xref: /inferno-os/appl/math/mersenne.b (revision 3b2b7dcdedcd732b92403b784d8c3797d80a6599)
1implement Mersenne;
2
3include "sys.m";
4	sys : Sys;
5include "draw.m";
6include "ipints.m";
7	ipints: IPints;
8	IPint: import ipints;
9
10# Test primality of Mersenne numbers
11
12Mersenne: module
13{
14	init: fn(nil: ref Draw->Context, argv: list of string);
15};
16
17init(nil: ref Draw->Context, argv: list of string)
18{
19	sys = load Sys Sys->PATH;
20	ipints = load IPints IPints->PATH;
21	p := 3;
22	if(tl argv != nil)
23		p = int hd tl argv;
24	if(isprime(p) && (p == 2 || lucas(p)))
25		s := "";
26	else
27		s = "not ";
28	sys->print("2^%d-1 is %sprime\n", p, s);
29}
30
31# s such that s^2 <= n
32sqrt(n: int): int
33{
34	v := n;
35	r := 0;
36	for(t := 1<<30; t; t >>= 2){
37		if(t+r <= v){
38			v -= t+r;
39			r = (r>>1)|t;
40		}
41		else
42			r = r>>1;
43	}
44	return r;
45}
46
47isprime(n: int): int
48{
49	if(n < 2)
50		return 0;
51	if(n == 2)
52		return 1;
53	if((n&1) == 0)
54		return 0;
55	s := sqrt(n);
56	for(i := 3; i <= s; i += 2)
57		if(n%i == 0)
58			return 0;
59	return 1;
60}
61
62pow(b : ref IPint, n : int): ref IPint
63{
64	zero := IPint.inttoip(0);
65	one := IPint.inttoip(1);
66	if((b.cmp(zero) == 0 && n != 0) || b.cmp(one) == 0 || n == 1)
67		return b;
68	if(n == 0)
69		return one;
70	c := b;
71	b = one;
72	while(n){
73		while(!(n & 1)){
74			n >>= 1;
75			c = c.mul(c);
76		}
77		n--;
78		b = c.mul(b);
79	}
80	return b;
81}
82
83lucas(p: int): int
84{
85	zero := IPint.inttoip(0);
86	one := IPint.inttoip(1);
87	two := IPint.inttoip(2);
88	bigp := pow(two, p).sub(one);
89	u := IPint.inttoip(4);
90	for(i := 2; i < p; i++){
91		u = u.mul(u);
92		if(u.cmp(two) <= 0)
93			u = two.sub(u);
94		else
95			u = u.sub(two).expmod(one, bigp);
96	}
97	return u.cmp(zero) == 0;
98}
99
100