xref: /dpdk/lib/eal/linux/eal_memory.c (revision ae67895b507bb6af22263c79ba0d5c374b396485)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2014 Intel Corporation.
3  * Copyright(c) 2013 6WIND S.A.
4  */
5 
6 #include <errno.h>
7 #include <fcntl.h>
8 #include <stdbool.h>
9 #include <stdlib.h>
10 #include <stdio.h>
11 #include <stdint.h>
12 #include <inttypes.h>
13 #include <string.h>
14 #include <sys/mman.h>
15 #include <sys/stat.h>
16 #include <sys/file.h>
17 #include <sys/resource.h>
18 #include <unistd.h>
19 #include <limits.h>
20 #include <signal.h>
21 #include <setjmp.h>
22 #ifdef F_ADD_SEALS /* if file sealing is supported, so is memfd */
23 #define MEMFD_SUPPORTED
24 #endif
25 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
26 #include <numa.h>
27 #include <numaif.h>
28 #endif
29 
30 #include <rte_errno.h>
31 #include <rte_log.h>
32 #include <rte_memory.h>
33 #include <rte_eal.h>
34 #include <rte_lcore.h>
35 #include <rte_common.h>
36 
37 #include "eal_private.h"
38 #include "eal_memalloc.h"
39 #include "eal_memcfg.h"
40 #include "eal_internal_cfg.h"
41 #include "eal_filesystem.h"
42 #include "eal_hugepages.h"
43 #include "eal_options.h"
44 
45 #define PFN_MASK_SIZE	8
46 
47 /**
48  * @file
49  * Huge page mapping under linux
50  *
51  * To reserve a big contiguous amount of memory, we use the hugepage
52  * feature of linux. For that, we need to have hugetlbfs mounted. This
53  * code will create many files in this directory (one per page) and
54  * map them in virtual memory. For each page, we will retrieve its
55  * physical address and remap it in order to have a virtual contiguous
56  * zone as well as a physical contiguous zone.
57  */
58 
59 static int phys_addrs_available = -1;
60 
61 #define RANDOMIZE_VA_SPACE_FILE "/proc/sys/kernel/randomize_va_space"
62 
eal_get_baseaddr(void)63 uint64_t eal_get_baseaddr(void)
64 {
65 	/*
66 	 * Linux kernel uses a really high address as starting address for
67 	 * serving mmaps calls. If there exists addressing limitations and IOVA
68 	 * mode is VA, this starting address is likely too high for those
69 	 * devices. However, it is possible to use a lower address in the
70 	 * process virtual address space as with 64 bits there is a lot of
71 	 * available space.
72 	 *
73 	 * Current known limitations are 39 or 40 bits. Setting the starting
74 	 * address at 4GB implies there are 508GB or 1020GB for mapping the
75 	 * available hugepages. This is likely enough for most systems, although
76 	 * a device with addressing limitations should call
77 	 * rte_mem_check_dma_mask for ensuring all memory is within supported
78 	 * range.
79 	 */
80 #if defined(RTE_ARCH_LOONGARCH)
81 	return 0x7000000000ULL;
82 #else
83 	return 0x100000000ULL;
84 #endif
85 }
86 
87 /*
88  * Get physical address of any mapped virtual address in the current process.
89  */
90 phys_addr_t
rte_mem_virt2phy(const void * virtaddr)91 rte_mem_virt2phy(const void *virtaddr)
92 {
93 	int fd, retval;
94 	uint64_t page, physaddr;
95 	unsigned long virt_pfn;
96 	int page_size;
97 	off_t offset;
98 
99 	if (phys_addrs_available == 0)
100 		return RTE_BAD_IOVA;
101 
102 	/* standard page size */
103 	page_size = getpagesize();
104 
105 	fd = open("/proc/self/pagemap", O_RDONLY);
106 	if (fd < 0) {
107 		EAL_LOG(INFO, "%s(): cannot open /proc/self/pagemap: %s",
108 			__func__, strerror(errno));
109 		return RTE_BAD_IOVA;
110 	}
111 
112 	virt_pfn = (unsigned long)virtaddr / page_size;
113 	offset = sizeof(uint64_t) * virt_pfn;
114 	if (lseek(fd, offset, SEEK_SET) == (off_t) -1) {
115 		EAL_LOG(INFO, "%s(): seek error in /proc/self/pagemap: %s",
116 				__func__, strerror(errno));
117 		close(fd);
118 		return RTE_BAD_IOVA;
119 	}
120 
121 	retval = read(fd, &page, PFN_MASK_SIZE);
122 	close(fd);
123 	if (retval < 0) {
124 		EAL_LOG(INFO, "%s(): cannot read /proc/self/pagemap: %s",
125 				__func__, strerror(errno));
126 		return RTE_BAD_IOVA;
127 	} else if (retval != PFN_MASK_SIZE) {
128 		EAL_LOG(INFO, "%s(): read %d bytes from /proc/self/pagemap "
129 				"but expected %d:",
130 				__func__, retval, PFN_MASK_SIZE);
131 		return RTE_BAD_IOVA;
132 	}
133 
134 	/*
135 	 * the pfn (page frame number) are bits 0-54 (see
136 	 * pagemap.txt in linux Documentation)
137 	 */
138 	if ((page & 0x7fffffffffffffULL) == 0)
139 		return RTE_BAD_IOVA;
140 
141 	physaddr = ((page & 0x7fffffffffffffULL) * page_size)
142 		+ ((unsigned long)virtaddr % page_size);
143 
144 	return physaddr;
145 }
146 
147 rte_iova_t
rte_mem_virt2iova(const void * virtaddr)148 rte_mem_virt2iova(const void *virtaddr)
149 {
150 	if (rte_eal_iova_mode() == RTE_IOVA_VA)
151 		return (uintptr_t)virtaddr;
152 	return rte_mem_virt2phy(virtaddr);
153 }
154 
155 /*
156  * For each hugepage in hugepg_tbl, fill the physaddr value. We find
157  * it by browsing the /proc/self/pagemap special file.
158  */
159 static int
find_physaddrs(struct hugepage_file * hugepg_tbl,struct hugepage_info * hpi)160 find_physaddrs(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
161 {
162 	unsigned int i;
163 	phys_addr_t addr;
164 
165 	for (i = 0; i < hpi->num_pages[0]; i++) {
166 		addr = rte_mem_virt2phy(hugepg_tbl[i].orig_va);
167 		if (addr == RTE_BAD_PHYS_ADDR)
168 			return -1;
169 		hugepg_tbl[i].physaddr = addr;
170 	}
171 	return 0;
172 }
173 
174 /*
175  * For each hugepage in hugepg_tbl, fill the physaddr value sequentially.
176  */
177 static int
set_physaddrs(struct hugepage_file * hugepg_tbl,struct hugepage_info * hpi)178 set_physaddrs(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
179 {
180 	unsigned int i;
181 	static phys_addr_t addr;
182 
183 	for (i = 0; i < hpi->num_pages[0]; i++) {
184 		hugepg_tbl[i].physaddr = addr;
185 		addr += hugepg_tbl[i].size;
186 	}
187 	return 0;
188 }
189 
190 /*
191  * Check whether address-space layout randomization is enabled in
192  * the kernel. This is important for multi-process as it can prevent
193  * two processes mapping data to the same virtual address
194  * Returns:
195  *    0 - address space randomization disabled
196  *    1/2 - address space randomization enabled
197  *    negative error code on error
198  */
199 static int
aslr_enabled(void)200 aslr_enabled(void)
201 {
202 	char c;
203 	int retval, fd = open(RANDOMIZE_VA_SPACE_FILE, O_RDONLY);
204 	if (fd < 0)
205 		return -errno;
206 	retval = read(fd, &c, 1);
207 	close(fd);
208 	if (retval < 0)
209 		return -errno;
210 	if (retval == 0)
211 		return -EIO;
212 	switch (c) {
213 		case '0' : return 0;
214 		case '1' : return 1;
215 		case '2' : return 2;
216 		default: return -EINVAL;
217 	}
218 }
219 
220 static sigjmp_buf huge_jmpenv;
221 
huge_sigbus_handler(int signo __rte_unused)222 static void huge_sigbus_handler(int signo __rte_unused)
223 {
224 	siglongjmp(huge_jmpenv, 1);
225 }
226 
227 /* Put setjmp into a wrap method to avoid compiling error. Any non-volatile,
228  * non-static local variable in the stack frame calling sigsetjmp might be
229  * clobbered by a call to longjmp.
230  */
huge_wrap_sigsetjmp(void)231 static int huge_wrap_sigsetjmp(void)
232 {
233 	return sigsetjmp(huge_jmpenv, 1);
234 }
235 
236 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
237 /* Callback for numa library. */
numa_error(char * where)238 void numa_error(char *where)
239 {
240 	EAL_LOG(ERR, "%s failed: %s", where, strerror(errno));
241 }
242 #endif
243 
244 /*
245  * Mmap all hugepages of hugepage table: it first open a file in
246  * hugetlbfs, then mmap() hugepage_sz data in it. If orig is set, the
247  * virtual address is stored in hugepg_tbl[i].orig_va, else it is stored
248  * in hugepg_tbl[i].final_va. The second mapping (when orig is 0) tries to
249  * map contiguous physical blocks in contiguous virtual blocks.
