1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2010-2014 Intel Corporation. 3 * Copyright(c) 2013 6WIND S.A. 4 */ 5 6 #include <errno.h> 7 #include <fcntl.h> 8 #include <stdbool.h> 9 #include <stdlib.h> 10 #include <stdio.h> 11 #include <stdint.h> 12 #include <inttypes.h> 13 #include <string.h> 14 #include <sys/mman.h> 15 #include <sys/stat.h> 16 #include <sys/file.h> 17 #include <sys/resource.h> 18 #include <unistd.h> 19 #include <limits.h> 20 #include <signal.h> 21 #include <setjmp.h> 22 #ifdef F_ADD_SEALS /* if file sealing is supported, so is memfd */ 23 #define MEMFD_SUPPORTED 24 #endif 25 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES 26 #include <numa.h> 27 #include <numaif.h> 28 #endif 29 30 #include <rte_errno.h> 31 #include <rte_log.h> 32 #include <rte_memory.h> 33 #include <rte_eal.h> 34 #include <rte_lcore.h> 35 #include <rte_common.h> 36 37 #include "eal_private.h" 38 #include "eal_memalloc.h" 39 #include "eal_memcfg.h" 40 #include "eal_internal_cfg.h" 41 #include "eal_filesystem.h" 42 #include "eal_hugepages.h" 43 #include "eal_options.h" 44 45 #define PFN_MASK_SIZE 8 46 47 /** 48 * @file 49 * Huge page mapping under linux 50 * 51 * To reserve a big contiguous amount of memory, we use the hugepage 52 * feature of linux. For that, we need to have hugetlbfs mounted. This 53 * code will create many files in this directory (one per page) and 54 * map them in virtual memory. For each page, we will retrieve its 55 * physical address and remap it in order to have a virtual contiguous 56 * zone as well as a physical contiguous zone. 57 */ 58 59 static int phys_addrs_available = -1; 60 61 #define RANDOMIZE_VA_SPACE_FILE "/proc/sys/kernel/randomize_va_space" 62 63 uint64_t eal_get_baseaddr(void) 64 { 65 /* 66 * Linux kernel uses a really high address as starting address for 67 * serving mmaps calls. If there exists addressing limitations and IOVA 68 * mode is VA, this starting address is likely too high for those 69 * devices. However, it is possible to use a lower address in the 70 * process virtual address space as with 64 bits there is a lot of 71 * available space. 72 * 73 * Current known limitations are 39 or 40 bits. Setting the starting 74 * address at 4GB implies there are 508GB or 1020GB for mapping the 75 * available hugepages. This is likely enough for most systems, although 76 * a device with addressing limitations should call 77 * rte_mem_check_dma_mask for ensuring all memory is within supported 78 * range. 79 */ 80 #if defined(RTE_ARCH_LOONGARCH) 81 return 0x7000000000ULL; 82 #else 83 return 0x100000000ULL; 84 #endif 85 } 86 87 /* 88 * Get physical address of any mapped virtual address in the current process. 89 */ 90 phys_addr_t 91 rte_mem_virt2phy(const void *virtaddr) 92 { 93 int fd, retval; 94 uint64_t page, physaddr; 95 unsigned long virt_pfn; 96 int page_size; 97 off_t offset; 98 99 if (phys_addrs_available == 0) 100 return RTE_BAD_IOVA; 101 102 /* standard page size */ 103 page_size = getpagesize(); 104 105 fd = open("/proc/self/pagemap", O_RDONLY); 106 if (fd < 0) { 107 EAL_LOG(INFO, "%s(): cannot open /proc/self/pagemap: %s", 108 __func__, strerror(errno)); 109 return RTE_BAD_IOVA; 110 } 111 112 virt_pfn = (unsigned long)virtaddr / page_size; 113 offset = sizeof(uint64_t) * virt_pfn; 114 if (lseek(fd, offset, SEEK_SET) == (off_t) -1) { 115 EAL_LOG(INFO, "%s(): seek error in /proc/self/pagemap: %s", 116 __func__, strerror(errno)); 117 close(fd); 118 return RTE_BAD_IOVA; 119 } 120 121 retval = read(fd, &page, PFN_MASK_SIZE); 122 close(fd); 123 if (retval < 0) { 124 EAL_LOG(INFO, "%s(): cannot read /proc/self/pagemap: %s", 125 __func__, strerror(errno)); 126 return RTE_BAD_IOVA; 127 } else if (retval != PFN_MASK_SIZE) { 128 EAL_LOG(INFO, "%s(): read %d bytes from /proc/self/pagemap " 129 "but expected %d:", 130 __func__, retval, PFN_MASK_SIZE); 131 return RTE_BAD_IOVA; 132 } 133 134 /* 135 * the pfn (page frame number) are bits 0-54 (see 136 * pagemap.txt in linux Documentation) 137 */ 138 if ((page & 0x7fffffffffffffULL) == 0) 139 return RTE_BAD_IOVA; 140 141 physaddr = ((page & 0x7fffffffffffffULL) * page_size) 142 + ((unsigned long)virtaddr % page_size); 143 144 return physaddr; 145 } 146 147 rte_iova_t 148 rte_mem_virt2iova(const void *virtaddr) 149 { 150 if (rte_eal_iova_mode() == RTE_IOVA_VA) 151 return (uintptr_t)virtaddr; 152 return rte_mem_virt2phy(virtaddr); 153 } 154 155 /* 156 * For each hugepage in hugepg_tbl, fill the physaddr value. We find 157 * it by browsing the /proc/self/pagemap special file. 158 */ 159 static int 160 find_physaddrs(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi) 161 { 162 unsigned int i; 163 phys_addr_t addr; 164 165 for (i = 0; i < hpi->num_pages[0]; i++) { 166 addr = rte_mem_virt2phy(hugepg_tbl[i].orig_va); 167 if (addr == RTE_BAD_PHYS_ADDR) 168 return -1; 169 hugepg_tbl[i].physaddr = addr; 170 } 171 return 0; 172 } 173 174 /* 175 * For each hugepage in hugepg_tbl, fill the physaddr value sequentially. 176 */ 177 static int 178 set_physaddrs(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi) 179 { 180 unsigned int i; 181 static phys_addr_t addr; 182 183 for (i = 0; i < hpi->num_pages[0]; i++) { 184 hugepg_tbl[i].physaddr = addr; 185 addr += hugepg_tbl[i].size; 186 } 187 return 0; 188 } 189 190 /* 191 * Check whether address-space layout randomization is enabled in 192 * the kernel. This is important for multi-process as it can prevent 193 * two processes mapping data to the same virtual address 194 * Returns: 195 * 0 - address space randomization disabled 196 * 1/2 - address space randomization enabled 197 * negative error code on error 198 */ 199 static int 200 aslr_enabled(void) 201 { 202 char c; 203 int retval, fd = open(RANDOMIZE_VA_SPACE_FILE, O_RDONLY); 204 if (fd < 0) 205 return -errno; 206 retval = read(fd, &c, 1); 207 close(fd); 208 if (retval < 0) 209 return -errno; 210 if (retval == 0) 211 return -EIO; 212 switch (c) { 213 case '0' : return 0; 214 case '1' : return 1; 215 case '2' : return 2; 216 default: return -EINVAL; 217 } 218 } 219 220 static sigjmp_buf huge_jmpenv; 221 222 static void huge_sigbus_handler(int signo __rte_unused) 223 { 224 siglongjmp(huge_jmpenv, 1); 225 } 226 227 /* Put setjmp into a wrap method to avoid compiling error. Any non-volatile, 228 * non-static local variable in the stack frame calling sigsetjmp might be 229 * clobbered by a call to longjmp. 230 */ 231 static int huge_wrap_sigsetjmp(void) 232 { 233 return sigsetjmp(huge_jmpenv, 1); 234 } 235 236 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES 237 /* Callback for numa library. */ 238 void numa_error(char *where) 239 { 240 EAL_LOG(ERR, "%s failed: %s", where, strerror(errno)); 241 } 242 #endif 243 244 /* 245 * Mmap all hugepages of hugepage table: it first open a file in 246 * hugetlbfs, then mmap() hugepage_sz data in it. If orig is set, the 247 * virtual address is stored in hugepg_tbl[i].orig_va, else it is stored 248 * in hugepg_tbl[i].final_va. The second mapping (when orig is 0) tries to 249 * map contiguous physical blocks in contiguous virtual blocks. 