 typedef Buffer Readfn(Param*, uchar*, int);
386 typedef void Writefn(Param*, uchar*, Buffer);
387 typedef Buffer Calcfn(Buffer, Buffer, Buffer, int, int, int);
388
389 enum {
390 MAXBCACHE = 16
391 };
392
393 /* giant rathole to customize functions with */
394 struct Param {
395 Readfn *replcall;
396 Readfn *greymaskcall;
397 Readfn *convreadcall;
398 Writefn *convwritecall;
399
400 Memimage *img;
401 Rectangle r;
402 int dx; /* of r */
403 int needbuf;
404 int convgrey;
405 int alphaonly;
406
407 uchar *bytey0s; /* byteaddr(Pt(img->r.min.x, img->r.min.y)) */
408 uchar *bytermin; /* byteaddr(Pt(r.min.x, img->r.min.y)) */
409 uchar *bytey0e; /* byteaddr(Pt(img->r.max.x, img->r.min.y)) */
410 int bwidth;
411
412 int replcache; /* if set, cache buffers */
413 Buffer bcache[MAXBCACHE];
414 ulong bfilled;
415 uchar *bufbase;
416 int bufoff;
417 int bufdelta;
418
419 int dir;
420
421 int convbufoff;
422 uchar *convbuf;
423 Param *convdpar;
424 int convdx;
425 };
426
427 static Readfn greymaskread, replread, readptr;
428 static Writefn nullwrite;
429 static Calcfn alphacalc0, alphacalc14, alphacalc2810, alphacalc3679, alphacalc5, alphacalc11, alphacalcS;
430 static Calcfn boolcalc14, boolcalc236789, boolcalc1011;
431
432 static Readfn* readfn(Memimage*);
433 static Readfn* readalphafn(Memimage*);
434 static Writefn* writefn(Memimage*);
435
436 static Calcfn* boolcopyfn(Memimage*, Memimage*);
437 static Readfn* convfn(Memimage*, Param*, Memimage*, Param*, int*);
438 static Readfn* ptrfn(Memimage*);
439
440 static Calcfn *alphacalc[Ncomp] =
441 {
442 alphacalc0, /* Clear */
443 alphacalc14, /* DoutS */
444 alphacalc2810, /* SoutD */
445 alphacalc3679, /* DxorS */
446 alphacalc14, /* DinS */
447 alphacalc5, /* D */
448 alphacalc3679, /* DatopS */
449 alphacalc3679, /* DoverS */
450 alphacalc2810, /* SinD */
451 alphacalc3679, /* SatopD */
452 alphacalc2810, /* S */
453 alphacalc11, /* SoverD */
454 };
455
456 static Calcfn *boolcalc[Ncomp] =
457 {
458 alphacalc0, /* Clear */
459 boolcalc14, /* DoutS */
460 boolcalc236789, /* SoutD */
461 boolcalc236789, /* DxorS */
462 boolcalc14, /* DinS */
463 alphacalc5, /* D */
464 boolcalc236789, /* DatopS */
465 boolcalc236789, /* DoverS */
466 boolcalc236789, /* SinD */
467 boolcalc236789, /* SatopD */
468 boolcalc1011, /* S */
469 boolcalc1011, /* SoverD */
470 };
471
472 /*
473 * Avoid standard Lock, QLock so that can be used in kernel.
474 */
475 typedef struct Dbuf Dbuf;
476 struct Dbuf
477 {
478 uchar *p;
479 int n;
480 Param spar, mpar, dpar;
481 int inuse;
482 };
483 static Dbuf dbuf[10];
484
485 static Dbuf*
allocdbuf(void)486 allocdbuf(void)
487 {
488 int i;
489
490 for(i=0; i<nelem(dbuf); i++){
491 if(dbuf[i].inuse)
492 continue;
493 if(!_tas(&dbuf[i].inuse))
494 return &dbuf[i];
495 }
496 return nil;
497 }
498
499 static void
getparam(Param * p,Memimage * img,Rectangle r,int convgrey,int needbuf,int * ndrawbuf)500 getparam(Param *p, Memimage *img, Rectangle r, int convgrey, int needbuf, int *ndrawbuf)
501 {
502 int nbuf;
503
504 memset(p, 0, sizeof *p);
505
506 p->img = img;
507 p->r = r;
508 p->dx = Dx(r);
509 p->needbuf = needbuf;
510 p->convgrey = convgrey;
511
512 assert(img->r.min.x <= r.min.x && r.min.x < img->r.max.x);
513
514 p->bytey0s = byteaddr(img, Pt(img->r.min.x, img->r.min.y));
515 p->bytermin = byteaddr(img, Pt(r.min.x, img->r.min.y));
516 p->bytey0e = byteaddr(img, Pt(img->r.max.x, img->r.min.y));
517 p->bwidth = sizeof(ulong)*img->width;
518
519 assert(p->bytey0s <= p->bytermin && p->bytermin <= p->bytey0e);
520
521 if(p->r.min.x == p->img->r.min.x)
522 assert(p->bytermin == p->bytey0s);
523
524 nbuf = 1;
525 if((img->flags&Frepl) && Dy(img->r) <= MAXBCACHE && Dy(img->r) < Dy(r)){
526 p->replcache = 1;
527 nbuf = Dy(img->r);
528 }
529 p->bufdelta = 4*p->dx;
530 p->bufoff = *ndrawbuf;
531 *ndrawbuf += p->bufdelta*nbuf;
532 }
533
534 static void
clipy(Memimage * img,int * y)535 clipy(Memimage *img, int *y)
536 {
537 int dy;
538
539 dy = Dy(img->r);
540 if(*y == dy)
541 *y = 0;
542 else if(*y == -1)
543 *y = dy-1;
544 assert(0 <= *y && *y < dy);
545 }
546
547 static void
dumpbuf(char * s,Buffer b,int n)548 dumpbuf(char *s, Buffer b, int n)
549 {
550 int i;
551 uchar *p;
552
553 print("%s", s);
554 for(i=0; i<n; i++){
555 print(" ");
556 if(p=b.grey){
557 print(" k%.2uX", *p);
558 b.grey += b.delta;
559 }else{
560 if(p=b.red){
561 print(" r%.2uX", *p);
562 b.red += b.delta;
563 }
564 if(p=b.grn){
565 print(" g%.2uX", *p);
566 b.grn += b.delta;
567 }
568 if(p=b.blu){
569 print(" b%.2uX", *p);
570 b.blu += b.delta;
571 }
572 }
573 if((p=b.alpha) != &ones){
574 print(" α%.2uX", *p);
575 b.alpha += b.delta;
576 }
577 }
578 print("\n");
579 }
580
581 /*
582 * For each scan line, we expand the pixels from source, mask, and destination
583 * into byte-aligned red, green, blue, alpha, and grey channels. If buffering is not
584 * needed and the channels were already byte-aligned (grey8, rgb24, rgba32, rgb32),
585 * the readers need not copy the data: they can simply return pointers to the data.
586 * If the destination image is grey and the source is not, it is converted using the NTSC
587 * formula.
588 *
589 * Once we have all the channels, we call either rgbcalc or greycalc, depending on
590 * whether the destination image is color. This is allowed to overwrite the dst buffer (perhaps
591 * the actual data, perhaps a copy) with its result. It should only overwrite the dst buffer
592 * with the same format (i.e. red bytes with red bytes, etc.) A new buffer is returned from
593 * the calculator, and that buffer is passed to a function to write it to the destination.
594 * If the buffer is already pointing at the destination, the writing function is a no-op.
595 */
596 #define DBG if(0)
597 static int
alphadraw(Memdrawparam * par)598 alphadraw(Memdrawparam *par)
599 {
600 int isgrey, starty, endy, op;
601 int needbuf, dsty, srcy, masky;
602 int y, dir, dx, dy, ndrawbuf;
603 uchar *drawbuf;
604 Buffer bsrc, bdst, bmask;
605 Readfn *rdsrc, *rdmask, *rddst;
606 Calcfn *calc;
607 Writefn *wrdst;
608 Memimage *src, *mask, *dst;
609 Rectangle r, sr, mr;
610 Dbuf *z;
611
612 z = allocdbuf();
613 if(z == nil)
614 return 0;
615
616 r = par->r;
617 dx = Dx(r);
618 dy = Dy(r);
619
620 src = par->src;
621 mask = par->mask;
622 dst = par->dst;
623 sr = par->sr;
624 mr = par->mr;
625 op = par->op;
626
627 isgrey = dst->flags&Fgrey;
628
629 /*
630 * Buffering when src and dst are the same bitmap is sufficient but not
631 * necessary. There are stronger conditions we could use. We could
632 * check to see if the rectangles intersect, and if simply moving in the
633 * correct y direction can avoid the need to buffer.
634 */
635 needbuf = (src->data == dst->data);
636
637 ndrawbuf = 0;
638 getparam(&z->spar, src, sr, isgrey, needbuf, &ndrawbuf);
639 getparam(&z->dpar, dst, r, isgrey, needbuf, &ndrawbuf);
640 getparam(&z->mpar, mask, mr, 0, needbuf, &ndrawbuf);
641
642 dir = (needbuf && byteaddr(dst, r.min) > byteaddr(src, sr.min)) ? -1 : 1;
643 z->spar.dir = z->mpar.dir = z->dpar.dir = dir;
644
645 /*
646 * If the mask is purely boolean, we can convert from src to dst format
647 * when we read src, and then just copy it to dst where the mask tells us to.
648 * This requires a boolean (1-bit grey) mask and lack of a source alpha channel.
649 *
650 * The computation is accomplished by assigning the function pointers as follows:
651 * rdsrc - read and convert source into dst format in a buffer
652 * rdmask - convert mask to bytes, set pointer to it
653 * rddst - fill with pointer to real dst data, but do no reads
654 * calc - copy src onto dst when mask says to.