250  */
251 static unsigned
map_all_hugepages(struct hugepage_file * hugepg_tbl,struct hugepage_info * hpi,uint64_t * essential_memory __rte_unused)252 map_all_hugepages(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi,
253 		  uint64_t *essential_memory __rte_unused)
254 {
255 	int fd;
256 	unsigned i;
257 	void *virtaddr;
258 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
259 	int node_id = -1;
260 	int essential_prev = 0;
261 	int oldpolicy;
262 	struct bitmask *oldmask = NULL;
263 	bool have_numa = true;
264 	unsigned long maxnode = 0;
265 	const struct internal_config *internal_conf =
266 		eal_get_internal_configuration();
267 
268 	/* Check if kernel supports NUMA. */
269 	if (numa_available() != 0) {
270 		EAL_LOG(DEBUG, "NUMA is not supported.");
271 		have_numa = false;
272 	}
273 
274 	if (have_numa) {
275 		EAL_LOG(DEBUG, "Trying to obtain current memory policy.");
276 		oldmask = numa_allocate_nodemask();
277 		if (get_mempolicy(&oldpolicy, oldmask->maskp,
278 				  oldmask->size + 1, 0, 0) < 0) {
279 			EAL_LOG(ERR,
280 				"Failed to get current mempolicy: %s. "
281 				"Assuming MPOL_DEFAULT.", strerror(errno));
282 			oldpolicy = MPOL_DEFAULT;
283 		}
284 		for (i = 0; i < RTE_MAX_NUMA_NODES; i++)
285 			if (internal_conf->socket_mem[i])
286 				maxnode = i + 1;
287 	}
288 #endif
289 
290 	for (i = 0; i < hpi->num_pages[0]; i++) {
291 		struct hugepage_file *hf = &hugepg_tbl[i];
292 		uint64_t hugepage_sz = hpi->hugepage_sz;
293 
294 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
295 		if (maxnode) {
296 			unsigned int j;
297 
298 			for (j = 0; j < maxnode; j++)
299 				if (essential_memory[j])
300 					break;
301 
302 			if (j == maxnode) {
303 				node_id = (node_id + 1) % maxnode;
304 				while (!internal_conf->socket_mem[node_id]) {
305 					node_id++;
306 					node_id %= maxnode;
307 				}
308 				essential_prev = 0;
309 			} else {
310 				node_id = j;
311 				essential_prev = essential_memory[j];
312 
313 				if (essential_memory[j] < hugepage_sz)
314 					essential_memory[j] = 0;
315 				else
316 					essential_memory[j] -= hugepage_sz;
317 			}
318 
319 			EAL_LOG(DEBUG,
320 				"Setting policy MPOL_PREFERRED for socket %d",
321 				node_id);
322 			numa_set_preferred(node_id);
323 		}
324 #endif
325 
326 		hf->file_id = i;
327 		hf->size = hugepage_sz;
328 		eal_get_hugefile_path(hf->filepath, sizeof(hf->filepath),
329 				hpi->hugedir, hf->file_id);
330 		hf->filepath[sizeof(hf->filepath) - 1] = '\0';
331 
332 		/* try to create hugepage file */
333 		fd = open(hf->filepath, O_CREAT | O_RDWR, 0600);
334 		if (fd < 0) {
335 			EAL_LOG(DEBUG, "%s(): open failed: %s", __func__,
336 					strerror(errno));
337 			goto out;
338 		}
339 
340 		/* map the segment, and populate page tables,
341 		 * the kernel fills this segment with zeros. we don't care where
342 		 * this gets mapped - we already have contiguous memory areas
343 		 * ready for us to map into.
344 		 */
345 		virtaddr = mmap(NULL, hugepage_sz, PROT_READ | PROT_WRITE,
346 				MAP_SHARED | MAP_POPULATE, fd, 0);
347 		if (virtaddr == MAP_FAILED) {
348 			EAL_LOG(DEBUG, "%s(): mmap failed: %s", __func__,
349 					strerror(errno));
350 			close(fd);
351 			goto out;
352 		}
353 
354 		hf->orig_va = virtaddr;
355 
356 		/* In linux, hugetlb limitations, like cgroup, are
357 		 * enforced at fault time instead of mmap(), even
358 		 * with the option of MAP_POPULATE. Kernel will send
359 		 * a SIGBUS signal. To avoid to be killed, save stack
360 		 * environment here, if SIGBUS happens, we can jump
361 		 * back here.
362 		 */
363 		if (huge_wrap_sigsetjmp()) {
364 			EAL_LOG(DEBUG, "SIGBUS: Cannot mmap more "
365 				"hugepages of size %u MB",
366 				(unsigned int)(hugepage_sz / 0x100000));
367 			munmap(virtaddr, hugepage_sz);
368 			close(fd);
369 			unlink(hugepg_tbl[i].filepath);
370 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
371 			if (maxnode)
372 				essential_memory[node_id] =
373 					essential_prev;
374 #endif
375 			goto out;
376 		}
377 		*(int *)virtaddr = 0;
378 
379 		/* set shared lock on the file. */
380 		if (flock(fd, LOCK_SH) < 0) {
381 			EAL_LOG(DEBUG, "%s(): Locking file failed:%s ",
382 				__func__, strerror(errno));
383 			close(fd);
384 			goto out;
385 		}
386 
387 		close(fd);
388 	}
389 
390 out:
391 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
392 	if (maxnode) {
393 		EAL_LOG(DEBUG,
394 			"Restoring previous memory policy: %d", oldpolicy);
395 		if (oldpolicy == MPOL_DEFAULT) {
396 			numa_set_localalloc();
397 		} else if (set_mempolicy(oldpolicy, oldmask->maskp,
398 					 oldmask->size + 1) < 0) {
399 			EAL_LOG(ERR, "Failed to restore mempolicy: %s",
400 				strerror(errno));
401 			numa_set_localalloc();
402 		}
403 	}
404 	if (oldmask != NULL)
405 		numa_free_cpumask(oldmask);
406 #endif
407 	return i;
408 }
409 
410 /*
411  * Parse /proc/self/numa_maps to get the NUMA socket ID for each huge
412  * page.
413  */
414 static int
find_numasocket(struct hugepage_file * hugepg_tbl,struct hugepage_info * hpi)415 find_numasocket(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
416 {
417 	int socket_id;
418 	char *end, *nodestr;
419 	unsigned i, hp_count = 0;
420 	uint64_t virt_addr;
421 	char buf[BUFSIZ];
422 	char hugedir_str[PATH_MAX];
423 	FILE *f;
424 
425 	f = fopen("/proc/self/numa_maps", "r");
426 	if (f == NULL) {
427 		EAL_LOG(NOTICE, "NUMA support not available"
428 			" consider that all memory is in socket_id 0");
429 		return 0;
430 	}
431 
432 	snprintf(hugedir_str, sizeof(hugedir_str),
433 			"%s/%s", hpi->hugedir, eal_get_hugefile_prefix());
434 
435 	/* parse numa map */
436 	while (fgets(buf, sizeof(buf), f) != NULL) {
437 
438 		/* ignore non huge page */
439 		if (strstr(buf, " huge ") == NULL &&
440 				strstr(buf, hugedir_str) == NULL)
441 			continue;
442 
443 		/* get zone addr */
444 		virt_addr = strtoull(buf, &end, 16);
445 		if (virt_addr == 0 || end == buf) {
446 			EAL_LOG(ERR, "%s(): error in numa_maps parsing", __func__);
447 			goto error;
448 		}
449 
450 		/* get node id (socket id) */
451 		nodestr = strstr(buf, " N");
452 		if (nodestr == NULL) {
453 			EAL_LOG(ERR, "%s(): error in numa_maps parsing", __func__);
454 			goto error;
455 		}
456 		nodestr += 2;
457 		end = strstr(nodestr, "=");
458 		if (end == NULL) {
459 			EAL_LOG(ERR, "%s(): error in numa_maps parsing", __func__);
460 			goto error;
461 		}
462 		end[0] = '\0';
463 		end = NULL;
464 
465 		socket_id = strtoul(nodestr, &end, 0);
466 		if ((nodestr[0] == '\0') || (end == NULL) || (*end != '\0')) {
467 			EAL_LOG(ERR, "%s(): error in numa_maps parsing", __func__);
468 			goto error;
469 		}
470 
471 		/* if we find this page in our mappings, set socket_id */
472 		for (i = 0; i < hpi->num_pages[0]; i++) {
473 			void *va = (void *)(unsigned long)virt_addr;
474 			if (hugepg_tbl[i].orig_va == va) {
475 				hugepg_tbl[i].socket_id = socket_id;
476 				hp_count++;
477 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
478 				EAL_LOG(DEBUG,
479 					"Hugepage %s is on socket %d",
480 					hugepg_tbl[i].filepath, socket_id);
481 #endif
482 			}
483 		}
484 	}
485 
486 	if (hp_count < hpi->num_pages[0])
487 		goto error;
488 
489 	fclose(f);
490 	return 0;
491 
492 error:
493 	fclose(f);
494 	return -1;
495 }
496 
497 static int
cmp_physaddr(const void * a,const void * b)498 cmp_physaddr(const void *a, const void *b)
499 {
500 #ifndef RTE_ARCH_PPC_64
501 	const struct hugepage_file *p1 = a;
502 	const struct hugepage_file *p2 = b;
503 #else
504 	/* PowerPC needs memory sorted in reverse order from x86 */
505 	const struct hugepage_file *p1 = b;
506 	const struct hugepage_file *p2 = a;
507 #endif
508 	if (p1->physaddr < p2->physaddr)
509 		return -1;
510 	else if (p1->physaddr > p2->physaddr)
511 		return 1;
512 	else
513 		return 0;
514 }
515 
516 /*
517  * Uses mmap to create a shared memory area for storage of data
518  * Used in this file to store the hugepage file map on disk
519  */
520 static void *
create_shared_memory(const char * filename,const size_t mem_size)521 create_shared_memory(const char *filename, const size_t mem_size)
522 {
523 	void *retval;
524 	int fd;
525 	const struct internal_config *internal_conf =
526 		eal_get_internal_configuration();
527 
528 	/* if no shared files mode is used, create anonymous memory instead */
529 	if (internal_conf->no_shconf) {
530 		retval = mmap(NULL, mem_size, PROT_READ | PROT_WRITE,
531 				MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
532 		if (retval == MAP_FAILED)
533 			return NULL;
534 		return retval;
535 	}
536 
537 	fd = open(filename, O_CREAT | O_RDWR, 0600);
538 	if (fd < 0)
539 		return NULL;
540 	if (ftruncate(fd, mem_size) < 0) {
541 		close(fd);
542 		return NULL;
543 	}
544 	retval = mmap(NULL, mem_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
545 	close(fd);
546 	if (retval == MAP_FAILED)
547 		return NULL;
548 	return retval;
549 }
550 
551 /*
552  * this copies *active* hugepages from one hugepage table to another.
