1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2010-2014 Intel Corporation. 3 * Copyright(c) 2013 6WIND S.A. 4 */ 5 6 #include <errno.h> 7 #include <fcntl.h> 8 #include <stdbool.h> 9 #include <stdlib.h> 10 #include <stdio.h> 11 #include <stdint.h> 12 #include <inttypes.h> 13 #include <string.h> 14 #include <sys/mman.h> 15 #include <sys/stat.h> 16 #include <sys/file.h> 17 #include <sys/resource.h> 18 #include <unistd.h> 19 #include <limits.h> 20 #include <signal.h> 21 #include <setjmp.h> 22 #ifdef F_ADD_SEALS /* if file sealing is supported, so is memfd */ 23 #define MEMFD_SUPPORTED 24 #endif 25 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES 26 #include <numa.h> 27 #include <numaif.h> 28 #endif 29 30 #include <rte_errno.h> 31 #include <rte_log.h> 32 #include <rte_memory.h> 33 #include <rte_eal.h> 34 #include <rte_lcore.h> 35 #include <rte_common.h> 36 37 #include "eal_private.h" 38 #include "eal_memalloc.h" 39 #include "eal_memcfg.h" 40 #include "eal_internal_cfg.h" 41 #include "eal_filesystem.h" 42 #include "eal_hugepages.h" 43 #include "eal_options.h" 44 45 #define PFN_MASK_SIZE 8 46 47 /** 48 * @file 49 * Huge page mapping under linux 50 * 51 * To reserve a big contiguous amount of memory, we use the hugepage 52 * feature of linux. For that, we need to have hugetlbfs mounted. This 53 * code will create many files in this directory (one per page) and 54 * map them in virtual memory. For each page, we will retrieve its 55 * physical address and remap it in order to have a virtual contiguous 56 * zone as well as a physical contiguous zone. 57 */ 58 59 static int phys_addrs_available = -1; 60 61 #define RANDOMIZE_VA_SPACE_FILE "/proc/sys/kernel/randomize_va_space" 62 63 uint64_t eal_get_baseaddr(void) 64 { 65 /* 66 * Linux kernel uses a really high address as starting address for 67 * serving mmaps calls. If there exists addressing limitations and IOVA 68 * mode is VA, this starting address is likely too high for those 69 * devices. However, it is possible to use a lower address in the 70 * process virtual address space as with 64 bits there is a lot of 71 * available space. 72 * 73 * Current known limitations are 39 or 40 bits. Setting the starting 74 * address at 4GB implies there are 508GB or 1020GB for mapping the 75 * available hugepages. This is likely enough for most systems, although 76 * a device with addressing limitations should call 77 * rte_mem_check_dma_mask for ensuring all memory is within supported 78 * range. 79 */ 80 #if defined(RTE_ARCH_LOONGARCH) 81 return 0x7000000000ULL; 82 #else 83 return 0x100000000ULL; 84 #endif 85 } 86 87 /* 88 * Get physical address of any mapped virtual address in the current process. 89 */ 90 phys_addr_t 91 rte_mem_virt2phy(const void *virtaddr) 92 { 93 int fd, retval; 94 uint64_t page, physaddr; 95 unsigned long virt_pfn; 96 int page_size; 97 off_t offset; 98 99 if (phys_addrs_available == 0) 100 return RTE_BAD_IOVA; 101 102 /* standard page size */ 103 page_size = getpagesize(); 104 105 fd = open("/proc/self/pagemap", O_RDONLY); 106 if (fd < 0) { 107 RTE_LOG(INFO, EAL, "%s(): cannot open /proc/self/pagemap: %s\n", 108 __func__, strerror(errno)); 109 return RTE_BAD_IOVA; 110 } 111 112 virt_pfn = (unsigned long)virtaddr / page_size; 113 offset = sizeof(uint64_t) * virt_pfn; 114 if (lseek(fd, offset, SEEK_SET) == (off_t) -1) { 115 RTE_LOG(INFO, EAL, "%s(): seek error in /proc/self/pagemap: %s\n", 116 __func__, strerror(errno)); 117 close(fd); 118 return RTE_BAD_IOVA; 119 } 120 121 retval = read(fd, &page, PFN_MASK_SIZE); 122 close(fd); 123 if (retval < 0) { 124 RTE_LOG(INFO, EAL, "%s(): cannot read /proc/self/pagemap: %s\n", 125 __func__, strerror(errno)); 126 return RTE_BAD_IOVA; 127 } else if (retval != PFN_MASK_SIZE) { 128 RTE_LOG(INFO, EAL, "%s(): read %d bytes from /proc/self/pagemap " 129 "but expected %d:\n", 130 __func__, retval, PFN_MASK_SIZE); 131 return RTE_BAD_IOVA; 132 } 133 134 /* 135 * the pfn (page frame number) are bits 0-54 (see 136 * pagemap.txt in linux Documentation) 137 */ 138 if ((page & 0x7fffffffffffffULL) == 0) 139 return RTE_BAD_IOVA; 140 141 physaddr = ((page & 0x7fffffffffffffULL) * page_size) 142 + ((unsigned long)virtaddr % page_size); 143 144 return physaddr; 145 } 146 147 rte_iova_t 148 rte_mem_virt2iova(const void *virtaddr) 149 { 150 if (rte_eal_iova_mode() == RTE_IOVA_VA) 151 return (uintptr_t)virtaddr; 152 return rte_mem_virt2phy(virtaddr); 153 } 154 155 /* 156 * For each hugepage in hugepg_tbl, fill the physaddr value. We find 157 * it by browsing the /proc/self/pagemap special file. 158 */ 159 static int 160 find_physaddrs(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi) 161 { 162 unsigned int i; 163 phys_addr_t addr; 164 165 for (i = 0; i < hpi->num_pages[0]; i++) { 166 addr = rte_mem_virt2phy(hugepg_tbl[i].orig_va); 167 if (addr == RTE_BAD_PHYS_ADDR) 168 return -1; 169 hugepg_tbl[i].physaddr = addr; 170 } 171 return 0; 172 } 173 174 /* 175 * For each hugepage in hugepg_tbl, fill the physaddr value sequentially. 176 */ 177 static int 178 set_physaddrs(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi) 179 { 180 unsigned int i; 181 static phys_addr_t addr; 182 183 for (i = 0; i < hpi->num_pages[0]; i++) { 184 hugepg_tbl[i].physaddr = addr; 185 addr += hugepg_tbl[i].size; 186 } 187 return 0; 188 } 189 190 /* 191 * Check whether address-space layout randomization is enabled in 192 * the kernel. This is important for multi-process as it can prevent 193 * two processes mapping data to the same virtual address 194 * Returns: 195 * 0 - address space randomization disabled 196 * 1/2 - address space randomization enabled 197 * negative error code on error 198 */ 199 static int 200 aslr_enabled(void) 201 { 202 char c; 203 int retval, fd = open(RANDOMIZE_VA_SPACE_FILE, O_RDONLY); 204 if (fd < 0) 205 return -errno; 206 retval = read(fd, &c, 1); 207 close(fd); 208 if (retval < 0) 209 return -errno; 210 if (retval == 0) 211 return -EIO; 212 switch (c) { 213 case '0' : return 0; 214 case '1' : return 1; 215 case '2' : return 2; 216 default: return -EINVAL; 217 } 218 } 219 220 static sigjmp_buf huge_jmpenv; 221 222 static void huge_sigbus_handler(int signo __rte_unused) 223 { 224 siglongjmp(huge_jmpenv, 1); 225 } 226 227 /* Put setjmp into a wrap method to avoid compiling error. Any non-volatile, 228 * non-static local variable in the stack frame calling sigsetjmp might be 229 * clobbered by a call to longjmp. 230 */ 231 static int huge_wrap_sigsetjmp(void) 232 { 233 return sigsetjmp(huge_jmpenv, 1); 234 } 235 236 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES 237 /* Callback for numa library. */ 238 void numa_error(char *where) 239 { 240 RTE_LOG(ERR, EAL, "%s failed: %s\n", where, strerror(errno)); 241 } 242 #endif 243 244 /* 245 * Mmap all hugepages of hugepage table: it first open a file in 246 * hugetlbfs, then mmap() hugepage_sz data in it. If orig is set, the 247 * virtual address is stored in hugepg_tbl[i].orig_va, else it is stored 248 * in hugepg_tbl[i].final_va. The second mapping (when orig is 0) tries to 249 * map contiguous physical blocks in contiguous virtual blocks. 