655 * wrdst - do nothing
656 * This is slightly sleazy, since things aren't doing exactly what their names say,
657 * but it avoids a fair amount of code duplication to make this a case here
658 * rather than have a separate booldraw.
659 */
660 //if(drawdebug) iprint("flag %lud mchan %lux=?%x dd %d\n", src->flags&Falpha, mask->chan, GREY1, dst->depth);
661 if(!(src->flags&Falpha) && mask->chan == GREY1 && dst->depth >= 8 && op == SoverD){
662 //if(drawdebug) iprint("boolcopy...");
663 rdsrc = convfn(dst, &z->dpar, src, &z->spar, &ndrawbuf);
664 rddst = readptr;
665 rdmask = readfn(mask);
666 calc = boolcopyfn(dst, mask);
667 wrdst = nullwrite;
668 }else{
669 /* usual alphadraw parameter fetching */
670 rdsrc = readfn(src);
671 rddst = readfn(dst);
672 wrdst = writefn(dst);
673 calc = alphacalc[op];
674
675 /*
676 * If there is no alpha channel, we'll ask for a grey channel
677 * and pretend it is the alpha.
678 */
679 if(mask->flags&Falpha){
680 rdmask = readalphafn(mask);
681 z->mpar.alphaonly = 1;
682 }else{
683 z->mpar.greymaskcall = readfn(mask);
684 z->mpar.convgrey = 1;
685 rdmask = greymaskread;
686
687 /*
688 * Should really be above, but then boolcopyfns would have
689 * to deal with bit alignment, and I haven't written that.
690 *
691 * This is a common case for things like ellipse drawing.
692 * When there's no alpha involved and the mask is boolean,
693 * we can avoid all the division and multiplication.
694 */
695 if(mask->chan == GREY1 && !(src->flags&Falpha))
696 calc = boolcalc[op];
697 else if(op == SoverD && !(src->flags&Falpha))
698 calc = alphacalcS;
699 }
700 }
701
702 /*
703 * If the image has a small enough repl rectangle,
704 * we can just read each line once and cache them.
705 */
706 if(z->spar.replcache){
707 z->spar.replcall = rdsrc;
708 rdsrc = replread;
709 }
710 if(z->mpar.replcache){
711 z->mpar.replcall = rdmask;
712 rdmask = replread;
713 }
714
715 if(z->n < ndrawbuf){
716 free(z->p);
717 if((z->p = mallocz(ndrawbuf, 0)) == nil){
718 z->inuse = 0;
719 return 0;
720 }
721 z->n = ndrawbuf;
722 }
723 drawbuf = z->p;
724
725 /*
726 * Before we were saving only offsets from drawbuf in the parameter
727 * structures; now that drawbuf has been grown to accomodate us,
728 * we can fill in the pointers.
729 */
730 z->spar.bufbase = drawbuf+z->spar.bufoff;
731 z->mpar.bufbase = drawbuf+z->mpar.bufoff;
732 z->dpar.bufbase = drawbuf+z->dpar.bufoff;
733 z->spar.convbuf = drawbuf+z->spar.convbufoff;
734
735 if(dir == 1){
736 starty = 0;
737 endy = dy;
738 }else{
739 starty = dy-1;
740 endy = -1;
741 }
742
743 /*
744 * srcy, masky, and dsty are offsets from the top of their
745 * respective Rectangles. they need to be contained within
746 * the rectangles, so clipy can keep them there without division.
747 */
748 srcy = (starty + sr.min.y - src->r.min.y)%Dy(src->r);
749 masky = (starty + mr.min.y - mask->r.min.y)%Dy(mask->r);
750 dsty = starty + r.min.y - dst->r.min.y;
751
752 assert(0 <= srcy && srcy < Dy(src->r));
753 assert(0 <= masky && masky < Dy(mask->r));
754 assert(0 <= dsty && dsty < Dy(dst->r));
755
756 for(y=starty; y!=endy; y+=dir, srcy+=dir, masky+=dir, dsty+=dir){
757 clipy(src, &srcy);
758 clipy(dst, &dsty);
759 clipy(mask, &masky);
760
761 bsrc = rdsrc(&z->spar, z->spar.bufbase, srcy);
762 DBG print("[");
763 bmask = rdmask(&z->mpar, z->mpar.bufbase, masky);
764 DBG print("]\n");
765 bdst = rddst(&z->dpar, z->dpar.bufbase, dsty);
766 if(op != Clear && (bsrc.delta != 4 || bdst.delta != 4 || src->chan != dst->chan))
767 bdst.rgba = nil;
768 DBG dumpbuf("src", bsrc, dx);
769 DBG dumpbuf("mask", bmask, dx);
770 DBG dumpbuf("dst", bdst, dx);
771 bdst = calc(bdst, bsrc, bmask, dx, isgrey, op);
772 wrdst(&z->dpar, z->dpar.bytermin+dsty*z->dpar.bwidth, bdst);
773 }
774
775 z->inuse = 0;
776 return 1;
777 }
778 #undef DBG
779
780 static Buffer
alphacalc0(Buffer bdst,Buffer b1,Buffer b2,int dx,int grey,int op)781 alphacalc0(Buffer bdst, Buffer b1, Buffer b2, int dx, int grey, int op)
782 {
783 USED(b1.grey);
784 USED(b2.grey);
785 USED(grey);
786 USED(op);
787 memset(bdst.rgba, 0, dx*bdst.delta);
788 return bdst;
789 }
790
791 static Buffer
alphacalc14(Buffer bdst,Buffer bsrc,Buffer bmask,int dx,int grey,int op)792 alphacalc14(Buffer bdst, Buffer bsrc, Buffer bmask, int dx, int grey, int op)
793 {
794 Buffer obdst;
795 int fd, sadelta;
796 int i, sa, ma;
797 ulong s, t;
798
799 obdst = bdst;
800 sadelta = bsrc.alpha == &ones ? 0 : bsrc.delta;
801
802 for(i=0; i<dx; i++){
803 sa = *bsrc.alpha;
804 ma = *bmask.alpha;
805 fd = MUL(sa, ma, t);
806 if(op == DoutS)
807 fd = 255-fd;
808
809 if(grey){
810 *bdst.grey = MUL(fd, *bdst.grey, t);
811 bsrc.grey += bsrc.delta;
812 bdst.grey += bdst.delta;
813 }else{
814 if(bdst.rgba){
815 *bdst.rgba = MUL0123(fd, *bdst.rgba, s, t);
816 bsrc.rgba++;
817 bdst.rgba++;
818 bsrc.alpha += sadelta;
819 bmask.alpha += bmask.delta;
820 continue;
821 }
822 *bdst.red = MUL(fd, *bdst.red, t);
823 *bdst.grn = MUL(fd, *bdst.grn, t);
824 *bdst.blu = MUL(fd, *bdst.blu, t);
825 bsrc.red += bsrc.delta;
826 bsrc.blu += bsrc.delta;
827 bsrc.grn += bsrc.delta;
828 bdst.red += bdst.delta;
829 bdst.blu += bdst.delta;
830 bdst.grn += bdst.delta;
831 }
832 if(bdst.alpha != &ones){
833 *bdst.alpha = MUL(fd, *bdst.alpha, t);
834 bdst.alpha += bdst.delta;
835 }
836 bmask.alpha += bmask.delta;
837 bsrc.alpha += sadelta;
838 }
839 return obdst;
840 }
841
842 static Buffer
alphacalc2810(Buffer bdst,Buffer bsrc,Buffer bmask,int dx,int grey,int op)843 alphacalc2810(Buffer bdst, Buffer bsrc, Buffer bmask, int dx, int grey, int op)
844 {
845 Buffer obdst;
846 int fs, sadelta;
847 int i, ma, da;
848 ulong s, t;
849
850 obdst = bdst;
851 sadelta = bsrc.alpha == &ones ? 0 : bsrc.delta;
852
853 for(i=0; i<dx; i++){
854 ma = *bmask.alpha;
855 da = *bdst.alpha;
856 if(op == SoutD)
857 da = 255-da;
858 fs = ma;
859 if(op != S)
860 fs = MUL(fs, da, t);
861
862 if(grey){
863 *bdst.grey = MUL(fs, *bsrc.grey, t);
864 bsrc.grey += bsrc.delta;
865 bdst.grey += bdst.delta;
866 }else{
867 if(bdst.rgba){
868 *bdst.rgba = MUL0123(fs, *bsrc.rgba, s, t);
869 bsrc.rgba++;
870 bdst.rgba++;
871 bmask.alpha += bmask.delta;
872 bdst.alpha += bdst.delta;
873 continue;
874 }
875 *bdst.red = MUL(fs, *bsrc.red, t);
876 *bdst.grn = MUL(fs, *bsrc.grn, t);
877 *bdst.blu = MUL(fs, *bsrc.blu, t);
878 bsrc.red += bsrc.delta;
879 bsrc.blu += bsrc.delta;
