xref: /inferno-os/libfreetype/inftrees.c (revision 37da2899f40661e3e9631e497da8dc59b971cbd0)
1 /* inftrees.c -- generate Huffman trees for efficient decoding
2  * Copyright (C) 1995-2002 Mark Adler
3  * For conditions of distribution and use, see copyright notice in zlib.h
4  */
5 
6 #include "zutil.h"
7 #include "inftrees.h"
8 
9 #if !defined(BUILDFIXED) && !defined(STDC)
10 #  define BUILDFIXED   /* non ANSI compilers may not accept inffixed.h */
11 #endif
12 
13 local const char inflate_copyright[] =
14    " inflate 1.1.4 Copyright 1995-2002 Mark Adler ";
15 /*
16   If you use the zlib library in a product, an acknowledgment is welcome
17   in the documentation of your product. If for some reason you cannot
18   include such an acknowledgment, I would appreciate that you keep this
19   copyright string in the executable of your product.
20  */
21 
22 /* simplify the use of the inflate_huft type with some defines */
23 #define exop word.what.Exop
24 #define bits word.what.Bits
25 
26 
27 local int huft_build OF((
28     uIntf *,            /* code lengths in bits */
29     uInt,               /* number of codes */
30     uInt,               /* number of "simple" codes */
31     const uIntf *,      /* list of base values for non-simple codes */
32     const uIntf *,      /* list of extra bits for non-simple codes */
33     inflate_huft * FAR*,/* result: starting table */
34     uIntf *,            /* maximum lookup bits (returns actual) */
35     inflate_huft *,     /* space for trees */
36     uInt *,             /* hufts used in space */
37     uIntf * ));         /* space for values */
38 
39 /* Tables for deflate from PKZIP's appnote.txt. */
40 local const uInt cplens[31] = { /* Copy lengths for literal codes 257..285 */
41         3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
42         35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
43         /* see note #13 above about 258 */
44 local const uInt cplext[31] = { /* Extra bits for literal codes 257..285 */
45         0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
46         3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 112, 112}; /* 112==invalid */
47 local const uInt cpdist[30] = { /* Copy offsets for distance codes 0..29 */
48         1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
49         257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
50         8193, 12289, 16385, 24577};
51 local const uInt cpdext[30] = { /* Extra bits for distance codes */
52         0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
53         7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
54         12, 12, 13, 13};
55 
56 /*
57    Huffman code decoding is performed using a multi-level table lookup.
58    The fastest way to decode is to simply build a lookup table whose
59    size is determined by the longest code.  However, the time it takes
60    to build this table can also be a factor if the data being decoded
61    is not very long.  The most common codes are necessarily the
62    shortest codes, so those codes dominate the decoding time, and hence
63    the speed.  The idea is you can have a shorter table that decodes the
64    shorter, more probable codes, and then point to subsidiary tables for
65    the longer codes.  The time it costs to decode the longer codes is
66    then traded against the time it takes to make longer tables.
67 
68    This results of this trade are in the variables lbits and dbits
69    below.  lbits is the number of bits the first level table for literal/
70    length codes can decode in one step, and dbits is the same thing for
71    the distance codes.  Subsequent tables are also less than or equal to
72    those sizes.  These values may be adjusted either when all of the
73    codes are shorter than that, in which case the longest code length in
74    bits is used, or when the shortest code is *longer* than the requested
75    table size, in which case the length of the shortest code in bits is
76    used.
77 
78    There are two different values for the two tables, since they code a
79    different number of possibilities each.  The literal/length table
80    codes 286 possible values, or in a flat code, a little over eight
81    bits.  The distance table codes 30 possible values, or a little less
82    than five bits, flat.  The optimum values for speed end up being
83    about one bit more than those, so lbits is 8+1 and dbits is 5+1.
84    The optimum values may differ though from machine to machine, and
85    possibly even between compilers.  Your mileage may vary.
