1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2010-2014 Intel Corporation 3 */ 4 #include <string.h> 5 #include <stdalign.h> 6 #include <stdint.h> 7 #include <errno.h> 8 #include <stdio.h> 9 #include <sys/queue.h> 10 11 #include <rte_log.h> 12 #include <rte_common.h> 13 #include <rte_malloc.h> 14 #include <rte_memcpy.h> 15 #include <rte_eal_memconfig.h> 16 #include <rte_string_fns.h> 17 #include <rte_errno.h> 18 #include <rte_hash.h> 19 #include <assert.h> 20 #include <rte_jhash.h> 21 #include <rte_tailq.h> 22 23 #include "rte_lpm6.h" 24 #include "lpm_log.h" 25 26 #define RTE_LPM6_TBL24_NUM_ENTRIES (1 << 24) 27 #define RTE_LPM6_TBL8_GROUP_NUM_ENTRIES 256 28 #define RTE_LPM6_TBL8_MAX_NUM_GROUPS (1 << 21) 29 30 #define RTE_LPM6_VALID_EXT_ENTRY_BITMASK 0xA0000000 31 #define RTE_LPM6_LOOKUP_SUCCESS 0x20000000 32 #define RTE_LPM6_TBL8_BITMASK 0x001FFFFF 33 34 #define ADD_FIRST_BYTE 3 35 #define LOOKUP_FIRST_BYTE 4 36 #define BYTE_SIZE 8 37 #define BYTES2_SIZE 16 38 39 #define RULE_HASH_TABLE_EXTRA_SPACE 64 40 #define TBL24_IND UINT32_MAX 41 42 #define lpm6_tbl8_gindex next_hop 43 44 /** Flags for setting an entry as valid/invalid. */ 45 enum valid_flag { 46 INVALID = 0, 47 VALID 48 }; 49 50 TAILQ_HEAD(rte_lpm6_list, rte_tailq_entry); 51 52 static struct rte_tailq_elem rte_lpm6_tailq = { 53 .name = "RTE_LPM6", 54 }; 55 EAL_REGISTER_TAILQ(rte_lpm6_tailq) 56 57 /** Tbl entry structure. It is the same for both tbl24 and tbl8 */ 58 struct rte_lpm6_tbl_entry { 59 uint32_t next_hop: 21; /**< Next hop / next table to be checked. */ 60 uint32_t depth :8; /**< Rule depth. */ 61 62 /* Flags. */ 63 uint32_t valid :1; /**< Validation flag. */ 64 uint32_t valid_group :1; /**< Group validation flag. */ 65 uint32_t ext_entry :1; /**< External entry. */ 66 }; 67 68 /** Rules tbl entry structure. */ 69 struct rte_lpm6_rule { 70 struct rte_ipv6_addr ip; /**< Rule IP address. */ 71 uint32_t next_hop; /**< Rule next hop. */ 72 uint8_t depth; /**< Rule depth. */ 73 }; 74 75 /** Rules tbl entry key. */ 76 struct rte_lpm6_rule_key { 77 struct rte_ipv6_addr ip; /**< Rule IP address. */ 78 uint32_t depth; /**< Rule depth. */ 79 }; 80 81 /* Header of tbl8 */ 82 struct rte_lpm_tbl8_hdr { 83 uint32_t owner_tbl_ind; /**< owner table: TBL24_IND if owner is tbl24, 84 * otherwise index of tbl8 85 */ 86 uint32_t owner_entry_ind; /**< index of the owner table entry where 87 * pointer to the tbl8 is stored 88 */ 89 uint32_t ref_cnt; /**< table reference counter */ 90 }; 91 92 /** LPM6 structure. */ 93 struct rte_lpm6 { 94 /* LPM metadata. */ 95 char name[RTE_LPM6_NAMESIZE]; /**< Name of the lpm. */ 96 uint32_t max_rules; /**< Max number of rules. */ 97 uint32_t used_rules; /**< Used rules so far. */ 98 uint32_t number_tbl8s; /**< Number of tbl8s to allocate. */ 99 100 /* LPM Tables. */ 101 struct rte_hash *rules_tbl; /**< LPM rules. */ 102 alignas(RTE_CACHE_LINE_SIZE) struct rte_lpm6_tbl_entry tbl24[RTE_LPM6_TBL24_NUM_ENTRIES]; 103 /**< LPM tbl24 table. */ 104 105 uint32_t *tbl8_pool; /**< pool of indexes of free tbl8s */ 106 uint32_t tbl8_pool_pos; /**< current position in the tbl8 pool */ 107 108 struct rte_lpm_tbl8_hdr *tbl8_hdrs; /* array of tbl8 headers */ 109 110 alignas(RTE_CACHE_LINE_SIZE) struct rte_lpm6_tbl_entry tbl8[]; 111 /**< LPM tbl8 table. */ 112 }; 113 114 /* 115 * LPM6 rule hash function 116 * 117 * It's used as a hash function for the rte_hash 118 * containing rules 119 */ 120 static inline uint32_t 121 rule_hash(const void *data, __rte_unused uint32_t data_len, 122 uint32_t init_val) 123 { 124 return rte_jhash(data, sizeof(struct rte_lpm6_rule_key), init_val); 125 } 126 127 /* 128 * Init pool of free tbl8 indexes 129 */ 130 static void 131 tbl8_pool_init(struct rte_lpm6 *lpm) 132 { 133 uint32_t i; 134 135 /* put entire range of indexes to the tbl8 pool */ 136 for (i = 0; i < lpm->number_tbl8s; i++) 137 lpm->tbl8_pool[i] = i; 138 139 lpm->tbl8_pool_pos = 0; 140 } 141 142 /* 143 * Get an index of a free tbl8 from the pool 144 */ 145 static inline uint32_t 146 tbl8_get(struct rte_lpm6 *lpm, uint32_t *tbl8_ind) 147 { 148 if (lpm->tbl8_pool_pos == lpm->number_tbl8s) 149 /* no more free tbl8 */ 150 return -ENOSPC; 151 152 /* next index */ 153 *tbl8_ind = lpm->tbl8_pool[lpm->tbl8_pool_pos++]; 154 return 0; 155 } 156 157 /* 158 * Put an index of a free tbl8 back to the pool 159 */ 160 static inline uint32_t 161 tbl8_put(struct rte_lpm6 *lpm, uint32_t tbl8_ind) 162 { 163 if (lpm->tbl8_pool_pos == 0) 164 /* pool is full */ 165 return -ENOSPC; 166 167 lpm->tbl8_pool[--lpm->tbl8_pool_pos] = tbl8_ind; 168 return 0; 169 } 170 171 /* 172 * Returns number of tbl8s available in the pool 173 */ 174 static