1 //===-- VPlanTransforms.cpp - Utility VPlan to VPlan transforms -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements a set of utility VPlan to VPlan transformations. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "VPlanTransforms.h" 15 #include "VPRecipeBuilder.h" 16 #include "VPlanAnalysis.h" 17 #include "VPlanCFG.h" 18 #include "VPlanDominatorTree.h" 19 #include "VPlanPatternMatch.h" 20 #include "llvm/ADT/PostOrderIterator.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/Analysis/IVDescriptors.h" 24 #include "llvm/Analysis/VectorUtils.h" 25 #include "llvm/IR/Intrinsics.h" 26 #include "llvm/IR/PatternMatch.h" 27 28 using namespace llvm; 29 30 void VPlanTransforms::VPInstructionsToVPRecipes( 31 VPlanPtr &Plan, 32 function_ref<const InductionDescriptor *(PHINode *)> 33 GetIntOrFpInductionDescriptor, 34 ScalarEvolution &SE, const TargetLibraryInfo &TLI) { 35 36 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> RPOT( 37 Plan->getVectorLoopRegion()); 38 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(RPOT)) { 39 // Skip blocks outside region 40 if (!VPBB->getParent()) 41 break; 42 VPRecipeBase *Term = VPBB->getTerminator(); 43 auto EndIter = Term ? Term->getIterator() : VPBB->end(); 44 // Introduce each ingredient into VPlan. 45 for (VPRecipeBase &Ingredient : 46 make_early_inc_range(make_range(VPBB->begin(), EndIter))) { 47 48 VPValue *VPV = Ingredient.getVPSingleValue(); 49 Instruction *Inst = cast<Instruction>(VPV->getUnderlyingValue()); 50 51 VPRecipeBase *NewRecipe = nullptr; 52 if (auto *VPPhi = dyn_cast<VPWidenPHIRecipe>(&Ingredient)) { 53 auto *Phi = cast<PHINode>(VPPhi->getUnderlyingValue()); 54 const auto *II = GetIntOrFpInductionDescriptor(Phi); 55 if (!II) 56 continue; 57 58 VPValue *Start = Plan->getOrAddLiveIn(II->getStartValue()); 59 VPValue *Step = 60 vputils::getOrCreateVPValueForSCEVExpr(*Plan, II->getStep(), SE); 61 NewRecipe = new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, *II); 62 } else { 63 assert(isa<VPInstruction>(&Ingredient) && 64 "only VPInstructions expected here"); 65 assert(!isa<PHINode>(Inst) && "phis should be handled above"); 66 // Create VPWidenMemoryRecipe for loads and stores. 67 if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) { 68 NewRecipe = new VPWidenLoadRecipe( 69 *Load, Ingredient.getOperand(0), nullptr /*Mask*/, 70 false /*Consecutive*/, false /*Reverse*/, 71 Ingredient.getDebugLoc()); 72 } else if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) { 73 NewRecipe = new VPWidenStoreRecipe( 74 *Store, Ingredient.getOperand(1), Ingredient.getOperand(0), 75 nullptr /*Mask*/, false /*Consecutive*/, false /*Reverse*/, 76 Ingredient.getDebugLoc()); 77 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) { 78 NewRecipe = new VPWidenGEPRecipe(GEP, Ingredient.operands()); 79 } else if (CallInst *CI = dyn_cast<CallInst>(Inst)) { 80 NewRecipe = new VPWidenCallRecipe( 81 CI, Ingredient.operands(), getVectorIntrinsicIDForCall(CI, &TLI), 82 CI->getDebugLoc()); 83 } else if (SelectInst *SI = dyn_cast<SelectInst>(Inst)) { 84 NewRecipe = new VPWidenSelectRecipe(*SI, Ingredient.operands()); 85 } else if (auto *CI = dyn_cast<CastInst>(Inst)) { 86 NewRecipe = new VPWidenCastRecipe( 87 CI->getOpcode(), Ingredient.getOperand(0), CI->getType(), *CI); 88 } else { 89 NewRecipe = new VPWidenRecipe(*Inst, Ingredient.operands()); 90 } 91 } 92 93 NewRecipe->insertBefore(&Ingredient); 94 if (NewRecipe->getNumDefinedValues() == 1) 95 VPV->replaceAllUsesWith(NewRecipe->getVPSingleValue()); 96 else 97 assert(NewRecipe->getNumDefinedValues() == 0 && 98 "Only recpies with zero or one defined values expected"); 99 Ingredient.eraseFromParent(); 100 } 101 } 102 } 103 104 static bool sinkScalarOperands(VPlan &Plan) { 105 auto Iter = vp_depth_first_deep(Plan.getEntry()); 106 bool Changed = false; 107 // First, collect the operands of all recipes in replicate blocks as seeds for 108 // sinking. 109 SetVector<std::pair<VPBasicBlock *, VPSingleDefRecipe *>> WorkList; 110 for (VPRegionBlock *VPR : VPBlockUtils::blocksOnly<VPRegionBlock>(Iter)) { 111 VPBasicBlock *EntryVPBB = VPR->getEntryBasicBlock(); 112 if (!VPR->isReplicator() || EntryVPBB->getSuccessors().size() != 2) 113 continue; 114 VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(EntryVPBB->getSuccessors()[0]); 115 if (!VPBB || VPBB->getSingleSuccessor() != VPR->getExitingBasicBlock()) 116 continue; 117 for (auto &Recipe : *VPBB) { 118 for (VPValue *Op : Recipe.operands()) 119 if (auto *Def = 120 dyn_cast_or_null<VPSingleDefRecipe>(Op->getDefiningRecipe())) 121 WorkList.insert(std::make_pair(VPBB, Def)); 122 } 123 } 124 125 bool ScalarVFOnly = Plan.hasScalarVFOnly(); 126 // Try to sink each replicate or scalar IV steps recipe in the worklist. 127 for (unsigned I = 0; I != WorkList.size(); ++I) { 128 VPBasicBlock *SinkTo; 129 VPSingleDefRecipe *SinkCandidate; 130 std::tie(SinkTo, SinkCandidate) = WorkList[I]; 131 if (SinkCandidate->getParent() == SinkTo || 132 SinkCandidate->mayHaveSideEffects() || 133 SinkCandidate->mayReadOrWriteMemory()) 134 continue; 135 if (auto *RepR = dyn_cast<VPReplicateRecipe>(SinkCandidate)) { 136 if (!ScalarVFOnly && RepR->isUniform()) 137 continue; 138 } else if (!isa<VPScalarIVStepsRecipe>(SinkCandidate)) 139 continue; 140 141 bool NeedsDuplicating = false; 142 // All recipe users of the sink candidate must be in the same block SinkTo 143 // or all users outside of SinkTo must be uniform-after-vectorization ( 144 // i.e., only first lane is used) . In the latter case, we need to duplicate 145 // SinkCandidate. 146 auto CanSinkWithUser = [SinkTo, &NeedsDuplicating, 147 SinkCandidate](VPUser *U) { 148 auto *UI = dyn_cast<VPRecipeBase>(U); 149 if (!UI) 150 return false; 151 if (UI->getParent() == SinkTo) 152 return true; 153 NeedsDuplicating = UI->onlyFirstLaneUsed(SinkCandidate); 154 // We only know how to duplicate VPRecipeRecipes for now. 155 return NeedsDuplicating && isa<VPReplicateRecipe>(SinkCandidate); 156 }; 157 if (!all_of(SinkCandidate->users(), CanSinkWithUser)) 158 continue; 159 160 if (NeedsDuplicating) { 161 if (ScalarVFOnly) 162 continue; 163 Instruction *I = SinkCandidate->getUnderlyingInstr(); 164 auto *Clone = new VPReplicateRecipe(I, SinkCandidate->operands(), true); 165 // TODO: add ".cloned" suffix to name of Clone's VPValue. 166 167 Clone->insertBefore(SinkCandidate); 168 SinkCandidate->replaceUsesWithIf(Clone, [SinkTo](VPUser &U, unsigned) { 169 return cast<VPRecipeBase>(&U)->getParent() != SinkTo; 170 }); 171 } 172 SinkCandidate->moveBefore(*SinkTo, SinkTo->getFirstNonPhi()); 173 for (VPValue *Op : SinkCandidate->operands()) 174 if (auto *Def = 175 dyn_cast_or_null<VPSingleDefRecipe>(Op->getDefiningRecipe())) 176 WorkList.insert(std::make_pair(SinkTo, Def)); 177 Changed = true; 178 } 179 return Changed; 180 } 181 182 /// If \p R is a region with a VPBranchOnMaskRecipe in the entry block, return 183 /// the mask. 184 VPValue *getPredicatedMask(VPRegionBlock *R) { 185 auto *EntryBB = dyn_cast<VPBasicBlock>(R->getEntry()); 186 if (!EntryBB || EntryBB->size() != 1 || 187 !isa<VPBranchOnMaskRecipe>(EntryBB->begin())) 188 return nullptr; 189 190 return cast<VPBranchOnMaskRecipe>(&*EntryBB->begin())->getOperand(0); 191 } 192 193 /// If \p R is a triangle region, return the 'then' block of the triangle. 194 static VPBasicBlock *getPredicatedThenBlock(VPRegionBlock *R) { 195 auto *EntryBB = cast<VPBasicBlock>(R->getEntry()); 196 if (EntryBB->getNumSuccessors() != 2) 197 return nullptr; 198 199 auto *Succ0 = dyn_cast<VPBasicBlock>(EntryBB->getSuccessors()[0]); 200 auto *Succ1 = dyn_cast<VPBasicBlock>(EntryBB->getSuccessors()[1]); 201 if (!Succ0 || !Succ1) 202 return nullptr; 203 204 if (Succ0->getNumSuccessors() + Succ1->getNumSuccessors() != 1) 205 return nullptr; 206 if (Succ0->getSingleSuccessor() == Succ1) 207 return Succ0; 208 if (Succ1->getSingleSuccessor() == Succ0) 209 return Succ1; 210 return nullptr; 211 } 212 213 // Merge replicate regions in their successor region, if a replicate region 214 // is connected to a successor replicate region with the same predicate by a 215 // single, empty VPBasicBlock. 