553  * destination is typically the shared memory.
554  */
555 static int
copy_hugepages_to_shared_mem(struct hugepage_file * dst,int dest_size,const struct hugepage_file * src,int src_size)556 copy_hugepages_to_shared_mem(struct hugepage_file * dst, int dest_size,
557 		const struct hugepage_file * src, int src_size)
558 {
559 	int src_pos, dst_pos = 0;
560 
561 	for (src_pos = 0; src_pos < src_size; src_pos++) {
562 		if (src[src_pos].orig_va != NULL) {
563 			/* error on overflow attempt */
564 			if (dst_pos == dest_size)
565 				return -1;
566 			memcpy(&dst[dst_pos], &src[src_pos], sizeof(struct hugepage_file));
567 			dst_pos++;
568 		}
569 	}
570 	return 0;
571 }
572 
573 static int
unlink_hugepage_files(struct hugepage_file * hugepg_tbl,unsigned num_hp_info)574 unlink_hugepage_files(struct hugepage_file *hugepg_tbl,
575 		unsigned num_hp_info)
576 {
577 	unsigned socket, size;
578 	int page, nrpages = 0;
579 	const struct internal_config *internal_conf =
580 		eal_get_internal_configuration();
581 
582 	/* get total number of hugepages */
583 	for (size = 0; size < num_hp_info; size++)
584 		for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++)
585 			nrpages +=
586 			internal_conf->hugepage_info[size].num_pages[socket];
587 
588 	for (page = 0; page < nrpages; page++) {
589 		struct hugepage_file *hp = &hugepg_tbl[page];
590 
591 		if (hp->orig_va != NULL && unlink(hp->filepath)) {
592 			EAL_LOG(WARNING, "%s(): Removing %s failed: %s",
593 				__func__, hp->filepath, strerror(errno));
594 		}
595 	}
596 	return 0;
597 }
598 
599 /*
600  * unmaps hugepages that are not going to be used. since we originally allocate
601  * ALL hugepages (not just those we need), additional unmapping needs to be done.
602  */
603 static int
unmap_unneeded_hugepages(struct hugepage_file * hugepg_tbl,struct hugepage_info * hpi,unsigned num_hp_info)604 unmap_unneeded_hugepages(struct hugepage_file *hugepg_tbl,
605 		struct hugepage_info *hpi,
606 		unsigned num_hp_info)
607 {
608 	unsigned socket, size;
609 	int page, nrpages = 0;
610 	const struct internal_config *internal_conf =
611 		eal_get_internal_configuration();
612 
613 	/* get total number of hugepages */
614 	for (size = 0; size < num_hp_info; size++)
615 		for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++)
616 			nrpages += internal_conf->hugepage_info[size].num_pages[socket];
617 
618 	for (size = 0; size < num_hp_info; size++) {
619 		for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) {
620 			unsigned pages_found = 0;
621 
622 			/* traverse until we have unmapped all the unused pages */
623 			for (page = 0; page < nrpages; page++) {
624 				struct hugepage_file *hp = &hugepg_tbl[page];
625 
626 				/* find a page that matches the criteria */
627 				if ((hp->size == hpi[size].hugepage_sz) &&
628 						(hp->socket_id == (int) socket)) {
629 
630 					/* if we skipped enough pages, unmap the rest */
631 					if (pages_found == hpi[size].num_pages[socket]) {
632 						uint64_t unmap_len;
633 
634 						unmap_len = hp->size;
635 
636 						/* get start addr and len of the remaining segment */
637 						munmap(hp->orig_va,
638 							(size_t)unmap_len);
639 
640 						hp->orig_va = NULL;
641 						if (unlink(hp->filepath) == -1) {
642 							EAL_LOG(ERR, "%s(): Removing %s failed: %s",
643 									__func__, hp->filepath, strerror(errno));
644 							return -1;
645 						}
646 					} else {
647 						/* lock the page and skip */
648 						pages_found++;
649 					}
650 
651 				} /* match page */
652 			} /* foreach page */
653 		} /* foreach socket */
654 	} /* foreach pagesize */
655 
656 	return 0;
657 }
658 
659 static int
remap_segment(struct hugepage_file * hugepages,int seg_start,int seg_end)660 remap_segment(struct hugepage_file *hugepages, int seg_start, int seg_end)
661 {
662 	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
663 	struct rte_memseg_list *msl;
664 	struct rte_fbarray *arr;
665 	int cur_page, seg_len;
666 	unsigned int msl_idx;
667 	int ms_idx;
668 	uint64_t page_sz;
669 	size_t memseg_len;
670 	int socket_id;
671 #ifndef RTE_ARCH_64
672 	const struct internal_config *internal_conf =
673 		eal_get_internal_configuration();
674 #endif
675 	page_sz = hugepages[seg_start].size;
676 	socket_id = hugepages[seg_start].socket_id;
677 	seg_len = seg_end - seg_start;
678 
679 	EAL_LOG(DEBUG, "Attempting to map %" PRIu64 "M on socket %i",
680 			(seg_len * page_sz) >> 20ULL, socket_id);
681 
682 	/* find free space in memseg lists */
683 	for (msl_idx = 0; msl_idx < RTE_MAX_MEMSEG_LISTS; msl_idx++) {
684 		int free_len;
685 		bool empty;
686 		msl = &mcfg->memsegs[msl_idx];
687 		arr = &msl->memseg_arr;
688 
689 		if (msl->page_sz != page_sz)
690 			continue;
691 		if (msl->socket_id != socket_id)
692 			continue;
693 
694 		/* leave space for a hole if array is not empty */
695 		empty = arr->count == 0;
696 		/* find start of the biggest contiguous block and its size */
697 		ms_idx = rte_fbarray_find_biggest_free(arr, 0);
698 		if (ms_idx < 0)
699 			continue;
700 		/* hole is 1 segment long, so at least two segments long. */
701 		free_len = rte_fbarray_find_contig_free(arr, ms_idx);
702 		if (free_len < 2)
703 			continue;
704 		/* leave some space between memsegs, they are not IOVA
705 		 * contiguous, so they shouldn't be VA contiguous either.