250 */ 251 static unsigned 252 map_all_hugepages(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi, 253 uint64_t *essential_memory __rte_unused) 254 { 255 int fd; 256 unsigned i; 257 void *virtaddr; 258 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES 259 int node_id = -1; 260 int essential_prev = 0; 261 int oldpolicy; 262 struct bitmask *oldmask = NULL; 263 bool have_numa = true; 264 unsigned long maxnode = 0; 265 const struct internal_config *internal_conf = 266 eal_get_internal_configuration(); 267 268 /* Check if kernel supports NUMA. */ 269 if (numa_available() != 0) { 270 RTE_LOG(DEBUG, EAL, "NUMA is not supported.\n"); 271 have_numa = false; 272 } 273 274 if (have_numa) { 275 RTE_LOG(DEBUG, EAL, "Trying to obtain current memory policy.\n"); 276 oldmask = numa_allocate_nodemask(); 277 if (get_mempolicy(&oldpolicy, oldmask->maskp, 278 oldmask->size + 1, 0, 0) < 0) { 279 RTE_LOG(ERR, EAL, 280 "Failed to get current mempolicy: %s. " 281 "Assuming MPOL_DEFAULT.\n", strerror(errno)); 282 oldpolicy = MPOL_DEFAULT; 283 } 284 for (i = 0; i < RTE_MAX_NUMA_NODES; i++) 285 if (internal_conf->socket_mem[i]) 286 maxnode = i + 1; 287 } 288 #endif 289 290 for (i = 0; i < hpi->num_pages[0]; i++) { 291 struct hugepage_file *hf = &hugepg_tbl[i]; 292 uint64_t hugepage_sz = hpi->hugepage_sz; 293 294 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES 295 if (maxnode) { 296 unsigned int j; 297 298 for (j = 0; j < maxnode; j++) 299 if (essential_memory[j]) 300 break; 301 302 if (j == maxnode) { 303 node_id = (node_id + 1) % maxnode; 304 while (!internal_conf->socket_mem[node_id]) { 305 node_id++; 306 node_id %= maxnode; 307 } 308 essential_prev = 0; 309 } else { 310 node_id = j; 311 essential_prev = essential_memory[j]; 312 313 if (essential_memory[j] < hugepage_sz) 314 essential_memory[j] = 0; 315 else 316 essential_memory[j] -= hugepage_sz; 317 } 318 319 RTE_LOG(DEBUG, EAL, 320 "Setting policy MPOL_PREFERRED for socket %d\n", 321 node_id); 322 numa_set_preferred(node_id); 323 } 324 #endif 325 326 hf->file_id = i; 327 hf->size = hugepage_sz; 328 eal_get_hugefile_path(hf->filepath, sizeof(hf->filepath), 329 hpi->hugedir, hf->file_id); 330 hf->filepath[sizeof(hf->filepath) - 1] = '\0'; 331 332 /* try to create hugepage file */ 333 fd = open(hf->filepath, O_CREAT | O_RDWR, 0600); 334 if (fd < 0) { 335 RTE_LOG(DEBUG, EAL, "%s(): open failed: %s\n", __func__, 336 strerror(errno)); 337 goto out; 338 } 339 340 /* map the segment, and populate page tables, 341 * the kernel fills this segment with zeros. we don't care where 342 * this gets mapped - we already have contiguous memory areas 343 * ready for us to map into. 344 */ 345 virtaddr = mmap(NULL, hugepage_sz, PROT_READ | PROT_WRITE, 346 MAP_SHARED | MAP_POPULATE, fd, 0); 347 if (virtaddr == MAP_FAILED) { 348 RTE_LOG(DEBUG, EAL, "%s(): mmap failed: %s\n", __func__, 349 strerror(errno)); 350 close(fd); 351 goto out; 352 } 353 354 hf->orig_va = virtaddr; 355 356 /* In linux, hugetlb limitations, like cgroup, are 357 * enforced at fault time instead of mmap(), even 358 * with the option of MAP_POPULATE. Kernel will send 359 * a SIGBUS signal. To avoid to be killed, save stack 360 * environment here, if SIGBUS happens, we can jump 361 * back here. 362 */ 363 if (huge_wrap_sigsetjmp()) { 364 RTE_LOG(DEBUG, EAL, "SIGBUS: Cannot mmap more " 365 "hugepages of size %u MB\n", 366 (unsigned int)(hugepage_sz / 0x100000)); 367 munmap(virtaddr, hugepage_sz); 368 close(fd); 369 unlink(hugepg_tbl[i].filepath); 370 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES 371 if (maxnode) 372 essential_memory[node_id] = 373 essential_prev; 374 #endif 375 goto out; 376 } 377 *(int *)virtaddr = 0; 378 379 /* set shared lock on the file. */ 380 if (flock(fd, LOCK_SH) < 0) { 381 RTE_LOG(DEBUG, EAL, "%s(): Locking file failed:%s \n", 382 __func__, strerror(errno)); 383 close(fd); 384 goto out; 385 } 386 387 close(fd); 388 } 389 390 out: 391 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES 392 if (maxnode) { 393 RTE_LOG(DEBUG, EAL, 394 "Restoring previous memory policy: %d\n", oldpolicy); 395 if (oldpolicy == MPOL_DEFAULT) { 396 numa_set_localalloc(); 397 } else if (set_mempolicy(oldpolicy, oldmask->maskp, 398 oldmask->size + 1) < 0) { 399 RTE_LOG(ERR, EAL, "Failed to restore mempolicy: %s\n", 400 strerror(errno)); 401 numa_set_localalloc(); 402 } 403 } 404 if (oldmask != NULL) 405 numa_free_cpumask(oldmask); 406 #endif 407 return i; 408 } 409 410 /* 411 * Parse /proc/self/numa_maps to get the NUMA socket ID for each huge 412 * page. 413 */ 414 static int 415 find_numasocket(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi) 416 { 417 int socket_id; 418 char *end, *nodestr; 419 unsigned i, hp_count = 0; 420 uint64_t virt_addr; 421 char buf[BUFSIZ]; 422 char hugedir_str[PATH_MAX]; 423 FILE *f; 424 425 f = fopen("/proc/self/numa_maps", "r"); 426 if (f == NULL) { 427 RTE_LOG(NOTICE, EAL, "NUMA support not available" 428 " consider that all memory is in socket_id 0\n"); 429 return 0; 430 } 431 432 snprintf(hugedir_str, sizeof(hugedir_str), 433 "%s/%s", hpi->hugedir, eal_get_hugefile_prefix()); 434 435 /* parse numa map */ 436 while (fgets(buf, sizeof(buf), f) != NULL) { 437 438 /* ignore non huge page */ 439 if (strstr(buf, " huge ") == NULL && 440 strstr(buf, hugedir_str) == NULL) 441 continue; 442 443 /* get zone addr */ 444 virt_addr = strtoull(buf, &end, 16); 445 if (virt_addr == 0 || end == buf) { 446 RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__); 447 goto error; 448 } 449 450 /* get node id (socket id) */ 451 nodestr = strstr(buf, " N"); 452 if (nodestr == NULL) { 453 RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__); 454 goto error; 455 } 456 nodestr += 2; 457 end = strstr(nodestr, "="); 458 if (end == NULL) { 459 RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__); 460 goto error; 461 } 462 end[0] = '\0'; 463 end = NULL; 464 465 socket_id = strtoul(nodestr, &end, 0); 466 if ((nodestr[0] == '\0') || (end == NULL) || (*end != '\0')) { 467 RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__); 468 goto error; 469 } 470 471 /* if we find this page in our mappings, set socket_id */ 472 for (i = 0; i < hpi->num_pages[0]; i++) { 473 void *va = (void *)(unsigned long)virt_addr; 474 if (hugepg_tbl[i].orig_va == va) { 475 hugepg_tbl[i].socket_id = socket_id; 476 hp_count++; 477 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES 478 RTE_LOG(DEBUG, EAL, 479 "Hugepage %s is on socket %d\n", 480 hugepg_tbl[i].filepath, socket_id); 481 #endif 482 } 483 } 484 } 485 486 if (hp_count < hpi->num_pages[0]) 487 goto error; 488 489 fclose(f); 490 return 0; 491 492 error: 493 fclose(f); 494 return -1; 495 } 496 497 static int 498 cmp_physaddr(const void *a, const void *b) 499 { 500 #ifndef RTE_ARCH_PPC_64 501 const struct hugepage_file *p1 = a; 502 const struct hugepage_file *p2 = b; 503 #else 504 /* PowerPC needs memory sorted in reverse order from x86 */ 505 const struct hugepage_file *p1 = b; 506 const struct hugepage_file *p2 = a; 507 #endif 508 if (p1->physaddr < p2->physaddr) 509 return -1; 510 else if (p1->physaddr > p2->physaddr) 511 return 1; 512 else 513 return 0; 514 } 515 516 /* 517 * Uses mmap to create a shared memory area for storage of data 518 * Used in this file to store the hugepage file map on disk 519 */ 520 static void * 521 create_shared_memory(const char *filename, const size_t mem_size) 522 { 523 void *retval; 524 int fd; 525 const struct internal_config *internal_conf = 526 eal_get_internal_configuration(); 527 528 /* if no shared files mode is used, create anonymous memory instead */ 529 if (internal_conf->no_shconf) { 530 retval = mmap(NULL, mem_size, PROT_READ | PROT_WRITE, 531 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 532 if (retval == MAP_FAILED) 533 return NULL; 534 return retval; 535 } 536 537 fd = open(filename, O_CREAT | O_RDWR, 0600); 538 if (fd < 0) 539 return NULL; 540 if (ftruncate(fd, mem_size) < 0) { 541 close(fd); 542 return NULL; 543 } 544 retval = mmap(NULL, mem_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); 545 close(fd); 546 if (retval == MAP_FAILED) 547 return NULL; 548 return retval; 549 } 550 551 /* 552 * this copies *active* hugepages from one hugepage table to another. 