880 bsrc.grn += bsrc.delta;
881 bdst.red += bdst.delta;
882 bdst.blu += bdst.delta;
883 bdst.grn += bdst.delta;
884 }
885 if(bdst.alpha != &ones){
886 *bdst.alpha = MUL(fs, *bsrc.alpha, t);
887 bdst.alpha += bdst.delta;
888 }
889 bmask.alpha += bmask.delta;
890 bsrc.alpha += sadelta;
891 }
892 return obdst;
893 }
894
895 static Buffer
alphacalc3679(Buffer bdst,Buffer bsrc,Buffer bmask,int dx,int grey,int op)896 alphacalc3679(Buffer bdst, Buffer bsrc, Buffer bmask, int dx, int grey, int op)
897 {
898 Buffer obdst;
899 int fs, fd, sadelta;
900 int i, sa, ma, da;
901 ulong s, t, q1, q2;
902
903 obdst = bdst;
904 sadelta = bsrc.alpha == &ones ? 0 : bsrc.delta;
905
906 for(i=0; i<dx; i++){
907 sa = *bsrc.alpha;
908 ma = *bmask.alpha;
909 da = *bdst.alpha;
910 if(op == SatopD)
911 fs = MUL(ma, da, t);
912 else
913 fs = MUL(ma, 255-da, t);
914 if(op == DoverS)
915 fd = 255;
916 else{
917 fd = MUL(sa, ma, t);
918 if(op != DatopS)
919 fd = 255-fd;
920 }
921
922 if(grey){
923 *bdst.grey = MUL(fs, *bsrc.grey, s)+MUL(fd, *bdst.grey, t);
924 bsrc.grey += bsrc.delta;
925 bdst.grey += bdst.delta;
926 }else{
927 if(bdst.rgba){
928 q1 = MUL0123(fs, *bsrc.rgba, s, t);
929 q2 = MUL0123(fd, *bdst.rgba, s, t);
930 *bdst.rgba = BWADD(q1, q2);
931 bsrc.rgba++;
932 bdst.rgba++;
933 bsrc.alpha += sadelta;
934 bmask.alpha += bmask.delta;
935 bdst.alpha += bdst.delta;
936 continue;
937 }
938 *bdst.red = MUL(fs, *bsrc.red, s)+MUL(fd, *bdst.red, t);
939 *bdst.grn = MUL(fs, *bsrc.grn, s)+MUL(fd, *bdst.grn, t);
940 *bdst.blu = MUL(fs, *bsrc.blu, s)+MUL(fd, *bdst.blu, t);
941 bsrc.red += bsrc.delta;
942 bsrc.blu += bsrc.delta;
943 bsrc.grn += bsrc.delta;
944 bdst.red += bdst.delta;
945 bdst.blu += bdst.delta;
946 bdst.grn += bdst.delta;
947 }
948 if(bdst.alpha != &ones){
949 *bdst.alpha = MUL(fs, sa, s)+MUL(fd, da, t);
950 bdst.alpha += bdst.delta;
951 }
952 bmask.alpha += bmask.delta;
953 bsrc.alpha += sadelta;
954 }
955 return obdst;
956 }
957
958 static Buffer
alphacalc5(Buffer bdst,Buffer b1,Buffer b2,int dx,int grey,int op)959 alphacalc5(Buffer bdst, Buffer b1, Buffer b2, int dx, int grey, int op)
960 {
961 USED(b1.grey);
962 USED(b2.grey);
963 USED(dx);
964 USED(grey);
965 USED(op);
966 return bdst;
967 }
968
969 static Buffer
alphacalc11(Buffer bdst,Buffer bsrc,Buffer bmask,int dx,int grey,int op)970 alphacalc11(Buffer bdst, Buffer bsrc, Buffer bmask, int dx, int grey, int op)
971 {
972 Buffer obdst;
973 int fd, sadelta;
974 int i, sa, ma;
975 ulong s, t, q1, q2;
976
977 USED(op);
978 obdst = bdst;
979 sadelta = bsrc.alpha == &ones ? 0 : bsrc.delta;
980
981 for(i=0; i<dx; i++){
982 sa = *bsrc.alpha;
983 ma = *bmask.alpha;
984 fd = 255-MUL(sa, ma, t);
985
986 if(grey){
987 *bdst.grey = MUL(ma, *bsrc.grey, s)+MUL(fd, *bdst.grey, t);
988 bsrc.grey += bsrc.delta;
989 bdst.grey += bdst.delta;
990 }else{
991 if(bdst.rgba){
992 q1 = MUL0123(ma, *bsrc.rgba, s, t);
993 q2 = MUL0123(fd, *bdst.rgba, s, t);
994 *bdst.rgba = BWADD(q1, q2);
995 bsrc.rgba++;
996 bdst.rgba++;
997 bsrc.alpha += sadelta;
998 bmask.alpha += bmask.delta;
999 continue;
1000 }
1001 *bdst.red = MUL(ma, *bsrc.red, s)+MUL(fd, *bdst.red, t);
1002 *bdst.grn = MUL(ma, *bsrc.grn, s)+MUL(fd, *bdst.grn, t);
1003 *bdst.blu = MUL(ma, *bsrc.blu, s)+MUL(fd, *bdst.blu, t);
1004 bsrc.red += bsrc.delta;
1005 bsrc.blu += bsrc.delta;
1006 bsrc.grn += bsrc.delta;
1007 bdst.red += bdst.delta;
1008 bdst.blu += bdst.delta;
1009 bdst.grn += bdst.delta;
1010 }
1011 if(bdst.alpha != &ones){
1012 *bdst.alpha = MUL(ma, sa, s)+MUL(fd, *bdst.alpha, t);
1013 bdst.alpha += bdst.delta;
1014 }
1015 bmask.alpha += bmask.delta;
1016 bsrc.alpha += sadelta;
1017 }
1018 return obdst;
1019 }
1020
1021 /*
1022 not used yet
1023 source and mask alpha 1
1024 static Buffer
1025 alphacalcS0(Buffer bdst, Buffer bsrc, Buffer bmask, int dx, int grey, int op)
1026 {
1027 Buffer obdst;
1028 int i;
1029
1030 USED(op);
1031 obdst = bdst;
1032 if(bsrc.delta == bdst.delta){
1033 memmove(bdst.rgba, bsrc.rgba, dx*bdst.delta);
1034 return obdst;
1035 }
1036 for(i=0; i<dx; i++){
1037 if(grey){
1038 *bdst.grey = *bsrc.grey;
1039 bsrc.grey += bsrc.delta;
1040 bdst.grey += bdst.delta;
1041 }else{
1042 *bdst.red = *bsrc.red;
1043 *bdst.grn = *bsrc.grn;
1044 *bdst.blu = *bsrc.blu;
1045 bsrc.red += bsrc.delta;
1046 bsrc.blu += bsrc.delta;
1047 bsrc.grn += bsrc.delta;
1048 bdst.red += bdst.delta;
1049 bdst.blu += bdst.delta;
1050 bdst.grn += bdst.delta;
1051 }
1052 if(bdst.alpha != &ones){
1053 *bdst.alpha = 255;
1054 bdst.alpha += bdst.delta;
1055 }
1056 }
1057 return obdst;
1058 }
1059 */
1060
1061 /* source alpha 1 */
1062 static Buffer
alphacalcS(Buffer bdst,Buffer bsrc,Buffer bmask,int dx,int grey,int op)1063 alphacalcS(Buffer bdst, Buffer bsrc, Buffer bmask, int dx, int grey, int op)
1064 {
1065 Buffer obdst;
1066 int fd;
1067 int i, ma;
1068 ulong s, t;
1069
1070 USED(op);
1071 obdst = bdst;
1072
1073 for(i=0; i<dx; i++){
1074 ma = *bmask.alpha;
1075 fd = 255-ma;
1076
1077 if(grey){
1078 *bdst.grey = MUL(ma, *bsrc.grey, s)+MUL(fd, *bdst.grey, t);
1079 bsrc.grey += bsrc.delta;
1080 bdst.grey += bdst.delta;
1081 }else{
1082 *bdst.red = MUL(ma, *bsrc.red, s)+MUL(fd, *bdst.red, t);
1083 *bdst.grn = MUL(ma, *bsrc.grn, s)+MUL(fd, *bdst.grn, t);
1084 *bdst.blu = MUL(ma, *bsrc.blu, s)+MUL(fd, *bdst.blu, t);
1085 bsrc.red += bsrc.delta;
1086 bsrc.blu += bsrc.delta;
1087 bsrc.grn += bsrc.delta;
1088 bdst.red += bdst.delta;
1089 bdst.blu += bdst.delta;
1090 bdst.grn += bdst.delta;
1091 }
1092 if(bdst.alpha != &ones){
1093 *bdst.alpha = ma+MUL(fd, *bdst.alpha, t);
1094 bdst.alpha += bdst.delta;
1095 }
1096 bmask.alpha += bmask.delta;
1097 }
1098 return obdst;
1099 }
1100
1101 static Buffer
boolcalc14(Buffer bdst,Buffer b1,Buffer bmask,int dx,int grey,int op)1102 boolcalc14(Buffer bdst, Buffer b1, Buffer bmask, int dx, int grey, int op)
1103 {
1104 Buffer obdst;
1105 int i, ma, zero;
1106
1107 USED(b1.grey);
1108 obdst = bdst;
1109
1110 for(i=0; i<dx; i++){
1111 ma = *bmask.alpha;
1112 zero = ma ? op == DoutS : op == DinS;
1113
1114 if(grey){
1115 if(zero)
1116 *bdst.grey = 0;
1117 bdst.grey += bdst.delta;
1118 }else{
1119 if(zero)
1120 *bdst.red = *bdst.grn = *bdst.blu = 0;
1121 bdst.red += bdst.delta;
1122 bdst.blu += bdst.delta;
1123 bdst.grn += bdst.delta;
1124 }
1125 bmask.alpha += bmask.delta;
1126 if(bdst.alpha != &ones){
1127 if(zero)
1128 *bdst.alpha = 0;
1129 bdst.alpha += bdst.delta;
1130 }