706 		 */
707 		if (!empty) {
708 			ms_idx++;
709 			free_len--;
710 		}
711 
712 		/* we might not get all of the space we wanted */
713 		free_len = RTE_MIN(seg_len, free_len);
714 		seg_end = seg_start + free_len;
715 		seg_len = seg_end - seg_start;
716 		break;
717 	}
718 	if (msl_idx == RTE_MAX_MEMSEG_LISTS) {
719 		EAL_LOG(ERR, "Could not find space for memseg. Please increase RTE_MAX_MEMSEG_PER_LIST "
720 			"RTE_MAX_MEMSEG_PER_TYPE and/or RTE_MAX_MEM_MB_PER_TYPE in configuration.");
721 		return -1;
722 	}
723 
724 #ifdef RTE_ARCH_PPC_64
725 	/* for PPC64 we go through the list backwards */
726 	for (cur_page = seg_end - 1; cur_page >= seg_start;
727 			cur_page--, ms_idx++) {
728 #else
729 	for (cur_page = seg_start; cur_page < seg_end; cur_page++, ms_idx++) {
730 #endif
731 		struct hugepage_file *hfile = &hugepages[cur_page];
732 		struct rte_memseg *ms = rte_fbarray_get(arr, ms_idx);
733 		void *addr;
734 		int fd;
735 
736 		fd = open(hfile->filepath, O_RDWR);
737 		if (fd < 0) {
738 			EAL_LOG(ERR, "Could not open '%s': %s",
739 					hfile->filepath, strerror(errno));
740 			return -1;
741 		}
742 		/* set shared lock on the file. */
743 		if (flock(fd, LOCK_SH) < 0) {
744 			EAL_LOG(DEBUG, "Could not lock '%s': %s",
745 					hfile->filepath, strerror(errno));
746 			close(fd);
747 			return -1;
748 		}
749 		memseg_len = (size_t)page_sz;
750 		addr = RTE_PTR_ADD(msl->base_va, ms_idx * memseg_len);
751 
752 		/* we know this address is already mmapped by memseg list, so
753 		 * using MAP_FIXED here is safe
754 		 */
755 		addr = mmap(addr, page_sz, PROT_READ | PROT_WRITE,
756 				MAP_SHARED | MAP_POPULATE | MAP_FIXED, fd, 0);
757 		if (addr == MAP_FAILED) {
758 			EAL_LOG(ERR, "Couldn't remap '%s': %s",
759 					hfile->filepath, strerror(errno));
760 			close(fd);
761 			return -1;
762 		}
763 
764 		/* we have a new address, so unmap previous one */
765 #ifndef RTE_ARCH_64
766 		/* in 32-bit legacy mode, we have already unmapped the page */
767 		if (!internal_conf->legacy_mem)
768 			munmap(hfile->orig_va, page_sz);
769 #else
770 		munmap(hfile->orig_va, page_sz);
771 #endif
772 
773 		hfile->orig_va = NULL;
774 		hfile->final_va = addr;
775 
776 		/* rewrite physical addresses in IOVA as VA mode */
777 		if (rte_eal_iova_mode() == RTE_IOVA_VA)
778 			hfile->physaddr = (uintptr_t)addr;
779 
780 		/* set up memseg data */
781 		ms->addr = addr;
782 		ms->hugepage_sz = page_sz;
783 		ms->len = memseg_len;
784 		ms->iova = hfile->physaddr;
785 		ms->socket_id = hfile->socket_id;
786 		ms->nchannel = rte_memory_get_nchannel();
787 		ms->nrank = rte_memory_get_nrank();
788 
789 		rte_fbarray_set_used(arr, ms_idx);
790 
791 		/* store segment fd internally */
792 		if (eal_memalloc_set_seg_fd(msl_idx, ms_idx, fd) < 0)
793 			EAL_LOG(ERR, "Could not store segment fd: %s",
794 				rte_strerror(rte_errno));
795 	}
796 	EAL_LOG(DEBUG, "Allocated %" PRIu64 "M on socket %i",
797 			(seg_len * page_sz) >> 20, socket_id);
798 	return seg_len;
799 }
800 
801 static uint64_t
802 get_mem_amount(uint64_t page_sz, uint64_t max_mem)
803 {
804 	uint64_t area_sz, max_pages;
805 
806 	/* limit to RTE_MAX_MEMSEG_PER_LIST pages or RTE_MAX_MEM_MB_PER_LIST */
807 	max_pages = RTE_MAX_MEMSEG_PER_LIST;
808 	max_mem = RTE_MIN((uint64_t)RTE_MAX_MEM_MB_PER_LIST << 20, max_mem);
809 
810 	area_sz = RTE_MIN(page_sz * max_pages, max_mem);
811 
812 	/* make sure the list isn't smaller than the page size */
813 	area_sz = RTE_MAX(area_sz, page_sz);
814 
815 	return RTE_ALIGN(area_sz, page_sz);
816 }
817 
818 static int
819 memseg_list_free(struct rte_memseg_list *msl)
820 {
821 	if (rte_fbarray_destroy(&msl->memseg_arr)) {
822 		EAL_LOG(ERR, "Cannot destroy memseg list");
823 		return -1;
824 	}
825 	memset(msl, 0, sizeof(*msl));
826 	return 0;
827 }
828 
829 /*
830  * Our VA space is not preallocated yet, so preallocate it here. We need to know
831  * how many segments there are in order to map all pages into one address space,
832  * and leave appropriate holes between segments so that rte_malloc does not
833  * concatenate them into one big segment.
834  *
835  * we also need to unmap original pages to free up address space.
836  */
837 static int __rte_unused
838 prealloc_segments(struct hugepage_file *hugepages, int n_pages)
839 {
840 	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
841 	int cur_page, seg_start_page, end_seg, new_memseg;
842 	unsigned int hpi_idx, socket, i;
843 	int n_contig_segs, n_segs;
844 	int msl_idx;
845 	const struct internal_config *internal_conf =
846 		eal_get_internal_configuration();
847 
848 	/* before we preallocate segments, we need to free up our VA space.
849 	 * we're not removing files, and we already have information about
850 	 * PA-contiguousness, so it is safe to unmap everything.
851 	 */
852 	for (cur_page = 0; cur_page < n_pages; cur_page++) {
853 		struct hugepage_file *hpi = &hugepages[cur_page];
854 		munmap(hpi->orig_va, hpi->size);
855 		hpi->orig_va = NULL;
856 	}
857 
858 	/* we cannot know how many page sizes and sockets we have discovered, so
859 	 * loop over all of them
860 	 */
861 	for (hpi_idx = 0; hpi_idx < internal_conf->num_hugepage_sizes;
862 			hpi_idx++) {
863 		uint64_t page_sz =
864 			internal_conf->hugepage_info[hpi_idx].hugepage_sz;
865 
866 		for (i = 0; i < rte_socket_count(); i++) {
867 			struct rte_memseg_list *msl;
868 
869 			socket = rte_socket_id_by_idx(i);
870 			n_contig_segs = 0;
871 			n_segs = 0;
872 			seg_start_page = -1;
873 
874 			for (cur_page = 0; cur_page < n_pages; cur_page++) {
875 				struct hugepage_file *prev, *cur;
876 				int prev_seg_start_page = -1;
877 
878 				cur = &hugepages[cur_page];
879 				prev = cur_page == 0 ? NULL :
880 						&hugepages[cur_page - 1];
881 
882 				new_memseg = 0;
883 				end_seg = 0;
884 
885 				if (cur->size == 0)
886 					end_seg = 1;
887 				else if (cur->socket_id != (int) socket)
888 					end_seg = 1;
889 				else if (cur->size != page_sz)
890 					end_seg = 1;
891 				else if (cur_page == 0)
892 					new_memseg = 1;
893 #ifdef RTE_ARCH_PPC_64
894 				/* On PPC64 architecture, the mmap always start
895 				 * from higher address to lower address. Here,
896 				 * physical addresses are in descending order.
897 				 */
898 				else if ((prev->physaddr - cur->physaddr) !=
899 						cur->size)
900 					new_memseg = 1;
901 #else
902 				else if ((cur->physaddr - prev->physaddr) !=
903 						cur->size)
904 					new_memseg = 1;
905 #endif
906 				if (new_memseg) {
907 					/* if we're already inside a segment,
908 					 * new segment means end of current one
909 					 */
910 					if (seg_start_page != -1) {
911 						end_seg = 1;
912 						prev_seg_start_page =
913 								seg_start_page;
914 					}
915 					seg_start_page = cur_page;
916 				}
917 
918 				if (end_seg) {
919 					if (prev_seg_start_page != -1) {
920 						/* we've found a new segment */
921 						n_contig_segs++;
922 						n_segs += cur_page -
923 							prev_seg_start_page;
924 					} else if (seg_start_page != -1) {
925 						/* we didn't find new segment,
926 						 * but did end current one
927 						 */
928 						n_contig_segs++;
929 						n_segs += cur_page -
930 								seg_start_page;
931 						seg_start_page = -1;
932 						continue;
933 					} else {
934 						/* we're skipping this page */
935 						continue;
936 					}
937 				}
938 				/* segment continues */
939 			}
940 			/* check if we missed last segment */
941 			if (seg_start_page != -1) {
942 				n_contig_segs++;
943 				n_segs += cur_page - seg_start_page;
944 			}
945 
946 			/* if no segments were found, do not preallocate */
947 			if (n_segs == 0)
948 				continue;
949 
950 			/* we now have total number of pages that we will
951 			 * allocate for this segment list. add separator pages
952 			 * to the total count, and preallocate VA space.
953 			 */
954 			n_segs += n_contig_segs - 1;
955 
956 			/* now, preallocate VA space for these segments */
957 
958 			/* first, find suitable memseg list for this */
959 			for (msl_idx = 0; msl_idx < RTE_MAX_MEMSEG_LISTS;
960 					msl_idx++) {
961 				msl = &mcfg->memsegs[msl_idx];
962 
963 				if (msl->base_va != NULL)
964 					continue;
965 				break;
966 			}
967 			if (msl_idx == RTE_MAX_MEMSEG_LISTS) {
968 				EAL_LOG(ERR, "Not enough space in memseg lists, please increase RTE_MAX_MEMSEG_LISTS");
969 				return -1;
970 			}
971 
972 			/* now, allocate fbarray itself */
973 			if (eal_memseg_list_init(msl, page_sz, n_segs,
974 					socket, msl_idx, true) < 0)
975 				return -1;
976 
977 			/* finally, allocate VA space */
978 			if (eal_memseg_list_alloc(msl, 0) < 0) {
979 				EAL_LOG(ERR, "Cannot preallocate 0x%"PRIx64"kB hugepages",
980 					page_sz >> 10);
981 				return -1;
982 			}
983 		}
984 	}
985 	return 0;
986 }
987 
988 /*
989  * We cannot reallocate memseg lists on the fly because PPC64 stores pages
990  * backwards, therefore we have to process the entire memseg first before
991  * remapping it into memseg list VA space.
992  */
993 static int
994 remap_needed_hugepages(struct hugepage_file *hugepages, int n_pages)
995 {
996 	int cur_page, seg_start_page, new_memseg, ret;
997 
998 	seg_start_page = 0;
999 	for (cur_page = 0; cur_page < n_pages; cur_page++) {
1000 		struct hugepage_file *prev, *cur;
1001 
1002 		new_memseg = 0;
1003 
1004 		cur = &hugepages[cur_page];
1005 		prev = cur_page == 0 ? NULL : &hugepages[cur_page - 1];
1006 
1007 		/* if size is zero, no more pages left */
1008 		if (cur->size == 0)
1009 			break;
1010 
1011 		if (cur_page == 0)
1012 			new_memseg = 1;
1013 		else if (cur->socket_id != prev->socket_id)
1014 			new_memseg = 1;
1015 		else if (cur->size != prev->size)
1016 			new_memseg = 1;
1017 #ifdef RTE_ARCH_PPC_64
1018 		/* On PPC64 architecture, the mmap always start from higher
1019 		 * address to lower address. Here, physical addresses are in
1020 		 * descending order.