inline uint32_t 175 tbl8_available(struct rte_lpm6 *lpm) 176 { 177 return lpm->number_tbl8s - lpm->tbl8_pool_pos; 178 } 179 180 /* 181 * Init a rule key. 182 * note that ip must be already masked 183 */ 184 static inline void 185 rule_key_init(struct rte_lpm6_rule_key *key, const struct rte_ipv6_addr *ip, uint8_t depth) 186 { 187 key->ip = *ip; 188 key->depth = depth; 189 } 190 191 /* 192 * Rebuild the entire LPM tree by reinserting all rules 193 */ 194 static void 195 rebuild_lpm(struct rte_lpm6 *lpm) 196 { 197 uint64_t next_hop; 198 struct rte_lpm6_rule_key *rule_key; 199 uint32_t iter = 0; 200 201 while (rte_hash_iterate(lpm->rules_tbl, (void *) &rule_key, 202 (void **) &next_hop, &iter) >= 0) 203 rte_lpm6_add(lpm, &rule_key->ip, rule_key->depth, 204 (uint32_t) next_hop); 205 } 206 207 /* 208 * Allocates memory for LPM object 209 */ 210 struct rte_lpm6 * 211 rte_lpm6_create(const char *name, int socket_id, 212 const struct rte_lpm6_config *config) 213 { 214 char mem_name[RTE_LPM6_NAMESIZE]; 215 struct rte_lpm6 *lpm = NULL; 216 struct rte_tailq_entry *te; 217 uint64_t mem_size; 218 struct rte_lpm6_list *lpm_list; 219 struct rte_hash *rules_tbl = NULL; 220 uint32_t *tbl8_pool = NULL; 221 struct rte_lpm_tbl8_hdr *tbl8_hdrs = NULL; 222 223 lpm_list = RTE_TAILQ_CAST(rte_lpm6_tailq.head, rte_lpm6_list); 224 225 RTE_BUILD_BUG_ON(sizeof(struct rte_lpm6_tbl_entry) != sizeof(uint32_t)); 226 RTE_BUILD_BUG_ON(sizeof(struct rte_lpm6_rule_key) % 227 sizeof(uint32_t) != 0); 228 229 /* Check user arguments. */ 230 if ((name == NULL) || (socket_id < -1) || (config == NULL) || 231 (config->max_rules == 0) || 232 config->number_tbl8s > RTE_LPM6_TBL8_MAX_NUM_GROUPS) { 233 rte_errno = EINVAL; 234 return NULL; 235 } 236 237 /* create rules hash table */ 238 snprintf(mem_name, sizeof(mem_name), "LRH_%s", name); 239 struct rte_hash_parameters rule_hash_tbl_params = { 240 .entries = config->max_rules * 1.2 + 241 RULE_HASH_TABLE_EXTRA_SPACE, 242 .key_len = sizeof(struct rte_lpm6_rule_key), 243 .hash_func = rule_hash, 244 .hash_func_init_val = 0, 245 .name = mem_name, 246 .reserved = 0, 247 .socket_id = socket_id, 248 .extra_flag = 0 249 }; 250 251 rules_tbl = rte_hash_create(&rule_hash_tbl_params); 252 if (rules_tbl == NULL) { 253 LPM_LOG(ERR, "LPM rules hash table allocation failed: %s (%d)", 254 rte_strerror(rte_errno), rte_errno); 255 goto fail_wo_unlock; 256 } 257 258 /* allocate tbl8 indexes pool */ 259 tbl8_pool = rte_malloc(NULL, 260 sizeof(uint32_t) * config->number_tbl8s, 261 RTE_CACHE_LINE_SIZE); 262 if (tbl8_pool == NULL) { 263 LPM_LOG(ERR, "LPM tbl8 pool allocation failed: %s (%d)", 264 rte_strerror(rte_errno), rte_errno); 265 rte_errno = ENOMEM; 266 goto fail_wo_unlock; 267 } 268 269 /* allocate tbl8 headers */ 270 tbl8_hdrs = rte_malloc(NULL, 271 sizeof(struct rte_lpm_tbl8_hdr) * config->number_tbl8s, 272 RTE_CACHE_LINE_SIZE); 273 if (tbl8_hdrs == NULL) { 274 LPM_LOG(ERR, "LPM tbl8 headers allocation failed: %s (%d)", 275 rte_strerror(rte_errno), rte_errno); 276 rte_errno = ENOMEM; 277 goto fail_wo_unlock; 278 } 279 280 snprintf(mem_name, sizeof(mem_name), "LPM_%s", name); 281 282 /* Determine the amount of memory to allocate. */ 283 mem_size = sizeof(*lpm) + (sizeof(lpm->tbl8[0]) * 284 RTE_LPM6_TBL8_GROUP_NUM_ENTRIES * config->number_tbl8s); 285 286 rte_mcfg_tailq_write_lock(); 287 288 /* Guarantee there's no existing */ 289 TAILQ_FOREACH(te, lpm_list, next) { 290 lpm = (struct rte_lpm6 *) te->data; 291 if (strncmp(name, lpm->name, RTE_LPM6_NAMESIZE) == 0) 292 break; 293 } 294 lpm = NULL; 295 if (te != NULL) { 296 rte_errno = EEXIST; 297 goto fail; 298 } 299 300 /* allocate tailq entry */ 301 te = rte_zmalloc("LPM6_TAILQ_ENTRY", sizeof(*te), 0); 302 if (te == NULL) { 303 LPM_LOG(ERR, "Failed to allocate tailq entry!"); 304 rte_errno = ENOMEM; 305 goto fail; 306 } 307 308 /* Allocate memory to store the LPM data structures. */ 309 lpm = rte_zmalloc_socket(mem_name, (size_t)mem_size, 310 RTE_CACHE_LINE_SIZE, socket_id); 311 312 if (lpm == NULL) { 313 LPM_LOG(ERR, "LPM memory allocation failed"); 314 rte_free(te); 315 rte_errno = ENOMEM; 316 goto fail; 317 } 318 319 /* Save user arguments. */ 320 lpm->max_rules = config->max_rules; 321 lpm->number_tbl8s = config->number_tbl8s; 322 strlcpy(lpm->name, name, sizeof(lpm->name)); 323 lpm->rules_tbl = rules_tbl; 324 lpm->tbl8_pool = tbl8_pool; 325 lpm->tbl8_hdrs = tbl8_hdrs; 326 327 /* init the stack */ 328 tbl8_pool_init(lpm); 329 330 te->data = (void *) lpm; 331 332 TAILQ_INSERT_TAIL(lpm_list, te, next); 333 rte_mcfg_tailq_write_unlock(); 334 return lpm; 335 336 fail: 337 rte_mcfg_tailq_write_unlock(); 338 339 fail_wo_unlock: 340 rte_free(tbl8_hdrs); 