1131 }
1132 return obdst;
1133 }
1134
1135 static Buffer
boolcalc236789(Buffer bdst,Buffer bsrc,Buffer bmask,int dx,int grey,int op)1136 boolcalc236789(Buffer bdst, Buffer bsrc, Buffer bmask, int dx, int grey, int op)
1137 {
1138 Buffer obdst;
1139 int fs, fd;
1140 int i, ma, da, zero;
1141 ulong s, t;
1142
1143 obdst = bdst;
1144 zero = !(op&1);
1145
1146 for(i=0; i<dx; i++){
1147 ma = *bmask.alpha;
1148 da = *bdst.alpha;
1149 fs = da;
1150 if(op&2)
1151 fs = 255-da;
1152 fd = 0;
1153 if(op&4)
1154 fd = 255;
1155
1156 if(grey){
1157 if(ma)
1158 *bdst.grey = MUL(fs, *bsrc.grey, s)+MUL(fd, *bdst.grey, t);
1159 else if(zero)
1160 *bdst.grey = 0;
1161 bsrc.grey += bsrc.delta;
1162 bdst.grey += bdst.delta;
1163 }else{
1164 if(ma){
1165 *bdst.red = MUL(fs, *bsrc.red, s)+MUL(fd, *bdst.red, t);
1166 *bdst.grn = MUL(fs, *bsrc.grn, s)+MUL(fd, *bdst.grn, t);
1167 *bdst.blu = MUL(fs, *bsrc.blu, s)+MUL(fd, *bdst.blu, t);
1168 }
1169 else if(zero)
1170 *bdst.red = *bdst.grn = *bdst.blu = 0;
1171 bsrc.red += bsrc.delta;
1172 bsrc.blu += bsrc.delta;
1173 bsrc.grn += bsrc.delta;
1174 bdst.red += bdst.delta;
1175 bdst.blu += bdst.delta;
1176 bdst.grn += bdst.delta;
1177 }
1178 bmask.alpha += bmask.delta;
1179 if(bdst.alpha != &ones){
1180 if(ma)
1181 *bdst.alpha = fs+MUL(fd, da, t);
1182 else if(zero)
1183 *bdst.alpha = 0;
1184 bdst.alpha += bdst.delta;
1185 }
1186 }
1187 return obdst;
1188 }
1189
1190 static Buffer
boolcalc1011(Buffer bdst,Buffer bsrc,Buffer bmask,int dx,int grey,int op)1191 boolcalc1011(Buffer bdst, Buffer bsrc, Buffer bmask, int dx, int grey, int op)
1192 {
1193 Buffer obdst;
1194 int i, ma, zero;
1195
1196 obdst = bdst;
1197 zero = !(op&1);
1198
1199 for(i=0; i<dx; i++){
1200 ma = *bmask.alpha;
1201
1202 if(grey){
1203 if(ma)
1204 *bdst.grey = *bsrc.grey;
1205 else if(zero)
1206 *bdst.grey = 0;
1207 bsrc.grey += bsrc.delta;
1208 bdst.grey += bdst.delta;
1209 }else{
1210 if(ma){
1211 *bdst.red = *bsrc.red;
1212 *bdst.grn = *bsrc.grn;
1213 *bdst.blu = *bsrc.blu;
1214 }
1215 else if(zero)
1216 *bdst.red = *bdst.grn = *bdst.blu = 0;
1217 bsrc.red += bsrc.delta;
1218 bsrc.blu += bsrc.delta;
1219 bsrc.grn += bsrc.delta;
1220 bdst.red += bdst.delta;
1221 bdst.blu += bdst.delta;
1222 bdst.grn += bdst.delta;
1223 }
1224 bmask.alpha += bmask.delta;
1225 if(bdst.alpha != &ones){
1226 if(ma)
1227 *bdst.alpha = 255;
1228 else if(zero)
1229 *bdst.alpha = 0;
1230 bdst.alpha += bdst.delta;
1231 }
1232 }
1233 return obdst;
1234 }
1235 /*
1236 * Replicated cached scan line read. Call the function listed in the Param,
1237 * but cache the result so that for replicated images we only do the work once.
1238 */
1239 static Buffer
replread(Param * p,uchar * s,int y)1240 replread(Param *p, uchar *s, int y)
1241 {
1242 Buffer *b;
1243
1244 USED(s);
1245 b = &p->bcache[y];
1246 if((p->bfilled & (1<<y)) == 0){
1247 p->bfilled |= 1<<y;
1248 *b = p->replcall(p, p->bufbase+y*p->bufdelta, y);
1249 }
1250 return *b;
1251 }
1252
1253 /*
1254 * Alpha reading function that simply relabels the grey pointer.
1255 */
1256 static Buffer
greymaskread(Param * p,uchar * buf,int y)1257 greymaskread(Param *p, uchar *buf, int y)
1258 {
1259 Buffer b;
1260
1261 b = p->greymaskcall(p, buf, y);
1262 b.alpha = b.grey;
1263 return b;
1264 }
1265
1266 #define DBG if(0)
1267 static Buffer
readnbit(Param * p,uchar * buf,int y)1268 readnbit(Param *p, uchar *buf, int y)
1269 {
1270 Buffer b;
1271 Memimage *img;
1272 uchar *repl, *r, *w, *ow, bits;
1273 int i, n, sh, depth, x, dx, npack, nbits;
1274
1275 b.rgba = (ulong*)buf;
1276 b.grey = w = buf;
1277 b.red = b.blu = b.grn = w;
1278 b.alpha = &ones;
1279 b.delta = 1;
1280
1281 dx = p->dx;
1282 img = p->img;
1283 depth = img->depth;
1284 repl = &replbit[depth][0];
1285 npack = 8/depth;
1286 sh = 8-depth;
1287
1288 /* copy from p->r.min.x until end of repl rectangle */
1289 x = p->r.min.x;
1290 n = dx;
1291 if(n > p->img->r.max.x - x)
1292 n = p->img->r.max.x - x;
1293
1294 r = p->bytermin + y*p->bwidth;
1295 DBG print("readnbit dx %d %p=%p+%d*%d, *r=%d fetch %d ", dx, r, p->bytermin, y, p->bwidth, *r, n);
1296 bits = *r++;
1297 nbits = 8;
1298 if(i=x&(npack-1)){
1299 DBG print("throwaway %d...", i);
1300 bits <<= depth*i;
1301 nbits -= depth*i;
1302 }
1303 for(i=0; i<n; i++){
1304 if(nbits == 0){
1305 DBG print("(%.2ux)...", *r);
1306 bits = *r++;
1307 nbits = 8;
1308 }
1309 *w++ = repl[bits>>sh];
1310 DBG print("bit %x...", repl[bits>>sh]);
1311 bits <<= depth;
1312 nbits -= depth;
1313 }
1314 dx -= n;
1315 if(dx == 0)
1316 return b;
1317
1318 assert(x+i == p->img->r.max.x);
1319
1320 /* copy from beginning of repl rectangle until where we were before. */
1321 x = p->img->r.min.x;
1322 n = dx;
1323 if(n > p->r.min.x - x)
1324 n = p->r.min.x - x;
1325
1326 r = p->bytey0s + y*p->bwidth;
1327 DBG print("x=%d r=%p...", x, r);
1328 bits = *r++;
1329 nbits = 8;
1330 if(i=x&(npack-1)){
1331 bits <<= depth*i;
1332 nbits -= depth*i;
1333 }
1334 DBG print("nbits=%d...", nbits);
1335 for(i=0; i<n; i++){
1336 if(nbits == 0){
1337 bits = *r++;
1338 nbits = 8;
1339 }
1340 *w++ = repl[bits>>sh];
1341 DBG print("bit %x...", repl[bits>>sh]);
1342 bits <<= depth;
1343 nbits -= depth;
1344 DBG print("bits %x nbits %d...", bits, nbits);
1345 }
1346 dx -= n;
1347 if(dx == 0)
1348 return b;
1349
1350 assert(dx > 0);
1351 /* now we have exactly one full scan line: just replicate the buffer itself until we are done */
1352 ow = buf;
1353 while(dx--)
1354 *w++ = *ow++;
1355
1356 return b;
1357 }
1358 #undef DBG
1359
1360 #define DBG if(0)
1361 static void
writenbit(Param * p,uchar * w,Buffer src)1362 writenbit(Param *p, uchar *w, Buffer src)
1363 {
1364 uchar *r;
1365 ulong bits;
1366 int i, sh, depth, npack, nbits, x, ex;
1367
1368 assert(src.grey != nil && src.delta == 1);
1369
1370 x = p->r.min.x;
1371 ex = x+p->dx;
1372 depth = p->img->depth;
1373 npack = 8/depth;
1374
1375 i=x&(npack-1);
1376 bits = i ? (*w >> (8-depth*i)) : 0;
1377 nbits = depth*i;
1378 sh = 8-depth;
1379 r = src.grey;
1380
1381 for(; x<ex; x++){
1382 bits <<= depth;
1383 DBG print(" %x", *r);
1384 bits |= (*r++ >> sh);
1385 nbits += depth;
1386 if(nbits == 8){
1387 *w++ = bits;
1388 nbits = 0;
1389 }
1390 }
1391
1392 if(nbits){
1393 sh = 8-nbits;
1394 bits <<= sh;
1395 bits |= *w & ((1<<sh)-1);
1396 *w = bits;
1397 }
1398 DBG print("\n");
1399 return;
1400 }
1401 #undef DBG
1402
1403 static Buffer