1021 		 */
1022 		else if ((prev->physaddr - cur->physaddr) != cur->size)
1023 			new_memseg = 1;
1024 #else
1025 		else if ((cur->physaddr - prev->physaddr) != cur->size)
1026 			new_memseg = 1;
1027 #endif
1028 
1029 		if (new_memseg) {
1030 			/* if this isn't the first time, remap segment */
1031 			if (cur_page != 0) {
1032 				int n_remapped = 0;
1033 				int n_needed = cur_page - seg_start_page;
1034 				while (n_remapped < n_needed) {
1035 					ret = remap_segment(hugepages, seg_start_page,
1036 							cur_page);
1037 					if (ret < 0)
1038 						return -1;
1039 					n_remapped += ret;
1040 					seg_start_page += ret;
1041 				}
1042 			}
1043 			/* remember where we started */
1044 			seg_start_page = cur_page;
1045 		}
1046 		/* continuation of previous memseg */
1047 	}
1048 	/* we were stopped, but we didn't remap the last segment, do it now */
1049 	if (cur_page != 0) {
1050 		int n_remapped = 0;
1051 		int n_needed = cur_page - seg_start_page;
1052 		while (n_remapped < n_needed) {
1053 			ret = remap_segment(hugepages, seg_start_page,
1054 					cur_page);
1055 			if (ret < 0)
1056 				return -1;
1057 			n_remapped += ret;
1058 			seg_start_page += ret;
1059 		}
1060 	}
1061 	return 0;
1062 }
1063 
1064 static inline size_t
1065 eal_get_hugepage_mem_size(void)
1066 {
1067 	uint64_t size = 0;
1068 	unsigned i, j;
1069 	struct internal_config *internal_conf =
1070 		eal_get_internal_configuration();
1071 
1072 	for (i = 0; i < internal_conf->num_hugepage_sizes; i++) {
1073 		struct hugepage_info *hpi = &internal_conf->hugepage_info[i];
1074 		if (strnlen(hpi->hugedir, sizeof(hpi->hugedir)) != 0) {
1075 			for (j = 0; j < RTE_MAX_NUMA_NODES; j++) {
1076 				size += hpi->hugepage_sz * hpi->num_pages[j];
1077 			}
1078 		}
1079 	}
1080 
1081 	return (size < SIZE_MAX) ? (size_t)(size) : SIZE_MAX;
1082 }
1083 
1084 static struct sigaction huge_action_old;
1085 static int huge_need_recover;
1086 
1087 static void
1088 huge_register_sigbus(void)
1089 {
1090 	sigset_t mask;
1091 	struct sigaction action;
1092 
1093 	sigemptyset(&mask);
1094 	sigaddset(&mask, SIGBUS);
1095 	action.sa_flags = 0;
1096 	action.sa_mask = mask;
1097 	action.sa_handler = huge_sigbus_handler;
1098 
1099 	huge_need_recover = !sigaction(SIGBUS, &action, &huge_action_old);
1100 }
1101 
1102 static void
1103 huge_recover_sigbus(void)
1104 {
1105 	if (huge_need_recover) {
1106 		sigaction(SIGBUS, &huge_action_old, NULL);
1107 		huge_need_recover = 0;
1108 	}
1109 }
1110 
1111 /*
1112  * Prepare physical memory mapping: fill configuration structure with
1113  * these infos, return 0 on success.
1114  *  1. map N huge pages in separate files in hugetlbfs
1115  *  2. find associated physical addr
1116  *  3. find associated NUMA socket ID
1117  *  4. sort all huge pages by physical address
1118  *  5. remap these N huge pages in the correct order
1119  *  6. unmap the first mapping
1120  *  7. fill memsegs in configuration with contiguous zones
1121  */
1122 static int
1123 eal_legacy_hugepage_init(void)
1124 {
1125 	struct rte_mem_config *mcfg;
1126 	struct hugepage_file *hugepage = NULL, *tmp_hp = NULL;
1127 	struct hugepage_info used_hp[MAX_HUGEPAGE_SIZES];
1128 	struct internal_config *internal_conf =
1129 		eal_get_internal_configuration();
1130 
1131 	uint64_t memory[RTE_MAX_NUMA_NODES];
1132 
1133 	unsigned hp_offset;
1134 	int i, j;
1135 	int nr_hugefiles, nr_hugepages = 0;
1136 	void *addr;
1137 
1138 	memset(used_hp, 0, sizeof(used_hp));
1139 
1140 	/* get pointer to global configuration */
1141 	mcfg = rte_eal_get_configuration()->mem_config;
1142 
1143 	/* hugetlbfs can be disabled */
1144 	if (internal_conf->no_hugetlbfs) {
1145 		void *prealloc_addr;
1146 		size_t mem_sz;
1147 		struct rte_memseg_list *msl;
1148 		int n_segs, fd, flags;
1149 #ifdef MEMFD_SUPPORTED
1150 		int memfd;
1151 #endif
1152 		uint64_t page_sz;
1153 
1154 		/* nohuge mode is legacy mode */
1155 		internal_conf->legacy_mem = 1;
1156 
1157 		/* nohuge mode is single-file segments mode */
1158 		internal_conf->single_file_segments = 1;
1159 
1160 		/* create a memseg list */
1161 		msl = &mcfg->memsegs[0];
1162 
1163 		mem_sz = internal_conf->memory;
1164 		page_sz = RTE_PGSIZE_4K;
1165 		n_segs = mem_sz / page_sz;
1166 
1167 		if (eal_memseg_list_init_named(
1168 				msl, "nohugemem", page_sz, n_segs, 0, true)) {
1169 			return -1;
1170 		}
1171 
1172 		/* set up parameters for anonymous mmap */
1173 		fd = -1;
1174 		flags = MAP_PRIVATE | MAP_ANONYMOUS;
1175 
1176 #ifdef MEMFD_SUPPORTED
1177 		/* create a memfd and store it in the segment fd table */
1178 		memfd = memfd_create("nohuge", 0);
1179 		if (memfd < 0) {
1180 			EAL_LOG(DEBUG, "Cannot create memfd: %s",
1181 					strerror(errno));
1182 			EAL_LOG(DEBUG, "Falling back to anonymous map");
1183 		} else {
1184 			/* we got an fd - now resize it */
1185 			if (ftruncate(memfd, internal_conf->memory) < 0) {
1186 				EAL_LOG(ERR, "Cannot resize memfd: %s",
1187 						strerror(errno));
1188 				EAL_LOG(ERR, "Falling back to anonymous map");
1189 				close(memfd);
1190 			} else {
1191 				/* creating memfd-backed file was successful.
1192 				 * we want changes to memfd to be visible to
1193 				 * other processes (such as vhost backend), so
1194 				 * map it as shared memory.
1195 				 */
1196 				EAL_LOG(DEBUG, "Using memfd for anonymous memory");
1197 				fd = memfd;
1198 				flags = MAP_SHARED;
1199 			}
1200 		}
1201 #endif
1202 		/* preallocate address space for the memory, so that it can be
1203 		 * fit into the DMA mask.
1204 		 */
1205 		if (eal_memseg_list_alloc(msl, 0)) {
1206 			EAL_LOG(ERR, "Cannot preallocate VA space for hugepage memory");
1207 			return -1;
1208 		}
1209 
1210 		prealloc_addr = msl->base_va;
1211 		addr = mmap(prealloc_addr, mem_sz, PROT_READ | PROT_WRITE,
1212 				flags | MAP_FIXED, fd, 0);
1213 		if (addr == MAP_FAILED || addr != prealloc_addr) {
1214 			EAL_LOG(ERR, "%s: mmap() failed: %s", __func__,
1215 					strerror(errno));
1216 			munmap(prealloc_addr, mem_sz);
1217 			return -1;
1218 		}
1219 
1220 		/* we're in single-file segments mode, so only the segment list
1221 		 * fd needs to be set up.
1222 		 */
1223 		if (fd != -1) {
1224 			if (eal_memalloc_set_seg_list_fd(0, fd) < 0) {
1225 				EAL_LOG(ERR, "Cannot set up segment list fd");
1226 				/* not a serious error, proceed */
1227 			}
1228 		}
1229 
1230 		eal_memseg_list_populate(msl, addr, n_segs);
1231 
1232 		if (mcfg->dma_maskbits &&
1233 		    rte_mem_check_dma_mask_thread_unsafe(mcfg->dma_maskbits)) {
1234 			EAL_LOG(ERR,
1235 				"%s(): couldn't allocate memory due to IOVA exceeding limits of current DMA mask.",
1236 				__func__);
1237 			if (rte_eal_iova_mode() == RTE_IOVA_VA &&
1238 			    rte_eal_using_phys_addrs())
1239 				EAL_LOG(ERR,
1240 					"%s(): Please try initializing EAL with --iova-mode=pa parameter.",
1241 					__func__);
1242 			goto fail;
1243 		}
1244 		return 0;
1245 	}
1246 
1247 	/* calculate total number of hugepages available. at this point we haven't
1248 	 * yet started sorting them so they all are on socket 0 */
1249 	for (i = 0; i < (int) internal_conf->num_hugepage_sizes; i++) {
1250 		/* meanwhile, also initialize used_hp hugepage sizes in used_hp */
1251 		used_hp[i].hugepage_sz = internal_conf->hugepage_info[i].hugepage_sz;
1252 
1253 		nr_hugepages += internal_conf->hugepage_info[i].num_pages[0];
1254 	}
1255 
1256 	/*
1257 	 * allocate a memory area for hugepage table.
1258 	 * this isn't shared memory yet. due to the fact that we need some
1259 	 * processing done on these pages, shared memory will be created
1260 	 * at a later stage.