216 static bool mergeReplicateRegionsIntoSuccessors(VPlan &Plan) { 217 SetVector<VPRegionBlock *> DeletedRegions; 218 219 // Collect replicate regions followed by an empty block, followed by another 220 // replicate region with matching masks to process front. This is to avoid 221 // iterator invalidation issues while merging regions. 222 SmallVector<VPRegionBlock *, 8> WorkList; 223 for (VPRegionBlock *Region1 : VPBlockUtils::blocksOnly<VPRegionBlock>( 224 vp_depth_first_deep(Plan.getEntry()))) { 225 if (!Region1->isReplicator()) 226 continue; 227 auto *MiddleBasicBlock = 228 dyn_cast_or_null<VPBasicBlock>(Region1->getSingleSuccessor()); 229 if (!MiddleBasicBlock || !MiddleBasicBlock->empty()) 230 continue; 231 232 auto *Region2 = 233 dyn_cast_or_null<VPRegionBlock>(MiddleBasicBlock->getSingleSuccessor()); 234 if (!Region2 || !Region2->isReplicator()) 235 continue; 236 237 VPValue *Mask1 = getPredicatedMask(Region1); 238 VPValue *Mask2 = getPredicatedMask(Region2); 239 if (!Mask1 || Mask1 != Mask2) 240 continue; 241 242 assert(Mask1 && Mask2 && "both region must have conditions"); 243 WorkList.push_back(Region1); 244 } 245 246 // Move recipes from Region1 to its successor region, if both are triangles. 247 for (VPRegionBlock *Region1 : WorkList) { 248 if (DeletedRegions.contains(Region1)) 249 continue; 250 auto *MiddleBasicBlock = cast<VPBasicBlock>(Region1->getSingleSuccessor()); 251 auto *Region2 = cast<VPRegionBlock>(MiddleBasicBlock->getSingleSuccessor()); 252 253 VPBasicBlock *Then1 = getPredicatedThenBlock(Region1); 254 VPBasicBlock *Then2 = getPredicatedThenBlock(Region2); 255 if (!Then1 || !Then2) 256 continue; 257 258 // Note: No fusion-preventing memory dependencies are expected in either 259 // region. Such dependencies should be rejected during earlier dependence 260 // checks, which guarantee accesses can be re-ordered for vectorization. 261 // 262 // Move recipes to the successor region. 263 for (VPRecipeBase &ToMove : make_early_inc_range(reverse(*Then1))) 264 ToMove.moveBefore(*Then2, Then2->getFirstNonPhi()); 265 266 auto *Merge1 = cast<VPBasicBlock>(Then1->getSingleSuccessor()); 267 auto *Merge2 = cast<VPBasicBlock>(Then2->getSingleSuccessor()); 268 269 // Move VPPredInstPHIRecipes from the merge block to the successor region's 270 // merge block. Update all users inside the successor region to use the 271 // original values. 272 for (VPRecipeBase &Phi1ToMove : make_early_inc_range(reverse(*Merge1))) { 273 VPValue *PredInst1 = 274 cast<VPPredInstPHIRecipe>(&Phi1ToMove)->getOperand(0); 275 VPValue *Phi1ToMoveV = Phi1ToMove.getVPSingleValue(); 276 Phi1ToMoveV->replaceUsesWithIf(PredInst1, [Then2](VPUser &U, unsigned) { 277 auto *UI = dyn_cast<VPRecipeBase>(&U); 278 return UI && UI->getParent() == Then2; 279 }); 280 281 // Remove phi recipes that are unused after merging the regions. 282 if (Phi1ToMove.getVPSingleValue()->getNumUsers() == 0) { 283 Phi1ToMove.eraseFromParent(); 284 continue; 285 } 286 Phi1ToMove.moveBefore(*Merge2, Merge2->begin()); 287 } 288 289 // Finally, remove the first region. 290 for (VPBlockBase *Pred : make_early_inc_range(Region1->getPredecessors())) { 291 VPBlockUtils::disconnectBlocks(Pred, Region1); 292 VPBlockUtils::connectBlocks(Pred, MiddleBasicBlock); 293 } 294 VPBlockUtils::disconnectBlocks(Region1, MiddleBasicBlock); 295 DeletedRegions.insert(Region1); 296 } 297 298 for (VPRegionBlock *ToDelete : DeletedRegions) 299 delete ToDelete; 300 return !DeletedRegions.empty(); 301 } 302 303 static VPRegionBlock *createReplicateRegion(VPReplicateRecipe *PredRecipe, 304 VPlan &Plan) { 305 Instruction *Instr = PredRecipe->getUnderlyingInstr(); 306 // Build the triangular if-then region. 307 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 308 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 309 auto *BlockInMask = PredRecipe->getMask(); 310 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 311 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 312 313 // Replace predicated replicate recipe with a replicate recipe without a 314 // mask but in the replicate region. 315 auto *RecipeWithoutMask = new VPReplicateRecipe( 316 PredRecipe->getUnderlyingInstr(), 317 make_range(PredRecipe->op_begin(), std::prev(PredRecipe->op_end())), 318 PredRecipe->isUniform()); 319 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", RecipeWithoutMask); 320 321 VPPredInstPHIRecipe *PHIRecipe = nullptr; 322 if (PredRecipe->getNumUsers() != 0) { 323 PHIRecipe = new VPPredInstPHIRecipe(RecipeWithoutMask); 324 PredRecipe->replaceAllUsesWith(PHIRecipe); 325 PHIRecipe->setOperand(0, RecipeWithoutMask); 326 } 327 PredRecipe->eraseFromParent(); 328 auto *Exiting = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 329 VPRegionBlock *Region = new VPRegionBlock(Entry, Exiting, RegionName, true); 330 331 // Note: first set Entry as region entry and then connect successors starting 332 // from it in order, to propagate the "parent" of each VPBasicBlock. 333 VPBlockUtils::insertTwoBlocksAfter(Pred, Exiting, Entry); 334 VPBlockUtils::connectBlocks(Pred, Exiting); 335 336 return Region; 337 } 338 339 static void addReplicateRegions(VPlan &Plan) { 340 SmallVector<VPReplicateRecipe *> WorkList; 341 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>( 342 vp_depth_first_deep(Plan.getEntry()))) { 343 for (VPRecipeBase &R : *VPBB) 344 if (auto *RepR = dyn_cast<VPReplicateRecipe>(&R)) { 345 if (RepR->isPredicated()) 346 WorkList.push_back(RepR); 347 } 348 } 349 350 unsigned BBNum = 0; 351 for (VPReplicateRecipe *RepR : WorkList) { 352 VPBasicBlock *CurrentBlock = RepR->getParent(); 353 VPBasicBlock *SplitBlock = CurrentBlock->splitAt(RepR->getIterator()); 354 355 BasicBlock *OrigBB = RepR->getUnderlyingInstr()->getParent(); 356 SplitBlock->setName( 357 OrigBB->hasName() ? OrigBB->getName() + "." + Twine(BBNum++) : ""); 358 // Record predicated instructions for above packing optimizations. 359 VPBlockBase *Region = createReplicateRegion(RepR, Plan); 360 Region->setParent(CurrentBlock->getParent()); 361 VPBlockUtils::disconnectBlocks(CurrentBlock, SplitBlock); 362 VPBlockUtils::connectBlocks(CurrentBlock, Region); 363 VPBlockUtils::connectBlocks(Region, SplitBlock); 364 } 365 } 366 367 /// Remove redundant VPBasicBlocks by merging them into their predecessor if 368 /// the predecessor has a single successor. 369 static bool mergeBlocksIntoPredecessors(VPlan &Plan) { 370 SmallVector<VPBasicBlock *> WorkList; 371 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>( 372 vp_depth_first_deep(Plan.getEntry()))) { 373 // Don't fold the exit block of the Plan into its single predecessor for 374 // now. 375 // TODO: Remove restriction once more of the skeleton is modeled in VPlan. 376 if (VPBB->getNumSuccessors() == 0 && !VPBB->getParent()) 377 continue; 378 auto *PredVPBB = 379 dyn_cast_or_null<VPBasicBlock>(VPBB->getSinglePredecessor()); 380 if (!PredVPBB || PredVPBB->getNumSuccessors() != 1) 381 continue; 382 WorkList.push_back(VPBB); 383 } 384 385 for (VPBasicBlock *VPBB : WorkList) { 386 VPBasicBlock *PredVPBB = cast<VPBasicBlock>(VPBB->getSinglePredecessor()); 387 for (VPRecipeBase &R : make_early_inc_range(*VPBB)) 388 R.moveBefore(*PredVPBB, PredVPBB->end()); 389 VPBlockUtils::disconnectBlocks(PredVPBB, VPBB); 390 auto *ParentRegion = cast_or_null<VPRegionBlock>(VPBB->getParent()); 391 if (ParentRegion && ParentRegion->getExiting() == VPBB) 392 ParentRegion->setExiting(PredVPBB); 393 for (auto *Succ : to_vector(VPBB->successors())) { 394 VPBlockUtils::disconnectBlocks(VPBB, Succ); 395 VPBlockUtils::connectBlocks(PredVPBB, Succ); 396 } 397 delete VPBB; 398 } 399 return !WorkList.empty(); 400 } 401 402 void VPlanTransforms::createAndOptimizeReplicateRegions(VPlan &Plan) { 403 // Convert masked VPReplicateRecipes to if-then region blocks. 404 addReplicateRegions(Plan); 405 406 bool ShouldSimplify = true; 407 while (ShouldSimplify) { 408 ShouldSimplify = sinkScalarOperands(Plan); 409 ShouldSimplify |= mergeReplicateRegionsIntoSuccessors(Plan); 410 ShouldSimplify |= mergeBlocksIntoPredecessors(Plan); 411 } 412 } 413 414 /// Remove redundant casts of inductions. 