readcmap(Param * p,uchar * buf,int y)1404 readcmap(Param *p, uchar *buf, int y)
1405 {
1406 Buffer b;
1407 int a, convgrey, copyalpha, dx, i, m;
1408 uchar *q, *cmap, *begin, *end, *r, *w;
1409
1410 begin = p->bytey0s + y*p->bwidth;
1411 r = p->bytermin + y*p->bwidth;
1412 end = p->bytey0e + y*p->bwidth;
1413 cmap = p->img->cmap->cmap2rgb;
1414 convgrey = p->convgrey;
1415 copyalpha = (p->img->flags&Falpha) ? 1 : 0;
1416
1417 w = buf;
1418 dx = p->dx;
1419 if(copyalpha){
1420 b.alpha = buf++;
1421 a = p->img->shift[CAlpha]/8;
1422 m = p->img->shift[CMap]/8;
1423 for(i=0; i<dx; i++){
1424 *w++ = r[a];
1425 q = cmap+r[m]*3;
1426 r += 2;
1427 if(r == end)
1428 r = begin;
1429 if(convgrey){
1430 *w++ = RGB2K(q[0], q[1], q[2]);
1431 }else{
1432 *w++ = q[2]; /* blue */
1433 *w++ = q[1]; /* green */
1434 *w++ = q[0]; /* red */
1435 }
1436 }
1437 }else{
1438 b.alpha = &ones;
1439 for(i=0; i<dx; i++){
1440 q = cmap+*r++*3;
1441 if(r == end)
1442 r = begin;
1443 if(convgrey){
1444 *w++ = RGB2K(q[0], q[1], q[2]);
1445 }else{
1446 *w++ = q[2]; /* blue */
1447 *w++ = q[1]; /* green */
1448 *w++ = q[0]; /* red */
1449 }
1450 }
1451 }
1452
1453 b.rgba = (ulong*)(buf-copyalpha);
1454
1455 if(convgrey){
1456 b.grey = buf;
1457 b.red = b.blu = b.grn = buf;
1458 b.delta = 1+copyalpha;
1459 }else{
1460 b.blu = buf;
1461 b.grn = buf+1;
1462 b.red = buf+2;
1463 b.grey = nil;
1464 b.delta = 3+copyalpha;
1465 }
1466 return b;
1467 }
1468
1469 static void
writecmap(Param * p,uchar * w,Buffer src)1470 writecmap(Param *p, uchar *w, Buffer src)
1471 {
1472 uchar *cmap, *red, *grn, *blu;
1473 int i, dx, delta;
1474
1475 cmap = p->img->cmap->rgb2cmap;
1476
1477 delta = src.delta;
1478 red= src.red;
1479 grn = src.grn;
1480 blu = src.blu;
1481
1482 dx = p->dx;
1483 for(i=0; i<dx; i++, red+=delta, grn+=delta, blu+=delta)
1484 *w++ = cmap[(*red>>4)*256+(*grn>>4)*16+(*blu>>4)];
1485 }
1486
1487 #define DBG if(0)
1488 static Buffer
readbyte(Param * p,uchar * buf,int y)1489 readbyte(Param *p, uchar *buf, int y)
1490 {
1491 Buffer b;
1492 Memimage *img;
1493 int dx, isgrey, convgrey, alphaonly, copyalpha, i, nb;
1494 uchar *begin, *end, *r, *w, *rrepl, *grepl, *brepl, *arepl, *krepl;
1495 uchar ured, ugrn, ublu;
1496 ulong u;
1497
1498 img = p->img;
1499 begin = p->bytey0s + y*p->bwidth;
1500 r = p->bytermin + y*p->bwidth;
1501 end = p->bytey0e + y*p->bwidth;
1502
1503 w = buf;
1504 dx = p->dx;
1505 nb = img->depth/8;
1506
1507 convgrey = p->convgrey; /* convert rgb to grey */
1508 isgrey = img->flags&Fgrey;
1509 alphaonly = p->alphaonly;
1510 copyalpha = (img->flags&Falpha) ? 1 : 0;
1511
1512 DBG print("copyalpha %d alphaonly %d convgrey %d isgrey %d\n", copyalpha, alphaonly, convgrey, isgrey);
1513 /* if we can, avoid processing everything */
1514 if(!(img->flags&Frepl) && !convgrey && (img->flags&Fbytes)){
1515 memset(&b, 0, sizeof b);
1516 if(p->needbuf){
1517 memmove(buf, r, dx*nb);
1518 r = buf;
1519 }
1520 b.rgba = (ulong*)r;
1521 if(copyalpha)
1522 b.alpha = r+img->shift[CAlpha]/8;
1523 else
1524 b.alpha = &ones;
1525 if(isgrey){
1526 b.grey = r+img->shift[CGrey]/8;
1527 b.red = b.grn = b.blu = b.grey;
1528 }else{
1529 b.red = r+img->shift[CRed]/8;
1530 b.grn = r+img->shift[CGreen]/8;
1531 b.blu = r+img->shift[CBlue]/8;
1532 }
1533 b.delta = nb;
1534 return b;
1535 }
1536
1537 DBG print("2\n");
1538 rrepl = replbit[img->nbits[CRed]];
1539 grepl = replbit[img->nbits[CGreen]];
1540 brepl = replbit[img->nbits[CBlue]];
1541 arepl = replbit[img->nbits[CAlpha]];
1542 krepl = replbit[img->nbits[CGrey]];
1543
1544 for(i=0; i<dx; i++){
1545 u = r[0] | (r[1]<<8) | (r[2]<<16) | (r[3]<<24);
1546 if(copyalpha) {
1547 *w++ = arepl[(u>>img->shift[CAlpha]) & img->mask[CAlpha]];
1548 DBG print("a %x\n", w[-1]);
1549 }
1550
1551 if(isgrey)
1552 *w++ = krepl[(u >> img->shift[CGrey]) & img->mask[CGrey]];
1553 else if(!alphaonly){
1554 ured = rrepl[(u >> img->shift[CRed]) & img->mask[CRed]];
1555 ugrn = grepl[(u >> img->shift[CGreen]) & img->mask[CGreen]];
1556 ublu = brepl[(u >> img->shift[CBlue]) & img->mask[CBlue]];
1557 if(convgrey){
1558 DBG print("g %x %x %x\n", ured, ugrn, ublu);
1559 *w++ = RGB2K(ured, ugrn, ublu);
1560 DBG print("%x\n", w[-1]);
1561 }else{
1562 *w++ = ublu;
1563 *w++ = ugrn;
1564 *w++ = ured;
1565 }
1566 }
1567 r += nb;
1568 if(r == end)
1569 r = begin;
1570 }
1571
1572 b.alpha = copyalpha ? buf : &ones;
1573 b.rgba = (ulong*)buf;
1574 if(alphaonly){
1575 b.red = b.grn = b.blu = b.grey = nil;
1576 if(!copyalpha)
1577 b.rgba = nil;
1578 b.delta = 1;
1579 }else if(isgrey || convgrey){
1580 b.grey = buf+copyalpha;
1581 b.red = b.grn = b.blu = buf+copyalpha;
1582 b.delta = copyalpha+1;
1583 DBG print("alpha %x grey %x\n", b.alpha ? *b.alpha : 0xFF, *b.grey);
1584 }else{
1585 b.blu = buf+copyalpha;
1586 b.grn = buf+copyalpha+1;
1587 b.grey = nil;
1588 b.red = buf+copyalpha+2;
1589 b.delta = copyalpha+3;
1590 }
1591 return b;
1592 }
1593 #undef DBG
1594
1595 #define DBG if(0)
1596 static void
writebyte(Param * p,uchar * w,Buffer src)1597 writebyte(Param *p, uchar *w, Buffer src)
1598 {
1599 Memimage *img;
1600 int i, isalpha, isgrey, nb, delta, dx, adelta;
1601 uchar ff, *red, *grn, *blu, *grey, *alpha;
1602 ulong u, mask;
1603
1604 img = p->img;
1605
1606 red = src.red;
1607 grn = src.grn;
1608 blu = src.blu;
1609 alpha = src.alpha;
1610 delta = src.delta;
1611 grey = src.grey;
1612 dx = p->dx;
1613
1614 nb = img->depth/8;
1615 mask = (nb==4) ? 0 : ~((1<<img->depth)-1);
1616
1617 isalpha = img->flags&Falpha;
1618 isgrey = img->flags&Fgrey;
1619 adelta = src.delta;
1620
1621 if(isalpha && (alpha == nil || alpha == &ones)){
1622 ff = 0xFF;
1623 alpha = &ff;
1624 adelta = 0;
1625 }
1626
1627 for(i=0; i<dx; i++){
1628 u = w[0] | (w[1]<<8) | (w[2]<<16) | (w[3]<<24);
1629 DBG print("u %.8lux...", u);
1630 u &= mask;
1631 DBG print("&mask %.8lux...", u);
1632 if(isgrey){
1633 u |= ((*grey >> (8-img->nbits[CGrey])) & img->mask[CGrey]) << img->shift[CGrey];
1634 DBG print("|grey %.8lux...", u);
1635 grey += delta;
1636 }else{
1637 u |= ((*red >> (8-img->nbits[CRed])) & img->mask[CRed]) << img->shift[CRed];
1638 u |= ((*grn >> (8-img->nbits[CGreen])) & img->mask[CGreen]) << img->shift[CGreen];
1639 u |= ((*blu >> (8-img->nbits[CBlue])) & img->mask[CBlue]) << img->shift[CBlue];
1640 red += delta;
1641 grn += delta;
1642 blu += delta;
1643 DBG print("|rgb %.8lux...", u);
1644 }
1645
1646 if(isalpha){