250 */ 251 static unsigned 252 map_all_hugepages(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi, 253 uint64_t *essential_memory __rte_unused) 254 { 255 int fd; 256 unsigned i; 257 void *virtaddr; 258 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES 259 int node_id = -1; 260 int essential_prev = 0; 261 int oldpolicy; 262 struct bitmask *oldmask = NULL; 263 bool have_numa = true; 264 unsigned long maxnode = 0; 265 const struct internal_config *internal_conf = 266 eal_get_internal_configuration(); 267 268 /* Check if kernel supports NUMA. */ 269 if (numa_available() != 0) { 270 EAL_LOG(DEBUG, "NUMA is not supported."); 271 have_numa = false; 272 } 273 274 if (have_numa) { 275 EAL_LOG(DEBUG, "Trying to obtain current memory policy."); 276 oldmask = numa_allocate_nodemask(); 277 if (get_mempolicy(&oldpolicy, oldmask->maskp, 278 oldmask->size + 1, 0, 0) < 0) { 279 EAL_LOG(ERR, 280 "Failed to get current mempolicy: %s. " 281 "Assuming MPOL_DEFAULT.", strerror(errno)); 282 oldpolicy = MPOL_DEFAULT; 283 } 284 for (i = 0; i < RTE_MAX_NUMA_NODES; i++) 285 if (internal_conf->socket_mem[i]) 286 maxnode = i + 1; 287 } 288 #endif 289 290 for (i = 0; i < hpi->num_pages[0]; i++) { 291 struct hugepage_file *hf = &hugepg_tbl[i]; 292 uint64_t hugepage_sz = hpi->hugepage_sz; 293 294 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES 295 if (maxnode) { 296 unsigned int j; 297 298 for (j = 0; j < maxnode; j++) 299 if (essential_memory[j]) 300 break; 301 302 if (j == maxnode) { 303 node_id = (node_id + 1) % maxnode; 304 while (!internal_conf->socket_mem[node_id]) { 305 node_id++; 306 node_id %= maxnode; 307 } 308 essential_prev = 0; 309 } else { 310 node_id = j; 311 essential_prev = essential_memory[j]; 312 313 if (essential_memory[j] < hugepage_sz) 314 essential_memory[j] = 0; 315 else 316 essential_memory[j] -= hugepage_sz; 317 } 318 319 EAL_LOG(DEBUG, 320 "Setting policy MPOL_PREFERRED for socket %d", 321 node_id); 322 numa_set_preferred(node_id); 323 } 324 #endif 325 326 hf->file_id = i; 327 hf->size = hugepage_sz; 328 eal_get_hugefile_path(hf->filepath, sizeof(hf->filepath), 329 hpi->hugedir, hf->file_id); 330 hf->filepath[sizeof(hf->filepath) - 1] = '\0'; 331 332 /* try to create hugepage file */ 333 fd = open(hf->filepath, O_CREAT | O_RDWR, 0600); 334 if (fd < 0) { 335 EAL_LOG(DEBUG, "%s(): open failed: %s", __func__, 336 strerror(errno)); 337 goto out; 338 } 339 340 /* map the segment, and populate page tables, 341 * the kernel fills this segment with zeros. we don't care where 342 * this gets mapped - we already have contiguous memory areas 343 * ready for us to map into. 344 */ 345 virtaddr = mmap(NULL, hugepage_sz, PROT_READ | PROT_WRITE, 346 MAP_SHARED | MAP_POPULATE, fd, 0); 347 if (virtaddr == MAP_FAILED) { 348 EAL_LOG(DEBUG, "%s(): mmap failed: %s", __func__, 349 strerror(errno)); 350 close(fd); 351 goto out; 352 } 353 354 hf->orig_va = virtaddr; 355 356 /* In linux, hugetlb limitations, like cgroup, are 357 * enforced at fault time instead of mmap(), even 358 * with the option of MAP_POPULATE. Kernel will send 359 * a SIGBUS signal. To avoid to be killed, save stack 360 * environment here, if SIGBUS happens, we can jump 361 * back here. 362 */ 363 if (huge_wrap_sigsetjmp()) { 364 EAL_LOG(DEBUG, "SIGBUS: Cannot mmap more " 365 "hugepages of size %u MB", 366 (unsigned int)(hugepage_sz / 0x100000)); 367 munmap(virtaddr, hugepage_sz); 368 close(fd); 369 unlink(hugepg_tbl[i].filepath); 370 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES 371 if (maxnode) 372 essential_memory[node_id] = 373 essential_prev; 374 #endif 375 goto out; 376 } 377 *(int *)virtaddr = 0; 378 379 /* set shared lock on the file. */ 380 if (flock(fd, LOCK_SH) < 0) { 381 EAL_LOG(DEBUG, "%s(): Locking file failed:%s ", 382 __func__, strerror(errno)); 383 close(fd); 384 goto out; 385 } 386 387 close(fd); 388 } 389 390 out: 391 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES 392 if (maxnode) { 393 EAL_LOG(DEBUG, 394 "Restoring previous memory policy: %d", oldpolicy); 395 if (oldpolicy == MPOL_DEFAULT) { 396 numa_set_localalloc(); 397 } else if (set_mempolicy(oldpolicy, oldmask->maskp, 398 oldmask->size + 1) < 0) { 399 EAL_LOG(ERR, "Failed to restore mempolicy: %s", 400 strerror(errno)); 401 numa_set_localalloc(); 402 } 403 } 404 if (oldmask != NULL) 405 numa_free_cpumask(oldmask); 406 #endif 407 return i; 408 } 409 410 /* 411 * Parse /proc/self/numa_maps to get the NUMA socket ID for each huge 412 * page. 413 */ 414 static int 415 find_numasocket(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi) 416 { 417 int socket_id; 418 char *end, *nodestr; 419 unsigned i, hp_count = 0; 420 uint64_t virt_addr; 421 char buf[BUFSIZ]; 422 char hugedir_str[PATH_MAX]; 423 FILE *f; 424 425 f = fopen("/proc/self/numa_maps", "r"); 426 if (f == NULL) { 427 EAL_LOG(NOTICE, "NUMA support not available" 428 " consider that all memory is in socket_id 0"); 429 return 0; 430 } 431 432 snprintf(hugedir_str, sizeof(hugedir_str), 433 "%s/%s", hpi->hugedir, eal_get_hugefile_prefix()); 434 435 /* parse numa map */ 436 while (fgets(buf, sizeof(buf), f) != NULL) { 437 438 /* ignore non huge page */ 439 if (strstr(buf, " huge ") == NULL && 440 strstr(buf, hugedir_str) == NULL) 441 continue; 442 443 /* get zone addr */ 444 virt_addr = strtoull(buf, &end, 16); 445 if (virt_addr == 0 || end == buf) { 446 EAL_LOG(ERR, "%s(): error in numa_maps parsing", __func__); 447 goto error; 448 } 449 450 /* get node id (socket id) */ 451 nodestr = strstr(buf, " N"); 452 if (nodestr == NULL) { 453 EAL_LOG(ERR, "%s(): error in numa_maps parsing", __func__); 454 goto error; 455 } 456 nodestr += 2; 457 end = strstr(nodestr, "="); 458 if (end == NULL) { 459 EAL_LOG(ERR, "%s(): error in numa_maps parsing", __func__); 460 goto error; 461 } 462 end[0] = '\0'; 463 end = NULL; 464 465 socket_id = strtoul(nodestr, &end, 0); 466 if ((nodestr[0] == '\0') || (end == NULL) || (*end != '\0')) { 467 EAL_LOG(ERR, "%s(): error in numa_maps parsing", __func__); 468 goto error; 469 } 470 471 /* if we find this page in our mappings, set socket_id */ 472 for (i = 0; i < hpi->num_pages[0]; i++) { 473 void *va = (void *)(unsigned long)virt_addr; 474 if (hugepg_tbl[i].orig_va == va) { 475 hugepg_tbl[i].socket_id = socket_id; 476 hp_count++; 477 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES 478 EAL_LOG(DEBUG, 479 "Hugepage %s is on socket %d", 480 hugepg_tbl[i].filepath, socket_id); 481 #endif 482 } 483 } 484 } 485 486 if (hp_count < hpi->num_pages[0]) 487 goto error; 488 489 fclose(f); 490 return 0; 491 492 error: 493 fclose(f); 494 return -1; 495 } 496 497 static int 498 cmp_physaddr(const void *a, const void *b) 499 { 500 #ifndef RTE_ARCH_PPC_64 501 const struct hugepage_file *p1 = a; 502 const struct hugepage_file *p2 = b; 503 #else 504 /* PowerPC needs memory sorted in reverse order from x86 */ 505 const struct hugepage_file *p1 = b; 506 const struct hugepage_file *p2 = a; 507 #endif 508 if (p1->physaddr < p2->physaddr) 509 return -1; 510 else if (p1->physaddr > p2->physaddr) 511 return 1; 512 else 513 return 0; 514 } 515 516 /* 517 * Uses mmap to create a shared memory area for storage of data 518 * Used in this file to store the hugepage file map on disk 519 */ 520 static void * 521 create_shared_memory(const char *filename, const size_t mem_size) 522 { 523 void *retval; 524 int fd; 525 const struct internal_config *internal_conf = 526 eal_get_internal_configuration(); 527 528 /* if no shared files mode is used, create anonymous memory instead */ 529 if (internal_conf->no_shconf) { 530 retval = mmap(NULL, mem_size, PROT_READ | PROT_WRITE, 531 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 532 if (retval == MAP_FAILED) 533 return NULL; 534 return retval; 535 } 536 537 fd = open(filename, O_CREAT | O_RDWR, 0600); 538 if (fd < 0) 539 return NULL; 540 if (ftruncate(fd, mem_size) < 0) { 541 close(fd); 542 return NULL; 543 } 544 retval = mmap(NULL, mem_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); 545 close(fd); 546 if (retval == MAP_FAILED) 547 return NULL; 548 return retval; 549 } 550 551 /* 552 * this copies *active* hugepages from one hugepage table to another. 