415 /// 416 /// Such redundant casts are casts of induction variables that can be ignored, 417 /// because we already proved that the casted phi is equal to the uncasted phi 418 /// in the vectorized loop. There is no need to vectorize the cast - the same 419 /// value can be used for both the phi and casts in the vector loop. 420 static void removeRedundantInductionCasts(VPlan &Plan) { 421 for (auto &Phi : Plan.getVectorLoopRegion()->getEntryBasicBlock()->phis()) { 422 auto *IV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi); 423 if (!IV || IV->getTruncInst()) 424 continue; 425 426 // A sequence of IR Casts has potentially been recorded for IV, which 427 // *must be bypassed* when the IV is vectorized, because the vectorized IV 428 // will produce the desired casted value. This sequence forms a def-use 429 // chain and is provided in reverse order, ending with the cast that uses 430 // the IV phi. Search for the recipe of the last cast in the chain and 431 // replace it with the original IV. Note that only the final cast is 432 // expected to have users outside the cast-chain and the dead casts left 433 // over will be cleaned up later. 434 auto &Casts = IV->getInductionDescriptor().getCastInsts(); 435 VPValue *FindMyCast = IV; 436 for (Instruction *IRCast : reverse(Casts)) { 437 VPSingleDefRecipe *FoundUserCast = nullptr; 438 for (auto *U : FindMyCast->users()) { 439 auto *UserCast = dyn_cast<VPSingleDefRecipe>(U); 440 if (UserCast && UserCast->getUnderlyingValue() == IRCast) { 441 FoundUserCast = UserCast; 442 break; 443 } 444 } 445 FindMyCast = FoundUserCast; 446 } 447 FindMyCast->replaceAllUsesWith(IV); 448 } 449 } 450 451 /// Try to replace VPWidenCanonicalIVRecipes with a widened canonical IV 452 /// recipe, if it exists. 453 static void removeRedundantCanonicalIVs(VPlan &Plan) { 454 VPCanonicalIVPHIRecipe *CanonicalIV = Plan.getCanonicalIV(); 455 VPWidenCanonicalIVRecipe *WidenNewIV = nullptr; 456 for (VPUser *U : CanonicalIV->users()) { 457 WidenNewIV = dyn_cast<VPWidenCanonicalIVRecipe>(U); 458 if (WidenNewIV) 459 break; 460 } 461 462 if (!WidenNewIV) 463 return; 464 465 VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock(); 466 for (VPRecipeBase &Phi : HeaderVPBB->phis()) { 467 auto *WidenOriginalIV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi); 468 469 if (!WidenOriginalIV || !WidenOriginalIV->isCanonical()) 470 continue; 471 472 // Replace WidenNewIV with WidenOriginalIV if WidenOriginalIV provides 473 // everything WidenNewIV's users need. That is, WidenOriginalIV will 474 // generate a vector phi or all users of WidenNewIV demand the first lane 475 // only. 476 if (any_of(WidenOriginalIV->users(), 477 [WidenOriginalIV](VPUser *U) { 478 return !U->usesScalars(WidenOriginalIV); 479 }) || 480 vputils::onlyFirstLaneUsed(WidenNewIV)) { 481 WidenNewIV->replaceAllUsesWith(WidenOriginalIV); 482 WidenNewIV->eraseFromParent(); 483 return; 484 } 485 } 486 } 487 488 /// Returns true if \p R is dead and can be removed. 489 static bool isDeadRecipe(VPRecipeBase &R) { 490 using namespace llvm::PatternMatch; 491 // Do remove conditional assume instructions as their conditions may be 492 // flattened. 493 auto *RepR = dyn_cast<VPReplicateRecipe>(&R); 494 bool IsConditionalAssume = 495 RepR && RepR->isPredicated() && 496 match(RepR->getUnderlyingInstr(), m_Intrinsic<Intrinsic::assume>()); 497 if (IsConditionalAssume) 498 return true; 499 500 if (R.mayHaveSideEffects()) 501 return false; 502 503 // Recipe is dead if no user keeps the recipe alive. 504 return all_of(R.definedValues(), 505 [](VPValue *V) { return V->getNumUsers() == 0; }); 506 } 507 508 static void removeDeadRecipes(VPlan &Plan) { 509 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> RPOT( 510 Plan.getEntry()); 511 512 for (VPBasicBlock *VPBB : reverse(VPBlockUtils::blocksOnly<VPBasicBlock>(RPOT))) { 513 // The recipes in the block are processed in reverse order, to catch chains 514 // of dead recipes. 515 for (VPRecipeBase &R : make_early_inc_range(reverse(*VPBB))) { 516 if (isDeadRecipe(R)) 517 R.eraseFromParent(); 518 } 519 } 520 } 521 522 static VPScalarIVStepsRecipe * 523 createScalarIVSteps(VPlan &Plan, InductionDescriptor::InductionKind Kind, 524 Instruction::BinaryOps InductionOpcode, 525 FPMathOperator *FPBinOp, ScalarEvolution &SE, 526 Instruction *TruncI, VPValue *StartV, VPValue *Step, 527 VPBasicBlock::iterator IP) { 528 VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock(); 529 VPCanonicalIVPHIRecipe *CanonicalIV = Plan.getCanonicalIV(); 530 VPSingleDefRecipe *BaseIV = CanonicalIV; 531 if (!CanonicalIV->isCanonical(Kind, StartV, Step)) { 532 BaseIV = new VPDerivedIVRecipe(Kind, FPBinOp, StartV, CanonicalIV, Step); 533 HeaderVPBB->insert(BaseIV, IP); 534 } 535 536 // Truncate base induction if needed. 537 VPTypeAnalysis TypeInfo(Plan.getCanonicalIV()->getScalarType(), 538 SE.getContext()); 539 Type *ResultTy = TypeInfo.inferScalarType(BaseIV); 540 if (TruncI) { 541 Type *TruncTy = TruncI->getType(); 542 assert(ResultTy->getScalarSizeInBits() > TruncTy->getScalarSizeInBits() && 543 "Not truncating."); 544 assert(ResultTy->isIntegerTy() && "Truncation requires an integer type"); 545 BaseIV = new VPScalarCastRecipe(Instruction::Trunc, BaseIV, TruncTy); 546 HeaderVPBB->insert(BaseIV, IP); 547 ResultTy = TruncTy; 548 } 549 550 // Truncate step if needed. 551 Type *StepTy = TypeInfo.inferScalarType(Step); 552 if (ResultTy != StepTy) { 553 assert(StepTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits() && 554 "Not truncating."); 555 assert(StepTy->isIntegerTy() && "Truncation requires an integer type"); 556 Step = new VPScalarCastRecipe(Instruction::Trunc, Step, ResultTy); 557 auto *VecPreheader = 558 cast<VPBasicBlock>(HeaderVPBB->getSingleHierarchicalPredecessor()); 559 VecPreheader->appendRecipe(Step->getDefiningRecipe()); 560 } 561 562 VPScalarIVStepsRecipe *Steps = new VPScalarIVStepsRecipe( 563 BaseIV, Step, InductionOpcode, 564 FPBinOp ? FPBinOp->getFastMathFlags() : FastMathFlags()); 565 HeaderVPBB->insert(Steps, IP); 566 return Steps; 567 } 568 569 /// Legalize VPWidenPointerInductionRecipe, by replacing it with a PtrAdd 570 /// (IndStart, ScalarIVSteps (0, Step)) if only its scalar values are used, as 571 /// VPWidenPointerInductionRecipe will generate vectors only. If some users 572 /// require vectors while other require scalars, the scalar uses need to extract 573 /// the scalars from the generated vectors (Note that this is different to how 574 /// int/fp inductions are handled). Also optimize VPWidenIntOrFpInductionRecipe, 575 /// if any of its users needs scalar values, by providing them scalar steps 576 /// built on the canonical scalar IV and update the original IV's users. This is 577 /// an optional optimization to reduce the needs of vector extracts. 578 static void legalizeAndOptimizeInductions(VPlan &Plan, ScalarEvolution &SE) { 579 SmallVector<VPRecipeBase *> ToRemove; 580 VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock(); 581 bool HasOnlyVectorVFs = !Plan.hasVF(ElementCount::getFixed(1)); 582 VPBasicBlock::iterator InsertPt = HeaderVPBB->getFirstNonPhi(); 583 for (VPRecipeBase &Phi : HeaderVPBB->phis()) { 584 // Replace wide pointer inductions which have only their scalars used by 585 // PtrAdd(IndStart, ScalarIVSteps (0, Step)). 586 if (auto *PtrIV = dyn_cast<VPWidenPointerInductionRecipe>(&Phi)) { 587 if (!PtrIV->onlyScalarsGenerated(Plan.hasScalableVF())) 588 continue; 589 590 const InductionDescriptor &ID = PtrIV->getInductionDescriptor(); 591 VPValue *StartV = 592 Plan.getOrAddLiveIn(ConstantInt::get(ID.getStep()->getType(), 0)); 593 VPValue *StepV = PtrIV->getOperand(1); 594 VPScalarIVStepsRecipe *Steps = createScalarIVSteps( 595 Plan, InductionDescriptor::IK_IntInduction, Instruction::Add, nullptr, 596 SE, nullptr, StartV, StepV, InsertPt); 597 598 auto *Recipe = new VPInstruction(VPInstruction::PtrAdd, 599 {PtrIV->getStartValue(), Steps}, 600 PtrIV->getDebugLoc(), "next.gep"); 601 602 Recipe->insertAfter(Steps); 603 PtrIV->replaceAllUsesWith(Recipe); 604 continue; 605 } 606 607 // Replace widened induction with scalar steps for users that only use 608 // scalars. 