1647 u |= ((*alpha >> (8-img->nbits[CAlpha])) & img->mask[CAlpha]) << img->shift[CAlpha];
1648 alpha += adelta;
1649 DBG print("|alpha %.8lux...", u);
1650 }
1651
1652 w[0] = u;
1653 w[1] = u>>8;
1654 w[2] = u>>16;
1655 w[3] = u>>24;
1656 w += nb;
1657 }
1658 }
1659 #undef DBG
1660
1661 static Readfn*
readfn(Memimage * img)1662 readfn(Memimage *img)
1663 {
1664 if(img->depth < 8)
1665 return readnbit;
1666 if(img->nbits[CMap] == 8)
1667 return readcmap;
1668 return readbyte;
1669 }
1670
1671 static Readfn*
readalphafn(Memimage * m)1672 readalphafn(Memimage *m)
1673 {
1674 USED(m);
1675 return readbyte;
1676 }
1677
1678 static Writefn*
writefn(Memimage * img)1679 writefn(Memimage *img)
1680 {
1681 if(img->depth < 8)
1682 return writenbit;
1683 if(img->chan == CMAP8)
1684 return writecmap;
1685 return writebyte;
1686 }
1687
1688 static void
nullwrite(Param * p,uchar * s,Buffer b)1689 nullwrite(Param *p, uchar *s, Buffer b)
1690 {
1691 USED(p);
1692 USED(s);
1693 USED(b.grey);
1694 }
1695
1696 static Buffer
readptr(Param * p,uchar * s,int y)1697 readptr(Param *p, uchar *s, int y)
1698 {
1699 Buffer b;
1700 uchar *q;
1701
1702 USED(s);
1703 q = p->bytermin + y*p->bwidth;
1704 b.red = q; /* ptr to data */
1705 b.grn = b.blu = b.grey = b.alpha = nil;
1706 b.rgba = (ulong*)q;
1707 b.delta = p->img->depth/8;
1708 return b;
1709 }
1710
1711 static Buffer
boolmemmove(Buffer bdst,Buffer bsrc,Buffer b1,int dx,int i,int o)1712 boolmemmove(Buffer bdst, Buffer bsrc, Buffer b1, int dx, int i, int o)
1713 {
1714 USED(i);
1715 USED(o);
1716 USED(b1.grey);
1717 memmove(bdst.red, bsrc.red, dx*bdst.delta);
1718 return bdst;
1719 }
1720
1721 static Buffer
boolcopy8(Buffer bdst,Buffer bsrc,Buffer bmask,int dx,int i,int o)1722 boolcopy8(Buffer bdst, Buffer bsrc, Buffer bmask, int dx, int i, int o)
1723 {
1724 uchar *m, *r, *w, *ew;
1725
1726 USED(i);
1727 USED(o);
1728 m = bmask.grey;
1729 w = bdst.red;
1730 r = bsrc.red;
1731 ew = w+dx;
1732 for(; w < ew; w++,r++)
1733 if(*m++)
1734 *w = *r;
1735 return bdst; /* not used */
1736 }
1737
1738 static Buffer
boolcopy16(Buffer bdst,Buffer bsrc,Buffer bmask,int dx,int i,int o)1739 boolcopy16(Buffer bdst, Buffer bsrc, Buffer bmask, int dx, int i, int o)
1740 {
1741 uchar *m;
1742 ushort *r, *w, *ew;
1743
1744 USED(i);
1745 USED(o);
1746 m = bmask.grey;
1747 w = (ushort*)bdst.red;
1748 r = (ushort*)bsrc.red;
1749 ew = w+dx;
1750 for(; w < ew; w++,r++)
1751 if(*m++)
1752 *w = *r;
1753 return bdst; /* not used */
1754 }
1755
1756 static Buffer
boolcopy24(Buffer bdst,Buffer bsrc,Buffer bmask,int dx,int i,int o)1757 boolcopy24(Buffer bdst, Buffer bsrc, Buffer bmask, int dx, int i, int o)
1758 {
1759 uchar *m;
1760 uchar *r, *w, *ew;
1761
1762 USED(i);
1763 USED(o);
1764 m = bmask.grey;
1765 w = bdst.red;
1766 r = bsrc.red;
1767 ew = w+dx*3;
1768 while(w < ew){
1769 if(*m++){
1770 *w++ = *r++;
1771 *w++ = *r++;
1772 *w++ = *r++;
1773 }else{
1774 w += 3;
1775 r += 3;
1776 }
1777 }
1778 return bdst; /* not used */
1779 }
1780
1781 static Buffer
boolcopy32(Buffer bdst,Buffer bsrc,Buffer bmask,int dx,int i,int o)1782 boolcopy32(Buffer bdst, Buffer bsrc, Buffer bmask, int dx, int i, int o)
1783 {
1784 uchar *m;
1785 ulong *r, *w, *ew;
1786
1787 USED(i);
1788 USED(o);
1789 m = bmask.grey;
1790 w = (ulong*)bdst.red;
1791 r = (ulong*)bsrc.red;
1792 ew = w+dx;
1793 for(; w < ew; w++,r++)
1794 if(*m++)
1795 *w = *r;
1796 return bdst; /* not used */
1797 }
1798
1799 static Buffer
genconv(Param * p,uchar * buf,int y)1800 genconv(Param *p, uchar *buf, int y)
1801 {
1802 Buffer b;
1803 int nb;
1804 uchar *r, *w, *ew;
1805
1806 /* read from source into RGB format in convbuf */
1807 b = p->convreadcall(p, p->convbuf, y);
1808
1809 /* write RGB format into dst format in buf */
1810 p->convwritecall(p->convdpar, buf, b);
1811
1812 if(p->convdx){
1813 nb = p->convdpar->img->depth/8;
1814 r = buf;
1815 w = buf+nb*p->dx;
1816 ew = buf+nb*p->convdx;
1817 while(w<ew)
1818 *w++ = *r++;
1819 }
1820
1821 b.red = buf;
1822 b.blu = b.grn = b.grey = b.alpha = nil;
1823 b.rgba = (ulong*)buf;
1824 b.delta = 0;
1825
1826 return b;
1827 }
1828
1829 static Readfn*
convfn(Memimage * dst,Param * dpar,Memimage * src,Param * spar,int * ndrawbuf)1830 convfn(Memimage *dst, Param *dpar, Memimage *src, Param *spar, int *ndrawbuf)
1831 {
1832 if(dst->chan == src->chan && !(src->flags&Frepl)){
1833 //if(drawdebug) iprint("readptr...");
1834 return readptr;
1835 }
1836
1837 if(dst->chan==CMAP8 && (src->chan==GREY1||src->chan==GREY2||src->chan==GREY4)){
1838 /* cheat because we know the replicated value is exactly the color map entry. */
1839 //if(drawdebug) iprint("Readnbit...");
1840 return readnbit;
1841 }
1842
1843 spar->convreadcall = readfn(src);
1844 spar->convwritecall = writefn(dst);
1845 spar->convdpar = dpar;
1846
1847 /* allocate a conversion buffer */
1848 spar->convbufoff = *ndrawbuf;
1849 *ndrawbuf += spar->dx*4;
1850
1851 if(spar->dx > Dx(spar->img->r)){
1852 spar->convdx = spar->dx;
1853 spar->dx = Dx(spar->img->r);
1854 }
1855
1856 //if(drawdebug) iprint("genconv...");
1857 return genconv;
1858 }
1859
1860 static ulong
pixelbits(Memimage * i,Point pt)1861 pixelbits(Memimage *i, Point pt)
1862 {
1863 uchar *p;
1864 ulong val;
1865 int off, bpp, npack;
1866
1867 val = 0;
1868 p = byteaddr(i, pt);
1869 switch(bpp=i->depth){
1870 case 1:
1871 case 2:
1872 case 4:
1873 npack = 8/bpp;
1874 off = pt.x%npack;
1875 val = p[0] >> bpp*(npack-1-off);
1876 val &= (1<<bpp)-1;
1877 break;
1878 case 8:
1879 val = p[0];
1880 break;
1881 case 16:
1882 val = p[0]|(p[1]<<8);
1883 break;
1884 case 24:
1885 val = p[0]|(p[1]<<8)|(p[2]<<16);
1886 break;
1887 case 32:
1888 val = p[0]|(p[1]<<8)|(p[2]<<16)|(p[3]<<24);
1889 break;
1890 }
1891 while(bpp<32){
1892 val |= val<<bpp;
1893 bpp *= 2;
1894 }
1895 return val;
1896 }
1897
1898 static Calcfn*
boolcopyfn(Memimage * img,Memimage * mask)1899 boolcopyfn(Memimage *img, Memimage *mask)
1900 {
1901 if(mask->flags&Frepl && Dx(mask->r)==1 && Dy(mask->r)==1 && pixelbits(mask, mask->r.min)==~0)
1902 return boolmemmove;
1903
1904 switch(img->depth){
1905 case 8:
1906 return boolcopy8;
1907 case 16:
1908 return boolcopy16;
1909 case 24:
1910 return boolcopy24;
1911 case 32:
1912 return boolcopy32;
1913 default:
1914 assert(0 /* boolcopyfn */);
1915 }
1916 return nil;
1917 }
1918
1919 /*
1920 * Optimized draw for filling and scrolling; uses memset and memmove.