553 * destination is typically the shared memory. 554 */ 555 static int 556 copy_hugepages_to_shared_mem(struct hugepage_file * dst, int dest_size, 557 const struct hugepage_file * src, int src_size) 558 { 559 int src_pos, dst_pos = 0; 560 561 for (src_pos = 0; src_pos < src_size; src_pos++) { 562 if (src[src_pos].orig_va != NULL) { 563 /* error on overflow attempt */ 564 if (dst_pos == dest_size) 565 return -1; 566 memcpy(&dst[dst_pos], &src[src_pos], sizeof(struct hugepage_file)); 567 dst_pos++; 568 } 569 } 570 return 0; 571 } 572 573 static int 574 unlink_hugepage_files(struct hugepage_file *hugepg_tbl, 575 unsigned num_hp_info) 576 { 577 unsigned socket, size; 578 int page, nrpages = 0; 579 const struct internal_config *internal_conf = 580 eal_get_internal_configuration(); 581 582 /* get total number of hugepages */ 583 for (size = 0; size < num_hp_info; size++) 584 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) 585 nrpages += 586 internal_conf->hugepage_info[size].num_pages[socket]; 587 588 for (page = 0; page < nrpages; page++) { 589 struct hugepage_file *hp = &hugepg_tbl[page]; 590 591 if (hp->orig_va != NULL && unlink(hp->filepath)) { 592 RTE_LOG(WARNING, EAL, "%s(): Removing %s failed: %s\n", 593 __func__, hp->filepath, strerror(errno)); 594 } 595 } 596 return 0; 597 } 598 599 /* 600 * unmaps hugepages that are not going to be used. since we originally allocate 601 * ALL hugepages (not just those we need), additional unmapping needs to be done. 602 */ 603 static int 604 unmap_unneeded_hugepages(struct hugepage_file *hugepg_tbl, 605 struct hugepage_info *hpi, 606 unsigned num_hp_info) 607 { 608 unsigned socket, size; 609 int page, nrpages = 0; 610 const struct internal_config *internal_conf = 611 eal_get_internal_configuration(); 612 613 /* get total number of hugepages */ 614 for (size = 0; size < num_hp_info; size++) 615 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) 616 nrpages += internal_conf->hugepage_info[size].num_pages[socket]; 617 618 for (size = 0; size < num_hp_info; size++) { 619 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) { 620 unsigned pages_found = 0; 621 622 /* traverse until we have unmapped all the unused pages */ 623 for (page = 0; page < nrpages; page++) { 624 struct hugepage_file *hp = &hugepg_tbl[page]; 625 626 /* find a page that matches the criteria */ 627 if ((hp->size == hpi[size].hugepage_sz) && 628 (hp->socket_id == (int) socket)) { 629 630 /* if we skipped enough pages, unmap the rest */ 631 if (pages_found == hpi[size].num_pages[socket]) { 632 uint64_t unmap_len; 633 634 unmap_len = hp->size; 635 636 /* get start addr and len of the remaining segment */ 637 munmap(hp->orig_va, 638 (size_t)unmap_len); 639 640 hp->orig_va = NULL; 641 if (unlink(hp->filepath) == -1) { 642 RTE_LOG(ERR, EAL, "%s(): Removing %s failed: %s\n", 643 __func__, hp->filepath, strerror(errno)); 644 return -1; 645 } 646 } else { 647 /* lock the page and skip */ 648 pages_found++; 649 } 650 651 } /* match page */ 652 } /* foreach page */ 653 } /* foreach socket */ 654 } /* foreach pagesize */ 655 656 return 0; 657 } 658 659 static int 660 remap_segment(struct hugepage_file *hugepages, int seg_start, int seg_end) 661 { 662 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 663 struct rte_memseg_list *msl; 664 struct rte_fbarray *arr; 665 int cur_page, seg_len; 666 unsigned int msl_idx; 667 int ms_idx; 668 uint64_t page_sz; 669 size_t memseg_len; 670 int socket_id; 671 #ifndef RTE_ARCH_64 672 const struct internal_config *internal_conf = 673 eal_get_internal_configuration(); 674 #endif 675 page_sz = hugepages[seg_start].size; 676 socket_id = hugepages[seg_start].socket_id; 677 seg_len = seg_end - seg_start; 678 679 RTE_LOG(DEBUG, EAL, "Attempting to map %" PRIu64 "M on socket %i\n", 680 (seg_len * page_sz) >> 20ULL, socket_id); 681 682 /* find free space in memseg lists */ 683 for (msl_idx = 0; msl_idx < RTE_MAX_MEMSEG_LISTS; msl_idx++) { 684 bool empty; 685 msl = &mcfg->memsegs[msl_idx]; 686 arr = &msl->memseg_arr; 687 688 if (msl->page_sz != page_sz) 689 continue; 690 if (msl->socket_id != socket_id) 691 continue; 692 693 /* leave space for a hole if array is not empty */ 694 empty = arr->count == 0; 695 ms_idx = rte_fbarray_find_next_n_free(arr, 0, 696 seg_len + (empty ? 0 : 1)); 697 698 /* memseg list is full? */ 699 if (ms_idx < 0) 700 continue; 701 702 /* leave some space between memsegs, they are not IOVA 703 * contiguous, so they shouldn't be VA contiguous either. 704 */ 705 if (!empty) 706 ms_idx++; 707 break; 708 } 709 if (msl_idx == RTE_MAX_MEMSEG_LISTS) { 710 RTE_LOG(ERR, EAL, "Could not find space for memseg. Please increase %s and/or %s in configuration.\n", 711 RTE_STR(RTE_MAX_MEMSEG_PER_TYPE), 712 RTE_STR(RTE_MAX_MEM_MB_PER_TYPE)); 713 return -1; 714 } 715 716 #ifdef RTE_ARCH_PPC_64 717 /* for PPC64 we go through the list backwards */ 718 for (cur_page = seg_end - 1; cur_page >= seg_start; 719 cur_page--, ms_idx++) { 720 #else 721 for (cur_page = seg_start; cur_page < seg_end; cur_page++, ms_idx++) { 722 #endif 723 struct hugepage_file *hfile = &hugepages[cur_page]; 724 struct rte_memseg *ms = rte_fbarray_get(arr, ms_idx); 725 void *addr; 726 int fd; 727 728 fd = open(hfile->filepath, O_RDWR); 729 if (fd < 0) { 730 RTE_LOG(ERR, EAL, "Could not open '%s': %s\n", 731 hfile->filepath, strerror(errno)); 732 return -1; 733 } 734 /* set shared lock on the file. */ 735 if (flock(fd, LOCK_SH) < 0) { 736 RTE_LOG(DEBUG, EAL, "Could not lock '%s': %s\n", 737 hfile->filepath, strerror(errno)); 738 close(fd); 739 return -1; 740 } 741 memseg_len = (size_t)page_sz; 742 addr = RTE_PTR_ADD(msl->base_va, ms_idx * memseg_len); 743 744 /* we know this address is already mmapped by memseg list, so 745 * using MAP_FIXED here is safe 746 */ 747 addr = mmap(addr, page_sz, PROT_READ | PROT_WRITE, 748 MAP_SHARED | MAP_POPULATE | MAP_FIXED, fd, 0); 749 if (addr == MAP_FAILED) { 750 RTE_LOG(ERR, EAL, "Couldn't remap '%s': %s\n", 751 hfile->filepath, strerror(errno)); 752 close(fd); 753 return -1; 754 } 755 756 /* we have a new address, so unmap previous one */ 757 #ifndef RTE_ARCH_64 758 /* in 32-bit legacy mode, we have already unmapped the page */ 759 if (!internal_conf->legacy_mem) 760 munmap(hfile->orig_va, page_sz); 761 #else 762 munmap(hfile->orig_va, page_sz); 763 #endif 764 765 hfile->orig_va = NULL; 766 hfile->final_va = addr; 767 768 /* rewrite physical addresses in IOVA as VA mode */ 769 if (rte_eal_iova_mode() == RTE_IOVA_VA) 770 hfile->physaddr = (uintptr_t)addr; 771 772 /* set up memseg data */ 773 ms->addr = addr; 774 ms->hugepage_sz = page_sz; 775 ms->len = memseg_len; 776 ms->iova = hfile->physaddr; 777 ms->socket_id = hfile->socket_id; 778 ms->nchannel = rte_memory_get_nchannel(); 779 ms->nrank = rte_memory_get_nrank(); 780 781 rte_fbarray_set_used(arr, ms_idx); 782 783 /* store segment fd internally */ 784 if (eal_memalloc_set_seg_fd(msl_idx, ms_idx, fd) < 0) 785 RTE_LOG(ERR, EAL, "Could not store segment fd: %s\n", 786 rte_strerror(rte_errno)); 787 } 788 RTE_LOG(DEBUG, EAL, "Allocated %" PRIu64 "M on socket %i\n", 789 (seg_len * page_sz) >> 20, socket_id); 790 return 0; 791 } 792 793 static uint64_t 794 get_mem_amount(uint64_t page_sz, uint64_t max_mem) 795 { 796 uint64_t area_sz, max_pages; 797 798 /* limit to RTE_MAX_MEMSEG_PER_LIST pages or RTE_MAX_MEM_MB_PER_LIST */ 799 max_pages = RTE_MAX_MEMSEG_PER_LIST; 800 max_mem = RTE_MIN((uint64_t)RTE_MAX_MEM_MB_PER_LIST << 20, max_mem); 801 802 area_sz = RTE_MIN(page_sz * max_pages, max_mem); 803 804 /* make sure the list isn't smaller than the page size */ 805 area_sz = RTE_MAX(area_sz, page_sz); 806 807 return RTE_ALIGN(area_sz, page_sz); 808 } 809 810 static int 811 memseg_list_free(struct rte_memseg_list *msl) 812 { 813 if (rte_fbarray_destroy(&msl->memseg_arr)) { 814 RTE_LOG(ERR, EAL, "Cannot destroy memseg list\n"); 815 return -1; 816 } 817 memset(msl, 0, sizeof(*msl)); 818 return 0; 819 } 820 821 /* 822 * Our VA space is not preallocated yet, so preallocate it here. We need to know 823 * how many segments there are in order to map all pages into one address space, 824 * and leave appropriate holes between segments so that rte_malloc does not 825 * concatenate them into one big segment. 826 * 827 * we also need to unmap original pages to free up address space. 828 */ 829 static int __rte_unused 830 prealloc_segments(struct hugepage_file *hugepages, int n_pages) 831 { 832 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 833 int cur_page, seg_start_page, end_seg, new_memseg; 834 unsigned int hpi_idx, socket, i; 835 int n_contig_segs, n_segs; 836 int msl_idx; 837 const struct internal_config *internal_conf = 838 eal_get_internal_configuration(); 839 840 /* before we preallocate segments, we need to free up our VA space. 841 * we're not removing files, and we already have information about 842 * PA-contiguousness, so it is safe to unmap everything. 843 */ 844 for (cur_page = 0; cur_page < n_pages; cur_page++) { 845 struct hugepage_file *hpi = &hugepages[cur_page]; 846 munmap(hpi->orig_va, hpi->size); 847 hpi->orig_va = NULL; 848 } 849 850 /* we cannot know how many page sizes and sockets we have discovered, so 851 * loop over all of them 852 */ 853 for (hpi_idx = 0; hpi_idx < internal_conf->num_hugepage_sizes; 854 hpi_idx++) { 855 uint64_t page_sz = 856 internal_conf->hugepage_info[hpi_idx].hugepage_sz; 857 858 for (i = 0; i < rte_socket_count(); i++) { 859 struct rte_memseg_list *msl; 860 861 socket = rte_socket_id_by_idx(i); 862 n_contig_segs = 0; 863 n_segs = 0; 864 seg_start_page = -1; 865 866 for (cur_page = 0; cur_page < n_pages; cur_page++) { 867 struct hugepage_file *prev, *cur; 868 int prev_seg_start_page = -1; 869 870 cur = &hugepages[cur_page]; 871 prev = cur_page == 0 ? NULL : 872 &hugepages[cur_page - 1]; 873 874 new_memseg = 0; 875 end_seg = 0; 876 877 if (cur->size == 0) 878 end_seg = 1; 879 else if (cur->socket_id != (int) socket) 880 end_seg = 1; 881 else if (cur->size != page_sz) 882 end_seg = 1; 883 else if (cur_page == 0) 884 new_memseg = 1; 885 #ifdef RTE_ARCH_PPC_64 886 /* On PPC64 architecture, the mmap always start 887 * from higher address to lower address. Here, 888 * physical addresses are in descending order. 889 */ 890 else if ((prev->physaddr - cur->physaddr) != 891 cur->size) 892 new_memseg = 1; 893 #else 894 else if ((cur->physaddr - prev->physaddr) != 895 cur->size) 896 new_memseg = 1; 897 #endif 898 if (new_memseg) { 899 /* if we're already inside a segment, 900 * new segment means end of current one 901 */ 902 if (seg_start_page != -1) { 903 end_seg = 1; 904 prev_seg_start_page = 905 seg_start_page; 906 } 907 seg_start_page = cur_page; 908 } 909 910 if (end_seg) { 911 if (prev_seg_start_page != -1) { 912 /* we've found a new segment */ 913 n_contig_segs++; 914 n_segs += cur_page - 915 prev_seg_start_page; 916 } else if (seg_start_page != -1) { 917 /* we didn't find new segment, 918 * but did end current one 919 */ 920 n_contig_segs++; 921 n_segs += cur_page - 922 seg_start_page; 923 seg_start_page = -1; 924 continue; 925 } else { 926 /* we're skipping this page */ 927 continue; 928 } 929 } 930 /* segment continues */ 931 } 932 /* check if we missed last segment */ 933 if (seg_start_page != -1) { 934 n_contig_segs++; 935 n_segs += cur_page - seg_start_page; 936 } 937 938 /* if no segments were found, do not preallocate */ 939 if (n_segs == 0) 940 continue; 941 942 /* we now have total number of pages that we will 943 * allocate for this segment list. add separator pages 944 * to the total count, and preallocate VA space. 945 */ 946 n_segs += n_contig_segs - 1; 947 948 /* now, preallocate VA space for these segments */ 949 950 /* first, find suitable memseg list for this */ 951 for (msl_idx = 0; msl_idx < RTE_MAX_MEMSEG_LISTS; 952 msl_idx++) { 953 msl = &mcfg->memsegs[msl_idx]; 954 955 if (msl->base_va != NULL) 956 continue; 957 break; 958 } 959 if (msl_idx == RTE_MAX_MEMSEG_LISTS) { 960 RTE_LOG(ERR, EAL, "Not enough space in memseg lists, please increase %s\n", 961 RTE_STR(RTE_MAX_MEMSEG_LISTS)); 962 return -1; 963 } 964 965 /* now, allocate fbarray itself */ 966 if (eal_memseg_list_init(msl, page_sz, n_segs, 967 socket, msl_idx, true) < 0) 968 return -1; 969 970 /* finally, allocate VA space */ 971 if (eal_memseg_list_alloc(msl, 0) < 0) { 972 RTE_LOG(ERR, EAL, "Cannot preallocate 0x%"PRIx64"kB hugepages\n", 973 page_sz >> 10); 974 return -1; 975 } 976 } 977 } 978 return 0; 979 } 980 981 /* 982 * We cannot reallocate memseg lists on the fly because PPC64 stores pages 983 * backwards, therefore we have to process the entire memseg first before 984 * remapping it into memseg list VA space. 985 */ 986 static int 987 remap_needed_hugepages(struct hugepage_file *hugepages, int n_pages) 988 { 989 int cur_page, seg_start_page, new_memseg, ret; 990 991 seg_start_page = 0; 992 for (cur_page = 0; cur_page < n_pages; cur_page++) { 993 struct hugepage_file *prev, *cur; 994 995 new_memseg = 0; 996 997 cur = &hugepages[cur_page]; 998 prev = cur_page == 0 ? NULL : &hugepages[cur_page - 1]; 999 1000 /* if size is zero, no more pages left */ 1001 if (cur->size == 0) 1002 break; 1003 1004 if (cur_page == 0) 1005 new_memseg = 1; 1006 else if (cur->socket_id != prev->socket_id) 1007 new_memseg = 1; 1008 else if (cur->size != prev->size) 1009 new_memseg = 1; 1010 #ifdef RTE_ARCH_PPC_64 1011 /* On PPC64 architecture, the mmap always start from higher 1012 * address to lower address. Here, physical addresses are in 1013 * descending order. 