341 rte_free(tbl8_pool); 342 rte_hash_free(rules_tbl); 343 344 return NULL; 345 } 346 347 /* 348 * Find an existing lpm table and return a pointer to it. 349 */ 350 struct rte_lpm6 * 351 rte_lpm6_find_existing(const char *name) 352 { 353 struct rte_lpm6 *l = NULL; 354 struct rte_tailq_entry *te; 355 struct rte_lpm6_list *lpm_list; 356 357 lpm_list = RTE_TAILQ_CAST(rte_lpm6_tailq.head, rte_lpm6_list); 358 359 rte_mcfg_tailq_read_lock(); 360 TAILQ_FOREACH(te, lpm_list, next) { 361 l = (struct rte_lpm6 *) te->data; 362 if (strncmp(name, l->name, RTE_LPM6_NAMESIZE) == 0) 363 break; 364 } 365 rte_mcfg_tailq_read_unlock(); 366 367 if (te == NULL) { 368 rte_errno = ENOENT; 369 return NULL; 370 } 371 372 return l; 373 } 374 375 /* 376 * Deallocates memory for given LPM table. 377 */ 378 void 379 rte_lpm6_free(struct rte_lpm6 *lpm) 380 { 381 struct rte_lpm6_list *lpm_list; 382 struct rte_tailq_entry *te; 383 384 /* Check user arguments. */ 385 if (lpm == NULL) 386 return; 387 388 lpm_list = RTE_TAILQ_CAST(rte_lpm6_tailq.head, rte_lpm6_list); 389 390 rte_mcfg_tailq_write_lock(); 391 392 /* find our tailq entry */ 393 TAILQ_FOREACH(te, lpm_list, next) { 394 if (te->data == (void *) lpm) 395 break; 396 } 397 398 if (te != NULL) 399 TAILQ_REMOVE(lpm_list, te, next); 400 401 rte_mcfg_tailq_write_unlock(); 402 403 rte_free(lpm->tbl8_hdrs); 404 rte_free(lpm->tbl8_pool); 405 rte_hash_free(lpm->rules_tbl); 406 rte_free(lpm); 407 rte_free(te); 408 } 409 410 /* Find a rule */ 411 static inline int 412 rule_find_with_key(struct rte_lpm6 *lpm, 413 const struct rte_lpm6_rule_key *rule_key, 414 uint32_t *next_hop) 415 { 416 uint64_t hash_val; 417 int ret; 418 419 /* lookup for a rule */ 420 ret = rte_hash_lookup_data(lpm->rules_tbl, (const void *) rule_key, 421 (void **) &hash_val); 422 if (ret >= 0) { 423 *next_hop = (uint32_t) hash_val; 424 return 1; 425 } 426 427 return 0; 428 } 429 430 /* Find a rule */ 431 static int 432 rule_find(struct rte_lpm6 *lpm, struct rte_ipv6_addr *ip, uint8_t depth, 433 uint32_t *next_hop) 434 { 435 struct rte_lpm6_rule_key rule_key; 436 437 /* init a rule key */ 438 rule_key_init(&rule_key, ip, depth); 439 440 return rule_find_with_key(lpm, &rule_key, next_hop); 441 } 442 443 /* 444 * Checks if a rule already exists in the rules table and updates 445 * the nexthop if so. Otherwise it adds a new rule if enough space is available. 446 * 447 * Returns: 448 * 0 - next hop of existed rule is updated 449 * 1 - new rule successfully added 450 * <0 - error 451 */ 452 static inline int 453 rule_add(struct rte_lpm6 *lpm, struct rte_ipv6_addr *ip, uint8_t depth, uint32_t next_hop) 454 { 455 int ret, rule_exist; 456 struct rte_lpm6_rule_key rule_key; 457 uint32_t unused; 458 459 /* init a rule key */ 460 rule_key_init(&rule_key, ip, depth); 461 462 /* Scan through rule list to see if rule already exists. */ 463 rule_exist = rule_find_with_key(lpm, &rule_key, &unused); 464 465 /* 466 * If rule does not exist check if there is space to add a new rule to 467 * this rule group. If there is no space return error. 468 */ 469 if (!rule_exist && lpm->used_rules == lpm->max_rules) 470 return -ENOSPC; 471 472 /* add the rule or update rules next hop */ 473 ret = rte_hash_add_key_data(lpm->rules_tbl, &rule_key, 474 (void *)(uintptr_t) next_hop); 475 if (ret < 0) 476 return ret; 477 478 /* Increment the used rules counter for this rule group. */ 479 if (!rule_exist) { 480 lpm->used_rules++; 481 return 1; 482 } 483 484 return 0; 485 } 486 487 /* 488 * Function that expands a rule across the data structure when a less-generic 489 * one has been added before. It assures that every possible combination of bits 490 * in the IP address returns a match. 491 */ 492 static void 493 expand_rule(struct rte_lpm6 *lpm, uint32_t tbl8_gindex, uint8_t old_depth, 494 uint8_t new_depth, uint32_t next_hop, uint8_t valid) 495 { 496 uint32_t tbl8_group_end, tbl8_gindex_next, j; 497 498 tbl8_group_end = tbl8_gindex + RTE_LPM6_TBL8_GROUP_NUM_ENTRIES; 499 500 struct rte_lpm6_tbl_entry new_tbl8_entry = { 501 .valid = valid, 502 .valid_group = valid, 503 .depth = new_depth, 504 .next_hop = next_hop, 505 .ext_entry = 0, 506 }; 507 508 for (j = tbl8_gindex; j < tbl8_group_end; j++) { 509 if (!lpm->tbl8[j].valid || (lpm->tbl8[j].ext_entry == 0 510 && lpm->tbl8[j].depth <= old_depth)) { 511 512 lpm->tbl8[j] = new_tbl8_entry; 513 514 } else if (lpm->tbl8[j].ext_entry == 1) { 515 516 tbl8_gindex_next = lpm->tbl8[j].lpm6_tbl8_gindex 517 * RTE_LPM6_TBL8_GROUP_NUM_ENTRIES; 518 expand_rule(lpm, tbl8_gindex_next, old_depth, new_depth, 519 next_hop, valid); 520 } 521 } 522 } 523 524 /* 525 * Init a tbl8 header 526 */ 