1921 */
1922 static void
memsetb(void * vp,uchar val,int n)1923 memsetb(void *vp, uchar val, int n)
1924 {
1925 uchar *p, *ep;
1926
1927 p = vp;
1928 ep = p+n;
1929 while(p<ep)
1930 *p++ = val;
1931 }
1932
1933 static void
memsets(void * vp,ushort val,int n)1934 memsets(void *vp, ushort val, int n)
1935 {
1936 ushort *p, *ep;
1937
1938 p = vp;
1939 ep = p+n;
1940 while(p<ep)
1941 *p++ = val;
1942 }
1943
1944 static void
memsetl(void * vp,ulong val,int n)1945 memsetl(void *vp, ulong val, int n)
1946 {
1947 ulong *p, *ep;
1948
1949 p = vp;
1950 ep = p+n;
1951 while(p<ep)
1952 *p++ = val;
1953 }
1954
1955 static void
memset24(void * vp,ulong val,int n)1956 memset24(void *vp, ulong val, int n)
1957 {
1958 uchar *p, *ep;
1959 uchar a,b,c;
1960
1961 p = vp;
1962 ep = p+3*n;
1963 a = val;
1964 b = val>>8;
1965 c = val>>16;
1966 while(p<ep){
1967 *p++ = a;
1968 *p++ = b;
1969 *p++ = c;
1970 }
1971 }
1972
1973 static ulong
imgtorgba(Memimage * img,ulong val)1974 imgtorgba(Memimage *img, ulong val)
1975 {
1976 uchar r, g, b, a;
1977 int nb, ov, v;
1978 ulong chan;
1979 uchar *p;
1980
1981 a = 0xFF;
1982 r = g = b = 0xAA; /* garbage */
1983 for(chan=img->chan; chan; chan>>=8){
1984 nb = NBITS(chan);
1985 ov = v = val&((1<<nb)-1);
1986 val >>= nb;
1987
1988 while(nb < 8){
1989 v |= v<<nb;
1990 nb *= 2;
1991 }
1992 v >>= (nb-8);
1993
1994 switch(TYPE(chan)){
1995 case CRed:
1996 r = v;
1997 break;
1998 case CGreen:
1999 g = v;
2000 break;
2001 case CBlue:
2002 b = v;
2003 break;
2004 case CAlpha:
2005 a = v;
2006 break;
2007 case CGrey:
2008 r = g = b = v;
2009 break;
2010 case CMap:
2011 p = img->cmap->cmap2rgb+3*ov;
2012 r = *p++;
2013 g = *p++;
2014 b = *p;
2015 break;
2016 }
2017 }
2018 return (r<<24)|(g<<16)|(b<<8)|a;
2019 }
2020
2021 static ulong
rgbatoimg(Memimage * img,ulong rgba)2022 rgbatoimg(Memimage *img, ulong rgba)
2023 {
2024 ulong chan;
2025 int d, nb;
2026 ulong v;
2027 uchar *p, r, g, b, a, m;
2028
2029 v = 0;
2030 r = rgba>>24;
2031 g = rgba>>16;
2032 b = rgba>>8;
2033 a = rgba;
2034 d = 0;
2035 for(chan=img->chan; chan; chan>>=8){
2036 nb = NBITS(chan);
2037 switch(TYPE(chan)){
2038 case CRed:
2039 v |= (r>>(8-nb))<<d;
2040 break;
2041 case CGreen:
2042 v |= (g>>(8-nb))<<d;
2043 break;
2044 case CBlue:
2045 v |= (b>>(8-nb))<<d;
2046 break;
2047 case CAlpha:
2048 v |= (a>>(8-nb))<<d;
2049 break;
2050 case CMap:
2051 p = img->cmap->rgb2cmap;
2052 m = p[(r>>4)*256+(g>>4)*16+(b>>4)];
2053 v |= (m>>(8-nb))<<d;
2054 break;
2055 case CGrey:
2056 m = RGB2K(r,g,b);
2057 v |= (m>>(8-nb))<<d;
2058 break;
2059 }
2060 d += nb;
2061 }
2062 // print("rgba2img %.8lux = %.*lux\n", rgba, 2*d/8, v);
2063 return v;
2064 }
2065
2066 #define DBG if(0)
2067 static int
memoptdraw(Memdrawparam * par)2068 memoptdraw(Memdrawparam *par)
2069 {
2070 int m, y, dy, dx, op;
2071 ulong v;
2072 Memimage *src;
2073 Memimage *dst;
2074
2075 dx = Dx(par->r);
2076 dy = Dy(par->r);
2077 src = par->src;
2078 dst = par->dst;
2079 op = par->op;
2080
2081 DBG print("state %lux mval %lux dd %d\n", par->state, par->mval, dst->depth);
2082 /*
2083 * If we have an opaque mask and source is one opaque pixel we can convert to the
2084 * destination format and just replicate with memset.
2085 */
2086 m = Simplesrc|Simplemask|Fullmask;
2087 if((par->state&m)==m && (par->srgba&0xFF) == 0xFF && (op ==S || op == SoverD)){
2088 uchar *dp, p[4];
2089 int d, dwid, ppb, np, nb;
2090 uchar lm, rm;
2091
2092 DBG print("memopt, dst %p, dst->data->bdata %p\n", dst, dst->data->bdata);
2093 dwid = dst->width*sizeof(ulong);
2094 dp = byteaddr(dst, par->r.min);
2095 v = par->sdval;
2096 DBG print("sdval %lud, depth %d\n", v, dst->depth);
2097 switch(dst->depth){
2098 case 1:
2099 case 2:
2100 case 4:
2101 for(d=dst->depth; d<8; d*=2)
2102 v |= (v<<d);
2103 ppb = 8/dst->depth; /* pixels per byte */
2104 m = ppb-1;
2105 /* left edge */
2106 np = par->r.min.x&m; /* no. pixels unused on left side of word */
2107 dx -= (ppb-np);
2108 nb = 8 - np * dst->depth; /* no. bits used on right side of word */
2109 lm = (1<<nb)-1;
2110 DBG print("np %d x %d nb %d lm %ux ppb %d m %ux\n", np, par->r.min.x, nb, lm, ppb, m);
2111
2112 /* right edge */
2113 np = par->r.max.x&m; /* no. pixels used on left side of word */
2114 dx -= np;
2115 nb = 8 - np * dst->depth; /* no. bits unused on right side of word */
2116 rm = ~((1<<nb)-1);
2117 DBG print("np %d x %d nb %d rm %ux ppb %d m %ux\n", np, par->r.max.x, nb, rm, ppb, m);
2118
2119 DBG print("dx %d Dx %d\n", dx, Dx(par->r));
2120 /* lm, rm are masks that are 1 where we should touch the bits */
2121 if(dx < 0){ /* just one byte */
2122 lm &= rm;
2123 for(y=0; y<dy; y++, dp+=dwid)
2124 *dp ^= (v ^ *dp) & lm;
2125 }else if(dx == 0){ /* no full bytes */
2126 if(lm)
2127 dwid--;
2128
2129 for(y=0; y<dy; y++, dp+=dwid){
2130 if(lm){
2131 DBG print("dp %p v %lux lm %ux (v ^ *dp) & lm %lux\n", dp, v, lm, (v^*dp)&lm);
2132 *dp ^= (v ^ *dp) & lm;
2133 dp++;
2134 }
2135 *dp ^= (v ^ *dp) & rm;
2136 }
2137 }else{ /* full bytes in middle */
2138 dx /= ppb;
2139 if(lm)
2140 dwid--;
2141 dwid -= dx;
2142
2143 for(y=0; y<dy; y++, dp+=dwid){
2144 if(lm){
2145 *dp ^= (v ^ *dp) & lm;
2146 dp++;
2147 }
2148 memset(dp, v, dx);
2149 dp += dx;
2150 *dp ^= (v ^ *dp) & rm;
2151 }
2152 }
2153 return 1;
2154 case 8:
2155 for(y=0; y<dy; y++, dp+=dwid)
2156 memset(dp, v, dx);
2157 return 1;
2158 case 16:
2159 p[0] = v; /* make little endian */
2160 p[1] = v>>8;
2161 v = *(ushort*)p;
2162 DBG print("dp=%p; dx=%d; for(y=0; y<%d; y++, dp+=%d)\nmemsets(dp, v, dx);\n",
2163 dp, dx, dy, dwid);
2164 for(y=0; y<dy; y++, dp+=dwid)
2165 memsets(dp, v, dx);
2166 return 1;
2167 case 24:
2168 for(y=0; y<dy; y++, dp+=dwid)
2169 memset24(dp, v, dx);
2170 return 1;
2171 case 32:
2172 p[0] = v; /* make little endian */
2173 p[1] = v>>8;
2174 p[2] = v>>16;
2175 p[3] = v>>24;
2176 v = *(ulong*)p;
2177 for(y=0; y<dy; y++, dp+=dwid)
2178 memsetl(dp, v, dx);
2179 return 1;
2180 default:
2181 assert(0 /* bad dest depth in memoptdraw */);
2182 }
2183 }
2184
2185 /*
2186 * If no source alpha, an opaque mask, we can just copy the
2187 * source onto the destination. If the channels are the same and
2188 * the source is not replicated, memmove suffices.
2189 */
2190 m = Simplemask|Fullmask;
2191 if((par->state&(m|Replsrc))==m && src->depth >= 8
2192 && src->chan == dst->chan && (op == S || (op == SoverD && !(src->flags&Falpha)))){
2193 uchar *sp, *dp;
2194 long swid, dwid, nb;
2195 int dir;
2196
2197 if(src->data == dst->data && byteaddr(dst, par->r.min) > byteaddr(src, par->sr.min))
2198 dir = -1;
2199 else
2200 dir = 1;
2201
2202 swid = src->width*sizeof(ulong);
2203 dwid = dst->width*sizeof(ulong);
2204 sp = byteaddr(src, par->sr.min);
2205 dp = byteaddr(dst, par->r.min);
2206 if(dir == -1){
2207 sp += (dy-1)*swid;
2208 dp += (dy-1)*dwid;
2209 swid = -swid;
2210 dwid = -dwid;
2211 }
2212 nb = (dx*src->depth)/8;
2213 for(y=0; y<dy; y++, sp+=swid, dp+=dwid)
2214 memmove(dp, sp, nb);
2215 return 1;
2216 }
2217
2218 /*
2219 * If we have a 1-bit mask, 1-bit source, and 1-bit destination, and
2220 * they're all bit aligned, we can just use bit operators. This happens
2221 * when we're manipulating boolean masks, e.g. in the arc code.