1014 */ 1015 else if ((prev->physaddr - cur->physaddr) != cur->size) 1016 new_memseg = 1; 1017 #else 1018 else if ((cur->physaddr - prev->physaddr) != cur->size) 1019 new_memseg = 1; 1020 #endif 1021 1022 if (new_memseg) { 1023 /* if this isn't the first time, remap segment */ 1024 if (cur_page != 0) { 1025 ret = remap_segment(hugepages, seg_start_page, 1026 cur_page); 1027 if (ret != 0) 1028 return -1; 1029 } 1030 /* remember where we started */ 1031 seg_start_page = cur_page; 1032 } 1033 /* continuation of previous memseg */ 1034 } 1035 /* we were stopped, but we didn't remap the last segment, do it now */ 1036 if (cur_page != 0) { 1037 ret = remap_segment(hugepages, seg_start_page, 1038 cur_page); 1039 if (ret != 0) 1040 return -1; 1041 } 1042 return 0; 1043 } 1044 1045 static inline size_t 1046 eal_get_hugepage_mem_size(void) 1047 { 1048 uint64_t size = 0; 1049 unsigned i, j; 1050 struct internal_config *internal_conf = 1051 eal_get_internal_configuration(); 1052 1053 for (i = 0; i < internal_conf->num_hugepage_sizes; i++) { 1054 struct hugepage_info *hpi = &internal_conf->hugepage_info[i]; 1055 if (strnlen(hpi->hugedir, sizeof(hpi->hugedir)) != 0) { 1056 for (j = 0; j < RTE_MAX_NUMA_NODES; j++) { 1057 size += hpi->hugepage_sz * hpi->num_pages[j]; 1058 } 1059 } 1060 } 1061 1062 return (size < SIZE_MAX) ? (size_t)(size) : SIZE_MAX; 1063 } 1064 1065 static struct sigaction huge_action_old; 1066 static int huge_need_recover; 1067 1068 static void 1069 huge_register_sigbus(void) 1070 { 1071 sigset_t mask; 1072 struct sigaction action; 1073 1074 sigemptyset(&mask); 1075 sigaddset(&mask, SIGBUS); 1076 action.sa_flags = 0; 1077 action.sa_mask = mask; 1078 action.sa_handler = huge_sigbus_handler; 1079 1080 huge_need_recover = !sigaction(SIGBUS, &action, &huge_action_old); 1081 } 1082 1083 static void 1084 huge_recover_sigbus(void) 1085 { 1086 if (huge_need_recover) { 1087 sigaction(SIGBUS, &huge_action_old, NULL); 1088 huge_need_recover = 0; 1089 } 1090 } 1091 1092 /* 1093 * Prepare physical memory mapping: fill configuration structure with 1094 * these infos, return 0 on success. 1095 * 1. map N huge pages in separate files in hugetlbfs 1096 * 2. find associated physical addr 1097 * 3. find associated NUMA socket ID 1098 * 4. sort all huge pages by physical address 1099 * 5. remap these N huge pages in the correct order 1100 * 6. unmap the first mapping 1101 * 7. fill memsegs in configuration with contiguous zones 1102 */ 1103 static int 1104 eal_legacy_hugepage_init(void) 1105 { 1106 struct rte_mem_config *mcfg; 1107 struct hugepage_file *hugepage = NULL, *tmp_hp = NULL; 1108 struct hugepage_info used_hp[MAX_HUGEPAGE_SIZES]; 1109 struct internal_config *internal_conf = 1110 eal_get_internal_configuration(); 1111 1112 uint64_t memory[RTE_MAX_NUMA_NODES]; 1113 1114 unsigned hp_offset; 1115 int i, j; 1116 int nr_hugefiles, nr_hugepages = 0; 1117 void *addr; 1118 1119 memset(used_hp, 0, sizeof(used_hp)); 1120 1121 /* get pointer to global configuration */ 1122 mcfg = rte_eal_get_configuration()->mem_config; 1123 1124 /* hugetlbfs can be disabled */ 1125 if (internal_conf->no_hugetlbfs) { 1126 void *prealloc_addr; 1127 size_t mem_sz; 1128 struct rte_memseg_list *msl; 1129 int n_segs, fd, flags; 1130 #ifdef MEMFD_SUPPORTED 1131 int memfd; 1132 #endif 1133 uint64_t page_sz; 1134 1135 /* nohuge mode is legacy mode */ 1136 internal_conf->legacy_mem = 1; 1137 1138 /* nohuge mode is single-file segments mode */ 1139 internal_conf->single_file_segments = 1; 1140 1141 /* create a memseg list */ 1142 msl = &mcfg->memsegs[0]; 1143 1144 mem_sz = internal_conf->memory; 1145 page_sz = RTE_PGSIZE_4K; 1146 n_segs = mem_sz / page_sz; 1147 1148 if (eal_memseg_list_init_named( 1149 msl, "nohugemem", page_sz, n_segs, 0, true)) { 1150 return -1; 1151 } 1152 1153 /* set up parameters for anonymous mmap */ 1154 fd = -1; 1155 flags = MAP_PRIVATE | MAP_ANONYMOUS; 1156 1157 #ifdef MEMFD_SUPPORTED 1158 /* create a memfd and store it in the segment fd table */ 1159 memfd = memfd_create("nohuge", 0); 1160 if (memfd < 0) { 1161 RTE_LOG(DEBUG, EAL, "Cannot create memfd: %s\n", 1162 strerror(errno)); 1163 RTE_LOG(DEBUG, EAL, "Falling back to anonymous map\n"); 1164 } else { 1165 /* we got an fd - now resize it */ 1166 if (ftruncate(memfd, internal_conf->memory) < 0) { 1167 RTE_LOG(ERR, EAL, "Cannot resize memfd: %s\n", 1168 strerror(errno)); 1169 RTE_LOG(ERR, EAL, "Falling back to anonymous map\n"); 1170 close(memfd); 1171 } else { 1172 /* creating memfd-backed file was successful. 1173 * we want changes to memfd to be visible to 1174 * other processes (such as vhost backend), so 1175 * map it as shared memory. 1176 */ 1177 RTE_LOG(DEBUG, EAL, "Using memfd for anonymous memory\n"); 1178 fd = memfd; 1179 flags = MAP_SHARED; 1180 } 1181 } 1182 #endif 1183 /* preallocate address space for the memory, so that it can be 1184 * fit into the DMA mask. 1185 */ 1186 if (eal_memseg_list_alloc(msl, 0)) { 1187 RTE_LOG(ERR, EAL, "Cannot preallocate VA space for hugepage memory\n"); 1188 return -1; 1189 } 1190 1191 prealloc_addr = msl->base_va; 1192 addr = mmap(prealloc_addr, mem_sz, PROT_READ | PROT_WRITE, 1193 flags | MAP_FIXED, fd, 0); 1194 if (addr == MAP_FAILED || addr != prealloc_addr) { 1195 RTE_LOG(ERR, EAL, "%s: mmap() failed: %s\n", __func__, 1196 strerror(errno)); 1197 munmap(prealloc_addr, mem_sz); 1198 return -1; 1199 } 1200 1201 /* we're in single-file segments mode, so only the segment list 1202 * fd needs to be set up. 1203 */ 1204 if (fd != -1) { 1205 if (eal_memalloc_set_seg_list_fd(0, fd) < 0) { 1206 RTE_LOG(ERR, EAL, "Cannot set up segment list fd\n"); 1207 /* not a serious error, proceed */ 1208 } 1209 } 1210 1211 eal_memseg_list_populate(msl, addr, n_segs); 1212 1213 if (mcfg->dma_maskbits && 1214 rte_mem_check_dma_mask_thread_unsafe(mcfg->dma_maskbits)) { 1215 RTE_LOG(ERR, EAL, 1216 "%s(): couldn't allocate memory due to IOVA exceeding limits of current DMA mask.\n", 1217 __func__); 1218 if (rte_eal_iova_mode() == RTE_IOVA_VA && 1219 rte_eal_using_phys_addrs()) 1220 RTE_LOG(ERR, EAL, 1221 "%s(): Please try initializing EAL with --iova-mode=pa parameter.\n", 1222 __func__); 1223 goto fail; 1224 } 1225 return 0; 1226 } 1227 1228 /* calculate total number of hugepages available. at this point we haven't 1229 * yet started sorting them so they all are on socket 0 */ 1230 for (i = 0; i < (int) internal_conf->num_hugepage_sizes; i++) { 1231 /* meanwhile, also initialize used_hp hugepage sizes in used_hp */ 1232 used_hp[i].hugepage_sz = internal_conf->hugepage_info[i].hugepage_sz; 1233 1234 nr_hugepages += internal_conf->hugepage_info[i].num_pages[0]; 1235 } 1236 1237 /* 1238 * allocate a memory area for hugepage table. 1239 * this isn't shared memory yet. due to the fact that we need some 1240 * processing done on these pages, shared memory will be created 1241 * at a later stage. 