1261 	 */
1262 	tmp_hp = malloc(nr_hugepages * sizeof(struct hugepage_file));
1263 	if (tmp_hp == NULL)
1264 		goto fail;
1265 
1266 	memset(tmp_hp, 0, nr_hugepages * sizeof(struct hugepage_file));
1267 
1268 	hp_offset = 0; /* where we start the current page size entries */
1269 
1270 	huge_register_sigbus();
1271 
1272 	/* make a copy of socket_mem, needed for balanced allocation. */
1273 	for (i = 0; i < RTE_MAX_NUMA_NODES; i++)
1274 		memory[i] = internal_conf->socket_mem[i];
1275 
1276 	/* map all hugepages and sort them */
1277 	for (i = 0; i < (int)internal_conf->num_hugepage_sizes; i++) {
1278 		unsigned pages_old, pages_new;
1279 		struct hugepage_info *hpi;
1280 
1281 		/*
1282 		 * we don't yet mark hugepages as used at this stage, so
1283 		 * we just map all hugepages available to the system
1284 		 * all hugepages are still located on socket 0
1285 		 */
1286 		hpi = &internal_conf->hugepage_info[i];
1287 
1288 		if (hpi->num_pages[0] == 0)
1289 			continue;
1290 
1291 		/* map all hugepages available */
1292 		pages_old = hpi->num_pages[0];
1293 		pages_new = map_all_hugepages(&tmp_hp[hp_offset], hpi, memory);
1294 		if (pages_new < pages_old) {
1295 			EAL_LOG(DEBUG,
1296 				"%d not %d hugepages of size %u MB allocated",
1297 				pages_new, pages_old,
1298 				(unsigned)(hpi->hugepage_sz / 0x100000));
1299 
1300 			int pages = pages_old - pages_new;
1301 
1302 			nr_hugepages -= pages;
1303 			hpi->num_pages[0] = pages_new;
1304 			if (pages_new == 0)
1305 				continue;
1306 		}
1307 
1308 		if (rte_eal_using_phys_addrs() &&
1309 				rte_eal_iova_mode() != RTE_IOVA_VA) {
1310 			/* find physical addresses for each hugepage */
1311 			if (find_physaddrs(&tmp_hp[hp_offset], hpi) < 0) {
1312 				EAL_LOG(DEBUG, "Failed to find phys addr "
1313 					"for %u MB pages",
1314 					(unsigned int)(hpi->hugepage_sz / 0x100000));
1315 				goto fail;
1316 			}
1317 		} else {
1318 			/* set physical addresses for each hugepage */
1319 			if (set_physaddrs(&tmp_hp[hp_offset], hpi) < 0) {
1320 				EAL_LOG(DEBUG, "Failed to set phys addr "
1321 					"for %u MB pages",
1322 					(unsigned int)(hpi->hugepage_sz / 0x100000));
1323 				goto fail;
1324 			}
1325 		}
1326 
1327 		if (find_numasocket(&tmp_hp[hp_offset], hpi) < 0){
1328 			EAL_LOG(DEBUG, "Failed to find NUMA socket for %u MB pages",
1329 					(unsigned)(hpi->hugepage_sz / 0x100000));
1330 			goto fail;
1331 		}
1332 
1333 		qsort(&tmp_hp[hp_offset], hpi->num_pages[0],
1334 		      sizeof(struct hugepage_file), cmp_physaddr);
1335 
1336 		/* we have processed a num of hugepages of this size, so inc offset */
1337 		hp_offset += hpi->num_pages[0];
1338 	}
1339 
1340 	huge_recover_sigbus();
1341 
1342 	if (internal_conf->memory == 0 && internal_conf->force_sockets == 0)
1343 		internal_conf->memory = eal_get_hugepage_mem_size();
1344 
1345 	nr_hugefiles = nr_hugepages;
1346 
1347 
1348 	/* clean out the numbers of pages */
1349 	for (i = 0; i < (int) internal_conf->num_hugepage_sizes; i++)
1350 		for (j = 0; j < RTE_MAX_NUMA_NODES; j++)
1351 			internal_conf->hugepage_info[i].num_pages[j] = 0;
1352 
1353 	/* get hugepages for each socket */
1354 	for (i = 0; i < nr_hugefiles; i++) {
1355 		int socket = tmp_hp[i].socket_id;
1356 
1357 		/* find a hugepage info with right size and increment num_pages */
1358 		const int nb_hpsizes = RTE_MIN(MAX_HUGEPAGE_SIZES,
1359 				(int)internal_conf->num_hugepage_sizes);
1360 		for (j = 0; j < nb_hpsizes; j++) {
1361 			if (tmp_hp[i].size ==
1362 					internal_conf->hugepage_info[j].hugepage_sz) {
1363 				internal_conf->hugepage_info[j].num_pages[socket]++;
1364 			}
1365 		}
1366 	}
1367 
1368 	/* make a copy of socket_mem, needed for number of pages calculation */
1369 	for (i = 0; i < RTE_MAX_NUMA_NODES; i++)
1370 		memory[i] = internal_conf->socket_mem[i];
1371 
1372 	/* calculate final number of pages */
1373 	nr_hugepages = eal_dynmem_calc_num_pages_per_socket(memory,
1374 			internal_conf->hugepage_info, used_hp,
1375 			internal_conf->num_hugepage_sizes);
1376 
1377 	/* error if not enough memory available */
1378 	if (nr_hugepages < 0)
1379 		goto fail;
1380 
1381 	/* reporting in! */
1382 	for (i = 0; i < (int) internal_conf->num_hugepage_sizes; i++) {
1383 		for (j = 0; j < RTE_MAX_NUMA_NODES; j++) {
1384 			if (used_hp[i].num_pages[j] > 0) {
1385 				EAL_LOG(DEBUG,
1386 					"Requesting %u pages of size %uMB"
1387 					" from socket %i",
1388 					used_hp[i].num_pages[j],
1389 					(unsigned)
1390 					(used_hp[i].hugepage_sz / 0x100000),
1391 					j);
1392 			}
1393 		}
1394 	}
1395 
1396 	/* create shared memory */
1397 	hugepage = create_shared_memory(eal_hugepage_data_path(),
1398 			nr_hugefiles * sizeof(struct hugepage_file));
1399 
1400 	if (hugepage == NULL) {
1401 		EAL_LOG(ERR, "Failed to create shared memory!");
1402 		goto fail;
1403 	}
1404 	memset(hugepage, 0, nr_hugefiles * sizeof(struct hugepage_file));
1405 
1406 	/*
1407 	 * unmap pages that we won't need (looks at used_hp).
1408 	 * also, sets final_va to NULL on pages that were unmapped.
1409 	 */
1410 	if (unmap_unneeded_hugepages(tmp_hp, used_hp,
1411 			internal_conf->num_hugepage_sizes) < 0) {
1412 		EAL_LOG(ERR, "Unmapping and locking hugepages failed!");
1413 		goto fail;
1414 	}
1415 
1416 	/*
1417 	 * copy stuff from malloc'd hugepage* to the actual shared memory.
1418 	 * this procedure only copies those hugepages that have orig_va
1419 	 * not NULL. has overflow protection.