553 * destination is typically the shared memory. 554 */ 555 static int 556 copy_hugepages_to_shared_mem(struct hugepage_file * dst, int dest_size, 557 const struct hugepage_file * src, int src_size) 558 { 559 int src_pos, dst_pos = 0; 560 561 for (src_pos = 0; src_pos < src_size; src_pos++) { 562 if (src[src_pos].orig_va != NULL) { 563 /* error on overflow attempt */ 564 if (dst_pos == dest_size) 565 return -1; 566 memcpy(&dst[dst_pos], &src[src_pos], sizeof(struct hugepage_file)); 567 dst_pos++; 568 } 569 } 570 return 0; 571 } 572 573 static int 574 unlink_hugepage_files(struct hugepage_file *hugepg_tbl, 575 unsigned num_hp_info) 576 { 577 unsigned socket, size; 578 int page, nrpages = 0; 579 const struct internal_config *internal_conf = 580 eal_get_internal_configuration(); 581 582 /* get total number of hugepages */ 583 for (size = 0; size < num_hp_info; size++) 584 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) 585 nrpages += 586 internal_conf->hugepage_info[size].num_pages[socket]; 587 588 for (page = 0; page < nrpages; page++) { 589 struct hugepage_file *hp = &hugepg_tbl[page]; 590 591 if (hp->orig_va != NULL && unlink(hp->filepath)) { 592 EAL_LOG(WARNING, "%s(): Removing %s failed: %s", 593 __func__, hp->filepath, strerror(errno)); 594 } 595 } 596 return 0; 597 } 598 599 /* 600 * unmaps hugepages that are not going to be used. since we originally allocate 601 * ALL hugepages (not just those we need), additional unmapping needs to be done. 602 */ 603 static int 604 unmap_unneeded_hugepages(struct hugepage_file *hugepg_tbl, 605 struct hugepage_info *hpi, 606 unsigned num_hp_info) 607 { 608 unsigned socket, size; 609 int page, nrpages = 0; 610 const struct internal_config *internal_conf = 611 eal_get_internal_configuration(); 612 613 /* get total number of hugepages */ 614 for (size = 0; size < num_hp_info; size++) 615 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) 616 nrpages += internal_conf->hugepage_info[size].num_pages[socket]; 617 618 for (size = 0; size < num_hp_info; size++) { 619 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) { 620 unsigned pages_found = 0; 621 622 /* traverse until we have unmapped all the unused pages */ 623 for (page = 0; page < nrpages; page++) { 624 struct hugepage_file *hp = &hugepg_tbl[page]; 625 626 /* find a page that matches the criteria */ 627 if ((hp->size == hpi[size].hugepage_sz) && 628 (hp->socket_id == (int) socket)) { 629 630 /* if we skipped enough pages, unmap the rest */ 631 if (pages_found == hpi[size].num_pages[socket]) { 632 uint64_t unmap_len; 633 634 unmap_len = hp->size; 635 636 /* get start addr and len of the remaining segment */ 637 munmap(hp->orig_va, 638 (size_t)unmap_len); 639 640 hp->orig_va = NULL; 641 if (unlink(hp->filepath) == -1) { 642 EAL_LOG(ERR, "%s(): Removing %s failed: %s", 643 __func__, hp->filepath, strerror(errno)); 644 return -1; 645 } 646 } else { 647 /* lock the page and skip */ 648 pages_found++; 649 } 650 651 } /* match page */ 652 } /* foreach page */ 653 } /* foreach socket */ 654 } /* foreach pagesize */ 655 656 return 0; 657 } 658 659 static int 660 remap_segment(struct hugepage_file *hugepages, int seg_start, int seg_end) 661 { 662 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 663 struct rte_memseg_list *msl; 664 struct rte_fbarray *arr; 665 int cur_page, seg_len; 666 unsigned int msl_idx; 667 int ms_idx; 668 uint64_t page_sz; 669 size_t memseg_len; 670 int socket_id; 671 #ifndef RTE_ARCH_64 672 const struct internal_config *internal_conf = 673 eal_get_internal_configuration(); 674 #endif 675 page_sz = hugepages[seg_start].size; 676 socket_id = hugepages[seg_start].socket_id; 677 seg_len = seg_end - seg_start; 678 679 EAL_LOG(DEBUG, "Attempting to map %" PRIu64 "M on socket %i", 680 (seg_len * page_sz) >> 20ULL, socket_id); 681 682 /* find free space in memseg lists */ 683 for (msl_idx = 0; msl_idx < RTE_MAX_MEMSEG_LISTS; msl_idx++) { 684 int free_len; 685 bool empty; 686 msl = &mcfg->memsegs[msl_idx]; 687 arr = &msl->memseg_arr; 688 689 if (msl->page_sz != page_sz) 690 continue; 691 if (msl->socket_id != socket_id) 692 continue; 693 694 /* leave space for a hole if array is not empty */ 695 empty = arr->count == 0; 696 /* find start of the biggest contiguous block and its size */ 697 ms_idx = rte_fbarray_find_biggest_free(arr, 0); 698 if (ms_idx < 0) 699 continue; 700 /* hole is 1 segment long, so at least two segments long. */ 701 free_len = rte_fbarray_find_contig_free(arr, ms_idx); 702 if (free_len < 2) 703 continue; 704 /* leave some space between memsegs, they are not IOVA 705 * contiguous, so they shouldn't be VA contiguous either. 706 */ 707 if (!empty) { 708 ms_idx++; 709 free_len--; 710 } 711 712 /* we might not get all of the space we wanted */ 713 free_len = RTE_MIN(seg_len, free_len); 714 seg_end = seg_start + free_len; 715 seg_len = seg_end - seg_start; 716 break; 717 } 718 if (msl_idx == RTE_MAX_MEMSEG_LISTS) { 719 EAL_LOG(ERR, "Could not find space for memseg. Please increase RTE_MAX_MEMSEG_PER_LIST " 720 "RTE_MAX_MEMSEG_PER_TYPE and/or RTE_MAX_MEM_MB_PER_TYPE in configuration."); 721 return -1; 722 } 723 724 #ifdef RTE_ARCH_PPC_64 725 /* for PPC64 we go through the list backwards */ 726 for (cur_page = seg_end - 1; cur_page >= seg_start; 727 cur_page--, ms_idx++) { 728 #else 729 for (cur_page = seg_start; cur_page < seg_end; cur_page++, ms_idx++) { 730 #endif 731 struct hugepage_file *hfile = &hugepages[cur_page]; 732 struct rte_memseg *ms = rte_fbarray_get(arr, ms_idx); 733 void *addr; 734 int fd; 735 736 fd = open(hfile->filepath, O_RDWR); 737 if (fd < 0) { 738 EAL_LOG(ERR, "Could not open '%s': %s", 739 hfile->filepath, strerror(errno)); 740 return -1; 741 } 742 /* set shared lock on the file. */ 743 if (flock(fd, LOCK_SH) < 0) { 744 EAL_LOG(DEBUG, "Could not lock '%s': %s", 745 hfile->filepath, strerror(errno)); 746 close(fd); 747 return -1; 748 } 749 memseg_len = (size_t)page_sz; 750 addr = RTE_PTR_ADD(msl->base_va, ms_idx * memseg_len); 751 752 /* we know this address is already mmapped by memseg list, so 753 * using MAP_FIXED here is safe 754 */ 755 addr = mmap(addr, page_sz, PROT_READ | PROT_WRITE, 756 MAP_SHARED | MAP_POPULATE | MAP_FIXED, fd, 0); 757 if (addr == MAP_FAILED) { 758 EAL_LOG(ERR, "Couldn't remap '%s': %s", 759 hfile->filepath, strerror(errno)); 760 close(fd); 761 return -1; 762 } 763 764 /* we have a new address, so unmap previous one */ 765 #ifndef RTE_ARCH_64 766 /* in 32-bit legacy mode, we have already unmapped the page */ 767 if (!internal_conf->legacy_mem) 768 munmap(hfile->orig_va, page_sz); 769 #else 770 munmap(hfile->orig_va, page_sz); 771 #endif 772 773 hfile->orig_va = NULL; 774 hfile->final_va = addr; 775 776 /* rewrite physical addresses in IOVA as VA mode */ 777 if (rte_eal_iova_mode() == RTE_IOVA_VA) 778 hfile->physaddr = (uintptr_t)addr; 779 780 /* set up memseg data */ 781 ms->addr = addr; 782 ms->hugepage_sz = page_sz; 783 ms->len = memseg_len; 784 ms->iova = hfile->physaddr; 785 ms->socket_id = hfile->socket_id; 786 ms->nchannel = rte_memory_get_nchannel(); 787 ms->nrank = rte_memory_get_nrank(); 788 789 rte_fbarray_set_used(arr, ms_idx); 790 791 /* store segment fd internally */ 792 if (eal_memalloc_set_seg_fd(msl_idx, ms_idx, fd) < 0) 793 EAL_LOG(ERR, "Could not store segment fd: %s", 794 rte_strerror(rte_errno)); 795 } 796 EAL_LOG(DEBUG, "Allocated %" PRIu64 "M on socket %i", 797 (seg_len * page_sz) >> 20, socket_id); 798 return seg_len; 799 } 800 801 static uint64_t 802 get_mem_amount(uint64_t page_sz, uint64_t max_mem) 803 { 804 uint64_t area_sz, max_pages; 805 806 /* limit to RTE_MAX_MEMSEG_PER_LIST pages or RTE_MAX_MEM_MB_PER_LIST */ 807 max_pages = RTE_MAX_MEMSEG_PER_LIST; 808 max_mem = RTE_MIN((uint64_t)RTE_MAX_MEM_MB_PER_LIST << 20, max_mem); 809 810 area_sz = RTE_MIN(page_sz * max_pages, max_mem); 811 812 /* make sure the list isn't smaller than the page size */ 813 area_sz = RTE_MAX(area_sz, page_sz); 814 815 return RTE_ALIGN(area_sz, page_sz); 816 } 817 818 static int 819 memseg_list_free(struct rte_memseg_list *msl) 820 { 821 if (rte_fbarray_destroy(&msl->memseg_arr)) { 822 EAL_LOG(ERR, "Cannot destroy memseg list"); 823 return -1; 824 } 825 memset(msl, 0, sizeof(*msl)); 826 return 0; 827 } 828 829 /* 830 * Our VA space is not preallocated yet, so preallocate it here. We need to know 831 * how many segments there are in order to map all pages into one address space, 832 * and leave appropriate holes between segments so that rte_malloc does not 833 * concatenate them into one big segment. 834 * 835 * we also need to unmap original pages to free up address space. 836 */ 837 static int __rte_unused 838 prealloc_segments(struct hugepage_file *hugepages, int n_pages) 839 { 840 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 841 int cur_page, seg_start_page, end_seg, new_memseg; 842 unsigned int hpi_idx, socket, i; 843 int n_contig_segs, n_segs; 844 int msl_idx; 845 const struct internal_config *internal_conf = 846 eal_get_internal_configuration(); 847 848 /* before we preallocate segments, we need to free up our VA space. 849 * we're not removing files, and we already have information about 850 * PA-contiguousness, so it is safe to unmap everything. 851 */ 852 for (cur_page = 0; cur_page < n_pages; cur_page++) { 853 struct hugepage_file *hpi = &hugepages[cur_page]; 854 munmap(hpi->orig_va, hpi->size); 855 hpi->orig_va = NULL; 856 } 857 858 /* we cannot know how many page sizes and sockets we have discovered, so 859 * loop over all of them 860 */ 861 for (hpi_idx = 0; hpi_idx < internal_conf->num_hugepage_sizes; 862 hpi_idx++) { 863 uint64_t page_sz = 864 internal_conf->hugepage_info[hpi_idx].hugepage_sz; 865 866 for (i = 0; i < rte_socket_count(); i++) { 867 struct rte_memseg_list *msl; 868 869 socket = rte_socket_id_by_idx(i); 870 n_contig_segs = 0; 871 n_segs = 0; 872 seg_start_page = -1; 873 874 for (cur_page = 0; cur_page < n_pages; cur_page++) { 875 struct hugepage_file *prev, *cur; 876 int prev_seg_start_page = -1; 877 878 cur = &hugepages[cur_page]; 879 prev = cur_page == 0 ? NULL : 880 &hugepages[cur_page - 1]; 881 882 new_memseg = 0; 883 end_seg = 0; 884 885 if (cur->size == 0) 886 end_seg = 1; 887 else if (cur->socket_id != (int) socket) 888 end_seg = 1; 889 else if (cur->size != page_sz) 890 end_seg = 1; 891 else if (cur_page == 0) 892 new_memseg = 1; 893 #ifdef RTE_ARCH_PPC_64 894 /* On PPC64 architecture, the mmap always start 895 * from higher address to lower address. Here, 896 * physical addresses are in descending order. 897 */ 898 else if ((prev->physaddr - cur->physaddr) != 899 cur->size) 900 new_memseg = 1; 901 #else 902 else if ((cur->physaddr - prev->physaddr) != 903 cur->size) 904 new_memseg = 1; 905 #endif 906 if (new_memseg) { 907 /* if we're already inside a segment, 908 * new segment means end of current one 909 */ 910 if (seg_start_page != -1) { 911 end_seg = 1; 912 prev_seg_start_page = 913 seg_start_page; 914 } 915 seg_start_page = cur_page; 916 } 917 918 if (end_seg) { 919 if (prev_seg_start_page != -1) { 920 /* we've found a new segment */ 921 n_contig_segs++; 922 n_segs += cur_page - 923 prev_seg_start_page; 924 } else if (seg_start_page != -1) { 925 /* we didn't find new segment, 926 * but did end current one 927 */ 928 n_contig_segs++; 929 n_segs += cur_page - 930 seg_start_page; 931 seg_start_page = -1; 932 continue; 933 } else { 934 /* we're skipping this page */ 935 continue; 936 } 937 } 938 /* segment continues */ 939 } 940 /* check if we missed last segment */ 941 if (seg_start_page != -1) { 942 n_contig_segs++; 943 n_segs += cur_page - seg_start_page; 944 } 945 946 /* if no segments were found, do not preallocate */ 947 if (n_segs == 0) 948 continue; 949 950 /* we now have total number of pages that we will 951 * allocate for this segment list. add separator pages 952 * to the total count, and preallocate VA space. 953 */ 954 n_segs += n_contig_segs - 1; 955 956 /* now, preallocate VA space for these segments */ 957 958 /* first, find suitable memseg list for this */ 959 for (msl_idx = 0; msl_idx < RTE_MAX_MEMSEG_LISTS; 960 msl_idx++) { 961 msl = &mcfg->memsegs[msl_idx]; 962 963 if (msl->base_va != NULL) 964 continue; 965 break; 966 } 967 if (msl_idx == RTE_MAX_MEMSEG_LISTS) { 968 EAL_LOG(ERR, "Not enough space in memseg lists, please increase RTE_MAX_MEMSEG_LISTS"); 969 return -1; 970 } 971 972 /* now, allocate fbarray itself */ 973 if (eal_memseg_list_init(msl, page_sz, n_segs, 974 socket, msl_idx, true) < 0) 975 return -1; 976 977 /* finally, allocate VA space */ 978 if (eal_memseg_list_alloc(msl, 0) < 0) { 979 EAL_LOG(ERR, "Cannot preallocate 0x%"PRIx64"kB hugepages", 980 page_sz >> 10); 981 return -1; 982 } 983 } 984 } 985 return 0; 986 } 987 988 /* 989 * We cannot reallocate memseg lists on the fly because PPC64 stores pages 990 * backwards, therefore we have to process the entire memseg first before 991 * remapping it into memseg list VA space. 992 */ 993 static int 994 remap_needed_hugepages(struct hugepage_file *hugepages, int n_pages) 995 { 996 int cur_page, seg_start_page, new_memseg, ret; 997 998 seg_start_page = 0; 999 for (cur_page = 0; cur_page < n_pages; cur_page++) { 1000 struct hugepage_file *prev, *cur; 1001 1002 new_memseg = 0; 1003 1004 cur = &hugepages[cur_page]; 1005 prev = cur_page == 0 ? NULL : &hugepages[cur_page - 1]; 1006 1007 /* if size is zero, no more pages left */ 1008 if (cur->size == 0) 1009 break; 1010 1011 if (cur_page == 0) 1012 new_memseg = 1; 1013 else if (cur->socket_id != prev->socket_id) 1014 new_memseg = 1; 1015 else if (cur->size != prev->size) 1016 new_memseg = 1; 1017 #ifdef RTE_ARCH_PPC_64 1018 /* On PPC64 architecture, the mmap always start from higher 1019 * address to lower address. Here, physical addresses are in 1020 * descending order. 