1242 */ 1243 tmp_hp = malloc(nr_hugepages * sizeof(struct hugepage_file)); 1244 if (tmp_hp == NULL) 1245 goto fail; 1246 1247 memset(tmp_hp, 0, nr_hugepages * sizeof(struct hugepage_file)); 1248 1249 hp_offset = 0; /* where we start the current page size entries */ 1250 1251 huge_register_sigbus(); 1252 1253 /* make a copy of socket_mem, needed for balanced allocation. */ 1254 for (i = 0; i < RTE_MAX_NUMA_NODES; i++) 1255 memory[i] = internal_conf->socket_mem[i]; 1256 1257 /* map all hugepages and sort them */ 1258 for (i = 0; i < (int)internal_conf->num_hugepage_sizes; i++) { 1259 unsigned pages_old, pages_new; 1260 struct hugepage_info *hpi; 1261 1262 /* 1263 * we don't yet mark hugepages as used at this stage, so 1264 * we just map all hugepages available to the system 1265 * all hugepages are still located on socket 0 1266 */ 1267 hpi = &internal_conf->hugepage_info[i]; 1268 1269 if (hpi->num_pages[0] == 0) 1270 continue; 1271 1272 /* map all hugepages available */ 1273 pages_old = hpi->num_pages[0]; 1274 pages_new = map_all_hugepages(&tmp_hp[hp_offset], hpi, memory); 1275 if (pages_new < pages_old) { 1276 RTE_LOG(DEBUG, EAL, 1277 "%d not %d hugepages of size %u MB allocated\n", 1278 pages_new, pages_old, 1279 (unsigned)(hpi->hugepage_sz / 0x100000)); 1280 1281 int pages = pages_old - pages_new; 1282 1283 nr_hugepages -= pages; 1284 hpi->num_pages[0] = pages_new; 1285 if (pages_new == 0) 1286 continue; 1287 } 1288 1289 if (rte_eal_using_phys_addrs() && 1290 rte_eal_iova_mode() != RTE_IOVA_VA) { 1291 /* find physical addresses for each hugepage */ 1292 if (find_physaddrs(&tmp_hp[hp_offset], hpi) < 0) { 1293 RTE_LOG(DEBUG, EAL, "Failed to find phys addr " 1294 "for %u MB pages\n", 1295 (unsigned int)(hpi->hugepage_sz / 0x100000)); 1296 goto fail; 1297 } 1298 } else { 1299 /* set physical addresses for each hugepage */ 1300 if (set_physaddrs(&tmp_hp[hp_offset], hpi) < 0) { 1301 RTE_LOG(DEBUG, EAL, "Failed to set phys addr " 1302 "for %u MB pages\n", 1303 (unsigned int)(hpi->hugepage_sz / 0x100000)); 1304 goto fail; 1305 } 1306 } 1307 1308 if (find_numasocket(&tmp_hp[hp_offset], hpi) < 0){ 1309 RTE_LOG(DEBUG, EAL, "Failed to find NUMA socket for %u MB pages\n", 1310 (unsigned)(hpi->hugepage_sz / 0x100000)); 1311 goto fail; 1312 } 1313 1314 qsort(&tmp_hp[hp_offset], hpi->num_pages[0], 1315 sizeof(struct hugepage_file), cmp_physaddr); 1316 1317 /* we have processed a num of hugepages of this size, so inc offset */ 1318 hp_offset += hpi->num_pages[0]; 1319 } 1320 1321 huge_recover_sigbus(); 1322 1323 if (internal_conf->memory == 0 && internal_conf->force_sockets == 0) 1324 internal_conf->memory = eal_get_hugepage_mem_size(); 1325 1326 nr_hugefiles = nr_hugepages; 1327 1328 1329 /* clean out the numbers of pages */ 1330 for (i = 0; i < (int) internal_conf->num_hugepage_sizes; i++) 1331 for (j = 0; j < RTE_MAX_NUMA_NODES; j++) 1332 internal_conf->hugepage_info[i].num_pages[j] = 0; 1333 1334 /* get hugepages for each socket */ 1335 for (i = 0; i < nr_hugefiles; i++) { 1336 int socket = tmp_hp[i].socket_id; 1337 1338 /* find a hugepage info with right size and increment num_pages */ 1339 const int nb_hpsizes = RTE_MIN(MAX_HUGEPAGE_SIZES, 1340 (int)internal_conf->num_hugepage_sizes); 1341 for (j = 0; j < nb_hpsizes; j++) { 1342 if (tmp_hp[i].size == 1343 internal_conf->hugepage_info[j].hugepage_sz) { 1344 internal_conf->hugepage_info[j].num_pages[socket]++; 1345 } 1346 } 1347 } 1348 1349 /* make a copy of socket_mem, needed for number of pages calculation */ 1350 for (i = 0; i < RTE_MAX_NUMA_NODES; i++) 1351 memory[i] = internal_conf->socket_mem[i]; 1352 1353 /* calculate final number of pages */ 1354 nr_hugepages = eal_dynmem_calc_num_pages_per_socket(memory, 1355 internal_conf->hugepage_info, used_hp, 1356 internal_conf->num_hugepage_sizes); 1357 1358 /* error if not enough memory available */ 1359 if (nr_hugepages < 0) 1360 goto fail; 1361 1362 /* reporting in! */ 1363 for (i = 0; i < (int) internal_conf->num_hugepage_sizes; i++) { 1364 for (j = 0; j < RTE_MAX_NUMA_NODES; j++) { 1365 if (used_hp[i].num_pages[j] > 0) { 1366 RTE_LOG(DEBUG, EAL, 1367 "Requesting %u pages of size %uMB" 1368 " from socket %i\n", 1369 used_hp[i].num_pages[j], 1370 (unsigned) 1371 (used_hp[i].hugepage_sz / 0x100000), 1372 j); 1373 } 1374 } 1375 } 1376 1377 /* create shared memory */ 1378 hugepage = create_shared_memory(eal_hugepage_data_path(), 1379 nr_hugefiles * sizeof(struct hugepage_file)); 1380 1381 if (hugepage == NULL) { 1382 RTE_LOG(ERR, EAL, "Failed to create shared memory!\n"); 1383 goto fail; 1384 } 1385 memset(hugepage, 0, nr_hugefiles * sizeof(struct hugepage_file)); 1386 1387 /* 1388 * unmap pages that we won't need (looks at used_hp). 1389 * also, sets final_va to NULL on pages that were unmapped. 1390 */ 1391 if (unmap_unneeded_hugepages(tmp_hp, used_hp, 1392 internal_conf->num_hugepage_sizes) < 0) { 1393 RTE_LOG(ERR, EAL, "Unmapping and locking hugepages failed!\n"); 1394 goto fail; 1395 } 1396 1397 /* 1398 * copy stuff from malloc'd hugepage* to the actual shared memory. 1399 * this procedure only copies those hugepages that have orig_va 1400 * not NULL. has overflow protection. 1401 */ 1402 if (copy_hugepages_to_shared_mem(hugepage, nr_hugefiles, 1403 tmp_hp, nr_hugefiles) < 0) { 1404 RTE_LOG(ERR, EAL, "Copying tables to shared memory failed!\n"); 1405 goto fail; 1406 } 1407 1408 #ifndef RTE_ARCH_64 1409 /* for legacy 32-bit mode, we did not preallocate VA space, so do it */ 1410 if (internal_conf->legacy_mem && 1411 prealloc_segments(hugepage, nr_hugefiles)) { 1412 RTE_LOG(ERR, EAL, "Could not preallocate VA space for hugepages\n"); 1413 goto fail; 1414 } 1415 #endif 1416 1417 /* remap all pages we do need into memseg list VA space, so that those 1418 * pages become first-class citizens in DPDK memory subsystem 1419 */ 1420 if (remap_needed_hugepages(hugepage, nr_hugefiles)) { 1421 RTE_LOG(ERR, EAL, "Couldn't remap hugepage files into memseg lists\n"); 1422 goto fail; 1423 } 1424 1425 /* free the hugepage backing files */ 1426 if (internal_conf->hugepage_file.unlink_before_mapping && 1427 unlink_hugepage_files(tmp_hp, internal_conf->num_hugepage_sizes) < 0) { 1428 RTE_LOG(ERR, EAL, "Unlinking hugepage files failed!\n"); 1429 goto fail; 1430 } 1431 1432 /* free the temporary hugepage table */ 1433 free(tmp_hp); 1434 tmp_hp = NULL; 1435 1436 munmap(hugepage, nr_hugefiles * sizeof(struct hugepage_file)); 1437 hugepage = NULL; 1438 1439 /* we're not going to allocate more pages, so release VA space for 1440 * unused memseg lists 1441 */ 1442 for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) { 1443 struct rte_memseg_list *msl = &mcfg->memsegs[i]; 1444 size_t mem_sz; 1445 1446 /* skip inactive lists */ 1447 if (msl->base_va == NULL) 1448 continue; 1449 /* skip lists where there is at least one page allocated */ 1450 if (msl->memseg_arr.count > 0) 1451 continue; 1452 /* this is an unused list, deallocate it */ 1453 mem_sz = msl->len; 1454 munmap(msl->base_va, mem_sz); 1455 msl->base_va = NULL; 1456 msl->heap = 0; 1457 1458 /* destroy backing fbarray */ 1459 rte_fbarray_destroy(&msl->memseg_arr); 1460 } 1461 1462 if (mcfg->dma_maskbits && 1463 rte_mem_check_dma_mask_thread_unsafe(mcfg->dma_maskbits)) { 1464 RTE_LOG(ERR, EAL, 1465 "%s(): couldn't allocate memory due to IOVA exceeding limits of current DMA mask.