609 auto *WideIV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi); 610 if (!WideIV) 611 continue; 612 if (HasOnlyVectorVFs && none_of(WideIV->users(), [WideIV](VPUser *U) { 613 return U->usesScalars(WideIV); 614 })) 615 continue; 616 617 const InductionDescriptor &ID = WideIV->getInductionDescriptor(); 618 VPScalarIVStepsRecipe *Steps = createScalarIVSteps( 619 Plan, ID.getKind(), ID.getInductionOpcode(), 620 dyn_cast_or_null<FPMathOperator>(ID.getInductionBinOp()), SE, 621 WideIV->getTruncInst(), WideIV->getStartValue(), WideIV->getStepValue(), 622 InsertPt); 623 624 // Update scalar users of IV to use Step instead. 625 if (!HasOnlyVectorVFs) 626 WideIV->replaceAllUsesWith(Steps); 627 else 628 WideIV->replaceUsesWithIf(Steps, [WideIV](VPUser &U, unsigned) { 629 return U.usesScalars(WideIV); 630 }); 631 } 632 } 633 634 /// Remove redundant EpxandSCEVRecipes in \p Plan's entry block by replacing 635 /// them with already existing recipes expanding the same SCEV expression. 636 static void removeRedundantExpandSCEVRecipes(VPlan &Plan) { 637 DenseMap<const SCEV *, VPValue *> SCEV2VPV; 638 639 for (VPRecipeBase &R : 640 make_early_inc_range(*Plan.getEntry()->getEntryBasicBlock())) { 641 auto *ExpR = dyn_cast<VPExpandSCEVRecipe>(&R); 642 if (!ExpR) 643 continue; 644 645 auto I = SCEV2VPV.insert({ExpR->getSCEV(), ExpR}); 646 if (I.second) 647 continue; 648 ExpR->replaceAllUsesWith(I.first->second); 649 ExpR->eraseFromParent(); 650 } 651 } 652 653 static void recursivelyDeleteDeadRecipes(VPValue *V) { 654 SmallVector<VPValue *> WorkList; 655 SmallPtrSet<VPValue *, 8> Seen; 656 WorkList.push_back(V); 657 658 while (!WorkList.empty()) { 659 VPValue *Cur = WorkList.pop_back_val(); 660 if (!Seen.insert(Cur).second) 661 continue; 662 VPRecipeBase *R = Cur->getDefiningRecipe(); 663 if (!R) 664 continue; 665 if (!isDeadRecipe(*R)) 666 continue; 667 WorkList.append(R->op_begin(), R->op_end()); 668 R->eraseFromParent(); 669 } 670 } 671 672 void VPlanTransforms::optimizeForVFAndUF(VPlan &Plan, ElementCount BestVF, 673 unsigned BestUF, 674 PredicatedScalarEvolution &PSE) { 675 assert(Plan.hasVF(BestVF) && "BestVF is not available in Plan"); 676 assert(Plan.hasUF(BestUF) && "BestUF is not available in Plan"); 677 VPBasicBlock *ExitingVPBB = 678 Plan.getVectorLoopRegion()->getExitingBasicBlock(); 679 auto *Term = &ExitingVPBB->back(); 680 // Try to simplify the branch condition if TC <= VF * UF when preparing to 681 // execute the plan for the main vector loop. We only do this if the 682 // terminator is: 683 // 1. BranchOnCount, or 684 // 2. BranchOnCond where the input is Not(ActiveLaneMask). 685 using namespace llvm::VPlanPatternMatch; 686 if (!match(Term, m_BranchOnCount(m_VPValue(), m_VPValue())) && 687 !match(Term, 688 m_BranchOnCond(m_Not(m_ActiveLaneMask(m_VPValue(), m_VPValue()))))) 689 return; 690 691 Type *IdxTy = 692 Plan.getCanonicalIV()->getStartValue()->getLiveInIRValue()->getType(); 693 const SCEV *TripCount = createTripCountSCEV(IdxTy, PSE); 694 ScalarEvolution &SE = *PSE.getSE(); 695 ElementCount NumElements = BestVF.multiplyCoefficientBy(BestUF); 696 const SCEV *C = SE.getElementCount(TripCount->getType(), NumElements); 697 if (TripCount->isZero() || 698 !SE.isKnownPredicate(CmpInst::ICMP_ULE, TripCount, C)) 699 return; 700 701 LLVMContext &Ctx = SE.getContext(); 702 auto *BOC = 703 new VPInstruction(VPInstruction::BranchOnCond, 704 {Plan.getOrAddLiveIn(ConstantInt::getTrue(Ctx))}); 705 706 SmallVector<VPValue *> PossiblyDead(Term->operands()); 707 Term->eraseFromParent(); 708 for (VPValue *Op : PossiblyDead) 709 recursivelyDeleteDeadRecipes(Op); 710 ExitingVPBB->appendRecipe(BOC); 711 Plan.setVF(BestVF); 712 Plan.setUF(BestUF); 713 // TODO: Further simplifications are possible 714 // 1. Replace inductions with constants. 715 // 2. Replace vector loop region with VPBasicBlock. 716 } 717 718 #ifndef NDEBUG 719 static VPRegionBlock *GetReplicateRegion(VPRecipeBase *R) { 720 auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent()); 721 if (Region && Region->isReplicator()) { 722 assert(Region->getNumSuccessors() == 1 && 723 Region->getNumPredecessors() == 1 && "Expected SESE region!"); 724 assert(R->getParent()->size() == 1 && 725 "A recipe in an original replicator region must be the only " 726 "recipe in its block"); 727 return Region; 728 } 729 return nullptr; 730 } 731 #endif 732 733 static bool properlyDominates(const VPRecipeBase *A, const VPRecipeBase *B, 734 VPDominatorTree &VPDT) { 735 if (A == B) 736 return false; 737 738 auto LocalComesBefore = [](const VPRecipeBase *A, const VPRecipeBase *B) { 739 for (auto &R : *A->getParent()) { 740 if (&R == A) 741 return true; 742 if (&R == B) 743 return false; 744 } 745 llvm_unreachable("recipe not found"); 746 }; 747 const VPBlockBase *ParentA = A->getParent(); 748 const VPBlockBase *ParentB = B->getParent(); 749 if (ParentA == ParentB) 750 return LocalComesBefore(A, B); 751 752 assert(!GetReplicateRegion(const_cast<VPRecipeBase *>(A)) && 753 "No replicate regions expected at this point"); 754 assert(!GetReplicateRegion(const_cast<VPRecipeBase *>(B)) && 755 "No replicate regions expected at this point"); 756 return VPDT.properlyDominates(ParentA, ParentB); 757 } 758 759 /// Sink users of \p FOR after the recipe defining the previous value \p 760 /// Previous of the recurrence. \returns true if all users of \p FOR could be 761 /// re-arranged as needed or false if it is not possible. 762 static bool 763 sinkRecurrenceUsersAfterPrevious(VPFirstOrderRecurrencePHIRecipe *FOR, 764 VPRecipeBase *Previous, 765 VPDominatorTree &VPDT) { 766 // Collect recipes that need sinking. 767 SmallVector<VPRecipeBase *> WorkList; 768 SmallPtrSet<VPRecipeBase *, 8> Seen; 769 Seen.insert(Previous); 770 auto TryToPushSinkCandidate = [&](VPRecipeBase *SinkCandidate) { 771 // The previous value must not depend on the users of the recurrence phi. In 772 // that case, FOR is not a fixed order recurrence. 773 if (SinkCandidate == Previous) 774 return false; 775 776 if (isa<VPHeaderPHIRecipe>(SinkCandidate) || 777 !Seen.insert(SinkCandidate).second || 778 properlyDominates(Previous, SinkCandidate, VPDT)) 779 return true; 780 781 if (SinkCandidate->mayHaveSideEffects()) 782 return false; 783 784 WorkList.push_back(SinkCandidate); 785 return true; 786 }; 787 788 // Recursively sink users of FOR after Previous. 789 WorkList.push_back(FOR); 790 for (unsigned I = 0; I != WorkList.size(); ++I) { 791 VPRecipeBase *Current = WorkList[I]; 792 assert(Current->getNumDefinedValues() == 1 && 793 "only recipes with a single defined value expected"); 794 795 for (VPUser *User : Current->getVPSingleValue()->users()) { 796 if (auto *R = dyn_cast<VPRecipeBase>(User)) 797 if (!TryToPushSinkCandidate(R)) 798 return false; 799 } 800 } 801 802 // Keep recipes to sink ordered by dominance so earlier instructions are 803 // processed first. 804 sort(WorkList, [&VPDT](const VPRecipeBase *A, const VPRecipeBase *B) { 805 return properlyDominates(A, B, VPDT); 806 }); 807 808 for (VPRecipeBase *SinkCandidate : WorkList) { 809 if (SinkCandidate == FOR) 810 continue; 811 812 SinkCandidate->moveAfter(Previous); 813 Previous = SinkCandidate; 814 } 815 return true; 816 } 817 818 bool VPlanTransforms::adjustFixedOrderRecurrences(VPlan &Plan, 819 VPBuilder &LoopBuilder) { 820 VPDominatorTree VPDT; 821 VPDT.recalculate(Plan); 822 823 SmallVector<VPFirstOrderRecurrencePHIRecipe *> RecurrencePhis; 824 for (VPRecipeBase &R : 825 Plan.getVectorLoopRegion()->getEntry()->getEntryBasicBlock()->phis()) 826 if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R)) 827 RecurrencePhis.push_back(FOR); 828 829 VPBasicBlock *MiddleVPBB = 830 cast<VPBasicBlock>(Plan.getVectorLoopRegion()->getSingleSuccessor()); 831 VPBuilder MiddleBuilder; 832 // Set insert point so new recipes are inserted before terminator and 833 // condition, if there is either the former or both. 834 if (auto *Term = 835 dyn_cast_or_null<VPInstruction>(MiddleVPBB->getTerminator())) { 836 if (auto *Cmp = dyn_cast<VPInstruction>(Term->getOperand(0))) 837 MiddleBuilder.setInsertPoint(Cmp); 838 else 839 MiddleBuilder.setInsertPoint(Term); 840 } else 841 MiddleBuilder.setInsertPoint(MiddleVPBB); 842 843 for (VPFirstOrderRecurrencePHIRecipe *FOR : RecurrencePhis) { 844 SmallPtrSet<VPFirstOrderRecurrencePHIRecipe *, 4> SeenPhis; 845 VPRecipeBase *Previous = FOR->getBackedgeValue()->getDefiningRecipe(); 846 // Fixed-order recurrences do not contain cycles, so this loop is guaranteed 847 // to terminate. 