1021 */ 1022 else if ((prev->physaddr - cur->physaddr) != cur->size) 1023 new_memseg = 1; 1024 #else 1025 else if ((cur->physaddr - prev->physaddr) != cur->size) 1026 new_memseg = 1; 1027 #endif 1028 1029 if (new_memseg) { 1030 /* if this isn't the first time, remap segment */ 1031 if (cur_page != 0) { 1032 int n_remapped = 0; 1033 int n_needed = cur_page - seg_start_page; 1034 while (n_remapped < n_needed) { 1035 ret = remap_segment(hugepages, seg_start_page, 1036 cur_page); 1037 if (ret < 0) 1038 return -1; 1039 n_remapped += ret; 1040 seg_start_page += ret; 1041 } 1042 } 1043 /* remember where we started */ 1044 seg_start_page = cur_page; 1045 } 1046 /* continuation of previous memseg */ 1047 } 1048 /* we were stopped, but we didn't remap the last segment, do it now */ 1049 if (cur_page != 0) { 1050 int n_remapped = 0; 1051 int n_needed = cur_page - seg_start_page; 1052 while (n_remapped < n_needed) { 1053 ret = remap_segment(hugepages, seg_start_page, 1054 cur_page); 1055 if (ret < 0) 1056 return -1; 1057 n_remapped += ret; 1058 seg_start_page += ret; 1059 } 1060 } 1061 return 0; 1062 } 1063 1064 static inline size_t 1065 eal_get_hugepage_mem_size(void) 1066 { 1067 uint64_t size = 0; 1068 unsigned i, j; 1069 struct internal_config *internal_conf = 1070 eal_get_internal_configuration(); 1071 1072 for (i = 0; i < internal_conf->num_hugepage_sizes; i++) { 1073 struct hugepage_info *hpi = &internal_conf->hugepage_info[i]; 1074 if (strnlen(hpi->hugedir, sizeof(hpi->hugedir)) != 0) { 1075 for (j = 0; j < RTE_MAX_NUMA_NODES; j++) { 1076 size += hpi->hugepage_sz * hpi->num_pages[j]; 1077 } 1078 } 1079 } 1080 1081 return (size < SIZE_MAX) ? (size_t)(size) : SIZE_MAX; 1082 } 1083 1084 static struct sigaction huge_action_old; 1085 static int huge_need_recover; 1086 1087 static void 1088 huge_register_sigbus(void) 1089 { 1090 sigset_t mask; 1091 struct sigaction action; 1092 1093 sigemptyset(&mask); 1094 sigaddset(&mask, SIGBUS); 1095 action.sa_flags = 0; 1096 action.sa_mask = mask; 1097 action.sa_handler = huge_sigbus_handler; 1098 1099 huge_need_recover = !sigaction(SIGBUS, &action, &huge_action_old); 1100 } 1101 1102 static void 1103 huge_recover_sigbus(void) 1104 { 1105 if (huge_need_recover) { 1106 sigaction(SIGBUS, &huge_action_old, NULL); 1107 huge_need_recover = 0; 1108 } 1109 } 1110 1111 /* 1112 * Prepare physical memory mapping: fill configuration structure with 1113 * these infos, return 0 on success. 1114 * 1. map N huge pages in separate files in hugetlbfs 1115 * 2. find associated physical addr 1116 * 3. find associated NUMA socket ID 1117 * 4. sort all huge pages by physical address 1118 * 5. remap these N huge pages in the correct order 1119 * 6. unmap the first mapping 1120 * 7. fill memsegs in configuration with contiguous zones 1121 */ 1122 static int 1123 eal_legacy_hugepage_init(void) 1124 { 1125 struct rte_mem_config *mcfg; 1126 struct hugepage_file *hugepage = NULL, *tmp_hp = NULL; 1127 struct hugepage_info used_hp[MAX_HUGEPAGE_SIZES]; 1128 struct internal_config *internal_conf = 1129 eal_get_internal_configuration(); 1130 1131 uint64_t memory[RTE_MAX_NUMA_NODES]; 1132 1133 unsigned hp_offset; 1134 int i, j; 1135 int nr_hugefiles, nr_hugepages = 0; 1136 void *addr; 1137 1138 memset(used_hp, 0, sizeof(used_hp)); 1139 1140 /* get pointer to global configuration */ 1141 mcfg = rte_eal_get_configuration()->mem_config; 1142 1143 /* hugetlbfs can be disabled */ 1144 if (internal_conf->no_hugetlbfs) { 1145 void *prealloc_addr; 1146 size_t mem_sz; 1147 struct rte_memseg_list *msl; 1148 int n_segs, fd, flags; 1149 #ifdef MEMFD_SUPPORTED 1150 int memfd; 1151 #endif 1152 uint64_t page_sz; 1153 1154 /* nohuge mode is legacy mode */ 1155 internal_conf->legacy_mem = 1; 1156 1157 /* nohuge mode is single-file segments mode */ 1158 internal_conf->single_file_segments = 1; 1159 1160 /* create a memseg list */ 1161 msl = &mcfg->memsegs[0]; 1162 1163 mem_sz = internal_conf->memory; 1164 page_sz = RTE_PGSIZE_4K; 1165 n_segs = mem_sz / page_sz; 1166 1167 if (eal_memseg_list_init_named( 1168 msl, "nohugemem", page_sz, n_segs, 0, true)) { 1169 return -1; 1170 } 1171 1172 /* set up parameters for anonymous mmap */ 1173 fd = -1; 1174 flags = MAP_PRIVATE | MAP_ANONYMOUS; 1175 1176 #ifdef MEMFD_SUPPORTED 1177 /* create a memfd and store it in the segment fd table */ 1178 memfd = memfd_create("nohuge", 0); 1179 if (memfd < 0) { 1180 EAL_LOG(DEBUG, "Cannot create memfd: %s", 1181 strerror(errno)); 1182 EAL_LOG(DEBUG, "Falling back to anonymous map"); 1183 } else { 1184 /* we got an fd - now resize it */ 1185 if (ftruncate(memfd, internal_conf->memory) < 0) { 1186 EAL_LOG(ERR, "Cannot resize memfd: %s", 1187 strerror(errno)); 1188 EAL_LOG(ERR, "Falling back to anonymous map"); 1189 close(memfd); 1190 } else { 1191 /* creating memfd-backed file was successful. 1192 * we want changes to memfd to be visible to 1193 * other processes (such as vhost backend), so 1194 * map it as shared memory. 1195 */ 1196 EAL_LOG(DEBUG, "Using memfd for anonymous memory"); 1197 fd = memfd; 1198 flags = MAP_SHARED; 1199 } 1200 } 1201 #endif 1202 /* preallocate address space for the memory, so that it can be 1203 * fit into the DMA mask. 1204 */ 1205 if (eal_memseg_list_alloc(msl, 0)) { 1206 EAL_LOG(ERR, "Cannot preallocate VA space for hugepage memory"); 1207 return -1; 1208 } 1209 1210 prealloc_addr = msl->base_va; 1211 addr = mmap(prealloc_addr, mem_sz, PROT_READ | PROT_WRITE, 1212 flags | MAP_FIXED, fd, 0); 1213 if (addr == MAP_FAILED || addr != prealloc_addr) { 1214 EAL_LOG(ERR, "%s: mmap() failed: %s", __func__, 1215 strerror(errno)); 1216 munmap(prealloc_addr, mem_sz); 1217 return -1; 1218 } 1219 1220 /* we're in single-file segments mode, so only the segment list 1221 * fd needs to be set up. 1222 */ 1223 if (fd != -1) { 1224 if (eal_memalloc_set_seg_list_fd(0, fd) < 0) { 1225 EAL_LOG(ERR, "Cannot set up segment list fd"); 1226 /* not a serious error, proceed */ 1227 } 1228 } 1229 1230 eal_memseg_list_populate(msl, addr, n_segs); 1231 1232 if (mcfg->dma_maskbits && 1233 rte_mem_check_dma_mask_thread_unsafe(mcfg->dma_maskbits)) { 1234 EAL_LOG(ERR, 1235 "%s(): couldn't allocate memory due to IOVA exceeding limits of current DMA mask.", 1236 __func__); 1237 if (rte_eal_iova_mode() == RTE_IOVA_VA && 1238 rte_eal_using_phys_addrs()) 1239 EAL_LOG(ERR, 1240 "%s(): Please try initializing EAL with --iova-mode=pa parameter.", 1241 __func__); 1242 goto fail; 1243 } 1244 return 0; 1245 } 1246 1247 /* calculate total number of hugepages available. at this point we haven't 1248 * yet started sorting them so they all are on socket 0 */ 1249 for (i = 0; i < (int) internal_conf->num_hugepage_sizes; i++) { 1250 /* meanwhile, also initialize used_hp hugepage sizes in used_hp */ 1251 used_hp[i].hugepage_sz = internal_conf->hugepage_info[i].hugepage_sz; 1252 1253 nr_hugepages += internal_conf->hugepage_info[i].num_pages[0]; 1254 } 1255 1256 /* 1257 * allocate a memory area for hugepage table. 