1420 	 */
1421 	if (copy_hugepages_to_shared_mem(hugepage, nr_hugefiles,
1422 			tmp_hp, nr_hugefiles) < 0) {
1423 		EAL_LOG(ERR, "Copying tables to shared memory failed!");
1424 		goto fail;
1425 	}
1426 
1427 #ifndef RTE_ARCH_64
1428 	/* for legacy 32-bit mode, we did not preallocate VA space, so do it */
1429 	if (internal_conf->legacy_mem &&
1430 			prealloc_segments(hugepage, nr_hugefiles)) {
1431 		EAL_LOG(ERR, "Could not preallocate VA space for hugepages");
1432 		goto fail;
1433 	}
1434 #endif
1435 
1436 	/* remap all pages we do need into memseg list VA space, so that those
1437 	 * pages become first-class citizens in DPDK memory subsystem
1438 	 */
1439 	if (remap_needed_hugepages(hugepage, nr_hugefiles)) {
1440 		EAL_LOG(ERR, "Couldn't remap hugepage files into memseg lists");
1441 		goto fail;
1442 	}
1443 
1444 	/* free the hugepage backing files */
1445 	if (internal_conf->hugepage_file.unlink_before_mapping &&
1446 		unlink_hugepage_files(tmp_hp, internal_conf->num_hugepage_sizes) < 0) {
1447 		EAL_LOG(ERR, "Unlinking hugepage files failed!");
1448 		goto fail;
1449 	}
1450 
1451 	/* free the temporary hugepage table */
1452 	free(tmp_hp);
1453 	tmp_hp = NULL;
1454 
1455 	munmap(hugepage, nr_hugefiles * sizeof(struct hugepage_file));
1456 	hugepage = NULL;
1457 
1458 	/* we're not going to allocate more pages, so release VA space for
1459 	 * unused memseg lists
1460 	 */
1461 	for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) {
1462 		struct rte_memseg_list *msl = &mcfg->memsegs[i];
1463 		size_t mem_sz;
1464 
1465 		/* skip inactive lists */
1466 		if (msl->base_va == NULL)
1467 			continue;
1468 		/* skip lists where there is at least one page allocated */
1469 		if (msl->memseg_arr.count > 0)
1470 			continue;
1471 		/* this is an unused list, deallocate it */
1472 		mem_sz = msl->len;
1473 		munmap(msl->base_va, mem_sz);
1474 		msl->base_va = NULL;
1475 		msl->heap = 0;
1476 
1477 		/* destroy backing fbarray */
1478 		rte_fbarray_destroy(&msl->memseg_arr);
1479 	}
1480 
1481 	if (mcfg->dma_maskbits &&
1482 	    rte_mem_check_dma_mask_thread_unsafe(mcfg->dma_maskbits)) {
1483 		EAL_LOG(ERR,
1484 			"%s(): couldn't allocate memory due to IOVA exceeding limits of current DMA mask.",
1485 			__func__);
1486 		goto fail;
1487 	}
1488 
1489 	return 0;
1490 
1491 fail:
1492 	huge_recover_sigbus();
1493 	free(tmp_hp);
1494 	if (hugepage != NULL)
1495 		munmap(hugepage, nr_hugefiles * sizeof(struct hugepage_file));
1496 
1497 	return -1;
1498 }
1499 
1500 /*
1501  * uses fstat to report the size of a file on disk
1502  */
1503 static off_t
1504 getFileSize(int fd)
1505 {
1506 	struct stat st;
1507 	if (fstat(fd, &st) < 0)
1508 		return 0;
1509 	return st.st_size;
1510 }
1511 
1512 /*
1513  * This creates the memory mappings in the secondary process to match that of
1514  * the server process. It goes through each memory segment in the DPDK runtime
1515  * configuration and finds the hugepages which form that segment, mapping them
1516  * in order to form a contiguous block in the virtual memory space
1517  */
1518 static int
1519 eal_legacy_hugepage_attach(void)
1520 {
1521 	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1522 	struct hugepage_file *hp = NULL;
1523 	unsigned int num_hp = 0;
1524 	unsigned int i = 0;
1525 	unsigned int cur_seg;
1526 	off_t size = 0;
1527 	int fd, fd_hugepage = -1;
1528 
1529 	if (aslr_enabled() > 0) {
1530 		EAL_LOG(WARNING, "WARNING: Address Space Layout Randomization "
1531 				"(ASLR) is enabled in the kernel.");
1532 		EAL_LOG(WARNING, "   This may cause issues with mapping memory "
1533 				"into secondary processes");
1534 	}
1535 
1536 	fd_hugepage = open(eal_hugepage_data_path(), O_RDONLY);
1537 	if (fd_hugepage < 0) {
1538 		EAL_LOG(ERR, "Could not open %s",
1539 				eal_hugepage_data_path());
1540 		goto error;
1541 	}
1542 
1543 	size = getFileSize(fd_hugepage);
1544 	hp = mmap(NULL, size, PROT_READ, MAP_PRIVATE, fd_hugepage, 0);
1545 	if (hp == MAP_FAILED) {
1546 		EAL_LOG(ERR, "Could not mmap %s",
1547 				eal_hugepage_data_path());
1548 		goto error;
1549 	}
1550 
1551 	num_hp = size / sizeof(struct hugepage_file);
1552 	EAL_LOG(DEBUG, "Analysing %u files", num_hp);
1553 
1554 	/* map all segments into memory to make sure we get the addrs. the
1555 	 * segments themselves are already in memseg list (which is shared and
1556 	 * has its VA space already preallocated), so we just need to map
1557 	 * everything into correct addresses.
1558 	 */
1559 	for (i = 0; i < num_hp; i++) {
1560 		struct hugepage_file *hf = &hp[i];
1561 		size_t map_sz = hf->size;
1562 		void *map_addr = hf->final_va;
1563 		int msl_idx, ms_idx;
1564 		struct rte_memseg_list *msl;
1565 		struct rte_memseg *ms;
1566 
1567 		/* if size is zero, no more pages left */
1568 		if (map_sz == 0)
1569 			break;
1570 
1571 		fd = open(hf->filepath, O_RDWR);
1572 		if (fd < 0) {
1573 			EAL_LOG(ERR, "Could not open %s: %s",
1574 				hf->filepath, strerror(errno));
1575 			goto error;
1576 		}
1577 
1578 		map_addr = mmap(map_addr, map_sz, PROT_READ | PROT_WRITE,
1579 				MAP_SHARED | MAP_FIXED, fd, 0);
1580 		if (map_addr == MAP_FAILED) {
1581 			EAL_LOG(ERR, "Could not map %s: %s",
1582 				hf->filepath, strerror(errno));
1583 			goto fd_error;
1584 		}
1585 
1586 		/* set shared lock on the file. */
1587 		if (flock(fd, LOCK_SH) < 0) {
1588 			EAL_LOG(DEBUG, "%s(): Locking file failed: %s",
1589 				__func__, strerror(errno));
1590 			goto mmap_error;
1591 		}
1592 
1593 		/* find segment data */
1594 		msl = rte_mem_virt2memseg_list(map_addr);
1595 		if (msl == NULL) {
1596 			EAL_LOG(DEBUG, "%s(): Cannot find memseg list",
1597 				__func__);
1598 			goto mmap_error;
1599 		}
1600 		ms = rte_mem_virt2memseg(map_addr, msl);
1601 		if (ms == NULL) {
1602 			EAL_LOG(DEBUG, "%s(): Cannot find memseg",
1603 				__func__);
1604 			goto mmap_error;
1605 		}
1606 
1607 		msl_idx = msl - mcfg->memsegs;
1608 		ms_idx = rte_fbarray_find_idx(&msl->memseg_arr, ms);
1609 		if (ms_idx < 0) {
1610 			EAL_LOG(DEBUG, "%s(): Cannot find memseg idx",
1611 				__func__);
1612 			goto mmap_error;
1613 		}
1614 
1615 		/* store segment fd internally */
1616 		if (eal_memalloc_set_seg_fd(msl_idx, ms_idx, fd) < 0)
1617 			EAL_LOG(ERR, "Could not store segment fd: %s",
1618 				rte_strerror(rte_errno));
1619 	}
1620 	/* unmap the hugepage config file, since we are done using it */
1621 	munmap(hp, size);
1622 	close(fd_hugepage);
1623 	return 0;
1624 
1625 mmap_error:
1626 	munmap(hp[i].final_va, hp[i].size);
1627 fd_error:
1628 	close(fd);
1629 error:
1630 	/* unwind mmap's done so far */
1631 	for (cur_seg = 0; cur_seg < i; cur_seg++)
1632 		munmap(hp[cur_seg].final_va, hp[cur_seg].size);
1633 
1634 	if (hp != NULL && hp != MAP_FAILED)
1635 		munmap(hp, size);
1636 	if (fd_hugepage >= 0)
1637 		close(fd_hugepage);
1638 	return -1;
1639 }
1640 
1641 static int
1642 eal_hugepage_attach(void)
1643 {
1644 	if (eal_memalloc_sync_with_primary()) {
1645 		EAL_LOG(ERR, "Could not map memory from primary process");
1646 		if (aslr_enabled() > 0)
1647 			EAL_LOG(ERR, "It is recommended to disable ASLR in the kernel and retry running both primary and secondary processes");
1648 		return -1;
1649 	}
1650 	return 0;
1651 }
1652 
1653 int
1654 rte_eal_hugepage_init(void)
1655 {
1656 	const struct internal_config *internal_conf =
1657 		eal_get_internal_configuration();
1658 
1659 	return internal_conf->legacy_mem ?
1660 			eal_legacy_hugepage_init() :
1661 			eal_dynmem_hugepage_init();
1662 }
1663 
1664 int
1665 rte_eal_hugepage_attach(void)
1666 {
1667 	const struct internal_config *internal_conf =
1668 		eal_get_internal_configuration();
1669 
1670 	return internal_conf->legacy_mem ?
1671 			eal_legacy_hugepage_attach() :
1672 			eal_hugepage_attach();
1673 }
1674 
1675 int
1676 rte_eal_using_phys_addrs(void)
1677 {
1678 	if (phys_addrs_available == -1) {
1679 		uint64_t tmp = 0;
1680 
1681 		if (rte_eal_has_hugepages() != 0 &&
1682 		    rte_mem_virt2phy(&tmp) != RTE_BAD_PHYS_ADDR)
1683 			phys_addrs_available = 1;
1684 		else
1685 			phys_addrs_available = 0;
1686 	}
1687 	return phys_addrs_available;
1688 }
1689 
1690 static int __rte_unused
1691 memseg_primary_init_32(void)
1692 {
1693 	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1694 	int active_sockets, hpi_idx, msl_idx = 0;
1695 	unsigned int socket_id, i;
1696 	struct rte_memseg_list *msl;
1697 	uint64_t extra_mem_per_socket, total_extra_mem, total_requested_mem;
1698 	uint64_t max_mem;
1699 	struct internal_config *internal_conf =
1700 		eal_get_internal_configuration();
1701 
1702 	/* no-huge does not need this at all */
1703 	if (internal_conf->no_hugetlbfs)
1704 		return 0;
1705 
1706 	/* this is a giant hack, but desperate times call for desperate
1707 	 * measures. in legacy 32-bit mode, we cannot preallocate VA space,
1708 	 * because having upwards of 2 gigabytes of VA space already mapped will
1709 	 * interfere with our ability to map and sort hugepages.
1710 	 *
1711 	 * therefore, in legacy 32-bit mode, we will be initializing memseg
1712 	 * lists much later - in eal_memory.c, right after we unmap all the
1713 	 * unneeded pages. this will not affect secondary processes, as those
1714 	 * should be able to mmap the space without (too many) problems.
1715 	 */
1716 	if (internal_conf->legacy_mem)
1717 		return 0;
1718 
1719 	/* 32-bit mode is a very special case. we cannot know in advance where
1720 	 * the user will want to allocate their memory, so we have to do some
1721 	 * heuristics.