848 while (auto *PrevPhi = 849 dyn_cast_or_null<VPFirstOrderRecurrencePHIRecipe>(Previous)) { 850 assert(PrevPhi->getParent() == FOR->getParent()); 851 assert(SeenPhis.insert(PrevPhi).second); 852 Previous = PrevPhi->getBackedgeValue()->getDefiningRecipe(); 853 } 854 855 if (!sinkRecurrenceUsersAfterPrevious(FOR, Previous, VPDT)) 856 return false; 857 858 // Introduce a recipe to combine the incoming and previous values of a 859 // fixed-order recurrence. 860 VPBasicBlock *InsertBlock = Previous->getParent(); 861 if (isa<VPHeaderPHIRecipe>(Previous)) 862 LoopBuilder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi()); 863 else 864 LoopBuilder.setInsertPoint(InsertBlock, 865 std::next(Previous->getIterator())); 866 867 auto *RecurSplice = cast<VPInstruction>( 868 LoopBuilder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice, 869 {FOR, FOR->getBackedgeValue()})); 870 871 FOR->replaceAllUsesWith(RecurSplice); 872 // Set the first operand of RecurSplice to FOR again, after replacing 873 // all users. 874 RecurSplice->setOperand(0, FOR); 875 876 // This is the second phase of vectorizing first-order recurrences. An 877 // overview of the transformation is described below. Suppose we have the 878 // following loop with some use after the loop of the last a[i-1], 879 // 880 // for (int i = 0; i < n; ++i) { 881 // t = a[i - 1]; 882 // b[i] = a[i] - t; 883 // } 884 // use t; 885 // 886 // There is a first-order recurrence on "a". For this loop, the shorthand 887 // scalar IR looks like: 888 // 889 // scalar.ph: 890 // s_init = a[-1] 891 // br scalar.body 892 // 893 // scalar.body: 894 // i = phi [0, scalar.ph], [i+1, scalar.body] 895 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 896 // s2 = a[i] 897 // b[i] = s2 - s1 898 // br cond, scalar.body, exit.block 899 // 900 // exit.block: 901 // use = lcssa.phi [s1, scalar.body] 902 // 903 // In this example, s1 is a recurrence because it's value depends on the 904 // previous iteration. In the first phase of vectorization, we created a 905 // vector phi v1 for s1. We now complete the vectorization and produce the 906 // shorthand vector IR shown below (for VF = 4, UF = 1). 907 // 908 // vector.ph: 909 // v_init = vector(..., ..., ..., a[-1]) 910 // br vector.body 911 // 912 // vector.body 913 // i = phi [0, vector.ph], [i+4, vector.body] 914 // v1 = phi [v_init, vector.ph], [v2, vector.body] 915 // v2 = a[i, i+1, i+2, i+3]; 916 // v3 = vector(v1(3), v2(0, 1, 2)) 917 // b[i, i+1, i+2, i+3] = v2 - v3 918 // br cond, vector.body, middle.block 919 // 920 // middle.block: 921 // s_penultimate = v2(2) = v3(3) 922 // s_resume = v2(3) 923 // br cond, scalar.ph, exit.block 924 // 925 // scalar.ph: 926 // s_init' = phi [s_resume, middle.block], [s_init, otherwise] 927 // br scalar.body 928 // 929 // scalar.body: 930 // i = phi [0, scalar.ph], [i+1, scalar.body] 931 // s1 = phi [s_init', scalar.ph], [s2, scalar.body] 932 // s2 = a[i] 933 // b[i] = s2 - s1 934 // br cond, scalar.body, exit.block 935 // 936 // exit.block: 937 // lo = lcssa.phi [s1, scalar.body], [s.penultimate, middle.block] 938 // 939 // After execution completes the vector loop, we extract the next value of 940 // the recurrence (x) to use as the initial value in the scalar loop. This 941 // is modeled by ExtractFromEnd. 942 Type *IntTy = Plan.getCanonicalIV()->getScalarType(); 943 944 // Extract the penultimate value of the recurrence and update VPLiveOut 945 // users of the recurrence splice. Note that the extract of the final value 946 // used to resume in the scalar loop is created earlier during VPlan 947 // construction. 948 auto *Penultimate = cast<VPInstruction>(MiddleBuilder.createNaryOp( 949 VPInstruction::ExtractFromEnd, 950 {FOR->getBackedgeValue(), 951 Plan.getOrAddLiveIn(ConstantInt::get(IntTy, 2))}, 952 {}, "vector.recur.extract.for.phi")); 953 RecurSplice->replaceUsesWithIf( 954 Penultimate, [](VPUser &U, unsigned) { return isa<VPLiveOut>(&U); }); 955 } 956 return true; 957 } 958 959 static SmallVector<VPUser *> collectUsersRecursively(VPValue *V) { 960 SetVector<VPUser *> Users(V->user_begin(), V->user_end()); 961 for (unsigned I = 0; I != Users.size(); ++I) { 962 VPRecipeBase *Cur = dyn_cast<VPRecipeBase>(Users[I]); 963 if (!Cur || isa<VPHeaderPHIRecipe>(Cur)) 964 continue; 965 for (VPValue *V : Cur->definedValues()) 966 Users.insert(V->user_begin(), V->user_end()); 967 } 968 return Users.takeVector(); 969 } 970 971 void VPlanTransforms::clearReductionWrapFlags(VPlan &Plan) { 972 for (VPRecipeBase &R : 973 Plan.getVectorLoopRegion()->getEntryBasicBlock()->phis()) { 974 auto *PhiR = dyn_cast<VPReductionPHIRecipe>(&R); 975 if (!PhiR) 976 continue; 977 const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor(); 978 RecurKind RK = RdxDesc.getRecurrenceKind(); 979 if (RK != RecurKind::Add && RK != RecurKind::Mul) 980 continue; 981 982 for (VPUser *U : collectUsersRecursively(PhiR)) 983 if (auto *RecWithFlags = dyn_cast<VPRecipeWithIRFlags>(U)) { 984 RecWithFlags->dropPoisonGeneratingFlags(); 985 } 986 } 987 } 988 989 /// Try to simplify recipe \p R. 990 static void simplifyRecipe(VPRecipeBase &R, VPTypeAnalysis &TypeInfo) { 991 using namespace llvm::VPlanPatternMatch; 992 // Try to remove redundant blend recipes. 993 if (auto *Blend = dyn_cast<VPBlendRecipe>(&R)) { 994 VPValue *Inc0 = Blend->getIncomingValue(0); 995 for (unsigned I = 1; I != Blend->getNumIncomingValues(); ++I) 996 if (Inc0 != Blend->getIncomingValue(I) && 997 !match(Blend->getMask(I), m_False())) 998 return; 999 Blend->replaceAllUsesWith(Inc0); 1000 Blend->eraseFromParent(); 1001 return; 1002 } 1003 1004 VPValue *A; 1005 if (match(&R, m_Trunc(m_ZExtOrSExt(m_VPValue(A))))) { 1006 VPValue *Trunc = R.getVPSingleValue(); 1007 Type *TruncTy = TypeInfo.inferScalarType(Trunc); 1008 Type *ATy = TypeInfo.inferScalarType(A); 1009 if (TruncTy == ATy) { 1010 Trunc->replaceAllUsesWith(A); 1011 } else { 1012 // Don't replace a scalarizing recipe with a widened cast. 1013 if (isa<VPReplicateRecipe>(&R)) 1014 return; 1015 if (ATy->getScalarSizeInBits() < TruncTy->getScalarSizeInBits()) { 1016 1017 unsigned ExtOpcode = match(R.getOperand(0), m_SExt(m_VPValue())) 1018 ? Instruction::SExt 1019 : Instruction::ZExt; 1020 auto *VPC = 1021 new VPWidenCastRecipe(Instruction::CastOps(ExtOpcode), A, TruncTy); 1022 if (auto *UnderlyingExt = R.getOperand(0)->getUnderlyingValue()) { 1023 // UnderlyingExt has distinct return type, used to retain legacy cost. 1024 VPC->setUnderlyingValue(UnderlyingExt); 1025 } 1026 VPC->insertBefore(&R); 1027 Trunc->replaceAllUsesWith(VPC); 1028 } else if (ATy->getScalarSizeInBits() > TruncTy->getScalarSizeInBits()) { 1029 auto *VPC = new VPWidenCastRecipe(Instruction::Trunc, A, TruncTy); 1030 VPC->insertBefore(&R); 1031 Trunc->replaceAllUsesWith(VPC); 1032 } 1033 } 1034 #ifndef NDEBUG 1035 // Verify that the cached type info is for both A and its users is still 1036 // accurate by comparing it to freshly computed types. 1037 VPTypeAnalysis TypeInfo2( 1038 R.getParent()->getPlan()->getCanonicalIV()->getScalarType(), 1039 TypeInfo.getContext()); 1040 assert(TypeInfo.inferScalarType(A) == TypeInfo2.inferScalarType(A)); 1041 for (VPUser *U : A->users()) { 1042 auto *R = dyn_cast<VPRecipeBase>(U); 1043 if (!R) 1044 continue; 1045 for (VPValue *VPV : R->definedValues()) 1046 assert(TypeInfo.inferScalarType(VPV) == TypeInfo2.inferScalarType(VPV)); 1047 } 1048 #endif 1049 } 1050 1051 // Simplify (X && Y) || (X && !Y) -> X. 1052 // TODO: Split up into simpler, modular combines: (X && Y) || (X && Z) into X 1053 // && (Y || Z) and (X || !X) into true. This requires queuing newly created 1054 // recipes to be visited during simplification. 