527 static inline void 528 init_tbl8_header(struct rte_lpm6 *lpm, uint32_t tbl_ind, 529 uint32_t owner_tbl_ind, uint32_t owner_entry_ind) 530 { 531 struct rte_lpm_tbl8_hdr *tbl_hdr = &lpm->tbl8_hdrs[tbl_ind]; 532 tbl_hdr->owner_tbl_ind = owner_tbl_ind; 533 tbl_hdr->owner_entry_ind = owner_entry_ind; 534 tbl_hdr->ref_cnt = 0; 535 } 536 537 /* 538 * Calculate index to the table based on the number and position 539 * of the bytes being inspected in this step. 540 */ 541 static uint32_t 542 get_bitshift(const struct rte_ipv6_addr *ip, uint8_t first_byte, uint8_t bytes) 543 { 544 uint32_t entry_ind, i; 545 int8_t bitshift; 546 547 entry_ind = 0; 548 for (i = first_byte; i < (uint32_t)(first_byte + bytes); i++) { 549 bitshift = (int8_t)((bytes - i)*BYTE_SIZE); 550 551 if (bitshift < 0) 552 bitshift = 0; 553 entry_ind = entry_ind | ip->a[i-1] << bitshift; 554 } 555 556 return entry_ind; 557 } 558 559 /* 560 * Simulate adding a new route to the LPM counting number 561 * of new tables that will be needed 562 * 563 * It returns 0 on success, or 1 if 564 * the process needs to be continued by calling the function again. 565 */ 566 static inline int 567 simulate_add_step(struct rte_lpm6 *lpm, struct rte_lpm6_tbl_entry *tbl, 568 struct rte_lpm6_tbl_entry **next_tbl, const struct rte_ipv6_addr *ip, 569 uint8_t bytes, uint8_t first_byte, uint8_t depth, 570 uint32_t *need_tbl_nb) 571 { 572 uint32_t entry_ind; 573 uint8_t bits_covered; 574 uint32_t next_tbl_ind; 575 576 /* 577 * Calculate index to the table based on the number and position 578 * of the bytes being inspected in this step. 579 */ 580 entry_ind = get_bitshift(ip, first_byte, bytes); 581 582 /* Number of bits covered in this step */ 583 bits_covered = (uint8_t)((bytes+first_byte-1)*BYTE_SIZE); 584 585 if (depth <= bits_covered) { 586 *need_tbl_nb = 0; 587 return 0; 588 } 589 590 if (tbl[entry_ind].valid == 0 || tbl[entry_ind].ext_entry == 0) { 591 /* from this point on a new table is needed on each level 592 * that is not covered yet 593 */ 594 depth -= bits_covered; 595 uint32_t cnt = depth >> 3; /* depth / BYTE_SIZE */ 596 if (depth & 7) /* 0b00000111 */ 597 /* if depth % 8 > 0 then one more table is needed 598 * for those last bits 599 */ 600 cnt++; 601 602 *need_tbl_nb = cnt; 603 return 0; 604 } 605 606 next_tbl_ind = tbl[entry_ind].lpm6_tbl8_gindex; 607 *next_tbl = &(lpm->tbl8[next_tbl_ind * 608 RTE_LPM6_TBL8_GROUP_NUM_ENTRIES]); 609 *need_tbl_nb = 0; 610 return 1; 611 } 612 613 /* 614 * Partially adds a new route to the data structure (tbl24+tbl8s). 615 * It returns 0 on success, a negative number on failure, or 1 if 616 * the process needs to be continued by calling the function again. 617 */ 618 static inline int 619 add_step(struct rte_lpm6 *lpm, struct rte_lpm6_tbl_entry *tbl, 620 uint32_t tbl_ind, struct rte_lpm6_tbl_entry **next_tbl, 621 uint32_t *next_tbl_ind, struct rte_ipv6_addr *ip, uint8_t bytes, 622 uint8_t first_byte, uint8_t depth, uint32_t next_hop, 623 uint8_t is_new_rule) 624 { 625 uint32_t entry_ind, tbl_range, tbl8_group_start, tbl8_group_end, i; 626 uint32_t tbl8_gindex; 627 uint8_t bits_covered; 628 int ret; 629 630 /* 631 * Calculate index to the table based on the number and position 632 * of the bytes being inspected in this step. 633 */ 634 entry_ind = get_bitshift(ip, first_byte, bytes); 635 636 /* Number of bits covered in this step */ 637 bits_covered = (uint8_t)((bytes+first_byte-1)*BYTE_SIZE); 638 639 /* 640 * If depth if smaller than this number (ie this is the last step) 641 * expand the rule across the relevant positions in the table. 642 */ 643 if (depth <= bits_covered) { 644 tbl_range = 1 << (bits_covered - depth); 645 646 for (i = entry_ind; i < (entry_ind + tbl_range); i++) { 647 if (!tbl[i].valid || (tbl[i].ext_entry == 0 && 648 tbl[i].depth <= depth)) { 649 650 struct rte_lpm6_tbl_entry new_tbl_entry = { 651 .next_hop = next_hop, 652 .depth = depth, 653 .valid = VALID, 654 .valid_group = VALID, 655 .ext_entry = 0, 656 }; 657 658 tbl[i] = new_tbl_entry; 659 660 } else if (tbl[i].ext_entry == 1) { 661 662 /* 663 * If tbl entry is valid and extended calculate the index 664 * into next tbl8 and expand the rule across the data structure. 665 */ 666 tbl8_gindex = tbl[i].lpm6_tbl8_gindex * 667 RTE_LPM6_TBL8_GROUP_NUM_ENTRIES; 668 expand_rule(lpm, tbl8_gindex, depth, depth, 669 next_hop, VALID); 670 } 671 } 672 673 /* update tbl8 rule reference counter */ 674 if (tbl_ind != TBL24_IND && is_new_rule) 675 lpm->tbl8_hdrs[tbl_ind].ref_cnt++; 676 677 return 0; 678 } 679 /* 680 * If this is not the last step just fill one position 681 * and calculate the index to the next table. 