86  */
87 
88 
89 /* If BMAX needs to be larger than 16, then h and x[] should be uLong. */
90 #define BMAX 15         /* maximum bit length of any code */
91 
huft_build(b,n,s,d,e,t,m,hp,hn,v)92 local int huft_build(b, n, s, d, e, t, m, hp, hn, v)
93 uIntf *b;               /* code lengths in bits (all assumed <= BMAX) */
94 uInt n;                 /* number of codes (assumed <= 288) */
95 uInt s;                 /* number of simple-valued codes (0..s-1) */
96 const uIntf *d;         /* list of base values for non-simple codes */
97 const uIntf *e;         /* list of extra bits for non-simple codes */
98 inflate_huft * FAR *t;  /* result: starting table */
99 uIntf *m;               /* maximum lookup bits, returns actual */
100 inflate_huft *hp;       /* space for trees */
101 uInt *hn;               /* hufts used in space */
102 uIntf *v;               /* working area: values in order of bit length */
103 /* Given a list of code lengths and a maximum table size, make a set of
104    tables to decode that set of codes.  Return Z_OK on success, Z_BUF_ERROR
105    if the given code set is incomplete (the tables are still built in this
106    case), or Z_DATA_ERROR if the input is invalid. */
107 {
108 
109   uInt a;                       /* counter for codes of length k */
110   uInt c[BMAX+1];               /* bit length count table */
111   uInt f;                       /* i repeats in table every f entries */
112   int g;                        /* maximum code length */
113   int h;                        /* table level */
114   register uInt i;              /* counter, current code */
115   register uInt j;              /* counter */
116   register int k;               /* number of bits in current code */
117   int l;                        /* bits per table (returned in m) */
118   uInt mask;                    /* (1 << w) - 1, to avoid cc -O bug on HP */
119   register uIntf *p;            /* pointer into c[], b[], or v[] */
120   inflate_huft *q;              /* points to current table */
121   struct inflate_huft_s r;      /* table entry for structure assignment */
122   inflate_huft *u[BMAX];        /* table stack */
123   register int w;               /* bits before this table == (l * h) */
124   uInt x[BMAX+1];               /* bit offsets, then code stack */
125   uIntf *xp;                    /* pointer into x */
126   int y;                        /* number of dummy codes added */
127   uInt z;                       /* number of entries in current table */
128 
129 
130   /* Generate counts for each bit length */
131   p = c;
132 #define C0 *p++ = 0;
133 #define C2 C0 C0 C0 C0
134 #define C4 C2 C2 C2 C2
135   C4                            /* clear c[]--assume BMAX+1 is 16 */
136   p = b;  i = n;
137   do {
138     c[*p++]++;                  /* assume all entries <= BMAX */
139   } while (--i);
140   if (c[0] == n)                /* null input--all zero length codes */
141   {
142     *t = (inflate_huft *)Z_NULL;
143     *m = 0;
144     return Z_OK;
145   }
146 
147 
148   /* Find minimum and maximum length, bound *m by those */
149   l = *m;
150   for (j = 1; j <= BMAX; j++)
151     if (c[j])
152       break;
153   k = j;                        /* minimum code length */
154   if ((uInt)l < j)
155     l = j;
156   for (i = BMAX; i; i--)
157     if (c[i])
158       break;
159   g = i;                        /* maximum code length */
160   if ((uInt)l > i)
161     l = i;
162   *m = l;
163 
164 
165   /* Adjust last length count to fill out codes, if needed */
166   for (y = 1 << j; j < i; j++, y <<= 1)
167     if ((y -= c[j]) < 0)
168       return Z_DATA_ERROR;
169   if ((y -= c[i]) < 0)
170     return Z_DATA_ERROR;
171   c[i] += y;
172 
173 
174   /* Generate starting offsets into the value table for each length */
175   x[1] = j = 0;
176   p = c + 1;  xp = x + 2;
177   while (--i) {                 /* note that i == g from above */
178     *xp++ = (j += *p++);
179   }
180 
181 
182   /* Make a table of values in order of bit lengths */
183   p = b;  i = 0;
184   do {
185     if ((j = *p++) != 0)
186       v[x[j]++] = i;
187   } while (++i < n);
188   n = x[g];                     /* set n to length of v */
189 
190 
191   /* Generate the Huffman codes and for each, make the table entries */
192   x[0] = i = 0;                 /* first Huffman code is zero */
193   p = v;                        /* grab values in bit order */
194   h = -1;                       /* no tables yet--level -1 */