\n", 1466 __func__); 1467 goto fail; 1468 } 1469 1470 return 0; 1471 1472 fail: 1473 huge_recover_sigbus(); 1474 free(tmp_hp); 1475 if (hugepage != NULL) 1476 munmap(hugepage, nr_hugefiles * sizeof(struct hugepage_file)); 1477 1478 return -1; 1479 } 1480 1481 /* 1482 * uses fstat to report the size of a file on disk 1483 */ 1484 static off_t 1485 getFileSize(int fd) 1486 { 1487 struct stat st; 1488 if (fstat(fd, &st) < 0) 1489 return 0; 1490 return st.st_size; 1491 } 1492 1493 /* 1494 * This creates the memory mappings in the secondary process to match that of 1495 * the server process. It goes through each memory segment in the DPDK runtime 1496 * configuration and finds the hugepages which form that segment, mapping them 1497 * in order to form a contiguous block in the virtual memory space 1498 */ 1499 static int 1500 eal_legacy_hugepage_attach(void) 1501 { 1502 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 1503 struct hugepage_file *hp = NULL; 1504 unsigned int num_hp = 0; 1505 unsigned int i = 0; 1506 unsigned int cur_seg; 1507 off_t size = 0; 1508 int fd, fd_hugepage = -1; 1509 1510 if (aslr_enabled() > 0) { 1511 RTE_LOG(WARNING, EAL, "WARNING: Address Space Layout Randomization " 1512 "(ASLR) is enabled in the kernel.\n"); 1513 RTE_LOG(WARNING, EAL, " This may cause issues with mapping memory " 1514 "into secondary processes\n"); 1515 } 1516 1517 fd_hugepage = open(eal_hugepage_data_path(), O_RDONLY); 1518 if (fd_hugepage < 0) { 1519 RTE_LOG(ERR, EAL, "Could not open %s\n", 1520 eal_hugepage_data_path()); 1521 goto error; 1522 } 1523 1524 size = getFileSize(fd_hugepage); 1525 hp = mmap(NULL, size, PROT_READ, MAP_PRIVATE, fd_hugepage, 0); 1526 if (hp == MAP_FAILED) { 1527 RTE_LOG(ERR, EAL, "Could not mmap %s\n", 1528 eal_hugepage_data_path()); 1529 goto error; 1530 } 1531 1532 num_hp = size / sizeof(struct hugepage_file); 1533 RTE_LOG(DEBUG, EAL, "Analysing %u files\n", num_hp); 1534 1535 /* map all segments into memory to make sure we get the addrs. the 1536 * segments themselves are already in memseg list (which is shared and 1537 * has its VA space already preallocated), so we just need to map 1538 * everything into correct addresses. 1539 */ 1540 for (i = 0; i < num_hp; i++) { 1541 struct hugepage_file *hf = &hp[i]; 1542 size_t map_sz = hf->size; 1543 void *map_addr = hf->final_va; 1544 int msl_idx, ms_idx; 1545 struct rte_memseg_list *msl; 1546 struct rte_memseg *ms; 1547 1548 /* if size is zero, no more pages left */ 1549 if (map_sz == 0) 1550 break; 1551 1552 fd = open(hf->filepath, O_RDWR); 1553 if (fd < 0) { 1554 RTE_LOG(ERR, EAL, "Could not open %s: %s\n", 1555 hf->filepath, strerror(errno)); 1556 goto error; 1557 } 1558 1559 map_addr = mmap(map_addr, map_sz, PROT_READ | PROT_WRITE, 1560 MAP_SHARED | MAP_FIXED, fd, 0); 1561 if (map_addr == MAP_FAILED) { 1562 RTE_LOG(ERR, EAL, "Could not map %s: %s\n", 1563 hf->filepath, strerror(errno)); 1564 goto fd_error; 1565 } 1566 1567 /* set shared lock on the file. */ 1568 if (flock(fd, LOCK_SH) < 0) { 1569 RTE_LOG(DEBUG, EAL, "%s(): Locking file failed: %s\n", 1570 __func__, strerror(errno)); 1571 goto mmap_error; 1572 } 1573 1574 /* find segment data */ 1575 msl = rte_mem_virt2memseg_list(map_addr); 1576 if (msl == NULL) { 1577 RTE_LOG(DEBUG, EAL, "%s(): Cannot find memseg list\n", 1578 __func__); 1579 goto mmap_error; 1580 } 1581 ms = rte_mem_virt2memseg(map_addr, msl); 1582 if (ms == NULL) { 1583 RTE_LOG(DEBUG, EAL, "%s(): Cannot find memseg\n", 1584 __func__); 1585 goto mmap_error; 1586 } 1587 1588 msl_idx = msl - mcfg->memsegs; 1589 ms_idx = rte_fbarray_find_idx(&msl->memseg_arr, ms); 1590 if (ms_idx < 0) { 1591 RTE_LOG(DEBUG, EAL, "%s(): Cannot find memseg idx\n", 1592 __func__); 1593 goto mmap_error; 1594 } 1595 1596 /* store segment fd internally */ 1597 if (eal_memalloc_set_seg_fd(msl_idx, ms_idx, fd) < 0) 1598 RTE_LOG(ERR, EAL, "Could not store segment fd: %s\n", 1599 rte_strerror(rte_errno)); 1600 } 1601 /* unmap the hugepage config file, since we are done using it */ 1602 munmap(hp, size); 1603 close(fd_hugepage); 1604 return 0; 1605 1606 mmap_error: 1607 munmap(hp[i].final_va, hp[i].size); 1608 fd_error: 1609 close(fd); 1610 error: 1611 /* unwind mmap's done so far */ 1612 for (cur_seg = 0; cur_seg < i; cur_seg++) 1613 munmap(hp[cur_seg].final_va, hp[cur_seg].size); 1614 1615 if (hp != NULL && hp != MAP_FAILED) 1616 munmap(hp, size); 1617 if (fd_hugepage >= 0) 1618 close(fd_hugepage); 1619 return -1; 1620 } 1621 1622 static int 1623 eal_hugepage_attach(void) 1624 { 1625 if (eal_memalloc_sync_with_primary()) { 1626 RTE_LOG(ERR, EAL, "Could not map memory from primary process\n"); 1627 if (aslr_enabled() > 0) 1628 RTE_LOG(ERR, EAL, "It is recommended to disable ASLR in the kernel and retry running both primary and secondary processes\n"); 1629 return -1; 1630 } 1631 return 0; 1632 } 1633 1634 int 1635 rte_eal_hugepage_init(void) 1636 { 1637 const struct internal_config *internal_conf = 1638 eal_get_internal_configuration(); 1639 1640 return internal_conf->legacy_mem ? 1641 eal_legacy_hugepage_init() : 1642 eal_dynmem_hugepage_init(); 1643 } 1644 1645 int 1646 rte_eal_hugepage_attach(void) 1647 { 1648 const struct internal_config *internal_conf = 1649 eal_get_internal_configuration(); 1650 1651 return internal_conf->legacy_mem ? 1652 eal_legacy_hugepage_attach() : 1653 eal_hugepage_attach(); 1654 } 1655 1656 int 1657 rte_eal_using_phys_addrs(void) 1658 { 1659 if (phys_addrs_available == -1) { 1660 uint64_t tmp = 0; 1661 1662 if (rte_eal_has_hugepages() != 0 && 1663 rte_mem_virt2phy(&tmp) != RTE_BAD_PHYS_ADDR) 1664 phys_addrs_available = 1; 1665 else 1666 phys_addrs_available = 0; 1667 } 1668 return phys_addrs_available; 1669 } 1670 1671 static int __rte_unused 1672 memseg_primary_init_32(void) 1673 { 1674 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 1675 int active_sockets, hpi_idx, msl_idx = 0; 1676 unsigned int socket_id, i; 1677 struct rte_memseg_list *msl; 1678 uint64_t extra_mem_per_socket, total_extra_mem, total_requested_mem; 1679 uint64_t max_mem; 1680 struct internal_config *internal_conf = 1681 eal_get_internal_configuration(); 1682 1683 /* no-huge does not need this at all */ 1684 if (internal_conf->no_hugetlbfs) 1685 return 0; 1686 1687 /* this is a giant hack, but desperate times call for desperate 1688 * measures. in legacy 32-bit mode, we cannot preallocate VA space, 1689 * because having upwards of 2 gigabytes of VA space already mapped will 1690 * interfere with our ability to map and sort hugepages. 1691 * 1692 * therefore, in legacy 32-bit mode, we will be initializing memseg 1693 * lists much later - in eal_memory.c, right after we unmap all the 1694 * unneeded pages. this will not affect secondary processes, as those 1695 * should be able to mmap the space without (too many) problems. 1696 */ 1697 if (internal_conf->legacy_mem) 1698 return 0; 1699 1700 /* 32-bit mode is a very special case. we cannot know in advance where 1701 * the user will want to allocate their memory, so we have to do some 1702 * heuristics. 