2222 */
2223 if((par->state&(Simplemask|Simplesrc|Replmask|Replsrc))==0
2224 && dst->chan==GREY1 && src->chan==GREY1 && par->mask->chan==GREY1
2225 && (par->r.min.x&7)==(par->sr.min.x&7) && (par->r.min.x&7)==(par->mr.min.x&7)){
2226 uchar *sp, *dp, *mp;
2227 uchar lm, rm;
2228 long swid, dwid, mwid;
2229 int i, x, dir;
2230
2231 sp = byteaddr(src, par->sr.min);
2232 dp = byteaddr(dst, par->r.min);
2233 mp = byteaddr(par->mask, par->mr.min);
2234 swid = src->width*sizeof(ulong);
2235 dwid = dst->width*sizeof(ulong);
2236 mwid = par->mask->width*sizeof(ulong);
2237
2238 if(src->data == dst->data && byteaddr(dst, par->r.min) > byteaddr(src, par->sr.min)){
2239 dir = -1;
2240 }else
2241 dir = 1;
2242
2243 lm = 0xFF>>(par->r.min.x&7);
2244 rm = 0xFF<<(8-(par->r.max.x&7));
2245 dx -= (8-(par->r.min.x&7)) + (par->r.max.x&7);
2246
2247 if(dx < 0){ /* one byte wide */
2248 lm &= rm;
2249 if(dir == -1){
2250 dp += dwid*(dy-1);
2251 sp += swid*(dy-1);
2252 mp += mwid*(dy-1);
2253 dwid = -dwid;
2254 swid = -swid;
2255 mwid = -mwid;
2256 }
2257 for(y=0; y<dy; y++){
2258 *dp ^= (*dp ^ *sp) & *mp & lm;
2259 dp += dwid;
2260 sp += swid;
2261 mp += mwid;
2262 }
2263 return 1;
2264 }
2265
2266 dx /= 8;
2267 if(dir == 1){
2268 i = (lm!=0)+dx+(rm!=0);
2269 mwid -= i;
2270 swid -= i;
2271 dwid -= i;
2272 for(y=0; y<dy; y++, dp+=dwid, sp+=swid, mp+=mwid){
2273 if(lm){
2274 *dp ^= (*dp ^ *sp++) & *mp++ & lm;
2275 dp++;
2276 }
2277 for(x=0; x<dx; x++){
2278 *dp ^= (*dp ^ *sp++) & *mp++;
2279 dp++;
2280 }
2281 if(rm){
2282 *dp ^= (*dp ^ *sp++) & *mp++ & rm;
2283 dp++;
2284 }
2285 }
2286 return 1;
2287 }else{
2288 /* dir == -1 */
2289 i = (lm!=0)+dx+(rm!=0);
2290 dp += dwid*(dy-1)+i-1;
2291 sp += swid*(dy-1)+i-1;
2292 mp += mwid*(dy-1)+i-1;
2293 dwid = -dwid+i;
2294 swid = -swid+i;
2295 mwid = -mwid+i;
2296 for(y=0; y<dy; y++, dp+=dwid, sp+=swid, mp+=mwid){
2297 if(rm){
2298 *dp ^= (*dp ^ *sp--) & *mp-- & rm;
2299 dp--;
2300 }
2301 for(x=0; x<dx; x++){
2302 *dp ^= (*dp ^ *sp--) & *mp--;
2303 dp--;
2304 }
2305 if(lm){
2306 *dp ^= (*dp ^ *sp--) & *mp-- & lm;
2307 dp--;
2308 }
2309 }
2310 }
2311 return 1;
2312 }
2313 return 0;
2314 }
2315 #undef DBG
2316
2317 /*
2318 * Boolean character drawing.
2319 * Solid opaque color through a 1-bit greyscale mask.
2320 */
2321 #define DBG if(0)
2322 static int
chardraw(Memdrawparam * par)2323 chardraw(Memdrawparam *par)
2324 {
2325 ulong bits;
2326 int i, ddepth, dy, dx, x, bx, ex, y, npack, bsh, depth, op;
2327 ulong v, maskwid, dstwid;
2328 uchar *wp, *rp, *q, *wc;
2329 ushort *ws;
2330 ulong *wl;
2331 uchar sp[4];
2332 Rectangle r, mr;
2333 Memimage *mask, *src, *dst;
2334
2335 if(0) if(drawdebug) iprint("chardraw? mf %lux md %d sf %lux dxs %d dys %d dd %d ddat %p sdat %p\n",
2336 par->mask->flags, par->mask->depth, par->src->flags,
2337 Dx(par->src->r), Dy(par->src->r), par->dst->depth, par->dst->data, par->src->data);
2338
2339 mask = par->mask;
2340 src = par->src;
2341 dst = par->dst;
2342 r = par->r;
2343 mr = par->mr;
2344 op = par->op;
2345
2346 if((par->state&(Replsrc|Simplesrc|Replmask)) != (Replsrc|Simplesrc)
2347 || mask->depth != 1 || src->flags&Falpha || dst->depth<8 || dst->data==src->data
2348 || op != SoverD)
2349 return 0;
2350
2351 //if(drawdebug) iprint("chardraw...");
2352
2353 depth = mask->depth;
2354 maskwid = mask->width*sizeof(ulong);
2355 rp = byteaddr(mask, mr.min);
2356 npack = 8/depth;
2357 bsh = (mr.min.x % npack) * depth;
2358
2359 wp = byteaddr(dst, r.min);
2360 dstwid = dst->width*sizeof(ulong);
2361 DBG print("bsh %d\n", bsh);
2362 dy = Dy(r);
2363 dx = Dx(r);
2364
2365 ddepth = dst->depth;
2366
2367 /*
2368 * for loop counts from bsh to bsh+dx
2369 *
2370 * we want the bottom bits to be the amount
2371 * to shift the pixels down, so for n≡0 (mod 8) we want
2372 * bottom bits 7. for n≡1, 6, etc.
2373 * the bits come from -n-1.
2374 */
2375
2376 bx = -bsh-1;
2377 ex = -bsh-1-dx;
2378 bits = 0;
2379 v = par->sdval;
2380
2381 /* make little endian */
2382 sp[0] = v;
2383 sp[1] = v>>8;
2384 sp[2] = v>>16;
2385 sp[3] = v>>24;
2386
2387 //print("sp %x %x %x %x\n", sp[0], sp[1], sp[2], sp[3]);
2388 for(y=0; y<dy; y++, rp+=maskwid, wp+=dstwid){
2389 q = rp;
2390 if(bsh)
2391 bits = *q++;
2392 switch(ddepth){
2393 case 8:
2394 //if(drawdebug) iprint("8loop...");
2395 wc = wp;
2396 for(x=bx; x>ex; x--, wc++){
2397 i = x&7;
2398 if(i == 8-1)
2399 bits = *q++;
2400 DBG print("bits %lux sh %d...", bits, i);
2401 if((bits>>i)&1)
2402 *wc = v;
2403 }
2404 break;
2405 case 16:
2406 ws = (ushort*)wp;
2407 v = *(ushort*)sp;
2408 for(x=bx; x>ex; x--, ws++){
2409 i = x&7;
2410 if(i == 8-1)
2411 bits = *q++;
2412 DBG print("bits %lux sh %d...", bits, i);
2413 if((bits>>i)&1)
2414 *ws = v;
2415 }
2416 break;
2417 case 24:
2418 wc = wp;
2419 for(x=bx; x>ex; x--, wc+=3){
2420 i = x&7;
2421 if(i == 8-1)
2422 bits = *q++;
2423 DBG print("bits %lux sh %d...", bits, i);
2424 if((bits>>i)&1){
2425 wc[0] = sp[0];
2426 wc[1] = sp[1];
2427 wc[2] = sp[2];
2428 }
2429 }
2430 break;
2431 case 32:
2432 wl = (ulong*)wp;
2433 v = *(ulong*)sp;
2434 for(x=bx; x>ex; x--, wl++){
2435 i = x&7;
2436 if(i == 8-1)
2437 bits = *q++;
2438 DBG iprint("bits %lux sh %d...", bits, i);
2439 if((bits>>i)&1)
2440 *wl = v;
2441 }
2442 break;
2443 }
2444 }
2445
2446 DBG print("\n");
2447 return 1;
2448 }
2449 #undef DBG
2450
2451
2452 /*
2453 * Fill entire byte with replicated (if necessary) copy of source pixel,
2454 * assuming destination ldepth is >= source ldepth.
2455 *
2456 * This code is just plain wrong for >8bpp.
2457 *
2458 ulong
2459 membyteval(Memimage *src)
2460 {
2461 int i, val, bpp;
2462 uchar uc;
2463
2464 unloadmemimage(src, src->r, &uc, 1);
2465 bpp = src->depth;
2466 uc <<= (src->r.min.x&(7/src->depth))*src->depth;
2467 uc &= ~(0xFF>>bpp);
2468 // pixel value is now in high part of byte. repeat throughout byte
2469 val = uc;
2470 for(i=bpp; i<8; i<<=1)
2471 val |= val>>i;
2472 return val;
2473 }
2474 *
2475 */
2476
2477 void
memfillcolor(Memimage * i,ulong val)2478 memfillcolor(Memimage *i, ulong val)
2479 {
2480 ulong bits;
2481 int d, y;
2482 uchar p[4];
2483
2484 if(val == DNofill)
2485 return;
2486
2487 bits = rgbatoimg(i, val);
2488 switch(i->depth){
2489 case 24: /* 24-bit images suck */
2490 for(y=i->r.min.y; y<i->r.max.y; y++)
2491 memset24(byteaddr(i, Pt(i->r.min.x, y)), bits, Dx(i->r));
2492 break;
2493 default: /* 1, 2, 4, 8, 16, 32 */
2494 for(d=i->depth; d<32; d*=2)
2495 bits = (bits << d) | bits;
2496 p[0] = bits; /* make little endian */
2497 p[1] = bits>>8;
2498 p[2] = bits>>16;
2499 p[3] = bits>>24;
2500 bits = *(u32int*)p;
2501 memsetl(wordaddr(i, i->r.min), bits, i->width*Dy(i->r));
2502 break;
2503 }
2504 }
2505
2506