1258 * this isn't shared memory yet. due to the fact that we need some 1259 * processing done on these pages, shared memory will be created 1260 * at a later stage. 1261 */ 1262 tmp_hp = malloc(nr_hugepages * sizeof(struct hugepage_file)); 1263 if (tmp_hp == NULL) 1264 goto fail; 1265 1266 memset(tmp_hp, 0, nr_hugepages * sizeof(struct hugepage_file)); 1267 1268 hp_offset = 0; /* where we start the current page size entries */ 1269 1270 huge_register_sigbus(); 1271 1272 /* make a copy of socket_mem, needed for balanced allocation. */ 1273 for (i = 0; i < RTE_MAX_NUMA_NODES; i++) 1274 memory[i] = internal_conf->socket_mem[i]; 1275 1276 /* map all hugepages and sort them */ 1277 for (i = 0; i < (int)internal_conf->num_hugepage_sizes; i++) { 1278 unsigned pages_old, pages_new; 1279 struct hugepage_info *hpi; 1280 1281 /* 1282 * we don't yet mark hugepages as used at this stage, so 1283 * we just map all hugepages available to the system 1284 * all hugepages are still located on socket 0 1285 */ 1286 hpi = &internal_conf->hugepage_info[i]; 1287 1288 if (hpi->num_pages[0] == 0) 1289 continue; 1290 1291 /* map all hugepages available */ 1292 pages_old = hpi->num_pages[0]; 1293 pages_new = map_all_hugepages(&tmp_hp[hp_offset], hpi, memory); 1294 if (pages_new < pages_old) { 1295 EAL_LOG(DEBUG, 1296 "%d not %d hugepages of size %u MB allocated", 1297 pages_new, pages_old, 1298 (unsigned)(hpi->hugepage_sz / 0x100000)); 1299 1300 int pages = pages_old - pages_new; 1301 1302 nr_hugepages -= pages; 1303 hpi->num_pages[0] = pages_new; 1304 if (pages_new == 0) 1305 continue; 1306 } 1307 1308 if (rte_eal_using_phys_addrs() && 1309 rte_eal_iova_mode() != RTE_IOVA_VA) { 1310 /* find physical addresses for each hugepage */ 1311 if (find_physaddrs(&tmp_hp[hp_offset], hpi) < 0) { 1312 EAL_LOG(DEBUG, "Failed to find phys addr " 1313 "for %u MB pages", 1314 (unsigned int)(hpi->hugepage_sz / 0x100000)); 1315 goto fail; 1316 } 1317 } else { 1318 /* set physical addresses for each hugepage */ 1319 if (set_physaddrs(&tmp_hp[hp_offset], hpi) < 0) { 1320 EAL_LOG(DEBUG, "Failed to set phys addr " 1321 "for %u MB pages", 1322 (unsigned int)(hpi->hugepage_sz / 0x100000)); 1323 goto fail; 1324 } 1325 } 1326 1327 if (find_numasocket(&tmp_hp[hp_offset], hpi) < 0){ 1328 EAL_LOG(DEBUG, "Failed to find NUMA socket for %u MB pages", 1329 (unsigned)(hpi->hugepage_sz / 0x100000)); 1330 goto fail; 1331 } 1332 1333 qsort(&tmp_hp[hp_offset], hpi->num_pages[0], 1334 sizeof(struct hugepage_file), cmp_physaddr); 1335 1336 /* we have processed a num of hugepages of this size, so inc offset */ 1337 hp_offset += hpi->num_pages[0]; 1338 } 1339 1340 huge_recover_sigbus(); 1341 1342 if (internal_conf->memory == 0 && internal_conf->force_sockets == 0) 1343 internal_conf->memory = eal_get_hugepage_mem_size(); 1344 1345 nr_hugefiles = nr_hugepages; 1346 1347 1348 /* clean out the numbers of pages */ 1349 for (i = 0; i < (int) internal_conf->num_hugepage_sizes; i++) 1350 for (j = 0; j < RTE_MAX_NUMA_NODES; j++) 1351 internal_conf->hugepage_info[i].num_pages[j] = 0; 1352 1353 /* get hugepages for each socket */ 1354 for (i = 0; i < nr_hugefiles; i++) { 1355 int socket = tmp_hp[i].socket_id; 1356 1357 /* find a hugepage info with right size and increment num_pages */ 1358 const int nb_hpsizes = RTE_MIN(MAX_HUGEPAGE_SIZES, 1359 (int)internal_conf->num_hugepage_sizes); 1360 for (j = 0; j < nb_hpsizes; j++) { 1361 if (tmp_hp[i].size == 1362 internal_conf->hugepage_info[j].hugepage_sz) { 1363 internal_conf->hugepage_info[j].num_pages[socket]++; 1364 } 1365 } 1366 } 1367 1368 /* make a copy of socket_mem, needed for number of pages calculation */ 1369 for (i = 0; i < RTE_MAX_NUMA_NODES; i++) 1370 memory[i] = internal_conf->socket_mem[i]; 1371 1372 /* calculate final number of pages */ 1373 nr_hugepages = eal_dynmem_calc_num_pages_per_socket(memory, 1374 internal_conf->hugepage_info, used_hp, 1375 internal_conf->num_hugepage_sizes); 1376 1377 /* error if not enough memory available */ 1378 if (nr_hugepages < 0) 1379 goto fail; 1380 1381 /* reporting in! */ 1382 for (i = 0; i < (int) internal_conf->num_hugepage_sizes; i++) { 1383 for (j = 0; j < RTE_MAX_NUMA_NODES; j++) { 1384 if (used_hp[i].num_pages[j] > 0) { 1385 EAL_LOG(DEBUG, 1386 "Requesting %u pages of size %uMB" 1387 " from socket %i", 1388 used_hp[i].num_pages[j], 1389 (unsigned) 1390 (used_hp[i].hugepage_sz / 0x100000), 1391 j); 1392 } 1393 } 1394 } 1395 1396 /* create shared memory */ 1397 hugepage = create_shared_memory(eal_hugepage_data_path(), 1398 nr_hugefiles * sizeof(struct hugepage_file)); 1399 1400 if (hugepage == NULL) { 1401 EAL_LOG(ERR, "Failed to create shared memory!"); 1402 goto fail; 1403 } 1404 memset(hugepage, 0, nr_hugefiles * sizeof(struct hugepage_file)); 1405 1406 /* 1407 * unmap pages that we won't need (looks at used_hp). 1408 * also, sets final_va to NULL on pages that were unmapped. 1409 */ 1410 if (unmap_unneeded_hugepages(tmp_hp, used_hp, 1411 internal_conf->num_hugepage_sizes) < 0) { 1412 EAL_LOG(ERR, "Unmapping and locking hugepages failed!"); 1413 goto fail; 1414 } 1415 1416 /* 1417 * copy stuff from malloc'd hugepage* to the actual shared memory. 1418 * this procedure only copies those hugepages that have orig_va 1419 * not NULL. has overflow protection. 1420 */ 1421 if (copy_hugepages_to_shared_mem(hugepage, nr_hugefiles, 1422 tmp_hp, nr_hugefiles) < 0) { 1423 EAL_LOG(ERR, "Copying tables to shared memory failed!"); 1424 goto fail; 1425 } 1426 1427 #ifndef RTE_ARCH_64 1428 /* for legacy 32-bit mode, we did not preallocate VA space, so do it */ 1429 if (internal_conf->legacy_mem && 1430 prealloc_segments(hugepage, nr_hugefiles)) { 1431 EAL_LOG(ERR, "Could not preallocate VA space for hugepages"); 1432 goto fail; 1433 } 1434 #endif 1435 1436 /* remap all pages we do need into memseg list VA space, so that those 1437 * pages become first-class citizens in DPDK memory subsystem 1438 */ 1439 if (remap_needed_hugepages(hugepage, nr_hugefiles)) { 1440 EAL_LOG(ERR, "Couldn't remap hugepage files into memseg lists"); 1441 goto fail; 1442 } 1443 1444 /* free the hugepage backing files */ 1445 if (internal_conf->hugepage_file.unlink_before_mapping && 1446 unlink_hugepage_files(tmp_hp, internal_conf->num_hugepage_sizes) < 0) { 1447 EAL_LOG(ERR, "Unlinking hugepage files failed!"); 1448 goto fail; 1449 } 1450 1451 /* free the temporary hugepage table */ 1452 free(tmp_hp); 1453 tmp_hp = NULL; 1454 1455 munmap(hugepage, nr_hugefiles * sizeof(struct hugepage_file)); 1456 hugepage = NULL; 1457 1458 /* we're not going to allocate more pages, so release VA space for 1459 * unused memseg lists 1460 */ 1461 for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) { 1462 struct rte_memseg_list *msl = &mcfg->memsegs[i]; 1463 size_t mem_sz; 1464 1465 /* skip inactive lists */ 1466 if (msl->base_va == NULL) 1467 continue; 1468 /* skip lists where there is at least one page allocated */ 1469 if (msl->memseg_arr.count > 0) 1470 continue; 1471 /* this is an unused list, deallocate it */ 1472 mem_sz = msl->len; 1473 munmap(msl->base_va, mem_sz); 1474 msl->base_va = NULL; 1475 msl->heap = 0; 1476 1477 /* destroy backing fbarray */ 1478 