195   w = -l;                       /* bits decoded == (l * h) */
196   u[0] = (inflate_huft *)Z_NULL;        /* just to keep compilers happy */
197   q = (inflate_huft *)Z_NULL;   /* ditto */
198   z = 0;                        /* ditto */
199 
200   /* go through the bit lengths (k already is bits in shortest code) */
201   for (; k <= g; k++)
202   {
203     a = c[k];
204     while (a--)
205     {
206       /* here i is the Huffman code of length k bits for value *p */
207       /* make tables up to required level */
208       while (k > w + l)
209       {
210         h++;
211         w += l;                 /* previous table always l bits */
212 
213         /* compute minimum size table less than or equal to l bits */
214         z = g - w;
215         z = z > (uInt)l ? (uInt)l : z;        /* table size upper limit */
216         if ((f = 1 << (j = k - w)) > a + 1)     /* try a k-w bit table */
217         {                       /* too few codes for k-w bit table */
218           f -= a + 1;           /* deduct codes from patterns left */
219           xp = c + k;
220           if (j < z)
221             while (++j < z)     /* try smaller tables up to z bits */
222             {
223               if ((f <<= 1) <= *++xp)
224                 break;          /* enough codes to use up j bits */
225               f -= *xp;         /* else deduct codes from patterns */
226             }
227         }
228         z = 1 << j;             /* table entries for j-bit table */
229 
230         /* allocate new table */
231         if (*hn + z > MANY)     /* (note: doesn't matter for fixed) */
232           return Z_DATA_ERROR;  /* overflow of MANY */
233         u[h] = q = hp + *hn;
234         *hn += z;
235 
236         /* connect to last table, if there is one */
237         if (h)
238         {
239           x[h] = i;             /* save pattern for backing up */
240           r.bits = (Byte)l;     /* bits to dump before this table */
241           r.exop = (Byte)j;     /* bits in this table */
242           j = i >> (w - l);
243           r.base = (uInt)(q - u[h-1] - j);   /* offset to this table */
244           u[h-1][j] = r;        /* connect to last table */
245         }
246         else
247           *t = q;               /* first table is returned result */
248       }
249 
250       /* set up table entry in r */
251       r.bits = (Byte)(k - w);
252       if (p >= v + n)
253         r.exop = 128 + 64;      /* out of values--invalid code */
254       else if (*p < s)
255       {
256         r.exop = (Byte)(*p < 256 ? 0 : 32 + 64);     /* 256 is end-of-block */
257         r.base = *p++;          /* simple code is just the value */
258       }
259       else
260       {
261         r.exop = (Byte)(e[*p - s] + 16 + 64);/* non-simple--look up in lists */
262         r.base = d[*p++ - s];
263       }
264 
265       /* fill code-like entries with r */
266       f = 1 << (k - w);
267       for (j = i >> w; j < z; j += f)
268         q[j] = r;
269 
270       /* backwards increment the k-bit code i */
271       for (j = 1 << (k - 1); i & j; j >>= 1)
272         i ^= j;
273       i ^= j;
274 
275       /* backup over finished tables */
276       mask = (1 << w) - 1;      /* needed on HP, cc -O bug */
277       while ((i & mask) != x[h])
278       {
279         h--;                    /* don't need to update q */
280         w -= l;
281         mask = (1 << w) - 1;
282       }
283     }
284   }
285 
286 
287   /* Return Z_BUF_ERROR if we were given an incomplete table */
288   return y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK;
289 }
290 
291 
inflate_trees_bits(c,bb,tb,hp,z)292 local int inflate_trees_bits(c, bb, tb, hp, z)
293 uIntf *c;               /* 19 code lengths */
294 uIntf *bb;              /* bits tree desired/actual depth */
295 inflate_huft * FAR *tb; /* bits tree result */
296 inflate_huft *hp;       /* space for trees */
297 z_streamp z;            /* for messages */
298 {
299   int r;
300   uInt hn = 0;          /* hufts used in space */
301   uIntf *v;             /* work area for huft_build */
302 
303   if ((v = (uIntf*)ZALLOC(z, 19, sizeof(uInt))) == Z_NULL)
304     return Z_MEM_ERROR;
305   r = huft_build(c, 19, 19, (uIntf*)Z_NULL, (uIntf*)Z_NULL,
306                  tb, bb, hp, &hn, v);
307   if (r == Z_DATA_ERROR)
308     z->msg = (char*)"oversubscribed dynamic bit lengths tree";
309   else if (r == Z_BUF_ERROR || *bb == 0)
310   {