682 */ 683 else { 684 /* If it's invalid a new tbl8 is needed */ 685 if (!tbl[entry_ind].valid) { 686 /* get a new table */ 687 ret = tbl8_get(lpm, &tbl8_gindex); 688 if (ret != 0) 689 return -ENOSPC; 690 691 /* invalidate all new tbl8 entries */ 692 tbl8_group_start = tbl8_gindex * 693 RTE_LPM6_TBL8_GROUP_NUM_ENTRIES; 694 memset(&lpm->tbl8[tbl8_group_start], 0, 695 RTE_LPM6_TBL8_GROUP_NUM_ENTRIES * 696 sizeof(struct rte_lpm6_tbl_entry)); 697 698 /* init the new table's header: 699 * save the reference to the owner table 700 */ 701 init_tbl8_header(lpm, tbl8_gindex, tbl_ind, entry_ind); 702 703 /* reference to a new tbl8 */ 704 struct rte_lpm6_tbl_entry new_tbl_entry = { 705 .lpm6_tbl8_gindex = tbl8_gindex, 706 .depth = 0, 707 .valid = VALID, 708 .valid_group = VALID, 709 .ext_entry = 1, 710 }; 711 712 tbl[entry_ind] = new_tbl_entry; 713 714 /* update the current table's reference counter */ 715 if (tbl_ind != TBL24_IND) 716 lpm->tbl8_hdrs[tbl_ind].ref_cnt++; 717 } 718 /* 719 * If it's valid but not extended the rule that was stored 720 * here needs to be moved to the next table. 721 */ 722 else if (tbl[entry_ind].ext_entry == 0) { 723 /* get a new tbl8 index */ 724 ret = tbl8_get(lpm, &tbl8_gindex); 725 if (ret != 0) 726 return -ENOSPC; 727 728 tbl8_group_start = tbl8_gindex * 729 RTE_LPM6_TBL8_GROUP_NUM_ENTRIES; 730 tbl8_group_end = tbl8_group_start + 731 RTE_LPM6_TBL8_GROUP_NUM_ENTRIES; 732 733 struct rte_lpm6_tbl_entry tbl_entry = { 734 .next_hop = tbl[entry_ind].next_hop, 735 .depth = tbl[entry_ind].depth, 736 .valid = VALID, 737 .valid_group = VALID, 738 .ext_entry = 0 739 }; 740 741 /* Populate new tbl8 with tbl value. */ 742 for (i = tbl8_group_start; i < tbl8_group_end; i++) 743 lpm->tbl8[i] = tbl_entry; 744 745 /* init the new table's header: 746 * save the reference to the owner table 747 */ 748 init_tbl8_header(lpm, tbl8_gindex, tbl_ind, entry_ind); 749 750 /* 751 * Update tbl entry to point to new tbl8 entry. Note: The 752 * ext_flag and tbl8_index need to be updated simultaneously, 753 * so assign whole structure in one go. 754 */ 755 struct rte_lpm6_tbl_entry new_tbl_entry = { 756 .lpm6_tbl8_gindex = tbl8_gindex, 757 .depth = 0, 758 .valid = VALID, 759 .valid_group = VALID, 760 .ext_entry = 1, 761 }; 762 763 tbl[entry_ind] = new_tbl_entry; 764 765 /* update the current table's reference counter */ 766 if (tbl_ind != TBL24_IND) 767 lpm->tbl8_hdrs[tbl_ind].ref_cnt++; 768 } 769 770 *next_tbl_ind = tbl[entry_ind].lpm6_tbl8_gindex; 771 *next_tbl = &(lpm->tbl8[*next_tbl_ind * 772 RTE_LPM6_TBL8_GROUP_NUM_ENTRIES]); 773 } 774 775 return 1; 776 } 777 778 /* 779 * Simulate adding a route to LPM 780 * 781 * Returns: 782 * 0 on success 783 * -ENOSPC not enough tbl8 left 784 */ 785 static int 786 simulate_add(struct rte_lpm6 *lpm, const struct rte_ipv6_addr *masked_ip, uint8_t depth) 787 { 788 struct rte_lpm6_tbl_entry *tbl; 789 struct rte_lpm6_tbl_entry *tbl_next = NULL; 790 int ret, i; 791 792 /* number of new tables needed for a step */ 793 uint32_t need_tbl_nb; 794 /* total number of new tables needed */ 795 uint32_t total_need_tbl_nb; 796 797 /* Inspect the first three bytes through tbl24 on the first step. */ 798 ret = simulate_add_step(lpm, lpm->tbl24, &tbl_next, masked_ip, 799 ADD_FIRST_BYTE, 1, depth, &need_tbl_nb); 800 total_need_tbl_nb = need_tbl_nb; 801 /* 802 * Inspect one by one the rest of the bytes until 803 * the process is completed. 804 */ 805 for (i = ADD_FIRST_BYTE; i < RTE_IPV6_ADDR_SIZE && ret == 1; i++) { 806 tbl = tbl_next; 807 ret = simulate_add_step(lpm, tbl, &tbl_next, masked_ip, 1, 808 (uint8_t)(i + 1), depth, &need_tbl_nb); 809 total_need_tbl_nb += need_tbl_nb; 810 } 811 812 if (tbl8_available(lpm) < total_need_tbl_nb) 813 /* not enough tbl8 to add a rule */ 814 return -ENOSPC; 815 816 return 0; 817 } 818 819 /* 820 * Add a route 821 */ 822 int 823 rte_lpm6_add(struct rte_lpm6 *lpm, const struct rte_ipv6_addr *ip, uint8_t depth, 824 uint32_t next_hop) 825 { 826 struct rte_lpm6_tbl_entry *tbl; 827 struct rte_lpm6_tbl_entry *tbl_next = NULL; 828 /* init to avoid compiler warning */ 829 uint32_t tbl_next_num = 123456; 830 int status; 831 struct rte_ipv6_addr masked_ip; 832 int i; 833 834 /* Check user arguments. */ 835 if ((lpm == NULL) || (depth < 1) || (depth > RTE_IPV6_MAX_DEPTH)) 836 return -EINVAL; 837 838 /* Copy the IP and mask it to avoid modifying user's input data. */ 839 masked_ip = *ip; 840 rte_ipv6_addr_mask(&masked_ip, depth); 841 842 /* Simulate adding a new route */ 843 int ret = simulate_add(lpm, &masked_ip, depth); 844 if (ret < 0) 845 return ret; 846 847 /* Add the rule to the rule table. */ 848 int is_new_rule = rule_add(lpm, &masked_ip, depth, next_hop); 849 /* If there is no space available for new rule return error. */ 850 if (is_new_rule < 0) 851 return is_new_rule; 852 853 /* Inspect the first three bytes through tbl24 on the first step. */ 854 tbl = lpm->tbl24; 855 status = add_step(lpm, tbl, TBL24_IND, &tbl_next, &tbl_next_num, 856 &masked_ip, ADD_FIRST_BYTE, 1, depth, next_hop, 857 is_new_rule); 858 assert(status >= 0); 859 860 /* 861 * Inspect one by one the rest of the bytes until 862 * the process is completed. 