1703 */ 1704 active_sockets = 0; 1705 total_requested_mem = 0; 1706 if (internal_conf->force_sockets) 1707 for (i = 0; i < rte_socket_count(); i++) { 1708 uint64_t mem; 1709 1710 socket_id = rte_socket_id_by_idx(i); 1711 mem = internal_conf->socket_mem[socket_id]; 1712 1713 if (mem == 0) 1714 continue; 1715 1716 active_sockets++; 1717 total_requested_mem += mem; 1718 } 1719 else 1720 total_requested_mem = internal_conf->memory; 1721 1722 max_mem = (uint64_t)RTE_MAX_MEM_MB << 20; 1723 if (total_requested_mem > max_mem) { 1724 RTE_LOG(ERR, EAL, "Invalid parameters: 32-bit process can at most use %uM of memory\n", 1725 (unsigned int)(max_mem >> 20)); 1726 return -1; 1727 } 1728 total_extra_mem = max_mem - total_requested_mem; 1729 extra_mem_per_socket = active_sockets == 0 ? total_extra_mem : 1730 total_extra_mem / active_sockets; 1731 1732 /* the allocation logic is a little bit convoluted, but here's how it 1733 * works, in a nutshell: 1734 * - if user hasn't specified on which sockets to allocate memory via 1735 * --socket-mem, we allocate all of our memory on main core socket. 1736 * - if user has specified sockets to allocate memory on, there may be 1737 * some "unused" memory left (e.g. if user has specified --socket-mem 1738 * such that not all memory adds up to 2 gigabytes), so add it to all 1739 * sockets that are in use equally. 1740 * 1741 * page sizes are sorted by size in descending order, so we can safely 1742 * assume that we dispense with bigger page sizes first. 1743 */ 1744 1745 /* create memseg lists */ 1746 for (i = 0; i < rte_socket_count(); i++) { 1747 int hp_sizes = (int) internal_conf->num_hugepage_sizes; 1748 uint64_t max_socket_mem, cur_socket_mem; 1749 unsigned int main_lcore_socket; 1750 struct rte_config *cfg = rte_eal_get_configuration(); 1751 bool skip; 1752 1753 socket_id = rte_socket_id_by_idx(i); 1754 1755 #ifndef RTE_EAL_NUMA_AWARE_HUGEPAGES 1756 /* we can still sort pages by socket in legacy mode */ 1757 if (!internal_conf->legacy_mem && socket_id > 0) 1758 break; 1759 #endif 1760 1761 /* if we didn't specifically request memory on this socket */ 1762 skip = active_sockets != 0 && 1763 internal_conf->socket_mem[socket_id] == 0; 1764 /* ...or if we didn't specifically request memory on *any* 1765 * socket, and this is not main lcore 1766 */ 1767 main_lcore_socket = rte_lcore_to_socket_id(cfg->main_lcore); 1768 skip |= active_sockets == 0 && socket_id != main_lcore_socket; 1769 1770 if (skip) { 1771 RTE_LOG(DEBUG, EAL, "Will not preallocate memory on socket %u\n", 1772 socket_id); 1773 continue; 1774 } 1775 1776 /* max amount of memory on this socket */ 1777 max_socket_mem = (active_sockets != 0 ? 1778 internal_conf->socket_mem[socket_id] : 1779 internal_conf->memory) + 1780 extra_mem_per_socket; 1781 cur_socket_mem = 0; 1782 1783 for (hpi_idx = 0; hpi_idx < hp_sizes; hpi_idx++) { 1784 uint64_t max_pagesz_mem, cur_pagesz_mem = 0; 1785 uint64_t hugepage_sz; 1786 struct hugepage_info *hpi; 1787 int type_msl_idx, max_segs, total_segs = 0; 1788 1789 hpi = &internal_conf->hugepage_info[hpi_idx]; 1790 hugepage_sz = hpi->hugepage_sz; 1791 1792 /* check if pages are actually available */ 1793 if (hpi->num_pages[socket_id] == 0) 1794 continue; 1795 1796 max_segs = RTE_MAX_MEMSEG_PER_TYPE; 1797 max_pagesz_mem = max_socket_mem - cur_socket_mem; 1798 1799 /* make it multiple of page size */ 1800 max_pagesz_mem = RTE_ALIGN_FLOOR(max_pagesz_mem, 1801 hugepage_sz); 1802 1803 RTE_LOG(DEBUG, EAL, "Attempting to preallocate " 1804 "%" PRIu64 "M on socket %i\n", 1805 max_pagesz_mem >> 20, socket_id); 1806 1807 type_msl_idx = 0; 1808 while (cur_pagesz_mem < max_pagesz_mem && 1809 total_segs < max_segs) { 1810 uint64_t cur_mem; 1811 unsigned int n_segs; 1812 1813 if (msl_idx >= RTE_MAX_MEMSEG_LISTS) { 1814 RTE_LOG(ERR, EAL, 1815 "No more space in memseg lists, please increase %s\n", 1816 RTE_STR(RTE_MAX_MEMSEG_LISTS)); 1817 return -1; 1818 } 1819 1820 msl = &mcfg->memsegs[msl_idx]; 1821 1822 cur_mem = get_mem_amount(hugepage_sz, 1823 max_pagesz_mem); 1824 n_segs = cur_mem / hugepage_sz; 1825 1826 if (eal_memseg_list_init(msl, hugepage_sz, 1827 n_segs, socket_id, type_msl_idx, 1828 true)) { 1829 /* failing to allocate a memseg list is 1830 * a serious error. 1831 */ 1832 RTE_LOG(ERR, EAL, "Cannot allocate memseg list\n"); 1833 return -1; 1834 } 1835 1836 if (eal_memseg_list_alloc(msl, 0)) { 1837 /* if we couldn't allocate VA space, we 1838 * can try with smaller page sizes. 1839 */ 1840 RTE_LOG(ERR, EAL, "Cannot allocate VA space for memseg list, retrying with different page size\n"); 1841 /* deallocate memseg list */ 1842 if (memseg_list_free(msl)) 1843 return -1; 1844 break; 1845 } 1846 1847 total_segs += msl->memseg_arr.len; 1848 cur_pagesz_mem = total_segs * hugepage_sz; 1849 type_msl_idx++; 1850 msl_idx++; 1851 } 1852 cur_socket_mem += cur_pagesz_mem; 1853 } 1854 if (cur_socket_mem == 0) { 1855 RTE_LOG(ERR, EAL, "Cannot allocate VA space on socket %u\n", 1856 socket_id); 1857 return -1; 1858 } 1859 } 1860 1861 return 0; 1862 } 1863 1864 static int __rte_unused 1865 memseg_primary_init(void) 1866 { 1867 return eal_dynmem_memseg_lists_init(); 1868 } 1869 1870 static int 1871 memseg_secondary_init(void) 1872 { 1873 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 1874 int msl_idx = 0; 1875 struct rte_memseg_list *msl; 1876 1877 for (msl_idx = 0; msl_idx < RTE_MAX_MEMSEG_LISTS; msl_idx++) { 1878 1879 msl = &mcfg->memsegs[msl_idx]; 1880 1881 /* skip empty and external memseg lists */ 1882 if (msl->memseg_arr.len == 0 || msl->external) 1883 continue; 1884 1885 if (rte_fbarray_attach(&msl->memseg_arr)) { 1886 RTE_LOG(ERR, EAL, "Cannot attach to primary process memseg lists\n"); 1887 return -1; 1888 } 1889 1890 /* preallocate VA space */ 1891 if (eal_memseg_list_alloc(msl, 0)) { 1892 RTE_LOG(ERR, EAL, "Cannot preallocate VA space for hugepage memory\n"); 1893 return -1; 1894 } 1895 } 1896 1897 return 0; 1898 } 1899 1900 int 1901 rte_eal_memseg_init(void) 1902 { 1903 /* increase rlimit to maximum */ 1904 struct rlimit lim; 1905 1906 #ifndef RTE_EAL_NUMA_AWARE_HUGEPAGES 1907 const struct internal_config *internal_conf = 1908 eal_get_internal_configuration(); 1909 #endif 1910 if (getrlimit(RLIMIT_NOFILE, &lim) == 0) { 1911 /* set limit to maximum */ 1912 lim.rlim_cur = lim.rlim_max; 1913 1914 if (setrlimit(RLIMIT_NOFILE, &lim) < 0) { 1915 RTE_LOG(DEBUG, EAL, "Setting maximum number of open files failed: %s\n", 1916 strerror(errno)); 1917 } else { 1918 RTE_LOG(DEBUG, EAL, "Setting maximum number of open files to %" 1919 PRIu64 "\n", 1920 (uint64_t)lim.rlim_cur); 1921 } 1922 } else { 1923 RTE_LOG(ERR, EAL, "Cannot get current resource limits\n"); 1924 } 1925 #ifndef RTE_EAL_NUMA_AWARE_HUGEPAGES 1926 if (!internal_conf->legacy_mem && rte_socket_count() > 1) { 1927 RTE_LOG(WARNING, EAL, "DPDK is running on a NUMA system, but is compiled without NUMA support.\n"); 1928 RTE_LOG(WARNING, EAL, "This will have adverse consequences for performance and usability.\n"); 1929 RTE_LOG(WARNING, EAL, "Please use --"OPT_LEGACY_MEM" option, or recompile with NUMA support.\n"); 1930 } 1931 #endif 1932 1933 return rte_eal_process_type() == RTE_PROC_PRIMARY ? 1934 #ifndef RTE_ARCH_64 1935 memseg_primary_init_32() : 1936 #else 1937 memseg_primary_init() : 1938 #endif 1939 memseg_secondary_init(); 1940 } 1941