311     z->msg = (char*)"incomplete dynamic bit lengths tree";
312     r = Z_DATA_ERROR;
313   }
314   ZFREE(z, v);
315   return r;
316 }
317 
318 
inflate_trees_dynamic(nl,nd,c,bl,bd,tl,td,hp,z)319 local int inflate_trees_dynamic(nl, nd, c, bl, bd, tl, td, hp, z)
320 uInt nl;                /* number of literal/length codes */
321 uInt nd;                /* number of distance codes */
322 uIntf *c;               /* that many (total) code lengths */
323 uIntf *bl;              /* literal desired/actual bit depth */
324 uIntf *bd;              /* distance desired/actual bit depth */
325 inflate_huft * FAR *tl; /* literal/length tree result */
326 inflate_huft * FAR *td; /* distance tree result */
327 inflate_huft *hp;       /* space for trees */
328 z_streamp z;            /* for messages */
329 {
330   int r;
331   uInt hn = 0;          /* hufts used in space */
332   uIntf *v;             /* work area for huft_build */
333 
334   /* allocate work area */
335   if ((v = (uIntf*)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL)
336     return Z_MEM_ERROR;
337 
338   /* build literal/length tree */
339   r = huft_build(c, nl, 257, cplens, cplext, tl, bl, hp, &hn, v);
340   if (r != Z_OK || *bl == 0)
341   {
342     if (r == Z_DATA_ERROR)
343       z->msg = (char*)"oversubscribed literal/length tree";
344     else if (r != Z_MEM_ERROR)
345     {
346       z->msg = (char*)"incomplete literal/length tree";
347       r = Z_DATA_ERROR;
348     }
349     ZFREE(z, v);
350     return r;
351   }
352 
353   /* build distance tree */
354   r = huft_build(c + nl, nd, 0, cpdist, cpdext, td, bd, hp, &hn, v);
355   if (r != Z_OK || (*bd == 0 && nl > 257))
356   {
357     if (r == Z_DATA_ERROR)
358       z->msg = (char*)"oversubscribed distance tree";
359     else if (r == Z_BUF_ERROR) {
360 #ifdef PKZIP_BUG_WORKAROUND
361       r = Z_OK;
362     }
363 #else
364       z->msg = (char*)"incomplete distance tree";
365       r = Z_DATA_ERROR;
366     }
367     else if (r != Z_MEM_ERROR)
368     {
369       z->msg = (char*)"empty distance tree with lengths";
370       r = Z_DATA_ERROR;
371     }
372     ZFREE(z, v);
373     return r;
374 #endif
375   }
376 
377   /* done */
378   ZFREE(z, v);
379   return Z_OK;
380 }
381 
382 
383 /* build fixed tables only once--keep them here */
384 #ifdef BUILDFIXED
385 local int fixed_built = 0;
386 #define FIXEDH 544      /* number of hufts used by fixed tables */
387 local inflate_huft fixed_mem[FIXEDH];
388 local uInt fixed_bl;
389 local uInt fixed_bd;
390 local inflate_huft *fixed_tl;
391 local inflate_huft *fixed_td;
392 #else
393 #include "inffixed.h"
394 #endif
395 
396 
inflate_trees_fixed(bl,bd,tl,td,z)397 local int inflate_trees_fixed(bl, bd, tl, td, z)
398 uIntf *bl;               /* literal desired/actual bit depth */
399 uIntf *bd;               /* distance desired/actual bit depth */
400 inflate_huft * FAR *tl;  /* literal/length tree result */
401 inflate_huft * FAR *td;  /* distance tree result */
402 z_streamp z;             /* for memory allocation */
403 {
404 #ifdef BUILDFIXED
405   /* build fixed tables if not already */
406   if (!fixed_built)
407   {
408     int k;              /* temporary variable */
409     uInt f = 0;         /* number of hufts used in fixed_mem */
410     uIntf *c;           /* length list for huft_build */
411     uIntf *v;           /* work area for huft_build */
412 
413     /* allocate memory */
414     if ((c = (uIntf*)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL)
415       return Z_MEM_ERROR;
416     if ((v = (uIntf*)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL)
417     {
418       ZFREE(z, c);
419       return Z_MEM_ERROR;
420     }
421 
422     /* literal table */
423     for (k = 0; k < 144; k++)
424       c[k] = 8;
425     for (; k < 256; k++)
426       c[k] = 9;
427     for (; k < 280; k++)
428       c[k] = 7;
429     for (; k < 288; k++)
430       c[k] = 8;
431     fixed_bl = 9;
432     huft_build(c, 288, 257, cplens, cplext, &fixed_tl, &fixed_bl,
433                fixed_mem, &f, v);
434 
435     /* distance table */
436     for (k = 0; k < 30; k++)
437       c[k] = 5;
438     fixed_bd = 5;
439     huft_build(c, 30, 0, cpdist, cpdext, &fixed_td, &fixed_bd,
440                fixed_mem, &f, v);
441 
442     /* done */
443     ZFREE(z, v);
444     ZFREE(z, c);
445     fixed_built = 1;
446   }
447 #endif
448   *bl = fixed_bl;
449   *bd = fixed_bd;
450   *tl = fixed_tl;
451   *td = fixed_td;
452   return Z_OK;
453 }
454