863 */ 864 for (i = ADD_FIRST_BYTE; i < RTE_IPV6_ADDR_SIZE && status == 1; i++) { 865 tbl = tbl_next; 866 status = add_step(lpm, tbl, tbl_next_num, &tbl_next, 867 &tbl_next_num, &masked_ip, 1, (uint8_t)(i + 1), 868 depth, next_hop, is_new_rule); 869 assert(status >= 0); 870 } 871 872 return status; 873 } 874 875 /* 876 * Takes a pointer to a table entry and inspect one level. 877 * The function returns 0 on lookup success, ENOENT if no match was found 878 * or 1 if the process needs to be continued by calling the function again. 879 */ 880 static inline int 881 lookup_step(const struct rte_lpm6 *lpm, const struct rte_lpm6_tbl_entry *tbl, 882 const struct rte_lpm6_tbl_entry **tbl_next, const struct rte_ipv6_addr *ip, 883 uint8_t first_byte, uint32_t *next_hop) 884 { 885 uint32_t tbl8_index, tbl_entry; 886 887 /* Take the integer value from the pointer. */ 888 tbl_entry = *(const uint32_t *)tbl; 889 890 /* If it is valid and extended we calculate the new pointer to return. */ 891 if ((tbl_entry & RTE_LPM6_VALID_EXT_ENTRY_BITMASK) == 892 RTE_LPM6_VALID_EXT_ENTRY_BITMASK) { 893 894 tbl8_index = ip->a[first_byte-1] + 895 ((tbl_entry & RTE_LPM6_TBL8_BITMASK) * 896 RTE_LPM6_TBL8_GROUP_NUM_ENTRIES); 897 898 *tbl_next = &lpm->tbl8[tbl8_index]; 899 900 return 1; 901 } else { 902 /* If not extended then we can have a match. */ 903 *next_hop = ((uint32_t)tbl_entry & RTE_LPM6_TBL8_BITMASK); 904 return (tbl_entry & RTE_LPM6_LOOKUP_SUCCESS) ? 0 : -ENOENT; 905 } 906 } 907 908 /* 909 * Looks up an IP 910 */ 911 int 912 rte_lpm6_lookup(const struct rte_lpm6 *lpm, const struct rte_ipv6_addr *ip, 913 uint32_t *next_hop) 914 { 915 const struct rte_lpm6_tbl_entry *tbl; 916 const struct rte_lpm6_tbl_entry *tbl_next = NULL; 917 int status; 918 uint8_t first_byte; 919 uint32_t tbl24_index; 920 921 /* DEBUG: Check user input arguments. */ 922 if ((lpm == NULL) || (ip == NULL) || (next_hop == NULL)) 923 return -EINVAL; 924 925 first_byte = LOOKUP_FIRST_BYTE; 926 tbl24_index = (ip->a[0] << BYTES2_SIZE) | (ip->a[1] << BYTE_SIZE) | ip->a[2]; 927 928 /* Calculate pointer to the first entry to be inspected */ 929 tbl = &lpm->tbl24[tbl24_index]; 930 931 do { 932 /* Continue inspecting following levels until success or failure */ 933 status = lookup_step(lpm, tbl, &tbl_next, ip, first_byte++, next_hop); 934 tbl = tbl_next; 935 } while (status == 1); 936 937 return status; 938 } 939 940 /* 941 * Looks up a group of IP addresses 942 */ 943 int 944 rte_lpm6_lookup_bulk_func(const struct rte_lpm6 *lpm, 945 struct rte_ipv6_addr *ips, 946 int32_t *next_hops, unsigned int n) 947 { 948 unsigned int i; 949 const struct rte_lpm6_tbl_entry *tbl; 950 const struct rte_lpm6_tbl_entry *tbl_next = NULL; 951 uint32_t tbl24_index, next_hop; 952 uint8_t first_byte; 953 int status; 954 955 /* DEBUG: Check user input arguments. */ 956 if ((lpm == NULL) || (ips == NULL) || (next_hops == NULL)) 957 return -EINVAL; 958 959 for (i = 0; i < n; i++) { 960 first_byte = LOOKUP_FIRST_BYTE; 961 tbl24_index = (ips[i].a[0] << BYTES2_SIZE) | 962 (ips[i].a[1] << BYTE_SIZE) | ips[i].a[2]; 963 964 /* Calculate pointer to the first entry to be inspected */ 965 tbl = &lpm->tbl24[tbl24_index]; 966 967 do { 968 /* Continue inspecting following levels 969 * until success or failure 970 */ 971 status = lookup_step(lpm, tbl, &tbl_next, &ips[i], 972 first_byte++, &next_hop); 973 tbl = tbl_next; 974 } while (status == 1); 975 976 if (status < 0) 977 next_hops[i] = -1; 978 else 979 next_hops[i] = (int32_t)next_hop; 980 } 981 982 return 0; 983 } 984 985 /* 986 * Look for a rule in the high-level rules table 987 */ 988 int 989 rte_lpm6_is_rule_present(struct rte_lpm6 *lpm, const struct rte_ipv6_addr *ip, uint8_t depth, 990 uint32_t *next_hop) 991 { 992 struct rte_ipv6_addr masked_ip; 993 994 /* Check user arguments. */ 995 if ((lpm == NULL) || next_hop == NULL || ip == NULL || 996 (depth < 1) || (depth > RTE_IPV6_MAX_DEPTH)) 997 return -EINVAL; 998 999 /* Copy the IP and mask it to avoid modifying user's input data. */ 1000 masked_ip = *ip; 1001 rte_ipv6_addr_mask(&masked_ip, depth); 1002 1003 return rule_find(lpm, &masked_ip, depth, next_hop); 1004 } 1005 1006 /* 1007 * Delete a rule from the rule table. 