rte_fbarray_destroy(&msl->memseg_arr); 1479 } 1480 1481 if (mcfg->dma_maskbits && 1482 rte_mem_check_dma_mask_thread_unsafe(mcfg->dma_maskbits)) { 1483 EAL_LOG(ERR, 1484 "%s(): couldn't allocate memory due to IOVA exceeding limits of current DMA mask.", 1485 __func__); 1486 goto fail; 1487 } 1488 1489 return 0; 1490 1491 fail: 1492 huge_recover_sigbus(); 1493 free(tmp_hp); 1494 if (hugepage != NULL) 1495 munmap(hugepage, nr_hugefiles * sizeof(struct hugepage_file)); 1496 1497 return -1; 1498 } 1499 1500 /* 1501 * uses fstat to report the size of a file on disk 1502 */ 1503 static off_t 1504 getFileSize(int fd) 1505 { 1506 struct stat st; 1507 if (fstat(fd, &st) < 0) 1508 return 0; 1509 return st.st_size; 1510 } 1511 1512 /* 1513 * This creates the memory mappings in the secondary process to match that of 1514 * the server process. It goes through each memory segment in the DPDK runtime 1515 * configuration and finds the hugepages which form that segment, mapping them 1516 * in order to form a contiguous block in the virtual memory space 1517 */ 1518 static int 1519 eal_legacy_hugepage_attach(void) 1520 { 1521 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 1522 struct hugepage_file *hp = NULL; 1523 unsigned int num_hp = 0; 1524 unsigned int i = 0; 1525 unsigned int cur_seg; 1526 off_t size = 0; 1527 int fd, fd_hugepage = -1; 1528 1529 if (aslr_enabled() > 0) { 1530 EAL_LOG(WARNING, "WARNING: Address Space Layout Randomization " 1531 "(ASLR) is enabled in the kernel."); 1532 EAL_LOG(WARNING, " This may cause issues with mapping memory " 1533 "into secondary processes"); 1534 } 1535 1536 fd_hugepage = open(eal_hugepage_data_path(), O_RDONLY); 1537 if (fd_hugepage < 0) { 1538 EAL_LOG(ERR, "Could not open %s", 1539 eal_hugepage_data_path()); 1540 goto error; 1541 } 1542 1543 size = getFileSize(fd_hugepage); 1544 hp = mmap(NULL, size, PROT_READ, MAP_PRIVATE, fd_hugepage, 0); 1545 if (hp == MAP_FAILED) { 1546 EAL_LOG(ERR, "Could not mmap %s", 1547 eal_hugepage_data_path()); 1548 goto error; 1549 } 1550 1551 num_hp = size / sizeof(struct hugepage_file); 1552 EAL_LOG(DEBUG, "Analysing %u files", num_hp); 1553 1554 /* map all segments into memory to make sure we get the addrs. the 1555 * segments themselves are already in memseg list (which is shared and 1556 * has its VA space already preallocated), so we just need to map 1557 * everything into correct addresses. 1558 */ 1559 for (i = 0; i < num_hp; i++) { 1560 struct hugepage_file *hf = &hp[i]; 1561 size_t map_sz = hf->size; 1562 void *map_addr = hf->final_va; 1563 int msl_idx, ms_idx; 1564 struct rte_memseg_list *msl; 1565 struct rte_memseg *ms; 1566 1567 /* if size is zero, no more pages left */ 1568 if (map_sz == 0) 1569 break; 1570 1571 fd = open(hf->filepath, O_RDWR); 1572 if (fd < 0) { 1573 EAL_LOG(ERR, "Could not open %s: %s", 1574 hf->filepath, strerror(errno)); 1575 goto error; 1576 } 1577 1578 map_addr = mmap(map_addr, map_sz, PROT_READ | PROT_WRITE, 1579 MAP_SHARED | MAP_FIXED, fd, 0); 1580 if (map_addr == MAP_FAILED) { 1581 EAL_LOG(ERR, "Could not map %s: %s", 1582 hf->filepath, strerror(errno)); 1583 goto fd_error; 1584 } 1585 1586 /* set shared lock on the file. */ 1587 if (flock(fd, LOCK_SH) < 0) { 1588 EAL_LOG(DEBUG, "%s(): Locking file failed: %s", 1589 __func__, strerror(errno)); 1590 goto mmap_error; 1591 } 1592 1593 /* find segment data */ 1594 msl = rte_mem_virt2memseg_list(map_addr); 1595 if (msl == NULL) { 1596 EAL_LOG(DEBUG, "%s(): Cannot find memseg list", 1597 __func__); 1598 goto mmap_error; 1599 } 1600 ms = rte_mem_virt2memseg(map_addr, msl); 1601 if (ms == NULL) { 1602 EAL_LOG(DEBUG, "%s(): Cannot find memseg", 1603 __func__); 1604 goto mmap_error; 1605 } 1606 1607 msl_idx = msl - mcfg->memsegs; 1608 ms_idx = rte_fbarray_find_idx(&msl->memseg_arr, ms); 1609 if (ms_idx < 0) { 1610 EAL_LOG(DEBUG, "%s(): Cannot find memseg idx", 1611 __func__); 1612 goto mmap_error; 1613 } 1614 1615 /* store segment fd internally */ 1616 if (eal_memalloc_set_seg_fd(msl_idx, ms_idx, fd) < 0) 1617 EAL_LOG(ERR, "Could not store segment fd: %s", 1618 rte_strerror(rte_errno)); 1619 } 1620 /* unmap the hugepage config file, since we are done using it */ 1621 munmap(hp, size); 1622 close(fd_hugepage); 1623 return 0; 1624 1625 mmap_error: 1626 munmap(hp[i].final_va, hp[i].size); 1627 fd_error: 1628 close(fd); 1629 error: 1630 /* unwind mmap's done so far */ 1631 for (cur_seg = 0; cur_seg < i; cur_seg++) 1632 munmap(hp[cur_seg].final_va, hp[cur_seg].size); 1633 1634 if (hp != NULL && hp != MAP_FAILED) 1635 munmap(hp, size); 1636 if (fd_hugepage >= 0) 1637 close(fd_hugepage); 1638 return -1; 1639 } 1640 1641 static int 1642 eal_hugepage_attach(void) 1643 { 1644 if (eal_memalloc_sync_with_primary()) { 1645 EAL_LOG(ERR, "Could not map memory from primary process"); 1646 if (aslr_enabled() > 0) 1647 EAL_LOG(ERR, "It is recommended to disable ASLR in the kernel and retry running both primary and secondary processes"); 1648 return -1; 1649 } 1650 return 0; 1651 } 1652 1653 int 1654 rte_eal_hugepage_init(void) 1655 { 1656 const struct internal_config *internal_conf = 1657 eal_get_internal_configuration(); 1658 1659 return internal_conf->legacy_mem ? 1660 eal_legacy_hugepage_init() : 1661 eal_dynmem_hugepage_init(); 1662 } 1663 1664 int 1665 rte_eal_hugepage_attach(void) 1666 { 1667 const struct internal_config *internal_conf = 1668 eal_get_internal_configuration(); 1669 1670 return internal_conf->legacy_mem ? 1671 eal_legacy_hugepage_attach() : 1672 eal_hugepage_attach(); 1673 } 1674 1675 int 1676 rte_eal_using_phys_addrs(void) 1677 { 1678 if (phys_addrs_available == -1) { 1679 uint64_t tmp = 0; 1680 1681 if (rte_eal_has_hugepages() != 0 && 1682 rte_mem_virt2phy(&tmp) != RTE_BAD_PHYS_ADDR) 1683 phys_addrs_available = 1; 1684 else 1685 phys_addrs_available = 0; 1686 } 1687 return phys_addrs_available; 1688 } 1689 1690 static int __rte_unused 1691 memseg_primary_init_32(void) 1692 { 1693 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 1694 int active_sockets, hpi_idx, msl_idx = 0; 1695 unsigned int socket_id, i; 1696 struct rte_memseg_list *msl; 1697 uint64_t extra_mem_per_socket, total_extra_mem, total_requested_mem; 1698 uint64_t max_mem; 1699 struct internal_config *internal_conf = 1700 eal_get_internal_configuration(); 1701 1702 /* no-huge does not need this at all */ 1703 if (internal_conf->no_hugetlbfs) 1704 return 0; 1705 1706 /* this is a giant hack, but desperate times call for desperate 1707 * measures. in legacy 32-bit mode, we cannot preallocate VA space, 1708 * because having upwards of 2 gigabytes of VA space already mapped will 1709 * interfere with our ability to map and sort hugepages. 1710 * 1711 * therefore, in legacy 32-bit mode, we will be initializing memseg 1712 * lists much later - in eal_memory.c, right after we unmap all the 1713 * unneeded pages. this will not affect secondary processes, as those 1714 * should be able to mmap the space without (too many) problems. 1715 */ 1716 if (internal_conf->legacy_mem) 1717 return 0; 1718 1719 /* 32-bit mode is a very special case. we cannot know in advance where 1720 * the user will want to allocate their memory, so we have to do some 1721 * heuristics. 