1055 VPValue *X, *Y, *X1, *Y1; 1056 if (match(&R, 1057 m_c_BinaryOr(m_LogicalAnd(m_VPValue(X), m_VPValue(Y)), 1058 m_LogicalAnd(m_VPValue(X1), m_Not(m_VPValue(Y1))))) && 1059 X == X1 && Y == Y1) { 1060 R.getVPSingleValue()->replaceAllUsesWith(X); 1061 return; 1062 } 1063 1064 if (match(&R, m_c_Mul(m_VPValue(A), m_SpecificInt(1)))) 1065 return R.getVPSingleValue()->replaceAllUsesWith(A); 1066 } 1067 1068 /// Try to simplify the recipes in \p Plan. 1069 static void simplifyRecipes(VPlan &Plan, LLVMContext &Ctx) { 1070 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> RPOT( 1071 Plan.getEntry()); 1072 VPTypeAnalysis TypeInfo(Plan.getCanonicalIV()->getScalarType(), Ctx); 1073 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(RPOT)) { 1074 for (VPRecipeBase &R : make_early_inc_range(*VPBB)) { 1075 simplifyRecipe(R, TypeInfo); 1076 } 1077 } 1078 } 1079 1080 void VPlanTransforms::truncateToMinimalBitwidths( 1081 VPlan &Plan, const MapVector<Instruction *, uint64_t> &MinBWs, 1082 LLVMContext &Ctx) { 1083 #ifndef NDEBUG 1084 // Count the processed recipes and cross check the count later with MinBWs 1085 // size, to make sure all entries in MinBWs have been handled. 1086 unsigned NumProcessedRecipes = 0; 1087 #endif 1088 // Keep track of created truncates, so they can be re-used. Note that we 1089 // cannot use RAUW after creating a new truncate, as this would could make 1090 // other uses have different types for their operands, making them invalidly 1091 // typed. 1092 DenseMap<VPValue *, VPWidenCastRecipe *> ProcessedTruncs; 1093 VPTypeAnalysis TypeInfo(Plan.getCanonicalIV()->getScalarType(), Ctx); 1094 VPBasicBlock *PH = Plan.getEntry(); 1095 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>( 1096 vp_depth_first_deep(Plan.getVectorLoopRegion()))) { 1097 for (VPRecipeBase &R : make_early_inc_range(*VPBB)) { 1098 if (!isa<VPWidenRecipe, VPWidenCastRecipe, VPReplicateRecipe, 1099 VPWidenSelectRecipe, VPWidenLoadRecipe>(&R)) 1100 continue; 1101 1102 VPValue *ResultVPV = R.getVPSingleValue(); 1103 auto *UI = cast_or_null<Instruction>(ResultVPV->getUnderlyingValue()); 1104 unsigned NewResSizeInBits = MinBWs.lookup(UI); 1105 if (!NewResSizeInBits) 1106 continue; 1107 1108 #ifndef NDEBUG 1109 NumProcessedRecipes++; 1110 #endif 1111 // If the value wasn't vectorized, we must maintain the original scalar 1112 // type. Skip those here, after incrementing NumProcessedRecipes. Also 1113 // skip casts which do not need to be handled explicitly here, as 1114 // redundant casts will be removed during recipe simplification. 1115 if (isa<VPReplicateRecipe, VPWidenCastRecipe>(&R)) { 1116 #ifndef NDEBUG 1117 // If any of the operands is a live-in and not used by VPWidenRecipe or 1118 // VPWidenSelectRecipe, but in MinBWs, make sure it is counted as 1119 // processed as well. When MinBWs is currently constructed, there is no 1120 // information about whether recipes are widened or replicated and in 1121 // case they are reciplicated the operands are not truncated. Counting 1122 // them them here ensures we do not miss any recipes in MinBWs. 1123 // TODO: Remove once the analysis is done on VPlan. 1124 for (VPValue *Op : R.operands()) { 1125 if (!Op->isLiveIn()) 1126 continue; 1127 auto *UV = dyn_cast_or_null<Instruction>(Op->getUnderlyingValue()); 1128 if (UV && MinBWs.contains(UV) && !ProcessedTruncs.contains(Op) && 1129 all_of(Op->users(), [](VPUser *U) { 1130 return !isa<VPWidenRecipe, VPWidenSelectRecipe>(U); 1131 })) { 1132 // Add an entry to ProcessedTruncs to avoid counting the same 1133 // operand multiple times. 1134 ProcessedTruncs[Op] = nullptr; 1135 NumProcessedRecipes += 1; 1136 } 1137 } 1138 #endif 1139 continue; 1140 } 1141 1142 Type *OldResTy = TypeInfo.inferScalarType(ResultVPV); 1143 unsigned OldResSizeInBits = OldResTy->getScalarSizeInBits(); 1144 assert(OldResTy->isIntegerTy() && "only integer types supported"); 1145 (void)OldResSizeInBits; 1146 1147 auto *NewResTy = IntegerType::get(Ctx, NewResSizeInBits); 1148 1149 // Any wrapping introduced by shrinking this operation shouldn't be 1150 // considered undefined behavior. So, we can't unconditionally copy 1151 // arithmetic wrapping flags to VPW. 1152 if (auto *VPW = dyn_cast<VPRecipeWithIRFlags>(&R)) 1153 VPW->dropPoisonGeneratingFlags(); 1154 1155 using namespace llvm::VPlanPatternMatch; 1156 if (OldResSizeInBits != NewResSizeInBits && 1157 !match(&R, m_Binary<Instruction::ICmp>(m_VPValue(), m_VPValue()))) { 1158 // Extend result to original width. 1159 auto *Ext = 1160 new VPWidenCastRecipe(Instruction::ZExt, ResultVPV, OldResTy); 1161 Ext->insertAfter(&R); 1162 ResultVPV->replaceAllUsesWith(Ext); 1163 Ext->setOperand(0, ResultVPV); 1164 assert(OldResSizeInBits > NewResSizeInBits && "Nothing to shrink?"); 1165 } else 1166 assert( 1167 match(&R, m_Binary<Instruction::ICmp>(m_VPValue(), m_VPValue())) && 1168 "Only ICmps should not need extending the result."); 1169 1170 assert(!isa<VPWidenStoreRecipe>(&R) && "stores cannot be narrowed"); 1171 if (isa<VPWidenLoadRecipe>(&R)) 1172 continue; 1173 1174 // Shrink operands by introducing truncates as needed. 1175 unsigned StartIdx = isa<VPWidenSelectRecipe>(&R) ? 1 : 0; 1176 for (unsigned Idx = StartIdx; Idx != R.getNumOperands(); ++Idx) { 1177 auto *Op = R.getOperand(Idx); 1178 unsigned OpSizeInBits = 1179 TypeInfo.inferScalarType(Op)->getScalarSizeInBits(); 1180 if (OpSizeInBits == NewResSizeInBits) 1181 continue; 1182 assert(OpSizeInBits > NewResSizeInBits && "nothing to truncate"); 1183 auto [ProcessedIter, IterIsEmpty] = 1184 ProcessedTruncs.insert({Op, nullptr}); 1185 VPWidenCastRecipe *NewOp = 1186 IterIsEmpty 1187 ? new VPWidenCastRecipe(Instruction::Trunc, Op, NewResTy) 1188 : ProcessedIter->second; 1189 R.setOperand(Idx, NewOp); 1190 if (!IterIsEmpty) 1191 continue; 1192 ProcessedIter->second = NewOp; 1193 if (!Op->isLiveIn()) { 1194 NewOp->insertBefore(&R); 1195 } else { 1196 PH->appendRecipe(NewOp); 1197 #ifndef NDEBUG 1198 auto *OpInst = dyn_cast<Instruction>(Op->getLiveInIRValue()); 1199 bool IsContained = MinBWs.contains(OpInst); 1200 NumProcessedRecipes += IsContained; 1201 #endif 1202 } 1203 } 1204 1205 } 1206 } 1207 1208 assert(MinBWs.size() == NumProcessedRecipes && 1209 "some entries in MinBWs haven't been processed"); 1210 } 1211 1212 void VPlanTransforms::optimize(VPlan &Plan, ScalarEvolution &SE) { 1213 removeRedundantCanonicalIVs(Plan); 1214 removeRedundantInductionCasts(Plan); 1215 1216 simplifyRecipes(Plan, SE.getContext()); 1217 legalizeAndOptimizeInductions(Plan, SE); 1218 removeDeadRecipes(Plan); 1219 1220 createAndOptimizeReplicateRegions(Plan); 1221 1222 removeRedundantExpandSCEVRecipes(Plan); 1223 mergeBlocksIntoPredecessors(Plan); 1224 } 1225 1226 // Add a VPActiveLaneMaskPHIRecipe and related recipes to \p Plan and replace 1227 // the loop terminator with a branch-on-cond recipe with the negated 1228 // active-lane-mask as operand. Note that this turns the loop into an 1229 // uncountable one. Only the existing terminator is replaced, all other existing 1230 // recipes/users remain unchanged, except for poison-generating flags being 1231 // dropped from the canonical IV increment. Return the created 1232 // VPActiveLaneMaskPHIRecipe. 1233 // 1234 // The function uses the following definitions: 1235 // 1236 // %TripCount = DataWithControlFlowWithoutRuntimeCheck ? 1237 // calculate-trip-count-minus-VF (original TC) : original TC 1238 // %IncrementValue = DataWithControlFlowWithoutRuntimeCheck ? 1239 // CanonicalIVPhi : CanonicalIVIncrement 1240 // %StartV is the canonical induction start value. 1241 // 1242 // The function adds the following recipes: 1243 // 1244 // vector.ph: 1245 // %TripCount = calculate-trip-count-minus-VF (original TC) 1246 // [if DataWithControlFlowWithoutRuntimeCheck] 1247 // %EntryInc = canonical-iv-increment-for-part %StartV 1248 // %EntryALM = active-lane-mask %EntryInc, %TripCount 1249 // 1250 // vector.body: 1251 // ... 1252 // %P = active-lane-mask-phi [ %EntryALM, %vector.ph ], [ %ALM, %vector.body ] 1253 // ... 