1008 * NOTE: Valid range for depth parameter is 1 .. 128 inclusive. 1009 * return 1010 * 0 on success 1011 * <0 on failure 1012 */ 1013 static inline int 1014 rule_delete(struct rte_lpm6 *lpm, struct rte_ipv6_addr *ip, uint8_t depth) 1015 { 1016 int ret; 1017 struct rte_lpm6_rule_key rule_key; 1018 1019 /* init rule key */ 1020 rule_key_init(&rule_key, ip, depth); 1021 1022 /* delete the rule */ 1023 ret = rte_hash_del_key(lpm->rules_tbl, (void *) &rule_key); 1024 if (ret >= 0) 1025 lpm->used_rules--; 1026 1027 return ret; 1028 } 1029 1030 /* 1031 * Deletes a group of rules 1032 * 1033 * Note that the function rebuilds the lpm table, 1034 * rather than doing incremental updates like 1035 * the regular delete function 1036 */ 1037 int 1038 rte_lpm6_delete_bulk_func(struct rte_lpm6 *lpm, 1039 struct rte_ipv6_addr *ips, uint8_t *depths, 1040 unsigned n) 1041 { 1042 struct rte_ipv6_addr masked_ip; 1043 unsigned i; 1044 1045 /* Check input arguments. */ 1046 if ((lpm == NULL) || (ips == NULL) || (depths == NULL)) 1047 return -EINVAL; 1048 1049 for (i = 0; i < n; i++) { 1050 masked_ip = ips[i]; 1051 rte_ipv6_addr_mask(&masked_ip, depths[i]); 1052 rule_delete(lpm, &masked_ip, depths[i]); 1053 } 1054 1055 /* 1056 * Set all the table entries to 0 (ie delete every rule 1057 * from the data structure. 1058 */ 1059 memset(lpm->tbl24, 0, sizeof(lpm->tbl24)); 1060 memset(lpm->tbl8, 0, sizeof(lpm->tbl8[0]) 1061 * RTE_LPM6_TBL8_GROUP_NUM_ENTRIES * lpm->number_tbl8s); 1062 tbl8_pool_init(lpm); 1063 1064 /* 1065 * Add every rule again (except for the ones that were removed from 1066 * the rules table). 1067 */ 1068 rebuild_lpm(lpm); 1069 1070 return 0; 1071 } 1072 1073 /* 1074 * Delete all rules from the LPM table. 1075 */ 1076 void 1077 rte_lpm6_delete_all(struct rte_lpm6 *lpm) 1078 { 1079 /* Zero used rules counter. */ 1080 lpm->used_rules = 0; 1081 1082 /* Zero tbl24. */ 1083 memset(lpm->tbl24, 0, sizeof(lpm->tbl24)); 1084 1085 /* Zero tbl8. */ 1086 memset(lpm->tbl8, 0, sizeof(lpm->tbl8[0]) * 1087 RTE_LPM6_TBL8_GROUP_NUM_ENTRIES * lpm->number_tbl8s); 1088 1089 /* init pool of free tbl8 indexes */ 1090 tbl8_pool_init(lpm); 1091 1092 /* Delete all rules form the rules table. */ 1093 rte_hash_reset(lpm->rules_tbl); 1094 } 1095 1096 /* 1097 * Convert a depth to a one byte long mask 1098 * Example: 4 will be converted to 0xF0 1099 */ 1100 static uint8_t __rte_pure 1101 depth_to_mask_1b(uint8_t depth) 1102 { 1103 /* To calculate a mask start with a 1 on the left hand side and right 1104 * shift while populating the left hand side with 1's 1105 */ 1106 return (signed char)0x80 >> (depth - 1); 1107 } 1108 1109 /* 1110 * Find a less specific rule 1111 */ 1112 static int 1113 rule_find_less_specific(struct rte_lpm6 *lpm, struct rte_ipv6_addr *ip, uint8_t depth, 1114 struct rte_lpm6_rule *rule) 1115 { 1116 int ret; 1117 uint32_t next_hop; 1118 uint8_t mask; 1119 struct rte_lpm6_rule_key rule_key; 1120 1121 if (depth == 1) 1122 return 0; 1123 1124 rule_key_init(&rule_key, ip, depth); 1125 1126 while (depth > 1) { 1127 depth--; 1128 1129 /* each iteration zero one more bit of the key */ 1130 mask = depth & 7; /* depth % BYTE_SIZE */ 1131 if (mask > 0) 1132 mask = depth_to_mask_1b(mask); 1133 1134 rule_key.depth = depth; 1135 rule_key.ip.a[depth >> 3] &= mask; 1136 1137 ret = rule_find_with_key(lpm, &rule_key, &next_hop); 1138 if (ret) { 1139 rule->depth = depth; 1140 rule->ip = rule_key.ip; 1141 rule->next_hop = next_hop; 1142 return 1; 1143 } 1144 } 1145 1146 return 0; 1147 } 1148 1149 /* 1150 * Find range of tbl8 cells occupied by a rule 1151 */ 1152 static void 1153 rule_find_range(struct rte_lpm6 *lpm, const struct rte_ipv6_addr *ip, uint8_t depth, 1154 struct rte_lpm6_tbl_entry **from, 1155 struct rte_lpm6_tbl_entry **to, 1156 uint32_t *out_tbl_ind) 1157 { 1158 uint32_t ind; 1159 uint32_t first_3bytes = (uint32_t)ip->a[0] << 16 | 1160 ip->a[1] << 8 | ip->a[2]; 1161 1162 if (depth <= 24) { 1163 /* rule is within the top level */ 1164 ind = first_3bytes; 1165 *from = &lpm->tbl24[ind]; 1166 ind += (1 << (24 - depth)) - 1; 1167 *to = &lpm->tbl24[ind]; 1168 *out_tbl_ind = TBL24_IND; 1169 } else { 1170 /* top level entry */ 1171 struct rte_lpm6_tbl_entry *tbl = &lpm->tbl24[first_3bytes]; 1172 assert(tbl->ext_entry == 1); 1173 /* first tbl8 */ 1174 uint32_t tbl_ind = tbl->lpm6_tbl8_gindex; 1175 tbl = &lpm->tbl8[tbl_ind * 1176 RTE_LPM6_TBL8_GROUP_NUM_ENTRIES]; 1177 /* current ip byte, the top level is already behind */ 1178 uint8_t byte = 3; 1179 /* minus top level */ 1180 depth -= 24; 1181 1182 /* iterate through levels (tbl8s) 1183 * until we reach the last one 1184 */ 1185 while (depth > 8) { 1186 tbl += ip->a[byte]; 1187 assert(tbl->ext_entry == 1); 1188 /* go to the next level/tbl8 */ 1189 tbl_ind = tbl->lpm6_tbl8_gindex; 1190 tbl = &lpm->tbl8[tbl_ind * 1191 RTE_LPM6_TBL8_GROUP_NUM_ENTRIES]; 1192 byte += 1; 1193 depth -= 8; 1194 } 1195 1196 /* last level/tbl8 */ 1197 ind = ip->a[byte] & depth_to_mask_1b(depth); 1198 *from = &tbl[ind]; 1199 ind += (1 << (8 - depth)) - 1; 1200 *to = &tbl[ind]; 1201 *out_tbl_ind = tbl_ind; 1202 } 1203 } 1204 1205 /* 1206 * Remove a table from the LPM tree 1207 */ 1208 static void 1209 remove_tbl(struct rte_lpm6 *lpm, struct rte_lpm_tbl8_hdr *tbl_hdr, 1210 uint32_t tbl_ind, struct rte_lpm6_rule *lsp_rule) 1211 { 1212 struct rte_lpm6_tbl_entry *owner_entry; 1213 1214 if (tbl_hdr->owner_tbl_ind == TBL24_IND) 1215 owner_entry = &lpm->tbl24[tbl_hdr->owner_entry_ind]; 1216 else { 1217 uint32_t owner_tbl_ind = tbl_hdr->owner_tbl_ind; 1218 owner_entry = &lpm->tbl8[ 1219 owner_tbl_ind * RTE_LPM6_TBL8_GROUP_NUM_ENTRIES + 1220 tbl_hdr->owner_entry_ind]; 1221 1222 struct rte_lpm_tbl8_hdr *owner_tbl_hdr = 1223 &lpm->tbl8_hdrs[owner_tbl_ind]; 1224 if (--owner_tbl_hdr->ref_cnt == 0) 1225 remove_tbl(lpm, owner_tbl_hdr, owner_tbl_ind, lsp_rule); 1226 } 1227 1228 assert(owner_entry->ext_entry == 1); 1229 1230 /* unlink the table */ 1231 if (lsp_rule != NULL) { 1232 struct rte_lpm6_tbl_entry new_tbl_entry = { 1233 .next_hop = lsp_rule->next_hop, 1234 .depth = lsp_rule->depth, 1235 .valid = VALID, 1236 .valid_group = VALID, 1237 .ext_entry = 0 1238 }; 1239 1240 *owner_entry = new_tbl_entry; 1241 } else { 1242 struct rte_lpm6_tbl_entry new_tbl_entry = { 1243 .next_hop = 0, 1244 .depth = 0, 1245 .valid = INVALID, 1246 .valid_group = INVALID, 1247 .ext_entry = 0 1248 }; 1249 1250 *owner_entry = new_tbl_entry; 1251 } 1252 1253 /* return the table to the pool */ 1254 tbl8_put(lpm, tbl_ind); 1255 } 1256 1257 /* 1258 * Deletes a rule 1259 */ 1260 int 1261 rte_lpm6_delete(struct rte_lpm6 *lpm, const struct rte_ipv6_addr *ip, uint8_t depth) 1262 { 1263 struct rte_ipv6_addr masked_ip; 1264 struct rte_lpm6_rule lsp_rule_obj; 1265 struct rte_lpm6_rule *lsp_rule; 1266 int ret; 1267 uint32_t tbl_ind; 1268 struct rte_lpm6_tbl_entry *from, *to; 1269 1270 /* Check input arguments. */ 1271 if ((lpm == NULL) || (depth < 1) || (depth > RTE_IPV6_MAX_DEPTH)) 1272 return -EINVAL; 1273 1274 /* Copy the IP and mask it to avoid modifying user's input data. */ 1275 masked_ip = *ip; 1276 rte_ipv6_addr_mask(&masked_ip, depth); 1277 1278 /* Delete the rule from the rule table. */ 1279 ret = rule_delete(lpm, &masked_ip, depth); 1280 if (ret < 0) 1281 return -ENOENT; 1282 1283 /* find rule cells */ 1284 rule_find_range(lpm, &masked_ip, depth, &from, &to, &tbl_ind); 1285 1286 /* find a less specific rule (a rule with smaller depth) 1287 * note: masked_ip will be modified, don't use it anymore 1288 */ 1289 ret = rule_find_less_specific(lpm, &masked_ip, depth, 1290 &lsp_rule_obj); 1291 lsp_rule = ret ? &lsp_rule_obj : NULL; 1292 1293 /* decrement the table rule counter, 1294 * note that tbl24 doesn't have a header 1295 */ 1296 if (tbl_ind != TBL24_IND) { 1297 struct rte_lpm_tbl8_hdr *tbl_hdr = &lpm->tbl8_hdrs[tbl_ind]; 1298 if (--tbl_hdr->ref_cnt == 0) { 1299 /* remove the table */ 1300 remove_tbl(lpm, tbl_hdr, tbl_ind, lsp_rule); 1301 return 0; 1302 } 1303 } 1304 1305 /* iterate rule cells */ 1306 for (; from <= to; from++) 1307 if (from->ext_entry == 1) { 1308 /* reference to a more specific space 1309 * of the prefix/rule. Entries in a more 1310 * specific space that are not used by 1311 * a more specific prefix must be occupied 1312 * by the prefix 1313 */ 1314 if (lsp_rule != NULL) 1315 expand_rule(lpm, 1316 from->lpm6_tbl8_gindex * 1317 RTE_LPM6_TBL8_GROUP_NUM_ENTRIES, 1318 depth, lsp_rule->depth, 1319 lsp_rule->next_hop, VALID); 1320 else 1321 /* since the prefix has no less specific prefix, 1322 * its more specific space must be invalidated 1323 */ 1324 expand_rule(lpm, 1325 from->lpm6_tbl8_gindex * 1326 RTE_LPM6_TBL8_GROUP_NUM_ENTRIES, 1327 depth, 0, 0, INVALID); 1328 } else if (from->depth == depth) { 1329 /* entry is not a reference and belongs to the prefix */ 1330 if (lsp_rule != NULL) { 1331 struct rte_lpm6_tbl_entry new_tbl_entry = { 1332 .next_hop = lsp_rule->next_hop, 1333 .depth = lsp_rule->depth, 1334 .valid = VALID, 1335 .valid_group = VALID, 1336 .ext_entry = 0 1337 }; 1338 1339 *from = new_tbl_entry; 1340 } else { 1341 struct rte_lpm6_tbl_entry new_tbl_entry = { 1342 .next_hop = 0, 1343 .depth = 0, 1344 .valid = INVALID, 1345 .valid_group = INVALID, 1346 .ext_entry = 0 1347 }; 1348 1349 *from = new_tbl_entry; 1350 } 1351 } 1352 1353 return 0; 1354 } 1355