1722 	 */
1723 	active_sockets = 0;
1724 	total_requested_mem = 0;
1725 	if (internal_conf->force_sockets)
1726 		for (i = 0; i < rte_socket_count(); i++) {
1727 			uint64_t mem;
1728 
1729 			socket_id = rte_socket_id_by_idx(i);
1730 			mem = internal_conf->socket_mem[socket_id];
1731 
1732 			if (mem == 0)
1733 				continue;
1734 
1735 			active_sockets++;
1736 			total_requested_mem += mem;
1737 		}
1738 	else
1739 		total_requested_mem = internal_conf->memory;
1740 
1741 	max_mem = (uint64_t)RTE_MAX_MEM_MB << 20;
1742 	if (total_requested_mem > max_mem) {
1743 		EAL_LOG(ERR, "Invalid parameters: 32-bit process can at most use %uM of memory",
1744 				(unsigned int)(max_mem >> 20));
1745 		return -1;
1746 	}
1747 	total_extra_mem = max_mem - total_requested_mem;
1748 	extra_mem_per_socket = active_sockets == 0 ? total_extra_mem :
1749 			total_extra_mem / active_sockets;
1750 
1751 	/* the allocation logic is a little bit convoluted, but here's how it
1752 	 * works, in a nutshell:
1753 	 *  - if user hasn't specified on which sockets to allocate memory via
1754 	 *    --socket-mem, we allocate all of our memory on main core socket.
1755 	 *  - if user has specified sockets to allocate memory on, there may be
1756 	 *    some "unused" memory left (e.g. if user has specified --socket-mem
1757 	 *    such that not all memory adds up to 2 gigabytes), so add it to all
1758 	 *    sockets that are in use equally.
1759 	 *
1760 	 * page sizes are sorted by size in descending order, so we can safely
1761 	 * assume that we dispense with bigger page sizes first.
1762 	 */
1763 
1764 	/* create memseg lists */
1765 	for (i = 0; i < rte_socket_count(); i++) {
1766 		int hp_sizes = (int) internal_conf->num_hugepage_sizes;
1767 		uint64_t max_socket_mem, cur_socket_mem;
1768 		unsigned int main_lcore_socket;
1769 		struct rte_config *cfg = rte_eal_get_configuration();
1770 		bool skip;
1771 
1772 		socket_id = rte_socket_id_by_idx(i);
1773 
1774 #ifndef RTE_EAL_NUMA_AWARE_HUGEPAGES
1775 		/* we can still sort pages by socket in legacy mode */
1776 		if (!internal_conf->legacy_mem && socket_id > 0)
1777 			break;
1778 #endif
1779 
1780 		/* if we didn't specifically request memory on this socket */
1781 		skip = active_sockets != 0 &&
1782 				internal_conf->socket_mem[socket_id] == 0;
1783 		/* ...or if we didn't specifically request memory on *any*
1784 		 * socket, and this is not main lcore
1785 		 */
1786 		main_lcore_socket = rte_lcore_to_socket_id(cfg->main_lcore);
1787 		skip |= active_sockets == 0 && socket_id != main_lcore_socket;
1788 
1789 		if (skip) {
1790 			EAL_LOG(DEBUG, "Will not preallocate memory on socket %u",
1791 					socket_id);
1792 			continue;
1793 		}
1794 
1795 		/* max amount of memory on this socket */
1796 		max_socket_mem = (active_sockets != 0 ?
1797 					internal_conf->socket_mem[socket_id] :
1798 					internal_conf->memory) +
1799 					extra_mem_per_socket;
1800 		cur_socket_mem = 0;
1801 
1802 		for (hpi_idx = 0; hpi_idx < hp_sizes; hpi_idx++) {
1803 			uint64_t max_pagesz_mem, cur_pagesz_mem = 0;
1804 			uint64_t hugepage_sz;
1805 			struct hugepage_info *hpi;
1806 			int type_msl_idx, max_segs, total_segs = 0;
1807 
1808 			hpi = &internal_conf->hugepage_info[hpi_idx];
1809 			hugepage_sz = hpi->hugepage_sz;
1810 
1811 			/* check if pages are actually available */
1812 			if (hpi->num_pages[socket_id] == 0)
1813 				continue;
1814 
1815 			max_segs = RTE_MAX_MEMSEG_PER_TYPE;
1816 			max_pagesz_mem = max_socket_mem - cur_socket_mem;
1817 
1818 			/* make it multiple of page size */
1819 			max_pagesz_mem = RTE_ALIGN_FLOOR(max_pagesz_mem,
1820 					hugepage_sz);
1821 
1822 			EAL_LOG(DEBUG, "Attempting to preallocate "
1823 					"%" PRIu64 "M on socket %i",
1824 					max_pagesz_mem >> 20, socket_id);
1825 
1826 			type_msl_idx = 0;
1827 			while (cur_pagesz_mem < max_pagesz_mem &&
1828 					total_segs < max_segs) {
1829 				uint64_t cur_mem;
1830 				unsigned int n_segs;
1831 
1832 				if (msl_idx >= RTE_MAX_MEMSEG_LISTS) {
1833 					EAL_LOG(ERR,
1834 						"No more space in memseg lists, please increase RTE_MAX_MEMSEG_LISTS");
1835 					return -1;
1836 				}
1837 
1838 				msl = &mcfg->memsegs[msl_idx];
1839 
1840 				cur_mem = get_mem_amount(hugepage_sz,
1841 						max_pagesz_mem);
1842 				n_segs = cur_mem / hugepage_sz;
1843 
1844 				if (eal_memseg_list_init(msl, hugepage_sz,
1845 						n_segs, socket_id, type_msl_idx,
1846 						true)) {
1847 					/* failing to allocate a memseg list is
1848 					 * a serious error.
1849 					 */
1850 					EAL_LOG(ERR, "Cannot allocate memseg list");
1851 					return -1;
1852 				}
1853 
1854 				if (eal_memseg_list_alloc(msl, 0)) {
1855 					/* if we couldn't allocate VA space, we
1856 					 * can try with smaller page sizes.
1857 					 */
1858 					EAL_LOG(ERR, "Cannot allocate VA space for memseg list, retrying with different page size");
1859 					/* deallocate memseg list */
1860 					if (memseg_list_free(msl))
1861 						return -1;
1862 					break;
1863 				}
1864 
1865 				total_segs += msl->memseg_arr.len;
1866 				cur_pagesz_mem = total_segs * hugepage_sz;
1867 				type_msl_idx++;
1868 				msl_idx++;
1869 			}
1870 			cur_socket_mem += cur_pagesz_mem;
1871 		}
1872 		if (cur_socket_mem == 0) {
1873 			EAL_LOG(ERR, "Cannot allocate VA space on socket %u",
1874 				socket_id);
1875 			return -1;
1876 		}
1877 	}
1878 
1879 	return 0;
1880 }
1881 
1882 static int __rte_unused
1883 memseg_primary_init(void)
1884 {
1885 	return eal_dynmem_memseg_lists_init();
1886 }
1887 
1888 static int
1889 memseg_secondary_init(void)
1890 {
1891 	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1892 	int msl_idx = 0;
1893 	struct rte_memseg_list *msl;
1894 
1895 	for (msl_idx = 0; msl_idx < RTE_MAX_MEMSEG_LISTS; msl_idx++) {
1896 
1897 		msl = &mcfg->memsegs[msl_idx];
1898 
1899 		/* skip empty and external memseg lists */
1900 		if (msl->memseg_arr.len == 0 || msl->external)
1901 			continue;
1902 
1903 		if (rte_fbarray_attach(&msl->memseg_arr)) {
1904 			EAL_LOG(ERR, "Cannot attach to primary process memseg lists");
1905 			return -1;
1906 		}
1907 
1908 		/* preallocate VA space */
1909 		if (eal_memseg_list_alloc(msl, 0)) {
1910 			EAL_LOG(ERR, "Cannot preallocate VA space for hugepage memory");
1911 			return -1;
1912 		}
1913 	}
1914 
1915 	return 0;
1916 }
1917 
1918 int
1919 rte_eal_memseg_init(void)
1920 {
1921 	/* increase rlimit to maximum */
1922 	struct rlimit lim;
1923 
1924 #ifndef RTE_EAL_NUMA_AWARE_HUGEPAGES
1925 	const struct internal_config *internal_conf =
1926 		eal_get_internal_configuration();
1927 #endif
1928 	if (getrlimit(RLIMIT_NOFILE, &lim) == 0) {
1929 		/* set limit to maximum */
1930 		lim.rlim_cur = lim.rlim_max;
1931 
1932 		if (setrlimit(RLIMIT_NOFILE, &lim) < 0) {
1933 			EAL_LOG(DEBUG, "Setting maximum number of open files failed: %s",
1934 					strerror(errno));
1935 		} else {
1936 			EAL_LOG(DEBUG, "Setting maximum number of open files to %"
1937 					PRIu64,
1938 					(uint64_t)lim.rlim_cur);
1939 		}
1940 	} else {
1941 		EAL_LOG(ERR, "Cannot get current resource limits");
1942 	}
1943 #ifndef RTE_EAL_NUMA_AWARE_HUGEPAGES
1944 	if (!internal_conf->legacy_mem && rte_socket_count() > 1) {
1945 		EAL_LOG(WARNING, "DPDK is running on a NUMA system, but is compiled without NUMA support.");
1946 		EAL_LOG(WARNING, "This will have adverse consequences for performance and usability.");
1947 		EAL_LOG(WARNING, "Please use --"OPT_LEGACY_MEM" option, or recompile with NUMA support.");
1948 	}
1949 #endif
1950 
1951 	return rte_eal_process_type() == RTE_PROC_PRIMARY ?
1952 #ifndef RTE_ARCH_64
1953 			memseg_primary_init_32() :
1954 #else
1955 			memseg_primary_init() :
1956 #endif
1957 			memseg_secondary_init();
1958 }
1959