1254 // %InLoopInc = canonical-iv-increment-for-part %IncrementValue 1255 // %ALM = active-lane-mask %InLoopInc, TripCount 1256 // %Negated = Not %ALM 1257 // branch-on-cond %Negated 1258 // 1259 static VPActiveLaneMaskPHIRecipe *addVPLaneMaskPhiAndUpdateExitBranch( 1260 VPlan &Plan, bool DataAndControlFlowWithoutRuntimeCheck) { 1261 VPRegionBlock *TopRegion = Plan.getVectorLoopRegion(); 1262 VPBasicBlock *EB = TopRegion->getExitingBasicBlock(); 1263 auto *CanonicalIVPHI = Plan.getCanonicalIV(); 1264 VPValue *StartV = CanonicalIVPHI->getStartValue(); 1265 1266 auto *CanonicalIVIncrement = 1267 cast<VPInstruction>(CanonicalIVPHI->getBackedgeValue()); 1268 // TODO: Check if dropping the flags is needed if 1269 // !DataAndControlFlowWithoutRuntimeCheck. 1270 CanonicalIVIncrement->dropPoisonGeneratingFlags(); 1271 DebugLoc DL = CanonicalIVIncrement->getDebugLoc(); 1272 // We can't use StartV directly in the ActiveLaneMask VPInstruction, since 1273 // we have to take unrolling into account. Each part needs to start at 1274 // Part * VF 1275 auto *VecPreheader = cast<VPBasicBlock>(TopRegion->getSinglePredecessor()); 1276 VPBuilder Builder(VecPreheader); 1277 1278 // Create the ActiveLaneMask instruction using the correct start values. 1279 VPValue *TC = Plan.getTripCount(); 1280 1281 VPValue *TripCount, *IncrementValue; 1282 if (!DataAndControlFlowWithoutRuntimeCheck) { 1283 // When the loop is guarded by a runtime overflow check for the loop 1284 // induction variable increment by VF, we can increment the value before 1285 // the get.active.lane mask and use the unmodified tripcount. 1286 IncrementValue = CanonicalIVIncrement; 1287 TripCount = TC; 1288 } else { 1289 // When avoiding a runtime check, the active.lane.mask inside the loop 1290 // uses a modified trip count and the induction variable increment is 1291 // done after the active.lane.mask intrinsic is called. 1292 IncrementValue = CanonicalIVPHI; 1293 TripCount = Builder.createNaryOp(VPInstruction::CalculateTripCountMinusVF, 1294 {TC}, DL); 1295 } 1296 auto *EntryIncrement = Builder.createOverflowingOp( 1297 VPInstruction::CanonicalIVIncrementForPart, {StartV}, {false, false}, DL, 1298 "index.part.next"); 1299 1300 // Create the active lane mask instruction in the VPlan preheader. 1301 auto *EntryALM = 1302 Builder.createNaryOp(VPInstruction::ActiveLaneMask, {EntryIncrement, TC}, 1303 DL, "active.lane.mask.entry"); 1304 1305 // Now create the ActiveLaneMaskPhi recipe in the main loop using the 1306 // preheader ActiveLaneMask instruction. 1307 auto LaneMaskPhi = new VPActiveLaneMaskPHIRecipe(EntryALM, DebugLoc()); 1308 LaneMaskPhi->insertAfter(CanonicalIVPHI); 1309 1310 // Create the active lane mask for the next iteration of the loop before the 1311 // original terminator. 1312 VPRecipeBase *OriginalTerminator = EB->getTerminator(); 1313 Builder.setInsertPoint(OriginalTerminator); 1314 auto *InLoopIncrement = 1315 Builder.createOverflowingOp(VPInstruction::CanonicalIVIncrementForPart, 1316 {IncrementValue}, {false, false}, DL); 1317 auto *ALM = Builder.createNaryOp(VPInstruction::ActiveLaneMask, 1318 {InLoopIncrement, TripCount}, DL, 1319 "active.lane.mask.next"); 1320 LaneMaskPhi->addOperand(ALM); 1321 1322 // Replace the original terminator with BranchOnCond. We have to invert the 1323 // mask here because a true condition means jumping to the exit block. 1324 auto *NotMask = Builder.createNot(ALM, DL); 1325 Builder.createNaryOp(VPInstruction::BranchOnCond, {NotMask}, DL); 1326 OriginalTerminator->eraseFromParent(); 1327 return LaneMaskPhi; 1328 } 1329 1330 /// Collect all VPValues representing a header mask through the (ICMP_ULE, 1331 /// WideCanonicalIV, backedge-taken-count) pattern. 1332 /// TODO: Introduce explicit recipe for header-mask instead of searching 1333 /// for the header-mask pattern manually. 1334 static SmallVector<VPValue *> collectAllHeaderMasks(VPlan &Plan) { 1335 SmallVector<VPValue *> WideCanonicalIVs; 1336 auto *FoundWidenCanonicalIVUser = 1337 find_if(Plan.getCanonicalIV()->users(), 1338 [](VPUser *U) { return isa<VPWidenCanonicalIVRecipe>(U); }); 1339 assert(count_if(Plan.getCanonicalIV()->users(), 1340 [](VPUser *U) { return isa<VPWidenCanonicalIVRecipe>(U); }) <= 1341 1 && 1342 "Must have at most one VPWideCanonicalIVRecipe"); 1343 if (FoundWidenCanonicalIVUser != Plan.getCanonicalIV()->users().end()) { 1344 auto *WideCanonicalIV = 1345 cast<VPWidenCanonicalIVRecipe>(*FoundWidenCanonicalIVUser); 1346 WideCanonicalIVs.push_back(WideCanonicalIV); 1347 } 1348 1349 // Also include VPWidenIntOrFpInductionRecipes that represent a widened 1350 // version of the canonical induction. 1351 VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock(); 1352 for (VPRecipeBase &Phi : HeaderVPBB->phis()) { 1353 auto *WidenOriginalIV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi); 1354 if (WidenOriginalIV && WidenOriginalIV->isCanonical()) 1355 WideCanonicalIVs.push_back(WidenOriginalIV); 1356 } 1357 1358 // Walk users of wide canonical IVs and collect to all compares of the form 1359 // (ICMP_ULE, WideCanonicalIV, backedge-taken-count). 1360 SmallVector<VPValue *> HeaderMasks; 1361 for (auto *Wide : WideCanonicalIVs) { 1362 for (VPUser *U : SmallVector<VPUser *>(Wide->users())) { 1363 auto *HeaderMask = dyn_cast<VPInstruction>(U); 1364 if (!HeaderMask || !vputils::isHeaderMask(HeaderMask, Plan)) 1365 continue; 1366 1367 assert(HeaderMask->getOperand(0) == Wide && 1368 "WidenCanonicalIV must be the first operand of the compare"); 1369 HeaderMasks.push_back(HeaderMask); 1370 } 1371 } 1372 return HeaderMasks; 1373 } 1374 1375 void VPlanTransforms::addActiveLaneMask( 1376 VPlan &Plan, bool UseActiveLaneMaskForControlFlow, 1377 bool DataAndControlFlowWithoutRuntimeCheck) { 1378 assert((!DataAndControlFlowWithoutRuntimeCheck || 1379 UseActiveLaneMaskForControlFlow) && 1380 "DataAndControlFlowWithoutRuntimeCheck implies " 1381 "UseActiveLaneMaskForControlFlow"); 1382 1383 auto FoundWidenCanonicalIVUser = 1384 find_if(Plan.getCanonicalIV()->users(), 1385 [](VPUser *U) { return isa<VPWidenCanonicalIVRecipe>(U); }); 1386 assert(FoundWidenCanonicalIVUser && 1387 "Must have widened canonical IV when tail folding!"); 1388 auto *WideCanonicalIV = 1389 cast<VPWidenCanonicalIVRecipe>(*FoundWidenCanonicalIVUser); 1390 VPSingleDefRecipe *LaneMask; 1391 if (UseActiveLaneMaskForControlFlow) { 1392 LaneMask = addVPLaneMaskPhiAndUpdateExitBranch( 1393 Plan, DataAndControlFlowWithoutRuntimeCheck); 1394 } else { 1395 VPBuilder B = VPBuilder::getToInsertAfter(WideCanonicalIV); 1396 LaneMask = B.createNaryOp(VPInstruction::ActiveLaneMask, 1397 {WideCanonicalIV, Plan.getTripCount()}, nullptr, 1398 "active.lane.mask"); 1399 } 1400 1401 // Walk users of WideCanonicalIV and replace all compares of the form 1402 // (ICMP_ULE, WideCanonicalIV, backedge-taken-count) with an 1403 // active-lane-mask. 1404 for (VPValue *HeaderMask : collectAllHeaderMasks(Plan)) 1405 HeaderMask->replaceAllUsesWith(LaneMask); 1406 } 1407 1408 /// Add a VPEVLBasedIVPHIRecipe and related recipes to \p Plan and 1409 /// replaces all uses except the canonical IV increment of 1410 /// VPCanonicalIVPHIRecipe with a VPEVLBasedIVPHIRecipe. VPCanonicalIVPHIRecipe 1411 /// is used only for loop iterations counting after this transformation. 1412 /// 1413 /// The function uses the following definitions: 1414 /// %StartV is the canonical induction start value. 1415 /// 1416 /// The function adds the following recipes: 1417 /// 1418 /// vector.ph: 1419 /// ... 1420 /// 1421 /// vector.body: 1422 /// ... 1423 /// %EVLPhi = EXPLICIT-VECTOR-LENGTH-BASED-IV-PHI [ %StartV, %vector.ph ], 1424 /// [ %NextEVLIV, %vector.body ] 1425 /// %VPEVL = EXPLICIT-VECTOR-LENGTH %EVLPhi, original TC 1426 /// ... 1427 /// %NextEVLIV = add IVSize (cast i32 %VPEVVL to IVSize), %EVLPhi 1428 /// ... 1429 /// 1430 bool VPlanTransforms::tryAddExplicitVectorLength(VPlan &Plan) { 1431 VPBasicBlock *Header = Plan.getVectorLoopRegion()->getEntryBasicBlock(); 1432 // The transform updates all users of inductions to work based on EVL, instead 1433 // of the VF directly. At the moment, widened inductions cannot be updated, so 1434 // bail out if the plan contains any. 1435 bool ContainsWidenInductions = any_of(Header->phis(), [](VPRecipeBase &Phi) { 1436 return isa<VPWidenIntOrFpInductionRecipe, VPWidenPointerInductionRecipe>( 1437 &Phi); 1438 }); 1439 // FIXME: Remove this once we can transform (select header_mask, true_value, 1440 // false_value) into vp.merge. 