1722 */ 1723 active_sockets = 0; 1724 total_requested_mem = 0; 1725 if (internal_conf->force_sockets) 1726 for (i = 0; i < rte_socket_count(); i++) { 1727 uint64_t mem; 1728 1729 socket_id = rte_socket_id_by_idx(i); 1730 mem = internal_conf->socket_mem[socket_id]; 1731 1732 if (mem == 0) 1733 continue; 1734 1735 active_sockets++; 1736 total_requested_mem += mem; 1737 } 1738 else 1739 total_requested_mem = internal_conf->memory; 1740 1741 max_mem = (uint64_t)RTE_MAX_MEM_MB << 20; 1742 if (total_requested_mem > max_mem) { 1743 EAL_LOG(ERR, "Invalid parameters: 32-bit process can at most use %uM of memory", 1744 (unsigned int)(max_mem >> 20)); 1745 return -1; 1746 } 1747 total_extra_mem = max_mem - total_requested_mem; 1748 extra_mem_per_socket = active_sockets == 0 ? total_extra_mem : 1749 total_extra_mem / active_sockets; 1750 1751 /* the allocation logic is a little bit convoluted, but here's how it 1752 * works, in a nutshell: 1753 * - if user hasn't specified on which sockets to allocate memory via 1754 * --socket-mem, we allocate all of our memory on main core socket. 1755 * - if user has specified sockets to allocate memory on, there may be 1756 * some "unused" memory left (e.g. if user has specified --socket-mem 1757 * such that not all memory adds up to 2 gigabytes), so add it to all 1758 * sockets that are in use equally. 1759 * 1760 * page sizes are sorted by size in descending order, so we can safely 1761 * assume that we dispense with bigger page sizes first. 1762 */ 1763 1764 /* create memseg lists */ 1765 for (i = 0; i < rte_socket_count(); i++) { 1766 int hp_sizes = (int) internal_conf->num_hugepage_sizes; 1767 uint64_t max_socket_mem, cur_socket_mem; 1768 unsigned int main_lcore_socket; 1769 struct rte_config *cfg = rte_eal_get_configuration(); 1770 bool skip; 1771 1772 socket_id = rte_socket_id_by_idx(i); 1773 1774 #ifndef RTE_EAL_NUMA_AWARE_HUGEPAGES 1775 /* we can still sort pages by socket in legacy mode */ 1776 if (!internal_conf->legacy_mem && socket_id > 0) 1777 break; 1778 #endif 1779 1780 /* if we didn't specifically request memory on this socket */ 1781 skip = active_sockets != 0 && 1782 internal_conf->socket_mem[socket_id] == 0; 1783 /* ...or if we didn't specifically request memory on *any* 1784 * socket, and this is not main lcore 1785 */ 1786 main_lcore_socket = rte_lcore_to_socket_id(cfg->main_lcore); 1787 skip |= active_sockets == 0 && socket_id != main_lcore_socket; 1788 1789 if (skip) { 1790 EAL_LOG(DEBUG, "Will not preallocate memory on socket %u", 1791 socket_id); 1792 continue; 1793 } 1794 1795 /* max amount of memory on this socket */ 1796 max_socket_mem = (active_sockets != 0 ? 1797 internal_conf->socket_mem[socket_id] : 1798 internal_conf->memory) + 1799 extra_mem_per_socket; 1800 cur_socket_mem = 0; 1801 1802 for (hpi_idx = 0; hpi_idx < hp_sizes; hpi_idx++) { 1803 uint64_t max_pagesz_mem, cur_pagesz_mem = 0; 1804 uint64_t hugepage_sz; 1805 struct hugepage_info *hpi; 1806 int type_msl_idx, max_segs, total_segs = 0; 1807 1808 hpi = &internal_conf->hugepage_info[hpi_idx]; 1809 hugepage_sz = hpi->hugepage_sz; 1810 1811 /* check if pages are actually available */ 1812 if (hpi->num_pages[socket_id] == 0) 1813 continue; 1814 1815 max_segs = RTE_MAX_MEMSEG_PER_TYPE; 1816 max_pagesz_mem = max_socket_mem - cur_socket_mem; 1817 1818 /* make it multiple of page size */ 1819 max_pagesz_mem = RTE_ALIGN_FLOOR(max_pagesz_mem, 1820 hugepage_sz); 1821 1822 EAL_LOG(DEBUG, "Attempting to preallocate " 1823 "%" PRIu64 "M on socket %i", 1824 max_pagesz_mem >> 20, socket_id); 1825 1826 type_msl_idx = 0; 1827 while (cur_pagesz_mem < max_pagesz_mem && 1828 total_segs < max_segs) { 1829 uint64_t cur_mem; 1830 unsigned int n_segs; 1831 1832 if (msl_idx >= RTE_MAX_MEMSEG_LISTS) { 1833 EAL_LOG(ERR, 1834 "No more space in memseg lists, please increase RTE_MAX_MEMSEG_LISTS"); 1835 return -1; 1836 } 1837 1838 msl = &mcfg->memsegs[msl_idx]; 1839 1840 cur_mem = get_mem_amount(hugepage_sz, 1841 max_pagesz_mem); 1842 n_segs = cur_mem / hugepage_sz; 1843 1844 if (eal_memseg_list_init(msl, hugepage_sz, 1845 n_segs, socket_id, type_msl_idx, 1846 true)) { 1847 /* failing to allocate a memseg list is 1848 * a serious error. 1849 */ 1850 EAL_LOG(ERR, "Cannot allocate memseg list"); 1851 return -1; 1852 } 1853 1854 if (eal_memseg_list_alloc(msl, 0)) { 1855 /* if we couldn't allocate VA space, we 1856 * can try with smaller page sizes. 1857 */ 1858 EAL_LOG(ERR, "Cannot allocate VA space for memseg list, retrying with different page size"); 1859 /* deallocate memseg list */ 1860 if (memseg_list_free(msl)) 1861 return -1; 1862 break; 1863 } 1864 1865 total_segs += msl->memseg_arr.len; 1866 cur_pagesz_mem = total_segs * hugepage_sz; 1867 type_msl_idx++; 1868 msl_idx++; 1869 } 1870 cur_socket_mem += cur_pagesz_mem; 1871 } 1872 if (cur_socket_mem == 0) { 1873 EAL_LOG(ERR, "Cannot allocate VA space on socket %u", 1874 socket_id); 1875 return -1; 1876 } 1877 } 1878 1879 return 0; 1880 } 1881 1882 static int __rte_unused 1883 memseg_primary_init(void) 1884 { 1885 return eal_dynmem_memseg_lists_init(); 1886 } 1887 1888 static int 1889 memseg_secondary_init(void) 1890 { 1891 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 1892 int msl_idx = 0; 1893 struct rte_memseg_list *msl; 1894 1895 for (msl_idx = 0; msl_idx < RTE_MAX_MEMSEG_LISTS; msl_idx++) { 1896 1897 msl = &mcfg->memsegs[msl_idx]; 1898 1899 /* skip empty and external memseg lists */ 1900 if (msl->memseg_arr.len == 0 || msl->external) 1901 continue; 1902 1903 if (rte_fbarray_attach(&msl->memseg_arr)) { 1904 EAL_LOG(ERR, "Cannot attach to primary process memseg lists"); 1905 return -1; 1906 } 1907 1908 /* preallocate VA space */ 1909 if (eal_memseg_list_alloc(msl, 0)) { 1910 EAL_LOG(ERR, "Cannot preallocate VA space for hugepage memory"); 1911 return -1; 1912 } 1913 } 1914 1915 return 0; 1916 } 1917 1918 int 1919 rte_eal_memseg_init(void) 1920 { 1921 /* increase rlimit to maximum */ 1922 struct rlimit lim; 1923 1924 #ifndef RTE_EAL_NUMA_AWARE_HUGEPAGES 1925 const struct internal_config *internal_conf = 1926 eal_get_internal_configuration(); 1927 #endif 1928 if (getrlimit(RLIMIT_NOFILE, &lim) == 0) { 1929 /* set limit to maximum */ 1930 lim.rlim_cur = lim.rlim_max; 1931 1932 if (setrlimit(RLIMIT_NOFILE, &lim) < 0) { 1933 EAL_LOG(DEBUG, "Setting maximum number of open files failed: %s", 1934 strerror(errno)); 1935 } else { 1936 EAL_LOG(DEBUG, "Setting maximum number of open files to %" 1937 PRIu64, 1938 (uint64_t)lim.rlim_cur); 1939 } 1940 } else { 1941 EAL_LOG(ERR, "Cannot get current resource limits"); 1942 } 1943 #ifndef RTE_EAL_NUMA_AWARE_HUGEPAGES 1944 if (!internal_conf->legacy_mem && rte_socket_count() > 1) { 1945 EAL_LOG(WARNING, "DPDK is running on a NUMA system, but is compiled without NUMA support."); 1946 EAL_LOG(WARNING, "This will have adverse consequences for performance and usability."); 1947 EAL_LOG(WARNING, "Please use --"OPT_LEGACY_MEM" option, or recompile with NUMA support."); 1948 } 1949 #endif 1950 1951 return rte_eal_process_type() == RTE_PROC_PRIMARY ? 1952 #ifndef RTE_ARCH_64 1953 memseg_primary_init_32() : 1954 #else 1955 memseg_primary_init() : 1956 #endif 1957 memseg_secondary_init(); 1958 } 1959