1441 bool ContainsOutloopReductions = 1442 any_of(Header->phis(), [&](VPRecipeBase &Phi) { 1443 auto *R = dyn_cast<VPReductionPHIRecipe>(&Phi); 1444 return R && !R->isInLoop(); 1445 }); 1446 if (ContainsWidenInductions || ContainsOutloopReductions) 1447 return false; 1448 1449 auto *CanonicalIVPHI = Plan.getCanonicalIV(); 1450 VPValue *StartV = CanonicalIVPHI->getStartValue(); 1451 1452 // Create the ExplicitVectorLengthPhi recipe in the main loop. 1453 auto *EVLPhi = new VPEVLBasedIVPHIRecipe(StartV, DebugLoc()); 1454 EVLPhi->insertAfter(CanonicalIVPHI); 1455 auto *VPEVL = new VPInstruction(VPInstruction::ExplicitVectorLength, 1456 {EVLPhi, Plan.getTripCount()}); 1457 VPEVL->insertBefore(*Header, Header->getFirstNonPhi()); 1458 1459 auto *CanonicalIVIncrement = 1460 cast<VPInstruction>(CanonicalIVPHI->getBackedgeValue()); 1461 VPSingleDefRecipe *OpVPEVL = VPEVL; 1462 if (unsigned IVSize = CanonicalIVPHI->getScalarType()->getScalarSizeInBits(); 1463 IVSize != 32) { 1464 OpVPEVL = new VPScalarCastRecipe(IVSize < 32 ? Instruction::Trunc 1465 : Instruction::ZExt, 1466 OpVPEVL, CanonicalIVPHI->getScalarType()); 1467 OpVPEVL->insertBefore(CanonicalIVIncrement); 1468 } 1469 auto *NextEVLIV = 1470 new VPInstruction(Instruction::Add, {OpVPEVL, EVLPhi}, 1471 {CanonicalIVIncrement->hasNoUnsignedWrap(), 1472 CanonicalIVIncrement->hasNoSignedWrap()}, 1473 CanonicalIVIncrement->getDebugLoc(), "index.evl.next"); 1474 NextEVLIV->insertBefore(CanonicalIVIncrement); 1475 EVLPhi->addOperand(NextEVLIV); 1476 1477 for (VPValue *HeaderMask : collectAllHeaderMasks(Plan)) { 1478 for (VPUser *U : collectUsersRecursively(HeaderMask)) { 1479 VPRecipeBase *NewRecipe = nullptr; 1480 auto *CurRecipe = dyn_cast<VPRecipeBase>(U); 1481 if (!CurRecipe) 1482 continue; 1483 1484 auto GetNewMask = [&](VPValue *OrigMask) -> VPValue * { 1485 assert(OrigMask && "Unmasked recipe when folding tail"); 1486 return HeaderMask == OrigMask ? nullptr : OrigMask; 1487 }; 1488 if (auto *MemR = dyn_cast<VPWidenMemoryRecipe>(CurRecipe)) { 1489 VPValue *NewMask = GetNewMask(MemR->getMask()); 1490 if (auto *L = dyn_cast<VPWidenLoadRecipe>(MemR)) 1491 NewRecipe = new VPWidenLoadEVLRecipe(L, VPEVL, NewMask); 1492 else if (auto *S = dyn_cast<VPWidenStoreRecipe>(MemR)) 1493 NewRecipe = new VPWidenStoreEVLRecipe(S, VPEVL, NewMask); 1494 else 1495 llvm_unreachable("unsupported recipe"); 1496 } else if (auto *RedR = dyn_cast<VPReductionRecipe>(CurRecipe)) { 1497 NewRecipe = new VPReductionEVLRecipe(RedR, VPEVL, 1498 GetNewMask(RedR->getCondOp())); 1499 } 1500 1501 if (NewRecipe) { 1502 [[maybe_unused]] unsigned NumDefVal = NewRecipe->getNumDefinedValues(); 1503 assert(NumDefVal == CurRecipe->getNumDefinedValues() && 1504 "New recipe must define the same number of values as the " 1505 "original."); 1506 assert( 1507 NumDefVal <= 1 && 1508 "Only supports recipes with a single definition or without users."); 1509 NewRecipe->insertBefore(CurRecipe); 1510 if (isa<VPSingleDefRecipe, VPWidenLoadEVLRecipe>(NewRecipe)) { 1511 VPValue *CurVPV = CurRecipe->getVPSingleValue(); 1512 CurVPV->replaceAllUsesWith(NewRecipe->getVPSingleValue()); 1513 } 1514 CurRecipe->eraseFromParent(); 1515 } 1516 } 1517 recursivelyDeleteDeadRecipes(HeaderMask); 1518 } 1519 // Replace all uses of VPCanonicalIVPHIRecipe by 1520 // VPEVLBasedIVPHIRecipe except for the canonical IV increment. 1521 CanonicalIVPHI->replaceAllUsesWith(EVLPhi); 1522 CanonicalIVIncrement->setOperand(0, CanonicalIVPHI); 1523 // TODO: support unroll factor > 1. 1524 Plan.setUF(1); 1525 return true; 1526 } 1527 1528 void VPlanTransforms::dropPoisonGeneratingRecipes( 1529 VPlan &Plan, function_ref<bool(BasicBlock *)> BlockNeedsPredication) { 1530 // Collect recipes in the backward slice of `Root` that may generate a poison 1531 // value that is used after vectorization. 1532 SmallPtrSet<VPRecipeBase *, 16> Visited; 1533 auto collectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) { 1534 SmallVector<VPRecipeBase *, 16> Worklist; 1535 Worklist.push_back(Root); 1536 1537 // Traverse the backward slice of Root through its use-def chain. 1538 while (!Worklist.empty()) { 1539 VPRecipeBase *CurRec = Worklist.back(); 1540 Worklist.pop_back(); 1541 1542 if (!Visited.insert(CurRec).second) 1543 continue; 1544 1545 // Prune search if we find another recipe generating a widen memory 1546 // instruction. Widen memory instructions involved in address computation 1547 // will lead to gather/scatter instructions, which don't need to be 1548 // handled. 1549 if (isa<VPWidenMemoryRecipe>(CurRec) || isa<VPInterleaveRecipe>(CurRec) || 1550 isa<VPScalarIVStepsRecipe>(CurRec) || isa<VPHeaderPHIRecipe>(CurRec)) 1551 continue; 1552 1553 // This recipe contributes to the address computation of a widen 1554 // load/store. If the underlying instruction has poison-generating flags, 1555 // drop them directly. 1556 if (auto *RecWithFlags = dyn_cast<VPRecipeWithIRFlags>(CurRec)) { 1557 VPValue *A, *B; 1558 using namespace llvm::VPlanPatternMatch; 1559 // Dropping disjoint from an OR may yield incorrect results, as some 1560 // analysis may have converted it to an Add implicitly (e.g. SCEV used 1561 // for dependence analysis). Instead, replace it with an equivalent Add. 1562 // This is possible as all users of the disjoint OR only access lanes 1563 // where the operands are disjoint or poison otherwise. 1564 if (match(RecWithFlags, m_BinaryOr(m_VPValue(A), m_VPValue(B))) && 1565 RecWithFlags->isDisjoint()) { 1566 VPBuilder Builder(RecWithFlags); 1567 VPInstruction *New = Builder.createOverflowingOp( 1568 Instruction::Add, {A, B}, {false, false}, 1569 RecWithFlags->getDebugLoc()); 1570 New->setUnderlyingValue(RecWithFlags->getUnderlyingValue()); 1571 RecWithFlags->replaceAllUsesWith(New); 1572 RecWithFlags->eraseFromParent(); 1573 CurRec = New; 1574 } else 1575 RecWithFlags->dropPoisonGeneratingFlags(); 1576 } else { 1577 Instruction *Instr = dyn_cast_or_null<Instruction>( 1578 CurRec->getVPSingleValue()->getUnderlyingValue()); 1579 (void)Instr; 1580 assert((!Instr || !Instr->hasPoisonGeneratingFlags()) && 1581 "found instruction with poison generating flags not covered by " 1582 "VPRecipeWithIRFlags"); 1583 } 1584 1585 // Add new definitions to the worklist. 1586 for (VPValue *operand : CurRec->operands()) 1587 if (VPRecipeBase *OpDef = operand->getDefiningRecipe()) 1588 Worklist.push_back(OpDef); 1589 } 1590 }); 1591 1592 // Traverse all the recipes in the VPlan and collect the poison-generating 1593 // recipes in the backward slice starting at the address of a VPWidenRecipe or 1594 // VPInterleaveRecipe. 1595 auto Iter = vp_depth_first_deep(Plan.getEntry()); 1596 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) { 1597 for (VPRecipeBase &Recipe : *VPBB) { 1598 if (auto *WidenRec = dyn_cast<VPWidenMemoryRecipe>(&Recipe)) { 1599 Instruction &UnderlyingInstr = WidenRec->getIngredient(); 1600 VPRecipeBase *AddrDef = WidenRec->getAddr()->getDefiningRecipe(); 1601 if (AddrDef && WidenRec->isConsecutive() && 1602 BlockNeedsPredication(UnderlyingInstr.getParent())) 1603 collectPoisonGeneratingInstrsInBackwardSlice(AddrDef); 1604 } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) { 1605 VPRecipeBase *AddrDef = InterleaveRec->getAddr()->getDefiningRecipe(); 1606 if (AddrDef) { 1607 // Check if any member of the interleave group needs predication. 1608 const InterleaveGroup<Instruction> *InterGroup = 1609 InterleaveRec->getInterleaveGroup(); 1610 bool NeedPredication = false; 1611 for (int I = 0, NumMembers = InterGroup->getNumMembers(); 1612 I < NumMembers; ++I) { 1613 Instruction *Member = InterGroup->getMember(I); 1614 if (Member) 1615 NeedPredication |= BlockNeedsPredication(Member->getParent()); 1616 } 1617 1618 if (NeedPredication) 1619 collectPoisonGeneratingInstrsInBackwardSlice(AddrDef); 1620 } 1621 } 1622 } 1623 } 1624 } 1625